WorldWideScience

Sample records for slow-light multiple coupled

  1. Dynamically tunable slow light based on plasmon induced transparency in disk resonators coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Han, Xu; Wang, Tao; Liu, Bo; He, Yu; Tang, Jian; Li, Xiaoming

    2015-01-01

    Ultrafast and low-power dynamically tunable single channel and multichannel slow light based on plasmon induced transparencies (PITs) in disk resonators coupled to a metal-dielectric-metal (MDM) waveguide system with a nonlinear optical Kerr medium is investigated both numerically and analytically. A coupled-mode theory (CMT) is introduced to analyze this dynamically tunable single channel slow light structure. Multichannel slow light is realized in this plasmonic waveguide structure based on a bright–dark mode coupling mechanism. In order to reduce the pump intensity and obtain ultrafast response time, the traditional nonlinear Kerr material is replaced by monolayer graphene. It is found that the magnitude of the single PIT window can be controlled between 0.08 and 0.48, while the corresponding group index is controlled between 14.5 and 2.0 by dynamically decreasing pump intensity from 11.7 to 4.4 MW cm −2 . Moreover, the phase shift multiplication effect is found in this structure. This work paves a new way towards the realization of highly integrated optical circuits and networks, especially for wavelength-selective, all-optical storage and nonlinear devices. (paper)

  2. Slow-light dynamics in nonlinear periodic waveguides couplers

    DEFF Research Database (Denmark)

    Sukhorukov, A.A.; Ha, S.; Powell, D.A.

    2009-01-01

    We predict pulse switching and reshaping through nonlinear mixing of two slow-light states with different phase velocities in the same frequency range, and report on the first experimental observation of slow-light tunneling between coupled periodic waveguides.......We predict pulse switching and reshaping through nonlinear mixing of two slow-light states with different phase velocities in the same frequency range, and report on the first experimental observation of slow-light tunneling between coupled periodic waveguides....

  3. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  4. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes

    International Nuclear Information System (INIS)

    Fang, Yun-tuan; Ni, Zhi-yao; Zhu, Na; Zhou, Jun

    2016-01-01

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively. (paper)

  5. Broad self-trapped and slow light bands based on negative refraction and interference of magnetic coupled modes.

    Science.gov (United States)

    Fang, Yun-Tuan; Ni, Zhi-Yao; Zhu, Na; Zhou, Jun

    2016-01-13

    We propose a new mechanism to achieve light localization and slow light. Through the study on the coupling of two magnetic surface modes, we find a special convex band that takes on a negative refraction effect. The negative refraction results in an energy flow concellation effect from two degenerated modes on the convex band. The energy flow concellation effect leads to forming of the self-trapped and slow light bands. In the self-trapped band light is localized around the source without reflection wall in the waveguide direction, whereas in the slow light band, light becomes the standing-waves and moving standing-waves at the center and the two sides of the waveguide, respectively.

  6. Experimental demonstration of spinor slow light

    Science.gov (United States)

    Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.

    2016-03-01

    Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.

  7. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    Science.gov (United States)

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  8. Theory of disorder-induced coherent scattering and light localization in slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Patterson, M; Hughes, S

    2010-01-01

    We introduce a theoretical formalism to describe disorder-induced extrinsic scattering in slow light photonic crystal waveguides. This work details and extends the optical scattering theory used in a recent issue of Physics Review Letters (Patterson et al 2009 Phys. Rev. Lett. 102 253903) to describe coherent scattering phenomena and successfully explain related experimental measurements. Our presented theory, which combines Green function and coupled mode methods, allows us to self-consistently account for arbitrary multiple scattering for the propagating electric field and recover experimental features such as resonances near the band edge. The technique is fully three-dimensional and can calculate the effects of disorder on the propagating field over thousands of unit cells. As an application of this theory, we explore various sample lengths and disordered instances, and demonstrate the profound effect of multiple scattering in the waveguide transmission. The spectra yield rich features associated with disorder-induced localization and multiple scattering, which are shown to be exacerbated in the slow light propagation regime

  9. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  10. Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides

    International Nuclear Information System (INIS)

    Xiao-Yu, Mao; Geng-Yan, Zhang; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2008-01-01

    By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W 2 ) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity ν g in incident waveguide can be achieved. In particular, proper W 2 and r' can lead to the lowest ν g of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion

  11. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  12. Coupled plasmon-exciton induced transparency and slow light in plexcitonic metamaterials

    DEFF Research Database (Denmark)

    Panahpour, Ali; Silani, Yaser; Farrokhian, Marzieh

    2012-01-01

    Classical analogues of the well-known effect of electromagnetically induced transparency (EIT) in quantum optics have been the subject of considerable research in recent years from microwave to optical frequencies, because of their potential applications in slow light devices, studying nonlinear...... effects in low-loss nanostructures, and development of low-loss metamaterials. A large variety of plasmonic structures has been proposed for producing classical EIT-like effects in different spectral ranges. The current approach for producing plasmon-induced transparency is usually based on precise design...... effects in metamaterials composed of such coupled NPs. To reveal more details of the wave-particle and particle-particle interactions, the electric field distribution and field lines of Poynting vector inside and around the NPs are calculated using the finite element method. Finally, using extended...

  13. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    Science.gov (United States)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-01-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  14. Tailoring the slow light behavior in terahertz metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Manjappa, Manukumara; Cong, Longqing; Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Center for Disruptive Photonic Technologies, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Chiam, Sher-Yi [NUS High School of Math and Science, 20 Clementi Avenue 1, Singapore, Singapore 129957 (Singapore); Bettiol, Andrew A. [Department of Physics, National University of Singapore, Science Drive 3, Singapore, Singapore 117542 (Singapore); Zhang, Weili [School of Electrical and Computer Engineering, Oklahoma State University, 202 Engineering South, Stillwater, Oklahoma 74078 (United States)

    2015-05-04

    We experimentally study the effect of near field coupling on the transmission of light in terahertz metasurfaces. Our results show that tailoring the coupling between the resonators modulates the amplitude of resulting electromagnetically induced transmission, probed under different types of asymmetries in the coupled system. Observed change in the transmission amplitude is attributed to the change in the amount of destructive interference between the resonators in the vicinity of strong near field coupling. We employ a two-particle model to theoretically study the influence of the coupling between bright and quasi-dark modes on the transmission properties of the system and we find an excellent agreement with our observed results. Adding to the enhanced transmission characteristics, our results provide a deeper insight into the metamaterial analogues of atomic electromagnetically induced transparency and offer an approach to engineer slow light devices, broadband filters, and attenuators at terahertz frequencies.

  15. Rapidly reconfigurable slow-light system based on off-resonant Raman absorption

    International Nuclear Information System (INIS)

    Vudyasetu, Praveen K.; Howell, John C.; Camacho, Ryan M.

    2010-01-01

    We present a slow-light system based on dual Raman absorption resonances in warm rubidium vapor. Each Raman absorption resonance is produced by a control beam in an off-resonant Λ system. This system combines all optical control of the Raman absorption and the low-dispersion broadening properties of the double Lorentzian absorption slow light. The bandwidth, group delay, and central frequency of the slow-light system can all be tuned dynamically by changing the properties of the control beam. We demonstrate multiple pulse delays with low distortion and show that such a system has fast switching dynamics and thus fast reconfiguration rates.

  16. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  17. Slow, stopped and stored light

    International Nuclear Information System (INIS)

    Welch, G.; Scully, M.

