WorldWideScience

Sample records for sludge incineration verwertung

  1. Recycling by the brick making industry of ashes from sewage sludge incineration; Verwertung von Aschen der Klaerschlammverbrennung in der Ziegelindustrie

    Energy Technology Data Exchange (ETDEWEB)

    Wiebusch, B.; Seyfried, C.F. [Hannover Univ. (Germany). ISAH Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik

    1998-09-01

    The present project focuses on the recycling of sewage sludge ashes by the brick making industry. The following aspects are dealt with in detail: Overview of the state of the art of sewage sludge combustion in Germany; influence of wastewater and sludge treatment on ash quality (determination of the seasonal course of chemical sewage sludge composition); use of sewage sludge ashes in as loading material in fluidised-bed furnaces or as clay substitute in brick manufacture; semi-technical trials in ceramic laboratories; assessment of the environmental impact of bricks containing sewage sludge ash; performance of leaching experiments; and examination of the mineralogical binding of heavy metals into the ceramic matrix. [Deutsch] Das Projekt konzentriert sich dabei auf eine Verwertung von Klaerschlammaschen in der Ziegelindustrie, wobei die im folgenden genannten Aspekte im Einzelnen bearbeitet werden: - Ueberblick ueber den Stand der Technik bei der Klaerschlammverbrennung in Deutschland - Einfluss der Abwasser- und Schlammbehandlung auf die Aschequalitaet (Ermittlung von Jahresganglinien der chemischen Zusammensetzung von Klaerschlammaschen) - Einsatz von Klaerschlammaschen aus Wirbelschichtoefen als Zuschlagstoff bzw. Tonersatz bei der Ziegelproduktion - halbtechnische Versuche im keramischen Labor - Abschaetzung der Umweltvertraeglichkeit von Ziegeln mit Klaerschlammaschezusatz: Durchfuehrung von Auslangversuchen, Untersuchung einer mineralogischen Einbindung von Schwermetallen in die keramische Matrix. (orig./SR)

  2. Sewage sludge treatment, utilisation and disposal; Schlammbehandlung, -verwertung und -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In view of recent events and the resulting emotional and political decisions, the issue of sewage sludge treatment and disposal in Germany. must be seen in a new light. First, a new concept for sewage sludge management must be developed as recent legislation interferes with the 'classic' strategy of utilisation in agriculture, dumping and combustion. Scientists and sewage plant owners must find new ways to implement the specifications of the Act on Recycling and Waste Management. This ATV-DVWK training course discusses subjects that may be helpful on the new path. Starting from current legislation, problems, decision criteria and cost of sewage sludge treatment are gone into. Dimensioning fundamentals for sewage treatment plants re presented, and new and established treatment methods, operational problems and pollution problems are discussed. Further subjects are recycling of useful materials from sewage sludge, co-treatment of organic materials in fermenters, and disposal concepts for small and medium-sized communities. (orig.)

  3. Eco-balance of sewage sludge disposal: Agricultural uses, monocombustion or co-combustion; Oekobilanz der Klaerschlammentsorgung: Landwirtschaftliche Verwertung, Mono- oder Co-Verbrennung

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H. [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2001-07-01

    fhe German state of Nordrhein-Westfalen envisages a state-wide strategy for sewage sludge utilization. The ifeu-Institute, Heidelberg, was commissioned to provide the planning fundamentals. About 530,000 t of dried sewage sludge are produced in NRW every year. Utilization concepts included the use as an agricultural fertilizer, in landscaping, and several variants of incineration. The methodology and results are presented here. [German] Das Land Nordrhein-Westfalen strebt eine landesweite Abfallwirtschaftsplanung fuer Klaerschlamm an, die sich an den genannten Grundsaetzen orientieren soll. Das ifeu-Institut, Heidelberg, wurde vom Ministerium fuer Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz (MUNLV) beauftragt, die abfallwirtschaftlichen und oekobilanziellen Grundlagen fuer die Planung zu erstellen. Fuer die Entsorgung des in NRW mit 530.000 t Trockenmasse im Jahr anfallenden Klaerschlamms wurden dabei die Verwertung in der Landwirtschaft, der Einsatz im Landschaftsbau und die Verbrennung, mit jeweils allen wesentlichen in NRW realisierten technischen Varianten bewertet. Die Vorgehensweise sowie die wesentlichen Ergebnisse der oekobilanziellen Bewertung der Optionen der Klaerschlammentsorgung werden hier zusammengefasst. (orig.)

  4. Incineration of Sludge in a Fluidized-Bed Combustor

    OpenAIRE

    Chien-Song Chyang; Yu-Chi Wang

    2017-01-01

    For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in ...

  5. Assessing potential health effects from municipal sludge incinerators: screening methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  6. Coal as a supplemental heat source in sludge incineration

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, G J; Bergstedt, D C

    1979-07-01

    The use of coal as a supplemental fuel in multiple hearth sludge incineration was investigated; how sulphur lump coal was added to dewatered sludge being fed to the furnace, reducing incinerator oil requirements by 70%. With full-scale retrofit of the treatment plant total annual costs for coal supplemental feeding would be 161,000 dollars, but oil savings would be 240,000 dollars.

  7. Radioactivity partitioning of oil sludge undergoing incineration process

    International Nuclear Information System (INIS)

    Muhamat Omar; Suhaimi Hamzah; Muhd Noor Muhd Yunus

    1997-01-01

    Oil sludge waste is a controlled item under the Atomic Energy Act (Act 304) 1984 of which the radioactivity content shall be subjected to analysis. Apart from that the treatment method also shall be approved by Atomic Energy Licensing Board (AELB). Thus, an analysis of the oil sludge for MSE fluidized incinerator was conducted to comply with above requirements using various techniques. Further screening analysis of fly ash as well as bed material were done to study the effect of incinerating the sludge. This paper highlights the analysis techniques and discusses the results with respect to the radioactivity level and the fate of radionuclides subjected to the processing of the waste

  8. Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.

    Science.gov (United States)

    Meier, Christoph; Voegelin, Andreas; Pradas del Real, Ana; Sarret, Geraldine; Mueller, Christoph R; Kaegi, Ralf

    2016-04-05

    Silver nanoparticles (Ag-NP) discharged into the municipal sewer system largely accumulate in the sewage sludge. Incineration and agricultural use are currently the most important strategies for sewage sludge management. Thus, the behavior of Ag-NP during sewage sludge incineration is essential for a comprehensive life cycle analysis and a more complete understanding of the fate of Ag-NP in the (urban) environment. To address the transformation of Ag-NP during sewage sludge incineration, we spiked metallic Ag(0)-NP to a pilot wastewater treatment plant and digested the sludge anaerobically. The sludge was then incinerated on a bench-scale fluidized bed reactor in a series of experiments under variable conditions. Complementary results from X-ray absorption spectroscopy (XAS) and electron microscopy-energy dispersive X-ray (EM-EDX) analysis revealed that Ag(0)-NP transformed into Ag2S-NP during the wastewater treatment, in agreement with previous studies. On the basis of a principal component analysis and subsequent target testing of the XAS spectra, Ag(0) was identified as a major Ag component in the ashes, and Ag2S was clearly absent. The reformation of Ag(0)-NP was confirmed by EM-EDX. The fraction of Ag(0) of the total Ag in the ashes was quantified by linear combination fitting (LCF) of XAS spectra, and values as high as 0.8 were found for sewage sludge incinerated at 800 °C in a synthetic flue gas atmosphere. Low LCF totals (72% to 94%) indicated that at least one relevant reference spectrum was missing in the LCF analysis. The presence of spherical Ag-NP with a diameter of incineration, as demonstrated in this study, needs to be considered in the life cycle assessment of engineered Ag-NP.

  9. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator.

    Science.gov (United States)

    Lin, Hai; Ma, Xiaoqian

    2012-03-01

    Incineration is one of the most important methods in the resource recovery disposal of sewage sludge. The combustion characteristics of sewage sludge and an increasing number of municipal solid waste (MSW) incineration plants provide the possibility of co-incineration of sludge with MSW. Computational fluid dynamics (CFD) analysis was used to verify the feasibility of co-incineration of sludge with MSW, and predict the effect of co-incineration. In this study, wet sludge and semi-dried sludge were separately blended with MSW as mixed fuels, which were at a co-incineration ratios of 5 wt.% (wet basis, the same below), 10 wt.%, 15 wt.%, 20 wt.% and 25 wt.%. The result indicates that co-incineration of 10 wt.% wet sludge with MSW can ensure the furnace temperature, the residence time and other vital items in allowable level, while 20 wt.% of semi-dried sludge can reach the same standards. With lower moisture content and higher low heating value (LHV), semi-dried sludge can be more appropriate in co-incineration with MSW in a grate furnace incinerator. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Sludge Incineration. Multiple Hearth. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Klopping, Paul H.

    This lesson introduces the basics of sludge incineration and focuses on the multiple hearth furnace in accomplishing this task. Attention is given to component identification and function process control fundamentals, theory of incineration, safety, and other responsibilites of furnace operation. The material is rather technical and assumes an…

  11. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  12. Chemical and sewage sludge co-incineration in a full-scale MSW incinerator: toxic trace element mass balance.

    Science.gov (United States)

    Biganzoli, Laura; Grosso, Mario; Giugliano, Michele; Campolunghi, Manuel

    2012-10-01

    Co-incineration of sludges with MSW is a quite common practice in Europe. This paper illustrates a case of co-incineration of both sewage sludges and chemical sludges, the latter obtained from drinking water production, in a waste-to-energy (WTE) plant located in northern Italy and equipped with a grate furnace, and compares the toxic trace elements mass balance with and without the co-incineration of sludges. The results show that co-incineration of sewage and chemical sludges does not result in an increase of toxic trace elements the total release in environment, with the exception of arsenic, whose total release increases from 1 mg t(fuel) (-1) during standard operation to 3 mg t(fuel) (-1) when sludges are co-incinerated. The increase of arsenic release is, however, attributable to the sole bottom ashes, where its concentration is five times higher during sludge co-incineration. No variation is observed for arsenic release at the stack. This fact is a further guarantee that the co-incineration of sludges, when performed in a state-of-the-art WTE plant, does not have negative effects on the atmospheric environment.

  13. [Effects of chlorides on Cd transformation in a simulated grate incinerator during sludge incineration process ].

    Science.gov (United States)

    Liu, Jing-yong; Zhuo, Zhong-xu; Sun, Shui-yu; Luo, Guang-qian; Li, Xiao-ming; Xie, Wu-ming; Wang, Yu- jie; Yang, Zuo-yi; Zhao, Su-ying

    2014-09-01

    The effects of organic chloride-PVC and inorganic chloride-NaCl on Cd partitioning during sludge incineration with adding Cd(CH3COO)2 . 2H2O to the real sludge were investigated using a simulated tubular incineration furnace. And transformation and distribution of Cd were studied in different sludge incineration operation conditions. The results indicated that the partitioning of Cd tended to be enhanced in the fly ash and fule gas as the chloride content increasing. The migration and transformation of Cd-added sludge affected by different chloride were not obvious with the increasing of chloride content. With increasing temperature, organic chloride (PVC) and inorganic chloride (NaC1) can reduce the Cd distribution in the bottom ash. However, the effect of chlorides, the initial concentration and incineration time on Cd emissions had no significant differences. Using SEM-EDS and XRD technique, different Cd compounds including CdCl2, Na2CdCl4, K2CdCl6, K2CdSiO4 and NaCdO2 were formed in the bottom ash and fly ash after adding NaCl to the sludge. In contrast, after adding PVC to the sludge, the Na2CdCl4 and CdCl2 were the main forms of Cd compounds, at the same time, K4CdCI6 and K6CdO4 were also formed. The two different mechanisms of chlorides effects on Cd partitioning were affected by the products of Cd compound types and forms.

  14. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  15. Sewage sludge: arisings, environmental impact, utilisation, disposal. Private wastewater disposal companies present memorandum; Klaerschlamm: Aufkommen, Belastung, Verwertung und Entsorgung. Private Abwasserentsorger legen Memorandum vor

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-05-01

    The more wastewater is cleaned to a high level of purity, the more sewage sludge arises. Problems of quantity and quality are closely intertwined with technical developments and changes in the legal framework. This applies as much to wastewater purification as it does to the utilisation or disposal of sewage sludge. Early this year the Association of Private Wastewater Disposal Companies (Verband der privaten Abwasserentsorger e.V., VpA) presented a memorandum on sewage sludge management which is intended to lead to greater transparency in this market segment of environmental protection. [Deutsch] Je mehr Abwasser auf hohem Niveau gereinigt wird, umso groesser ist die Menge des anfallenden Klaerschlamms. Mengen- und Qualitaetsprobleme sind eingebunden in sich wandelnde Techniken und veraenderte gesetzliche Grundlagen - in der Abwasserreinigung wie in der Verwertung oder Beseitigung der Klaerschlaemme. Der Verband der privaten Abwasserentsorger e.V. (VpA) hat Anfang des Jahres ein Memorandum zur Klaerschlammwirtschaft herausgegeben, das fuer groessere Transparenz in diesem Marktsegment des Umweltschutzes sorgen soll. (orig.)

  16. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Mining utilization of residues of exhaust gas cleaning from waste incinerators; Bergtechnische Verwertung von Abgasreinigungsrueckstaenden aus Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Werthmann, Rainer [K+S Entsorgung GmbH, Kassel (Germany). Abfallchemie und Zulassungen

    2013-03-01

    The exhaust gas purification of a household incinerator or a substitute fuel power plant intends to remove dust, heavy metal compounds and acid harmful gases from the exhaust gas in order to comply with the immission-control legal limits. The particulate matter contains volatile heavy metal chlorides which precipitate as a solid matter. The enhanced amount of water-soluble salts is conspicuous. The concentration of soluble components is limited to 10,000 mg/L in the 1:10 eluate due to the landfill regulation. Thus, the residues of exhaust gas cleaning are predestined for an underground waste disposal in salt mines. Under this aspect, the author of the contribution under consideration reports on the mining utilization of residues of exhaust gas cleaning from waste incinerators.

  18. 78 FR 34973 - Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana

    Science.gov (United States)

    2013-06-11

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 62 [EPA-R05-OAR-2013-0372; FRL-9820-9] Proposal for Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... direct final rulemaking, Indiana's State Plan to control air pollutants from Sewage Sludge Incinerators...

  19. Sewage sludge utilisation and disposal in Switzerland; Loesungen zur Verwertung oder Beseitigung von Klaerschlamm in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Matter, C. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland); Pelloni, L.; Vollmeier, T. [TBF Toscano-Bernardi-Frey AG, Zuerich (Switzerland)

    1996-11-01

    Sewage sludge can be dumped in Switzerland only during a period of transition which will end by 2000. The amount of sewage sludge utilized in agriculture is limited. For these reasons, sewage sludge combustion is an important option. The available methods for sludge combustion are described and compared.

  20. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.

    1987-01-01

    This paper describes a risk assessment methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e., facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium.

  1. Screening methodology for assessing potential health effects from municipal sludge incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, L.; Bruins, R.J.F.; Lutkenhoff, S.D.; Stara, J.F.; Lomnitz, E.; Rubin, A.

    1987-04-01

    This paper describes a risk assessment of methodology for preliminary assessment of municipal sludge incineration. The methodology is a valuable tool in that it can be used for determining the hazard indices of chemical contaminants that might be present in sewage sludge used in incineration. The paper examines source characteristics (i.e. facility design), atmospheric dispersion of emission, and resulting human exposure and risk from sludge incinerators. Seven of the ten organics were screened for further investigation. An example of the calculations are presented for cadmium. (Refs. 5).

  2. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units.

    Science.gov (United States)

    Li, Shiyuan; Li, Yunyu; Lu, Qinggang; Zhu, Jianguo; Yao, Yao; Bao, Shaolin

    2014-12-01

    An original integrated drying and incineration technique is proposed to dispose of sewage sludge with moisture content of about 80% in a circulating fluidized bed. This system combines a bubbling fluidized bed dryer with a circulating fluidized bed incinerator. After drying, sewage sludge with moisture less than 20% is transported directly and continuously from the fluidized bed dryer into a circulating fluidized bed incinerator. Pilot plant results showed that integrated drying and incineration is feasible in a unique single system. A 100 t/d Sewage Sludge Incineration Demonstration Project was constructed at the Qige sewage treatment plant in Hangzhou City in China. The operational performance showed that the main operation results conformed to the design values, from which it can be concluded that the scale-up of this technique is deemed both feasible and successful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge.

    Science.gov (United States)

    Chen, Tao; Yan, Bo

    2012-05-01

    Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100°C, furnace residence time 0-60min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100°C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100°C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.

    Science.gov (United States)

    Samolada, M C; Zabaniotou, A A

    2014-02-01

    For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a 'zero waste' solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Dried sewage sludge as a raw material for utilization and disposal; Klaerschlammtrocknung als Ausgangspunkt fuer Verwertung und Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hofacker, K. [Mannesmann Demag AG, Energie- und Umwelttechnik, Duesseldorf (Germany). Vertriebsabteilung; Mattes, R.R. [Mannesmann Demag AG, Energie- und Umwelttechnik, Duesseldorf (Germany). Produktbereich Schlammbehandlung

    1998-01-01

    Whereas so far, more than 50 per cent of municipal sewage sludge was disposed of as wet sludge at landfills or used in farming or revegetation, the demands of the technical code on municipal waste, `TASi`, are now biting, whose transition period will expire in 2005. One of the aims defined in TASi is to safeguard disposal without further increasing the organic pollutant burden of sanitary landfills. By subjecting sewage sludge to thermal drying, the operators of sewage treatment plants, who are the ones obliged by law to take care of disposal, open up a broad range of possibilities for making use of the material and avoiding environmental pollution. (orig./SR) [Deutsch] Waehrend kommunaler Klaerschlamm bisher zu ueber 50% in nasser Form auf Deponien entsorgt, in der Landwirtschaft und der Rekultivierung verwertet wurde, so greifen in Deutschland jetzt bereits die Anforderungen der TASi (Technische Anleitung Siedlungsabfall), deren Uebergangsfrist im Jahre 2005 ablaeuft. Zu deren vorgegebenen Zielen gehoert die Entsorgungssicherheit, ohne die Deponien weiter mit organischen Stoffen zu belasten. Der Weg ueber die thermische Trocknung erschliesst dem entsorgungspflichtigen Klaeranlagenbetreiber ein breites Spektrum von Verwertungsmoeglichkeiten mit wirtschaftlichen und die Umwelt nicht belastenden Pfaden. (orig.)

  6. Sewage sludge disposal after 2005 - thermal utilisation and uses in agriculture; Klaerschlammentsorgung ab 2005 - thermische Entsorgung und landwirtschaftliche Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Pinnekamp, J. [Stuttgart Univ. (Germany). Inst. fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft

    2000-07-01

    Sewage sludge combustion and its use as an agricultural fertilizer should not be viewed as yes-or-no alternatives. The contribution reviews some aspects of sewage sludge and attempts a forecast beyond 2005. [German] Was ist Klaerschlamm? Ein humus- und naehrstoffreiches Produkt, dessen moeglichst weitgehende Nutzung Ressourcen schont und dem Gebot der Nachhaltigkeit entspricht? Oder das Sammelbecken fuer all' die vielen Schadstoffe, die in Haushalten und Industrie mit Wasser in Beruehrung kommen und ueber die Kanalisation zur Klaeranlage gelangen? Sicher ist Klaerschlamm weder das eine noch das andere und daher ist auch eine eindeutige Bevorzugung oder ein vehementes Ablehnen der Verbrennung von Klaerschlaemmen oder der Aufbringung in der Landwirtschaft nicht angebracht. Dennoch ist in der gesamten Siedlungswasserwirtschaft kein Thema derart stark von Emotionen und haeufig wechselnden umweltpolitischen Rahmenbedingungen beeinflusst, wie die Frage der Klaerschlammentsorgung. Eine einigermassen gesicherte Prognose ueber die Klaerschlammentsorgung nach 2005 abzugeben, ist sicherlich nicht moeglich. Es sollen daher im folgenden einige Aspekte angesprochen werden, um das Thema aus verschiedenen Seiten zu beleuchten. (orig.)

  7. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  8. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2017-01-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ash (SSA), a material which is rich...... in phosphorus (P), but that it is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock (PR) supply, P recovery from SSA has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of P...... extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of P were achieved with a single ED step for incineration SSA and a sequential combination of two ED steps for gasification SSA, which was due to a higher influence of Fe and/or Al in P solubility for the latter...

  9. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  10. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe; Li, Xiao-ming; Chen, Tao; Luo, Guang-qian; Xie, Wu-ming; Wang, Yu-Jie; Zhuo, Zhong-xu; Fu, Jie-wen

    2015-04-01

    Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na2S and Na2SO4) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na2SO4 and Na2S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO4(s) at low temperatures (incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the concentration of Si, Ca and Al-containing compounds in the sludge. These findings provide useful information for understanding the partitioning behavior of Pb, facilitating the development of strategies to control the volatilization of Pb during sludge incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Samolada, M.C. [Dept. Secretariat of Environmental and Urban Planning – Decentralized Area Macedonian Thrace, Taki Oikonomidi 1, 54008 Thessaloniki (Greece); Zabaniotou, A.A., E-mail: azampani@auth.gr [Aristotle University of Thessaloniki, Dept. of Chemical Engineering, University Box 455, University Campus, 541 24 Thessaloniki (Greece)

    2014-02-15

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  12. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    International Nuclear Information System (INIS)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-01-01

    Highlights: • The high output of MSS highlights the need for alternative routes of valorization. • Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. • Pyrolysis is an energy and material recovery process resulting to ‘zero waste’. • Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. • Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a ‘zero waste’ solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated

  13. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge.

    Science.gov (United States)

    Li, Rundong; Zhang, Ziheng; Li, Yanlong; Teng, Wenchao; Wang, Weiyun; Yang, Tianhua

    2015-12-01

    The recovery of phosphorus from incinerated sewage sludge ash (SSA) is assumed to be economical. Transformation from non-apatite inorganic phosphorus (NAIP) to apatite phosphorus (AP), which has a higher bioavailability and more extensive industrial applications, was studied at 750-950°C by sewage sludge incineration and model compound incineration with a calcium oxide (CaO) additive. Thermogravimetric differential scanning calorimetry analysis and X-ray diffraction measurements were used to analyze the reactions between NAIP with CaO and crystallized phases in SSA. High temperatures stimulated the volatilization of NAIP instead of AP. Sewage sludge incineration with CaO transformed NAIP into AP, and the percentage of AP from the total phosphorus reached 99% at 950°C. Aluminum phosphate reacted with CaO, forming Ca2P2O7 and Ca3(PO4)2 at 750-950°C. Reactions between iron phosphate and CaO occurred at lower temperatures, forming Ca(PO3)2 before reaching 850°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Drying and incineration of wastewater sludge. Experiences and perspectives based on the development in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Simonsen, N.; Bruus, J.

    2003-07-01

    The purpose of this paper is to analyse the recent development within sludge disposal in Denmark, where the traditional disposal for agricultural use has changed to other disposal routes. One of the main routes is the thermal treatment, drying and/or incineration. The great majority of WWTP's in Denmark are small and middle-sized plants, which is why these plants are in focus. Drying and incineration concepts adapted to this size of plants have been developed, and the experience has shown that these concepts are sustainable in all main respects, i.e. energy utilisation, environment, operation etc. (author)

  15. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    Science.gov (United States)

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  16. Gaseous Emissions from the Fluidized-bed Incineration of Sewage Sludge

    Czech Academy of Sciences Publication Activity Database

    Pohořelý, Michael; Svoboda, Karel; Trnka, Otakar; Baxter, D.; Hartman, Miloslav

    2005-01-01

    Roč. 59, 6b (2005), s. 458-463 ISSN 0366-6352. [International Conference SSCHE /32./. Tatranské Matliare, 23.05.2005-27.05.2005] R&D Projects: GA AV ČR IAA4072201; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : sewage sludge * fluidized-bed incineration * solid fuels Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.409, year: 2005

  17. Sludge as dioxins suppressant in hospital waste incineration

    NARCIS (Netherlands)

    Yan, M.; Li, X.; Yang, J.; Chen, T.; Lu, S.; Buekens, A.G.; Olie, K.; Yan, J.

    2012-01-01

    Nitrogen containing compounds such as ammonia, urea and amines can effectively inhibit the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Sewage sludge accumulates both sulfur and nitrogen during wastewater treatment so it could be used to reduce PCDD/Fs formation.

  18. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.

    Science.gov (United States)

    Kavouras, P; Pantazopoulou, E; Varitis, S; Vourlias, G; Chrissafis, K; Dimitrakopulos, G P; Mitrakas, M; Zouboulis, A I; Karakostas, Th; Xenidis, A

    2015-01-01

    A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Elutriation characteristics of fine particles from bubbling fluidized bed incineration for sludge cake treatment.

    Science.gov (United States)

    Chang, Yu-Min; Chou, Chih-Mei; Su, Kuo-Tung; Hung, Chao-Yang; Wu, Chao-Hsiung

    2005-01-01

    In this study, measurements of elutriation rate were carried out in a bench scale bubbling fluidized bed incinerator, which was used to combust sludge cake. The particle size distribution and ignition loss were analyzed to study the elutriation characteristics of bubbling fluidized bed incineration. Drawn from the experimental data, the elutriation rate constant K(i)* for fine particles were obtained and correlated with parameters. It was found that most of the solid particles (about 95%) elutriated came from the fluidized medium (inorganic matters), but few came from unburned carbon particles or soot (about 5%). Finally, this paper lists a comparison of K(i)* between this study and the published prediction equations derived or studied in non-incineration modes of fluidized bed. A new and modified correlation is proposed here to estimate the elutriation rate of fine particles emitted from a bubbling fluidized bed incinerator. Primary operation variables (superficial gas velocity and incineration temperature) affecting the elutriation rate are also discussed in the paper.

  20. Plutonium recovery from incinerator ash and centrifuge sludge by peroxide fusion

    International Nuclear Information System (INIS)

    Partridge, J.A.; Wheelwright, E.J.

    1975-05-01

    A technique was demonstrated for solubilizing the plutonium contained in incinerator ash and in other waste solids (such as solids accumulated by centrifugation after solvent extraction contacts in the plutonium reclamation facility at Hanford). A sodium hydroxide--sodium peroxide fusion is performed on the Pu-containing solids. The cooled melt is then dissolved in dilute nitric acid. Mild steel cans were used as ''single use'' crucibles for the fusions. Both the can and the cooled melt are dissolved in nitric acid. Fusion tests were conducted on three different cans of incinerator ash and on one can of centrifuge sludge. The series of tests demonstrated that a caustic-peroxide fusion treatment can yield 95 percent or greater recovery of plutonium from these waste solids. In most cases, quantitative recovery of the plutonium can probably be achieved by recycling the residual solids obtained in aqueous dissolution of the cooled fusion mixture. Tests with some of the incinerator ash and with the centrifuge sludge resulted in gelatinous precipitates which were difficult to separate from the nitric acid dissolver solutions. These gelatinous precipitates present what is probably the major problem to be overcome in the use of this Pu recovery method. Techniques need to be examined for making these residual solids less difficult to separate from the dissolver solution. (U.S.)

  1. Effects of sulfur on lead partitioning during sludge incineration based on experiments and thermodynamic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-yong, E-mail: www053991@126.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Huang, Shu-jie; Sun, Shui-yu; Ning, Xun-an; He, Rui-zhe [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Xiao-ming [Guangdong Testing Institute of Product Quality Supervision, Guangzhou 510330 (China); Chen, Tao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Luo, Guang-qian [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074 (China); Xie, Wu-ming; Wang, Yu-jie; Zhuo, Zhong-xu; Fu, Jie-wen [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2015-04-15

    Highlights: • A thermodynamic equilibrium calculation was carried out. • Effects of three types of sulfurs on Pb distribution were investigated. • The mechanism for three types of sulfurs acting on Pb partitioning were proposed. • Lead partitioning and species in bottom ash and fly ash were identified. - Abstract: Experiments in a tubular furnace reactor and thermodynamic equilibrium calculations were conducted to investigate the impact of sulfur compounds on the migration of lead (Pb) during sludge incineration. Representative samples of typical sludge with and without the addition of sulfur compounds were combusted at 850 °C, and the partitioning of Pb in the solid phase (bottom ash) and gas phase (fly ash and flue gas) was quantified. The results indicate that three types of sulfur compounds (S, Na{sub 2}S and Na{sub 2}SO{sub 4}) added to the sludge could facilitate the volatilization of Pb in the gas phase (fly ash and flue gas) into metal sulfates displacing its sulfides and some of its oxides. The effect of promoting Pb volatilization by adding Na{sub 2}SO{sub 4} and Na{sub 2}S was superior to that of the addition of S. In bottom ash, different metallic sulfides were found in the forms of lead sulfide, aluminosilicate minerals, and polymetallic-sulfides, which were minimally volatilized. The chemical equilibrium calculations indicated that sulfur stabilizes Pb in the form of PbSO{sub 4}(s) at low temperatures (<1000 K). The equilibrium calculation prediction also suggested that SiO{sub 2}, CaO, TiO{sub 2}, and Al{sub 2}O{sub 3} containing materials function as condensed phase solids in the temperature range of 800–1100 K as sorbents to stabilize Pb. However, in the presence of sulfur or chlorine or the co-existence of sulfur and chlorine, these sorbents were inactive. The effect of sulfur on Pb partitioning in the sludge incineration process mainly depended on the gas phase reaction, the surface reaction, the volatilization of products, and the

  2. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    Science.gov (United States)

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.

  3. Innovative solidification/stabilization of lead contaminated soil using incineration sewage sludge ash.

    Science.gov (United States)

    Li, Jiangshan; Poon, Chi Sun

    2017-04-01

    The proper treatment of lead (Pb) contaminated soils and incinerated sewage sludge ash (ISSA) has become an environmental concern. In this study, ordinary Portland cement (OPC) and blended OPC containing incinerated sewage sludge ash (ISSA) were used to solidify/stabilize (S/S) soils contaminated with different concentrations of Pb. After curing for 7 and 28 d, the S/S soils were subjected to a series of strength, leaching and microscopic tests. The results showed that replacement of OPC by ISSA significantly reduced the unconfined compressive strength (UCS) of S/S soils and leached Pb. In addition, the leaching of Pb from the monolithic samples was diffusion controlled, and increasing the ISSA addition in the samples led to a lower diffusion coefficient and thus an increase in the feasibility for "controlled utilization" of S/S soils. Furthermore, the proposed S/S method significantly decreased the amount of Pb associated with carbonates and increased the amount of organic and residual Pb in S/S soils, reflecting that the risk of Pb contaminated soils can be effectively mitigated by the incorporating of ISSA. Overall, the leachability of Pb was controlled by the combined effect of adsorption, encapsulation or precipitation in the S/S soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sewage sludge disposal at the city of Duesseldorf - Conception of co-combustion in a coal power plant; Klaerschlammentsorgung der Stadt Duesseldorf - Konzeption der Mitverbrennung im Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Lindert, M. [Umweltamt der Landeshauptstadt Duesseldorf (Germany); Hansmann, G. [Stadtwerke Duesseldorf AG (Germany); Mittmann, H. [Kanal- und Wasserbauamt der Landeshauptstadt Duesseldorf (Germany); Goertz, W. [Umweltamt der Landeshauptstadt Duesseldorf (Germany)

    1995-11-01

    Simultaneously to the enlargement of the biological wastewater treatment plants in Germany the amount of sludges increased. For the reuse or disposal of these sludges different methods - from agricultural use to incineration - are applied. For the city of Duesseldorf it became necessary to outline a new conception for the sludge disposal. A number of methods has been considered, showing that co-incineration in a coal-power-plant appears to be practicable under the circumstances found in Duesseldorf. Hence the effects of such a co-incineration on the emissions and the composition of solid waste materials of the power plant have been investigated in the course of an experimental operation. These experiments show that coincineration of the sludge also has advantages from the ecological point of view. (orig.) [Deutsch] Mit dem Ausbau der biologischen Klaeranlagen in Deutschland stieg in den letzten Jahren auch die Menge des anfallenden Klaerschlamms. Zur Verwertung bzw. Entsorgung dieses Schlammes werden unterschiedliche Verfahren - von der landwirtschaftlichen Verwertung bis zur Verbrennung - herangezogen. Fuer die Stadt Duesseldorf ergab sich die Notwendigkeit, die Klaerschlammentsorgung neu zu konzipieren. Verschiedene Varianten wurden geprueft, wobei die Mitverbrennung in der Schmelzkammerfeuerung eines Steinkohlekraftwerkes unter den in Duesseldorf herrschenden Randbedingungen praktikabel erschien. Daher wurden die Auswirkungen einer solchen Mitverbrennung auf das Emissionsverhalten und die Zusammensetzung der festen Reststoffe des Kraftwerks waehrend eines Probebetriebes untersucht. Die Versuche zeigen, dass die Mitverbrennung auch aus oekologischer Sicht Vorteile aufweist. (orig.)

  5. Fate of heavy metals including mercury in a sewage sludge incineration process

    International Nuclear Information System (INIS)

    Seo, Yong-Chil; Kim, Jeong-Hun; Pudasainee, Deepak; Yoon, Young-Sik; Cho, Sung-Jin

    2010-01-01

    Thermal treatment technology for sewage sludge incineration has several advantages. However, emission of heavy metals including mercury, into the environment from such technology utilization has been a major concern. In this paper heavy metals including mercury emission and distribution behavior within the different streams of a fluidized bed sewage sludge incineration process is presented. Emission of heavy metals and mercury at the inlet and outlet of APCDs and each incoming and outgoing streams were sampled and analyzed. Mercury and its speciation in flue gas were sampled and analyzed by Ontario Hydro Method. Solid and liquid samples were analyzed by US EPA method 7470A and 7471A, respectively. Heavy metals were sampled by US EPA method and analyzed by inductively coupled plasma-mass spectrometry. At the inlet of APCDs Cr, Ni and Pb were mainly enriched in coarse particles whereas, As was enriched in fine particles. Hg emission concentration in flue gas, on average was 326.73 μg/ Sm 3 and 4.44 μg/ Sm 3 at inlet APCDs and the stack emission, overall removal efficiency of APCDs was 98.6%. More than 83.3% of Hg was speciated into oxidized form at the inlet of APCD. Oxidized Hg was removed in wet APCDs leaving behind elemental Hg as dominant species in stack emission. Hg was mainly distributed in waste water (57.5%), other effluent and sludge (27.6%), waste water from spray dry reactor (12.3%), fly ash in hopper (2.5%). Further, detailed investigations would give more reliable mass distribution data and insight to control mercury from such sources. (author)

  6. Fuel optimization in a multi chamber incinerator by the moisture control of oily sludge and medical wastes

    International Nuclear Information System (INIS)

    Haider, I.; Hussain, S.; Khan, S.; Mehran, T.

    2011-01-01

    Experiments have been performed to study the effects of %age moisture content on fuel optimization during the waste feed combustion of oily sludge, medical waste and mix blend waste in a 50 kg/hr multi chamber incinerator installed at NCPC- ARL RWP. Intention is to find out the optimum and in compliance with NEQs incinerator performance at various moisture contents in the different waste feeds. Optimum performances of the incinerator, so that optimum operating moisture conditions, which has been used for multi purpose waste, feeds, may be defined. Three waste feeds of 10 kg batch size were used for the experimentation namely; Oily Sludge, Medical waste and Mix blend waste (oily sludge and medical), with the primary chamber preheating temperature 655 deg. C for 15 mins. interval monitoring. The secondary chamber temperature was set to 850 deg. C. By the data obtained it is apparent that rising the waste moisture content tend to increase fuel consumption specifically in case of medical waste and hence lowering the overall combustion efficiency. In the emissions the CO/sub 2/ concentration is showing the incineration efficiency. Higher efficiency of the system could have been achieved by increasing the CO/sub 2/ in the gases leaving the incinerator, lower fuel usage per kg waste feed and maintain proper operating conditions. Fuel consumption for the oily sludge with 10% moisture content, was found to be least as compared with the same %age of medical waste and mix blend waste. However environmental compliance of the operation is shown by the flue gas analysis. The results shows that using mix blend(oily sludge and medical) waste having 12-13% moisture content would be suitable for incineration in multi-chamber incinerator .Other makes it possible to determine the optimum incinerator temperature control settings and operating conditions, as well as to assure continuous, efficient, environmentally satisfactory operation. The optimum fuel consumption for 10 kg each waste

  7. Joint stabilization of sewage sludge and separated manure fluid. Treatment and utilization of manure. Final report; Gemeinsame Stabilisierung von Klaerschlamm und separierter Guellefluessigkeit. Guellebehandlung und -verwertung. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, W.F.; Kolisch, G.

    1994-12-01

    As an alternative to separate manure processing, anaerobic stabilization of surplus manure and sewage sludge in combination is possible at municipal sewage treatment plants. Subsequently to the removal of solids, pig manure is fed into existing digesters. The process concept comprises the following partial steps: preliminary treatment of crude manure, anarobic stabilization of the separated manure fluid, biological nitrogen elimination from the digested mixture of sewage sludge and manure, and dewatering of the mixed sludge in the dewatering systems of the sewage treatment plant. (orig./SR) [Deutsch] Eine Alternative zu den Verfahren einer separaten Guelleaufbereitung stellt die gemeinsame anaerobe Stabilisierung von Ueberschussguelle und Klaerschlamm auf kommunalen Klaeranlagen dar, die eine Einspeisung feststoffseparierter Schweineguelle in bereits vorhandene Faulbehaelter vorsieht. Das Verfahrenskonzept besteht aus den Teilschritten Vorseparierung der Rohguelle, anaerobe Stabiliserung der separierten Guellefluessigkeit, biologische Stickstoffelimination aus dem ausgefaulten Klaerschlamm-Guelle-Gemisch sowie Entwaesserung der Mischschlaemme auf den Entwaesserungsaggregaten der Klaeranlage. (orig./SR)

  8. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  9. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    Science.gov (United States)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    Sewage sludges as well as ashes from waste incineration plants are known accumulation sinks of many elements that are either important nutrients for biological organisms (phosphorus, potassium, magnesium, etc.) or valuable metals when considered on their own in pure form (nickel, chrome, zinc, etc.); they are also serious pollutants when they occur in wild mixtures at localized anthropogenic end- of-stream points. Austria and many other countries have to import up to 90% of the material inputs of metals from abroad. These primary resources are becoming more expensive as they become more scarce and remaining deposits more difficult to mine, which is a serious concern for industrialized nations. Basic economic and strategic reasoning demands an increase in recycling activities and waste minimization. Technologies to recover metals in a reasonable and economically relevant manner from very diffuse sources are practically non-existent or require large amounts of energy and chemicals, which pose environmental risks. On the other hand agriculture uses large volumes of mineral fertilizers, which are often sourced from mines as well, and thus are also subject to the same principle of finiteness and potential shortage in supply. These converted biological nutrients are taken up by crops and through the food chain and human consumption end up in sewage systems and in wastewater treatment plants in great quantities. The metabolized nutrients mostly do not return to agriculture, but due to contamination with heavy metals are diverted to be used as construction aggregates or are thermally treated and end up rather uselessly in landfills. The project BIO-ORE aimed to explore new pathways to concentrate metals from diluted sources such as sewage sludge and wastewater by using highly efficient biological absorption and transport mechanisms. These enzymatic systems from plants work with very little energy input. The process is called bioaccumulation and can be most effectively

  10. Sewage Sludge Incinerators: Final Standards of Performance for New Stationary Sources and Emission Guidelines for Existing Sources Final Rule Fact Sheets

    Science.gov (United States)

    This page contains a February 2011 fact sheet with information regarding the final NSPS and Emission Guidelines for Existing Sources for Sewage Sludge Incinerators (SSI). This document provides a summary of the information for these regulations.

  11. Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment

    Science.gov (United States)

    Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław

    2017-11-01

    In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).

  12. Assessment of an on-line CI-mass spectrometer as a continuous emission monitor for sewage sludge incinerators

    International Nuclear Information System (INIS)

    Campbell, K.R.; Hallett, D.J.; Resch, R.J.; Villinger, J.; Federer, V.

    1991-01-01

    ELI Eco Technologies Inc. tested two sewage sludge incinerators using regulator methods and a V and F CIMS-500 chemical ionization mass spectrometer. Correlations between dioxins and dibenzofurans from the regulatory MM5 trains and the continuous readings form the CIMS-500 for chlorobenzenes and chlorophenols were noted. As well, correlations between chlorinated organics and other volatile organics were obvious under poor combustion conditions. ELI Eco Technologies Inc. recently completed an extensive survey of organic chemical emissions including VOCs, chlorobenzenes, chlorophenols, chlorinated dioxins and dibenzofurans from two sewage sludge incinerators. The program was funded by the Municipality of Metro Toronto, Environment Ontario, and Environment Canada. Contaminants were measured by regulatory methods (ASME Modified Method 5) and simultaneously with the continuous mass spectrometer. The purpose of the study was to provide regulatory testing and at the same time evaluate the usefulness of the CIMS-500 mass spectrometer in assessing emissions. This paper describes the evaluation of the usefulness of this mass spectrometer

  13. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge

    DEFF Research Database (Denmark)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper

    2017-01-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the o......Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed...... and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant...... processes and 10–15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized...

  14. Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

    Science.gov (United States)

    Wei, Na

    2015-01-01

    Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800

  15. Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Kirkelund, Gunvor M.; Jensen, Pernille E.

    2013-01-01

    Ashes from mono-incineration of sewage sludge (ISSA) generally contain high concentrations of phosphorous (P) and can be regarded as secondary P resources. ISSA has no direct value as fertilizer as P is not plant available. The present paper experimentally compares P extraction in acid from two...... different ISSAs; one rich in Al (67g/kg) and the other in Fe (58g/kg). The difference related to P precipitation at the waste water treatment facilities. Another major difference between the ashes was that flue gas purification products were mixed into the first ash and it contained about 5% activated.......Formation of a high amount of gypsum crystals in both ashes after extraction in H2SO4 was seen by SEM–EDX. H2SO4 is the cheapest mineral ash, but the gypsum formation must be taken into account when either finding possibility for using the remaining ash in e.g. construction materials or if the choice is deposition...

  16. Mathematical modelling of sewage sludge incineration in a bubbling fluidised bed with special consideration for thermally-thick fuel particles.

    Science.gov (United States)

    Yang, Yao Bin; Sharifi, Vida; Swithenbank, Jim

    2008-11-01

    Fluidised bed combustor (FBC) is one of the key technologies for sewage sludge incineration. In this paper, a mathematical model is developed for the simulation of a large-scale sewage sludge incineration plant. The model assumes the bed consisting of a fast-gas phase, an emulsion phase and a fuel particle phase with specific consideration for thermally-thick fuel particles. The model further improves over previous works by taking into account throughflow inside the bubbles as well as the floating and random movement of the fuel particles inside the bed. Validation against both previous lab-scale experiments and operational data of a large-scale industrial plant was made. Calculation results indicate that combustion split between the bed and the freeboard can range from 60/40 to 90/10 depending on the fuel particle distribution across the bed height under the specific conditions. The bed performance is heavily affected by the variation in sludge moisture level. The response time to variation in feeding rate is different for different parameters, from 6 min for outlet H2O, 10 min for O2, to 34 min for bed temperature.

  17. Evaluation of the influence of mechanical activation on physical and chemical properties of municipal solid waste incineration sludge.

    Science.gov (United States)

    Caprai, V; Florea, M V A; Brouwers, H J H

    2018-06-15

    Despite numerous studies concerning the application of by-products in the construction field, municipal solid waste incineration (MSWI) residues are not widely used as secondary building materials. In some European countries, washing treatment to the full bottom ash (BA) fraction (0-32 mm) is applied, isolating more contaminated particles, smaller than 0.063 mm. Therefore, a MWSI sludge is produced, having a high moisture content, and thus a limited presence of soluble species. In order to enhance its performance as building material, here, dry mechanical activation is applied on MSWI sludge. Thereafter, a reactivity comparison between reference BA and untreated and treated MSWI sludge is provided, evaluating their behaviour in the presence of cement and their pozzolanic activity. Moreover, the mechanical performances, as 25% substitution of Portland cement (PC) are assessed, based on the EN 450. Mechanical activation enhances MSWI sludge physically due to the improved particle morphology and packing. Chemically, the hydration degree of PC is enhanced by the MSWI sludge by ≈25%. The milling treatment proved to be beneficial to the residues performances in the presence of PC, providing 32% higher strength than untreated sample. Environmentally, the compliance with the unshaped material legislation is successfully verified, according to the Soil Quality Decree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA).

    Science.gov (United States)

    Fang, Le; Li, Jiang-Shan; Guo, Ming Zhi; Cheeseman, C R; Tsang, Daniel C W; Donatello, Shane; Poon, Chi Sun

    2018-02-01

    Chemical extraction of phosphorus (P) from incinerated sewage sludge ash (ISSA) is adversely influenced by co-dissolution of metals and metalloids. This study investigated P recovery and leaching of Zn, Cu, Pb, As and Ni from ISSA using inorganic acids (sulphuric acid and nitric acid), organic acids (oxalic acid and citric acid), and chelating agents (ethylenediaminetetraacetic acid (EDTA) and ethylene diamine tetramethylene phosphonate (EDTMP)). The aim of this study was to optimize a leaching process to recover P-leachate with high purity for P fertilizer production. The results show that both organic and inorganic acids extract P-containing phases but organic acids leach more trace elements, particularly Cu, Zn, Pb and As. Sulphuric acid was the most efficient for P recovery and achieved 94% of total extraction under the optimal conditions, which were 2-h reaction with 0.2 mol/L H 2 SO 4 at a liquid-to-solid ratio of 20:1. EDTA extracted only 20% of the available P, but the leachates were contaminated with high levels of trace elements under optimum conditions (3-h reaction with EDTA at 0.02 mol/L, pH 2, and liquid-to-solid ratio of 20:1). Therefore, EDTA was considered an appropriate pre-treatment agent for reducing the total metal/metalloid content in ISSA, which produced negligible changes in the structure of ISSA and reduced contamination during subsequent P extraction using sulphuric acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Changes imposed by pyrolysis, thermal gasification and incineration on composition and phosphorus fertilizer quality of municipal sewage sludge.

    Science.gov (United States)

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Frandsen, Flemming J; Müller-Stöver, Dorette Sophie

    2017-08-01

    Fertilizer quality of ash and char from incineration, gasification and pyrolysis of a single municipal sewage sludge sample were investigated by comparing composition and phosphorus (P) plant availability. A process for post oxidation of gasification ash and pyrolysis char was developed and the oxidized materials were investigated as well. Sequential extraction with full elemental balances of the extracted pools as well as scanning electron microscopy with energy dispersive X-ray spectroscopy were used to investigate the mechanisms driving the observed differences in composition and P plant availability in a short-term soil incubation study. The compositional changes related mainly to differences in the proximate composition as well as to the release of especially nitrogen, sulfur, cadmium and to some extent, phosphorus (P). The cadmium load per unit of P was reduced with 75-85% in gasification processes and 10-15% in pyrolysis whereas no reduction was observed in incineration processes. The influence on other heavy metals was less pronounced. The plant availability of P in the substrates varied from almost zero to almost 100% of the plant availability of P in the untreated sludge. Post-oxidized slow pyrolysis char was found to be the substrate with the highest P fertilizer value while ash from commercial fluid bed sludge incineration had the lowest P fertilizer quality. The high P fertilizer value in the best substrate is suggested to be a function of several different mechanisms including structural surface changes and improvements in the association of P to especially magnesium, calcium and aluminum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Incineration of sewage sludge. Self-heating in storage silo; Incineration de boues d'epuration. Auto-echauffement dans les silos de stockage

    Energy Technology Data Exchange (ETDEWEB)

    Poffet, M.

    2008-07-01

    Elimination of urban sewage sludge occurs exclusively by incineration in Switzerland, because recycling as fertilizer in agriculture is banned since October 2006. This new elimination route is hampered, however, by the tendency of dried sewage granules to self-heating and by occasional thermal runaway ending up in fire. The presented research project deals with the investigation of the characteristics of this waste material and the possible reasons for the observed self-heating phenomenon. It was found that a cascade of reactions is responsible for the thermal runaway such as oxidation of ferrous (Fe{sup 2+}) and sulfides (S{sup 2-}) compounds and exothermic hydration which triggers the initial temperature raise. (author) $$$ continuer ici $$.

  1. Material balance of two sewage sludge incineration systems; Methods and results - disposal of solid residues. Stoffflussanalyse bei zwei Klaerschlammverbrennungsanlagen; Methodik und Ergebnisse - Entsorgung der festen Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Staeubli, B. (Abt. Abfallwirtschaft des Amtes fuer Gewaesserschutz und Wasserbau des Kantons Zuerich (Switzerland)); Keller, C. (Elektrowatt Ingenieurunternehmung AG, Zurich (Switzerland))

    1993-02-01

    Material balances were analyzed in two Swiss sewage sludge combustion plants. The methodology is described. Aspects of the standards set for waste management in Switzerland are described. The two incinerations are described. The volumes and compositions of the sewage sludges and all gaseous, liquid, and solid products are gone into. The possibilities of recycling and dumping of combustion products are reviewed in consideration of the volumes and compositions of combustion products. The text is supplemented by tables and flowsheets. (orig.)

  2. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    Science.gov (United States)

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  3. Evaluation of gaseous emissions produced in the tests on the demonstration plant for sludge drying and incineration

    International Nuclear Information System (INIS)

    Lotito, V.; Spinosa, L.; Antonacci, R.; Mininni, G.

    2001-01-01

    Incineration is a valid alternative to other more diffused disposal systems (agricultural use, landfill), when they cannot be applied due to high pollutants concentrations or other unforeseeable constraints. However, it can cause severe air pollution by inorganic (heavy metals) and organic (PAHs, PCDDs, PCDFs) pollutants, particulate, NO x , CO and acidic compounds; this fact has raised public concern about incineration and has hindered a wider application of this practice. Water Research Institute of Italian National Research Council realised a demonstration plant mainly consisting of a fluidized bed furnace, a rotary kiln furnace, a dryer with heat recovery section, particulate and acidic compounds removal apparatuses, and set up a research programme to demonstrate that incineration is a safe operation and can comply the relevant legislation, as far as organic and inorganic micropollutants are concerned. A total of 40 tests were carried out (30 with the fluidized bed furnace and 10 with rotary kiln one) treating dewatered sludges (in many cases with the addition of high chlorinated compounds and Cu salts) or dried ones, under different operating conditions (furnace temperature, after-burner temperature, chlorine concentration). Particulate concentrations, and consequently heavy metals concentrations, at the stack resulted in any case under legal limits. As far as conventional pollutants are concerned, only HCl and CO overcame sometimes standards, mainly due to temporary operating up-sets. PAHs concentration resulted quite constant, thus demonstrating that tests were operated in steady-state and satisfactory conditions. Also dioxins and furans overcame sometimes standards, but no correlation was found with more severe tests conditions; it happened when plant up-set conditions occurred. Operation resulted quite satisfactory, but dryer operation required constant operators attention. In rotary kiln furnace a build up of solidified ashes occurred in counter

  4. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    Science.gov (United States)

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Thermal utilisation and disposal of sewage sludge; Thermische Klaerschlammverwertung -beseitigung

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, H.C. [Emscher Genossenschaft/Lippeverband, Essen (Germany). Technischer Vorstand

    2001-07-01

    Sewage sludge combustion - either in an incinerator or for heat or power generation - has always been important and is getting ever more so. From the cost aspect, it makes quite a difference whether sewage sludge is just incinerated or utilised. The author makes it clear that this cost aspect - and what it means to communities and citizens - tends to be neglected by those who favour sewage sludge combustion and utilisation. [German] Die Verbrennung von Klaerschlamm - sei es als Schlammveraschung oder als thermische oder energetische Verwertung - hat schon immer fuer grosse Klaeranlagen einen bedeutenden Stellenwert gehabt. Die Bedeutung der Verbrennung scheint in letzter Zeit sogar zuzunehmen. Unter Kostengesichtspunkten ist es ein grosser Unterschied, ob ein Klaerschlamm nur verascht oder energetisch verwertet wird. Vor dem Hintergrund der allgemeinen Diskussion um die leeren Kassen der Kommunen, um die sogenannte dritte Miete fuer den Buerger und damit die Zumutbarkeit fuer weitere Steigerungen der Abwassergebuehren stoert mich die Bagatellisierung der Kostengesichtspunkte vor allem auf Seiten derer, die die Verbrennung der Klaerschlaemme fordern. (orig.)

  6. Recycling of plastic packaging material from separate collection from the dual system Germany. Current LCA results compared to disposal in thermal waste incineration plants; Werkstoffliche Verwertung von Verpackungskunststoffen aus der Getrenntsammlung Dualer Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Heyde, Michael; Gerke, Gilian; Muehle, Sarah [Deutsche Gesellschaft fuer Kreislaufwirtschaft und Rohstoffe (DKR) mbH, Koeln (Germany)

    2010-01-15

    Due to the implementation of the European waste framework directive into German law it is discussed which contribution waste incineration makes to resource protection and the reduction of greenhouse gas emissions. A number of players question if it is still contemporary to adhere to recycling as a priority. The following article compares today's recycling of separately collection of plastics waste from the German packaging recovery system and the disposal in thermal waste treatment plants under ecological aspects. The separate collected of packaging waste materials is a prerequisite of high quality recycling. If this were to be abandoned and - hypothetically - this waste stream would be disposed in thermal waste treatment plants in Germany, significant drawbacks in the reduction of greenhouse gas emissions and primary energy demand would arise. This is shown in a study conducted by the Institute fuer Energie- und Umweltforschung (ifeu) in Heidelberg. Further it could be proved that there is still optimization potential in the recycling market that has been developed over the last two decades in Germany. However, to max this potential significantly depends on stable political framework requirements. The following article underlines that recycling and high quality energy recovery cause remarkable savings of CO{sub 2}-emissions and energy. (orig.)

  7. EVALUATION OF OXYGEN-ENRICHED MSW/SEWAGE SLUDGE CO-INCINERATION DEMONSTRATION PROGRAM

    Science.gov (United States)

    This report provides an evaluation of a two-phased demonstration program conducted for the U.S. Environmental Protection Agency's Municipal Solid Waste Innovative Technology Evaluation Program, and the results thereof, of a recently developed method of sewage sludge managemen...

  8. The slag original from the process of sewage sludge incineration selected properties characteristic

    Science.gov (United States)

    Głowacka, Anna; Rucińska, Teresa; Kiper, Justyna

    2017-11-01

    This work characterizes the physical and chemical properties of slag from combustion of municipal sewage sludge in "Pomorzany" waste treatment plant in Szczecin. The technology of sludge management is based on drying the sludge in low-temperature belt driers, to a content level of at least 90%, dry mass., and then burning in a grate boiler with mobile grate. The research of the slag resulting from combustion of municipal sewage sludge was conducted using reference methods, presenting images from a scanning electron microscope. The tested waste contained from 16.300 to 23.150% P2O5 completely soluble in strong acids, pH 8.03, mineral substance 98.73% dry mass. The content of heavy metals did not exceed the permissible amount specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws of 2008 No. 119, item. 765). The screening trials showed that 48.4% are fractions of 630 µm-1.25 mm. The results show that the waste code 19 01 12 may be used as: alternative source of phosphorus for direct application to soil treatment, for production of organic - mineral fertilizers and as construction aggregate for production of concrete mortars.

  9. Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus - Polish case study.

    Science.gov (United States)

    Smol, Marzena; Kulczycka, Joanna; Kowalski, Zygmunt

    2016-12-15

    The aim of this research is to present the possibility of using the sewage sludge ash (SSA) generated in incineration plants as a secondary source of phosphorus (P). The importance of issues related to P recovery from waste materials results from European Union (UE) legislation, which indicated phosphorus as a critical raw material (CRM). Due to the risks of a shortage of supply and its impact on the economy, which is greater than other raw materials, the proper management of phosphorus resources is required in order to achieve global P security. Based on available databases and literature, an analysis of the potential use of SSA for P-recovery in Poland was conducted. Currently, approx. 43,000 Mg/year of SSA is produced in large and small incineration plants and according to in the Polish National Waste Management Plan 2014 (NWMP) further steady growth is predicted. This indicates a great potential to recycle phosphorus from SSA and to reintroduce it again into the value chain as a component of fertilisers which can be applied directly on fields. The amount of SSA generated in installations, both large and small, varies and this contributes to the fact that new and different P recovery technology solutions must be developed and put into use in the years to come (e.g. mobile/stationary P recovery installations). The creation of a database focused on the collection and sharing of data about the amount of P recovered in EU and Polish installations is identified as a helpful tool in the development of an efficient P management model for Poland. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  11. Sorbent control of trace metals in sewage sludge combustion and incineration

    Science.gov (United States)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  12. Overview of municipal sludge fluid bed incineration in North America--from green to greener--the Lakeview, the Duffin Creek and the Southerly experiences.

    Science.gov (United States)

    Dangtran, K; Takmaz, L; Pham, H; Bergel, J Y; Welp, J; Burrowes, P

    2011-01-01

    Thermal processes used in sludge disposal have become more attractive as process improvements have been introduced, such as power generation and efficient heat recovery. More and more utilities and agencies are reevaluating their sludge management practices to ensure that they are providing sustainable management solutions for their clients. The thermal process design approach to the disposal of sludge is not only designed to achieve stricter emission limits but also is more energy efficient compared to its predecessors. Increasing numbers of new plants are being built every year with more energy efficient heat recovery features such as air preheating and cogeneration with steam and electricity production. This paper presents an overview of fluid bed incineration in North America and its evolution over the last decades. Case studies of the last three newest and largest plants in North America are presented, including the Lakeview Plant, Duffin Creek Plant, both in Ontario, Canada and the Southerly Plant in Cleveland, Ohio, USA.

  13. Life cycle assessment of alternative sewage sludge disposal methods; Oekobilanz von Klaerschlammentsorgungsalternativen

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H. [Institut fuer Energie- und Umweltforschung (ifeu), Heidelberg (Germany)

    1994-10-01

    At present there are three principal options for sewage sludge disposal in use or under discussion: agricultural utilisation - landfilling - cold pretreatment prior to disposal or utilisation (e.g., composting or fermentation) - thermal pretreatment prior to disposal or utilisation (e.g., monocombustion, co-combustion, pyrolysis, gasification). 10% of sewage sludge is currently combusted, 60% is landfilled, and 30% is used for agriculture. The ifeu Institute has carried out several studies which examine and compare the environmental impact of sewage sludge disposal options. [Deutsch] Zur Entsorgung bzw. Verwertung von Klaerschlamm stehen derzeit drei grundsaetzliche Optionen in Anwendung oder werden diskutiert: - Landwirtschaftliche Verwertung - Deponierung - kalte Vorbehandlung vor Deponierung oder Verwertung (z.B. Kompostierung oder Vergaerung) - thermische Vorbehandlung vorn Deponierung oder Verwertung (z.B. Mono- oder Mitverbrennung, Pyrolyse, Vergasung). Verbrannt werden gegenwaertig etwa 10%, 60% deponiert und 30% landwirschaftlich verwertet. Das ifeu-Institut hat in verschiedenen Arbeiten die Umweltauswirkungen von Klaerschlammentsorgungsoptionen untersucht und gegenuebergestellt. (orig./SR)

  14. Prevention of PCDD/Fs emission from a municipal wastewater sludge incinerator through enhanced control of copper aerosol

    Directory of Open Access Journals (Sweden)

    Peña, E.

    2012-10-01

    Full Text Available Municipal wastewater sludge incineration (MWSI leads to products of incomplete combustion, including chlorinated species such as dioxins and furans (PCDD/Fs. Other pollutants, such as heavy metals (HM, are released too as a consequence of feed traces, which depend on the specific activities of each area. The main aim of this work is to determine whether the early separation of the potential catalysts on the PCDD/Fs formation –HM as copper or zinc– offers a promising way to prevent the emission of these trace pollutants, considering that the current end-of-pipe measures don’t ensure their stable emission. Experimental results cover the size distributed target metal contents along the incineration line. These results show a high concentration of copper in the most penetrating aerosol size range of the electrostatic precipitator (0.6 μm - 1.0 μm, and how low emission values of both, total and metallic aerosol (mass basis, are compatible with irregular and unexplained outliers of PCDD/Fs emission.

    La incineración de lodos de aguas residuales urbanas acarrea la formación de compuestos derivados de combustiones incompletas, incluyendo especies cloradas como dioxinas y furanos (PCDD/Fs. Otros contaminantes, como metales pesados, se emiten como consecuencia de las trazas del lodo, las cuales dependen de las actividades del entorno. El objetivo principal es determinar si la separación de catalizadores potenciales en reacciones de formación de PCDD/Fs (cobre o zinc puede abrir vías para prevenir la emisión de contaminantes traza, considerando que ninguna de las técnicas de prevención actuales aseguran emisiones estables de metales pesados o PCDD/Fs. Se determinan concentraciones de metales pesados segregados por tamaño de partícula a lo largo de la línea de incineración. Los resultados muestran concentraciones elevadas de cobre en el aerosol de máxima penetración del electrofiltro (0,6 μm - 1,0 μm, y cómo concentraciones

  15. Characteristics and metal leachability of incinerated sewage sludge ash and air pollution control residues from Hong Kong evaluated by different methods.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Fang, Le; Poon, Chi Sun

    2017-06-01

    The improper disposal of incinerated sewage sludge ash (ISSA) and air pollution control residues (APCR) from sewage sludge incinerators has become an environmental concern. The physicochemical, morphological and mineralogical characteristics of ISSA and APCR from Hong Kong, and the leachability and risk of heavy metals, are presented in this paper. The results showed that a low hydraulic and pozzolanic potential was associated with the ISSA and APCR due to the presence of low contents of SiO 2 , Al 2 O 3 and CaO and high contents of P, S and Cl (especially for APCR). Although high concentrations of Zn and Cu (especially for ISSA) followed by Ni, Pb and As, Se were detected, a low leaching rate of these metals (especially at neutral and alkaline pH) rendered them classifiable as non-hazardous according to the U.S. EPA and Chinese national regulatory limits. The leached metals concentrations from ISSA and APCR were mainly pH dependent, and metals solubilization occurred mainly at low pH. Different leaching tests should be adopted based on the simulated different environmental conditions and exposure scenarios for assessing the leachability as contrasting results could be obtained due to the differences in complexing abilities and final pH of the leaching solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    Science.gov (United States)

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  17. Study of the leaching of heavy metals from waste water sludge and incinerator's ash, using coupled thermostated columns and DTPA as complex agent

    International Nuclear Information System (INIS)

    Vite T, J.; Vite T, M.; Guerrero D, J.; Carreno de Leon, M.C.

    2000-01-01

    We studied the metallic composition from waste water sludge and incinerators ashes of an incinerator located in Toluca, Mexico, the qualitative studies were made using the Activation Analysis technique, and fluorescence X-ray techniques. The quantitative analysis of heavy metals in the wastes were made using Inductively coupled plasma atomic emission spectrometry (Icp-Aes). For leaching the samples, we used four coupled thermostated columns, each one had a p H of 2,5, 7 and 10. The flux of the air was of 1600 cc/min. The temperature was maintain constant in 60 Centigrade using a thermostated system. For this study we used 100 g of wastes mixed with mineral acid or sodium hydroxide to reach p H 2,5,7 and 10. We added a reducing and tensoactive agents and finally DTPA as complex agent. With this method, we obtain a better leaching efficiency using a complex agent. However the high DTPA cost, make this process expansive that is why we recommend to work with another classes of complex agents, that be cheaper to leach metals of different chemistry matrix. (Author)

  18. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    Science.gov (United States)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  19. Predicting the co-melting temperatures of municipal solid waste incinerator fly ash and sewage sludge ash using grey model and neural network.

    Science.gov (United States)

    Pai, Tzu-Yi; Lin, Kae-Long; Shie, Je-Lung; Chang, Tien-Chin; Chen, Bor-Yann

    2011-03-01

    A grey model (GM) and an artificial neural network (ANN) were employed to predict co-melting temperature of municipal solid waste incinerator (MSWI) fly ash and sewage sludge ash (SSA) during formation of modified slag. The results indicated that in the aspect of model prediction, the mean absolute percentage error (MAPEs) were between 1.69 and 13.20% when adopting seven different GM (1, N) models. The MAPE were 1.59 and 1.31% when GM (1, 1) and rolling grey model (RGM (1, 1)) were adopted. The MAPEs fell within the range of 0.04 and 0.50% using different types of ANN. In GMs, the MAPE of 1.31% was found to be the lowest when using RGM (1, 1) to predict co-melting temperature. This value was higher than those of ANN2-1 to ANN8-1 by 1.27, 1.25, 1.24, 1.18, 1.16, 1.14 and 0.81%, respectively. GM only required a small amount of data (at least four data). Therefore, GM could be applied successfully in predicting the co-melting temperature of MSWI fly ash and SSA when no sufficient information is available. It also indicates that both the composition of MSWI fly ash and SSA could be applied on the prediction of co-melting temperature.

  20. Waste Incinerator

    International Nuclear Information System (INIS)

    1994-05-01

    This book deals with plan and design of waste incinerator, which includes process outline of waste, method of measure, test, analysis, combustion way and classification of incineration facilities, condition of combustion and incineration, combustion calculation and heat calculation, ventilation and flow resistivity, an old body and component materials of supplementary installation, attached device, protection of pollution of incineration ash and waste gas, deodorization, prevention of noise in incineration facility, using heat and electric heat, check order of incineration plan.

  1. Fiscal 1999 technical survey report. Model project implementation feasibility study in Malaysia on effective utilization of waste heat from paper sludge incineration; 1999 nendo Malaysia ni okeru seishi sludge nensho hainetsu yuko riyo model jigyo jisshi kanosei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Efforts are under way to popularize practical energy conservation technologies through verification on real machines in target countries. Possibilities were studied that Malaysian paper making plants would adopt technologies of collecting heat from high-temperature exhaust gas from paper sludge incineration and of effectively utilizing the thus-collected heat. The Malaysian paper making industry produced 800-thousand tons or more in 1998, covering 72% of the total national demand. Heat recovery facilities may be installed in 15 plants. On-site surveys were made into their actual states, and then Genting Sanyen Industrial Paper Sdn. Bhd. was selected as the plant for the model project, and detailed model project feasibility studies were conducted. The studies covered the amount of wastes from paper making, their properties, treatment process, amounts of utilities to be used during system operation, land on which to build the facilities, and a plan for collecting invested funds. As the result, it was concluded in view of the magnitude of the expected fruit that the model project be implemented at this plant. (NEDO)

  2. Giving waste a hot time [incineration technology

    International Nuclear Information System (INIS)

    Cruickshank, Andrew.

    1986-01-01

    High temperature incineration technology, as an effective way of managing both solid wastes and sludges, is described. The process, developed by the Belgian Nuclear Research Centre, is detailed. (U.K.)

  3. Incineration technologies

    CERN Document Server

    Buekens, Alfons

    2013-01-01

    Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards. Where possible, objectives include the recovering of energy as well as the  combustion residues.  Successful waste incineration makes it possible to achieve a deep reduction in waste volume, obtain a compact and sterile residue, and eliminate a wide array of pollutants. This book places waste incineration within the wider context of waste management, and demonstrates that, in contrast to landfills and composting, waste incineration can eliminate objectionable and hazardous properties such as flammability and toxicity, result in a significant reduction in volume, and destroy gaseous and liquid waste streams leaving little or no residues beyond those linked to flue gas neutralization and treatment. Moreover, waste incineration sterilizes and destroys putrescible matter, and produces usable heat.  Incineration Technologies first appeared as a peer-reviewed contribution ...

  4. Waste incineration

    International Nuclear Information System (INIS)

    McCormack, M.D.

    1981-01-01

    As a result of the information gained from retrieval projects, the decision was made to perform an analysis of all the available incinerators to determine which was best suited for processing the INEL waste. A number of processes were evaluated for incinerators currently funded by DOE and for municipal incinerators. Slagging pyrolysis included the processes of three different manufacturers: Andco-Torrax, FLK and Purox

  5. Utilisation of liquid residues; Verwertung von fluessigen Rueckstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, E [Hochschule fuer Technik und Wirtschaft des Saarlandes, Saarbruecken (Germany). Lab. Verbrennungskraftmaschinen

    1995-05-01

    The author describes experiments in which combustible liquid residues were mixed with diesel oil in order to obtain fuels for slightly modified diesel engines. The technical problems can be solved. In a trial operation period, various refuse/diesel oil fuels were tested for more than 300 hours. (orig.) [Deutsch] Eine hochwertige thermische Verwertung von fluessigen Rueckstaenden waere moeglich, wenn es gelaenge, entsprechende Rueckstaende so aufzubereiten, dass sie als Kraftstoffe verwendet werden koennten. Diese Kraftstoffe koennten dann in Verbrennungsmotoren, die Blockheizkraftwerke antreiben, eingesetzt werden. Blockheizkraftwerke liefern mit einem besonders guenstigen Wirkunkungsgrad elektrische und thermische Nutzenergie; die Verbrennungsmotoren in solchen Kraftwerken werden derzeit mit heute ueblichen Kraftstoffen, aber beispielsweise auch mit Deponie- und Biogas betrieben. (orig.)

  6. Investigations on chemical-physical conditioning of ashes from the incineration of sewage sludge to deposit on surface landfill site; Untersuchungen zur Chemisch-Physikalischen Behandlung von Klaerschlammverbrennungsasche zur Ablagerung auf oberirdischen Deponien

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, O.; Becker, A. [Technische Univ. Kaiserslautern (Germany). Fachgebiet Bodenmechanik und Grundbau; Scherer, G. [TERRAG Service und Vertrieb GmbH, Homburg (Germany)

    2007-06-15

    Depositing of ashes from the incineration of sewage sludge on landfill is possible after conditioning or within appropriate boxes. The partial high content of chromate- and dichromate- (chrome VI) concentration in the eluate of these slags can cause some difficulties. Presently, disposal of such slags is accomplished in underground spaces. Taking into account the provisions of national laws, possibility is limited. Therefore investigations on deposing of conditioned slags on surface landfills are of growing importance. The binders added to condition the incineration slags were chosen to assess the chemical change of hexavalent chrome (chrome VI) to indissoluble chrome (chrome III). Cement, SAV-residues as well as fly ash were taken as binders. The investigations presented refer to results on mechanical behaviour of conditioned slags. Emphasis is placed on the time-dependent behaviour of strength as well as on water permeability. Several cylindrical samples made by different compounds were tested within a period of about 112 days. Requirements with respect to strength were met within a few days. Demands on the eluate-criteria need additional investigations. (orig.)

  7. Waste incineration

    International Nuclear Information System (INIS)

    Rumplmayr, A.; Sammer, G.

    2001-01-01

    Waste incineration can be defined as the thermal conversion processing of solid waste by chemical oxidation. The types of wastes range from solid household waste and infectious hospital waste through to toxic solid, liquid and gaseous chemical wastes. End products include hot incineration gases, composed primarily of nitrogen, carbon dioxide, water vapor and to a smaller extend of non-combustible residue (ash) and air pollutants (e. g. NO x ). Energy can be recovered by heat exchange from the hot incineration gases, thus lowering fossil fuel consumption that in turn can reduce emissions of greenhouse gases. Burning of solid waste can fulfil up to four distinctive objectives (Pera, 2000): 1. Volume reduction: volume reduction of about 90 %, weight reduction of about 70 %; 2. Stabilization of waste: oxidation of organic input; 3. Recovery of energy from waste; 4. Sanitization of waste: destruction of pathogens. Waste incineration is not a means to make waste disappear. It does entail emissions into air as well as water and soil. The generated solid residues are the topic of this task force. Unlike other industrial processes discussed in this platform, waste incineration is not a production process, and is therefore not generating by-products, only residues. Residues that are isolated from e. g. flue gas, are concentrated in another place and form (e. g. air pollution control residues). Hence, there are generally two groups of residues that have to be taken into consideration: residues generated in the actual incineration process and others generated in the flue gas cleaning system. Should waste incineration finally gain public acceptance, it will be necessary to find consistent regulations for both sorts of residues. In some countries waste incineration is seen as the best option for the treatment of waste, whereas in other countries it is seen very negative. (author)

  8. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  9. Investigation of Catalytic effect sewage sludge combustion ash in the formation of HAPs

    Energy Technology Data Exchange (ETDEWEB)

    Fullana, A.; Sidhu, S.; Font, R.; Conesa, A.

    2002-07-01

    Incineration is a very important technique in the treatment of sewage sludge. In 1998 approximately 1,5 million and 2,5 million dry tons of sewage sludge were incinerated in the United States and European Union (EU), respectively. In 1985, only 10% of EU sludge was incinerated, but by 2005 approximately 40% of EU sludge is expected to be incinerated. Use of sewage sludge as agricultural fertilizer was considered the best application for sludge until it was discovered that the presence of heavy metals in sludge could contaminate farmland. The limitations facing landfills and recycling plants and the planned ban on sea disposal has led to the expectation that the role of incineration will increase in the future. The expected increase in sludge incineration has also led to increased scrutiny of the main drawback to the incineration of sewage sludge: the formation of hazard air pollutants (HAP). Sewage sludge incineration has been identified as a very important source of HAPs such as chloro benzenes, chloro phenols, and PCDD/Fs. One of the more important characteristics of sewage sludge incineration is the formation of large amounts of ash, which is rich in known HAP formation catalysts such as Cu and Fe. Thus, the sludge incineration ash is expected to play an important role in the formation of HAPs in the post-combustion zone of a sludge incinerator. in this paper, we present results of our investigation of the catalytic effect of sewage sludge ash on the formation of chloro benzenes and chloro phenols. In this study, pyrolytic gas from sewage sludge was used as reaction gas instead of the synthetic organic mix that has been used in most previous HAPs formation studies. (Author) 4 refs.

  10. Development of CO2 fixation system at a sludge incinerator by a unicellular green alga chlorella; Gesui odei shokyaku shisetsu ni okeru kurorera wo mochiita CO2 kotei system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Misonou, T. [Yamanashi Univ., Yamanashi (Japan). Faculty of Pedagogy; Morimoto, K. [Yamanashi Univ., Yamanashi (Japan). Graduate School; Suzuki, Y. [Yamanashi Univ., Yamanashi (Japan). Faculty of Engineering

    1997-03-05

    Among many environmental problems now the world is facing with, the increase of CO2 concentration in the atmosphere is considered to give rise to many phenomena causing such serious effects as abnormal weather, water shortage, food shortage, etc., hence predictions by climate models are being tried at many places in the world, and any of them predicts a temperature rise due to the increase of gases such as CO2 causing the green house effect. In this article, an experiment has been carried out which cultures chlorella capable of fixing CO2 by using the exhaust gas actually emit from the sludge incinerator inside the South Sewage Purification Center of Kofu City, Yamanashi Prefecture. As a result, it has been theoretically concluded that a CO2 fixation system can be constructed inside the above center, but it is necessary to consider the balance between working electric energy during the system operation and the amount of CO2 fixation by the above system. In case when the electric power from a commercial power plant is used for the operation of the system, such usage becomes meaningless unless the system fixes CO2 more than the CO2 discharge by this power generation. 11 refs., 5 figs., 4 tabs.

  11. On site clean up with a hazardous waste incinerator

    International Nuclear Information System (INIS)

    Cross, F.L. Jr.; Tessitore, J.L.

    1987-01-01

    The Army Corps of Engineers and the EPA have determined that on-site incineration for the detoxification of soils, sediments, and sludges is a viable, safe, and economic alternative. This paper discusses an approach to on-site incineration as a method of detoxification of soils/sediments contaminated with organic hazardous wastes. Specifically, this paper describes the procedures used to evaluate on-site incineration at a large Superfund site with extensive PCB contaminated soils and sediments. The paper includes the following: (1) a discussion of site waste quantities and properties, (2) a selection of an incineration technology with a resulting concept and design, (3) a discussion of incinerator permitting requirements, (4) discussion and rationale for an incinerator sub-scale testing approach, and (5) analysis of on-site incineration cost

  12. Future of sewage sludge in disposal; Klaerschlammentsorgung. Quo vadis?

    Energy Technology Data Exchange (ETDEWEB)

    Wiechmann, Benjamin [Umweltbundesamt, Dessau (Germany). Fachgebiet III 2.4 - Abfalltechnik, Abfalltechniktransfer

    2013-06-01

    The thermal treatment of sewage sludge is changing continuously. In the future, the disposal of sewage sludge is framed and will be adjust by the idea of resource saving. Simultaneously due the amendment of the 17th BImSchV emission control will be encouraged. Although, more than a quarter of the upcoming sludge is incinerated in mono-incineration plants, this amount should be increased. Therefore, it is necessary to build up new capacities of mono-incineration plants. The legal and strategic framework which has an influence on the combustion of sludge will be examined in this paper. (orig.)

  13. Evaluation of gaseous emissions produced in the tests on the demonstration plant for sludge drying and incineration; Valutazione delle emissioni gassose prodotte nelle prove sull'impianto dimostrativo di essiccamento e di incenerimento di fanghi

    Energy Technology Data Exchange (ETDEWEB)

    Lotito, V.; Spinosa, L.; Antonacci, R. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Bari (Italy); Mininni, G. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Acque, Rome (Italy)

    2001-03-01

    Incineration is a valid alternative to other more diffused disposal systems (agricultural use, landfill), when they cannot be applied due to high pollutants concentrations or other unforeseeable constraints. However, it can cause severe air pollution by inorganic (heavy metals) and organic (PAHs, PCDDs, PCDFs) pollutants, particulate, NO{sub x}, CO and acidic compounds; this fact has raised public concern about incineration and has hindered a wider application of this practice. Water Research Institute of Italian National Research Council realised a demonstration plant mainly consisting of a fluidized bed furnace, a rotary kiln furnace, a dryer with heat recovery section, particulate and acidic compounds removal apparatuses, and set up a research programme to demonstrate that incineration is a safe operation and can comply the relevant legislation, as far as organic and inorganic micropollutants are concerned. A total of 40 tests were carried out (30 with the fluidized bed furnace and 10 with rotary kiln one) treating dewatered sludges (in many cases with the addition of high chlorinated compounds and Cu salts) or dried ones, under different operating conditions (furnace temperature, after-burner temperature, chlorine concentration). Particulate concentrations, and consequently heavy metals concentrations, at the stack resulted in any case under legal limits. As far as conventional pollutants are concerned, only HCl and CO overcame sometimes standards, mainly due to temporary operating up-sets. PAHs concentration resulted quite constant, thus demonstrating that tests were operated in steady-state and satisfactory conditions. Also dioxins and furans overcame sometimes standards, but no correlation was found with more severe tests conditions; it happened when plant up-set conditions occurred. Operation resulted quite satisfactory, but dryer operation required constant operators attention. In rotary kiln furnace a build up of solidified ashes occurred in counter

  14. Radioactive contamination of sewage sludge

    International Nuclear Information System (INIS)

    Soeder, C.J.; Zanders, E.; Raphael, T.

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required. (orig.) [de

  15. Sewage sludge disposal in Austria

    International Nuclear Information System (INIS)

    Koch, F.

    1997-01-01

    Sewage systems serve about 70% of the Austrian population, producing 6 million m 3 of sewage sludge per year with a dry matter content of 4-5%. At present about 52% of this sludge is disposed of in land fills, 33% is incinerated, and only about 15 % is used in agriculture. Although agricultural utilization is becoming increasingly important, several problems, especially those related to public opinion, need to be resolved before increased use will be possible. In this paper, wastewater treatment and sewage-sludge production in Austria, and problems associated with sludge disposal are discussed. (author)

  16. Disposal of sewage sludge - problems and options; Klaerschlammentsorgung - Probleme und Moeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Kobelt, G.

    2000-06-01

    Sewage sludge production cannot be avoided. In consequence, the sewage sludge produced must either be utilised or combusted for heat and power generation. [German] Da Klaerschlaemme bei der Abwasserreinigung zwangsmaessig anfallen, ist ihre Vermeidung im Sinne des Paragraphen 4 (1), 1 des KrW/AbfG nicht moeglich. Deshalb muss es das Ziel einer vernuenftigen und geordneten Klaerschlammwirtschaft sein, den groesstmoeglichen Anteil des gesamten Schlammaufkommens, wie es das Gesetz ebenfalls vorschreibt, stofflich zu verwerten oder zur Gewinnung von Energie zu nutzen (energetische Verwertung). (orig.)

  17. Aquatic worm reactor for improved sludge processing and resource recovery

    OpenAIRE

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste sludge would be both environmentally and economically attractive. Aquatic worms can be used to reduce the amount of waste sludge. After predation by the worms, the amount of final sludge is lower....

  18. The recycling of incinerated sewage sludge ash as a raw material for CaO-Al2O3-SiO2-P2O5 glass-ceramic production.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Yin, Yulei; Liang, Xuanye; Li, Aimin

    2015-01-01

    In this paper, the recycling of incinerated sewage sludge ash (ISSA) into glass-ceramic materials by a two-stage sintering cycle of nucleation stage and crystallization stage without any pressure and binder is presented. The parent glasses were subjected to the following nucleation/crystallization temperature and time level: (A) 790°C, 1.0 h/870°C, 1.0-3.0 h; (B) 790°C, 1.0 h/945°C, 1.0-3.0 h and (C) 790°C, 1.0 h/1065°C, 1.0-3.0 h. X-ray power diffraction analysis results revealed that multiple crystalline phases coexisted in the glass-ceramic materials and the crystalline phase compositions were more affected by crystallization temperature than crystallization time. Scanning electron microscopy analysis showed an interlocking microstructure of glass phases and crystals with different sizes and spatial distribution. The glass-ceramics crystallized at 945°C for 2.0 h exhibited optimal properties of density of 2.88±0.08 g/cm3, compression strength of 247±12 MPa, bending strength of 118±14 MPa and water absorption of 0.42±0.04. The leaching concentrations of heavy metals were far lower than the limits required by the regulatory standard of EPA. This paper provides a feasible, low-cost and promising method to produce ISSA-based glass-ceramics and highlights the principal characteristics that must be taken into account to use ISSA correctly in glass-ceramics.

  19. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  20. Sewage Sludge Treatment for Energy Purpose in China : Waste Treatment in China

    OpenAIRE

    Nyyssönen, Ville

    2015-01-01

    This thesis is made for ANDRITZ China Technology to find out sludge incineration potential in China. ANDRITZ is looking for markets and customers for ANDRITZ sewage sludge incineration technology in China. In addition ANDRITZ China manufactures centrifuges, skeleton model filter presses, belt presses and rotatory drums to treat the sludge. Sludge in China has become a major problem. It is considered to be toxic waste, because it contains pathogens, which are dangerous for human health. Th...

  1. A new reactor concept for sludge reduction using aquatic worms

    NARCIS (Netherlands)

    Elissen, H.J.H.; Hendrickx, T.L.G.; Temmink, B.G.; Buisman, C.J.N.

    2006-01-01

    Biological waste water treatment results in the production of waste sludge. The final treatment option in The Netherlands for this waste sludge is usually incineration. A biological approach to reduce the amount of waste sludge is through predation by aquatic worms. In this paper we test the

  2. Removal of heavy metals from sewage sludge by extraction with organic acids

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    1999-01-01

    Waste water treatment in activated sludge plants results in the production of large amounts of surplus sludge. After composting the sludge can be reused as fertiliser and soil conditioner in agriculture. Compared to landfilling and incineration, utilisation of sludge-compost is a more sustainable

  3. Development of Mitsubishi--Lurgi fluidized bd incinerator with pre-drying hearths

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y; Senshu, A; Mishima, K; Sato, T; Honda, H

    1979-02-01

    For a better disposal of a steadily increasing volume of sludges with energy conservation it is essential to develop an effective and energy-saving incinerator. The fluidized bed incinerator now widely used for the disposal of sludges has many superior features as compared with the conventional vertical multiple-hearth incinerator, but, on the other hand, has a defect, that is, a large fuel consumption. This is due to the fact that the fluidized bed incinerator has generally low drying efficiency notwithstanding its excellent burning characteristics with minimum excess air. The feasibility of fuel saving by installing sludge pre-drying hearths and an exhaust gas recirculation system additionally on the conventional fluidized bed incinerator and conducted incineration tests on various kinds of sludges, using a 1500 kg/h pilot plant equipped with the incinerator is examined. As the result, the Mitsubishi--Lurgi fluidized bed incinerator with high efficiency multiple pre-drying hearths which consumes less fuel was developed. Part of the incineration test results are presented.

  4. ORGDP RCRA/PCB incinerator facility

    International Nuclear Information System (INIS)

    Rogers, T.

    1987-01-01

    A dual purpose solid/liquid incinerator is currently being constructed at the Oak Ridge Gaseous Diffusion Plant [ORGDP (K-25)] to destroy uranium contaminated, hazardous organic wastes in compliance with the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). These wastes are generated by the gaseous diffusion plants in Oak Ridge, TN; Paducah, KY; and Portsmouth, OH. In addition, waste will also be received from the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the Feed Materials Production Center (FMPC). Destruction of PCBs and hazardous liquid organic wastes will be accomplished in a rotary kiln incinerator with an afterburner. This system was selected faster a study of various alternatives. Incineration was chosen because it is dependable, permanent, detoxifies organics, and reduces volume. The rotary kiln incinerator was selected because it can thermally destroy organic constituents of liquids, solids, and sludges to produce an organically inert ash. In addition to the incineration off-gas treatment system, the facility includes a tank farm, drum storage buildings, a solids preparation area, a control room, and a data management system. The incineration system, off-gas treatment system, and related instrumentation and controls are being provided by International Waste Energy Systems (IWES) which is responsible for design, construction, startup, and performances testing

  5. Sewage sludge - What can be done with it?

    International Nuclear Information System (INIS)

    Beurer, P.; Geering, F.

    2002-01-01

    This article presents a review of the state-of-the-art in the disposal of the sewage sludge that is left over after treatment of wastewater. Also, developments over the past ten years both in market structures and in legislation are discussed and future developments are reviewed. On account of legislation and political influences on the market, the thermal exploitation of sewage sludge is looked at in depth. The ecological and economic aspects of sewage sludge disposal are examined and the costs of different methods of sewage sludge treatment are compared. Various methods of disposal including dumping, composting, incineration in cement ovens, coal-fired power stations and waste incineration facilities are discussed, as is burning in special sludge incineration plant. A prognosis is made on the development of sewage sludge quantities for Germany, Switzerland and Austria over the next years

  6. Combustion plans. Nordrhein-Westfalen opts for environment-friendly disposal of sewage sludge; Aktion Ofen. NRW plant umweltvertraegliche Klaerschlammverwertung

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H.; Giegrich, J.; Knappe, F. [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany)

    2001-06-01

    According to the plans of the Nordrhein-Westfalen minister of the environment, sewage sludge will be banned as a fertiliser. Instead, it is to be disposed in accordance with the specifications of the Act on Recycling and Waste Management and the requirements of the recycling industry. This is the result of a study carried out on behalf of the Ministry which is summarised here. Combustion capacities will be required. [German] Auf die Verbrennungskapazitaeten in NRW rollt eine Klaerschlammlawine zu. Nach den Plaenen des Duesseldorfer Umweltministeriums soll die sogenannte landwirtschaftliche Verwertung kuenftig eingeschraenkt werden. Die Verwertung soll den gesetzlichen Vorgaben des Kreislaufwirtschaftsgesetzes und den Anforderungen der Kreislaufwirtschaft entsprechen. Dies ergibt sich aus einer Studie des Ministeriums, die hier zusammengefasst ist. (orig.)

  7. Waste incineration on its way to the power plants; Muellverbrennung auf dem Weg zum Kraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Reich, J. [STEAG encotec GmbH, Essen (Germany); Neukirchen, B. [STEAG AG, Essen (Germany)

    2004-07-01

    Looking at the year 2005 and the end of disposal of untreated domestic waste the politic hopes that the prognosticated lack of waste treatment capacity is remedied by coal-fired power plants. The classical municipal waste incinerators by contrast want to get recognition as energetic recycler in comparison with power stations. The decision of the European Court of Justice concerning recycling and disposal of domestic waste by incineration has started the discussion and competition on fuel-rich commercial waste. Are municipal waste incineration plants power stations or must power plants be regarded as incinerators? These questions are still open. (orig.) [German] Mit Blick auf das Jahr 2005 und das Ende der Ablagerung von unbehandeltem Siedlungsabfall hofft die Politik, dass der prognostizierte Mangel an Vorbehandlungskapazitaeten von den Kohlekraftwerken behoben wird. Die klassischen Muellverbrennungsanlagen wollen dagegen mit dem Kraftwerksvergleich die Anerkennung als energetische Verwerter erreichen. Das EuGH-Urteil zur Verwertung oder Beseitigung von Siedlungsabfall durch Verbrennen hat in diesem Jahr die Diskussion und den Kampf um den heizwertreichen Gewerbeabfall angeheizt. Die Frage, wie weit in Zukunft die Muellverbrennungsanlagen als Kraftwerke, aber auch die Kraftwerke als Muellverbrennungsanlagen angesehen werden muessen, ist noch offen. (orig.)

  8. Heating value characteristics of sewage sludge: a comparative study of different sludge types

    International Nuclear Information System (INIS)

    Kim, Young-JU.; Kang, Hae-Ok.; Qureshi, T.I.

    2005-01-01

    Heating value characteristics of three different types of sludge, i.e. domestic sewage sludge, industrial sludge, and industrial + domestic sewage sludge were investigated. Industrial + domestic sewage sludge (thickened) showed the highest heating value (5040 kcal/kg) than other sludge types. This may be due to increased amount of organic matter presents in thickened sludge than de-watered sludge. A gradual increase in organic matter of the sludge was observed with the increase of the moisture contents. Heating value of the sludge having 60% moisture contents was found in the range between 924-1656 kcal/kg and this amount was higher than the minimum heating value (800 kcal/kg) required sustaining auto thermal combustion in sludge incineration process. Energy consumption requirement for pre drying sludge operations revealed that industrial sludge (de-watered) required the minimum cost (13 $/ton of sludge) to make it a sludge of fuel grade (60% W), while mixed sludge cost the highest amount for its pre-drying operations. (author)

  9. Composting of biological waste. Processes and utilisation; Bioabfallkompostierung. Verfahren und Verwertung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for procesing and utilisation of biological waste by means of composting and spreading on agricultural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises all three reports. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die genannten drei Teilberichte. (orig./SR)

  10. Multi-Criteria Sustainability Assessment of Urban Sludge Treatment Technologies

    DEFF Research Database (Denmark)

    An, Da; Xi, Beidou; Ren, Jingzheng

    2017-01-01

    to determine the weights of the criteria for sustainability assessment, and extension theory was used to prioritize the alternative technologies for the treatment of urban sewage sludge and grade their sustainability performances. An illustrative case including three technologies (compositing, incineration...