    2005-01-01

    Light that can been slowed to walking pace could have applications in telecommunications, optical storage and quantum computing. Whether we use it to estimate how far away a thunderstorm is, or simply take it for granted that we can have a conversation with someone on the other side of the world, we all know that light travels extremely fast. Indeed, special relativity teaches us that nothing in the universe can ever move faster than the speed of light in a vacuum: 299 792 458 ms sup - sup 1. However, there is no such limitation on how slowly light can travel. For the last few years, researchers have been routinely slowing light to just a few metres per second, and have recently even stopped it dead in its tracks so that it can be stored for future use. Slow-light has considerable popular appeal, deriving perhaps from the importance of the speed of light in relativity and cosmology. If everyday objects such as cars or people can travel faster than 'slow' light, for example, then it might appear that relativistic effects could be observed at very low speeds. Although this is not the case, slow light nonetheless promises to play an important role in optical technology because it allows light to be delayed for any period of time desired. This could lead to all-optical routers that would increase the bandwidth of the Internet, and applications in optical data storage, quantum information and even radar. (U.K.)

  18. Slow light invisibility, teleportation, and other mysteries of light

    CERN Document Server

    Perkowitz, Sidney

    2011-01-01

    Slow Light is a popular treatment of today's astonishing breakthroughs in the science of light. Even though we don't understand light's quantum mysteries, we can slow it to a stop and speed it up beyond its Einsteinian speed limit, 186,000 miles/sec; use it for quantum telecommunications; teleport it; manipulate it to create invisibility; and perhaps generate hydrogen fusion power with it. All this is lucidly presented for non-scientists who wonder about teleportation, Harry Potter invisibility cloaks, and other fantastic outcomes. Slow Light shows how the real science and the fantasy inspire

  19. Theoretical analysis of multiple quantum-well, slow-light devices under applied external fields using a fully analytical model in fractional dimension

    Energy Technology Data Exchange (ETDEWEB)

    Kohandani, R; Kaatuzian, H [Photonics Research Laboratory, Electrical Engineering Department, AmirKabir University of Technology, Hafez Ave., Tehran (Iran, Islamic Republic of)

    2015-01-31

    We report a theoretical study of optical properties of AlGaAs/GaAs multiple quantum-well (MQW), slow-light devices based on excitonic population oscillations under applied external magnetic and electric fields using an analytical model for complex dielectric constant of Wannier excitons in fractional dimension. The results are shown for quantum wells (QWs) of different width. The significant characteristics of the exciton in QWs such as exciton energy and exciton oscillator strength (EOS) can be varied by application of external magnetic and electric fields. It is found that a higher bandwidth and an appropriate slow-down factor (SDF) can be achieved by changing the QW width during the fabrication process and by applying magnetic and electric fields during device functioning, respectively. It is shown that a SDF of 10{sup 5} is obtained at best. (slowing of light)

  20. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    Science.gov (United States)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  1. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Wong, Chee Wei; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  2. Slow-light enhanced absorption in a hollow-core fiber

    DEFF Research Database (Denmark)

    Grgic, Jure; Xiao, Sanshui; Mørk, Jesper

    2010-01-01

    Light traversing a hollow-core photonic band-gap fiber may experience multiple reflections and thereby a slow-down and enhanced optical path length. This offers a technologically interesting way of increasing the optical absorption of an otherwise weakly absorbing material which can infiltrate...

  3. Silicon coupled-ring resonator structures for slow light applications: potential, impairments and ultimate limits

    International Nuclear Information System (INIS)

    Canciamilla, A; Torregiani, M; Ferrari, C; Morichetti, F; Melloni, A; De La Rue, R M; Samarelli, A; Sorel, M

    2010-01-01

    Coupled-ring resonator-based slow light structures are reported and discussed. By combining the advantages of high index contrast silicon-on-insulator technology with an efficient thermo-optical activation, they provide an on-chip solution with a bandwidth of up to 100 GHz and a slowdown factor of up to 16, as well as a continuous reconfiguration scheme and a fine tunability. The performance of these devices is investigated in detail for both static and dynamic operation, in order to evaluate their potential in optical signal processing applications at high bit rate. The main impairments imposed by fabrication imperfections are also discussed in relation to the slowdown factor. In particular, the analysis of the impact of backscatter, disorder and two-photon absorption on the device transfer function reveals the ultimate limits of these structures and provides valuable design rules for their optimization

  4. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    Science.gov (United States)

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  5. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  6. Slow-light pulses in moving media

    International Nuclear Information System (INIS)

    Fiurasek, J.; Leonhardt, U.; Parentani, R.

    2002-01-01

    Slow light in moving media reaches a counterintuitive regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counterpropagating flow exceeds the group velocity. When the counterflow slows down, pulses are reflected

  7. Deflection of slow light by magneto-optically controlled atomic media

    International Nuclear Information System (INIS)

    Zhou, D. L.; Wang, R. Q.; Zhou, Lan; Yi, S.; Sun, C. P.

    2007-01-01

    We present a semiclassical theory for light deflection by a coherent Λ-type three-level atomic medium in an inhomogeneous magnetic field or an inhomogeneous control laser. When the atomic energy levels (or the Rabi coupling by the control laser) are position-dependent due to the Zeeman effect caused by the inhomogeneous magnetic field (or due to inhomogeneity of the control field profile), the spatial dependence of the refraction index of the atomic medium will result in an observable deflection of slow signal light when the electromagnetically induced transparency cancels medium absorption. Our theoretical approach based on Fermat's principle in geometrical optics not only provides a consistent explanation for the most recent experiment in a straightforward way, but also predicts the two-photon detuning dependent behaviors and larger deflection angles by three orders of magnitude for the slow signal light deflection by the atomic media in an inhomogeneous off-resonant control laser field

  8. Threshold Characteristics of Slow-Light Photonic Crystal Lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2016-01-01

    The threshold properties of photonic crystal quantum dot lasers operating in the slow-light regime are investigated experimentally and theoretically. Measurements show that, in contrast to conventional lasers, the threshold gain attains a minimum value for a specific cavity length. The experimental...... results are explained by an analytical theory for the laser threshold that takes into account the effects of slow light and random disorder due to unavoidable fabrication imperfections. Longer lasers are found to operate deeper into the slow-light region, leading to a trade-off between slow-light induced...

  9. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system

    International Nuclear Information System (INIS)

    Zhan, Shiping; Li, Hongjian; He, Zhihui; Li, Boxun; Yang, Hui; Cao, Guangtao

    2014-01-01

    We report a theoretical and numerical investigation of the plasmon-induced transparency (PIT) effect in a dual-ring resonator-coupled metal–dielectric–metal waveguide system. A transfer matrix method (TMM) is introduced to analyse the transmission and dispersion properties in the transparency window. A tunable PIT is realized in a constant separation design. The phase dispersion and slow-light effect are discussed in both the resonance and non-resonance conditions. Finally, a propagation constant based on the TMM is derived for the periodic system. It is found that the group index in the transparency window of the proposed structure can be easily tuned by the period p, which provides a new understanding, and a group index ∼51 is achieved. The quality factor of resonators can also be effective in adjusting the dispersion relation. These observations could be helpful to fundamental research and applications for integrated plasmonic devices. (paper)

  10. How to induce multiple delays in coupled chaotic oscillators?

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sourav K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India); Department of Electronics, Asutosh College, Kolkata 700026 (India); Ghosh, Dibakar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108 (India); Roy, Prodyot K. [Department of Physics, Presidency University, Kolkata 700073 (India); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14473 Potsdam (Germany); Institute for Physics, Humboldt University, 12489 Berlin (Germany); Dana, Syamal K. [CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata 700032 (India)

    2013-12-15

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  11. Slow light enhancement and limitations in periodic media

    DEFF Research Database (Denmark)

    Grgic, Jure

    in the vicinity of the band edge. The minimum attainable group velocity will depend on the amount of imperfections. Since imperfections are inherited as part of any periodic structure it is necessary to take them into account when we are interested in slow light applications. Slowly propagating light gives rise......Properties of periodic dielectric media have attracted a big interest in the last two decades due to numerous exciting physical phenomena that cannot occur in homogeneous media. Due to their strong dispersive properties, the speed of light can be significantly slowed down in periodic structures....... When light velocity is much smaller than the speed of light in a vacuum, we describe this phenomena as slow light. In this thesis, we analyze important properties of slow light enhancement and limitations in periodic structures. We analyze quantitatively and qualitatively different technologies...