  11. Radioactive contamination of sewage sludge. Preliminary data

    Energy Technology Data Exchange (ETDEWEB)

    Soeder, C J; Zanders, E; Raphael, T

    1986-01-01

    Because of the radioactivity released through the explosion of the nuclear reactor near Chernobyl radionuclides have been accumulated to a significant extent in sewage sludge in the Federal Republic of Germany. This is demonstrated for samples from four activated sludge plants according to a recent recommendation of the German Commission for Radiation Protection, there is until now no reason to deviate from the common practices of sludge disposal or incineration. The degree of radioactive contamination of plant materials produced on farm lands on which sewage sludge is being spread cannot be estimated with sufficient certainty yet. Additional information is required.

  12. Study of the leaching of heavy metals from waste water sludge and incinerator's ash, using coupled thermostated columns and DTPA as complex agent; Estudio de la extraccion de metales pesados de lodos y cenizas de aguas residuales usando columnas termostatizadas acopladas y DTPA como agente complejante

    Energy Technology Data Exchange (ETDEWEB)

    Vite T, J.; Vite T, M.; Guerrero D, J.; Carreno de Leon, M.C. [Departamento de Estudios del Ambiente, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    We studied the metallic composition from waste water sludge and incinerators ashes of an incinerator located in Toluca, Mexico, the qualitative studies were made using the Activation Analysis technique, and fluorescence X-ray techniques. The quantitative analysis of heavy metals in the wastes were made using Inductively coupled plasma atomic emission spectrometry (Icp-Aes). For leaching the samples, we used four coupled thermostated columns, each one had a p H of 2,5, 7 and 10. The flux of the air was of 1600 cc/min. The temperature was maintain constant in 60 Centigrade using a thermostated system. For this study we used 100 g of wastes mixed with mineral acid or sodium hydroxide to reach p H 2,5,7 and 10. We added a reducing and tensoactive agents and finally DTPA as complex agent. With this method, we obtain a better leaching efficiency using a complex agent. However the high DTPA cost, make this process expansive that is why we recommend to work with another classes of complex agents, that be cheaper to leach metals of different chemistry matrix. (Author)

  13. Sewage sludge as a biomass energy source

    Directory of Open Access Journals (Sweden)

    Pavel Kolat

    2013-01-01

    Full Text Available The major part of the dry matter content of sewage sludge consists of nontoxic organic compounds, in general a combination of primary sludge and secondary microbiological sludge. The sludge also contains a substantive amount of inorganic material and a small amount of toxic components. There are many sludge-management options in which production of energy is one of the key treatment steps. The most important options are anaerobic digestion, co-digestion, incineration in combination with energy recovery and co-incineration in coal-fired power plants. The goal of our applied research is to verify, if the sludge from waste water treatment plants may be used as a biomass energy source in respect of the EU legislation, which would comply with emission limits or the proposal of energy process optimizing the preparation of coal/sludge mixture for combustion in the existing fluid bed boilers in the Czech Republic. The paper discusses the questions of thermal usage of mechanically drained stabilized sewage sludge from the waste water treatment plants in the boiler with circulated fluid layer. The paper describes methods of thermal analysis of coal, sewage sludge and its mixtures, mud transport to the circulating fluidised bed boiler, effects on efficiency, operational reliability of the combustion equipment, emissions and solid combustion residues.

  14. Aquatic worm reactor for improved sludge processing and resource recovery

    NARCIS (Netherlands)

    Hendrickx, T.L.G.

    2009-01-01

    Municipal waste water treatment is mainly achieved by biological processes. These processes produce huge volumes of waste sludge (up 1.5 million m3/year in the Netherlands). Further processing of the waste sludge involves transportation, thickening and incineration. A decrease in the amount of waste

  15. Sustainability of Domestic Sewage Sludge Disposal

    OpenAIRE

    Claudia Bruna Rizzardini; Daniele Goi

    2014-01-01

    Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a s...

  16. Incineration with energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, T.G.

    1986-02-01

    Motherwell Bridge Tacol Ltd. operate a 'Licence Agreement' with Deutsche Babcock Anlagen of Krefeld, West Germany, for the construction of Municipal Refuse Incineration plant and Industrial Waste plant with or without the incorporation of waste heat recovery equipment. The construction in the UK of a number of large incineration plants incorporating the roller grate incinerator unit is discussed. The historical background, combustion process, capacity, grate details, refuse analysis and use as fuel, heat recovery and costs are outlined.

  17. Composting of biological waste. Processes and utilisation. Summary report; Bioabfallkompostierung. Verfahren und Verwertung. Kurzfassung

    Energy Technology Data Exchange (ETDEWEB)

    Gronauer, A.; Claassen, N.; Ebertseder, T.; Fischer, P.; Gutser, R.; Helm, M.; Popp, L.; Schoen, H.

    1997-12-31

    The project investigated environmentally compatible concepts for processing and utilisation of biological waste by means of composting and spreading on agriculataural and gardening plots. The project comprised three parts: Composting techniques, applications of compost in agriculture and gardening, and applications in landscaping. This volume comprises the summaries of the three part-projects. (orig./SR) [Deutsch] Die umweltschonende Aufbereitung und Verwertung von Bioabfall durch Kompostierung und Rueckfuehrung auf landwirtschaftliche und gaertnerische Flaechen wurde untersucht. Dieses Projekt war dreigeteilt in die Bereiche der Kompostierung selbst, der Anwendung des Komposts in der Landwirtschaft und seiner Anwendung im Gartenbau sowie im Garten- und Landschaftsbau (GaLa-Bau). Die vorliegende Schrift enthaelt die Zusammenfassung der genannten drei Teilberichte. (orig./SR)

  18. Environmental sustainability of wastewater sludge treatments

    DEFF Research Database (Denmark)

    Boyer-Souchet, Florence; Larsen, Henrik Fred

    treatment for municipal waste water. A special focus area in Neptune is sludge handling because the sludge amount is expected to increase due to advanced waste water treatment. The main sludge processing methods assessed in Neptune can be divided into two categories: disintegration processes before...... anaerobic digestion (thermal hydrolysis and ultrasound disintegration) and inertisation processes performed at high temperatures (incineration, pyrolysis, gasification, wet oxidation) but they all aim at volume reduction and removal of biodegradable compounds before safe sludge disposal or reuse of its...... resources. As part of a sustainability assessment (or “best practice evaluation”), a comparison between the existing and new sludge handling techniques have been done by use of life cycle assessment (LCA).The concept of induced impacts as compared to avoided impacts when introducing a new sludge treatment...

  19. Sewage sludge disposal in Baden-Wuerttemberg. Current situation and outlook; Klaerschlammentsorgung in Baden-Wuerttemberg. Aktuelle Situation und Perspektiven

    Energy Technology Data Exchange (ETDEWEB)

    Sasse, H.; Karl, U.; Lonjaret, J.P.; Rentz, O. [Deutsch-Franzoesisches Inst. fuer Umweltforschung (DFIU), Univ. Karlsruhe (Thailand) (Germany)

    1998-12-01

    The deposition of sewage sludge at landfills will be subject to more stringent regulations from 2005 at the latest. Acceptance of its use in farming is also low. Nor can its shipping to other federal states be considered to be secure in the long term. Hence, alternative methods of disposal are discussed. (orig.) [Deutsch] Die Deponie von Klaerschlamm wird spaetestens ab 2005 erschwert werden. Auch die landwirtschaftliche Verwertung stoesst auf Akzeptanzprobleme. Auch die Verbringung aus Baden-Wuerttemberg heraus kann nicht als langfristig sicher betrachtet werden. Es werden deshalb alternative Beseitigungsmoeglichkeiten diskutiert. (orig.)

  20. Co-disposal of sewage sludge and solid wastes-it works

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, D B

    1977-10-01

    The problem of sludge disposal is one of more sludge than ever before, few suitable land disposal or land application sites, the ocean dumping option being phased out, and energy cost so high or supplies so few as to make incineration a questionable endeavor. The energy required to run a wastewater treatment plant and the heat needed to incinerate the sludge may be available in the same community in the form of municipal solid waste. Municipal sludge has a heat value of about 10,000 Btu/lb of dry solids; it is autogenous at>30% solids. Codisposal techniques are discussed which use the energy produced by the combustion of solid waste to dewater the sludge to its autogenous point. One approach is to use sewage sludge incinerators, in many cases already installed at the wastewater treatment plant, and to use the organic portion of solid waste as a fuel to dry, burn, and reduce the volume of the sludge that must ultimately be disposed. A second approach would use a solid waste incinerator, solid waste-fired steam generator, or waterwall combustion unit to burn dewatered sludge. Both approaches are being demonstrated or used. Thermal sludge disposal at wastewater treatment plants normally is carried out in multiple-hearth or fluidized-bed incinerators. The experiences of such plants in the US and Europe are summarized.

  1. TRU waste cyclone drum incinerator and treatment system: January--March 1978

    International Nuclear Information System (INIS)

    Klingler, L.M.; Batchelder, D.M.; Lewis, E.L.

    1978-01-01

    The cyclone incinerator was operated throughout the past quarter, generating additional data on system characteristics, equipment life expectancies, and by-product generation. Several changes in the incinerator system are in various stages of completion. The lid assembly, secondary chamber, and expansion unit for the new exhaust equipment are nearly ready for installation. A new heat exchanger has been installed in the scrubber system. An ash handling system has been designed for possible future addition to the system. Continuing studies will determine the best delivery mechanism for continuously feeding the cyclone incinerator. Preliminary investigations are being conducted to select an independent system to treat incinerator scrubber solution for recycling and to remove salts and sludge for disposal. Metal samples of two possible materials for incinerator construction were examined for corrosion degradation suffered at the incinerator exhaust outlet. Controlled experiments were conducted on the pressed ash-cement pellet matrix to define compressive strength, mechanical stability, density, and effect of curing environment (wet cure and dry cure). Leachability studies were initiated on pressed sludge/cement matrix in distilled water at ambient temperature. Compressive strengths of sludge/cement pressed matrix samples were investigated. Physical and chemical attributes of incinerated ash were evaluated in relationship to the ash/cement matrix

  2. Loading device for incinerator

    International Nuclear Information System (INIS)

    Hempelmann, W.

    1983-01-01

    An incinerator for radioactive waste is described. Heat radiation from the incinerator into the loading device is reduced by the design of the slider with a ceramic plate and the conical widening of the pot, and also by fixing a metal plate between the pot and the floor. (PW) [de

  3. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Eid, C.

    1985-01-01

    The incineration process currently seems the most appropriate way to solve the problems encountered by the increasing quantities of low and medium active waste from nuclear power generation waste. Although a large number of incinerators operate in the industry, there is still scope for the improvement of safety, throughput capacity and reduction of secondary waste. This seminar intends to give opportunity to scientists working on the different aspects of incineration to present their most salient results and to discuss the possibilities of making headway in the management of LL/ML radioactive waste. These proceedings include 17 contributions ranging over the subjects: incineration of solid β-γ wastes; incineration of other radwastes; measurement and control of wastes; off-gas filtration and release. (orig./G.J.P.)

  4. GKSS-workshop: contaminated sludges. Treatment and utilization fine graned residues; GKSS-Workshop: Kontaminierte Schlaemme. Behandlung und Nutzungsmoeglichkeiten feinkoerniger Reststoffe

    Energy Technology Data Exchange (ETDEWEB)

    Alvermann, G.; Luther, G.; Niemeyer, B. [eds.] [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Zentralabteilung Technikum

    2000-07-01

    New regulations, such as the materials recycling act, soil protection act and unsolved problems related to the treatment of contaminated sludges, the utilisation of the gained products demand the development of innovative techniques for industrial, dredged or drilling sludges. The workshop offered a platform for intensive discussions between representatives of industry, research institutions, associations, and authorities. The main aim of the workshop was the presentation of fundamental background of sludge processing and advanced technical solutions. The available proceedings contain 21 lectures held on the workshop with the following ranges of topics of the sludge treatment: legislation, R and D-funding, technological bases, decontamination processes, dewatering and drying processes, recycling and immobilization. (orig.) [German] Neue Gesetze wie das Kreislaufwirtschafts- oder das Bundes-Bodenschutzgesetz und anstehende Probleme bei der Beseitigung belasteter Schlaemme - zum Beispiel Industrie-, Bohr- und Baggergutschlaemme - erfordern die Entwicklung innovativer Techniken zu ihrer Aufbereitung, Reinigung bzw. Verwertung. Der Workshop bot ein Formung zur intensiven Diskussion zwischen Industrie, Forschung, Verbaenden und Behoerden. Ziel war es, unterschiedliche Methoden der Schlammbehandlung zu eroertern, Loesungswege aufzuzeigen und Moeglichkeiten fuer Kooperationen zu erarbeiten. Der vorliegende Band enthaelt Beitraege der Referenten, die sich auf folgende Themenbereiche der Schlammbehandlung konzentrieren: juristische Aspekte, Foerdermoeglichkeiten, Grundlagen, Aufbereitung von Schlaemmen, Entwaesserung und Trocknung von Schlaemmen, Verwertung und Immobilisierung. (orig.)

  5. Preparing sewage sludge for land application or surface disposal: A guide for preparers of sewage sludge on the monitoring, record keeping, and reporting requirements of the federal standards for the use of disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The document focuses on the monitoring, recordkeeping, and reporting requirements that apply to persons who prepare sewage sludge or a material derived from sewage sludge. It defines persons who prepare sewage sludge and then summarizes their general responsibilities. USEPA promulgated at 40 CFR Part 503 Phase 1 of the risk-based regulations that govern the final use or disposal of sewage sludge. The intent of the Federal program is to ensure that the use or disposal of sewage sludge occurs in a way that protects both human health and the environment. The Part 503 regulation establishes general requirements, pollutant limits, operational standards, and management practices, as well as monitoring, recordkeeping, and reporting requirements. These requirements apply to sewage sludge that is land applied, placed on a surface disposal site, or incinerated in a sewage sludge-only incinerator.

  6. CO-incineration

    International Nuclear Information System (INIS)

    Boehmer, S.; Rumplmayr, A.

    2001-01-01

    'Co-incineration plant means a stationary or mobile plant whose main purpose is the generation of energy or production of material products and which uses wastes as a regular or additional fuel; or in which waste is thermally treated for the purpose of disposal. This definition covers the site and the entire plant including all incineration lines, waste reception, storage, an site pre-treatment facilities; its waste-, fuel- and air-supply systems; the boiler; facilities for treatment or storage of the residues, exhaust gas and waste water; the stack; devices and systems for controlling incineration operations, recording and monitoring incineration conditions (proposal for a council directive an the incineration of waste - 98/C 372/07). Waste incinerators primarily aim at rendering waste inert, at reduction of its volume and at the generation of energy from waste. The main aim of co-incineration an the other hand is either the recovery of energy from waste, the recovery of its material properties or a combination of the latter in order to save costs for primary energy. Two main groups of interest have lately been pushing waste towards co-incineration: conventional fossil fuels are getting increasingly scarce and hence expensive and generate carbon dioxide (greenhouse gas). The use of high calorific waste fractions is considered as an alternative. In many countries land filling of waste is subject to increasingly strict regulations in order to reduce environmental risk and landfill volume. The Austrian Landfill Ordinance for instance prohibits the disposal of untreated waste from the year 2004. Incineration seems to be the most effective treatment option to destroy organic matter. However the capacities of waste incinerators are limited, giving rise to a search for additional incineration capacity. The obvious advantages of co-incineration, such as the saving of fossil fuels and raw materials, the thermal treatment of waste fractions and possible economic benefits by

  7. Nuclear waste incineration technology status

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-07-15

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

  8. Nuclear waste incineration technology status

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

    1981-01-01

    The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance

  9. Energy uses and recovery in sludge disposal, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [Stanford Research Inst., Menlo Park, CA; Bomberger, D C; Lewis, F M

    1977-08-01

    Capital and operating costs were compared for 3 plant capacities having average dry weather flows of 10, 100, and 500 mgd. Five sludge handling options were considered. They were chemical conditioning with vacuum filtration, low pressure wet air oxidation, high pressure wet air oxidation aerobic and anaerobic digestion, and chemical oxidation with filter press dewatering. The plant sizes considered generated 11.5, 77, and 384 TPD of sludge. High pressure wet air oxidation and aerobic digestion operating costs were the most sensitive to electrical power costs, while the 2 incineration options without heat treatment were the least sensitive. Sludge drying and incineration of a 20% solids cake were the most sensitive to fuel costs, while aerobic and anaerobic digestion were not directly affected. Heat treatment of sludge and dewatering to a 40% cake had the lowest fuel requirements of the 3 incineration options but increased the total plant electric power consumption by >25%. The net Btus consumed were compared. The net consumption was lowest for anaerobic digestion, filter press plus incineration, and heat treatment plus incineration. Excluding heat recovery credit except for steam required in sludge heat treating, these 3 options are still lowest in net Btus consumed.

  10. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Borduin, L.C.

    1982-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Increasing transportation and disposal costs have caused industry to consider incineration as a cost-effective means of volume reduction of combustible LLW. Repeated inquiries from the nuclear industry regarding the applicability of the Los Alamos controlled air incineration (CAI) design led the DOE to initiate a commercial demonstration program in FY-1980. Development studies and results in support of this program involving ion exchange resin incineration and fission/activation product distributions within the Los Alamos CAI are described

  11. The Studsvik incinerator

    International Nuclear Information System (INIS)

    Hetzler, F.

    1988-01-01

    The Studsvik Incinerator is a Faurholdt designed, multi-stage, partial pyrolysis, controlled-air system taken into operation in 1976. The incinerator was initially operated without flue-gas filtration from 1976 until 1979 and thereafter with a bag-house filter. The Studsvik site has been host to radioactive activities for approximately 30 years. The last 10 years have included on site incineration of more than 3,000 tons of LLW. During this time routine sampling for activity has been performed, of releases and in the environment, to carefully monitor the area. The author discusses records examined to determine levels of activity prior to incinerator start-up, without and with filter

  12. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  13. Incineration conference 1990

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This book contains the proceedings of the 1990 incineration conference. The proceedings are organized under the following headings: Regulations- international comparison, Current trends in facility design, Oxygen enhancement, Metals, Off-gas treatment, Operating experience: transportable, Materials, Operating experience: R/A and mixed, Incineration of specific wastes, Medical waste management, Ash qualification, Ash solidification/ immobilization, Innovative technologies, Operating experience : medical waste, Instrumentation and monitoring, process control and modeling, Risk assessment/management, Operating considerations

  14. Low-cost waste incineration and recycling from the operator`s point of view; Kostenguenstige thermische Abfallverwertung und Kreislaufwirtschaftsgesetz aus Betreibersicht

    Energy Technology Data Exchange (ETDEWEB)

    Burgorf, J [Saarberg-Oekotechnic GmbH, Saarbruecken (Germany)

    1998-09-01

    The 1996 Act on Recycling and Waste Management specified that waste production should be reduced first of all, and that waste still produced should be recycled or used for power generation. Dumping and `classic` incineration are permissible only if it is the more acceptable solution from an environmental point of view. There are two categories of thermal treatment: Thermal treatment of `waste for dumping`, and use of the energy content of `waste for utilisation`. The contribution analyzes the effects of the law on future waste management concepts in consideration of the current situation of thermal treatment of residual waste. (orig.) [Deutsch] Das im Oktober 1996 in Kraft getretene Kreislaufwirtschafts- und Abfallgesetz (KrW-/AbfG) schreibt in den Grundsaetzen der Kreislaufwirtschaft fest, dass Abfaelle in erster Linie zu vermeiden und in zweiter Linie stofflich oder energetisch zu verwerten sind. Die Beseitigung von Abfaellen - und darunter faellt auch die `klassische` Muellverbrennung - ist nur dann zugelassen, wenn sie gegenueber der Verwertung die umweltvertraeglichere Loesung darstellt. Fuer die thermische Behandlung von Abfaellen denfiniert das KrW-/AbfG deshalb zwei Wege mit unterschiedlichen Ansaetzen: Zum einen die thermische Behandlung von `Abfaellen zur Beseitigung`, wie sie bisher in vielen Anlagen zur Muellverbrennung realisiert worden ist und zum anderen die energetische Nutzung von `Abfaellen zur Verwertung`. Der vorliegende Beitrag soll die Auswirkung dieser Vorgabe auf zukuenftige Abfallwirtschaftskonzepte unter Beruecksichtigung der derzeitigen Situation der thermischen Restabfallbehandlung darstellen. (orig.)

  15. Ensured waste disposal without thermal treatment of sewage sludge?; Entsorgungssicherheit ohne thermische Klaerschlammbehandlung?

    Energy Technology Data Exchange (ETDEWEB)

    Melsa, A.K. [Niersverband, Viersen (Germany)

    1998-07-01

    The Technical Rule on Domestic Waste Management (TASi) specifies that from 2005, sewage sludge containing more than 5% of organic dry matter must no longer be dumped. This means that sewage sludge combustion will be the only means of disposal, apart from using sewage sludge as a fertilizer. The author's employer ('Niersverband' utility) was among the first to develop a future-oriented sewage sludge disposal strategy, and a drying plant was construct which is to reduce the weight and volume of sewage sludge in order to obtain a fuel of high calorific value. Further, a contract was closed for combustion of sewage sludge as fuel in a combustion system. [German] Unter Beruecksichtigung der TASi, die verlangt, dass spaetestens ab dem Jahr 2005 Klaerschlaemme mit einem hoeheren organischen Feststoffgehalt als 5% nicht mehr abgelagert werden duerfen, verbleibt uns neben der stofflichen Verwertung in der Landwirtschaft als massgeblicher Entsorgungsweg die Verbrennung, und zwar nicht - und das ist zu unterstreichen - um die Schadstoffe im Klaerschlamm zu beseitigen, sondern um den Klaerschlamm zu entsorgen. Eine betriebssichere Klaerschlammverbrennung stellt dabei die hoechste erreichbare Stufe der Entsorgungssicherheit dar. Der Niersverband hat sich fruehzeitig mit der Aufstellung einer zukunftsfaehigen Klaerschlammentsorgungsstrategie befasst und eine Trocknungsanlage geplant, die eine weitgehende Gewichts- und Volumenreduktion des Klaerschlamms sowie die Erzeugung eines heizwertreichen Brennstoffs gewaehrleistet und damit die Entsorgungsmoeglichkeiten deutlich verbessert. Des weiteren wurde ein erster Vertrag zur energetischen Klaerschlammverwertung in einer Verbrennungsanlage abgeschlossen. (orig.)

  16. Economic sensitivity of DAW incineration to PVC content

    International Nuclear Information System (INIS)

    Rossmassler, R.L.

    1986-01-01

    Economic analyses of the volume reduction of low level radwaste, including the incinerator of Dry Active Waste (DAW), spent resins and filter sludges, are performed using the microcomputer code VOLREDUCER. Based on BWR and PWR data taken from previous EPRI work, the sensitivity of incinerator economics to polyvinyl chloride (PVC) content in DAW is examined. An annual cost penalty associated with the presence of PVC in the waste is formulated, and the sensitivity of this penalty to a variety of parameters is determined. The alternative of sorting out PVC from the rest of the waste is compared to incineration with regard to this annual cost penalty. These penalties may range as high as $100,000 annually depending on the waste characteristics and percent of PVC

  17. GER values of recovered phosphorus. Chain analysis of struvite production from municipal wastewater and recovery of phosphorus from sludge incineration ash; GER-waarden van teruggewonnen fosfor. Ketenanalyse van struvietproductie uit communaal afvalwater en terugwinning van fosfor uit assen van slibverbranding

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Bijleveld, M. [CE Delft, Delft (Netherlands); Mulder, M. [Mrabella Mulder Waste Water Management, Utrecht (Netherlands)

    2012-09-15

    Phosphorus recovery from wastewater is a topical issue and a process being applied increasingly in the Netherlands. As part of NL Agency's energy efficiency programme CE Delft has calculated the energy benefits of two alternative recovery options compared with conventional production routes. The Gross Energy Requirement (GER) was calculated for the following routes: struvite recovery from rejection water versus conventional fertilizer production and phosphorus recovery from sludge incineration ash at Thermphos versus phosphorus production from phosphate ore at Thermphos. Compared with the conventional routes, the two recovery routes yield energy gains. The project was carried out in cooperation with Mirabella Mulder Wastewater Management, with support from Thermphos [Dutch] Fosforterugwinning uit afvalwater is een onderwerp dat in de belangstelling staat en meer en meer in Nederland wordt toegepast. In het kader van het energie-efficiëntieprogramma van Agentschap NL heeft CE Delft berekend wat de energetische winst is van twee terugwinroutes ten opzichte van de huidige gangbare productieroutes. De Gross Energy Requirement is berekend voor de volgende routes: struvietwinning uit rejectiewater versus reguliere kunstmestproductie en winning van fosfor uit zuiveringsslibas bij Thermphos versus productie van fosfor uit fosfaaterts bij Thermphos. Vergeleken met de reguliere routes leveren beide terugwinroutes energiewinst op. Het project werd uitgevoerd in samenwerking met Mirabella Mulder Wastewater Management en met inbreng van Thermphos.

  18. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    Science.gov (United States)

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  19. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  20. The Savannah River Plant Consolidated Incineration Facility

    International Nuclear Information System (INIS)

    Weber, D.A.

    1987-01-01

    A full scale incinerator is proposed for construction at the Savannah River Plant (SRP) beginning in August 1989 for detoxifiction and volume reduction of liquid and solid low-level radioactive, mixed and RCRA hazardous waste. Wastes to be burned include drummed liquids, sludges and solids, liquid process wastes, and low-level boxed job control waste. The facility will consist of a rotary kiln primary combustion chamber followed by a tangentially fired cylindrical secondary combustion chamber (SCC) and be designed to process up to 12 tons per day of solid and liquid waste. Solid waste packaged in combustible containers will be fed to the rotary kiln incinerator using a ram feed system and liquid wastes will be introduced to the rotary kiln through a burner nozzle. Liquid waste will also be fed through a high intensity vortex burner in the SCC. Combustion gases will exit the SCC and be cooled to saturation in a spray quench. Particulate and acid gas are removed in a free jet scrubber. The off-gas will then pass through a cyclone separator, mist eliminator, reheater high efficiency particulate air (HEPA) filtration and induced draft blowers before release to the atmosphere. Incinerator ash and scrubber blowdown will be immobilized in a cement matrix and disposed of in an onsite RCRA permitted facility. The Consolidated Incineration Facility (CIF) will provide detoxification and volume reduction for up to 560,000 CUFT/yr of solid waste and up to 35,700 CUFT/yr of liquid waste. Up to 50,500 CUFT/yr of cement stabilized ash and blowdown will beproduced for an average overall volume reduction fator of 22:1. 3 figs., 2 tabs

  1. Controlled air incineration

    International Nuclear Information System (INIS)

    Seitz, K.A.

    1991-01-01

    From 1960 to 1970, incineration was recognized as an economical method of solid waste disposal with many incinerators in operation through the country. During this period a number of legislation acts began to influence the solid waste disposal industry, namely, the Solid Waste Disposal Act of 1965; Resource Conservation Recovery Act (RCRA) of 1968; Resource Recovery Act of 1970; and Clean Air Act of 1970. This period of increased environmental awareness and newly created regulations began the closure of many excess air incineration facilities and encouraged the development of new controlled air, also known as Starved-Air incinerator systems which could meet the more stringent air emission standards without additional emission control equipment. The Starved-Air technology initially received little recognition because it was considered unproven and radically different from the established and accepted I.I.A. standards. However, there have been many improvements and developments in the starved-air incineration systems since the technology was first introduced and marketed, and now these systems are considered the proven technology standard

  2. Oxygen enrichment incineration

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested

  3. Oxygen enrichment incineration

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, Joon Hyung

    2000-10-01

    Oxygen enriched combustion technology has recently been used in waste incineration. To apply the oxygen enrichment on alpha-bearing waste incineration, which is being developed, a state-of-an-art review has been performed. The use of oxygen or oxygen-enriched air instead of air in incineration would result in increase of combustion efficiency and capacity, and reduction of off-gas product. Especially, the off-gas could be reduced below a quarter, which might reduce off-gas treatment facilities, and also increase an efficiency of off-gas treatment. However, the use of oxygen might also lead to local overheating and high nitrogen oxides (NOx) formation. To overcome these problems, an application of low NOx oxy-fuel burner and recycling of a part of off-gas to combustion chamber have been suggested.

  4. Seventy years of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Dumbleton, Brian

    1995-06-08

    A third waste incineration plant, which will conform to new United Kingdom emission standards is currently under construction at Tyseley in Birmingham. The plant will generate 25MW of electricity for 25,000 households by burning 350,000 t of municipal wastes per year. The site has been used for such energy from waste schemes since 1926. The new plant includes the latest air pollution abatement equipment designed to absorb mercury vapour and dioxins together with fabric filters. Other improvements at the Tyseley site include a new purpose built public waste disposal facility, clinical waste and animal carcass incineration and the recovery of 16,000t of ferrous metals per year for recycling. Because these waste products are incinerated it also therefore reduce`s Birmingham`s need for landfill sites. (UK)

  5. An incinerator for combustable radwastes

    International Nuclear Information System (INIS)

    Li Jingquan; Jiang Yun; Zhang Yinsheng; Chen Boling; Zhang Shihang

    1989-01-01

    An incinerator has been built up in Shanghai. In this paper, the devices of the incinerator, main parameters of the process, and the results of non-radioactive waste and simulated radwaste combustion tests were contributed. That provides reference information for radwaste treatment with incineration process

  6. Technology for improving sludge concentration; Odei noshukusei kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-10

    Sludge generating in a sewage treatment plant is disposed through the processes such as concentration, dehydration, and incineration in sludge disposal facilities. In recent years, there has been a trend that this sludge increases in volume as well as worsens in the concentration. A case is predictable where the sludge load to the dehydrating process is so large that the sludge can no longer be processed in sufficient quantity. In the meantime, if sludge is ozone-treated, viscous substance on the surface of sludge particles can be separated with a comparatively small amount of ozone, with sludge concentration enhanced. At Meidensha, an experimental plant was set up for the ozone treatment of sludge in a sludge intensive treatment plant of a metropolis, with a verification experiment carried out for a sludge concentration improving system by ozone. As a result of comparison of the treatment performance between an assessment system for performing ozone treatment and a reference system for not performing, the average value of the sludge concentration of a gravity concentration tank was 1.9% of the reference system against 1.7% of the assessment system in a continuous treatment experiment in the summer, while the solid collection ratio was 65.8% of the reference system against 95.5% of the assessment system, enabling a superior improving effect to be obtained. (NEDO)

  7. Environmental considerations on the FBC combustion of dry sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI/DEECA, Lisboa (Portugal)

    2001-07-01

    This paper presents results of on-going research on the incineration of pre-dried granular sewage sludges using a FBC system. Co-combustion is compared with mono-combustion of sludges leads to minor emissions and higher retention of Cd, Pb, Cu, and Zn in the bottom ashes, when compared to co-combustion with coal. The leachability of the sludge is reduced through combustion, as none of the metals, Cd, Cr, Ca Ni, Ph, Zn, Co and Mn were leached from the bottom ashes. These findings may contribute to an improvement in the incineration of sewage sludges and to the development of applications for the ashes in civil engineering activities.

  8. Sustainability of Domestic Sewage Sludge Disposal

    Directory of Open Access Journals (Sweden)

    Claudia Bruna Rizzardini

    2014-04-01

    Full Text Available Activated sludge is now one of the most widely used biological processes for the treatment of wastewaters from medium to large populations. It produces high amounts of sewage sludge that can be managed and perceived in two main ways: as a waste it is discharged in landfill, as a fertilizer it is disposed in agriculture with direct application to soil or subjected to anaerobic digestion and composting. Other solutions, such as incineration or production of concrete, bricks and asphalt play a secondary role in terms of their degree of diffusion. The agronomical value of domestic sewage sludge is a proved question, which may be hidden by the presence of several pollutants such as heavy metals, organic compounds and pathogens. In this way, the sustainability of sewage sludge agricultural disposal requires a value judgment based on knowledge and evaluation of the level of pollution of both sewage sludge and soil. The article analyzed a typical Italian case study, a water management system of small communities, applying the criteria of evaluation of the last official document of European Union about sewage sludge land application, the “Working Document on Sludge (3rd draft, 2000”. The report brought out good sewage sludge from small wastewater treatment plants and soils quality suggesting a sustainable application.

  9. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment and disposal of sewage sludges. Citations discuss sludge digestion, dewatering, disinfection, stabilization, chlorination, and desulfurization. Topics include pretreatment programs, land disposal, incineration, and waste utilization. Environmental monitoring and protection, federal regulations, and legal aspects are examined. (Contains 50-250 citations and includes a subject term index and title list.)

  10. Peaceful uses of nuclear weapon plutonium; Friedliche Verwertung von Plutonium aus Kernwaffen

    Energy Technology Data Exchange (ETDEWEB)

    Burtak, F. [Siemens AG Bereich Energieerzeugung (KWU), Erlangen (Germany)

    1996-06-01

    In 1993, the U.S.A. and the CIS signed Start 2 (the Strategic Arms Reduction Treaty) in which they committed themselves the reduce their nuclear weapon arsenals to a fraction of that of 1991. For forty-five years the antagonism between the superpowers had been a dominating factor in world history, determining large areas of social life. When Start 2 will have been completed in 2003, some 200 t of weapon grade plutonium and some 2000 t of highly enriched uranium (Heu) will arise from dismantling nuclear weapons. In the absence of the ideological ballast of the debate about Communism versus Capitalism of the past few decades there is a chance of the grave worldwide problem of safe disposal and utilization of this former nuclear weapon material being solved. Under the heading of `swords turned into plowshares`, plutonium and uranium could be used for peaceful electricity generation. (orig.) [Deutsch] 1993 unterzeichneten die USA und GUS das Start-2-Abkommen (Strategic Arms Reduction Treaty), in dem sie sich zur Verringerung der Anzahl ihrer Nuklearwaffen auf einen Bruchteil des Bestandes von 1991 verpflichten. 45 Jahre lang stellte die Auseinandersetzung der Supermaechte einen dominierenden Faktor der Weltpolitik dar und bestimmte weite Teile des gesellschaftlichen Lebens. Mit der geplanten Erfuellung von Start 2 im Jahr 2003 werden ca. 200 t waffengraediges Plutonium und ca. 2000 t highly enriched uranium (Heu) aus der Demontage der Kernwaffen anfallen. Ohne den ideologischen Ballast der vergangenen jahrezehntelangen Auseinandersetzung zwischen `Kommunismus` und `Kapitalismus` besteht die Chance, das gravierende weltweite Problem der sicheren Entsorgung und Verwertung dieses ehemaligen Kernwaffenmaterials zu loesen. Unter dem Motto `Schwerter zu Pflugscharen` koennte das Plutonium und Uran zur friedlichen Elektrizitaetserzeugung genutzt werden. (orig.)

  11. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    Science.gov (United States)

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  12. Destruction and formation of organic micropollutants in incineration process

    International Nuclear Information System (INIS)

    Mascolo, G.; Bagnuolo, G.; Lotito, V.; Spinosa, L.; Mininni, G.

    2001-01-01

    In this paper are presented the results obtained from a lab-scale investigation carried out with a system for Thermal Diagnostic Studies (STDS) aimed to study the effect of some process variables during incineration. The study has been focused on (I) gas phase dioxins formation during precursors thermal degradation, (II) thermal degradation of toxic organic compounds, (III) products of incomplete combustion (PICs) formation during thermal degradation of urban sludge spiked with toxic organics, (IV) PICs formation during process failure modes, (V) polynuclear aromatic hydrocarbons (PAHs) formation during urban sludge thermal degradation and (VI) influence of conditioning polymer on PICs emission during sludge incineration. The study about gas phase dioxins formation during precursors thermal degradation has been carried out with 2, 4, 6-trichloro- and 2, 4, 6 -tribromo-phenol that were thermal degraded at temperatures between 300 and 800 0 C in an air atmosphere. Both phenols showed the formation of the same tetra-halo-dioxin isomers that were further degraded at higher temperature. Furthermore, chlorine-containing dioxins showed higher thermal stability than bromine-containing dioxins. The study about thermal degradation of toxic organic compounds has been carried out with chlorobenzene, tetrachloroethylene and toluene that were thermal degraded at temperatures between 300 and 1000 0 C in an inert as well as air atmosphere. Results show that in all experimental conditions tetrachloroethylene and toluene are the most and less thermal stable compounds respectively. Also, all compounds are more thermal resistant during pyrolytic experiments and less thermal resistant when they are treated as a whole mixture. The study about PICs formation during thermal degradation of urban sludge spiked with toxic organics has been carried out by thermally degrading urban sludge alone or spiked with the above reported three organics at different conditions of temperature and oxygen

  13. Treatment of pond sludge at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    Wienand, J.; Tyler, R.; Baldwin, C.

    1992-01-01

    The treatment of low-level radioactive/hazardous materials sludges from five inactive solar evaporation settling ponds at the Rocky Flats Plant is discussed. The paper presents information on the following topics: history of the ponds; previous pond cleanout activities; current approach to the problem with respect to water management, sludge management, regulatory actions, and disposal; and future processing technology needs in the areas of polymer solidification, microwave solidification, joule-heated glass melters, and advanced technology incineration

  14. Sewage sludge - arisings, composition, disposal capacities; Klaerschlamm - Mengen, Zusammensetzung, Entsorgungskapazitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Rabus, J. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft; Urban, A.I.; Friedel, M. [Kassel Univ. (Gesamthochschule) (Germany). Fachgebiet Abfalltechnik

    1998-09-01

    One of the main disposal paths for sewage sludge in the past was landfilling. This option was severely restricted by the issue of the Technical Code on Household Waste in 1993. In its agricultural applications sewage sludge serves as a fertiliser and a soil improvement agent. Estimates on potential thermal treatment capacities have shown that there are enough public power plants to accommodate and provide thermal treatment for the total of sewage sludge arisings in Germany. As can be seen from the estimates presented in this paper, it would not even be necessary to restrict oneself to public power plant capacities. The paper points out possibilities of using plant capacities already existing in industrial firing plants and certain production sectors. It uses a comparison to show that sewage sludge would have to be dried in order to permit its thermal treatment in these private facilities. Aside from this, there are a number of new techniques entering the market which from the technical viewpoint also appear to be well suited for thermal sewage sludge treatment. [Deutsch] Ein wesentlicher Entsorgungsweg von Klaerschlamm war in der Vergangenheit die Verbringung auf eine Deponie. Diese Moeglichkeit ist durch die TA Siedlungsabfall von 1993 stark eingeschraenkt. Bei der landwirtschaftlichen Verwertung wird durch den Klaerschlamm eine Duengewirkung sowie eine Bodenverbesserung erreicht. Eine Abschaetzung der potentiellen thermischen Behandlungskapazitaeten zeigt, dass die gesamte bundesdeutsche Klaerschlammenge in oeffentlichen Kraftwerken unterzubringen und thermisch zu behandeln waere. Wie die hier dargestellten Abschaetzungen gezeigt haben, ist man durchaus nicht allein auf die Nutzung oeffentlicher Kraftwerkskapazitaeten angewiesen. Es wurden Moeglichkeiten zur Nutzung vorhandener Anlagenkapazitaeten in industriellen Feuerungsanlagen und in Produktionsbereichen aufgezeigt. Wie aus einem Vergleich erkennbar wird, ist allerdings eine Trocknung der Klaerschlaemme

  15. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  16. Fluidized bed incinerator development

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1976-01-01

    A fluidized bed incinerator is being developed for burning rad contaminated solid and liquid waste materials. In situ neutralization of acid gases by the bed material, catalytic afterburning, and gas filtration are used to produce a clean flue gas without the use of aqueous scrubbing

  17. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  18. Supercritical water gasification of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Aye, L.; Yamaguchi, D. [Melbourne Univ. International Technologies Centre, Melbourne, Victoria (Australia). Dept. of Civil and Environmental Engineering

    2006-07-01

    Supercritical water gasification (SCWG) is an attractive technology for producing fuels from biomass and waste materials. As a result of greenhouse gas emissions and issues related to local air pollutants, hydrogen production from these renewable energy resources has been gaining in popularity. Disposal of sewage sludge is another environmental problem that have led to severe regulations. Incineration has been one of the most commonly used means of sewage sludge disposal. Thermal gasification produces gaseous fuel, making it a better option over incineration. However, due to its high moisture content, this process is not feasible to make use of sewage sludge directly. In order to analyze SCWG of sewage sludge, it has been determined that equilibrium analysis is most suitable since the maximum achievable amount of hydrogen in a given reacting condition can be estimated. The equilibrium model can be divided into two types of models, namely stoichiometric and non-stoichiometric. This paper presented the results of a study that used a computer program to develop a nonstoichiometric model with the direct Gibbs free energy minimization technique. In addition, various biomass were simulated for comparisons in order to identify if sewage sludge is a potential feedstock for hydrogen production. Last, the effects of reaction pressure and temperature on product distribution were also examined. It was shown that the proposed model is capable of estimating the product distribution at equilibrium. 33 refs., 4 tabs., 6 figs.

  19. 78 FR 9111 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

    Science.gov (United States)

    2013-02-07

    ... impacts? 2. What are the water and solid waste impacts? 3. What are the energy impacts? 4. What are the.... Pulp and Paper Sludge 4. Rulemaking Petition Process for Other Categorical Non-Waste Determinations (40... and 241 Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Final Amendments...

  20. Incineration by accelerator

    International Nuclear Information System (INIS)

    Cribier, M.; FIoni, G.; Legrain, R.; Lelievre, F.; Leray, S.; Pluquet, A.; Safa, H.; Spiro, M.; Terrien, Y.; Veyssiere, Ch.

    1997-01-01

    The use MOX fuel allows to hope a stabilization of plutonium production around 500 tons for the French park. In return, the flow of minor actinides is increased to several tons. INCA (INCineration by Accelerator), dedicated instrument, would allow to transmute several tons of americium, curium and neptunium. It could be able to reduce nuclear waste in the case of stopping nuclear energy use. This project needs: a protons accelerator of 1 GeV at high intensity ( 50 m A), a window separating the accelerator vacuum from the reactor, a spallation target able to produce 30 neutrons by incident proton, an incineration volume where a part of fast neutrons around the target are recovered, and a thermal part in periphery with flows at 2.10 15 n/cm 2 .s; a chemical separation of elements burning in thermal (americium) from the elements needing a flow of fast neutrons. (N.C.)

  1. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1993-03-01

    Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  2. Commercial incineration demonstration

    International Nuclear Information System (INIS)

    Borduin, L.C.; Neuls, A.S.

    1981-01-01

    Low-level radioactive wastes (LLW) generated by nuclear utilities presently are shipped to commercial burial grounds for disposal. Substantially increasing shipping and disposal charges have sparked renewed industry interest in incineration and other advanced volume reduction techniques as potential cost-saving measures. Repeated inquiries from industry sources regarding LLW applicability of the Los Alamos controlled-air incineration (CAI) design led DOE to initiate this commercial demonstration program in FY-1980. The selected program approach to achieving CAI demonstration at a utility site is a DOE sponsored joint effort involving Los Alamos, a nuclear utility, and a liaison subcontractor. Required development tasks and responsibilities of the particpants are described. Target date for project completion is the end of FY-1985

  3. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  4. Controlled air pyrolysis incinerator

    International Nuclear Information System (INIS)

    Dufrane, K.H.; Wilke, M.

    1982-01-01

    An advanced controlled air pyrolysis incinerator has been researched, developed and placed into commercial operation for both radioactive and other combustible wastes. Engineering efforts cocentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced a minimum amount of secondary waste. Feed material is continuously fed by gravity into the system's pyrolysis chamber without sorting, shredding, or other such pretreatment. Metal objects, liquids such as oil and gasoline, or solid products such as resins, blocks of plastic, tire, animal carcasses, or compacted trash may be included along with normal processed waste. The temperature of the waste is very gradually increased in a reduced oxygen atmosphere. Volatile pyrolysis gases are produced, tar-like substances are cracked and the resulting product, a relatively uniform, easily burnable material, is introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gasthen passing through a simple dry clean-up system. Gas temperatures are then reduced by air dilution before passing through final HEPA filters. Both commercial and nuclear installations have been operated with the most recent application being the central incinerator to service West Germany's nuclear reactors

  5. Incineration of radioactive waste

    International Nuclear Information System (INIS)

    Caramelle, D.; Florestan, J.; Waldura, C.

    1990-01-01

    This paper reports that one of the methods used to reduce the volume of radioactive wastes is incineration. Incineration also allows combustible organic wastes to be transformed into inert matter that is stable from the physico-chemical viewpoint and ready to be conditioned for long-term stockage. The quality of the ashes obtained (low carbon content) depends on the efficiency of combustion. A good level of efficiency requires a combustion yield higher than 99% at the furnace door. Removal efficiency is defined as the relation between the CO 2 /CO + CO 2 concentrations multiplied by 100. This implies a CO concentration of the order of a few vpm. However, the gases produced by an incineration facility can represent a danger for the environment especially if toxic or corrosive gases (HCL,NO x ,SO 2 , hydrocarbons...) are given off. The gaseous effluents must therefore be checked after purification before they are released into the atmosphere. The CO and CO 2 measurement gives us the removal efficiency value. This value can also be measured in situ at the door of the combustion chamber. Infrared spectrometry is used for the various measurements: Fourier transform infrared spectrometry for the off-gases, and diode laser spectrometry for combustion

  6. A comparative study of PCDD/F emissions from medical and industrial waste incinerators in Medellin-Colombia (South America)

    Energy Technology Data Exchange (ETDEWEB)

    Aristizabal, B; Montes, C; Cobo, M [Antioquia Univ., Medellin (Colombia); Abad, E; Rivera, J [CID-CSIC, Barcelona (Spain). Dept. of Ecotechnologies

    2004-09-15

    Municipal waste management often combines different strategies such as recycling, composting, thermal treatment or landfill disposal. In Colombia, urban solid waste is landfill disposed but, industrial and medical wastes are incinerated. The total medical and pathological wastes generated in this zone are about 1643 ton/year from which 1022 ton/year are incinerated in six plants operating in Medellin metropolitan area. As a result, new regulations governing stack gas emissions have been enforced with the aim of reducing air pollutant emissions. Few incinerators are equipped with a gas-cleaning system and thus, most do not have any cleaning system. Medical waste incineration has been recognized as one of the major known sources of polychlorinated dibenzo-pdioxins and polychlorinated dibenzofurans (PCDD/PCDF). To the best of our knowledge, there are not reports about emissions of dioxins and furans from the incineration sector in Colombia. The first aim of this work was to evaluate PCDD/PCDF emissions from the largest incinerators operating in Medellin (Colombia). In this contribution we report results obtained from three incinerators (A, B and C). The incinerated waste in plant A consisted of polymerization sludge, whereas in plants B and C medical and pathological residues were incinerated. Common medical wastes include dirty bandages, culture dishes, plastic, surgical gloves and instruments (including needles) as well as human tissue.

  7. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  8. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  9. Incineration of toluene and chlorobenzene in a laboratory incinerator

    International Nuclear Information System (INIS)

    Mao, Z.; Mcintosh, M.J.; Demirgian, J.C.

    1992-01-01

    This paper reports experimental results on the incineration of toluene and chlorobenzene in a small laboratory incinerator. Temperature of the incinerator, excess air ratio and mean residence time were varied to simulate both complete and incomplete combustion conditions. The flue gas was monitored on line using Fourier transform infrared (FTIR) spectroscopy coupling with a heated long path cell (LPC). Methane, toluene, benzene, chlorobenzene, hydrogen chloride and carbon monoxide in the flue gas were simultaneously analyzed. Experimental results indicate that benzene is a major product of incomplete combustion (PIC) besides carbon monoxide in the incineration of toluene and chlorobenzene, and is very sensitive to combustion conditions. This suggests that benzene is a target analyle to be monitored in full-scale incinerators

  10. Electron beam treatment of wastewaters and sludges

    International Nuclear Information System (INIS)

    Osborn, D.W.

    1980-01-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900 000 per year at a dose rate of 4 000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material

  11. Electron beam treatment of wastewaters and sludges

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, D W [City Health Dept., Johannesburg (South Africa)

    1980-12-01

    Various procedures for decreasing the health risks associated with the disposal of sewage sludges are discussed including land storage, thermophilic digestion, autothermal aerobic digestion, the Porteus Process, the Zimpro Process, incineration, pyrolysis, thermal pasteurisation, composting, lime utilisation, flash drying and radiation techniques. A fully automated sludge irradiation facility at Geiselbullach near Munich and an electron accelerator experimental plant near Boston are described. Advantages and disadvantages are given for both processes. Costs of electron radiation treatment of sewage sludges (a slurry containing 5 per cent solids) for a city the size of Johannesburg is estimated to be in the order of R900,000 per year at a dose rate of 4,000 Gy, which would produce a product of reasonable hygienic quality but not necessarily meet the criteria laid down by local authority medical officers at all times. In order to reduce costs it would be necessary to have a readily available market to dispose of disinfected material.

  12. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  13. Waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egede Rasmussen, Anja

    2004-06-15

    This prepatory thesis is a literature study on the incineration of waste. It deals with the concepts of municipal solid waste, the composition and combustion of it. A main focus is on the European emission regulations and the formation of dioxins, as well as a big effort is put into the treatment of solid residues from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical and chemical separations, solidification and stabilization techniques, thermal methods, and extraction methods have been discussed. Evaluation of possible methods of treatment has been done, but no conclusions made of which is the best. Though, indications exist that especially two methods have shown positive qualities and must be further investigated. These methods are the acid extraction and sulfide stabilization (AES) process and the phosphate stabilization method of WES-PHix. Economic potentials of the two methods have been evaluated, and with the information obtained, it seems that the price for treatment and later landfilling of a material with improved leaching characteristics, will be approximately the same as the presently most used solution of export to Norway. However, more tests, investigations and economic evaluations are necessary in order for support of the findings in this work. (au)

  14. 40 CFR 761.70 - Incineration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Incineration. 761.70 Section 761.70... and Disposal § 761.70 Incineration. This section applies to facilities used to incinerate PCBs... regular intervals of no longer than 15 minutes. (4) The temperatures of the incineration process shall be...

  15. Present situation and objective of sewage sludge treatment and disposal; Ausgangssituation und Zielstellung der Klaerschlammbehandlung und -entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wittchen, F. [BC Berlin-Consult GmbH, Berlin (Germany); Pueschel, M. [BC Berlin-Consult GmbH, Berlin (Germany)

    1995-11-01

    Sewage sludge is a solid-liquid mixture produced in each treatment step of a waste water treatment plant. The suitable manner of sludge treatment and disposal depends on the characteristics of the sludge such as its content of heavy metals and nutrient composition. To assess the different sludge treatment and disposal options besides the economical aspects effects on the environment must be considered. The emission of CO{sub 2} can serve as a possible approach for assessment. The dewatering and thermal drying approach for assessment. The dewatering and thermal drying causes the biggest part of CO{sub 2} emissions. They are at the same level as the CO{sub 2} which would be generated directly by total oxidation of the carbon contained in the sludge. The best way of sewage sludge disposal in accordance with the legal frame work, environmental impact and financial aspects is the co-combustion of sludge in cole power plants. The agricultural use of sludge with low heavy metal concentrations, however, is cheaper. (orig.) [Deutsch] Das Fest-Fluessig-Gemisch Klaerschlamm entsteht in jeder Reinigungsstufe einer Klaeranlage und muss anschliessend einer Behandlung zugefuehrt werden. Der Entsorgungsweg ist abhaengig von den Eigenschaften des Schlammes, wie z.B. seiner Schwermetallbelastung. Den Rahmen fuer die Klaerschlammentsorgung bilden die Regelungen des Abfallgesetzes, der Klaerschlammverordnung, der Duengemittelanwendungsverordnung, der TA Siedlungsabfall, des LAGA Merkblattes 10 (Kompost) und weiterer Verordnungen des Immissionsschutz- und Abfallrechts. Zur Bewertung der verschiedenen Entsorgungswege wurden neben den oekonomischen Aspekten auch die Auswirkungen der jeweiligen Verfahren auf die Umwelt beruecksichtigt. Es wurde fuer die oekologische Bewertung die CO{sub 2}-Emission des einzelnen Verfahrens herangezogen. Das Resultat des Vergleichs zeigt, dass der Co-Verbrennung der Vorzug zu geben ist. Bei geringen Schwermetallbelastungen bietet die landwirtschaftliche

  16. The incineration of radioactive waste

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1980-03-01

    In this study, made on contract for the Swedish Nuclear Power Inspectorate, different methods for incineration of radioactive wastes are reviewed. Operation experiences and methods under development are also discussed. The aim of incineration of radioactive wastes is to reduce the volume and weight of the wastes. Waste categories most commonly treated by incineration are burnable solid low level wastes like trash wastes consisting of plastic, paper, protective clothing, isolating material etc. Primarily, techniques for the incineration of this type of waste are described but incineration of other types of low level wastes like oil or solvents and medium level wastes like ion-exchange resins is also briefly discussed. The report contains tables with condensed data on incineration plants in different countries. Problems encountered, experiences and new developments are reviewed. The most important problems in incineration of radioactive wastes have been plugging and corrosion of offgas systems, due to incomplete combustion of combustion of materials like rubber and PVC giving rise to corrosive gases, combined with inadequate materials of construction in heat-exchangers, channels and filter housings. (author)

  17. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  18. Incinerator for radioactive wastes

    International Nuclear Information System (INIS)

    Warren, J.H.; Hootman, H.E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburn chamber for off-gases. The latter is formed by vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary a magazine feeds waste to a horizontal tube forming the primary combustion chamber. (author)

  19. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  20. Incinerator technology overview

    Science.gov (United States)

    Santoleri, Joseph J.

    1991-04-01

    In the 1960's, much effort was expended on cleaning up the air and water. Air Quality and Water Quality Acts were written and inpleinented in many states and coninunities. New products such as unleaded gasoline and water base paints were developed to aid in minimizing pollution. Conversion from oil fired combustion systems to natural gas fired for comfort and industrial heating was the normal practice. In 1970, the Clean Air Act was passed. There was concern on how to safely dispose of hazardous wastes. Indiscriminate dumping of chemical process wastes had been the practice since the birth of the chemical industry in the USA. Land dumping, inadequate landfills, and river-ocean dumping were the most economical ways to dispose of chemical wastes. Processes that would have reduced or eliminated wastes were disregarded as being too costly. Many of the major chemical companies who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.

  1. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  2. Incineration: efficient, economical and environmental

    International Nuclear Information System (INIS)

    Mascarenhas, A.

    2003-01-01

    Significant improvements in incinerator design and technology resulting in optimal performance, increased reliability and reduced capital and operating costs are discussed. The objective of the discussion is to draw attention to incineration as a cost effective and environmentally responsible means of disposing of the waste products generated by the oil and gas industry, while improving air quality and reduce greenhouse gas emissions at the same time. The main point put forward is that because the global warming potential of methane is 21 times greater than that of carbon dioxide, the complete combustion potential of incineration, combined with the fact that incineration requires significantly less fuel gas to combust low heat content streams, offers significantly reduced greenhouse gas emissions and improved air quality

  3. Waste incineration, Part I: Technology.

    Science.gov (United States)

    1990-02-01

    Based upon an overview of the technology of incineration and the nature of hospital waste, HHMM offers the following suggestions: Old retort or other excess air incinerators should be replaced regardless of age. Even if emissions control equipment and monitoring devices can be retrofitted, excess-air incinerators are no longer cost-effective in terms of capacity, fuel consumption, and heat recovery. Audit (or have a specialist audit) your waste stream thoroughly. Consult a qualified engineering company experienced in hospital installations to get a system specified as exactly as possible to your individual conditions and needs. Make sure that the capacity of your incinerator will meet projections for future use. Anticipate the cost of emissions control and monitoring devices whether your state currently requires them or not. Make sure that your incinerator installation is engineered to accept required equipment in the future. Develop a strong community relations program well in advance of committing to incinerator installation. Take a proactive position by inviting your neighbors in during the planning stages. Be sure the contract governing incinerator purchase and installation has a cancellation clause, preferably without penalties, in case community action or a change in state regulations makes installation and operation impractical. The technology is available to enable hospitals to burn waste effectively, efficiently, and safely. HHMM echoes the concerns of Frank Cross--that healthcare facilities, as well as regional incinerators and municipalities, show the same concern for environmental protection as for their bottom lines. When emissions are under control and heat is recovered, both the environment and the bottom line are healthier.

  4. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  5. SRL incinerator components test facility

    International Nuclear Information System (INIS)

    Freed, E.J.

    1982-08-01

    A full-scale (5 kg waste/hour) controlled-air incinerator, the ICTF, is presently being tested with simulated waste as part of a program to develop technology for incineration of Savannah River Plant solid transuranic wastes. This unit is designed specifically to incinerate relatively small quantities of solid combustible waste that are contaminated up to 10 5 times the present nominal 10 nCi/g threshold value for such isotopes as 238 Pu, 239 Pu, 242 Cm, and 252 Cf. Automatic incinerator operation and control has been incorporated into the design, simulating the future plant design which minimizes operator radiation exposure. Over 3000 kg of nonradioactive wastes characteristic of plutonium finishing operations have been incinerated at throughputs exceeding 5 kg/hr. Safety and reliability were the major design objectives. In addition to the incinerator tests, technical data were gathered on two different off-gas systems: a wet system composed of three scrubbers in series, and a dry system employing sintered metal filters

  6. Sludge busters

    International Nuclear Information System (INIS)

    Pichon, Max

    2010-01-01

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  7. Sludge busters

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Max

    2010-07-15

    Full text: A few years ago, For Earth developed low energy sub-surface aeration systems to increase the biological activity in the wastewater sludge ponds. Then came the idea to introduce probiotic bacteria to really ramp up the process, which promises massive time and cost savings in sludge management. Increasing the volumes of specific bacteria reactivates the sludge, accelerating biological nutrient removal in general and, by tailoring the bacteria, targeting specific organic waste types. The technology is already running at more than 30 councils across NSW and in some commercial settings, such as dairy farms. Shane McKibbin, GM of For Earth, said the 'Probiotic, Low Energy Aeration System' offers considerable upside. “The cost savings have been enormous with some councils, including the work done at Woolgoolga Water Reclamation Plant at Coffs Harbour,” he said. Sludge settling in wastewater treatment plant lagoons is typically pumped out, centrifuged to remove water and then landfilled. In Woolgoolga's case that process was costing Coffs Harbour Water $150 a cubic metre; McKibbin said they've slashed that to a measly $5 a cubic metre. An array of 'industrial air stones' is dropped 1m below the surface to create an oxygenated blanket across the surface, overcoming the tendency of sludge ponds to stagnate. The key though is floating probiotic dosing lines across the surface, which kick-starts the probiotics process. “Previously, some operators just wanted to throw it on with a bucket, so the bacteria would get thrown into one corner of the pond. But since we introduced the dosing system it has really improved the overall performance,” said McKibbin.The dosing pump system automatically applies the bacteria into the dosing line according to a specified program, ensuring the probiotics are spread out across the pond and across the week. “I would say it improves and accelerates the result by 30 per cent,” he adds. “The biggest problem was that

  8. The Fundamentals of Waste Water Sludge Characterization and Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Scales, Peter J.; Dixon, David R.; Harbour, Peter J.; Stickland, Anthony D.

    2003-07-01

    The move to greater emphasis on the disposal of waste water sludges through routes such as incineration and the added cost of landfill emplacement puts high demands on dewatering technology for these sludges. A dear problem in this area is that waste water sludges are slow and difficult to dewater and traditional methods of laboratory measurement for prediction of filtration performance are inadequate. This is highly problematic for the design and operational optimisation of centrifuges, filters and settling devices in the waste water industry. The behaviour is assessed as being due to non-linear behaviour of these sludges which negates the use of classical approaches. These approaches utilise the linear portion of a t versus V{sup 2} plot (where t is the time to filtration and V is the specific filtrate volume) to extract a simple Darcian permeability. Without this parameter, a predictive capacity for dewatering using current theory is negated. (author)

  9. Design Of Fluidized-bed Incinerator

    International Nuclear Information System (INIS)

    Lee, Bong Hun

    1992-04-01

    This book tells of design of fluidized-bed incinerator, which includes outline of fluidized-bed incinerator such as definition, characteristic, structure of principle of incineration and summary of the system, facilities of incinerator with classification of incinerator apparatus of supply of air, combustion characteristic, burnup control and point of design of incinerator, preconditioning facilities on purpose, types and characteristic of that system, a crusher, point of design of preconditioning facilities, rapid progress equipment, ventilation equipment, chimney facilities, flue gas cooling facilities boiler equipment, and removal facility of HCI/SOX and NOX.

  10. An environmental LCA of alternative scenarios of urban sewage sludge treatment and disposal

    Directory of Open Access Journals (Sweden)

    Tarantini Mario

    2007-01-01

    Full Text Available The majority of pollutants that affect wastewater are concentrated by treatment processes in sludge; it is therefore critical to have a suitable evaluation methodology of sludge management options to analyze if pollution is redirected from water to other media, such as air and soil. Life cycle assessment is one of the most widely known and internationally accepted methodologies to compare environmental impacts of processes and systems and to evaluate their sustainability in the entire life cycle. In this study the methodology was applied to assess and compare three scenarios of urban sewage sludge treatment and disposal: sludge anaerobic digestion followed by dedicated incineration, sludge incineration without previous digestion, and sludge anaerobic digestion followed by composting. The potential benefits of spreading the compost to soil were not included in the system boundaries even if, due to its nutrients contents and soil improving features, compost could partially replace the use of commercial products. The study was aimed at finding out the environmental critical points of the treatment alternatives selected and at providing a technical and scientific contribution for further debates with national and local authorities on the environmental optimization of sewage sludge management. Life cycle assessment results confirmed the major contribution of electricity and methane consumption on several environmental impact categories. Incineration contributes more than sludge composting to almost all categories, although the heavy metals content of urban wastewater sludge raises substantial concerns when composted sludge is spread to soil. In this paper the models adopted, the hypotheses assumed and the main findings of the study are presented and discussed. .

  11. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  12. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  13. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  14. Waste incinerating plant

    Energy Technology Data Exchange (ETDEWEB)

    1972-12-01

    This plant is provided with a NKK-Ferunst type reciprocating stage fire lattice which has a good ventilating effect and a proper stirring and loosening effect, achieving a high combustion rate, and has also a gas flow system by which gas can flow in the reverse direction to adjust its flow for seasonal variations in the quality of waste. Also, a room in which the exhaust gas is mixed is provided in this plant as a help for the complete neutralization and combustion of acid gas such as hydrogen chloride and imperfect combustion gas from plastic waste contained in wastes. In this system, waste can accept a sufficient radiant heat from the combustion gas, the furnace wall, and the ceiling; even on the post combustion fire lattice the ashes are given heat enough to complete the post combustion, so that it can be completely reduced to ashes. For these reasons, this type of incinerator is suitable for the combustion of low-calorie wastes such as city wastes. The harmful gases resulting from the combustion of wastes are treated completely by desulfurization equipment which can remove the oxides of sulfur. This type of plant also can dispose of a wide variety of wastes, and is available in several capacities from 30 tons per 8 hr to 1,200 tons per 24 hr.

  15. Behavior of cesium in municipal solid waste incineration.

    Science.gov (United States)

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants

    Directory of Open Access Journals (Sweden)

    Soudani Leila

    2017-03-01

    Full Text Available The wastewater treatment produces a large amount of sludge. The different uses of eliminations sludge such as landfills or incineration have consequences negative for the environment, the agricultural use has increased worldwide, especially in crops and few or no studies have been conducted with forest plantations in Algeria. The objective of this study is to assess fertilizing characteristics of the sludge from the wastewater treatment plant of Tiaret (Algeria. One-year-old saplings of Eucalyptus camaldulensis were transplanted into pots with sludge/soil mixtures where sludge content was 20%, 40% and 60%. Biometric measurements (height, base diameter, diameter at mid-height and the number of leaves were performed during six months after planting. Results demonstrated the positive effect of sludge application. A significant difference in height increment and number of leaves was found between the control and sludge-treated plants. Biometric values for all sludge mixtures were higher than those for control plants (100% soil. The mixture, which contained 60% sludge, gives the best result, except for a diameter of stem. Plants grown on sludge/soil mixture had average height 49.4 ± 24.1 cm and average number of leaves 68.8 ± 6.2 while average height for plants grown on soil was 34.3 ± 12.8 cm and average number of leaves was 40 ± 3.8. Sludge application provides soil amendment and additional nutrient supply for planted trees.

  17. Composting - not the optimum solution for all biodegradable residues. Activation of other possibilities of utilisation; Kompostieren - nicht die beste Loesung fuer die Verwertung aller biologisch abbaubaren Abfaelle. Aktivierung anderer Verwertungsmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Hangen, H.O. [comp.

    1994-10-01

    The management of industrial biological waste is discussed, i.e. residues in gastronomy, wood treatment, slaughterhouses, breweries, etc. Composting and fermentation processes are discussed critically as well as utilization options. (SR) [Deutsch] Die Entsorgung von industriellem Bioabfall wird behandelt. Dieser Abfall faellt in der Gastronomie, Holzbearbeitung, Schlachthaeusern, Brauereien etc. an. Kompostierungsverfahren und Vergaerungsverfahren, aber auch Verwertung von organischen Abfaellen werden kritisch diskutiert. (SR)

  18. Alpha waste incineration prototype incinerator and industrial project

    International Nuclear Information System (INIS)

    Caramelle, D.; Meyere, A.

    1988-01-01

    To meet our requirements with respect to the processing of solid alpha wastes, a pilot cold incinerator has been used for R and D. This unit has a capacity of 5 kg/hr. The main objectives assigned to this incineration process are: a good reduction factor, controlled combustion, ash composition compatible with plutonium recovery, limited secondary solid and fluid wastes, releases within the nuclear and chemical standards, and in strict observance of the confinement and criticality safety rules. After describing the process we will discuss the major results of the incineration test campaigns with representative solid wastes (50 % PVC). We will then give a description of an industrial project with a capacity of 7 kg/hr, followed by a cost estimate

  19. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge.

    Directory of Open Access Journals (Sweden)

    Martijn Eikelboom

    Full Text Available The Multi-Criteria Decision Analysis (MCDA procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery, economic (overall costs, value of products and technical (maintenance and operation, feasibility of implementation. The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry. Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery.

  20. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    Science.gov (United States)

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  1. Incineration demonstration at Savannah River

    International Nuclear Information System (INIS)

    Lewandowski, K.E.; Becker, G.W.; Mersman, K.E.; Roberson, W.A.

    1983-01-01

    A full-scale incineration process for Savannah River Plant (SRP) low level beta-gamma combustible waste was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive wastes. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. Presently, the process is being upgraded by SRP to accept radioactive wastes. During a two-year SRP demonstration, the facility will be used to incinerate slightly radioactive ( 3 ) solvent and suspect level (<1 mR/hr at 0.0254 meter) solid wastes

  2. Savannah River Plant incinerator demonstration

    International Nuclear Information System (INIS)

    Lewandowski, K.E.

    1983-01-01

    A full-scale incineration process was demonstrated at the Savannah River Laboratory (SRL) using nonradioactive waste. From October 1981 through September 1982, 15,700 kilograms of solid waste and 5.7 m 3 of solvent were incinerated. Emissions of off-gas components (NO/sub x/, SO 2 , CO, and particulates) were well below South Carolina state standards. Volume reductions of 20:1 for solid waste and 7:1 for Purex solvent/lime slurry were achieved. The process has been relocated and upgraded by the Savannah River Plant to accept low-level beta-gamma combustibles. During a two-year demonstration, the facility will incinerate slightly radioactive ( 3 ) solvent and suspect level (< 1 mR/h at 0.0254 meter) solid wastes. This demonstration will begin in early 1984

  3. INCINERATION TREATMENT OF ARSENIC-CONTAMINATED SOIL

    Science.gov (United States)

    An incineration test program was conducted at the U.S. Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The p...

  4. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  5. Pilot-scale incineration testing of an oxygen-enhanced combustion system

    International Nuclear Information System (INIS)

    Waterland, L.R.; Lee, J.W.; Staley, L.J.

    1989-01-01

    This paper discusses a series of demonstration tests of the American Combustion, Inc., Thermal Destruction System performed under the Superfund innovative technology evaluation (SITE) program. This oxygen-enhanced combustion system was retrofit to the pilot-scale rotary kiln incinerator at EPA's Combustion Research Facility. This system's performance was tested firing contaminated soil from the Stringfellow Superfund Site, both alone and mixed with a hazardous coal tar waste (decanter tank tar sludge form coking operations - K087). Comparative performance with conventional incinerator operation was tested. Test results show that compliance with the hazardous waste incinerator performance standards of 99.99 percent principal organic hazardous constituent (POHC) destruction and removal efficiency (DRE) and particulate emissions of less than 180 mg/dscm at 7 percent O 2 was achieved for all tests. The Pyretron oxygen-enhanced combustion system allowed in-compliance operation at double the mixed waste feedrate possible with conventional incineration, and with a 60 percent increase in charge weight than possible with conventional incineration

  6. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  7. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  8. Physical and thermal waste utilisation in industrial high-temperature processes; Stoffliche und thermische Verwertung von Abfaellen in industriellen Hochtemperaturprozessen. Fachseminar

    Energy Technology Data Exchange (ETDEWEB)

    Leithner, R. [ed.

    1998-09-01

    This year`s DVV Colloquium, the eleventh of its kind, was dedicated to ``Physical and thermal waste utilisation in industrial high-temperature processes``, a topic of growing importance in our time. The three old principles of Disperse, Bury, and Forget having been found inexpedient, there is now a growing interest in the three new principles of Avoid, Reduce, and Utilise. The colloquium saw a scientific discussion on physical and thermal waste utilisation in high-temperature processes. Proposals were made for the solution of specific problems, and the economic implications and impact of these solutions on products and the environment were elucidated. [Deutsch] Das diesjaehrige 11. DVV-Kolloquium mit dem Thema: `Stoffliche und thermische Verwertung von Abfaellen in industriellen Hochtemperaturprozessen`, behandelt einen Themenkomplex, der immer mehr an Bedeutung gewinnt. Nachdem sich die drei alten Prinzipien Verteilen, Vergraben, Vergessen als unzweckmaessig herausgestellt haben, gewinnen die drei neuen Prinzipien Vermeiden, Vermindern, Verwerten immer groessere Bedeutung. Stoffliche und thermische Verwertung in industriellen Hochtemperaturprozessen werden in diesem Kolloquium wissenschaftlich diskutiert und Loesungsvorschlaege und deren wirtschaftliche Implikationen und deren Auswirkungen auf die Produkte und die Umwelt beleuchtet. (orig.)

  9. Incineration of municipal and assimilated wastes in France: assessment of latest energy and material recovery performances.

    Science.gov (United States)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-31

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2,900,000 MWh of electricity, of which 2,200,000 MWh were sold to Electricité de France (EDF) and 9,100,000 MWh of heat, of which 7,200,000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance.

  10. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances

    International Nuclear Information System (INIS)

    Autret, Erwan; Berthier, Francine; Luszezanec, Audrey; Nicolas, Florence

    2007-01-01

    Incineration has an important place in waste management in France. In 2003, around 130 incineration plants have treated 12.6 Mt of non-dangerous waste, mainly composed of household waste (10.8 Mt), non-dangerous waste from industry, business, services (1.0 Mt), sewage sludge (0.2 Mt) or clinical waste (0.1 Mt). The incineration of these wastes generated 3.0 Mt of bottom ash of which 2.3 Mt were used for roads construction and 0.2 Mt of ferrous and non-ferrous metal were recycled. It also produced 2 900 000 MWh of electricity, of which 2 200 000 MWh were sold to Electricite de France (EDF) and 9 100 000 MWh of heat, of which 7 200 000 MWh were sold to private or public users. These French incinerators of non-hazardous waste are currently being thoroughly modernized, thus making possible the consolidation and the enhancement of their environmental and energy performance. This process is related to the implementation of the European Directive 2000/76/CE whose expiration date is 28 December 2005. Upon request of ADEME, the engineering company GIRUS has realised the first technical and economical evaluation of works necessary to bring incinerators into compliance. The financial estimations, carried out in 30 June 2003, show that the investments to be devoted could reach 750 million euros. This assessment shed new light on the situation of non-hazardous waste incinerators, including an identification and a rank ordering for each incinerator of the most frequent and the most complex non-conformities to be solved in term of cost and delay. At last, this assessment gives the solutions for each non-compliance

  11. Co-combustion of sewage sludge and energy-rich waste fuels or forest fuels; Sameldning av roetslam och energirika avfallsbraenslen eller skogsbraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Linder, Kristina [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-10-01

    In this report literature on incineration of sewage sludge is summarises. In Sweden there is a yearly production of about 0,24 million-ton dry sewage sludge of which 50% is deposited. Recent changes in legislation will restrict and later prohibit the dumping of sewage sludge. Alternative methods for handling the material have not yet been found. In other parts of Europe the problem has been solved by incineration. Sludge incineration can be performed in several ways depending of the pretreatment. The sludge can be raw or digested, dewatered or dried. The sludge can be burnt as single fuel or in mixtures with other fuels. Focus in this work has been on co-combustion with biofuel or waste, as it will make use of existing plants. Digested sludge is also of major interest as 70% of the Swedish sludge is digested. The report describes the situation both in Sweden and in the rest of Europe. Sludge has a varying quality depending on origin and treatment, which affects the combustion properties. Ash and moisture contents differ from other fuels. The heating value of sewage sludge is approximately 20 MJ/kg per dry combustible matter and the amount of organic is around 70%. Compared to forest residue and demolition wood, sludge contains high levels of nitrogen and sulphur, which will cause emissions. The nitrogen level is about 10 times higher and the sulphur level 25 to 50 times higher. Sulphur, in combination with alkali metals, can cause deposit problems in boilers. However, sludge contains low levels of alkali. In the experimental investigation leaching of digested sludge showed low values on water conductivity which indicates a low concentration of sintering ash species in the sludge. A comparison of the aerodynamic properties of dried digested sludge and wood chips from energy coppice showed that sludge has a lower fraction of fines. This indicates that the sewage sludge is not likely to be carried over in the furnace but rather to stay in the fuel and ash bed on the

  12. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    Sludge recovery machine comprising a hollow centrifuge, a vertical pipe for feeding in a liquid containing sludge and a sliding rake pressing against the internal wall of the centrifuge to dislodge and move the sludge, a power drive for spinning the centrifuge at high speed and a rotating drying table to take the sludge and dry it [fr

  13. Use of wastes in high-temperature processes of the chemical industry; Verwertung von Abfaellen in Hochtemperaturprozessen der chemischen Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Domschke, T.; Steinebrunner, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-09-01

    The examples presented in this paper from diverse application areas of the chemical industry serve as an illustration of the many different ways in which wastes can be used for high-temperature processes in this branch. A review of the environmentally friendly concepts implemented at BASF AG in Ludwigshafen in the course of the past five years gives an idea of the immense potential opened up by a consistent application of the four-stage model for the prevention, reduction, and utilisation of wastes. In this period it was possible to reduce waste arisings by 34%, down from a potential 2 million tons, physically recycle 51%, and convert 11.5% to energy. This left a comparatively small fraction of 3.5%, or 70,000 tons, to be disposed of in an environmentally acceptable way. Furthermore, the amount of pollutants produced per tonne of products sold fell from 40.6 kg in 1987 to 6.7 kg in 1997. [Deutsch] Die Beispiele aus den unterschiedlichsten Anwendungsbereichen der chemischen Industrie koennen als Auswahl der vielfaeltigen Verwertungsmoeglichkeiten von Abfaellen in Hochtemperaturprozessen der Chemie betrachtet werden. Das immense Potential, das sich durch konsequente Anwendung des 4-Stufen-Modells zur Vermeidung, Verminderung und Verwertung von Abfaellen eroeffnet, zeigt sich in einer Fuenfjahresbilanz der umgesetzten Umweltschutzbetrachtungen in der BASF AG in Ludwigshafen. So konnten in diesem Zeitraum von potentiellen 2 Mio t Abfall/a ca. 34% vermieden und vermindert, 51% stofflich und 11,5% energetisch verwertet werden, so dass nur noch ein geringer Anteil von 3,5%, entsprechend ca. 70000 t/a, umweltgerecht entsorgt werden musste. Dies fuehrte auch zu einer drastischen Reduktion der auf der Tonne Verkaufsprodukt bezogenen Menge an umweltbelastenden Stoffen von 40,6 kg im Jahre 1987 auf 6,7 kg im Jahre 1997. (orig.)

  14. ISCORS ASSESSMENT OF RADIOACTIVITY IN SEWAGE SLUDGE: MODELING TO ASSESS RADIATION DOSES

    Science.gov (United States)

    The Interagency Steering Committee on Radiation Standards (ISCORS) has recently completed a study of the occurrence within the United States of radioactive materials in sewage sludge and sewage incineration ash. One component of that effort was an examination of the possible tran...

  15. Characterization of oily sludge from a Tehran oil refinery.

    Science.gov (United States)

    Heidarzadeh, Nima; Gitipour, Saeid; Abdoli, Mohammad Ali

    2010-10-01

    In this study, oily sludge samples generated from a Tehran oil refinery (Pond I) were evaluated for their contamination levels and to propose an adequate remediation technique for the wastes. A simple, random, sampling method was used to collect the samples. The samples were analyzed to measure Total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH) and heavy metal concentrations in the sludge. Statistical analysis showed that seven samples were adequate to assess the sludge with respect to TPH analyses. The mean concentration of TPHs in the samples was 265,600 mg kg⁻¹. A composite sample prepared from a mix of the seven samples was used to determine the sludge's additional characteristics. Composite sample analysis showed that there were no detectable amounts of PAHs in the sludge. In addition, mean concentrations of the selected heavy metals Ni, Pb, Cd and Zn were 2700, 850, 100, 6100 mg kg⁻¹, respectively. To assess the sludge contamination level, the results from the analysis above were compared with soil clean-up levels. Due to a lack of national standards for soil clean-up levels in Iran, sludge pollutant concentrations were compared with standards set in developed countries. According to these standards, the sludge was highly polluted with petroleum hydrocarbons. The results indicated that incineration, biological treatment and solidification/stabilization treatments would be the most appropriate methods for treatment of the sludges. In the case of solidification/stabilization, due to the high organic content of the sludge, it is recommended to use organophilic clays prior to treatment of the wastes.

  16. Vitrification as an alternative to landfilling of tannery sewage sludge.

    Science.gov (United States)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  17. Comparative study of two co-combustion concepts for sewage sludge in coal dust furnaces; Vergleich zweier Mitverbrennungskonzepte fuer Klaerschlamm in Kohlestaubfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Spliethoff, H.; Gerhardt, T.; Ruediger, H.; Hein, K.R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1996-12-31

    Processes for thermal use of sewage sludge in coal dust furnaces were investigated at the Institute of Chemical Engineering and Boiler Technology (IVD) of Stuttgart university. Direct co-combustion of sewage sludge in coal dust furnaces is a simple concept, but it is useful provided that co-combustion has no negative effects in terms of performance, emissions and residue disposal. Externally dried sewage sludge has a residual water content in the same range as coal dust. The effects of co-combustion are discussed, and the experimentally determined effect in terms of emissions and residues is presented. Pyrolysis of the sewage sludge and use of the resulting gas as a reduction agent for denitrification may reduce negative effects of co-combustion on performance, emissions and residues.(orig) [Deutsch] Am Institut fuer Verfahrenstechnik und Dampfkesselwesen (IVD) der Universitaet Stuttgart werden an Versuchsanlagen verschiedene Verfahren zur thermischen Nutzung von Klaerschlaemmen in Verbindung mit Kohlenstaufeuerungen untersucht. Die direkte Mitverbrennung von Klaerschlamm in Kohlestaubfeuerungen ist ein einfaches Konzept, das dann sinnvoll ist, wenn die Mitverbrennung keine negativen Auswirkungen auf Betrieb, Emissionen und Verwertung der Rueckstaende mit sich bringt. Bei einer externen Trockung weist der Klaerschlamm einen aehnlichen Wassergehalt wie der Auslegungsbrennstoff von Steinkohlenstaubfeuerungen auf. Die moeglichen Auswirkungen der Mitverbrennung von Klaerschlamm werden diskutiert und der im Versuch ermittelte Einfluss auf Emissionen und Reststoffe vogestellt. Durch Vorschaltung einer Pyrolyse des Klaerschlamms und Nutzung des erzeugten Gases als Reduktionsmittel zur Entsticklung kann die Auswirkung der Mitverbrennung auf Betrieb, Emissionen und Reststoffe der Feuerungsanlage vermindert werden. (orig)

  18. Comparative study of two co-combustion concepts for sewage sludge in coal dust furnaces; Vergleich zweier Mitverbrennungskonzepte fuer Klaerschlamm in Kohlestaubfeuerungen

    Energy Technology Data Exchange (ETDEWEB)

    Spliethoff, H; Gerhardt, T; Ruediger, H; Hein, K R.G. [Stuttgart Univ. (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    1997-12-31

    Processes for thermal use of sewage sludge in coal dust furnaces were investigated at the Institute of Chemical Engineering and Boiler Technology (IVD) of Stuttgart university. Direct co-combustion of sewage sludge in coal dust furnaces is a simple concept, but it is useful provided that co-combustion has no negative effects in terms of performance, emissions and residue disposal. Externally dried sewage sludge has a residual water content in the same range as coal dust. The effects of co-combustion are discussed, and the experimentally determined effect in terms of emissions and residues is presented. Pyrolysis of the sewage sludge and use of the resulting gas as a reduction agent for denitrification may reduce negative effects of co-combustion on performance, emissions and residues.(orig) [Deutsch] Am Institut fuer Verfahrenstechnik und Dampfkesselwesen (IVD) der Universitaet Stuttgart werden an Versuchsanlagen verschiedene Verfahren zur thermischen Nutzung von Klaerschlaemmen in Verbindung mit Kohlenstaufeuerungen untersucht. Die direkte Mitverbrennung von Klaerschlamm in Kohlestaubfeuerungen ist ein einfaches Konzept, das dann sinnvoll ist, wenn die Mitverbrennung keine negativen Auswirkungen auf Betrieb, Emissionen und Verwertung der Rueckstaende mit sich bringt. Bei einer externen Trockung weist der Klaerschlamm einen aehnlichen Wassergehalt wie der Auslegungsbrennstoff von Steinkohlenstaubfeuerungen auf. Die moeglichen Auswirkungen der Mitverbrennung von Klaerschlamm werden diskutiert und der im Versuch ermittelte Einfluss auf Emissionen und Reststoffe vogestellt. Durch Vorschaltung einer Pyrolyse des Klaerschlamms und Nutzung des erzeugten Gases als Reduktionsmittel zur Entsticklung kann die Auswirkung der Mitverbrennung auf Betrieb, Emissionen und Reststoffe der Feuerungsanlage vermindert werden. (orig)

  19. Sewage sludge utilisation and disposal alternatives and their comparison; Puhdistamolietteiden hyoedyntaemis- ja loppusijoitusvaihtoehdot sekae niiden vertailu

    Energy Technology Data Exchange (ETDEWEB)

    Paatero, P.

    2001-07-01

    Sludge production will presumably not decrease in future. At present agricultural use of sludge is unstable and landfilling will most probably be restricted in the following years. The objective of this thesis is to gather information on options for sludge treatment and utilisation and to compare these options in order to find the best possible solution for future alternatives of sludge utilisation. Finnish and international literature as well as Finnish and EU legislation have been reviewed. Furthermore the mentoring group of this thesis as well as other experts in Finland have been used as a source of information. Sludge contains not only plant nutrients and organic matter but also varying quantities of a number of more or less hazardous substances. The quality and quantity of sewage sludge are described and possible health and environmental risks caused by sewage sludge are pointed out. The legislation linked to sludge utilisation and its demands are also presented. The sludge processing methods reviewed are: thickening, lime stabilisation, aerobic digestion, anaerobic digestion, composting and mechanical and thermal drying. In addition, the positive and negative sides of the stabilisation processes are looked at in greater detail. Agricultural use, landscaping, forestry, landfill, incineration, sludge derived products and newer processing technologies are reviewed as sludge utilisation options. Their environmental impacts, positive and negative sides and practical feasibility are evaluated. Various treatment utilisation combinations are also compared. Furthermore a rough cost assessment is presented. The optimal utilisation alternative has to be chosen case by case. The best use of plant nutrients and valuable organic matter is obtained in agricultural use or in landscaping. In the present situation it is difficult to enhance the portion of agricultural use, and landscaping is restricted by a low demand on the market. Incineration is an expensive option and can

  20. Plutonium waste incineration using pyrohydrolysis

    International Nuclear Information System (INIS)

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800 degree C), while plutonium oxides fired at lower decomposition temperatures (400--800 degrees C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density

  1. Landfilling of waste incineration residues

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Cai, Zuansi

    2002-01-01

    Residues from waste incineration are bottom ashes and air-pollution-control (APC) residues including fly ashes. The leaching of heavy metals and salts from the ashes is substantial and a wide spectrum of leaching tests and corresponding criteria have been introduced to regulate the landfilling...

  2. Development of incineration and incineration-melting system for radioactive incombustible wastes

    International Nuclear Information System (INIS)

    Karita, Y.; Kanagawa, Y.; Teshima, T.

    2000-01-01

    Radioactive combustible solid wastes produced by nuclear power plants are generally incinerated for the purpose of volume reduction and stabilization. However incombustible wastes, such as PVC and rubber wastes are not incinerated and are still being stored since the off-gas treatment problems of a large amount of soot and harmful HCl and SO x gas need to be resolved. The authors have developed a new types of incineration system which consists of a water-cooling jacket type incinerator, ceramic filter, HEPA and wet scrubber. And as an application of its incinerator, the hybrid incineration-melting furnace, which is a unification of the incinerator and induction melting furnace, is being tested. Furthermore, the new type of dry absorber for removing HCl and SO x is also being tested. This report mainly describes an outline and the test results of the above incineration system, and secondly, the possibility of the incineration-melting system and dry absorber. (author)

  3. Starved air combustion-solidification/stabilization of primary chemical sludge from a tannery

    Energy Technology Data Exchange (ETDEWEB)

    Swarnalatha, S. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Ramani, K. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Karthi, A. Geetha [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India); Sekaran, G. [Department of Environmental Technology, Central Leather Research Institute, Adyar, Chennai-600 020, Tamil Nadu (India)]. E-mail: ganesansekaran@hotmail.com

    2006-09-01

    The high concentration of trivalent chromium along with organic/inorganic compounds in tannery sludge causes severe ground water contamination in the case of land disposal and chronic air pollution during incineration. In the present investigation, the sludge was subjected to flow-through column test to evaluate the concentration of leachable organics (tannin, COD and TOC) and heavy metal ions (Cr{sup 3+}, Fe{sup 2+}) present in it. The dried sludge was incinerated at 800 deg. C in an incinerator under starved oxygen supply (starved-air combustion) to prevent the conversion of Cr{sup 3+} to Cr{sup 6+}. The efficiency of starved air combustion was studied under different loading rates of sludge. The calcined sludge was solidified/stabilized using fly ash and Portland cement/gypsum. The solidified bricks were tested for unconfined compressive strength and heavy metal leaching. Unconfined compressive strength of the blocks was in the range of 83-156 kg/cm{sup 2}. The stabilization of chromium (III) in the cement gel matrix was confirmed with scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDX). Leachability studies on solidified bricks were carried out to determine the metal fixation and dissolved organic (as COD) concentration in the leachate.

  4. The existing state of sewage sludge containing radioactive substances

    International Nuclear Information System (INIS)

    Shirasaki, Makoto; Hisaoka, Natsuki

    2012-01-01

    Radioactive substances were discharged over a wide range from the accident of the Fukushima Daiichi Nuclear Station of Tokyo Electric Power Company. As a result, in sewer system, especially in the combined sewer system that jointly collects rainwater and sewage, radioactive substances accumulated on the surface of urban areas were transferred together with rainwater to sewage plants and accumulated there. In the process of further treatment, radioactive substances were transferred to and concentrated in sewage sludge, and a high concentration of radioactive substances were detected in incineration ash. For this reason, some sewage plants still continuously store dewatered sludge, incinerator ash, etc. This paper introduces the current state of waste treatment from the published data from each local government in Tohoku and Kanto districts. As for the sewer, which is essential as a lifeline, the Ministry of Land, Infrastructure, Transport and Tourism, together with the Japan Sewage Works Association, established 'Investigative Commission on Radioactive Substance Countermeasures in Sewerage System.' This group grasped the damage situation due to radioactive substances, and summarized the measures to be taken by sewage managers, such as the storage method for sewage sludge containing radioactive substances as well as the method for the volume reduction of sewage sludge. (O.A.)

  5. Costs and economic efficiency of the drying of sewage sludges; Kosten und Wirtschaftlichkeit der Klaerschlammtrocknung

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Ulrich [Haarslev Industries A/S, Herlev (Denmark). Marketing and Business Development

    2013-03-01

    New methods of the thermal utilization have to be created due to the fact that agricultural utilisation of sewage sludge and the use in the reclamation due to stringent limit values and enhanced quality criteria are available restricted in future. The incineration of mechanically dewatered and dried sewage sludge is performed in mono-combustion plants as well as in coal-fired power plants. The author of the contribution under consideration reports on the costs and economic efficiency of the drying of sewage sludge. The drying of sewage sludge may perform an important and reasonable contribution to the utilization of municipal sewage sludge. The selection of a suitable drying process should ever depend on the local realities. Proved and suitable technologies are available for every application. Before the decision for a certain provider, one should examine reference plants and consider specific experiences of the operator among the decision-making.

  6. Composition and reactivity of ash from sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Willems, M; Pedersen, B; Jorgensen, S S

    1976-01-01

    Sewage sludge and sludge ash produced at 450 to 1050/sup 0/C in the laboratory or in a multiple hearth incinerator were analyzed by chemical and X-ray diffraction methods. Among the ash components were 23 to 32 percent calcium and magnesium phosphates and the following percentages of heavy metals: Zn 0.9, Cu 0.2, Pb 0.1, Cr 0.07, Ni 0.02, and Cd 0.006. As shown by EDTA-extraction, the reactivity of heavy metals was higher in ash produced at 450/sup 0/C than in dry sludge, but lower in ash produced above 800/sup 0/C. Phosphate in the 800 to 900/sup 0/C samples was dissolved in citric acid but not in citrate.

  7. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    Science.gov (United States)

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  8. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  9. Joule-heated glass-furnace system for the incineration of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.; Doty, J.W.; Kramer, D.P.