  12. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  13. Slow light in moving media

    Science.gov (United States)

    Leonhardt, U.; Piwnicki, P.

    2001-06-01

    We review the theory of light propagation in moving media with extremely low group velocity. We intend to clarify the most elementary features of monochromatic slow light in a moving medium and, whenever possible, to give an instructive simplified picture.

  14. Fundamental limitations to gain enhancement in slow-light photonic structures

    DEFF Research Database (Denmark)

    Grgic, Jure; Ott, Johan Raunkjar; Wang, Fengwen

    2012-01-01

    We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement.......We present a non-perturbative analysis of light-matter interaction in active photonic crystal waveguides in the slow-light regime. Inclusion of gain is shown to modify the underlying dispersion law, thereby degrading the slow-light enhancement....

  15. Slowing down the speed of light using an electromagnetically-induced-transparency mechanism in a modified reservoir

    Science.gov (United States)

    Liu, Ronggang; Liu, Tong; Wang, Yingying; Li, Yujie; Gai, Bingzheng

    2017-11-01

    We propose an effective method to achieve extremely slow light by using both the mechanism of electromagnetically induced transparency (EIT) and the localization of a coupled cavity waveguide (CCW). Based on quantum mechanics theory and the dispersion relation of a CCW, we derive a group-velocity formula that reveals both the effects of the EIT and CCW. Results show that ultralow light velocity at the order of several meters per second or even static light, could be obtained feasibly. In comparison with the EIT mechanism in a background of vacuum, this proposed method is more effective and realistic to achieve extremely slow light. And it exhibits potential values in the field of light storage.

  16. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    International Nuclear Information System (INIS)

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  17. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  18. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    DEFF Research Database (Denmark)

    Mortensen, Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measureme......We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption...

  19. Slow-light solitons in atomic media and doped optical fibers

    International Nuclear Information System (INIS)

    Korolkova, N.; Sinclair, G.F.; Leonhardt, U.

    2005-01-01

    Full text: We show how to generate optical solitons in atomic media that can be slowed down or accelerated at will. Such slow-light soliton is a polarization structure propagating with a speed that is proportional to the total intensity of the incident light. Ultimately, this method will allow the storage, retrieval and possibly the manipulation of the quantum information in atomic media. Solitons with controllable speed are constructed generalizing the theory of slow-light propagation to an integrable regime of nonlinear dynamics. For the first time, the inverse scattering method for slow-light solitons is developed. In contrast to the pioneering experimental demonstrations of slow light, we consider strong spin modulations where the non-linear dynamics of light and atoms creates polarization solitons. We also analyze how this scheme can be implemented in optical fibers doped with Lambda-atoms. In quantum-information applications, such slow-light solitons could complement the use of quantum solitons in fibres with the advantage of storing quantum information in media and complement methods for quantum memory with the advantages of non-linear dynamics, in particular the intrinsic stability of solitons. (author)

  20. Slow-light enhancement of spontaneous emission in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Semenova, Elizaveta

    2012-01-01

    Photonic crystal defect waveguides with embedded active layers containing single or multiple quantum wells or quantum dots have been fabricated. Spontaneous emission spectra are enhanced close to the bandedge, consistently with the enhancement of gain by slow light effects. These are promising...... results for future compact devices for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  1. A Primer to Slow Light

    OpenAIRE

    Leonhardt, U.

    2001-01-01

    Laboratory-based optical analogs of astronomical objects such as black holes rely on the creation of light with an extremely low or even vanishing group velocity (slow light). These brief notes represent a pedagogical attempt towards elucidating this extraordinary form of light. This paper is a contribution to the book Artificial Black Holes edited by Mario Novello, Matt Visser and Grigori Volovik. The paper is intended as a primer, an introduction to the subject for non-experts, not as a det...

  2. Mutually-modulated cross-gain modulation and slow light

    International Nuclear Information System (INIS)

    Sternklar, Shmuel; Sarid, Eyal; Wart, Maxim; Granot, Er'el

    2010-01-01

    The interaction of pump and Stokes light in a Brillouin medium, where both beams are modulated, can be utilized for controlling the group velocity of the amplified Stokes (or depleted pump). The dependence of the group velocity for this mutually-modulated cross-gain modulation (MMXGM) technique on the Brillouin gain parameter is studied. A sharp transition to slow light occurs in the G 1 α/β≈1 regime, where G 1 is the Brillouin gain parameter, and α and β are the pump and Stokes modulation indices, respectively. A comparison of MMXGM slow light to the Brillouin dispersion-based slow-light technique reveals the fundamental differences between them. The formation of higher harmonics of the modulation frequency is also discussed. The theoretical predictions are experimentally corroborated and potential applications in fiber-based sensing and interferometry are discussed

  3. Applications of Slow Light in Telecommunications

    National Research Council Canada - National Science Library

    Boyd, Robert W; Gauthier, Daniel J; Gaeta, Alexander L

    2006-01-01

    .... Now, optical scientists are turning their attention toward developing useful applications of slow light, including controllable optical delay lines, optical buffers and true time delay methods...

  4. Theory of a slow-light catastrophe

    International Nuclear Information System (INIS)

    Leonhardt, Ulf

    2002-01-01

    In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper describes the theory behind a recent proposal [U. Leonhardt, Nature (London) 415, 406 (2002)] to generate a quantum catastrophe of slow light

  5. Theory of a slow-light catastrophe

    Science.gov (United States)

    Leonhardt, Ulf

    2002-04-01

    In diffraction catastrophes such as the rainbow, the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole, the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. This paper describes the theory behind a recent proposal [U. Leonhardt, Nature (London) 415, 406 (2002)] to generate a quantum catastrophe of slow light.

  6. Theory of a Slow-Light Catastrophe

    OpenAIRE

    Leonhardt, Ulf

    2001-01-01

    In diffraction catastrophes such as the rainbow the wave nature of light resolves ray singularities and draws delicate interference patterns. In quantum catastrophes such as the black hole the quantum nature of light resolves wave singularities and creates characteristic quantum effects related to Hawking radiation. The paper describes the theory behind a recent proposal [U. Leonhardt, arXiv:physics/0111058, Nature (in press)] to generate a quantum catastrophe of slow light.