    1982-01-01

    For the past 1-1/2 years, Mound has been preparing and evaluating a commercially available joule-heated glass furnace unit, coupled with a wet scrubbing system. The purpose of the glass furnace evaluation is to advance and document incinerator technology for such combustibles as solids, resins, and sludges, and to develop a stable waste form for subsequent disposal. Four (4) waste nonradioactive types were selected to determine the combustion efficiency of the furnace unit: (1) dry solid waste composed of paper, plastics, rubber, and cloth, (2) ion exchange resin of both the anionic and cationic type, (3) filter sludge composed of diatomaceous earth, organic cellulosic filter aid, and powdered ion exchange resin, and (4) cartridge filters having glass and plastic filter surfaces and nonmetallic cores. When completed, the combustion efficiency experiments for the proposed nonradioactive waste-types revealed the ability of the furnace to easily incinerate waste at feedrates of up to 150 lb/hr. During the course of the experiments, combustibles in the offgas remained consistently low, suggesting excellent combustion efficiency. Furthermore, ash produced by the combustion process was effectively incorporated into the melt by convective currents in the glass. Future work on the glass furnace incinerator will include spiking the waste to determine radioisotope behavior in the furnace

  10. Material stream management of biomass wastes for the optimization of organic wastes utilization; Stoffstrommanagement von Biomasseabfaellen mit dem Ziel der Optimierung der Verwertung organischer Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Boess, Andreas; Fehrenbach, Horst; Giegrich, Juergen; Vogt, Regine [ifeu-Institut fuer Energie- und Umweltforschung GmbH, Heidelberg (Germany); Dehoust, Guenter; Schueler, Doris; Wiegmann, Kirsten; Fritsche, Uwe [Oeko-Institut, Inst. fuer Angewandte Oekologie, Darmstadt (Germany)

    2007-02-15

    The effective use of the valuable substances found in waste materials can make an important contribution to climate protection and the conservation of fossil and mineral resources. In order to harness the potential contribution of biomass waste streams, it is necessary to consider the potential of the waste in connection with that of the total biomass. In this project, relevant biogenous material streams in the forestry, the agriculture as well as in several industries are studied, and their optimization potentials are illustrated. Scenarios are then developed, while taking various other environmental impacts into considerations, to explore possible optimized utilization of biomass streams and biomass waste substances for the future. Straw that is not needed for humus production and currently left on the field can be used for its energy content. The realisation of this potential would be significant contribution towards climate protection. The energetic use of liquid manure without negatively influencing its application as commercial fertilizer can also be similarly successful because of its large volume. The results of our study also support an increased energetic use of saw residues as fuel (in form of pellets) in small furnaces. For household organic wastes, the report suggests the fermentation with optimized energy use and intensified marketing of the aerobically treated compost as peat substitution. While for waste cooking fat that is currently disposed in the residual waste, a separate collection and direct use in motors that are used as combined heat and power generation are recommended. For meat and bone meal and communal sludge that are not being used substantial currently or in the future, phosphorus can be recovered with promising success from the ash produced when the waste is burnt in mono incinerators. These technical options should however be tested against disposal standard. (orig.)

  11. Incineration of spent ion exchange resin

    International Nuclear Information System (INIS)

    Hasegawa, Chiaki

    1990-01-01

    It is a pressing need to reduce radioactive waste which is generated from the maintenance and operation of a nuclear power plant. Incineration of low level combustible solid waste such as polyethylene seats, paper and others have been successfully performed since 1984 at the Shimane Nuclear Power Station. Furthermore, for extending incineration treatment to spent ion exchange resin, the incineration test was carried out in 1989. However, as the cation exchange resin contains sulfur and then incineration generates SOx gases, so the components of this facility will be in a corrosive environment. We surveyed incineration conditions to improve the corrosive environment at the exhaust gas treatment system. This paper includes these test results and improved method to incinerate spent ion exchange resin. (author)

  12. USDOE radioactive waste incineration technology: status review

    International Nuclear Information System (INIS)

    Borduin, L.C.; Taboas, A.L.

    1980-01-01

    Early attempts were made to incinerate radioactive wastes met with operation and equipment problems such as feed preparation, corrosion, inadequate off-gas cleanup, incomplete combustion, and isotope containment. The US Department of Energy (DOE) continues to sponsor research, development, and the eventual demonstration of radioactive waste incineration. In addition, several industries are developing proprietary incineration system designs to meet other specific radwaste processing requirements. Although development efforts continue, significant results are available for the nuclear community and the general public to draw on in planning. This paper presents an introduction to incineration concerns, and an overview of the prominent radwaste incineration processes being developed within DOE. Brief process descriptions, status and goals of individual incineration systems, and planned or potential applications are also included

  13. Incineration of low level waste

    International Nuclear Information System (INIS)

    Gussmann, H.; Klemann, D.; Mallek, H.

    1986-01-01

    At present, various incinerators for radioactive waste are operated with more or less good results worldwide. Both, plant manufacturers and plant owners have repeatedly brought about plant modifications and improvements over the last 10 years, and this is true for the combustion process and also for the waste gas treatment systems. This paper attempts to summarize requirements, in general, by owner/operators for the plants which are designed and erected today

  14. The early days of incineration

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  15. Dioxin formation from waste incineration.

    Science.gov (United States)

    Shibamoto, Takayuki; Yasuhara, Akio; Katami, Takeo

    2007-01-01

    There has been great concern about dioxins-polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs), and polychlorinated biphenyls (PCBs)-causing contamination in the environment because the adverse effects of these chemicals on human health have been known for many years. Possible dioxin-contamination has received much attention recently not only by environmental scientists but also by the public, because dioxins are known to be formed during the combustion of industrial and domestic wastes and to escape into the environment via exhaust gases from incinerators. Consequently, there is a pressing need to investigate the formation mechanisms or reaction pathways of these chlorinated chemicals to be able to devise ways to reduce their environmental contamination. A well-controlled small-scale incinerator was used for the experiments in the core references of this review. These articles report the investigation of dioxin formation from the combustion of various waste-simulated samples, including different kinds of paper, various kinds of wood, fallen leaves, food samples, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene tetraphthalate (PET), and various kinds of plastic products. These samples were also incinerated with inorganic chlorides (NaCl, KCl, CuCI2, MgCl2, MnCl2, FeCl2, CoCl2, fly ash, and seawater) or organic chlorides (PVC, chlordane, and pentachlorophenol) to investigate the role of chlorine content and/or the presence of different metals in dioxin formation. Some samples, such as newspapers, were burned after they were impregnated with NaCl or PVC, as well as being cocombusted with chlorides. The roles of incineration conditions, including chamber temperatures, O2 concentrations, and CO concentrations, in dioxin formation were also investigated. Dioxins (PCDDs, PCDFs, and coplanar-PCBs) formed in the exhaust gases from a controlled small-scale incinerator, where experimental waste

  16. Incineration and flue gas treatment technologies

    International Nuclear Information System (INIS)

    1997-01-01

    The proceedings are presented of an international symposium on Incineration and Flue Gas Treatment Technologies, held at Sheffield University in July 1997. Papers from each of the six sessions cover the behaviour of particles in incinerator clean-up systems, pollution control technologies, the environmental performance of furnaces and incinerators, controlling nitrogen oxide emissions, separation processes during flue gas treatment and regulatory issues relating to these industrial processes. (UK)

  17. Offgas treatment for radioactive waste incinerators

    International Nuclear Information System (INIS)

    Stretz, L.A.; Koenig, R.A.

    1980-01-01

    Incineration of radioactive materials for resource recovery or waste volume reduction is recognized as an effective waste treatment method that will increase in usage and importance throughout the nuclear industry. The offgas cleanup subsystem of an incineration process is essential to ensure radionuclide containment and protection of the environment. Several incineration processes and associated offgas cleanup systems are discussed along with potential application of commercial pollution control components to radioactive service. Problems common to radioactive waste incinerator offgas service are identified and areas of needed research and development effort are noted

  18. Arc plasma incineration of surrogate radioactive wastes

    International Nuclear Information System (INIS)

    Girold, C.; Cartier, R.; Taupiac, J.P.; Vandensteendam, C.; Baronnet, J.M.

    1995-01-01

    The aim of this presentation is to demonstrate the feasibility to substitute a single plasma reactor, where the arc is transferred on a melt glass bath, for several steps in an existing nuclear technological wastes incinerator. The incineration of wastes, the produced gas treatment and the vitrification of ashes issued from waste incineration are the three simultaneous functions of this new kind of reactor. The three steps of the work are described: first, post-combustion in an oxygen plasma of gases generated from the waste pyrolysis, then, vitrification of ashes from the calcination of wastes in the transferred plasma furnace and finally, incineration/vitrification of wastes in the same furnace

  19. Controlled air incinerator conceptual design study

    International Nuclear Information System (INIS)

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location

  20. Incineration process fire and explosion protection

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1975-01-01

    Two incinerators will be installed in the plutonium recovery facility under construction at the Rocky Flats Plant. The fire and explosion protection features designed into the incineration facility are discussed as well as the nuclear safety and radioactive material containment features. Even though the incinerator system will be tied into an emergency power generation system, a potential hazard is associated with a 60-second delay in obtaining emergency power from a gas turbine driven generator. This hazard is eliminated by the use of steam jet ejectors to provide normal gas flow through the incinerator system during the 60 s power interruption. (U.S.)

  1. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  2. Types and treatment of sewage sludges: Practice in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Tabasaran, M.O.

    1975-01-01

    The sludge that is formed by the various processes in the sewage treatment plant consists mainly of water with a small amount of organic and inorganic suspended solids. It contains pathogenic agents and biological inhibitors, and must be prepared and brought into a form where it is less dangerous to the environment. The de-watering of the sludge is the first step in sludge handling. The solids content of the raw sludge, which is usually between 5 and 10%, can be increased by gravity thickening to 15%, by centrifuging or straining-band-pressing up to 30%, and by pressure-filtration up to 40%. The process of drying enables a substance with almost no moisture to be obtained. Generally the sludge will be either mixed before de-watering with coagulation agencies, or preheated, or its colloidal components biochemically oxidized in order to accelerate the withdrawal of the water. One of the most common methods of disposal is the transport of sludge to a land filling, usually together with the solid refuse of the community. For this purpose the moisture content of the sludge should not be more than 60 to 70 percent. The disposal of sludge into the sea can be practised in coastal towns, but the ecological effects of this kind of sludge removal are still disputed. More expedient is the agricultural utilization of sludge, particularly if the sludge is composted together with a carbon carrier such as city refuse which would make it a very suitable soil improver. In the Federal Republic of Germany the wet oxidation of sludge is applied in a few cases. The most common process is anaerobic alkaline digestion. The incineration of sludge is more economical than drying, but still too, expensive in comparison with other approved processes. (author)

  3. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.

    Science.gov (United States)

    He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan

    2014-01-01

    Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.

  4. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  5. Consumption and recovery of packaging waste in Germany in 2009; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2009

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [GVM Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2012-04-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 15.05 million tons of packaging were consumed and became waste. Compared to the reference year 2008, packaging consumption decreased by 6.2 %. A total of 12.73 million tons was recovered in terms of material or energy, of which a total of 2.45 million tons outside Germany. In addition, 1.42 million tons of imported packaging waste were recovered in Germany. In 2009, 1.55 million tons were incinerated at waste incineration plants with energy recovery.

  6. Consumption and recovery of packaging waste in Germany in 2008; Aufkommen und Verwertung von Verpackungsabfaellen in Deutschland im Jahr 2008

    Energy Technology Data Exchange (ETDEWEB)

    Schueler, Kurt [Gesellschaft fuer Verpackungsmarktforschung mbH, Mainz (Germany)

    2010-12-15

    Pursuant to EU Directive 94/62/EC on packaging and packaging waste dated 20.12.1994 in connection with Directive 2004/12/EC, EU Member States are obliged to report annually on the consumption and recovery of packaging. This report shall be prepared on the basis of the Commission's decision of 22.03.2005 on establishing mandatory table formats (2005/270/EC). The study determines the quantity of packaging (packaging consumption) for the material groups of glass, plastics, paper, aluminium, tin plate, composites, other steel, wood and other packaging materials placed on the market in Germany. In addition to the quantity of packaging used in Germany, filled exports and imports were also ascertained in order to calculate the consumption rate. The quantity of packaging waste of waste relevance in Germany was calculated on the basis of the quantity of packaging placed on the market as e.g. reusable and durable packaging will only be discarded at some point in the future. All existing data from associations, the waste disposal industry and environmental statistics were compiled and documented systematically in order to determine the recovery quantities and recovery paths. The quantities incinerated at waste incineration plants with energy recovery could only be calculated as the difference between the total quantity to be discarded and quantities actually recovered. In 2008, 16.04 million tons of packaging were consumed and became waste. Compared to the reference year 2005, packaging consumption increased by 3.7 % (minus 0.4 % compared to 2007). A total of 13.10 million tons was recovered in terms of material or energy, of which a total of 2.41 million tons outside Germany. In addition, 1.40 million tons of imported packaging waste were recovered in Germany. In 2008, 2.10 million tons were incinerated at waste incineration plants with energy recovery. (orig.)

  7. Thermal treatments available for destruction of industrial wastes. Application to the incineration of radioactive wastes

    International Nuclear Information System (INIS)

    Chevalier, Gerard.

    1981-08-01

    Both the collecting and processing circuits and the physicochemical laws of combustion and thermal degradation of industrial wastes are recalled. The various incineration processes are reviewed considering especially conversion of refuse to energy and recovery of raw materials either before or after treatment. Wastes are devided into three classes according to their physical state: solid, liquid or sludge, gas. Some processes based on pyrolysis in the absence of air or at sub-stoichiometric levels are presented. A similar study is carried out on radioactive wastes, taking into account the particular aspects raised by incineration. Operational devices are described and some lines of research about the application of new techniques are summarized. The results derived from laboratory or pilot plant experiments are presented [fr

  8. Preparation of lightweight concretes with sewage sludge ash and their properties

    International Nuclear Information System (INIS)

    Lee, Hwa Young

    2010-01-01

    Sewage sludge results from the accumulation of solids from the unit processes of chemical coagulation, flocculation and sedimentation during wastewater treatment. Rapid urbanization in many areas of the world has resulted in a drastic increase of sewage sludge. More than two million tons of sewage sludge resulted from the treatment of urban sewage is produced annually in Korea. The majority of sewage sludge is disposed of conventionally by the landfill or ocean disposal method, both of which create severe environmental pollution. However, increasingly stringent environmental regulations and scarcity of landfill sites have posed disposal problems of sludge. Incineration is a viable alternative providing a means of sludge stabilization resulting in a reduced volume of sterile, odorless and practically inert residue. Accordingly, the development of environment friendly treatment technique of SSA (sewage sludge ash) inevitably produced during incineration of sewage sludge may be urgently required. For this aim, an attempt to manufacture the lightweight concrete has been made using sewage sludge ash and the physical properties have been determined in terms of specific gravity, compressive strength and thermal conductivity. As a result, the density of specimen prepared with SSA was ranged from 0.6 to 1.4g/ cm 3 and the compressive strength was ranged from 20 to 40kg/ cm 2 . As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to 0.6 W/ mK depending on material composition which was far less than that of concrete. It was concluded that the lightweight concretes prepared with SSA could be applicable to building or construction materials such as insulation board and sound absorption material. (author)

  9. Impact of urban waste water treatment on sludge utilization and disposal with special emphasis on thermal treatment

    International Nuclear Information System (INIS)

    Gammeltoft, P.

    1993-01-01

    The acceptance of the European Communities Directive 9/271/CEE concerning urban waste water treatment by all the EC Member States will result in a sewage sludge production increase of 2 to 3 times the actual amounts (for the year 2000 the forecast is about 30 million tonnes per year). All the traditional sewage sludge treatment methods (agricultural, disposal, compost, thermal treatment) entail costs which are always increasing because of the stricter requirements; in addition EC policy is oriented towards the reduction of the quantity of sludge production. In some situations, drying and subseque incineration may thus be the only practicable method of disposal, particularly, in very large urban agglomerations

  10. Materials for Waste Incinerators and Biomass Plants

    DEFF Research Database (Denmark)

    Rademakers, P.; Grossmann, G.; Karlsson, A.

    1998-01-01

    This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13.......This paper reviews the projects of the sub-package on waste incineration and biomass firing carried out within COST 501 Round III, Work Package 13....

  11. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  12. Biomedical waste management: Incineration vs. environmental safety

    Directory of Open Access Journals (Sweden)

    Gautam V

    2010-01-01

    Full Text Available Public concerns about incinerator emissions, as well as the creation of federal regulations for medical waste incinerators, are causing many health care facilities to rethink their choices in medical waste treatment. As stated by Health Care Without Harm, non-incineration treatment technologies are a growing and developing field. Most medical waste is incinerated, a practice that is short-lived because of environmental considerations. The burning of solid and regulated medical waste generated by health care creates many problems. Medical waste incinerators emit toxic air pollutants and toxic ash residues that are the major source of dioxins in the environment. International Agency for Research on Cancer, an arm of WHO, acknowledged dioxins cancer causing potential and classified it as human carcinogen. Development of waste management policies, careful waste segregation and training programs, as well as attention to materials purchased, are essential in minimizing the environmental and health impacts of any technology.

  13. Organic household waste - incineration or recycling

    International Nuclear Information System (INIS)

    2003-01-01

    The Danish Environmental Protection Agency has carried out a cost benefit analysis of the consequences of increasing recycling of organic household waste. In the cost benefit analysis both the economic consequences for the affected parties and the welfare-economic consequences for the society as a whole have been investigated. In the welfare-economic analysis the value of the environmental effects has been included. The analysis shows that it is more expensive for the society to recycle organic household waste by anaerobic digestion or central composting than by incineration. Incineration is the cheapest solution for the society, while central composting is the most expensive. Furthermore, technical studies have shown that there are only small environmental benefits connected with anaerobic digestion of organic waste compared with incineration of the waste. The primary reason for recycling being more expensive than incineration is the necessary, but cost-intensive, dual collection of the household waste. Treatment itself is cheaper for recycling compared to incinerating. (BA)

  14. Stabilization of APC residues from waste incineration with ferrous sulfate on a semi-industrial scale

    DEFF Research Database (Denmark)

    Lundtorp, Kasper; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2002-01-01

    A stabilization method for air pollution control (APC) residues from municipal solid waste incineration (MSWI) involving mixing of the residue with water and FeSO4 has been demonstrated on a semi-industrial scale on three types of APC residues: a semidy (SD) APC residue, a fly ash (FA), and an FA...... mixed with sludge (FAS) from a wet flue gas cleaning system. The process was performed in batches of 165-175 kg residue. It generates a wastewater that is highly saline but has a low content of heavy metals such as Cd, Cr, and Pb. The stabilized and raw residues have been subject to a range of leaching...

  15. Operational readiness review for the TSCA incinerator start-up at the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    Jordan, Elizabeth A.; Murray, Alexander P.; Kiang, Peter M.

    1992-01-01

    The Department of Energy (DOE) Toxic Substances Control Act (TSCA) incinerator at Oak Ridge K-25 Site was designed in the early 1980's as a treatment alternative for the increasing quantities of radioactive mixed waste accumulating from gaseous diffusion plant (GDP) operations. The waste feed principally contains low assay uranium and PCBs, although listed solvents and heavy metal containing sludges have also be incinerated. Construction was completed in 1986 and the unit underwent an extensive series of tests and trial burns, because of the following unique characteristics: the incinerator treats radioactive mixed wastes; increased size of the incinerator for greater waste throughout and treatment capacity; expansion of the waste acceptance criteria to include materials and radionuclides from non-GDP operations, such as ORNL and Y-12; modifications and improvement to the Air Pollution Control (APC) system; treatment of large quantities and concentrations of PCB containing materials; projected longevity of operation (40 years); humid, Eastern location with a high, annual precipitation. The incinerator was initially fired in July, 1986. The full performance testing (with the APC) and DOE acceptance of the facility occurred a year later. The trial burn period lasted from 1988 through 1990. Numerous equipment problems were initially encountered, including excessive draft fan wear and failure. These problems have been overcome, the facility is fully permitted, DOE provided authorization for full operations in 1991, and, to date, over two million pounds of mixed waste have been incinerated, with an average volume reduction factor of approximately nine. This paper discusses the Office of Environmental Restoration and Waste Management Readiness Review for the incinerator. (author)

  16. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    Science.gov (United States)

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  17. Apparatus for incinerating hazardous waste

    Science.gov (United States)

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  18. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  19. Vitrification as an alternative to landfilling of tannery sewage sludge

    International Nuclear Information System (INIS)

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-01-01

    flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals

  20. Vitrification as an alternative to landfilling of tannery sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Celary, Piotr, E-mail: pcelary@is.pcz.czest.pl; Sobik-Szołtysek, Jolanta, E-mail: jszoltysek@is.pcz.czest.pl

    2014-12-15

    flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to increased hardness of the vitrificates and reduced leaching of some heavy metals.

  1. Sludge recovery apparatus

    International Nuclear Information System (INIS)

    Marmo, A.R.

    1979-01-01

    An improved design of a sludge recovery apparatus used in the fabrication of nuclear fuel is described. This apparatus provides for automatic separation of sludge from the grinder coolant, drying of the sludge into a flowable powder and transfer of the dry powder to a salvage container. It can be constructed to comply with criticality-safe-geometry requirements and to obviate need for operating personnel in its immediate vicinity. (UK)

  2. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  3. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  4. Performance history of the WERF incinerator

    International Nuclear Information System (INIS)

    Dalton, J.D.; Bohrer, H.A.; Smolik, G.R.

    1988-01-01

    As society's environmental conscience grows, diverse political economical, and social contentions cloud the issue of proper waste management. However, experience at the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) demonstrates clearly that incineration is an effective component in responsible, long-term waste management. Using a simple but safe design, the WERF incinerator has successfully reduced the volume of low-level beta/gamma waste. This paper discusses some of the achievements and problems experienced during operation of the WERF incinerator

  5. Dioxins in processes of incineration of wastes

    International Nuclear Information System (INIS)

    Perez John; Espinel Jorge; Ocampo Alonso; Londono Carlos

    2001-01-01

    This paper is a door to come into the subject of dioxins, which is a little bit known in Colombia. In this way, in order to clarify and to get a wider knowledge about dioxins and waste incineration process, it has been divided in three main sections. The first one gives a basic information about origin, effects on the human health and a chemical definition of dioxins; in the second one the main kind of incinerator processes are given to know, also a deeper knowledge of reaction formation. The last part emphasizes options to control dioxins emissions in incineration systems

  6. Incineration of ion-exchange resins

    International Nuclear Information System (INIS)

    Valkiainen, M.; Nykyri, M.

    1985-01-01

    Incineration of ion-exchange resins in a fluidized bed was studied on a pilot plant scale at the Technical Research Centre of Finland. Both granular and powdered resins were incinerated in dry and slurry form. Different bed materials were used in order to trap as much cesium and cobalt (inactive tracers) as possible in the bed. Also the sintering of the bed materials was studied in the presence of sodium. When immobilized with cement the volume of ash-concrete is 4 to 22% of the concrete of equal compressive strength acquired by direct solidification. Two examples of multi-purpose equipment capable of incinerating ion-exchange resins are presented. (orig.)

  7. Emissions and dioxins formation from waste incinerators

    International Nuclear Information System (INIS)

    Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes current knowledge on dioxins formation and emission from waste incinerators. The pertinent Italian law and effects on man health are dealt with, too. The picture of existing municipal incinerators is presented concerning both the actual emission levels and the monitored levels in the environment. Sampling and analysis systems of these organic chlorinated micro-pollutants and current theories on precursors, formation mechanisms, and influence of different parameters are also described. The last section deals with some of the techniques that can be used to reduce dioxins formation and emission from municipal incinerators. (author)

  8. Radwaste incineration, is it ready for use

    International Nuclear Information System (INIS)

    Coplan, B.W.

    1982-01-01

    The incinerator installed at JAERI in 1973 has the record of being operated continually for eight years without noticeable damage even in the refractories. We are convinced that it can be used for along period of time. These incinerators in Japan are now regarded as the useful and reliable waste management facilities, though they are processing the restricted sorts of wastes, such as low level ombustible solids and oils. In the future, incinerators of these types are supposed to increase in number in Japan, and they will continue to contribute as an important volume reduction measure which can also convert the wastes to chemically stable substances

  9. Development and testing of a mobile incinerator

    International Nuclear Information System (INIS)

    Eggett, D.R.

    1986-01-01

    The development and testing of a mobile incinerator for processing of combustible dry active waste (DAW) and contaminated oil generated at Nuclear Power Plants is presented. Topics of discussion include initial thoughts on incineration as applied to nuclear waste; DOE's Aerojet's, and CECo's role in the Project; design engineering concepts; site engineering support; licensability; generation of test data; required reports of the NRC and Illinois and California EPA's; present project schedule for incinerating DAW at Dresden and other CECo Stations; and lessons learned from the project

  10. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  11. A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Christensen, Thomas Højlund; Guildal, T.

    2015-01-01

    The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl...... on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while...

  12. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  13. Suicide by self-incineration

    DEFF Research Database (Denmark)

    Leth, Peter Mygind; Hardt-Madsen, Michael

    1997-01-01

    was 43 years, with a broad age range (20-87). Many incidents of self-incineration as a form of political protest were reported in the press especially during the 1960s and 1970s, and the press reports often inspired others to commit suicide in the same way. None of the cases in our investigation were...... victims were of Danish origin, and a religious motive played no significant role. Most of the victims were suffering from mental illness, and a majority had tried to commit suicide before. None of the victims left a suicide note. The scene was most often at home and indoors--only a minority committed...... suicide in remote areas of the countryside. Most were found dead at the scene, and the cause of death was usually heat exposure. Only a minority had a lethal carboxy-hemoglobin (CO-Hb) concentration. It is concluded that close cooperation between police, fire experts, and the forensic pathologist...

  14. Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2016-01-01

    Sewage sludge ashes (SSA), although a waste, contain elements with socio-economic and environmental potential that can be recovered. This is the case of phosphorus (P). SSA from two Danish incinerators were collected during two years and characterized. The sampling was done immediately after...... incineration (fresh SSA) or from an outdoor deposit (deposited SSA). Although morphology and mineral composition were similar, physico-chemical and metal concentration differences were found between incinerator plants and sampling periods. No differences were observed between deposited and fresh SSA, except...... for the parameters directly influenced by disposal conditions (e.g. moisture content). All the SSAs had high concentrations of P (up to 16 wt%), but they all exceeded Danish EPA Cd and Ni thresholds for direct application at agricultural soil.Fresh and deposited SSA were acid washed aiming P extraction, achieving 50...

  15. Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat

    DEFF Research Database (Denmark)

    Mackay, Jessica E.; Cavagnaro, Timothy R.; Jakobsen, Iver

    2017-01-01

    Aims Dried sewage sludge (SS) and the by-products of four SS thermal conversion processes (pyrolysis, incineration and two types of gasification) were investigated for phosphorus (P) availability. Methods A sequential extraction was used to determine the distribution of P among different P pools....... After mixing materials with soil, availability of the P was determined with soil P extractions and in a growth experiment with wheat. Results Thermally converted SS contained a greater proportion of P within recalcitrant pools than dried SS. Despite having very different P pool distributions......, the incinerated and dried SS provided similar amounts of P to plants. Plant P supply from dried and incinerated SS was lower than the comparable soluble P treatment (50 mg P kg−1), but higher than a soluble treatment at a lower rate (20 mg P kg−1). Plant P uptake in gasified and pyrolysed treatments was only...

  16. Fluidized bed incineration of transuranic contaminated waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.; Johnson, A.J.

    1978-01-01

    A 9 kg/hr pilot scale fluidized bed incinerator is now being used for burning various types of radioactive waste at Rocky Flats Plant. General solid combustible waste containing halogenated materials is burned in a fluidized bed of sodium carbonate for in situ neutralization of thermally generated acidic gases. A variety of other production related materials has been burned in the incinerator, including ion exchange resin, tributyl phosphate solutions, and air filters. Successful operation of the pilot plant incinerator has led to the design and construction of a production site unit to burn 82 kg/hr of plant generated waste. Residues from incinerator operations will be processed into glass buttons utilizing a vitrification plant now under development

  17. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  18. Quantifying capital goods for waste incineration

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Riber, C.; Christensen, Thomas Højlund

    2013-01-01

    material used amounting to 19,000–26,000tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000MWh. In terms of the environmental burden...... that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO2 per tonne of waste combusted.......Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main...

  19. Los Alamos controlled-air incineration studies

    International Nuclear Information System (INIS)

    Koenig, R.A.; Warner, C.L.

    1983-01-01

    Current regulations of the Environmental Protection Agency (EPA) require that PCBs in concentrations greater than 500 ppM be disposed of in EPA-permitted incinerators. Four commercial incineration systems in the United States have EPA operating permits for receiving and disposing of concentrated PCBs, but none can accept PCBs contaminated with nuclear materials. The first section of this report presents an overview of an EPA-sponsored program for studying PCB destruction in the large-scale Los Alamos controlled-air incinerator. A second major FY 1983 program, sponsored by the Naval Weapons Support Center, Crane, Indiana, is designed to determine operating conditions that will destroy marker smoke compounds without also forming polycyclic aromatic hydrocarbons (PAHs), some of which are known or suspected to be carcinogenic. We discuss the results of preliminary trial burns in which various equipment and feed formulations were tested. We present qualitative analyses for PAHs in the incinerator offgas as a result of these tests

  20. CO2 laser-aided waste incineration

    International Nuclear Information System (INIS)

    Costes, J.R.; Guiberteau, P.; Caminat, P.; Bournot, P.

    1994-01-01

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg -h-1 using a 7 kW CO 2 laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs

  1. Some notes about radioactive wastes incineration

    International Nuclear Information System (INIS)

    Martin Martin, L.

    1984-01-01

    A general review about the most significant techniques in order to incinerate radioactive wastes by controlled air, acid digestion, fluidized bed, etc., is presented. These features are briefly exposed in the article through feed preparation, combustion effectiveness, etc. (author)

  2. Highly Efficient Fecal Waste Incinerator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Volume reduction is a critical element of Solid Waste Management for manned spacecraft and planetary habitations. To this end, the proposed fecal waste incinerator...

  3. Waterbury, Conn., Incinerator to Control Mercury Emissions

    Science.gov (United States)

    Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.

  4. Sewage sludge pretreatment and disposal. (Latest citations from the NTIS Bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 250 citations and includes a subject term index and title list.)

  5. K basins sludge removal sludge pretreatment system

    International Nuclear Information System (INIS)

    Chang, H.L.

    1997-01-01

    The Spent Nuclear Fuels Program is in the process of planning activities to remove spent nuclear fuel and other materials from the 100-K Basins as a remediation effort for clean closure. The 105 K- East and K-West Basins store spent fuel, sludge, and debris. Sludge has accumulated in the 1 00 K Basins as a result of fuel oxidation and a slight amount of general debris being deposited, by settling, in the basin water. The ultimate intent in removing the sludge and fuel is to eliminate the environmental risk posed by storing fuel at the K Basins. The task for this project is to disposition specific constituents of sludge (metallic fuel) to produce a product stream through a pretreatment process that will meet the requirements, including a final particle size acceptable to the Tank Waste Remediation System (TWRS). The purpose of this task is to develop a preconceptual design package for the K Basin sludge pretreatment system. The process equipment/system is at a preconceptual stage, as shown in sketch ES-SNF-01 , while a more refined process system and material/energy balances are ongoing (all sketches are shown in Appendix C). Thus, the overall process and 0535 associated equipment have been conservatively selected and sized, respectively, to establish the cost basis and equipment layout as shown in sketches ES- SNF-02 through 08

  6. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna; Kärrman, Erik; Gustafsson, Jon Petter; Magnusson, Y.

    2009-01-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suit able for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study. A life cycle assessment (LCA) based approach Was Outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as wel...

  7. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  8. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  9. UASB Treatment of Methanolic Pulp Wastewater with Addition of Waste Starch and Incinerated Ash

    Science.gov (United States)

    Takahashi, Shintaro; Kobaysashi, Takuro; Li, Yu-You; Harada, Hideki

    The pulp wastewater consists mainly of methanol. It is expected to treat using upflow anaerobic sludge blanket (UASB) process. Paper manufactories also produce waste starch and incinerated ash. The integrated treating for these wastes is desirable. In this study, two UASB reactors were operated to treat pulp wastewater with addition of waste starch and with addition of incinerated ash, receptively. Continuous operations of a UASB reactor treating pulp wastewater with addition of waste starch (PS reactor) and a UASB reactor treating pulp wastewater with addition of incinerated ash (PA reactor) , were investigated at mesophilic conditions. The PS reactor performed well with an average 93.7% total CODCr and 97.3% soluble CODCr removal efficiency in average at a maximum volumetric loading rate (VLR) of 16.0 kgCOD/m3/d. The PA reactor was also successfully operated with an average 95.3% total CODCr and 97.5% soluble CODCr removal efficiency in average at a maximum VLR of 14.6 kgCOD/m3/d. Successfully developed granules were obtained after over 140 days of operation in both reactors, and the granules were 1 to 2 mm in mean diameter. Microbial analysis revealed the genus Methanomethylovorans was predominant in the granules of both reactors.

  10. Sludge, garbage may fuel California sewage plant

    Energy Technology Data Exchange (ETDEWEB)

    Sieger, R B

    1977-01-01

    The combustion and pyrolysis of sewage sludge and refuse-derived fuel (RFD) in multiple-hearth furnaces were recommended as a means of generating energy to power the Central Contra Costa Sanitary District's 30 mgd wastewater treatment plant using an off-gas from the pyrolysis process. In a full-scale test, a furnace in Concord, once used for sewage sludge incineration, was operated under O/sub 2/-starved conditions by limiting air addition through the burners and air nozzles, resulting in partial combustion. Using temperature as the controlled variable, the process was regulated to form a fuel gas through composition of the organic feed matter. Just enough fuel gas was combusted to evaporate moisture in the feed solids and furnish heat for the decomposition process. During most of the testing the afterburner was maintained at a temperature > 1400/sup 0/F with pyrolysis gas. At this temperature, automatic ignition of the gas occurred. When the gas generated dropped to a low heat of combustion because of high feed moisture content, the afterburner burner was used to ignite the gas. Some test observations are discussed. Preparation of the solid waste for processing by the use of shredders, air classifiers, and magnetic separators is described.

  11. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  12. Air curtain incinerator equipment performance evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    About 50 tonnes of oil-contaminated debris and related wood products were successfully incinerated in a 10-h performance evaluation of a mobile air curtain incinerator. The test was conducted to evaluate the incinerator's ability to combust oil-contaminated trash and debris obtained from oil spill sites. The operating principle of the apparatus involves a diesel engine driving an air blower to deliver ca 20,000 scfm of air into a 5-m long manifold angled at a 30{degree} slope into an incineration tank. A bottomhole aerator is lowered to the bottom of the tank and compressed air is injected into the aerator to control burn efficiency. The blower is engaged once the debris in the tank is burning sufficiently after starting a fire in the debris. The air curtain effect created by the air deflecting off the opposite wall from the blower manifold and bouncing off the bottom and up the side of the incineration tank results in repeated combustion of the gases, thereby significantly reducing the degree of visible smoke emission. The unit is capable of incinerating ca 5 tonnes/h and of generating ca 16 m{sup 3}/h of hot water which can be used for flushing spill sites and cleaning shorelines. 12 figs.

  13. Comparison of organic emissions from laboratory and full-scale thermal degradation of sewage sludge

    International Nuclear Information System (INIS)

    Tirey, D.A.; Striebich, R.C.; Dellinger, B.; Bostian, H.E.

    1991-01-01

    Samples of sewage sludge burned at one fluidized-bed and three multiple-hearth incinerators were subjected to laboratory flow reactor thermal decomposition testing in both pyrolytic and oxidative atmospheres. The time/temperature conditions of the laboratory testing were established to simulate as closely as possible full-scale incineration conditions so that a direct comparison of results could be made. The laboratory test results indicated that biomass decomposition products, not toxic industrial contaminants, comprised the majority of the emissions. Benzene, toluene, ethylbenzene, acrylonitrile, and acetonitrile were consistently the most environmentally significant products of thermal degradation. Comparison of the results from this study with those obtained in field tests was complicated by an apparent loss of volatile chlorocarbons from the sludge samples received for laboratory testing. However, qualitative comparison of emission factors derived from lab and field results for those compounds observed in both studies, showed reasonably good correlation for the pyrolysis testing. Results suggested that the upper stages of multiple-hearth units may vaporize many volatile components of the sludge before they enter the combustion stages of the incinerator and thus represent a direct source of introduction of pollutants into the atmosphere

  14. Optimization of organic waste utilization. Results of the new eco-balance study; Optimierung der Verwertung organischer Abfaelle. Ergebnisse der neuen Oekobilanzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Knappe, Florian; Vogt, Regine [ifeu - Institut fuer Energie- und Umweltforschung Heidelberg GmbH, Heidelberg (Germany)

    2012-11-01

    In a research project for the Federal Environmental Office (DKZ 3709 33 340), the effects of compost on agricultural land were analyzed and described in a form that enables the information to be integrated in balancing and evaluation specifications of eco-balances. The project was supplemented by a detailed eco-balance in order to assess inhowfar these regulations affect the waste management options for biomass waste from private households. It is found that separate collecting and utilisation are ecologically sound according to the recent findings. (orig.) [German] Mit einem Forschungsprojekt fuer das Umweltbundesamt (DKZ 3709 33 340) sollten die Auswirkungen von Kompostgaben auf Ackerflaechen naeher analysiert und in einer Form beschrieben werden, die eine Einbindung ueber Bilanzierungs- und Bewertungsvorschriften von Oekobilanzen ermoeglichen. Dies ist zwar nicht in allen Faellen gelungen. Jedoch konnten deutliche Fortschritte erzielt werden. Das Projekt wurde durch eine umfassende Oekobilanz abgeschlossen, um zu pruefen, inwieweit diese Aenderungen Auswirkungen auf die Beurteilung der einzelnen Entsorgungsoptionen fuer Bioabfaelle aus Haushalten haben. Es zeigt sich, dass die Bewertung der getrennten Sammlung und Verwertung als oekologisch sinnig durch die neuen Erkenntnisse eher noch bestaerkt werden. (orig.)

  15. Activated sludge model No. 3

    DEFF Research Database (Denmark)

    Gujer, W.; Henze, M.; Mino, T.

    1999-01-01

    The Activated Sludge Model No. 3 (ASM3) can predict oxygen consumption, sludge production, nitrification and denitrification of activated sludge systems. It relates to the Activated Sludge Model No. 1 (ASM1) and corrects for some defects of ASM I. In addition to ASM1, ASM3 includes storage of org...

  16. Mechanisms and kinetics of granulated sewage sludge combustion.

    Science.gov (United States)

    Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof

    2015-12-01

    This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sewage sludge pretreatment and disposal. January 1980-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 80-Feb 92

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The bibliography contains citations concerning techniques and equipment used in the pretreatment processes and disposal of sewage sludges. Topics include resource and energy recovery operations, land disposal, composting, ocean disposal, and incineration. Digestion, dewatering, and disinfection are among the pretreatment processes discussed. Environmental aspects, including the effects on soils, plants, and animals, are also presented. (Contains 181 citations with title list and subject index.)

  18. THE POSSIBILITIES OF NATURAL DEVELOPMENT OF ASH-SLUDGE BLENDS

    Directory of Open Access Journals (Sweden)

    Justyna Kiper

    2017-06-01

    Full Text Available Treatment of sewage results in creation of by-products such as screenings, fats, sand and the primary and secondary sludges – the most disposed elements in the technological process. Disposal of hazardous wastes is one of the most important issues in waste management. Regulation of the Minister of Economy dated 1 January 2016 (Dz.U. 2015 item 1277 – Journal of Laws which disallows the storage of sewage sludges, influenced the search for new solutions of their utilization. Forecasted increase in the amount of produced sludges and regulations in effect resulted in the increased interest in methods of utilization and studies on waste management. The study shows environmental possibilities of utilization of municipal sewage. The physicochemical and environmental properties of studied materials were determined. The studies were performed on sewer sludge obtained from mechanical biological municipal treatment plant “Pomorzany” in Szczecin. By-products of incineration biomass were used to prepare the sludge-ash mixes. Physicochemical properties were determined using reference methods according to current Standards and Instructions. To determine the environmental properties of sludge and mixes phytotoxicity test was used. The influence of soil’s toxicity on the plants was determined based on a method provided by the Regulation of the Minister of Environment dated 13 May 2004 on conditions in which it is assumed that waste is not hazardous (Dz.U. 2004 no. 128, item 1347 – Journal of Laws, “Determination of cytotoxic activity in garden cress”. Performed physicochemical tests and phytotoxicity test proved the applicability of prepared mixes in agriculture, remediation of anthropogenic soils and shutting down and revegetation of old landfills.

  19. Relationship between centrifugation and drying of sludge and the organic halogens

    Directory of Open Access Journals (Sweden)

    Karel Hrich

    2010-01-01

    Full Text Available This work is focused on determination of adsorbable organic halogens (AOX concentration in the digested sludge from the sewage treatment plant and the losses of this component during dewatering and drying of sludge. Drying of the sludge from wastewater treatment plant is not extended too much in Czech Republic. In this work, the AOX are monitored, because AOX is one of the limits restraining use of the sludge on an agricultural land. Another reason is technological demand for using the sludge in cement processing, because chlorine in AOX can cause decrease in a heat transfer effect in a cement kiln. It is clear from the results that both centrifuged and dried sludge from the sewage treatment plant Brno fulfilled limits for using sludge on agriculture land. They can also be composted, in case they meet other requirements. If not, it is a possibility of co-incineration in cement kiln. In such case, limit for total chlorine including the AOX is required too. This limit was not exceeded. Another aim was to calculate a mass balance of AOX during the centrifugation and drying processes. It was found out, that after centrifugation the main part of AOX remained in the centrifuged sludge (96.4 %. The rest was drawn-off with reject water. 60 % of AOX in the reject water were dissolved compounds. A similar situation occurred during the drying process. More than 99 % of AOX was bound in the dried sludge. The air and vaporised water contained such quantity of AOX, which corresponded with the amount of the dust in the air and the amount of particles of sludge in vaporised water.

  20. Report: environmental assessment of Darmstadt (Germany) municipal waste incineration plant.

    Science.gov (United States)

    Rimaityte, Ingrida; Denafas, Gintaras; Jager, Johannes

    2007-04-01

    The focus of this study was the emissions from waste incineration plants using Darmstadt (Germany) waste incineration plant as an example. In the study the emissions generated by incineration of the waste were considered using three different approaches. Initially the emissions from the waste incineration plant were assessed as part of the impact of waste management systems on the environment by using a Municipal Solid Waste Management System (MSWMS) assessment tool (also called: LCA-IWM assessment tool). This was followed by a comparison between the optimal waste incineration process and the real situation. Finally a comparison was made between the emissions from the incineration plant and the emissions from a vehicle.

  1. Sludge minimization technologies - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Oedegaard, Hallvard

    2003-07-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more that the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In the paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes). (author)

  2. Conventional incinerator redesign for the incineration of low level radioactive solid wastes

    International Nuclear Information System (INIS)

    Lara Z, L.E.C.

    1997-01-01

    From several years ago have been detected some problems with the storage of low level radioactive solids wastes, they are occasioned growth in volume and weight, one of most effective treatment for its reduction, the incineration has been. In the work was designed an incinerator of low level radioactive solid wastes, the characteristics, range of temperatures, that operate and the excess of air in order to get a near incineration at 100 %; thickness of refractory material in the combustion chamber, materials and forms of installation, the balances of mass, energy and radioactive material necessary for the design of the auxiliary peripheral equipment is discussed. In theory the incineration is a viable option for the treatment of low level radioactive solid wastes, upon getting an approximate reduction to 95 % of the wastes introduced to the incinerator in the Department of Radioactive Wastes of the National Institute of Nuclear Research, avoiding the dispersion of combustion gases and radioactive material at the environment. (Author)

  3. Co-firing of oil sludge with coal-water slurry in an industrial internal circulating fluidized bed boiler.

    Science.gov (United States)

    Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin

    2009-08-15

    Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.

  4. Incineration of contaminated oil from Sellafield - 16246

    International Nuclear Information System (INIS)

    Broadbent, Craig; Cassidy, Helen; Stenmark, Anders

    2009-01-01

    Studsvik have been incinerating Low Level Waste (LLW) at its licensed facility in Sweden since the mid-1970's. This process not only enables the volume of waste to be significantly reduced but also produces an inert residue suitable for final disposal. The facility has historically incinerated only solid dry LLW, however in 2008 an authorisation was obtained to permit the routine incineration of LLW contaminated oil at the facility. Prior to obtaining the authorisation to incinerate oils and other organic liquids - both from clean-up activities on the Studsvik site and on a commercial basis - a development program was established. The primary aims of this were to identify the optimum process set-up for the incinerator and also to demonstrate to the regulatory authorities that the appropriate environmental and radiological parameters would be maintained throughout the new process. The final phase of the development program was to incinerate a larger campaign of contaminated oil from the nuclear industry. A suitable accumulation of oil was identified on the Sellafield site in Cumbria and a commercial contract was established to incinerate approximately 40 tonnes of oil from the site. The inventory of oil chosen for the trial incineration represented a significant challenge to the incineration facility as it had been generated from various facilities on-site and had degraded significantly following years of storage. In order to transport the contaminated oil from the Sellafield site in the UK to the Studsvik facility in Sweden several challenges had to be overcome. These included characterisation, packaging and international transportation (under a Transfrontier Shipment (TFS) authorisation) for one of the first transports of liquid radioactive wastes outside the UK. The incineration commenced in late 2007 and was successfully completed in early 2008. The total volume reduction achieved was greater than 97%, with the resultant ash packaged and returned to the UK (for

  5. Quantifying capital goods for waste incineration

    International Nuclear Information System (INIS)

    Brogaard, L.K.; Riber, C.; Christensen, T.H.

    2013-01-01

    Highlights: • Materials and energy used for the construction of waste incinerators were quantified. • The data was collected from five incineration plants in Scandinavia. • Included were six main materials, electronic systems, cables and all transportation. • The capital goods contributed 2–3% compared to the direct emissions impact on GW. - Abstract: Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000–240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000–26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000–5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7–14 kg CO 2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2–3% with respect to kg CO 2 per tonne of waste combusted

  6. Regenerative-filter-incinerator device

    Energy Technology Data Exchange (ETDEWEB)

    Rosebrock, T.L.