  7. Magnetic-field-dependent slow light in strontium atom-cavity system

    Science.gov (United States)

    Liu, Zeng-Xing; Wang, Bao; Kong, Cui; Xiong, Hao; Wu, Ying

    2018-03-01

    Realizing and controlling a long-lived slow light is of fundamental importance in physics and may find applications in quantum router and quantum information processing. In this work, we propose a feasible scheme to realize the slow light in a strontium atom-cavity system, in which the value of group delay can be continuously adjusted within a range of different Zeeman splittings and vacuum Rabi frequencies by varying the applied static magnetic field and the atom number instead of a strong coherent field. In our scheme, the major limitations of the slow-light structure, namely, dispersion and loss, can be effectively resolved, and so our scheme may help to achieve the practical application of slow light relevant to the optical communication network.

  8. Slow light in semiconductor waveguides: Theory and experiment

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Poel, Mike van der

    2007-01-01

    Slow light in multi-section quantum well waveguide structure is realized using either coherent population oscillations (CPO) and electromagnetically induced transparency (EIT) is studied. The properties of the two schemes are compared and discussed.......Slow light in multi-section quantum well waveguide structure is realized using either coherent population oscillations (CPO) and electromagnetically induced transparency (EIT) is studied. The properties of the two schemes are compared and discussed....

  9. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    Science.gov (United States)

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  10. Slow light with low group-velocity dispersion at the edge of photonic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Chunfang; Dong Biqin; Liu Xiaohan; Zi Jian [Department of Physics, Key Laboratory of Micro- and Nanophotonic Structures, Ministry of Education, and Key Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China); Xiong Zhiqiang; Zhao Fangyuan; Hu Xinhua [Department of Material Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China)

    2011-07-15

    We theoretically study the light propagation at the zigzag edges of a honeycomb photonic crystal (PC), or photonic graphene. It is found that the corresponding edge states have a sinusoidal dispersion similar to those found in PC coupled resonator optical waveguides [CROWs; M. Notomi et al., Nature Photon. 2, 741 (2008)]. The sinusoidal dispersion curve can be made very flat by carefully tuning edge parameters. As a result, low group velocity and small group velocity dispersion can be simultaneously obtained for light propagating at the zigzag edge of photonic graphene. Compared with PC CROWs, our slow-light system exhibits no intrinsic radiation loss and has a larger group velocity bandwidth product. Our results could find applications in on-chip optical buffers and enhanced light-matter interaction.

  11. Exploring carrier dynamics in semiconductors for slow light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    We give an overview of recent results on slow and fast light in active semiconductor waveguides. The cases of coherent population oscillations as well as electromagnetically induced transparency are covered, emphasizing the physics and fundamental limitations.......We give an overview of recent results on slow and fast light in active semiconductor waveguides. The cases of coherent population oscillations as well as electromagnetically induced transparency are covered, emphasizing the physics and fundamental limitations....

  12. Enhancing the sensitivity of slow light MZI biosensors through multi-hole defects

    Science.gov (United States)

    Qin, Kun; Zhao, Yiliang; Hu, Shuren; Weiss, Sharon M.

    2018-02-01

    We demonstrate enhanced detection sensitivity of a slow light Mach-Zehnder interferometer (MZI) sensor by incorporating multi-hole defects (MHDs). Slow light MZI biosensors with a one-dimensional photonic crystal in one arm have been previously shown to improve the performance of traditional MZI sensors based on the increased lightmatter interaction that takes place in the photonic crystal region of the structure. Introducing MHDs in the photonic crystal region increases the available surface area for molecular attachment and further increases the enhanced lightmatter interaction capability of slow light MZIs. The MHDs allow analyte to interact with a greater fraction of the guided wave in the MZI. For a slow light MHD MZI sensor with a 16 μm long sensing arm, a bulk sensitivity of 151,000 rad/RIU-cm is demonstrated experimentally, which is approximately two-fold higher than our previously reported slow light MZI sensors and thirteen-fold higher than traditional MZI biosensors with millimeter length sensing regions. For the label-free detection of nucleic acids, the slow light MZI with MHDs also exhibits a two-fold sensitivity improvement in experiment compared to the slow light MZI without MHDs. Because the detection sensitivity of slow light MHD MZIs scales with the length of the sensing arm, the tradeoff between detection limit and device size can be appropriately mitigated for different applications. All experimental results presented in this work are in good agreement with finite difference-time domain-calculations. Overall, the slow light MZI biosensors with MHDs are a promising platform for highly sensitive and multiplexed lab-on-chip systems.

  13. Slow and Fast Light, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to the NASA Small Business Innovation Research (SBIR) Program 2015 Phase I Solicitation S3.08: Slow and Fast Light, Torch Technologies in partnership...

  14. Control of slow-to-fast light and single-to-double optomechanically induced transparency in a compound resonator system: A theoretical approach

    Science.gov (United States)

    Ziauddin; Rahman, Mujeeb ur; Ahmad, Iftikhar; Qamar, Sajid

    2017-10-01

    The transmission characteristics of probe light field is investigated theoretically in a compound system of two coupled resonators. The proposed system consisted of two high-Q Fabry-Perot resonators in which one of the resonators is optomechanical. Optomechanically induced transparency (OMIT), having relatively large window, is noticed via strong coupling between the two resonators. We investigate tunable switching from single to double OMIT by increasing amplitude of the pump field. We notice that, control of slow and fast light can be obtained via the coupling strength between the two resonators.

  15. Ponderomotive force effects on slow-wave coupling

    International Nuclear Information System (INIS)

    Wilson, J.R.; Wong, K.L.

    1982-01-01

    Localized plasma density depressions are observed to form near a multi-ring slow-wave structure when the value of the nonlinearity parameter, s = ω 2 /sub p/eVertical BarE/sub z/Vertical Bar 2 /8πω 2 nkappaT, is of order unity. Consequent changes in the wave propagation and coupling efficiency are reported. For large enough values of s, the coupling efficiency may be reduced by 50% from the linear value

  16. Slow-light enhancement of Beer-Lambert-Bouguer absorption

    OpenAIRE

    Mortensen, Niels Asger; Xiao, Sanshui

    2007-01-01

    We theoretically show how slow light in an optofluidic environment facilitates enhanced light-matter interactions, by orders of magnitude. The proposed concept provides strong opportunities for improving existing miniaturized chemical absorbance cells for Beer-Lambert-Bouguer absorption measurements widely employed in analytical chemistry.

  17. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  18. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  19. Impact of slow-light enhancement on optical propagation in active semiconductor photonic crystal waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2015-01-01

    We derive and validate a set of coupled Bloch wave equations for analyzing the reflection and transmission properties of active semiconductor photonic crystal waveguides. In such devices, slow-light propagation can be used to enhance the material gain per unit length, enabling, for example......, the realization of short optical amplifiers compatible with photonic integration. The coupled wave analysis is compared to numerical approaches based on the Fourier modal method and a frequency domain finite element technique. The presence of material gain leads to the build-up of a backscattered field, which...... is interpreted as distributed feedback effects or reflection at passive-active interfaces, depending on the approach taken. For very large material gain values, the band structure of the waveguide is perturbed, and deviations from the simple coupled Bloch wave model are found....

  20. Slow and fast light effects in semiconductor optical amplifiers for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi

    This thesis analyzes semiconductor optical amplifiers based slow and fast light effects with particular focus on the applications in microwave photonics. We conceive novel ideas and demonstrate a great enhancement of light slow down. Furthermore, by cascading several slow light stages, >360 degree...... microwave phase shifts over a bandwidth of several tens of gigahertz are achieved. These also satisfy the basic requirements of microwave photonic systems. As an application demonstration, a tunable microwave notch filter is realized, where slow light based phase shifters provide 100% fractional tuning over...

  1. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  2. Enhanced photoresponsivity in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan; Wong, Chee Wei

    2016-01-01

    We demonstrate the enhanced fast photoresponsivity in graphene hybrid structures by combining the ultrafast dynamics of graphene with improved light-matter interactions in slow-light photonic crystal waveguides. With a 200 μm interaction length, a 0.8 mA/W photoresponsivity is achieved in a graphene-silicon Schottky-like photodetector, with an operating bandwidth in excess of 5 GHz and wavelength range at least from 1480 nm to 1580 nm. Fourfold enhancement of the photocurrent is observed in the slow light region, compared to the wavelength far from the photonic crystal bandedge, for a chip-scale broadband fast photodetector.

  3. Structural slow light can enhance Beer-Lambert absorption

    OpenAIRE

    Dicaire Isabelle; Chin Sanghoon; Thévenaz Luc

    2011-01-01

    We experimentally demonstrate that structural slow light can enhance Beer-Lambert absorption. A 4-fold reduction of the group velocity induced by mere cavity effects has caused an increase of molecular absorption by 130%.

  4. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  5. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  6. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  7. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  8. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  9. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  10. Dynamics of Time Delay-Induced Multiple Synchronous Behaviors in Inhibitory Coupled Neurons

    Science.gov (United States)

    Gu, Huaguang; Zhao, Zhiguo

    2015-01-01

    The inhibitory synapse can induce synchronous behaviors different from the anti-phase synchronous behaviors, which have been reported in recent studies. In the present paper, synchronous behaviors are investigated in the motif model composed of reciprocal inhibitory coupled neurons with endogenous bursting and time delay. When coupling strength is weak, synchronous behavior appears at a single interval of time delay within a bursting period. When coupling strength is strong, multiple synchronous behaviors appear at different intervals of time delay within a bursting period. The different bursting patterns of synchronous behaviors, and time delays and coupling strengths that can induce the synchronous bursting patterns can be well interpreted by the dynamics of the endogenous bursting pattern of isolated neuron, which is acquired by the fast-slow dissection method, combined with the inhibitory coupling current. For an isolated neuron, when a negative impulsive current with suitable strength is applied at different phases of the bursting, multiple different bursting patterns can be induced. For a neuron in the motif, the inhibitory coupling current, of which the application time and strength is modulated by time delay and coupling strength, can cause single or multiple synchronous firing patterns like the negative impulsive current when time delay and coupling strength is suitable. The difference compared to the previously reported multiple synchronous behaviors that appear at time delays wider than a period of the endogenous firing is discussed. The results present novel examples of synchronous behaviors in the neuronal network with inhibitory synapses and provide a reasonable explanation. PMID:26394224

  11. Slow light based on material and waveguide dispersion

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    We study slow light pulse propagation in a photonic crystal structure consisting of a dispersive and absorptive dielectric material and compare it with the constant wave case. The group index and the trasmission are investigated for the example of an ensemble of semiconductor quantum dots embedded...

  12. Slow and fast light effects in semiconductor waveguides for applications in microwave photonics

    DEFF Research Database (Denmark)

    Mørk, Jesper; Öhman, Filip; Xue, Weiqi

    2008-01-01

    We review the physics of slow and fast light effects in semiconductor waveguides. Different schemes for achieving optically or electronically controlled phase shifts are introduced and explained.......We review the physics of slow and fast light effects in semiconductor waveguides. Different schemes for achieving optically or electronically controlled phase shifts are introduced and explained....

  13. Slow and fast light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Mørk, Jesper; Hansen, Per Lunnemann; Xue, Weiqi

    2010-01-01

    Investigations of slow and fast light effects in semiconductor waveguides entail interesting physics and point to a number of promising applications. In this review we give an overview of recent progress in the field, in particular focusing on the physical mechanisms of electromagnetically induced...... transparency and coherent population oscillations. While electromagnetically induced transparency has been the most important effect in realizing slowdown effects in atomic gasses, progress has been comparatively slow in semiconductors due to inherent problems of fast dephasing times and inhomogeneous...... broadening in quantum dots. The physics of electromagnetically induced transparency in semiconductors is discussed, emphasizing these limitations and recent suggestions for overcoming them. On the other hand, the mechanism of coherent population oscillations relies on wave mixing effects and is well suited...

  14. Slow Light by Two-Dimensional Photonic Crystal Waveguides

    International Nuclear Information System (INIS)

    Chao, Zhang; Yan, Huang; Xiao-Yu, Mao; Kai-Yu, Cui; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng

    2009-01-01

    A simple and effective way to measure the group velocity of photonic crystal waveguides (PCWGs) is developed by using a fiber Mach–Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated. (fundamental areas of phenomenology (including applications))

  15. Enhanced Gain in Slow-Light Photonic Crystal Waveguides with Embedded Quantum Dots

    DEFF Research Database (Denmark)

    Ek, Sara; Hansen, Per Lunnemann; Semenova, Elizaveta

    2011-01-01

    We experimentally demonstrate enhanced gain in the slow-light regime of quantum dot photonic crystal waveguide slabs. These are promising results for future compact devices for terabit/s communication, such as compact optical amplifiers and mode-locked lasers.......We experimentally demonstrate enhanced gain in the slow-light regime of quantum dot photonic crystal waveguide slabs. These are promising results for future compact devices for terabit/s communication, such as compact optical amplifiers and mode-locked lasers....

  16. Slow-light-enhanced gain in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui

    2014-01-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material......, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar...

  17. Light slow-down in semiconductor waveguides due to population pulsations

    DEFF Research Database (Denmark)

    Mørk, Jesper; Kjær, Rasmus; Poel, Mike van der

    2005-01-01

    This study theoretically analyzes the prospect of inducing light-slow down in a semiconductor waveguide based on coherent population oscillation. Experimental observations of the effect are also presented....

  18. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally...... in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  19. Schrodinger cat state generation using a slow light

    International Nuclear Information System (INIS)

    Ham, B. S.; Kim, M. S.

    2003-01-01

    We show a practical application of giant Kerr nonlinearity to quantum information processing based on superposition of two distinct macroscopic states- Schrodinger cat state. The giant Kerr nonlinearity can be achieved by using electromagnetically induced transparency, in which light propagation should be slowed down so that a pi-phase shift can be easily obtained owing to increased interaction time.

  20. Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.

    Science.gov (United States)

    Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J

    2011-10-15

    We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.

  1. Effect of loss on slow-light enhanced absorption in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Asger

    2008-01-01

    We study slow-light enhancement of absorption measurements in photonic crystals composed of lossy dielectrics. We find that the material loss has an unexpected limited drawback and may even increase the bandwidth for low-index contrast systems.......We study slow-light enhancement of absorption measurements in photonic crystals composed of lossy dielectrics. We find that the material loss has an unexpected limited drawback and may even increase the bandwidth for low-index contrast systems....

  2. Optical signal processing using slow and fast light technologies

    DEFF Research Database (Denmark)

    Capmany, J.; Sales, Salvador; Xue, Weiqi

    2009-01-01

    We review the theory of slow and fat light effects due to coherent population oscillations in semiconductor waveguides, which can be potentially applied in microwave photonic systems as a RF phase shifters. In order to satisfy the application requirement of 360 degrees RF phase shift at different...