    1977-10-18

    A regenerative-filter-incinerator device, for use in the exhaust system of a diesel engine, includes a drum-like regenerative-heat exchanger-filter assembly rotatably mounted within a housing that is adapted to be installed directly in the exhaust gas stream discharged from a diesel engine as close to the engine as possible. The regenerative-heat exchanger-filter assembly provides an inner chamber which serves as a reaction chamber for the secondary combustion of exhaust gases including particulates discharged from the engine. The regenerative-heat exchanger-filter assembly includes separately rotatable heat exchange-filter elements pervious to radial flow of fluid therethrough and adapted to filter out particulates from the exhaust gases and to carry them into the reaction chamber. During engine operation, the reaction chamber is provided with a quantity of heat, as necessary, to effect secondary combustion of the exhaust gases and particulates by means of an auxiliary heat source and the heat generated within the reaction chamber is stored in the individual heat exchange-filter elements during the discharge of exhaust gases therethrough from the reaction chamber and this heat is then transferred to the inflowing volume of the exhaust gases so that, in effect, exhaust gas is discharged from the device at substantially the same temperature as it was during its inlet into the device from the engine.

  7. Incineration method for volume reduction and disposal of transuranic waste

    International Nuclear Information System (INIS)

    Borham, B.M.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at Idaho National Engineering Laboratory (INEL) is designed to process 7 TPD of transuranic (TRU) waste producing 8.5 TPD of cemented waste and 4100 ACFM of combustion gases with a volume reduction of up to 17:1. The waste and its container are shredded then fed to a rotary kiln heated to 1700 0 F, then cooled and classified by a trommel screen. The fine portion is mixed with a cement grout which is placed with the coarse portion in steel drums for disposal at the Waste Isolation Pilot Plant (WIPP). The kiln off-gas is reheated to 2000 0 F to destroy any remaining hydrocarbons and toxic volatiles. The gases are cooled and passed in a venturi scrubber to remove particulates and corrosive gases. The venturi off-gas is passed through a mist eliminator and is reheated to 50 0 F above the dew point prior to passing through a High Efficiency Particulate Air (HEPA) filter. The scrub solution is concentrated to 25% solids by an inertial filter. The sludge containing the combustion chemical contaminants is encapsulated with the residue of the incinerated waste

  8. Dewatering of sludges

    International Nuclear Information System (INIS)

    Bode, P.

    1984-01-01

    A filter rig has been designed and built. Simulated magnox and alumino ferric hydroxide sludges have been successfully filtered on this equipment and both types of sludge produced a clear filtrate and a cake. The flow rates were low. The cake often partially remained adhered to the filter membrane instead of dropping clear during the filter cleaning cycle. This filtration technique can only be used on sludges which form a non-binding cake. Permeability of the membrane can be altered by stretching. Irradiation of the membrane showed that it should withstand 20 to 50 M.rads. (author)

  9. Study of composition change and agglomeration of flue gas cleaning residue from a fluidized bed waste incinerator.

    Science.gov (United States)

    Lievens, P; Verbinnen, B; Bollaert, P; Alderweireldt, N; Mertens, G; Elsen, J; Vandecasteele, C

    2011-10-01

    Blocking of the collection hoppers of the baghouse filters in a fluidized bed incinerator for co-incineration of high calorific industrial solid waste and sludge was observed. The composition of the flue gas cleaning residue (FGCR), both from a blocked hopper and from a normal hopper, was investigated by (differential) thermogravimetric analysis, quantitative X-ray powder diffraction and wet chemical analysis. The lower elemental carbon concentration and the higher calcium carbonate concentration of the agglomerated sample was the result of oxidation of carbon and subsequent reaction of CO2 with CaO. The evolved heat causes a temperature increase, with the decomposition of CaOHCl as a consequence. The formation of calcite and calcium chloride and the evolution of heat caused agglomeration of the FGCR. Activated lignite coke was replaced by another adsorption agent with less carbon, so the auto-ignition temperature increased; since then no further block formation has occurred.

  10. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    Science.gov (United States)

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  11. Theoretical aspects of solid waste incineration

    International Nuclear Information System (INIS)

    Tarbell, J.M.

    1975-01-01

    Theoretical considerations that may be incorporated into the design basis of a prototype incinerator for solid transuranic wastes are described. It is concluded that primary pyrolysis followed by secondary afterburning is a very unattractive incineration strategy unless waste resource recovery is a process goal. The absence of primary combustion air leads to poor waste dispersion with associated diffusion and conduction limitations rendering the process inefficient. Single step oxidative incineration is most attractive when volume reduction is of primary importance. The volume of this type of incinerator (including afterburner) should be relatively much smaller than the pyrolysis type. Afterburning is limited by soot oxidation when preceded by pyrolysis, but limited by turbulent mixing when preceded by direct solid waste oxidation. In either case, afterburner temperatures above 1300 0 K are not warranted. Results based on a nominal solid waste composition and anticipated throughput indicate that NO/sub x/, HF, and SO 2 will not exceed the ambient air quality standards. Control of radioactive particulates, which can be achieved by multiple HEPA filtration, will reduce the conventional particulate emission to the vanishing point. Chemical equilibrium calculations also indicate that chlorine and to a lesser extent fluorine may be precipitated out in the ash as sodium salts if a sufficient flux of sodium is introduced into the incinerator

  12. Clean burn: Incinerators get more efficient

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Combustion efficiency and accuracy of today's new breed of incinerators is discussed. The latest of these units are capable of delivering 99.99 per cent combustion efficiency with no visible flame, black smoke or detectable odour. Near-complete combustion is achieved with incineration because of the very high temperatures reached in the enclosed combustion chamber as a combination of temperature, time for burning, and a good mix of gases and oxygen. Controlling these inputs is the key to efficient incineration, as is high quality fibre refractory lining; control means control of the stack top temperature, which will affect what comes out of the top water and how well the combustion byproducts are dispersed. Until recently, incinerators have not been highly regarded by the oil industry. However, with the growing concerns about greenhouse gases, carcinogens and in response to increasing regulations aimed at reducing venting and flaring, incinerators are coming into their own. Today they are seen more and more frequently in well testing, coalbed methane testing, at battery sites and at gas plants

  13. Quantifying capital goods for waste incineration.

    Science.gov (United States)

    Brogaard, L K; Riber, C; Christensen, T H

    2013-06-01

    Materials and energy used for the construction of modern waste incineration plants were quantified. The data was collected from five incineration plants (72,000-240,000 tonnes per year) built in Scandinavia (Norway, Finland and Denmark) between 2006 and 2012. Concrete for the buildings was the main material used amounting to 19,000-26,000 tonnes per plant. The quantification further included six main materials, electronic systems, cables and all transportation. The energy used for the actual on-site construction of the incinerators was in the range 4000-5000 MW h. In terms of the environmental burden of producing the materials used in the construction, steel for the building and the machinery contributed the most. The material and energy used for the construction corresponded to the emission of 7-14 kg CO2 per tonne of waste combusted throughout the lifetime of the incineration plant. The assessment showed that, compared to data reported in the literature on direct emissions from the operation of incinerators, the environmental impacts caused by the construction of buildings and machinery (capital goods) could amount to 2-3% with respect to kg CO2 per tonne of waste combusted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC INCINERATION

    Science.gov (United States)

    The report gives results of the collection of combustion emission characterization data from chlorofluorocarbon (CFC) incineration. A bench scale test program to provide emission characterization data from CFC incineration was developed and performed, with emphasis on the format...

  15. Mound cyclone incinerator. Volume I. Description and performance

    International Nuclear Information System (INIS)

    Klingler, L.M.

    1981-01-01

    The Mound cyclone incinerator was developed to fill a need for a simple, relaible incinerator for volume reduction of dry solid waste contaminated with plutonium-238. Although the basic design of the incinerator is for batch burning of solid combustible waste, the incinerator has also been adapted to volume reduction of other waste forms. Specialized waste feeding equipment enables continuous burning of both solid and liquid waste, including full scintillation vials. Modifications to the incinerator offgas system enable burning of waste contaminated with isotopes other than plutonium-238. This document presents the design and performance characteristics of the Mound Cyclone Incinerator for incineration of both solid and liquid waste. Suggestions are included for adaptation of the incinerator to specialized waste materials

  16. Improvement of incineration efficiency of spent ion exchange resins on the incinerator at nuclear power plants. Manufacturing the solids of the resins mixed with paraffin wax and their incinerating test results on actual incinerator

    International Nuclear Information System (INIS)

    Izumi, Takeshi; Ohtsu, Takashi; Inagawa, Hirofumi; Kawakami, Takashi; Hagiwara, Masahiro; Ino, Takao; Ishiyama, Yuji

    2011-01-01

    In nuclear power plants, ion exchange resins are used at water purification systems such as condensate demineralizers. After usage, used ion exchange resins are stored at plants as low level radioactive wastes. Ion exchange resins contain water and so, those are flame resistant materials. At present, ion exchange resins are incinerated with other inflammable materials at incinerators. Furthermore, ion exchange resins are fine particle beads and are easy to be scattered in all directions, so operators must pay attentions for treatment. Then, we have developed the new solidification system of ion exchange resins with paraffin wax. Ion exchange resins are mixed and extruded with paraffin wax and these solids are enabled to incinerate at existing incinerators. In order to demonstrate this new method, we made the large amount of solids and incinerated them at actual incinerator. From these results, we have estimated to be able to incinerate the solids only at actual incinerator. (author)

  17. Clinical waste incinerators in Cameroon--a case study

    DEFF Research Database (Denmark)

    Mochungong, Peter Ikome Kuwoh; Gulis, Gabriel; Sodemann, Morten

    2012-01-01

    Incinerators are widely used to treat clinical waste in Cameroon's Northwest Region. These incinerators cause public apprehension owing to purported risks to operators, communities and the environment. This article aims to summarize findings from an April 2008 case study....

  18. Land application of sewage sludge: A guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge, 40 CFR part 503

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    The U.S. Environmental Protection Agency promulgated a regulation at 40 Code of Federal Regulations (CFR) Part 503 to ensure that sewage sludge is used or disposed of in a way that protects human health and the environment. Part 503 imposes requirements for the land application, surface disposal, and incineration of sewage sludge. The manual focuses on land application, providing guidance to land appliers of sewage sludge. The purpose of the document is to provide the land applier with sufficient guidance to comply fully with all applicable Part 503 requirements. The guidance is structured to first provide a general understanding of the Rule and its underlying principles, including definitions of sewage sludge, land application, and an explanation of who under the Rule is considered a land applier.

  19. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.; Gevaudan, P.P.

    1977-01-01

    There is a hygienic risk in using biological sewage sludges for agriculture. Systematic analyses carried out on sludge samples obtained from purification plants in the Eastern and Southern part of France, show the almost uniform presence of pathogenic microorganisms. Some of them survive more than nine months after application to the soil. Conventional processes for disinfection, liming and heat, make the sludge unsuitable for agricultural use. On the other hand, irradiation involves no modification of structure and composition of sludges. Radiation doses required for disinfection vary according to the type of microorganism. Some of them are eliminated at rather low doses (200 krad), but mycobacteria, viruses and eggs of worms resist to more important doses. The security dose is estimated to be approx. 1000 krad

  20. WILCI: a LCA tool dedicated to MSW incineration in France

    OpenAIRE

    Beylot , Antoine; Muller , Stéphanie; Descat , Marie; Ménard , Yannick; Michel , Pascale; Villeneuve , Jacques

    2017-01-01

    International audience; Life Cycle Assessment (LCA) has been increasingly used in the last decades to evaluate the global environmental performance of waste treatment options. This is in particular the case considering incineration that is the major treatment route for Municipal Solid Waste (MSW) in France (28% of French MSW are incinerated, in 126 MSW incineration plants; ADEME, 2015). In this context, this article describes a new Excel-tool, WILCI (for Waste Incineration Life Cycle Inventor...

  1. Technological process of a multi-purpose radwaste incineration system

    International Nuclear Information System (INIS)

    Wang Peiyi; Zhou Lianquan; Ma Mingxie; Qiu Mingcai; Yang Liguo; Li Xiaohai; Zhang Xiaobin; Lu Xiaowu; Dong Jingling; Wang Xujin; Li Chuanlian; Yang Baomin

    2002-01-01

    The author introduces the technological process of a multi-purpose radwaste incineration system. It is composed of three parts: pretreatment, incinerating and clean up of off-gas. The waste that may be treated include combustible solid waste, spent resins and oils. Technological routes of the system is pyrolysis incinerating for solid waste, spray incinerating for spent oils, combination of dry-dust removing and wet adsorption for cleaning up off-gas

  2. A new incinerator for burning radioactive waste

    International Nuclear Information System (INIS)

    Mallek, H.; Laser, M.

    1978-01-01

    A new two stage incinerator for burning radioactive waste consisting of a pyrolysis chamber and an oxidation chamber is described. The fly ash is retained in the oxidation chamber by high temperature filter mats. The capacity of the installed equipment is about 100 kg/h. Waste with different composition and different calorific value were successfully burnt. The operation of the incinerator can easily be controlled by addition of a primary air stream to the pyrolysis chamber and a secondary air stream to the oxidation chamber. During continuous operation the CO and C (organic) content is below 100 ppm and 50 ppm, respectively. The burn-out of the ash is very good. After minor changes the incinerator may be suitable for burning of α-bearing waste

  3. Requirements for permitting a mixed waste incinerator

    International Nuclear Information System (INIS)

    Trichon, M.; Feldman, J.; Serne, J.C.

    1990-01-01

    The consideration, design, selection and operation of any incinerator depends primarily on characteristic quality (ultimate and proximate analyses) and quantity to the waste to be incinerated. In the case of burning any combination of mixed hazardous, biomedical and radioactive low level waste, specific federal and generic state environmental regulatory requirements are outlined. Combustion chamber temperature and waste residence time requirements will provide the rest of the envelope for consideration. Performance requirements must be balanced between the effects of time and temperature on destruction of the organic waste and the vaporization and possible emission of the inorganic waste components (e.g., toxic metals, radioactive inorganics) as operating conditions and emission levels will be set in state and federal regulatory permits. To this end the complete characterization of the subject waste stream must be determined if an accurate assessment of incineration effectiveness and impact are to be performed

  4. Energy utilization: municipal waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  5. Alkali activation processes for incinerator residues management.

    Science.gov (United States)

    Lancellotti, Isabella; Ponzoni, Chiara; Barbieri, Luisa; Leonelli, Cristina

    2013-08-01

    Incinerator bottom ash (BA) is produced in large amount worldwide and in Italy, where 5.1 millionstons of municipal solid residues have been incinerated in 2010, corresponding to 1.2-1.5 millionstons of produced bottom ash. This residue has been used in the present study for producing dense geopolymers containing high percentage (50-70 wt%) of ash. The amount of potentially reactive aluminosilicate fraction in the ash has been determined by means of test in NaOH. The final properties of geopolymers prepared with or without taking into account this reactive fraction have been compared. The results showed that due to the presence of both amorphous and crystalline fractions with a different degree of reactivity, the incinerator BA geopolymers exhibit significant differences in terms of Si/Al ratio and microstructure when reactive fraction is considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Alpha waste incinerator at the Cea Valduc

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The Cea/Valduc has brought into operation an incinerator for alpha waste. The incineration is in two steps. The first one is a pyrolysis under reduction atmosphere in a furnace at 550 celsius degrees and the second one is a calcination under oxidizing atmosphere of the pyrolysis residue in a furnace at 900 celsius degrees. The ashes have less than 1% of carbon. The gas coming from incineration become oxidized at 1100 Celsius degrees, then are cooled, filtered to eliminate any track of radioactivity. Then, they are cleaned with a neutralisation process. The facility reduces the volume of waste in a factor 20. The capacity of treatment is 7 kg/h. The annual capacity is 30 m 3 . The investment represents 70 millions of francs and the cost of functioning is 2 M F by year. (N.C.)

  7. Secondary incinerator for radioactive gaseous waste

    International Nuclear Information System (INIS)

    Takeda, Tadashi; Masuda, Takashi.

    1997-01-01

    A vessel incorporated with packings, in which at least either of the packings and the vessel is put to induction-heating by high frequency induction coils, is disposed in a flow channel of radioactive gaseous wastes exhausted from a radioactive waste incinerator. The packings include metals such as stainless pipes and electroconductive ceramics such as C-SiC ceramics. Since only electricity is used as an energy source, in the secondary incinerator for the radioactive gaseous wastes, it can be installed in a cell safely. In addition, if ceramics are used, there is no worry of deterioration of the incinerator due to organic materials, and essential functions are not lowered. (T.M.)

  8. Sludge technology assessment

    International Nuclear Information System (INIS)

    Krause, T.R.; Cunnane, J.C.; Helt, J.E.

    1994-12-01

    The retrieval, processing, and generation of final waste forms from radioactive tank waste sludges present some of the most challenging technical problems confronting scientists and engineers responsible for the waste management programs at the various Department of Energy laboratories and production facilities. Currently, the Department of Energy is developing a strategy to retrieve, process, and generate a final waste form for the sludge that meets the acceptance criteria for the final disposition. An integral part of this strategy will be use of separation processes that treat the sludge; the goal is to meet feed criteria for the various processes that will generate the final waste form, such as vitrification or grouting. This document is intended to (1) identify separation technologies which are being considered for sludge treatment at various DOE sites, (2) define the current state of sludge treatment technology, (3) identify what research and development is required, (4) identify current research programs within either DOE or academia developing sludge treatment technology, and (5) identify commercial separation technologies which may be applicable. Due to the limited scope of this document, technical evaluations regarding the need for a particular separations technology, the current state of development, or the research required for implementation, are not provided

  9. Conceptual process description of M division incinerator project

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, T.K.

    1989-04-13

    This interoffice memorandum describes an incineration system to be used for incinerating wood. The system is comprised of a shredder and an incinerator. The entire process is described in detail. A brief study of particulates, carbon monoxide, carbon dioxide, and nitrogen oxides emission is presented.

  10. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Incinerators, boilers, and process... Routing to a Fuel Gas System or a Process § 63.988 Incinerators, boilers, and process heaters. (a) Equipment and operating requirements. (1) Owners or operators using incinerators, boilers, or process...

  11. Risks of municipal solid waste incineration: an environmental perspective.

    Science.gov (United States)

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  12. 10 CFR 20.2004 - Treatment or disposal by incineration.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Treatment or disposal by incineration. 20.2004 Section 20... § 20.2004 Treatment or disposal by incineration. (a) A licensee may treat or dispose of licensed material by incineration only: (1) As authorized by paragraph (b) of this section; or (2) If the material...

  13. Recommendations for continuous emissions monitoring of mixed waste incinerators

    International Nuclear Information System (INIS)

    Quigley, G.P.

    1992-01-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator

  14. Addition of liquid waste incineration capability to the INEL's low-level waste incinerator

    International Nuclear Information System (INIS)

    Steverson, E.M.; Clark, D.P.; McFee, J.N.

    1986-01-01

    A liquid waste system has recently been installed in the Waste Experimental Reduction Facility (WERF) incinerator at the Idaho National Engineering Laboratory (INEL). In this paper, aspects of the incineration system such as the components, operations, capabilities, capital cost, EPA permit requirements, and future plans are discussed. The principal objective of the liquid incineration system is to provide the capability to process hazardous, radioactively contaminated, non-halogenated liquid wastes. The system consists primarily of a waste feed system, instrumentation and controls, and a liquid burner, which were procured at a capital cost of $115,000

  15. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  16. Hazardous and radioactive waste incineration studies

    International Nuclear Information System (INIS)

    Vavruska, J.S.; Stretz, L.A.; Borduin, L.C.

    1981-01-01

    Development and demonstration of a transuranic (TRU) waste volume-reduction process is described. A production-scale controlled air incinerator using commercially available equipment and technology has been modified for solid radioactive waste service. This unit successfully demonstrated the volume reduction of transuranic (TRU) waste with an average TRU content of about 20 nCi/g. The same incinerator and offgas treatment system is being modified further to evaluate the destruction of hazardous liquid wastes such as polychlorinated biphenyls (PCBs) and hazardous solid wastes such as pentachlorophenol (PCP)-treated wood

  17. Sewage sludge disposal-requirements, expense and acceptance; Klaerschlammentsorgung zwischen Anspruch, Aufwand und Akzeptanz

    Energy Technology Data Exchange (ETDEWEB)

    Gruenebaum, T. [Ruhrverband, Essen (Germany)

    1997-02-01

    Production of sewage sludges is unavoidable at wastewater treatment. Sewage sludges shall be used in agriculture. Although the content of hazardous substances in sewage sludges has obviously been minimized, the use of those sludges is limited because of the low acceptance in agriculture and food industry. Therefore it is necessary to build up methods of disposal which make possible and ensure a medium- or even longtime disposal. Incineration seems to be the solution since the requirements for landfill of sewage sludges have been renewed. The currently valid transitional regulation lead to remarkable reactions of the disposal market. The plans for sewage sludge disposal have to agree with the principles of environmental protection, safety, economic efficiency, good realization and operational handling. (orig.) [Deutsch] Bei der Abwasserreinigung faellt Klaerschlamm an. Dieser ist moeglichst in der Landwirtschaft zu verwerten. Obwohl die Schadstoffgehalte der Klaerschlaemme in den letzten 15 Jahren sehr deutlich gesunken sind, ist der Einsatz durch Akzeptanzprobleme in der Landwirtschaft und bei der Nahrungsmittelindustrie limitiert. Es gilt deshalb, Entsorgungspfade aufzubauen, die eine mittel- und langfristige Sicherung der Entsorgung ermoeglichen. Nach den neueren Anforderungen an eine Deponierung ist demnach immer eine Verbrennung vorzusehen. Die z.Z. noch geltende Uebergangsregelung hat zu massiven Reaktionen des Entsorgungsmarktes gefuehrt. Die Planungen zur Klaerschlammentsorgung muessen sich an den Grundsaetzen der Umsetzbarkeit und betrieblichen Handhabbarkeit ausrichten. (orig.)

  18. Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    Nazar A.M. Md

    2014-03-01

    Full Text Available A major problem arising from the widespread use of forestry biomass and processed timber waste as fuel is related to the production of significant quantities of ash as a by-product from the incineration of such biomasses. A major portion (approximately 70% of the wood waste ash produced is land-filled as a common method of disposal. If the current trend continues with waste products, such as paper mill sludge landfills, a large amount of space would be required by 2020. A revenue study was conducted as a result of investigations into the use of paper mill sludge as recycled materials and additives in concrete mixes for use in construction projects. The study had to provide the assurance that the concrete produced had the correct mechanical strength. Concrete mixes containing paper mill sludge were prepared, and their basic strength characteristics such as the compressive strength, flexural strength, ultra pulse velocity and dynamic modulus elasticity were tested. Four concrete mixes, i.e. a control mix, and a 10%, 20%, and 30% mix of paper mill sludge as cement replacement for concrete were prepared with a DoE mix design by calculating the weight of cement, sand and aggregate. The performance of each concrete specimen was compared with the strength of the control mix. As a result, when the percentage of paper mill sludge in the concrete increased, the strength decreased. Overall, a high correlation was observed between density and strength of the concrete containing paper mill sludge.

  19. Test plan, sludge retrieval, sludge packaging

    International Nuclear Information System (INIS)

    Feigenbutz, L.V.

    1994-01-01

    This document provides direction for the cold testing of tools, equipment and systems which will be installed and operated in K-East (KE) Basin in support of the sludge retrieval and packaging project. The technical uncertainties related to the effectiveness of sludge retrieval procedures and equipment require that cold testing be completed before installation in KE Basin to identify and resolve existing problems, and to optimize the efficiency of all equipment and systems used. This plan establishes the responsibilities, test requirements, and documentation requirements necessary to complete cold tests of: (1) equipment with no potential for plant use; (2) prototype equipment and systems which may be upgraded for use in K-Basin; and (3) plant equipment and systems requiring cold acceptance testing prior to plant use. Some equipment and systems may have been subject to a formal design review and safety assessment; the results of which will be included as supporting documents to the operational readiness review (ORR)

  20. Thermal drying of sewage plant sludge and its disposal; El secado termico de fangos de EDAR y su disposicion

    Energy Technology Data Exchange (ETDEWEB)

    Elias, X.

    2002-07-01

    Thermal drying is one more link in the sludge treatment chain. The thickeners transfer the wastes water contaminant to the primary sludge, which contains around 5% of dry matter (DM). Mechanical dehydration brings the proportion of DM up to between 20% and 40%. Thermal drying raises the proportion of DM to between 85% and 95%. These are the solutions that have been adopted in most of the European Union. The next step consists in eliminating the organic fraction, which makes up from 40% to 60% of the DM, from the sludge. This can be done by pyrolysis-gasification or incineration. Although incineration provides the energy needed to dry the sludge and also complies with the Directive that limits the disposal of fermentable matter on dumps, it inevitably leaves behind the inorganic waste presents in the sludge. Vitrification is a simple, complementary technology for making the inorganic fraction inert while allowing it to be valorized. It thus closes the cycle and achieves zero dumping. (Author) 28 refs.

  1. Incineration plant for thermal destruction of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Bartoli, B.; Lisbonne, P.

    1988-01-01

    Incineration was selected to destroy organic liquids contaminated by radioelements. This treatment offers the advantage of reducing the volume of wastes considerably. Therefore an incineration plant has been built within the nuclear research center of Cadarache. After an experimental work with inactive organic liquids from June 1980 to March 1981, the incineration plant was approved by safety authorities for the incineration of contaminated organic liquids. The capacity ranges from 20l/hr to 50l/hr. On the basis of 6 years of operation and a volume of 200 m3 the incineration plant has shown reliable operating conditions in the destruction of various contaminated organic liquids

  2. Acid gas control process and apparatus for waste fired incinerators

    International Nuclear Information System (INIS)

    Kubin, P.Z.; Stepan, J.E.

    1992-01-01

    This patent describes a process for reducing noxious emission produced in a waste material incinerator. It comprises incinerating solid waste material in a furnace section of the waste material incinerator; providing an additive to an additive supply storage unit; conveying the additive to an additive injection means that communicates with the furnace section of the waste material incinerator; injecting the additive into a turbulent reaction zone of the furnace section such that acid gas content, acid dewpoint temperature and the level of corrosion in the incinerator are reduced

  3. Incineration of wastes from nuclear installations with the Juelich incineration process

    International Nuclear Information System (INIS)

    Wilke, M.

    1979-01-01

    In the Juelich Research Center a two-stage incineration process has been developed which, due to an integral thermal treatment stage, is most suitable for the incineration of heterogeneous waste material. The major advantages of this technique are to be seen in the fact that mechanical treatment of the waste material is no longer required and that off gas treatment is considerably facilitated. (orig.) [de

  4. A review on paint sludge from automotive industries: Generation, characteristics and management.

    Science.gov (United States)

    Salihoglu, Guray; Salihoglu, Nezih Kamil

    2016-03-15

    The automotive manufacturing process results in the consumption of several natural sources and the generation of various types of wastes. The primary source of hazardous wastes at an automotive manufacturing plant is the painting process, and the major waste fraction is paint sludge, which is classified with EU waste code of 080113* implying hazardous characteristics. The amount of the paint sludge generated increases every year with the worldwide increase in the car production. The characteristics of the paint sludge, which mainly designate the management route, are mainly determined by the type of the paint used, application technique employed, and the chemicals applied such as flocculants, detackifiers, pH boosters, antifoam agents, and biocides as well as the dewatering techniques preferred. Major routes for the disposal of the paint sludges are incineration as hazardous waste or combustion at cement kilns. Because of high dissolved organic carbon content of the paint, the paint sludge cannot be accepted by landfills according to European Union Legislations. More investigations are needed in the field of paint sludge recycling such as recycling it as a new paint or as other formulations, or making use of the sludge for the production of construction materials. Research on the applicability of the paint sludge in composting and biogasification can also be useful. Ongoing research is currently being conducted on new application techniques to increase the effectiveness of paint transfer, which helps to prevent the generation of paint sludge. Advancements in paint and coating chemistry such as the reduction in the coating layers with its thickness also help to decrease the level of paint sludge generation. Investigations on the effects of the chemicals on the recycling potential of paint sludges and consideration of these effects by the chemical manufacturer companies would be extremely important. This review presents the formation of paint sludge, the factors

  5. Incineration of Non-radioactive Simulated Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.; Abdelrazek, I.D.

    1999-01-01

    An advanced controlled air incinerator has been investigated, developed and put into successful operation for both non radioactive simulated and other combustible solid wastes. Engineering efforts concentrated on providing an incinerator which emitted a clean, easily treatable off-gas and which produced minimum amounts of secondary waste. Feed material is fed by gravity into the gas reactor without shredding or other pretreatment. The temperature of the waste is gradually increased in a reduced oxygen atmosphere as the resulting products are introduced into the combustion chamber. Steady burning is thus accomplished under easily controlled excess air conditions with the off-gas then passing through a simple dry cleaning-up system. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increase by the increase of glowing bed temperature, while H 2 O, H 2 and CO decrease . It was proved that, a burn-out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98% respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products. It was also found that 8% by weight of ashes are separated by flue gas cleaning system as it has chemical and size uniformity. This high incineration efficiency has been obtained through automated control and optimization of process variables like temperature of the glowing bed and the oxygen feed rate to the gas reactor

  6. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  7. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  8. CLOSURE OF A DIOXIN INCINERATION FACILITY

    Science.gov (United States)

    The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...

  9. Electrically fired incineration of combustible radioactive waste

    International Nuclear Information System (INIS)

    Charlesworth, D.; Hill, M.

    1985-01-01

    Du Pont Company and Shirco, Inc. are developing a process to incinerate plutonium-contaminated combustible waste in an electrically fired incineration system. Preliminary development was completed at Shirco, Inc. prior to installing an incineration system at the Savannah River Laboratory (SRL), which is operated by Du Pont for the US Department of Energy (DOE). The waste consists of disposable protective clothing, cleaning materials, used filter elements, and miscellaneous materials exposed to plutonium contamination. Incinerator performance testing, using physically representative nonradioactive materials, was completed in March 1983 at Shirco's Pilot Test Facility in Dallas, TX. Based on the test results, equipment sizing and mechanical begin of a full-scale process were completed by June 1983. The full-scale unit is being installed at SRL to confirm the initial performance testing and is scheduled to begin in June 1985. Remote operation and maintenance of the system is required, since the system will eventually be installed in an isolated process cell. Initial operation of the process will use nonradioactive simulated waste. 2 figs., 2 tabs

  10. 40 CFR 65.148 - Incinerators.

    Science.gov (United States)

    2010-07-01

    ... temperature monitoring device shall be installed in the fire box or in the ductwork immediately downstream of the fire box in a position before any substantial heat exchange occurs. (ii) Where a catalytic incinerator is used, temperature monitoring devices shall be installed in the gas stream immediately before...

  11. Nitrous Oxide Emissions from Waste Incineration

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Baxter, D.; Martinec, J.

    2006-01-01

    Roč. 60, č. 1 (2006), s. 78-90 ISSN 0366-6352 R&D Projects: GA AV ČR(CZ) IAA4072201 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * waste * incineration Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.360, year: 2006

  12. Analysis of fouling in refuse waste incinerators

    NARCIS (Netherlands)

    Beek, van M.C.; Rindt, C.C.M.; Wijers, J.G.; Steenhoven, van A.A.

    2001-01-01

    Gas-side fouling of waste-heat-recovery boilers, caused mainly by the deposition of particulate matter, reduces the heat transfer in the boiler. The fouling as observed on the tube bundles in the boiler of a Dutch refuse waste incinerator varied from thin and powdery for the economizer to thick and

  13. EIA for a waste incinerator in Denmark

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2017-01-01

    A planned new waste incinerator will be located in an area which is at risk of flooding – a risk that will increase under climate change. During public hear- ings as part of the project’s EIA, inclusion of climate risks was requested. This led to mitigation measures which will decrease the risk...

  14. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  15. Use plan for demonstration radioactive-waste incinerator

    International Nuclear Information System (INIS)

    Cooley, L.R.; McCampbell, M.R.; Thompson, J.D.

    1982-04-01

    The University of Maryland at Baltimore was awarded a grant from the Department of Energy to test a specially modified incinerator to burn biomedical radioactive waste. In preparation for the incinerator, the Radiation Safety Office devised a comprehensive plan for its safe and effective use. The incinerator plan includes a discussion of regulations regarding on-site incineration of radioactive waste, plans for optimum use in burning four principal waste forms, controlled air incineration technology, and standard health physics safety practices; a use plan, including waste categorization and segregation, processing, and ash disposition; safety procedures, including personnel and area monitoring; and methods to evaluate the incinerator's effectiveness by estimating its volume reduction factors, mass and activity balances, and by determining the cost effectiveness of incineration versus commercial shallow land burial

  16. Oxygen incineration process for treatment of alpha-contaminated wastes

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes

  17. Oxygen incineration process for treatment of alpha-contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Guk; Yang, Hee Chul; Park, Geun Il; Kim, In Tae; Kim, Joon Hyung

    2001-07-01

    As a part of development of a treatment technology for burnable alpha-bearing (or -contaminated) wastes using an oxygen incineration process, which would be expected to produce in Korea, the off-gas volume and compositions were estimated form mass and heat balance, and then compared to those of a general air incineration process. A laboratory-scale oxygen incineration process, to investigate a burnable wastes from nuclear fuel fabricatin facility, was designed, constructed, and then operated. The use of oxygen instead of air in incineratin would result in reduction on off-gas product below one seventh theoretically. In addition, the trends on incineration and melting processes to treat the radioactive alpha-contaminated wastes, and the regulations and guide lines, related to design, construction, and operation of incineration process, were reviewed. Finallu, the domestic regulations related incineration, and the operation and maintenance manuals for oxy-fuel burner and oxygen incineration process were shown in appendixes.

  18. The Valduc waste incineration facility starts operations (iris process)

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteuau, P.; Longuet, T.; Lannaud, J.; Lorich, M.

    1998-01-01

    In the operation of its facilities the Valduc Research Center produces alpha-contaminated solid waste and thus decided to build an incineration facility to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run in 1997. The operator conducted tests with calibrated radioactive sources to qualify the systems for measuring holdup of active material from outside the equipment. Chlorinated waste incineration test runs were performed using the phosphatizing process developed by the Marcoule Research Center. Inspections performed after these incineration runs revealed the complete absence of corrosion in the equipment. Active commissioning of the facility is scheduled for mid-1998. The Valduc incinerator is the first industrial application of the IRIS process. (author)

  19. RELATIONSHIP BETWEEN SLUDGE DEWATERABILITY NUMBER ...

    African Journals Online (AJOL)

    A representative of a sludge sample collected from the same source was filtered under the same environmental condition and the result analysed with two different concepts. One method of analysis uses Sludge Dewaterability Number, while the second employed the Carman's Specific resistance concept in sludge ...

  20. Summary report on the Y-12 Sludge Detoxification Demonstration project

    International Nuclear Information System (INIS)

    Jolley, R.L.; Hollenbeck, P.E.; Kennerly, J.M.; Singh, S.P.N.

    1994-07-01

    The Y-12 Sludge Detoxification Demonstration was conducted in late 1988 at the Oak Ridge Gaseous Diffusion Plant (subsequently renamed the K-25 Site). The erstwhile Waste Management Technology Center (WMTC) managed the conduct of this waste treatment technology to assist the US Department of Energy/Oak Ridge Operations (DOE/ORO) in implementing the DOE Model. This demonstration was the first project selected by the Hazardous Waste Remedial Actions Program (HAZWRAP)(and funded by DOE) in which a private-sector vendor was contracted to demonstrate an innovative treatment process for treating some of the Oak Ridge Site's radioactive mixed wastes to enable their environmentally compliant disposal. Chem-Nuclear Systems, Inc. (CNSI) was the private-sector vendor selected to demonstrate its X*TRAX trademark process. Briefly, the X*TRAX trademark process consisted of thermally treating the sludge in an inert atmosphere (to remove the volatile components) to yield a dry residue (containing the nonvolatilized sludge components) and condensed liquids. The dry residue can then be immobilized in cementitious matrix for delisting and disposal in an industrial landfill; the condensed liquids can be disposed in, for example, an incinerator

  1. Recycling of radioactive oil sludge waste into pavement brick

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Hishamuddin Hussein; Choo Thye Foo; Nurul Wahida Ahmad Khairuddin; MAsliana MUslimin; Wilfred Sylvester Paulus

    2010-01-01

    Malaysia produces about 1450 tons of radioactive oil sludge waste per year and there is an urgent need to find a permanent solution to the storage and disposal of this radioactive waste problem. Several treatment methods such bacteria farming, ultracentrifuge, steam reforming and incineration are currently being used but the core issue of the radioactive material in the oil sludge had not been solved. The paper relates a study on utilizing the radioactive component of the oil sludge and turning them into pavement brick. Characteristic study of this radioactive component by XRD and XRF show that it mainly comprised of quartz and anorthite minerals. While the radioactivity analysis by gamma technique shows that more than 90 % of this radioactivity comes from this soil component with Ra-226 and Ra-228 as the main radionuclides. A vitrified brick was then produced from this sediment by mixing it with low radioactive local red clay. The result also shows that the formation of the vitrified layer may be due high content of K in the red clay. Tensile test on the brick shows that it has more than four times the strength of commercial clay brick. Long duration leaching test on the brick also shows that there is no dissolution of radionuclide from the brick. (author)

  2. Sewage sludges disinfection

    International Nuclear Information System (INIS)

    Alexandre, D.

    1977-01-01

    There is an hygienic risk in using biological sewage sludges for agriculture. Systematic analysis carried out on sludges samples obtained from purification plants in East and South part of France, show the almost uniform presence of pathogenic microorganisms. Some of it survive more than 9 months after soil application. Conventional process for disinfection: liming and heat are not suitable for agricultural use. On the other hand, irradiation involves no modification in structure and composition of sludges. Radiation doses required for disinfection vary according to microorganisms. If some of them are eliminated with rather light doses (200 krad) mycobacteria, viruses and eggs of worms resist to more important doses. Security dose is estimated around 1000 krad

  3. Life cycle assessment of different disposal routes of sewage sludge; Oekobilanz verschiedener Entsorgungsmoeglichkeiten fuer Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Chassot, G.M.; Candinas, T. [Eidgenoessische Forschungsanstalt fuer Agraroekologie und Landbau (FAL), Inst. fuer Umweltschutz und Landwirtschaft IUL Liebefeld, Bern (Switzerland)

    1998-11-01

    The ecological impact of six different disposal routes for sewage sludge of a major sewage treatment plant (three options for agricultural use in liquid, dried and limetreated form, and three options of incineration in a mono-sewage sludge incineration plant, a cement factory and a `Schwel-Brenn` type incinerator for municipal solid waste) has been studied with an comprehensive inventory and five impact assessment methods. Three methods show the important role of soil pollution. Existing methods are not yet able to consider all the factors necessary. The inventories should be completed concerning natural phosphorus resources and organic micropollutants. (orig.) [Deutsch] Sechs Entsorgungsvarianten (drei betreffen die landwirtschaftliche Verwendung in fluessiger, thermisch getrockneter und gekalkter Form und drei die Verbrennung in einer Schlammverbrennungsanlage, einem Zementofen und einer Schwel-Brenn-Anlage fuer Kehricht) fuer den Klaerschlamm einer grossen ARA werden mittels Inventarisierung der verursachten Umweltbelastung und fuenf Bewertungsmethoden untersucht. Drei Methoden zeigen die wichtige Rolle der Bodenbelastung. Die verfuegbaren Methoden koennen aber wichtige Einflussgroessen noch nicht beruecksichtigen. Ferner sollten die Inventare bezueglich P-Ressourcen und organischen Schadstoffen vervollstaendigt werden. (orig.)

  4. Charcoal from paper sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M

    1980-03-06

    Paper sludge containing less than or equal to 50% water is mixed with coffee shells and greater than or equal to 1 almond shells, orange skin, walnut shells, or bean jam waste, compacted, and dry distilled at 300-600 degrees to prepare charcoal. Thus, 1 ton of paper sludge was mixed with 100 kg each of coffee shells, almond shells, orange skin, and walnut shells; compacted and dry distilled 24 hours at approximately 450 degrees. The calorific value of the charcoal produced was approximately 7300 kcal/kg.

  5. Alternatives for sewage sludge disposal. Report by the Waste Management Association of the Federal Laender (LAGA), submitted to the 34th Conference of Environment Ministers. Alternativen der Klaerschlammentsorgung. Bericht der Laenderabfallgemeinschaft Abfall (LAGA) zur 34. Umweltministerkonferenz

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-01-01

    This report points out methods to be used either alternatively or in addition to the application of sewage sludge to farmland. They include the exploitation of existing combustion capacities, for instance black-coal-fired power plants, brown-coal-fired power plants, rotary cement kilns, works producing materials for asphalt mixtures, waste incinerators, semicoking plants and pyrolysis plants. (EF).

  6. 40 CFR 60.2886 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Waste Incineration Units for Which Construction is Commenced After December 9, 2004, or for Which... incineration unit? (a) A new incineration unit is an incineration unit subject to this subpart that meets...

  7. 40 CFR 60.2015 - What is a new incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is a new incineration unit? 60... Industrial Solid Waste Incineration Units for Which Construction Is Commenced After November 30, 1999 or for... is a new incineration unit? (a) A new incineration unit is an incineration unit that meets either of...

  8. Defense waste cyclone incinerator demonstration program: October--March 1979

    International Nuclear Information System (INIS)

    Klinger, L.M.

    1979-01-01

    The cyclone incinerator developed at Mound has proven to be an effective tool for waste volume reduction. During the first half of FY-1979, efforts have been made to increase the versatility of the system. Incinerator development was continued in three areas. Design changes were drafted for the present developmental incinerator to rectify several minor operational deficiencies of the system. Improvements will be limited to redesign unless installation is required to prove design or to permit implementation of other portions of the plan. The applications development portion of the feasibility plan is focused upon expanding the versatility of the incinerator. An improved delivery system was installed for burning various liquids. An improved continuous feed system was installed and will be demonstrated later this year. Late in FY-1979, work will begin on the conceptual design of a production cyclone incinerator which will handle nonrecoverable TRU waste, and which will fully demonstrate the capabilities of the cyclone incinerator system. Data generated in past years and during FY-1979 are being collected to establish cyclone incineration effects on solids, liquids, and gases in the system. Data reflecting equipment life cycles and corrosion have been tabulated. Basic design criteria for a cyclone incinerator system based on developmental work on the incinerator through FY-1979 have been assembled. The portion of the material dealing with batch-type operation of the incinerator will be published later this year

  9. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth.

    Science.gov (United States)

    Lei, Yuqing; Sun, Dezhi; Dang, Yan; Chen, Huimin; Zhao, Zhiqiang; Zhang, Yaobin; Holmes, Dawn E

    2016-12-01

    Bio-methanogenic digestion of incineration leachate is hindered by high OLRs, which can lead to build-up of VFAs, drops in pH and ultimately in reactor souring. It was hypothesized that incorporation of carbon cloth into reactors treating leachate would promote DIET and enhance reactor performance. To examine this possibility, carbon cloth was added to laboratory-scale UASB reactors that were fed incineration leachate. As expected, the carbon-cloth amended reactor could operate stably with a 34.2% higher OLR than the control (49.4 vs 36.8kgCOD/(m 3 d)). Microbial community analysis showed that bacteria capable of extracellular electron transfer and methanogens known to participate in DIET were enriched on the carbon cloth surface, and conductivity of sludge from the carbon cloth amended reactor was almost twofold higher than sludge from the control (9.77 vs 5.47μS/cm), suggesting that microorganisms in the experimental reactor may have been expressing electrically conductive filaments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Ultrasonic reduction of excess sludge from the activated sludge system

    International Nuclear Information System (INIS)

    Zhang Guangming; Zhang Panyue; Yang Jinmei; Chen Yanming

    2007-01-01

    Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25 kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120 kW/kgDS, and sonication duration of 15 min. The amount of excess sludge was reduced by 91.1% to 17.8 mg/(L d); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1%, the total nitrogen (TN) removal efficiency was 17-66%, and high phosphorus concentration in the effluent was observed

  11. Bacteriology of activated sludge

    NARCIS (Netherlands)

    Gils, van H.W.

    1964-01-01

    The bacteriology and biochemistry of activated sludge grown in domestic waste water or fed with synthetic media were studied. The nature of the flocs was investigated by determining morphological and physiological characteristics of many strains isolated.

    Predominant bacteria were

  12. Composting sewage sludge

    International Nuclear Information System (INIS)

    Epstein, E.

    1979-01-01

    Sewage sludge is predominantly organic matter containing domestic and industrial wastes. The inefficiency of the waste water treatment to destroy pathogens and stabilization of odor-producing volatile organic compounds necessitates further treatment before sludge can be used as a soil amendment or fertilizer. Composting, which is the rapid biological decomposition of the sludge organic matter is an excellent method of sludge stabilization. During the process, volatile organics are decomposed and many of the pathogens destoyed. The low cost of the process and its flexibility with respect to labor and capital makes the system highly attractive to municipalities. A major problem facing large urban waste water treatment facilities is the distribution or marketing. The light weight of the material, expensive hauling costs, and low fertilizer value reduce its attractiveness to the agricultural sector. Thus, the greatest market is for horticultural purposes, sod, nurseries, greenhouses, parks, and reclamation areas. The major potential benefits of irradiating compost as a means of further disinfection are: (1) elimination of any health hazard; (2) increase of market potential, i.e., providing more market outlets to distribute the material; (3) compliance with state and federal health regulations; and (4) enhancement of the economics of composting as a result of utilizing compost in speciality products commanding a higher value

  13. Activated Sludge Rheology

    DEFF Research Database (Denmark)

    Ratkovich, Nicolas Rios; Horn, Willi; Helmus, Frank

    2013-01-01

    Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling and filtr...... rheological measurements. Moreover, the rheological models are not very trustworthy and remain very “black box”. More insight in the physical background needs 30 to be gained. A model-based approach with dedicated experimental data collection is the key to address this.......Rheological behaviour is an important fluid property that severely impacts its flow behaviour and many aspects related to this. In the case of activated sludge, the apparent viscosity has an influence on e.g. pumping, hydrodynamics, mass transfer rates, sludge-water separation (settling......, leading to varying results and conclusions. In this paper, a vast amount of papers are critically reviewed with respect to this and important flaws are highlighted with respect to rheometer choice, rheometer settings and measurement protocol. The obtained rheograms from experimental efforts have...