  3. Direct measurement of the transition from edge to core power coupling in a light-ion helicon source

    Science.gov (United States)

    Piotrowicz, P. A.; Caneses, J. F.; Showers, M. A.; Green, D. L.; Goulding, R. H.; Caughman, J. B. O.; Biewer, T. M.; Rapp, J.; Ruzic, D. N.

    2018-05-01

    We present time-resolved measurements of an edge-to-core power transition in a light-ion (deuterium) helicon discharge in the form of infra-red camera imaging of a thin stainless steel target plate on the Proto-Material Exposure eXperiment device. The time-resolved images measure the two-dimensional distribution of power deposition in the helicon discharge. The discharge displays a mode transition characterized by a significant increase in the on-axis electron density and core power coupling, suppression of edge power coupling, and the formation of a fast-wave radial eigenmode. Although the self-consistent mechanism that drives this transition is not yet understood, the edge-to-core power transition displays characteristics that are consistent with the discharge entering a slow-wave anti-resonant regime. RF magnetic field measurements made across the plasma column, together with the power deposition results, provide direct evidence to support the suppression of the slow-wave in favor of core plasma production by the fast-wave in a light-ion helicon source.

  4. Experimental Demonstration and Theoretical Analysis of Slow Light in a Semiconductor Waveguide at GHz Frequencies

    DEFF Research Database (Denmark)

    Mørk, Jesper; Kjær, Rasmus; Poel, Mike van der

    2005-01-01

    Experimental demonstration and theoretical analysis of slow light in a semiconductor waveguide at GHz frequencies slow-down of light by a factor of two in a semiconductor waveguide at room temperature with a bandwidth of 16.7 GHz using the effect of coherent pulsations of the carrier density...

  5. Energy spectra from coupled electron-photon slowing down

    International Nuclear Information System (INIS)

    Beck, H.L.

    1976-08-01

    A coupled electron-photon slowing down calculation for determining electron and photon track length in uniform homogeneous media is described. The method also provides fluxes for uniformly distributed isotropic sources. Source energies ranging from 10 keV to over 10 GeV are allowed and all major interactions are treated. The calculational technique and related cross sections are described in detail and sample calculations are discussed. A listing of the Fortran IV computer code used for the calculations is also included. 4 tables, 7 figures, 16 references

  6. Slow and fast light effects in semiconductor waveguides for applications in microwave photonics

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We review the theory of slow and fast light effects due to coherent population oscillations in semiconductor waveguides, and potential applications of these effects in microwave photonic systems as RF phase shifters. In order to satisfy the application requirement of 360º RF phase shift at differ......We review the theory of slow and fast light effects due to coherent population oscillations in semiconductor waveguides, and potential applications of these effects in microwave photonic systems as RF phase shifters. In order to satisfy the application requirement of 360º RF phase shift...

  7. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...

  8. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    Science.gov (United States)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  9. Tunable Fano resonance in MDM stub waveguide coupled with a U-shaped cavity

    Science.gov (United States)

    Yi, Xingchun; Tian, Jinping; Yang, Rongcao

    2018-04-01

    A new compact metal-dielectric-metal waveguide system consisting of a stub coupled with a U-cavity is proposed to produce sharp and asymmetric Fano resonance. The transmission properties of the proposed structure are numerically studied by the finite element method and verified by the coupled mode theory. Simulation results reveal that the spectral profile can be easily tuned by adjusting the geometric parameters of the structure. One of the potential application of the proposed structure as a highly efficient plasmonic refractive index nanosensor was investigated with its sensitivity of more than 1000 nm/RIU and a figure of merit of up to 5500. Another application is integrated slow-light device whose group index can be greater than 6. In addition, multiple Fano resonances will occur in the broadband transmission spectrum by adding another U-cavity or (and) stub. The characteristics of the proposed structure are very promising for the highly performance filters, on-chip nanosensors, and slow-light devices.

  10. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lihui [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Zhang, Yongming, E-mail: zhym@shnu.edu.cn [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Bai, Qi; Yan, Ning; Xu, Hua [Department of Environmental Science and Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234 (China); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701 (United States)

    2015-04-28

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA.

  11. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation

    International Nuclear Information System (INIS)

    Yang, Lihui; Zhang, Yongming; Bai, Qi; Yan, Ning; Xu, Hua; Rittmann, Bruce E.

    2015-01-01

    Highlights: • Intimately coupled UV photolysis accelerated nitrobenzene biodegradation. • NB biodegradation was slowed by accumulation of nitrophenol. • Oxalic acid was a key product of UV photolysis. • Oxalic acid accelerated biodegradation of nitrobenzene and nitrophenol by a co-substrate effect. • Intimate coupling of UV and biodegradation accentuated the benefits of oxalic acid. - Abstract: Photo(cata)lysis coupled with biodegradation is superior to photo(cata)lysis or biodegradation alone for removal of recalcitrant organic compounds. The two steps can be carried out sequentially or simultaneously via intimate coupling. We studied nitrobenzene (NB) removal and mineralization to evaluate why intimate coupling of photolysis with biodegradation was superior to sequential coupling. Employing an internal circulation baffled biofilm reactor, we compared direct biodegradation (B), biodegradation after photolysis (P + B), simultaneous photolysis and biodegradation (P&B), and biodegradation with nitrophenol (NP) and oxalic acid (OA) added individually and simultaneously (B + NP, B + OA, and B + NP + OA); NP and OA were NB’s main UV-photolysis products. Compared with B, the biodegradation rate P + B was lower by 13–29%, but intimately coupling (P&B) had a removal rate that was 10–13% higher; mineralization showed similar trends. B + OA gave results similar to P&B, B + NP gave results similar to P + B, and B + OA + NP gave results between P + B and P&B, depending on the amount of OA and NP added. The photolysis product OA accelerated NB biodegradation through a co-substrate effect, but NP was inhibitory. Although decreasing the UV photolysis time could minimize the inhibition impact of NP in P + B, P&B gave the fastest removal of NB by accentuating the co-substrate effect of OA

  12. Design of Slow and Fast Light Photonic Crystal Waveguides for Single-photon Emission Using a Bloch Mode Expansion Technique

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Rigal, B.; Kapon, E.

    We design slow and fast light photonic crystal waveguides for single-photon emission using a Bloch mode expansion and scattering matrix technique. We propose slow light designs that increase the group index-waveguide mode volume ratio for larger Purcell enhancement, and address efficient slow-to-...

  13. Dynamics of a linear system coupled to a chain of light nonlinear oscillators analyzed through a continuous approximation

    Science.gov (United States)

    Charlemagne, S.; Ture Savadkoohi, A.; Lamarque, C.-H.

    2018-07-01

    The continuous approximation is used in this work to describe the dynamics of a nonlinear chain of light oscillators coupled to a linear main system. A general methodology is applied to an example where the chain has local nonlinear restoring forces. The slow invariant manifold is detected at fast time scale. At slow time scale, equilibrium and singular points are sought around this manifold in order to predict periodic regimes and strongly modulated responses of the system. Analytical predictions are in good accordance with numerical results and represent a potent tool for designing nonlinear chains for passive control purposes.

  14. Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light

    International Nuclear Information System (INIS)

    Shahriar, M. S.; Pati, G. S.; Tripathi, R.; Gopal, V.; Messall, M.; Salit, K.

    2007-01-01

    We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is enhanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion. We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 10 6 . We also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially designed Sagnac interferometer, with the enhancement given by the slowing factor

  15. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  16. Quantum light in coupled interferometers for quantum gravity tests.

    Science.gov (United States)

    Ruo Berchera, I; Degiovanni, I P; Olivares, S; Genovese, M

    2013-05-24

    In recent years quantum correlations have received a lot of attention as a key ingredient in advanced quantum metrology protocols. In this Letter we show that they provide even larger advantages when considering multiple-interferometer setups. In particular, we demonstrate that the use of quantum correlated light beams in coupled interferometers leads to substantial advantages with respect to classical light, up to a noise-free scenario for the ideal lossless case. On the one hand, our results prompt the possibility of testing quantum gravity in experimental configurations affordable in current quantum optics laboratories and strongly improve the precision in "larger size experiments" such as the Fermilab holometer; on the other hand, they pave the way for future applications to high precision measurements and quantum metrology.

  17. Using Nonuniform Fiber to Generate Slow Light via SBS

    Directory of Open Access Journals (Sweden)

    Wenhai Li

    2008-01-01

    Full Text Available The data pulse delay based on slow light induced by stimulated Brillouin scattering (SBS in a nonuniform dispersion decreasing fiber (DDF is demonstrated experimentally, and the distortions of data pulses at different beat frequencies are studied. We found that a delay exceeding a pulse width can be achieved at particular beat frequency, and the DDF has larger delay versus gain slope coefficient with much better output pulse quality than single-mode fiber.

  18. Photonic crystal waveguides with semi-slow light and tailored dispersion properties

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Lavrinenko, Andrei; Fage-Pedersen, Jacob

    2006-01-01

    waveguide with either vanishing, positive, or negative group velocity dispersion and semi-slow light. We realize experimentally a silicon-on-insulator photonic crystal waveguide having nearly constant group velocity [similar to]c$-0$//34 in an 11-nm bandwidth below the silica-line. $CPY@2006 Optical Society...

  19. Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, Andrey A.; Lavrinenko, Andrei

    2011-01-01

    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast...... group velocities but different phase velocities for frequencies close to the edge of the photonic band. We confirm the predicted properties of the modes by directly extracting their dispersion and group velocities from the near-field measurements using specialized Bloch-wave spectral analysis method....

  20. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  1. Slow and fast light in SOA-EA structures for phased-array antennas

    DEFF Research Database (Denmark)

    Sales, S.; Öhman, Filip; Bermejo, A.

    We present an SOA-EA structure for controlling the phase and amplitude of optically fed phased-array antennas. Phase shifts of 40 degrees are obtained through slow and fast light effects by changing only the reverse voltage....

  2. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    OpenAIRE

    Abramov, Rafail V.

    2011-01-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation prop...

  3. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  4. How useful is slow light in enhancing nonlinear interactions in lossy periodic nanostructures?

    DEFF Research Database (Denmark)

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank

    2016-01-01

    We investigate analytically, and with nonlinear simulations, the extent of usefulness of slow light for enhancing the efficiency of second harmonic generation in lossy nanostructures, and find that the slower is not always the better....

  5. Coupling between slow and fast degrees of freedom in systems with complex spectra: Driven systems

    International Nuclear Information System (INIS)

    Bulgac, A.; Dang, G.D.; Kusnezov, D.

    1995-01-01

    We consider many-body systems which display slow modes and have complex spectra of intrinsic states, as atomic nuclei, atomic clusters, deformable cavities, and so forth. The effects of the coupling between the intrinsic and the slow degrees of freedom is analyzed, by assuming random matrix properties for the intrinsic degrees of freedom and the fact that the time evolution of the slow degree of freedom modifies the intrinsic configuration of the system. By neglecting the reaction of the intrinsic degrees of freedom on the slow modes, we derive evolution equations for intrinsic state population probabilities, the average excitation energy, and their fluctuations. These evolution equations are characterized by strong memory effects, and only in the long time limit does the dynamics become Markovian. Copyright copyright 1995 Academic Press, Inc

  6. Static and dynamic properties of multiple light scattering

    Science.gov (United States)

    Štěpánek, Petr

    1993-11-01

    We have examined the onset and evolution of multiple scattering of light on a series of latex dispersions as a function of increasing volume concentration φ of particles. We have shown that using vertically polarized incident light, the static scattered intensity becomes progressively depolarized, with increasing φ. The polarization of scattered light is completely random in the limit of strong multiple scattering. The spectra of decay times of dynamic light scattering display a region of oligo scattering at intermediate φ where both the single and multiple scattering components can be dynamically identified. For φ≳0.03 the limit of diffusive transport of light is attained. The obtained results confirm that our earlier measurements of dynamic light scattering on systems exhibiting critical opalescence are not influenced by multiple light scattering.

  7. Coupled-resonator optical waveguides: Q-factor and disorder influence

    DEFF Research Database (Denmark)

    Grgic, Jure; Campaioli, Enrico; Raza, Søren

    2011-01-01

    Coupled resonator optical waveguides (CROW) can significantly reduce light propagation pulse velocity due to pronounced dispersion properties. A number of interesting applications have been proposed to benefit from such slow-light propagation. Unfortunately, the inevitable presence of disorder...

  8. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiber broadband SBS.

    Science.gov (United States)

    Yi, Lilin; Jaouen, Yves; Hu, Weisheng; Su, Yikai; Bigo, Sébastien

    2007-12-10

    We have demonstrated error-free operations of slow-light via stimulated Brillouin scattering (SBS) in optical fiber for 10-Gb/s signals with different modulation formats, including non-return-to-zero (NRZ), phase-shaped binary transmission (PSBT) and differential phase-shiftkeying (DPSK). The SBS gain bandwidth is broadened by using current noise modulation of the pump laser diode. The gain shape is simply controlled by the noise density function. Super-Gaussian noise modulation of the Brillouin pump allows a flat-top and sharp-edge SBS gain spectrum, which can reduce slow-light induced distortion in case of 10-Gb/s NRZ signal. The corresponding maximal delay-time with error-free operation is 35 ps. Then we propose the PSBT format to minimize distortions resulting from SBS filtering effect and dispersion accompanied with slow light because of its high spectral efficiency and strong dispersion tolerance. The sensitivity of the 10-Gb/s PSBT signal is 5.2 dB better than the NRZ case with a same 35-ps delay. The maximal delay of 51 ps with error-free operation has been achieved. Futhermore, the DPSK format is directly demodulated through a Gaussian-shaped SBS gain, which is achieved using Gaussian-noise modulation of the Brillouin pump. The maximal error-free time delay after demodulation of a 10-Gb/s DPSK signal is as high as 81.5 ps, which is the best demonstrated result for 10-Gb/s slow-light.

  9. Effect of loss on slow-light-enhanced second-harmonic generation in periodic nanostructures

    DEFF Research Database (Denmark)

    Saravi, Sina; Quintero-Bermudez, Rafael; Setzpfandt, Frank

    2016-01-01

    We theoretically analyze the dependence of second-harmonic generation efficiency on the group index in periodic optical waveguides with loss. We investigate different possible scenarios of using slow light to enhance the efficiency of this process and show that in some cases there exists a maxima...

  10. Widely tunable microwave photonic notch filter based on slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    A continuously tunable microwave photonic notch filter at around 30 GHz is experimentally demonstrated and 100% fractional tuning over 360 range is achieved without changing the shape of the spectral response. The tuning mechanism is based on the use of slow and fast light effects in semiconducto...

  11. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  12. Multiple scattering approach to the vibrational excitation of molecules by slow electrons

    International Nuclear Information System (INIS)

    Drukarev, G.