  14. Dewatering and drying - prerequisites for a safe sewage sludge disposal; Entwaesserung und Trocknung - Voraussetzung fuer eine sichere Klaerschlammentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Wiesmann, J. [Stadtentwaesserung Zuerich (Switzerland)

    1997-12-31

    Today, besides the agricultural utilization of liquid and drained sludge and the composting, there are the following different disposal ways which come into consideration: - sludge combustion in an independent plant or with garbage together; - utilization as a combustible both in cement and asphalt industry as well as in thermal power stations; - additives in commercial fertilizer or direct utilization as a dry fertilizer in agriculture (phosphorus fertilizer). All these ways demand a sludge product, with a dry content of 55 up to approximately 90 percent. During specification of an as flexible as possible plant in the waste water treatment plant Zurich-Werdhoelzli therefore, was demanded a double stage drying, for the production of both products, one with about 55 percent of dry matter (for combustion without supplementary combustibles) and one of these with 85-95 percent of dry matter. An indirect thin film contact extrusion gear was chosen in order to hold the odour and dust problems as small as possible, a high drying degree, in order to allow the desired corrected piling up and a better handling. This in turn should bring a further flexibility for trading of the sewage sludge product what has again favorable influence on the costs. (orig./SR) [Deutsch] Zur Zeit kommen neben der landwirtschaftlichen Verwertung von fluessigem und entwaessertem Schlamm sowie dem Kompostieren folgende Entsorgungswege in Frage: - Schlammverbrennung in einer eigenstaendigen Anlage oder zusammen mit Muell; - Einsatz als Brennstoff sowohl in der Zement- und Asphaltindustrie wie auch in thermischen Kraftwerken; - Zuschlagstoff in Handelsduenger oder direkter Einsatz als Trockenduenger (Phosphorduenger) in der Landwirtschaft. Alle diese Wege verlangen ein Schlammprodukt, das einen Trockengehalt von 55 resp. rund 90 Prozent aufweisen muss. Bei der Spezifikation einer moeglichst flexiblen Anlage in der Klaeranlage Zuerich-Werdhoelzli wurde deshalb eine zweistufige Trocknung verlangt, die

  15. Ohio incinerator given the go-ahead

    International Nuclear Information System (INIS)

    Kemezis, P.

    1992-01-01

    A federal judge has denied a request for an injunction against the startup of the long-stalled Waste Technologies Industries (WTI) commercial hazardous waste incinerator in East Liverpool, OH. The $140-million plant, owned by a US subsidiary of Swiss engineering group Von Roll Ltd. (Zuerich), will go through a startup stage and a seven-day trial burn during the next two months, according to WTI. In testimony in federal court in Huntington, WV, WTI had said it was losing $115,000/day in fixed costs because of the plant's startup delay. The company also said that long-term contracts with Chemical Waste Management (CWM; Oak Brook, IL), Du Pont (Wilmington, DE), and BASF Corp. (Parsippany, NJ) to use plant services could be jeopardized by the delay. WTI is believed to have 10-year service contracts with the three companies and also will use CWM to dispose of the ash from the incinerator

  16. Radioactive waste incineration system cold demonstration test

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Takaoku, Yoshinobu; Koyama, Shigeru; Nagae, Madoka; Seike, Yasuhiko; Yamanaka, Yasuhiro; Shibata, Kenji; Manabe, Kyoichi

    1984-12-01

    To demonstrate Waste Incineration System (WIS) which our company has been licensed by Combustion Engineering Inc., USA we installed a demonstration test plant in our Hiratsuka Research Laboratory and started the demonstration test on January 1984. One of the characteristics of this system is to be able to process many kinds of wastes with only one system, and to get high volume reduction factors. In our test plant, we processed paper, cloth, wood, polyethylene sheets as the samples of solid combustible wastes and spent ion exchange resins with incineration and processed condensed liquid wastes with spray drying. We have got good performances and enough Decontamination Factor (DF) data for the dust control equipment. In this paper, we introduce this demonstration test plant and report the test results up to date. (author).

  17. EXTRACELLULAR PROTEINS PRODUCED BY DIFFERENT SPECIES OF THE FUNGUS TRICHODERMA ON SECONDARY PAPER MILL SLUDGE SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Ida Vaskova,

    2012-01-01

    Full Text Available Kraft pulping is the most commonly used pulping process in the pulp and paper industry. In this process wood chips are chemically delignified using sodium sulfide and sodium hydroxide. Delignification is usually followed by mechanical fiberization and a bleaching process of the resulting wood pulp. In addition to lignin-free wood pulp, this process also produces waste that contains residues of used chemicals, lignin, cellulose, hemicelluloses, and small amounts of other wood components. Because of the worldwide large-scale production of paper, the sludge from paper mills contributes significantly to environmental pollution. Although there have been great efforts being made to utilize this lignin-rich material, sludge is mostly disposed in landfills or incinerated in a boiler. This research project used secondary sludge as a substrate for 7 wood-decay fungi taxonomically belonging to the genus Trichoderma. The examined fungi expressed the capability of consuming sludge components as a carbon source to produce extracellular proteins. The proteins were separated by gel electrophoresis. Before and after fungi cultivation, the sludge was analyzed by Fourier transform infrared spectroscopy (FTIR.

  18. Evaluation of the energetic potential of sewage sludge by characterization of its organic composition.

    Science.gov (United States)

    Schaum, C; Lensch, D; Cornel, P

    2016-01-01

    The composition of sewage sludge and, thus, its energetic potential is influenced by wastewater and wastewater treatment processes. Higher or lower heating values (HHV or LHV) are decisive factors for the incineration/gasification/pyrolysis of sewage sludge. The HHV is analyzed with a bomb calorimeter and converted to the LHV. It is also possible to calculate the heating value via chemical oxygen demand (COD), total volatile solids (TVS), and elemental composition. Calculating the LHV via the COD provides a suitable method. In contrast, the correlation of the HHV or LHV with the TVS is limited. One prerequisite here is a constant specific energy density; this was given with the types of sewage sludge (primary, surplus/excess, and digested sludge) investigated. If the energy density is not comparable with sewage sludge, for instance with the co-substrate (bio-waste, grease, etc.), the estimation of the heating value using TVS will fail. When calculating the HHV or LHV via the elemental composition, one has to consider the validity of the coefficients of the calculation equation. Depending on the organic composition, it might be necessary to adjust the coefficients, e.g. when adding co-substrates.

  19. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  20. Commercial Cyclone Incinerator Demonstration Program: April-September 1979

    International Nuclear Information System (INIS)

    Alexander, B.M.

    1979-01-01

    The commercial cyclone incinerator program was designed to study the effects of burning low-level waste contaminated with beta and gamma emitters in a cyclone system. The ultimate program goal is the demonstration of a cyclone incinerator at a nuclear power plant. During the past six months, the first program objective, NRC review of the Feasibility Plan, was achieved, and work began on the second objective, Complete Incinerator Feasibility Plan. Potential applications for the cyclone incinerator have been investigated. The feasibility plan for the incinerator system was reviewed with the Nuclear Regulatory Commission (NRC). Following a series of cold checkout burns, implementation of the feasibility plan was begun with the start of laboratory-scale experiments. Inconel 601 is being investigated as a material of construction for the incinerator burn chamber

  1. Fluidized bed incineration of radioactive waste

    International Nuclear Information System (INIS)

    Ziegler, D.L.

    1976-01-01

    A fluidized-bed incineration facility is being designed for installation at the Rocky Flats Plant to demonstrate a process for the combustion of transuranic waste. The unit capacity will be about 82 kg/hr of combustible waste. The combustion process will utilize in situ neutralization of acid gases generated in the process. The equipment design is based on data generated on a pilot unit and represents a scale-up of nine. Title I engineering is at least 70 percent complete

  2. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  3. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  4. Environmental assessment of incinerator residue utilisation

    OpenAIRE

    Toller, Susanna

    2008-01-01

     In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerat...

  5. Conceptual design report for alpha waste incinerator

    International Nuclear Information System (INIS)

    1979-04-01

    The Alpha Waste Incinerator, a new facility in the SRP H-Area, will process transuranic or alpha-contaminated combustible solid wastes. It will seal the radioactive ash and scrubbing salt residues in cans for interim storage in drums on site burial ground pads. This report includes objectives, project estimate, schedule, standards and criteria, excluded costs, safety evaluation, energy consumption, environmental assessment, and key drawings

  6. Incineration process for plutonium-contaminated waste

    International Nuclear Information System (INIS)

    Vincent, J.J.; Longuet, T.; Cartier, R.; Chaudon, L.

    1992-01-01

    A reprocessing plant with an annual throughput of 1600 metric tons of fuel generates 50 m 3 of incinerable α-contaminated waste. The reference treatment currently adopted for these wastes is to embed them in cement grout, with a resulting conditioned waste volume of 260 m 3 . The expense of mandatory geological disposal of such volumes justifies examination of less costly alternative solutions. After several years of laboratory and inactive pilot-scale research and development, the Commissariat a l'Energie Atomique has developed a two-step incineration process that is particularly suitable for α-contaminated chlorinated plastic waste. A 4 kg-h -1 pilot unit installed at the Marcoule Nuclear Center has now logged over 3500 hours in operation, during which the operating parameters have been optimized and process performance characteristics have been determined. Laboratory research during the same period has also determined the volatility of transuranic nuclides (U, Am and Pu) under simulated incineration conditions. A 100 g-h -1 laboratory prototype has been set up to obtain data for designing the industrial pilot facility

  7. Mobility of organic carbon from incineration residues

    International Nuclear Information System (INIS)

    Ecke, Holger; Svensson, Malin

    2008-01-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2 6-1 experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO 2 until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon

  8. Consolidated Incineration Facility metals partitioning test

    International Nuclear Information System (INIS)

    Burns, D.B.

    1993-01-01

    Test burns were conducted at Energy and Environmental Research Corporation's rotary kiln simulator, the Solid Waste Incineration Test Facility, using surrogate CIF wastes spiked with hazardous metals and organics. The primary objective for this test program was measuring heavy metals partition between the kiln bottom ash, scrubber blowdown solution, and incinerator stack gas. Also, these secondary waste streams were characterized to determine waste treatment requirements prior to final disposal. These tests were designed to investigate the effect of several parameters on metals partitioning: incineration temperature; waste chloride concentration; waste form (solid or liquid); and chloride concentration in the scrubber water. Tests were conducted at three kiln operating temperatures. Three waste simulants were burned, two solid waste mixtures (paper, plastic, latex, and one with and one without PVC), and a liquid waste mixture (containing benzene and chlorobenzene). Toxic organic and metal compounds were spiked into the simulated wastes to evaluate their fate under various combustion conditions. Kiln offgases were sampled for volatile organic compounds (VOC), semi-volatile organic compounds (SVOC), polychlorinated dibenz[p]dioxins and polychlorinated dibenzofurans (PCDD/PCDF), metals, particulate loading and size distribution, HCl, and combustion products. Stack gas sampling was performed to determine additional treatment requirements prior to final waste disposal. Significant test results are summarized below

  9. Rocky Flats Plant fluidized-bed incinerator

    International Nuclear Information System (INIS)

    Meile, L.J.; Meyer, F.G.; Johnson, A.J.; Ziegler, D.L.

    1982-01-01

    Laboratory and pilot-scale testing of a fluidized-bed incineration process for radioactive wastes led to the installation of an 82-kg/hr demonstration unit at Rocky Flats Plant in 1978. Design philosophy and criteria were formulated to fulfill the needs and objectives of an improved radwaste-incineration system. Unique process concepts include low-temperature (550 0 C), flameless, fluidized-bed combustion and catalytic afterburning; in-situ neutralization of acid gases; and dry off-gas cleanup. Detailed descriptions of the process and equipment are presented along with a summary of the equipment and process performance during a 2-1/2 year operational-testing period. Equipment modifications made during the test period are described. Operating personnel requirements for solid-waste burning are shown to be greater than those required for liquid-waste incineration; differences are discussed. Process-utility and raw-materials consumption rates for full-capacity operation are presented and explained. Improvements in equipment and operating procedures are recommended for any future installations. Process flow diagrams, an area floor plan, a process-control-system schematic, and equipment sketches are included

  10. Elimination and utilization of ammonium nitrogen from sewage treatment plants. Operating experience at the Goettingen and Cuxhaven sewage treatment plants; Entfernung und Verwertung von Ammonium-Stickstoff aus Klaeranlagen. Betriebserfahrungen auf den Klaeranlagen Goettingen und Cuxhaven

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, S.; Sackewitz, M.; Spindler, T. [Rauschert Verfahrenstechnik GmbH, Steinwiesen (Germany)

    1999-07-01

    Stripping is a physical-chemical technique for reliable and easy removal of ammonium-nitrogen from waste water. Especially for treating small and heavily loaded partial streams, stripping represents an efficient complement to biological process stages. An energy-optimized concept evolved by the process engineering firm Rauschert manages to combine proved technology and the utilization of all process products in the long term into an economical process solution. This is reflected in the operating results of reference plants at Goettingen and Cuxhaven. (orig.) [German] Das Strippen ist ein physikalisch-chemisches Verfahren zur sicheren und einfachen Entfernung von Ammonium-Stickstoff aus Abwasser. Vor allem bei der Behandlung kleiner und hochbeladener Teilstroeme ist die Strippung eine effiziente Ergaenzung zu biologischen Verfahrensstufen. Ein energieoptimiertes Konzept der Firma Rauschert Verfahrenstechnik verbindet die bewaehrte Technik und die langfristige Verwertung saemtlicher Prozessprodukte zu einer wirtschaftlichen Problemloesung. Dies spiegelt sich in den Betriebsergebnissen der Referenzanlagen in Goettingen und Cuxhaven wider. (orig.)

  11. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  12. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  13. Incinerators for radioactive wastes in Japanese nuclear power stations

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1983-01-01

    As the measures of treatment and disposal of radioactive wastes in nuclear power stations, the development of the techniques to decrease wastes, to reduce the volume of wastes, to treat wastes by solidification and to dispose wastes has been advanced energetically. In particular, efforts have been exerted on the volume reduction treatment from the viewpoint of the improvement of storage efficiency and the reduction of transport and disposal costs. Incineration as one of the volume reduction techniques has been regarded as the most effective method with large reduction ratio, but it was not included in waste treatment system. NGK Insulators Ltd. developed NGK type miscellaneous solid incinerators, and seven incinerators were installed in nuclear power stations. These incinerators have been operated smoothly, and the construction is in progress in six more plants. The necessity of incinerators in nuclear power stations and the problems in their adoption, the circumstance of the development of NGK type miscellaneous solid incinerators, the outline of the incinerator of Karlsruhe nuclear power station and the problems, the contents of the technical development in NGK, the outline of NGK type incinerators and the features, the outline of the pretreatment system, incinerator system, exhaust gas treatment system, ash taking out system and accessory equipment, the operational results and the performance are described. (Kako, I.)

  14. Waste incineration industry and development policies in China.

    Science.gov (United States)

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nuclear incineration method for long life radioactive wastes

    International Nuclear Information System (INIS)

    Matsumoto, Takaaki; Uematsu, Kunihiko.

    1987-01-01

    Nuclear incineration method is the method of converting the long life radioactive nuclides in wastes to short life or stable nuclides by utilizing the nuclear reaction caused by radiation, unlike usual chemical incineration. By the nuclear incineration, the radioactivity of wastes increases in a short period, but the problems at the time of the disposal are reduced because of the decrease of long life radioactive nuclides. As the radiation used for the nuclear incineration, the neutron beam from fission and fusion reactors and accelerators, the proton beam and gamma ray from accelerators have been studied. The object of the nuclear incineration is actinide, Sr-90, Cs-137, I-129 and Tc-99. In particular, waste actinide emits alpha ray, and is strongly toxic, accordingly, the motive of attempting the nuclear incineration is strong. In Japan, about 24t of waste actinide will accumulate by 2000. The principle of the nuclear incineration, and the nuclear incineration using nuclear fission and fusion reactors and accelerators are described. The nuclear incineration using fission reactors was examined for the first time in 1972 in USA. It is most promising because it is feasible by the present technology without particular research and development. (Kako, I.)

  16. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB......). Both samples were ED treated as stirred suspensions in sulphuric acid for 3,7 and 14 days. After 14 days, phosphorus was mainly mobilized towards the anode end (approx. 60% in the SA and 70% in the SB), whereas heavy metals mainly electromigrated towards the cathode end. The anolyte presented...... a composition of 98% of P, mainly as orthophosphate, and 2% of heavy metals. The highest heavy metal removal was achieved for Cu (ca. 80%) and the lowest for Pb and Fe (between 4% and 6%). The ED showed to be a viable method for phosphorus recovery from SSA, as it promotes the separation of P from the heavy...

  17. Environmental assessment of incinerator residue utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Toller, Susanna

    2008-10-15

    In Sweden, utilisation of incinerator residues outside disposal areas is restricted by environmental concerns, as such residues commonly contain greater amounts of potentially toxic trace elements than the natural materials they replace. On the other hand, utilisation can also provide environmental benefits by decreasing the need for landfill and reducing raw material extraction. This thesis provides increased knowledge and proposes better approaches for environmental assessment of incinerator residue utilisation, particularly bottom ash from municipal solid waste incineration (MSWI). A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for i) road construction with or without MSWI bottom ash, ii) three management scenarios for MSWI bottom ash and iii) three management scenarios for wood ash. Different types of potential environmental impact predominated in the activities of the system and the scenarios differed in use of resources and energy. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill. There is a potential for trace element leaching regardless of how the ash is managed. Trace element leaching, particularly of copper (Cu), was identified as being relatively important for environmental assessment of MSWI bottom ash utilisation. CuO is suggested as the most important type of Cu-containing mineral in weathered MSWI bottom ash, whereas in the leachate Cu is mainly present in complexes with dissolved organic matter (DOM). The hydrophilic components of the DOM were more important for Cu

  18. A comparative study on different burning method of sewage sludge ash in mortar brick with eggshell powder as additive

    Science.gov (United States)

    Ing, Doh Shu; Azed, Muhammad Aizat; Chin, Siew Choo

    2017-11-01

    Population growth that increase every year has led to the increasing amount of waste generated annually. The content of heavy metal Cadmium (Cd), Lead (Pb) and Zinc (Zn) represent the biggest concentrations of heavy metals in sewage sludge waste which can be the source of pollution. Furthermore, the excessive disposal of eggshells waste to landfills may attract rats and worms due to the organic protein matrix that may pose health problem to the public. In the last decade, the demand on cement mortar brick has increased has resulted in higher cement production. However, cement plant is one of the major contributors of carbon dioxide emission. Hence, this research focuses on the production of environmental friendly cement with sewage sludge since there is occurrence of pozolonic material in Sewage Sludge Ash (SSA). From the initial finding, the major components of SSA are Silicon Dioxide (SiO2), Calcium oxide (CaO), Aluminium Oxide (Al2O3), Iron (III) Oxide (Fe2O3), Sodium Oxide (Na2O), Potassium oxide (K2O), Magnesium Oxide (MgO) and Iron (II) Oxide (FeO). Sewage sludge needed to be incinerated to remove the heavy metal before it can be used as cement replacement in mortar brick production. The sewage sludge were treated using two methods namely incineration and microwave. Both types of sewage sludge were then added with eggshell powder as additive. Eggshell powder act as additive in this research due to its high content of calcium carbonate and has nearly same composition of limestone used in the production of cement. Different percentages of Eggshell Powder (ESP) (0%, 5%, 10%, 15%) and 10% fixed of Microwaved Sewage Sludge Ash (MSSA) and Incinerated Sewage Sludge Ash (ISSA) as optimum dosage partially replacing the cement used to test the brick mortar properties in term of compressive strength, flexural strength and also water absorption. Result showed that ISSA with 5% of ESP is the most optimum brick with highest compressive strength and flexural strength

  19. Minimization of Excess Sludge in Activated Sludge Systems

    Directory of Open Access Journals (Sweden)

    Sayed Ali Reza Momeni

    2006-01-01

    Full Text Available The disposal of excess sludge from wastewater treatment plant represents a rising challenge in activated sludge processes. Hence, the minimization of excess sludge production was investigated by increasing the dissolved oxygen in aeration basin. Units of the pilot include: Primary sedimentation tank, aeration basin, secondary sedimentation tank, and return sludge tank. Volume of aeration basin is 360 l and influent flow rate is 90 L/h. Influent of pilot is taken from effluent of grit chamber of Isfahan's North Wastewater treatment plant. The experiments were done on different parts of pilot during the 5 month of study. Results show that increase of dissolved oxygen in aeration tank affect on decrease of excess sludge. Increase of dissolved oxygen from 0.5 to 4.5 mg/L resulted in 25% decrease of excess sludge. Variation of dissolved oxygen affect on settleability of sludge too. By increase of dissolved oxygen, SVI decreased and then increased. Value of 1-3 mg/L was the adequate range of dissolved oxygen by settleability of sludge and optimum range was 2-2.5 mg/L. It could be concluded by increasing of dissolved oxygen up to of 3 mg/L, sludge settleability significant decreased.

  20. Agricultural yields of irradiated sewage sludge

    International Nuclear Information System (INIS)

    Magnavacca, Cecilia; Miranda, E.; Sanchez, M.

    1999-01-01

    Lettuce, radish and ryegrass have been used to study the nitrogen fertilization of soil by sewage sludge. The results show that the irradiated sludge improve by 15 - 30 % the production yield, compared to the non-irradiated sludge. (author)

  1. Significance of waste incineration in Germany; Stellenwert der Abfallverbrennung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    The report on the relevance of waste incineration in Germany is covering the following issues: change of the issue waste incineration in the last century, the controversy on waste incineration in the 80ies; environmental relevance of waste incineration; utilization of incineration residues; contribution to environmental protection; possible hazards for human health due are waste incinerator plants; the central challenges of waste incineration today; potential restraints to energy utilization in thermal waste processing; optimization of the energetic utilization of municipal wastes; future of the waste management and the relevance of waste incineration.

  2. Sewage sludge irradiation with electrons

    International Nuclear Information System (INIS)

    Tauber, M.

    1976-01-01

    The disinfection of sewage sludge by irradiation has been discussed very intensively in the last few months. Powerful electron accelerators are now available and the main features of the irradiation of sewage sludge with fast electrons are discussed and the design parameters of such installations described. AEG-Telefunken is building an irradiation plant with a 1.5 MeV, 25 mA electron accelerator, to study the main features of electron irradiation of sewage sludge. (author)

  3. Incineration experiences at the Tsuruga P.S. and outline of the advanced type incineration system at the Tokai No. 2 P.S

    International Nuclear Information System (INIS)

    Yui, K.; Kurihara, Y.; Inoue, S.; Takamori, H.; Karita, Y.

    1987-01-01

    In 1978, the first radwaste incineration plant among Japanese nuclear power stations started its operation at Tsuruga P.S., and the first advanced radwaste incineration plant has been constructed and accomplished the test operation in September 1986. This paper describes the outline of Tsuruga incineration plant and its operation achievements, and the outline of advanced incineration technology, Tokai No. 2 incineration plant and its test operation results

  4. Sewage sludge additive

    Science.gov (United States)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  5. Composting of sewage sludge irradiated

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1981-01-01

    Recently, the development of the techniques to return sewage sludge to forests and farm lands has been actively made, but it is necessary to assure its hygienic condition lest the sludge is contaminated by pathogenic bacteria. The research to treat sewage sludge by irradiation and utilize it as fertilizer or soil-improving material has been carried out from early on in Europe and America. The effects of the irradiation of sludge are sterilization, to kill parasites and their eggs, the inactivation of weed seeds and the improvement of dehydration. In Japan, agriculture is carried out in the vicinity of cities, therefore it is not realistic to use irradiated sludge for farm lands as it is. The composting treatment of sludge by aerobic fermentation is noticed to eliminate the harms when the sludge is returned to forests and farm lands. It is desirable to treat sludge as quickly as possible from the standpoint of sewage treatment, accordingly, the speed of composting is a problem. The isothermal fermentation experiment on irradiated sludge was carried out using a small-scale fermentation tank and strictly controlling fermentation conditions, and the effects of various factors on the fermentation speed were studied. The experimental setup and method are described. The speed of composting reached the maximum at 50 deg C and at neutral or weak alkaline pH. The speed increased with the increase of irradiation dose up to 30 Mrad. (Kako, I.)

  6. Dewatering properties of differently treated sewage sludge

    International Nuclear Information System (INIS)

    Zehnder, H.J.

    1977-01-01

    A study on dewatering properties of radiosterilized sewage sludge of different type and origin was carried out. For comparison, also heat-treated (pasteurized) sludge was investigated. The specific filtration resistance of irradiated sewage sludge was lowered in all types of sludge examined. In general, pasteurization increased this parameter. The settling properties of irradiated digested sewage sludge was slightly improved, mainly in the first hours after treatment. Microbial effects may mask the real sedimentation relations especcially in aerobically stabilized sludges. A pasteurization treatment of sewage sludge caused an increased content of soluble substances and suspended particles in the supernatant water. The supernatant water from irradiated sludge showed a smaller increase

  7. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate.

    Science.gov (United States)

    Dang, Yan; Lei, Yuqing; Liu, Zhao; Xue, Yiting; Sun, Dezhi; Wang, Li-Ying; Holmes, Dawn E

    2016-12-01

    A considerable amount of leachate with high fulvic acid (FA) content is generated during the municipal solid waste (MSW) incineration process. This incineration leachate is usually processed by downstream bio-methanogenic treatment. However, few studies have examined the impact that these compounds have on methanogenesis and how they are degraded and transformed during the treatment process. In this study, a laboratory-scale expanded granular sludge bed (EGSB) reactor was operated with MSW incineration leachate containing various concentrations of FA (1500 mg/L to 8000 mg/L) provided as the influent. We found that FA degradation rates decreased from 86% to 72% when FA concentrations in the reactor were increased, and that molecular size, level of humification and aromatization of the residual FA macromolecules all increased after bio-methanogenic treatment. Increasing FA influent concentrations also inhibited growth of hydrogenotrophic methanogens from the genus Methanobacterium and syntrophic bacteria from the genus Syntrophomonas, which resulted in a decrease in methane production and a concomitant increase in CO 2 content in the biogas. Sequences most similar to species from the genus Anaerolinea went up as FA concentrations increased. Bacteria from this genus are capable of extracellular electron transfer and may be using FA as an electron acceptor for growth or as a shuttle for syntrophic exchange with other microorganisms in the reactor. In order to determine whether FA could serve as an electron shuttle to promote syntrophy in an anaerobic digester, co-cultures of Geobacter metallireducens and G. sulfurreducens were grown in the presence of FA from raw leachate or from residual bioreactor effluent. While raw FA stimulated electron transfer between these two bacteria, residual FA did not have any electron shuttling abilities, indicating that FA underwent a significant transformation during the bio-methanogenic treatment process. These results are

  8. Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete

    OpenAIRE

    Nazar A.M. Md; Abas N.F.; Othuman Mydin M.A.

    2014-01-01

    A major problem arising from the widespread use of forestry biomass and processed timber waste as fuel is related to the production of significant quantities of ash as a by-product from the incineration of such biomasses. A major portion (approximately 70%) of the wood waste ash produced is land-filled as a common method of disposal. If the current trend continues with waste products, such as paper mill sludge landfills, a large amount of space would be required by 2020. A revenue study was c...

  9. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  10. EXPERIMENTAL INVESTIGATION OF PIC FORMATION DURING CFC INCINERATION

    Science.gov (United States)

    The report gives results of experiments to assess: (1) the effect of residual copper retained in an incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing chlorofluorocarbons (CFCs); and (2) th...

  11. Radioactivity partitioning in incinerators for miscellaneous low-level wastes

    International Nuclear Information System (INIS)

    Kyle, S.; Bellinger, E.

    1988-03-01

    Her Majesty's Inspectorate of Pollution (HMIP) authorises the use of hospital, university and Local Authority incinerators for the disposal of solid radioactive wastes. At present these authorisations are calculated on ''worst case'' assumptions, this report aims to review the experimental data on radioactivity partitioning in these incinerators, in order to improve the accuracy of HMIP predictions. The types of radionuclides used in medicine were presented and it is noted there is no literature on the composition of university waste. The different types of incinerators are detailed, with diagrams. Major differences in design are apparent, particularly the offgas cleaning equipment in nuclear incinerators which hinders comparisons with institutional incinerators. A comprehensive literature review revealed 17 references on institutional radioactive waste incineration, 11 of these contained data sets. The partitioning experiments were described and show a wide range of methodology from incinerating guinea pigs to filter papers. In general, only ash composition data were presented, with no details of emissions or plating out in the incinerator. Thus the data sets were incomplete, often with a poor degree of accuracy. The data sets contained information on 40 elements; those were compared and general trends were apparent such as the absence of H-3, C-14 and I-125 in the ash in contrast to the high retention of Sc-46. Large differences between data sets were noted for P-32, Sr-85 and Sn-113 and within one experiment for S-35. (author)

  12. EXPERIENCE IN INCINERATION APPLICABLE TO SUPERFUND SITE REMEDIATION

    Science.gov (United States)

    This document can be used as a reference tool for hazardous waste site remediation where incineration is used as a treatment alternative. It provides the user with information garnered from the experiences of others who use incineration. The document presents useful lessons in ev...

  13. Desulfurization of waste gases of the incinerator after petroleum refining

    International Nuclear Information System (INIS)

    Samesova, D.; Ladomersky, J.

    2001-01-01

    Desulfurization of waste gases of the incinerator after petroleum refining was developed. Mixing of wastes with lime (10% of additive of total volume of waste) was proved before introduction into incinerator. Concentrations of CO, CO 2 , O 2 , NO 2 , SO 2 and temperature of combustion products were measured by automatic analyser

  14. Chloride leaching from municipal solid waste incineration (MSWI) bottom ash

    NARCIS (Netherlands)

    Alam, Q.; Schollbach, K.; Florea, M.V.A.; Brouwers, H.J.H.; Vlastimil, Bilek; Kersner, Zbynek; Simonova, Hana

    2017-01-01

    The presence of chlorides in the Municipal Solid Waste Incineration bottom ashes (BA) hinders their potential for recycling in building materials. The contaminant content in the incineration residues is strictly regulated by the Dutch legislation Soil Quality Decree (2013). The fine fraction

  15. Incinerator for power reactor low-level radioactive waste

    International Nuclear Information System (INIS)

    Drolet, T.S.; Sovka, J.A.

    1976-01-01

    The technique chosen for volume reduction of combustible waste is incineration by a propane-fired unit. Noncombustible material will be compacted into 200 liter drums. A program of segregation of wastes at the producing nuclear stations was instituted. The design and operation of the incinerator, dose limits to the public, and derived release limits for airborne effluents are discussed

  16. Refuse derived fuel incineration: Fuel gas monitoring and analysis

    International Nuclear Information System (INIS)

    Ranaldi, E.; Coronidi, M.; De Stefanis, P.; Di Palo, C.; Zagaroli, M.

    1993-11-01

    Experience and results on refuse derived fuel (selected from municipal solid wastes) incineration are reported. The study involved the investigation of inorganic compounds (heavy metals, acids and toxic gases) emissions, and included feeding materials and incineration residues characterization and mass balance

  17. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  18. AL(0) in municipal waste incinerator ash

    Science.gov (United States)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  19. Environmental assessment of incinerator residue utilisation.

    Science.gov (United States)

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  20. Project No. 4 - Waste incineration facility

    International Nuclear Information System (INIS)

    2000-01-01

    There are currently 12000 m 3 of combustible waste stored at the Ignalina NPP site. It is estimated that by 2005 the volume will have increase to 15000 m 3 (filters, personnel protection, clothing and plastics). As a part of the preparation for the closure of the Ignalina NPP an incineration facility will be required to process combustible wastes to reduce the overall volume of short-lived radioactive wastes stored at the Ignalina NPP site, thus reducing the overall risk to the environment. Project activities includes the design, construction and commissioning of the proposed facility, including all licensing documentation

  1. The hot demonstration operation of the incinerator

    International Nuclear Information System (INIS)

    Yan Kezhi; Zhang Zhetao; Fan Xianhua; Li Zhenliang

    1991-01-01

    The hot demonstration operation results of the incinerator designed and developed by CIAE described. During the operation, machine oil containing 3 H with the specific activity of 3.7 x 10 4 Bq/L to 3.7 x 10 7 6 Bq/L was burned. The concentration of 3 H in the off-gas after cleaning was about 286 Bq/m 3 . The process parameters, decontamination factors of radionuclides and the results of environmental monitoring and evaluation are also given in this report

  2. Incineration, pyrolysis and gasification of electronic waste

    Science.gov (United States)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  3. Incineration, pyrolysis and gasification of electronic waste

    Directory of Open Access Journals (Sweden)

    Gurgul Agnieszka

    2017-01-01

    Full Text Available Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  4. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  5. Criticality management organization in the alpha incinerator

    International Nuclear Information System (INIS)

    Devillard, D.; Thiebaut, C.; Poinso, J.Y.; Huin, M.

    2004-01-01

    The Valduc Research Center, which reports to the CEA's Military applications Division, generates solid wastes contaminated with alpha emitters in the operation of its installations. An incineration plant has been built to treat these contaminated wastes. Criticality risk prevention is based on limiting the mass of active material undergoing treatment in the facility. A balance is compiled continuously by calculating the difference between the mass of active material entering the facility and the mass leaving it. Due to measurement uncertainties, the balance must be zeroed periodically by cleaning and drainage of all the equipment and the absence of holdup in the components must be checked. (authors)

  6. High temperature filter for incinerator gas purification

    International Nuclear Information System (INIS)

    Billard, Francois; Brion, Jacques; Cousin, Michel; Delarue, Roger

    1969-01-01

    This note describes a regenerable filter for the hot filtering of incinerator gases. The filter is made of several wire gauze candles coated with asbestos fibers as filtering medium. Unburnt products, like carbon black, terminate their combustion on the filter, reducing the risk of clogging and enhancing the operation time to several hundreds of hours between two regeneration cycles. The filter was tested on a smaller scale mockup, and then on an industrial pilot plant with a 20 kg/h capacity during a long duration. This note describes the installation and presents the results obtained [fr

  7. Incineration systems for low level and mixed wastes

    International Nuclear Information System (INIS)

    Vavruska, J.

    1986-01-01

    A variety of technologies has emerged for incineration of combustible radioactive, hazardous, and mixed wastes. Evaluation and selection of an incineration system for a particular application from such a large field of options are often confusing. This paper presents several current incineration technologies applicable to Low Level Waste (LLW), hazardous waste, and mixed waste combustion treatment. The major technologies reviewed include controlled-air, rotary kiln, fluidized bed, and liquid injection. Coupled with any incineration technique is the need to select a compatible offgas effluent cleaning system. This paper also reviews the various methods of treating offgas emissions for acid vapor, particulates, organics, and radioactivity. Such effluent control systems include the two general types - wet and dry scrubbing with a closer look at quenching, inertial systems, fabric filtration, gas absorption, adsorption, and various other filtration techniques. Selection criteria for overall waste incineration systems are discussed as they relate to waste characterization

  8. Incineration of low level and mixed wastes: 1986

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The University of California at Irvine, in cooperation with the Department of Energy, American Society of Mechanical Engineers, and chapters of the Health Physics Society, coordinated this conference on the Incineration of Low-Level Radioactive and Mixed Wastes, with the guidance of professionals active in the waste management community. The conference was held in April 22-25, 1986 at Sheraton airport hotel Charlotte, North Carolina. Some of the papers' titles were: Protection and safety of different off-gas treatment systems in radioactive waste incineration; performance assessment of refractory samples in the Los Alamos controlled-Air incinerator; incineration systems for low-level and mixed wastes; incineration of low-level radioactive waste in Switzerland-operational experience and future activities

  9. LCA Comparison of waste incineration in Denmark and Italy

    DEFF Research Database (Denmark)

    Turconi, Roberto; Butera, Stefania; Boldrin, Alessio

    2011-01-01

    Every year around 50 millions Mg solid waste are incinerated in Europe. Large differences exist in different regions, mainly regarding energy recovery, flue gas treatment and management of solid residues. This paper aims to identify and quantify those differences, providing a Life Cycle Assessment...... of two incinerator systems that are representative of conditions in Northern and Southern Europe. The two case studies are Aarhus (Denmark) and Milan (Italy). The results show that waste incineration appears more environmentally friendly in the Danish case than in the Italian one, due to the higher...... energy recovery and to local conditions, e.g. substitution of electricity and heat in the area. Focusing on the incineration process, Milan incinerator performs better than Aarhus, since its upstream impacts (related to the production of chemicals used in flue gas cleaning) are more than compensated...

  10. Sludge Digestion Manual; Handboek Slibgisting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    This manual offers a guideline for developing, designing, optimizing and operating sludge digestion installations based on sewage sludge. It also offers tools for solving operation problems [Dutch] Het Handboek is een leidraad voor het ontwikkelen, ontwerpen, optimaliseren en bedrijven van slibgistingsinstallaties voor zuiveringsslib. Ook geeft het handvatten voor het oplossen van operationele problemen.

  11. Shredder and incinerator technology for treatment of commercial transuranic wastes

    International Nuclear Information System (INIS)

    Oma, K.H.; Westsik, J.H. Jr.; Ross, W.A.

    1985-10-01

    This report describes the selection and evaluation of process equipment to accomplish the shredding and incineration of commercial TRU wastes. The primary conclusions derived from this study are: Shredding and incineration technology appears effective for converting simulated commercial TRU wastes to a noncombustible form. The gas-heated controlled-air incinerator received the highest technical ranking. On a scale of 1 to 10, the incinerator had a Figure-of-Merit (FOM) number of 7.0. This compares to an FOM of 6.1 for the electrically heated controlled-air incinerator and an FOM of 5.8 for the rotary kiln incienrator. The present worth costs of the incineration processes for a postulated commercial reprocessing plant were lowest for the electrically heated and gas-heated controlled-air incinerators with costs of $16.3 M and $16.9 M, respectively (1985 dollars). Due to higher capital and operating costs, the rotary kiln process had a present worth cost of $20.8 M. The recommended process from the three evaluated for the commercial TRU waste application is the gas-heated controlled-air incinerator with a single stage of shredding for feed pretreatment. This process had the best cost-effectiveness ratio of 1.0 (normalized). The electrically heated controller-air incinerator had a rating of 1.2 and the rotary kiln rated a 1.5. Most of the simulated wastes were easily processed by the low-speed shredders evaluated. The HEPA filters proved difficult to process, however. Wood-framed HEPA filters tended to ride on the cutter wheels and spacers without being gripped and shredded. The metal-framed HEPA filters and other difficult to shred items caused the shredders to periodically reach the torque limit and go into an automatic reversal cycle; however, the filters were eventually processed by the units. All three incinerators were ineffective for oxidizing the aluminum metal used as spacers in HEPA filters

  12. The use of sewage sludge as additive to avoid operational problems at combustion of shredder residues

    International Nuclear Information System (INIS)

    Gyllenhammar, Marianne

    2010-01-01

    When shredder light fraction (SLF) from recovery of metal scrap is energy recovered it is usually mixed with more than 90% of other wastes. SLF is a fuel with high energy content but also with relatively high chlorine and metal content and could cause deposit and corrosion problems in incineration plants. Sewage sludge has previously been shown to reduce deposition and corrosion problems in combustion of alkali and chlorine containing biomass. In this work 20 % SLF (by energy content) has been combusted together with municipal solid waste and industrial wastes, with and without addition of 3 % (by energy content) sewage sludge. The initial fireside corrosion rate was then compared to the corrosion rate during combustion of the normal fuel mix, i.e. only municipal solid waste and industrial wastes. The tests were done at the 20 MW fluidized bed boiler of Lidkoping heat production plant. During the tests air-cooled corrosion and deposit probes were exposed for 24 hours. Deposit probes were placed at three different flue gas temperatures - in the combustion chamber, upstream and downstream the convection pass. The corrosion probes were placed upstream the convection pass and on the probes there were three different materials at three different water temperatures (280, 350 and 420 degree Celsius). The tests showed that sewage sludge could help avoiding deposition and corrosion problems when incinerating SLF. The amount of deposits was reduced and the content of the deposits was less corrosive when sewage sludge was added. The project was financed by Waste Refinery as a collaboration project between Stena Metall AB, Metso AB, High Temperature Corrosion Center at Chalmers University of Technology, SP Technical Research Institute of Sweden and Lidkopings Varmeverk. (author)

  13. Operation of controlled-air incinerators and design considerations for controlled-air incinerators treating hazardous and radioactive wastes

    International Nuclear Information System (INIS)

    McRee, R.E.

    1986-01-01

    This paper reviews the basic theory and design philosophies of the so-called controlled-air incinerator and examines the features of this equipment that make it ideally suited to the application of low-level radioactive waste disposal. Special equipment design considerations for controlled air incinerators treating hazardous and radioactive wastes are presented. 9 figures

  14. The IRIS Incinerator at Cea-Valduc assessment after more than one ton and a half of active waste incineration

    International Nuclear Information System (INIS)

    Chateauvieux, H.; Guiberteau, P.; Longuet, T.; Lemort, F.; Lannaud, J.; Lorich, M.; Medzadourian, M.

    2000-01-01

    During the operation of its facilities, the Valduc Research Center produces alpha-contaminated solid waste. An incineration facility has been built to treat the most contaminated combustible waste. The process selected for waste incineration is the IRIS process, which was developed by the CEA at the Marcoule Nuclear Research Center. The Valduc Center asked SGN to build the incineration facility. The facility was commissioned in late 1996, and inactive waste incineration campaigns were run during more than 2,500 hours in 1997-1998. Active commissioning of the facility was performed in March 1999. Since then five campaigns with active waste and a complete plutonium cleaning session have been carried out, the results of which are given in the paper. The Valduc incinerator is the first industrial active application of the IRIS process. (authors)

  15. Residues from waste incineration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Astrup, T.; Juul Pedersen, A.; Hyks, J.; Frandsen, F.J.

    2009-08-15

    The overall objective of the project was to improve the understanding of the formation and characteristics of residues from waste incineration. This was done focusing on the importance of the waste input and the operational conditions of the furnace. Data and results obtained from the project have been discussed in this report according to the following three overall parts: i) mass flows and element distribution, ii) flue gas/particle partitioning and corrosion/deposition aspects, and iii) residue leaching. This has been done with the intent of structuring the discussion while tacitly acknowledging that these aspects are interrelated and cannot be separated. Overall, it was found that the waste input composition had significant impact of the characteristics of the generated residues. A similar correlation between operational conditions and residue characteristics could not be observed. Consequently, the project recommend that optimization of residue quality should focus on controlling the waste input composition. The project results showed that including specific waste materials (and thereby also excluding the same materials) may have significant effects on the residue composition, residue leaching, aerosol and deposit formation.It is specifically recommended to minimize Cl in the input waste. Based on the project results, it was found that a significant potential for optimization of waste incineration exist. (author)

  16. Thermal inertializing of solid incinerator residues

    International Nuclear Information System (INIS)

    Proelss, J.

    2003-01-01

    Inertialization of residues is a key task of incinerators. Residues of conventional incineration processes may contain high levels of inorganic or organic pollutants and must be treated prior to recycling. the most effective process is thermal treatment above the melting point. This will destroy organic pollutants like dioxins/furans and pathogenic compounds, while the heavy metals will be partly volatilized. The glassy slag obtained as end product is low in heavy metals and more or less resistant to leaching. The The author describes a method for calculating activity coefficients of volatile components of diluted, liquid multicomponent systems. With these data, the data base for thermodynamic description of fluid mixtures was updated, and a set of characteristic data was established for describing transport in an inflatable module. Once the activity coefficients of interesting constituents of the slag are known along with the transport conditions in the volatilization process, it is possible to optimize the thermal treatment of critical ashes and dusts with a view to energy consumption and process control. In two different exemplary process concepts, the energy consumption for residue treatment is estimated. The processes proposed are compared with published process proposals, and their energy consumption is assessed in a comoparative study [de

  17. Incineration of a Single Component Waste

    International Nuclear Information System (INIS)

    Ahmed, A.Z.

    1999-01-01

    An Advanced controlled air incinerator has been investigated, developed and put into successful operation for a single component and other combustible solid wastes. Experimental studies showed that, at lower temperature, CO 2 , and CH 4 contents in gas reactor effluent increases by the increase of glowing bed temperature, while H 2 O, H 2 and CO decreases. It was proved that, a burn- out efficiency (for ash residues) and a volume reduction factor appeared to be better than 95.5% and 98%, respectively. Moreover, high temperature permits increased volumes of incinerated material and results in increased gasification products . Process chemistry and kinetics of the gasification were studied. The rate of reaction of the gasification process was obtained at different operating conditions by solving a set of algebraic equations provided by applying the extent of reaction concept. The comparison showed a satisfactory agreement between the calculated and experimental values. Unsteady state mass balance equations are developed for the gas reactor. The derived equations are Laplace transformed and solved to generate the dynamic behavior of the system . Open loop calculations are conducted to study the effect of some disturbances on the performance of the gas reactor. Model output was compared with actual experimental data as only slight corrections have to be made

  18. Waste processing building with incineration technology

    Science.gov (United States)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  19. Ultrasonic sludge pretreatment under pressure.

    Science.gov (United States)

    Le, Ngoc Tuan; Julcour-Lebigue, Carine; Delmas, Henri

    2013-09-01

    The objective of this work was to optimize the ultrasound (US) pretreatment of sludge. Three types of sewage sludge were examined: mixed, secondary and secondary after partial methanisation ("digested" sludge). Thereby, several main process parameters were varied separately or simultaneously: stirrer speed, total solid content of sludge (TS), thermal operating conditions (adiabatic vs. isothermal), ultrasonic power input (PUS), specific energy input (ES), and for the first time external pressure. This parametric study was mainly performed for the mixed sludge. Five different TS concentrations of sludge (12-36 g/L) were tested for different values of ES (7000-75,000 kJ/kgTS) and 28 g/L was found as the optimum value according to the solubilized chemical oxygen demand in the liquid phase (SCOD). PUS of 75-150 W was investigated under controlled temperature and the "high power input - short duration" procedure was the most effective at a given ES. The temperature increase in adiabatic US application significantly improved SCOD compared to isothermal conditions. With PUS of 150 W, the effect of external pressure was investigated in the range of 1-16 bar under isothermal and adiabatic conditions for two types of sludge: an optimum pressure of about 2 bar was found regardless of temperature conditions and ES values. Under isothermal conditions, the resulting improvement of sludge disintegration efficacy as compared to atmospheric pressure was by 22-67% and 26-37% for mixed and secondary sludge, respectively. Besides, mean particle diameter (D[4,3]) of the three sludge types decreased respectively from 408, 117, and 110 μm to about 94-97, 37-42, and 36-40 μm regardless of sonication conditions, and the size reduction process was much faster than COD extraction. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Lipid profiling in sewage sludge.

    Science.gov (United States)

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Treatment of radioactive sludge

    International Nuclear Information System (INIS)

    Allison, W.; Payne, B.J.; Pegler, G.E.

    1979-01-01

    Radioactive sludge e.g. that which may accumulate in irradiated nuclear fuel element storage ponds, is treated by pumping it from a settling tank to a particle separator, conveniently a hydrocyclone and a sloping plate separator, the liquid being returned to the settling tank and the solids being metered into a drum pre-lined with dry cement. The drums are in a containment box in which they are transferred to a mixing station where the particles and cement are mixed and thence to a curing station. After curing the drums are embedded in cement in outer containers for transport to a long-term storage site. (author)

  2. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    International Nuclear Information System (INIS)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon; Kim, Yunbok; Kwon, Youngbock

    2014-01-01

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  3. Analysis of Discharged Gas from Incinerator using Simulated Organic Solution

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seungil; Kim, Hyunki; Heo, Jun; Kang, Dukwon [HaJI Co., Ltd., Radiation Eng. Center, Siheung (Korea, Republic of); Kim, Yunbok; Kwon, Youngbock [KORAD, Daejeon (Korea, Republic of)

    2014-05-15

    Korea has no experience of treatment of RI organic waste and appropriate measures for treatment of organic waste did not suggested. RI organic wastes which are occurring in KOREA are stored at the RI waste storage building of KORAD. But they can't no more receive the RI organic waste because the storage facility for RI organic waste was saturated with these organic wastes. In case of Japan, they recognized the dangerousness of long-term storage for RI organic wastes. In case of Korea, the released concentration of gaseous pollutant from the incinerator is regulated by attached table No.1 of the Notification No. 2012-60 of Nuclear Safety Commission and attached table No.8 of Clean Air Conservation Act. And the dioxin from the incinerator is regulated by attached table No.3 of Persistent Organic Pollutants Control Act. This experiment was performed to examine whether the incinerator introduced from Japan is manufactured suitably for municipal law regulation and to confirm the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws especially attached table No.1 of NSC using simulated organic waste solution. In this experiment, we examined whether the incinerator was manufactured suitably for municipal law regulation and confirmed the compliance about the gaseous pollutant released from incinerator with the above-mentioned laws using simulated organic waste solution. The design requirement of incinerator for RI organic waste in the municipal law regulation is proposed briefly but the requirements for more detail about the incinerator are proposed in regulation of Japan. The incinerator used in this experiment is satisfied with all clauses of the domestic as well as Japan. Multiple safety functions were installed in the incinerator such as air purge system to remove unburned inflammable gases in the furnace and earthquake detector. Also, perfect combustion of RI organic waste is achieved because the temperature in the furnace

  4. Guidance for writing permits for the use or disposal of sewage sludge. Draft report

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Section 405(d) of the Clean Water Act (CWA) directs the U.S. Environmental Protection Agency (EPA) to develop regulations containing guidelines for the use and disposal of sewage sludge. On February 19th, 1993, EPA published final regulations at 40 Code of Federal Regulations (CFR) Part 503 as the culmination of a major effort to develop technical standards in response to Section 405(d). These regulations govern three sewage sludge use and disposal practices: land application, surface disposal, and incineration. A key element in EPA's implementation of the Part 503 regulations is educating Agency and State personnel about these new requirements. Although the regulations are generally directly enforceable against all persons involved in the use and disposal of sewage sludge, they will also be implemented through permits issued to treatment works treating domestic sewage as defined in 40 CFR 122.22. Thus, the primary focus of the manual is to assist permit writers in incorporating the Part 503 requirements into permits; it serves as an update to the Guidance for Writing Case-by-Case Permit Conditions for Municipal Sewage Sludge (PB91-145508/HDM).

  5. 40 CFR 60.2885 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2885 Section 60.2885 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Other Solid Waste Incineration Units for Which Construction is Commenced After December 9, 2004....2885 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets all the...

  6. 40 CFR 60.2010 - Does this subpart apply to my incineration unit?

    Science.gov (United States)

    2010-07-01

    ... incineration unit? 60.2010 Section 60.2010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Commercial and Industrial Solid Waste Incineration Units for Which Construction Is Commenced After... Applicability § 60.2010 Does this subpart apply to my incineration unit? Yes, if your incineration unit meets...

  7. 40 CFR 60.2992 - What is an existing incineration unit?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What is an existing incineration unit... Times for Other Solid Waste Incineration Units That Commenced Construction On or Before December 9, 2004 Applicability of State Plans § 60.2992 What is an existing incineration unit? An existing incineration unit is...

  8. Physical and chemical factors affecting sludge consolidation

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Blimkie, M.E.; Lavoie, P.A

    1997-09-01

    Chemical reactions between sludge components and precipitation reactions within the pores of the existing sludge are shown to contribute to the consolidation of sludge under steam generator operating conditions. Simulations of sludge representative of plants with a mixed iron/copper feedtrain suggest that as the conditions in the feedtrain become more oxidizing the sludge will become harder with a higher nickel ferrite content. The precipitation of feedwater impurities introduced by condenser leaks and of zinc silicate, which is produced in plants with brass condenser tubes and silica in the makeup water, contribute significantly to sludge consolidation. Sodium phosphate is also shown to be an agent of sludge consolidation. (author)

  9. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  10. Inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant.

    Science.gov (United States)

    Liu, Zhao; Dang, Yan; Li, Caihua; Sun, Dezhi

    2015-09-01

    Fresh leachate from municipal solid waste (MSW) incineration plants generally contains extremely high NH4(+)-N concentration which could inhibit the bioactivity of microorganisms. The inhibitory effect of high NH4(+)-N concentration on anaerobic biotreatment of fresh leachate from a MSW incineration plant in China has been investigated in this study. The inhibition processes was studied by both static tests and a laboratory-scale expanded granular sludge bed (EGSB) reactor. The specific methanogenic activity (SMA) of the microorganisms in anaerobic granular sludge was inhibited with the NH4(+)-N concentration increasing to 1000mg/L in static tests. As well the chemical oxygen demand (COD) removal efficiency and the methane yield decreased in the EGSB reactor, while the volatile fatty acids (VFAs) accumulated and extracellular polymeric substances (EPS) of the anaerobic granular sludge increased with NH4(+)-N concentration rising to 1000mg/L, without any rebounding during 30days of operation. Decreasing NH4(+)-N concentration to 500mg/L in influent, the COD removal efficiency recovered to about 85% after 26days. 1000mg/L of NH4(+)-N in leachate was suggested to be the inhibition threshold in EGSB reactor. High-throughput sequencing results showed little changes in microbial communities of the sludge for a high NH4(+)-N concentration, indicating that the survival of most microorganisms was not affected under such a condition. It inhibited the bioactivity of the microorganisms, resulting in decrease of the COD removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Combustion of crude oil sludge containing naturally occurring radioactive material

    International Nuclear Information System (INIS)

    Mohamad Puad Abu; Muhd Noor Muhd Yunus; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    The characteristics of crude oil sludge fi-om the crude oil terminal are very unique because it contains both heavy metals and also Naturally Occurring Radioactive Material (NORM). As a result, the Department of Environmental (DOE) and the Atomic Energy Licensing Board (AELB) considered it as Scheduled Wastes and Low Level Radioactive Waste (LLRW) respectively. As a Scheduled Wastes, there is no problem in dealing with the disposal of it since there already exist a National Center in Bukit Nanas to deal with this type of waste. However, the Center could not manage this waste due to the presence of NORM by which the policy regarding the disposal of this kind of waste has not been well established. This situation is unclear to certain parties, especially with respect to the relevant authorities having final jurisdiction over the issue as well as the best practical method of disposal of this kind of waste. Existing methods of treatment viewed both from literature and current practice include that of land farming, storing in plastic drum, re-injection into abandoned oil well, recovery, etc., found some problems. Due to its organic nature, very low level in radioactivity and the existence of a Scheduled Waste incineration facility in Bukit Nanas, there is a potential to treat this sludge by using thermal treatment technology. However, prior to having this suggestion to be put into practice, there are issues that need to be addressed. This paper attempts to discuss the potentials and the related issues of combusting crude oil sludge based on existing experimental data as well as mathematical modeling

  12. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  13. Assessment of relative POHC destruction at EPA's incineration research facility

    International Nuclear Information System (INIS)

    Carroll, G.J.; Lee, J.W.

    1992-01-01

    As part of their permitting process, hazardous waste incinerators must undergo demonstration tests, or trial burns, during which their ability to meet EPA performance standards is evaluated. Among the performance standards is a minimum destruction and removal efficiency (DRE) for principal organic hazardous constituents (POHCs) in the incinerator waste feed. In accordance with the regulations promulgated under the Resource Conservation and Recovery Act (RCRA), selection POHCs for incinerator trial burns is to be based on the degree of difficulty of incineration of the organic constituents in the waste and on their concentration or mass in the waste feed. In order to predict the relative difficulty of incineration specific compounds, several incinerability ranking approaches have been proposed, including a system based on POHC heats of combustion and a system based on thermal stability under pyrolytic condition. The latter ranking system was developed by the University of Dayton Research Institute (UDRI) under contract to the US EPA Risk Reduction Engineering Laboratory (RREL). The system is supported largely by non-flame, laboratory-scale data and is based on kinetic calculations indicating that contributor to emissions of undestroyed organic compounds. The subject tests were conducted to develop data on POHC behavior in a larger-scale, conventional incineration environment. 5 refs., 3 tabs

  14. Volume Reduction of Decommissioning Burnable Waste with Oxygen Enrich Incinerator

    International Nuclear Information System (INIS)

    Min, B. Y.; Yang, D. S.; Lee, K. W.; Choi, J. W.

    2016-01-01

    The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. The volume reduction of the combustible wastes through the incineration technologies has merits from the view point of a decrease in the amount of waste to be disposed of resulting in a reduction of the disposal cost. Incineration is generally accepted as a method of reducing the volume of radioactive waste. The incineration technology is an effective treatment method that contains hazardous chemicals as well as radioactive contamination. This paper covers the general facility operation of an oxygen-enriched incinerator for the treatment of decommissioning wastes generated from a decommissioning project. The combustible wastes have been treated by the utilization of incinerator the capacity of the average 20 kg/hr. The decommissioning combustible waste of about 31 tons has been treated using Oxygen Enriched incinerator by at the end of 2016. The off-gas flow and temperature were maintained constant or within the desired range. The measured gases and particulate materials in the stack were considerably below the regulatory limits.

  15. Low-level waste institutional waste incinerator program

    International Nuclear Information System (INIS)

    Thompson, J.D.

    1980-04-01

    Literature surveyed indicated that institutional LLW is composed of organic solids and liquids, laboratory equipment and trash, and some pathological waste. Some toxic and hazardous chemicals are included in the variety of LLW generated in the nation's hospitals, universities, and research laboratories. Thus, the incinerator to be demonstrated in this program should be able to accept each of these types of materials as feedstock. Effluents from the DOE institutional incinerator demonstration should be such that all existing and proposed environmental standards be met. A design requirement was established to meet the most stringent flue gas standards. LLW incineration practice was reviewed in a survey of institutional LLW generators. Incinerator manufacturers were identified by the survey, and operational experience in incineration was noted for institutional users. Manufacturers identified in the survey were contacted and queried with regard to their ability to supply an incinerator with the desired capability. Special requirements for ash removal characteristics and hearth type were imposed on the selection. At the present time, an incinerator type, manufacturer, and model have been chosen for demonstration

  16. Low-level and mixed waste incinerator survey report

    International Nuclear Information System (INIS)

    Garcia, E.C.

    1988-10-01

    The Low-Level and Mixed Waste Survey Task was initiated to investigate and document current and planned incinerator facilities in the Department of Energy Defense Programs (DOE-DP) system. A survey was mailed to the DOE field offices requesting information regarding existing or planned incinerator facilities located under their jurisdiction. The information requested included type, capacities, uses, costs, and mechanical description of the incinerators. The results of this survey are documented in this report. Nine sites responded to the survey, with eight sites listing nine incineration units in several stages of operations. The Idaho National Engineering Laboratory listed two operational facilities. There are four incinerators that are planned for start-up in 1991. Of the existing incinerators, three are used mostly for low-level wastes, while the planned units will be used for low-level, mixed, and hazardous wastes. This report documents the current state of the incineration facilities in the DOE-DP system and provides a preliminary strategy for management of low-level wastes and a basis for implementing this strategy. 5 refs., 4 figs., 14 tabs

  17. The use of secondary energy for the drying of forest industry sludges - instead of destroying sludges to produce net energy; Jaetelaempoejen kaeyttoe metsaeteollisuuslietteiden kuivauksessa - lietteiden haevittaemisestae nettoenergian tuottamiseen - KLY 01

    Energy Technology Data Exchange (ETDEWEB)

    Pirkonen, P [VTT Energy, Jyvaeskylae (Finland)

    1999-12-31

    The amount of waste water sludges in chemical forest industry was in 1995/1996 about 400 000 t dry solid matter and 70 % of these substances were incinerated mainly in the bark boilers. The rest were landfilled. Bio-, primary- and DlP-sludges and concentrate from debarking plant were dried with two laboratory scale layer dryers and pilot scale drum dryer. Bark, saw dust and peat were used as reference materials. Saw dust dried fastest and primary sludge slowest but the differences in the drying time between the dried materials were not large. The final moisture content could be 50 % and for example flue gases could be used as drying medium. Typical surface area of layer dryer needed to dry 40 000 t sludge from the moisture of 75 % to the moisture of 50 % could be 150 m{sup 2} and the value of investment could be 3-4 million FIM. Next step could be drying of sludges in pilot scale using some factories as references to get an idea of the real drying costs. (orig.)

  18. The use of secondary energy for the drying of forest industry sludges - instead of destroying sludges to produce net energy; Jaetelaempoejen kaeyttoe metsaeteollisuuslietteiden kuivauksessa - lietteiden haevittaemisestae nettoenergian tuottamiseen - KLY 01

    Energy Technology Data Exchange (ETDEWEB)

    Pirkonen, P. [VTT Energy, Jyvaeskylae (Finland)

    1998-12-31

    The amount of waste water sludges in chemical forest industry was in 1995/1996 about 400 000 t dry solid matter and 70 % of these substances were incinerated mainly in the bark boilers. The rest were landfilled. Bio-, primary- and DlP-sludges and concentrate from debarking plant were dried with two laboratory scale layer dryers and pilot scale drum dryer. Bark, saw dust and peat were used as reference materials. Saw dust dried fastest and primary sludge slowest but the differences in the drying time between the dried materials were not large. The final moisture content could be 50 % and for example flue gases could be used as drying medium. Typical surface area of layer dryer needed to dry 40 000 t sludge from the moisture of 75 % to the moisture of 50 % could be 150 m{sup 2} and the value of investment could be 3-4 million FIM. Next step could be drying of sludges in pilot scale using some factories as references to get an idea of the real drying costs. (orig.)

  19. Operation of chemical incinerator for disposal of legacy chemicals

    International Nuclear Information System (INIS)

    Singhal, R.K.; Basu, H.; Saha, S.; Pimple, M.V.; Naik, P.D.

    2017-01-01

    For safe disposal of age-old legacy and unused chemicals in BARC, Trombay, oil-fired chemical incinerator with a capacity of 20 kg h"-"1 for solid and liquid chemical is installed adjacent to trash incinerator near RSMS, Gamma Field. The Incinerator was supplied by M/s B. L. Engineering Works, Ahmedabad. Commission of the same at Trombay site was carried out, under the supervision of Civil Engineering (CED), Technical Services Division (TSD) and Analytical Chemistry Division (custodian of the facility)

  20. Beta-gamma contaminated solid waste incinerator facility

    International Nuclear Information System (INIS)

    Hootman, H.E.

    1979-10-01

    This technical data summary outlines a reference process to provide a 2-stage, 400 lb/hour incinerator to reduce the storage volume of combustible process waste contaminated with low-level beta-gamma emitters in response to DOE Manual 0511. This waste, amounting to more than 200,000 ft 3 per year, is presently buried in trenches in the burial ground. The anticipated storage volume reduction from incineration will be a factor of 20. The incinerator will also dispose of 150,000 gallons of degraded solvent from the chemical separations areas and 5000 gallons per year of miscellaneous nonradioactive solvents which are presently being drummed for storage

  1. Heat Recovery From Tail Gas Incineration To Generate Power

    Energy Technology Data Exchange (ETDEWEB)

    Tawfik, Tarek

    2010-09-15

    Many industrial processes result in tail gas wastes that must be flared or incinerated to abide with environmental guidelines. Tail gas incineration occurs in several chemical processes resulting in high-temperature exhaust gas that simply go to the stack, thus wasting all that valuable heat! This paper discusses useful heat recovery and electric power generation utilizing available heat in exhaust gas from tail gas incinerators. This heat will be recovered in a waste-heat recovery boiler that will produce superheated steam to expand in a steam turbine to generate power. A detailed cost estimate is presented.

  2. Incineration in the nuclear field. The SGN experience

    International Nuclear Information System (INIS)

    Carpentier, S.

    1993-01-01

    The operation of power reactors, like that of fuel fabrication and nuclear fuel reprocessing plants, generated substantial quantities of waste. A large share of this waste is low- and medium-level waste, which is also combustible. Similarly, a number of institutes, laboratories, and hospitals, in the course of their activities, generated waste which a portion is radioactive and combustible. The chief advantage of incineration is to minimize the volume of burnable waste treated, and to produce a residue termed 'ash'. SGN has built up 25 years of experience in this field. The incinerators have been designed and the incineration processes are specially studied by SGN

  3. Recovery of plutonium from incinerator ash at Rocky Flats

    International Nuclear Information System (INIS)

    Johnson, T.C.

    1976-01-01

    Incineration of combustible materials highly contaminated with plutonium produces a residue of incinerator ash. Recovery of plutonium from incinerator ash residues at Rocky Flats is accomplished by a continuous leaching operation with nitric acid containing fluoride ion. Special equipment used in the leaching operation consists of a screw feeder, air-lift dissolvers, filters, solids dryer, and vapor collection system. Each equipment item is described in detail. The average dissolution efficiency of plutonium experienced with the process was 68% on the first pass, 74% on the second pass, and 64% on each subsequent pass. Total-solids dissolution efficiencies averaged 47% on the first pass and about 25% on each subsequent pass

  4. CIF---Design basis for an integrated incineration facility

    International Nuclear Information System (INIS)

    Bennett, G.F.

    1991-01-01

    This paper discusses the evolution of chosen technologies that occurred during the design process of the US Department of Energy (DOE) incineration system designated the Consolidated Incineration Facility (CIF) as the Savannah River Plant, Aiken, South Carolina. The Plant is operated for DOE by the Westinghouse Savannah River Company. The purpose of the incineration system is to treat low level radioactive and/or hazardous liquid and solid wastes by combustion. The objective for the facility is to thermally destroy toxic constituents and volume reduce waste material. Design criteria requires operation be controlled within the limits of RCRA's permit envelope

  5. Gaseous emissions from industrial processes: Municipal solid waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Cassitto, L.; Gallarini, V.; Magnani, P.; Rizzi, A. (Politecnico di Milano, Milan (Italy). Impianti Condizionamento e Fisica Tecnica Artea, Milan (Italy))

    A survey of European Communities proposed air pollution standards is coupled with an examination of the technical feasibility of building and operating municipal solid waste incineration plants that can successfully meet those standards. The results of the analysis indicate that modern incineration plants equipped with cogeneration and current-technology materials and energy recovery systems offer a significant contribution to meeting Italian national energy requirements and contemporaneously provide a decisive answer to the pressing need for safe and effective urban area waste disposal. The paper cautions however any final decision making must be based on extensive cost benefit analyses to determine the optimum combination of incinerator plant energy production and pollution control systems.

  6. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  7. Municipal Solid Waste Incineration For Accra Brewery Limited (Ghana)

    OpenAIRE

    Akoore, Alfred Akelibilna

    2016-01-01

    Waste incineration is a common practice of waste management tool in most developed countries, for the purpose of converting mass and volumes of waste into a very useful energy content. The aim of this study was to compare the costs benefits of waste incineration for Accra Brewery boiler plant and to investigate also the availability of waste and it´s compositions in Accra, as well as to determine the feasibility of using this waste as a source of fuel to the waste incineration plant. T...

  8. Development of an incineration system for radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.

    1989-01-01

    NUKEM GmbH (W. Germany) has developed and built some plants for treatment of radioactive waste. In cooperation with Karlsruhe Nuclear Research Center and on the basis of non-nuclear incineration plants, NUKEM has designed and built a new incineration plant for low level radioactive solid waste. The main features of the plant are improvement of the waste handling during feeding, very low particulate load downstream the incinerator and simple flue-gas cleaning system. This process is suitable for treatment of waste generated above all in nuclear power plants. (author)

  9. Radioactive waste incineration system cold demonstration test, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Masahiro; Seike, Yasuhiko; Takaoku, Yoshinobu; Yamanaka, Yasuhiro; Asahara, Masaharu; Katagiri, Keishi; Matsumoto, Kenji; Nagae, Madoka

    1985-12-01

    It is urgently necessary to solve the radioactive waste problem. As an effective means for the volume reduction of low-level radioactive wastes, an improved incineration system is greatly required. SHI's Waste Incineration (WIS) licensed by Combustion Engineering, Inc., has the significant advantage of processing a variety of wastes. We started a cold demonstration test in April, 1984 to verify the excellent performance of WIS. The test was successfully completed in September, 1985 with the record of more than 1000 hours of incineration testing time. In the present paper, we describe the test results during one and half years of test period.

  10. Enhancing the use of waste activated sludge as bio-fuel through selectively reducing its heavy metal content.

    Science.gov (United States)

    Dewil, Raf; Baeyens, Jan; Appels, Lise

    2007-06-18

    Power plant or cement kiln co-incineration are important disposal routes for the large amounts of waste activated sludge (WAS) which are generated annually. The presence of significant amounts of heavy metals in the sludge however poses serious problems since they are partly emitted with the flue gases (and collected in the flue gas dedusting) and partly incorporated in the ashes of the incinerator: in both cases, the disposal or reuse of the fly ash and bottom ashes can be jeopardized since subsequent leaching in landfill disposal can occur, or their "pozzolanic" incorporation in cement cannot be applied. The present paper studies some physicochemical methods for reducing the heavy metal content of WAS. The used techniques include acid and alkaline thermal hydrolysis and Fenton's peroxidation. By degrading the extracellular polymeric substances, binding sites for a large amount of heavy metals, the latter are released into the sludge water. The behaviour of several heavy metals (Cd, Cr, Cu, Hg, Pb, Ni, Zn) was assessed in laboratory tests. Results of these show a significant reduction of most heavy metals.

  11. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  12. Chemical state of mercury and selenium in sewage sludge ash based P-fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Christian, E-mail: cv.vogel@yahoo.de [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Krüger, Oliver; Herzel, Hannes [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Amidani, Lucia [ESRF—The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble (France); Adam, Christian [Division 4.4 Thermochemical Residues Treatment and Resource Recovery, Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin (Germany)

    2016-08-05

    Highlights: • Mercury bonded to carbon/organic material was detected in some sewage sludge ashes. • After thermochemcial treatment some mercury remains stabilized in the SSA matrix. • Analysis of the chemical state of mercury and selenium in highly diluted samples. - Abstract: Phosphorus-fertilizers from secondary resources such as sewage sludge ash (SSA) will become more important in the future as they could substitute conventional fertilizers based on the nonrenewable resource phosphate rock. Thermochemical approaches were developed which remove heavy metals from SSA prior to its fertilizer application on farmlands. We analyzed the chemical state of mercury and selenium in SSA before and after thermochemical treatment under different conditions for P-fertilizer production by X-ray absorption near edge structure (XANES) spectroscopy. In some incineration plants the mercury loaded carbon adsorber from off-gas cleaning was collected together with the SSA for waste disposal. SSAs from those plants contained mercury mainly bound to carbon/organic material. The other SSAs contained inorganic mercury compounds which are most probably stabilized in the SSA matrix and were thus not evaporated during incineration. During thermochemical treatment, carbon-bound mercury was removed quantitatively. In contrast, a certain immobile fraction of inorganic mercury compounds remained in thermochemically treated SSA, which were not clearly identified. HgSe might be one of the inorganic compounds, which is supported by results of Se K-edge XANES spectroscopy. Furthermore, the chemical state of selenium in the SSAs was very sensitive to the conditions of the thermochemical treatment.

  13. Wasting Away: To Sludge or Not to Sludge?

    Directory of Open Access Journals (Sweden)

    L Nicolle

    2001-01-01

    Full Text Available Following a century of high standards of sanitation, food and water safety in North America are often taken for granted. Recent outbreaks of illness attributed to food and water contamination, however, have challenged this complacency. Now, sludge is added to the list of concerns. Sewage sludge is the muddy substance that remains after the treatment of municipal sewage. This material includes not only human waste, but also household and industrial toxic wastes disposed of in local sewers. Federal and provincial Canadian regulations support the use of this material as fertilizer, within acceptable guidelines, as does the Environmental Protection Agency in the United States. The safety of sludge, however, is questioned by some individuals and groups. Specifically, the risk of infectious agents and toxins to workers or other exposed individuals, and the potential for heavy metals and organic chemicals to be transferred from sludge-treated fields into crops are concerns.

  14. Process development for utilizing asbestos cement waste in rotary kilns for the cement industry. Final report; Erarbeitung eines Verfahrens zur stofflichen Verwertung von zementgebundenen Asbestprodukten in Drehrohroefen fuer die Zementindustrie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, R.; Kieser, J.; Kraehner, A.

    1999-11-01

    The law for recycling and waste demands the utilization also for waste of asbestos cement (ac). The procedure of thermal utilization of ac in the flame of a rotary cement kiln was developed and patented by the research institute IBU-tec Weimar, Germany. The ac-material has to be pre-pulverized and grinded to a degree of fineness of R{sub 90}<15%. Considerations of safety engineering lead to the idea of common fine grinding of old oil (oo) and ac. This new procedure was searched in FuE-project in 1998/99 (financial support by BMBF). A mash of ac and oo was generated as a utilization product ready for firing which was injected into the flame of the rotary cement kiln. This particles of ac smelt to spherical shaped particles at a temperature above 1500 C. They were utilized by clinker formation. The material and gas stream leaving the kiln does not contain fibres of asbestos. This was demonstrated in a small equipment burning test. The industrial realization concerning cement plant Ruedersdorf, near Berlin, was searched, technologically described and safety engineeringly and financially assessed by a project study. Process-technical and financial advantages were seen for the dry fine grinding. The wet fine grinding with old oil could be used in cement plants using old oil as fuel. (orig.) [German] Das Kreislaufwirtschafts- und Abfallgesetz (1994) fordert u.a. die stoffliche Verwertung auch fuer Asbestzementabfaelle (AZ). Das vom Institut fuer Baustoff- und Umweltschutz-Technologie Weimar 1995 entwickelte und patentierte Verfahren zur thermischen Verwertung von AZ in der Flamme eines Zementdrehrohrofens erfuellt diese Forderung. Das AZ-Material muss vorzerkleinert und bis zur Rohmehlfeinheit (R{sub 90}<15%) feingemahlen werden. Sicherheitstechnische Ueberlegungen fuehrten zu der Idee, die Feinmahlung zusammen mit Altoel (AOe) zu erproben. Diese Verfahrensvariante wurde im Rahmen eines FuE-Projektes 1998/99 untersucht (finanzielle Foerderung durch das BMBF). Als

  15. Paper waste - Recycling, incineration or landfilling?

    DEFF Research Database (Denmark)

    Villanueva, Alejandro; Wenzel, Henrik

    2007-01-01

    comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location....... Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made...... and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover...

  16. Management of municipal solid waste incineration residues

    International Nuclear Information System (INIS)

    Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; Heuss-Assbichler, S.; Klein, R.; Lechner, P.

    2003-01-01

    The management of residues from thermal waste treatment is an integral part of waste management systems. The primary goal of managing incineration residues is to prevent any impact on our health or environment caused by unacceptable particulate, gaseous and/or solute emissions. This paper provides insight into the most important measures for putting this requirement into practice. It also offers an overview of the factors and processes affecting these mitigating measures as well as the short- and long-term behavior of residues from thermal waste treatment under different scenarios. General conditions affecting the emission rate of salts and metals are shown as well as factors relevant to mitigating measures or sources of gaseous emissions

  17. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  18. Sludge pretreatment chemistry evaluation: Enhanced sludge washing separation factors

    International Nuclear Information System (INIS)

    Colton, N.G.

    1995-03-01

    This report presents the work conducted in Fiscal Year 1994 by the Sludge Pretreatment Chemistry Evaluation Subtask for the Tank Waste Remediation System (TWRS) Tank Waste Treatment Science Task. The main purpose of this task, is to provide the technical basis and scientific understanding to support TWRS baseline decisions and actions, such as the development of an enhanced sludge washing process to reduce the volume of waste that will require high-level waste (HLW) vitrification. One objective within the Sludge Pretreatment Chemistry Evaluation Subtask was to establish wash factors for various SST (single-shell tank) sludges. First, analytical data were compiled from existing tank waste characterization reports. These data were summarized on tank-specific worksheets that provided a uniform format for reviewing and comparing data, as well as the means to verify whether the data set for each tank was complete. Worksheets were completed for 27 SST wastes. The analytical water wash data provided tank-specific information about the fraction of each component that dissolves with water, i.e., an estimate of tank-specific wash factors for evaluating tank-by-tank processing. These wash data were then used collectively to evaluate some of the wash factors that are assumed for the overall SST waste inventory; specifically, wash factors for elements that would be found primarily in sludges. The final step in this study was to incorporate the characterization and wash factor data into a spreadsheet that provides insight into the effect of enhanced sludge washing on individual tank sludges as well as for groups of sludges that may be representative of different waste types. Spreadsheet results include the estimated mass and percentage of each element that would be removed with washing and leaching. Furthermore, estimated compositions are given of the final wash and leach streams and residual solids, in terms of both concentration and dry weight percent

  19. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  20. Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology

    Directory of Open Access Journals (Sweden)

    Isam Alyaseri

    2017-03-01

    Full Text Available The aim of this study is to use the life cycle assessment method to measure the environmental performance of the sludge incineration process in a wastewater treatment plant and to propose an alternative that can reduce the environmental impact. To show the damages caused by the treatment processes, the study aimed to use an endpoint approach in evaluating impacts on human health, ecosystem quality, and resources due to the processes. A case study was taken at Bissell Point Wastewater Treatment Plant in Saint Louis, Missouri, U.S. The plant-specific data along with literature data from technical publications were used to build an inventory, and then analyzed the environmental burdens from sludge handling unit in the year 2011. The impact assessment method chosen was ReCipe 2008. The existing scenario (dewatering-multiple hearth incineration-ash to landfill was evaluated and three alternative scenarios (fluid bed incineration and anaerobic digestion with and without land application with energy recovery from heat or biogas were proposed and analyzed to find the one with the least environmental impact. The existing scenario shows that the most significant impacts are related to depletion in resources and damage to human health. These impacts mainly came from the operation phase (electricity and fuel consumption and emissions related to combustion. Alternatives showed better performance than the existing scenario. Using ReCipe endpoint methodology, and among the three alternatives tested, the anaerobic digestion had the best overall environmental performance. It is recommended to convert to fluid bed incineration if the concerns were more about human health or to anaerobic digestion if the concerns were more about depletion in resources. The endpoint approach may simplify the outcomes of this study as follows: if the plant is converted to fluid bed incineration, it could prevent an average of 43.2 DALYs in human life, save 0.059 species in the area

  1. A key role for arbuscular mycorrhiza in plant acquisition of P from sewage sludge recycled to soil

    DEFF Research Database (Denmark)

    Mackay, Jessica E.; Cavagnaro, Timothy R.; Müller-Stöver, Dorette Sophie

    2017-01-01

    Dried and incinerated sewage sludge (SS) have the potential to be used as phosphorus (P) fertilisers. Arbuscular mycorrhizal fungi (AMF) contribute to plant P uptake; however, their role in P uptake from SS has yet to be fully explored. A compartmented pot system with an isotope pool dilution...... approach was used to investigate wheat (Triticum aestivum L.) P uptake from soluble P, dried SS and incinerated SS, via roots and/or AMF hyphae. Wheat was sown into an inner compartment containing a 33P label with/without AMF (Rhizophagus irregularis) inoculum. An outer soil compartment contained the P...... access dried SS than when only roots could access dried SS. We discuss the results in terms of availability of P to roots and hyphae. We conclude that AMF play an important role in wheat P acquisition from dried SS and therefore can assist in the recycling of P in waste....

  2. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  3. Processing method for radioactive sludge

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Kaneko, Masaaki.

    1993-01-01

    The concentration of radioactive sludges contained in a storage tank is controlled, thereafter, a filter is charged into a processing vessel to continuously conduct dewatering. Then, the radioactive sludges and an oxidizer are mixed by stirring using a stirring impeller and by vibrations using a vibrator. At the same time, thermic rays are irradiated by using infrared ray lamps to heat and decompose them. Since thermic rays reach the center of the radioactive sludges by the infrared ray lamps, ion exchange resins are sufficiently decomposed and carbonized into inorganic material. Then, a filling hardener such as mortar cement having a good flowability is charged to solidify the wastes. With such procedures, radioactive sludges can be stored under a stable condition for a long period of time by decomposing organic materials into inorganic materials and solidifying them. Further, an operator's radiation exposure dose can remarkably be reduced by applying a predetermined and a stabilization treatment in an identical processing vessel. (N.H.)

  4. 33 CFR 159.131 - Safety: Incinerating device.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.131 Safety.... Unitized incineration devices must completely burn to a dry, inert ash, a simultaneous defecation and...

  5. Sustainable waste management via incineration system: an Islamic ...

    African Journals Online (AJOL)

    Sustainable waste management via incineration system: an Islamic outlook for conservation of the environment. ... Journal of Fundamental and Applied Sciences ... Abstract. This paper would firstly examine solid waste management currently ...

  6. Radioactive waste incinerator at the Scientific Ecology Group, Inc

    International Nuclear Information System (INIS)

    Dalton, J.D.; Arrowsmith, H.W.

    1990-01-01

    Scientific Ecology Group, Inc. (SEG) is the largest radioactive waste processor in the United States. This paper discusses how SEG recently began operation of the first commercial low-level radioactive waste incinerator in the United States. This incinerator is an Envikraft EK 980 NC multi-stage, partial pyrolysis, controlled-air unit equipped with an off-gas train that includes a boiler, baghouse, HEPA bank, and wet scrubber. The incinerator facility has been integrated into a large waste management complex with several other processing systems. The incinerator is operated on a continuous around-the-clock basis, processing up to 725 kg/hr (1,600 lbs/hr) of solid waste while achieving volume reduction ratios in excess of 300:1

  7. ORGANIC EMISSIONS FROM PILOT-SCALE INCINERATION OF CFCS

    Science.gov (United States)

    The paper gives results of the characterization of organic emissions resulting from the pilot-scale incineration of trichlorofluoromethane (CFC-11) and dichlorodifluoromethane (CFC-12) under varied feed concentrations. (NOTE: As a result of the Montreal Protocol, an international...

  8. Experimentation with a prototype incinerator for beta-gamma waste

    International Nuclear Information System (INIS)

    Farber, M.G.; Lewandowski, K.E.; Becker, G.W.

    1982-01-01

    A test facility for the incineration of suspect and low-level beta-gamma waste has been built and operated at the Savannah River Laboratory. The processing steps include waste feeding, incineration, ash residue packaging, and off-gas cleanup. Demonstration of the full-scale (180 kg/hr) facility with nonradioactive, simulated waste is currently in progress. At the present time, over nine metric tons of material including rubber, polyethylene, and cellulose have been incinerated during three burning campaigns. A comprehensive test program of solid and liquid waste incineration is being implemented. The data from the research program is providing the technical basis for a phase of testing with low-level beta-gamma waste generated at the Savannah River Plant

  9. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  10. Operational experience with Seibersdorf low-level incinerator

    International Nuclear Information System (INIS)

    Chalupa, G.

    1987-01-01

    This report contains information about an excess air incinerator which burned low level β and γ wastes (also α up to determined limits). The incinerator was started up in 1980 and it is clear that in a technical plant of such magnitude, some changes and alterations will be needed to be overcome according to the experiences of operation. This paper - after a short description of the incinerator plant itself - gives a summary of some of the operation and the changes which are made in the plant according to these facts. A partial redesign of the incinerator plant in the first half of 1985 resulted in a very satisfying new design, which proved its superiority during the runs in 1985 and 1986

  11. A study on the safety of radioactive waste incineration facilities

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Y C [Yonsei Univ., Seoul (Korea, Republic of); Park, W J; Lee, B S; Lee, S H [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1994-12-15

    The main scope of the project is the selection of some considerable items in design criteria of radioactive waste incineration facilities not only for the protection of workers and residents during operation but also for the safe disposal of ashes after incineration. The technological and regulational status on incineration technologies in domestic and foreign is surveyed and analyzed for providing such basic items which must be contained in the guideline for safe and appropriate design, construction and operation of the facilities. The contents of the project are summarized as follows; surveying the status on incineration technologies for both radioactive and non-radioactive wastes in domestic and foreign, surveying and analysing same related technical standards and regulations in domestic and foreign, picking out main considerable items and proposing a direction of further research.

  12. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  13. CO{sub 2} laser-aided waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Costes, J R; Guiberteau, P [CEA Centre d` Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d` Exploitation du Retraitement et de Demantelement; Caminat, P; Bournot, P

    1994-12-31

    Lasers are widely employed in laboratories and in certain industrial applications, notably for welding, cutting and surface treatments. This paper describes a new application, incineration, which appears warranted when the following features are required: high-temperature incineration (> 1500 deg C) with close-tolerance temperature control in an oxidizing medium while ensuring containment of toxic waste. These criteria correspond to the application presented here. Following a brief theoretical introduction concerning the laser/surface interaction, the paper describes the incineration of graphite waste contaminated with alpha-emitting radionuclides. Process feasibility has been demonstrated on a nonradioactive prototype capable of incinerating 10 kg{sup -h-1} using a 7 kW CO{sub 2} laser. An industrial facility with the same capacity, designed to operate within the constraints of an alpha-tight glove box environment, is now at the project stage. Other types of applications with similar requirements may be considered. (authors). 3 refs., 7 figs.

  14. Elemental composition of suspended particles released in refuse incineration

    International Nuclear Information System (INIS)

    Mamuro, Tetsuo; Mizohata, Akira

    1979-01-01

    Suspended particles released in refuse incineration were subjected to multielement analysis by means of instrumental neutron activation method and energy dispersive X-ray fluorescence spectrometry. The analytical results were compared with the elemental concentrations observed in the urban atmosphere, and the contribution of the refuse incineration to the urban atmosphere was roughly estimated. Greenberg et al. pointed out on the basis of their analyses that the refuse incineration can account for major portions of the Zn, Cd and Sb observed on urban aerosols. According to our results, the contribution of the refuse incineration for Zn, Cd and Sb is not negligible, but not so serious as in U.S.A. big cities. In Japan big cities there must be other more important sources of these elements. (author)

  15. Naugatuck, Conn. Incinerator to Control Mercury Emissions Under Settlement

    Science.gov (United States)

    Equipment to limit the amount of mercury pollution sent into the atmosphere will be installed at an incinerator owned by Naugatuck, Conn., if an agreement between the USEPA, the U.S. Department of Justice, the Borough of Naugatuck...

  16. Hazardous waste incinerator permitting in Texas from inception to operation

    International Nuclear Information System (INIS)

    Simms, M.D.; McDonnell, R.G. III

    1991-01-01

    The regulatory permitting process for hazardous waste incinerators i a long and arduous proposition requiring a well-developed overall strategy. In Texas, RCRA permits for the operation of hazardous waste incinerator facilities are issued through the federally delegated Texas Water Commission (TWC). While the TWC has primacy in the issuance of RCRA permits for hazardous waste incinerators, the Texas Air Control Board (TACB) provides a significant portion of the Part B application review and provides much of the permit language. In addition to dealing with regulatory agencies, RCRA permitting provides by significant public involvement. Often the lack of public support becomes a major roadblock for an incinerator project. In order to establish an effective strategy which addresses the concerns of regulatory agencies and the public, it is important to have an understanding of the steps involved in obtaining a permit. A permit applicant seeking to construct a new hazardous waste incinerator can expect to go through a preapplication meeting with government regulators, a site selection process, file an application, respond to calls for additional technical information from both the TACB and the TWC, defend the application in a hearing, have a recommendation from a TWC hearing examiner and, finally, receive a determination from the TWC's Commissioners. Presuming a favorable response from the Commission, the permittee will be granted a trial burn permit and may proceed with the construction, certification and execution of a trial burn at the facility. Subsequent to publication of the trial burn results and approval by the TWC, the permittee will possess an operational hazardous waste incinerator permit. The paper describes the major steps required to receive an operational permit for a hazardous waste incinerator in the State of Texas. Important issues involved in each step will be discussed including insights gained from recent incinerator permitting efforts

  17. Molt salts reactors capacity for wastes incineration and energy production

    International Nuclear Information System (INIS)

    David, S.; Nuttin, A.

    2005-01-01

    The molten salt reactors present many advantages in the framework of the IV generation systems development for the energy production and/or the wastes incineration. After a recall of the main studies realized on the molten salt reactors, this document presents the new concepts and the identified research axis: the MSRE project and experience, the incinerators concepts, the thorium cycle. (A.L.B.)

  18. Design considerations for incineration of transuranic-contaminated solid wastes

    International Nuclear Information System (INIS)

    Koenig, R.A.

    1977-01-01

    The Los Alamos Scientific Laboratory has established a development program to evaluate alternate production-level (100-200 lb/hr throughput) volume reduction processes for transuranic-contaminated solid waste. The first process selected for installation and study is based on controlled-air incineration. Design considerations leading to selection of feed preparation, incineration, residue removal, and off-gas cleanup components and their respective radioactive containment provisions will be presented

  19. Method for controlling incineration in combustor for radioactive wastes

    International Nuclear Information System (INIS)

    Takaoku, Y.; Uehara, A.

    1991-01-01

    This invention relates to a method for controlling incineration in a combustor for low-level radioactive wastes. In particular, it relates to a method for economizing in the consumption of supplemental fuel while maintaining a stable incineration state by controlling the amount of fuel and of radioactive wastes fed to the combustor. The amount of fuel supplied is determined by the outlet gas temperature of the combustor. (L.L.)

  20. Enhanced sludge washing evaluation plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.D.

    1994-09-01

    The Tank Waste Remediation System (TWRS) Program mission is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and the strontium/cesium capsules) in an environmentally sound, safe, and cost-effective manner. The scope of the TWRS Waste Pretreatment Program is to treat tank waste and separate that waste into HLW and LLW fractions and provide additional treatment as required to feed LLW and HLW immobilization facilities. Enhanced sludge washing was chosen as the baseline process for separating Hanford tank waste sludge. Section 1.0 briefly discusses the purpose of the evaluation plan and provides the background that led to the choice of enhanced sludge washing as the baseline process. Section 2.0 provides a brief summary of the evaluation plan details. Section 3.0 discusses, in some detail, the technical work planned to support the evaluation of enhanced sludge washing. Section 4.0 briefly discusses the potential important of policy issues to the evaluation. Section 5.0 discusses the methodology to be used in the evaluation process. Section 6.0 summarizes the milestones that have been defined to complete the enhanced sludge washing evaluation and provides a summary schedule to evaluate the performance of enhanced sludge washing. References are identified in Section 7.0, and additional schedule and milestone information is provided in the appendices.