    1976-01-01

    Another approach to the problem of vibrational excitation of homonuclear two-atomic molecules by slow electrons possibly accompanied by rotational transitions is presented based on the picture of multiple scattering of an electron inside the molecule. The scattering of two fixed centers in the zero range potential model is considered. The results indicate that the multiple scattering determines the order of magnitude of the vibrational excitation cross sections in the energy region under consideration even if the zero range potential model is used. Also the connection between the multiple scattering approach and quasi-stationary molecular ion picture is established. 9 refs

  13. Experimental demonstration of 360 tunable RF phase shift using slow and fast light effects

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2009-01-01

    A microwave photonic phase shifter realizing 360º phase shift over a RF bandwidth of more than 10 GHz is demonstrated using optical filtering assisted slow and fast light effects in a cascaded structure of semiconductor optical amplifiers....

  14. Efficient all-optical switching using slow light within a hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic-crys......-crystal fiber and using quantum optical techniques for generating slow light propagation and large nonlinear interaction between light beams.......We demonstrate a fiber-optical switch that is activated at tiny energies corresponding to a few hundred optical photons per pulse. This is achieved by simultaneously confining both photons and a small laser-cooled ensemble of atoms inside the microscopic hollow core of a single-mode photonic...

  15. Linear and circular polarized tunable slow light in Bragg-spaced graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang-Tao, E-mail: jtliu@semi.ac.cn [Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031 (China); Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Hai [Department of Physics, Capital Normal University, Beijing 100037 (China); Wang, Tong-Biao [Department of Physics, Nanchang University, Nanchang 330031 (China); Li, Xiao-Jing [College of Physics and Energy, Fujian Normal University, Fuzhou 350007 (China)

    2014-11-01

    The light pulse delay in Bragg-spaced graphene layers (BSGs) combined with a magnetic field is investigated theoretically. BSGs can slow down the group velocity of light more effectively than traditional Bragg-spaced quantum wells due to the large binding energy and strong dipole oscillator strength of the magnetic-exciton of graphene. The group velocity can be tuned by varying the pulse frequency, the Bragg frequency, and the magnetic field. Especially, by tuning the occupation number of the Landau level the group velocity in BSGs shows strong tunable circular dichroism. Our findings could have applications in photonic integrated circuits and quantum computation.

  16. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  17. Coupled slow and fast surface dynamics in an electrocatalytic oscillator: Model and simulations

    International Nuclear Information System (INIS)

    Nascimento, Melke A.; Nagao, Raphael; Eiswirth, Markus; Varela, Hamilton

    2014-01-01

    The co-existence of disparate time scales is pervasive in many systems. In particular for surface reactions, it has been shown that the long-term evolution of the core oscillator is decisively influenced by slow surface changes, such as progressing deactivation. Here we present an in-depth numerical investigation of the coupled slow and fast surface dynamics in an electrocatalytic oscillator. The model consists of four nonlinear coupled ordinary differential equations, investigated over a wide parameter range. Besides the conventional bifurcation analysis, the system was studied by means of high-resolution period and Lyapunov diagrams. It was observed that the bifurcation diagram changes considerably as the irreversible surface poisoning evolves, and the oscillatory region shrinks. The qualitative dynamics changes accordingly and the chaotic oscillations are dramatically suppressed. Nevertheless, periodic cascades are preserved in a confined region of the resistance vs. voltage diagram. Numerical results are compared to experiments published earlier and the latter reinterpreted. Finally, the comprehensive description of the time-evolution in the period and Lyapunov diagrams suggests further experimental studies correlating the evolution of the system's dynamics with changes of the catalyst structure

  18. Graphene based silicon–air grating structure to realize electromagnetically-induced-transparency and slow light effect

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Buzheng; Liu, Huaiqing [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Ren, Guobin, E-mail: gbren@bjtu.edu.cn [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China); Yang, Yuguang; Ye, Shen; Pei, Li; Jian, Shuisheng [Key Lab of All Optical Network & Advanced Telecommunication Network of EMC, Beijing Jiaotong University, Beijing 100044 (China); Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2017-01-23

    Highlights: • The EIT and slow light effect are achieved by our novel graphene based structure. • Excellent tunability of wide wavelength range can be obtained only by a small change in Fermi energy level. • The group velocity of incident light is reduced to more than 1/600 of that in vacuum. • Position control is realized by designing a graded period grating. - Abstract: A broad band tunable graphene based silicon–air grating structure is proposed. Electromagnetically-induced-transparency (EIT) window can be successfully tuned by virtually setting the desired Fermi energy levels on graphene sheets. Carrier mobility plays an important role in modulating the resonant depth. Furthermore, by changing the grating periods, light can be trapped at corresponding resonant positions where slow down factor is relatively larger than in the previous works. This structure can be used as a highly tunable optoelectronic device such as optical filter, broad-band modulator, plasmonic switches and buffers.

  19. On the origin of the slow M-T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses.

    Science.gov (United States)

    Bernát, Gábor; Steinbach, Gábor; Kaňa, Radek; Govindjee; Misra, Amarendra N; Prašil, Ondřej

    2018-05-01

    The slow kinetic phases of the chlorophyll a fluorescence transient (induction) are valuable tools in studying dynamic regulation of light harvesting, light energy distribution between photosystems, and heat dissipation in photosynthetic organisms. However, the origin of these phases are not yet fully understood. This is especially true in the case of prokaryotic oxygenic photoautotrophs, the cyanobacteria. To understand the origin of the slowest (tens of minutes) kinetic phase, the M-T fluorescence decline, in the context of light acclimation of these globally important microorganisms, we have compared spectrally resolved fluorescence induction data from the wild type Synechocystis sp. PCC 6803 cells, using orange (λ = 593 nm) actinic light, with those of mutants, ΔapcD and ΔOCP, that are unable to perform either state transition or fluorescence quenching by orange carotenoid protein (OCP), respectively. Our results suggest a multiple origin of the M-T decline and reveal a complex interplay of various known regulatory processes in maintaining the redox homeostasis of a cyanobacterial cell. In addition, they lead us to suggest that a new type of regulatory process, operating on the timescale of minutes to hours, is involved in dissipating excess light energy in cyanobacteria.

  20. Comparison between different dispersion engineering methods in slow light photonic crystal waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2011-01-01

    This paper compares the performance of different dispersion engineering methods in slow light photonic crystal waveguides, i.e., geometrical parameter optimization and topology optimization. In both methods, the design robustness is enforced by considering the dilated, intermediate and eroded...... that waveguides with optimized hole sizes and positions can be efficient for dispersion engineering but that large improvements are possible if irregular geometries are allowed using topology optimization....

  1. Photonic linear chirped microwave signal generation based on the ultra-compact spectral shaper using the slow light effect

    DEFF Research Database (Denmark)

    Yan, Siqi; Gao, Shengqian; Zhou, Feng

    2017-01-01

    A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By o....... The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm(2) and simple structure to our scheme, which may be of great importance towards its potential applications. (C) 2017 Optical Society of America...

  2. Couple specialization in multiple equilibria

    NARCIS (Netherlands)

    Esping-Andersen, G.; Boertien, D.; Bonke, J.; Gracia, P.

    2013-01-01

    We address the issue of men’s lagged adaptation to the ongoing revolution of women’s roles. This article proposes a multiple equilibrium approach and shows how modes of couple specialization cluster around qualitatively distinct logics. We identify a traditional, egalitarian, and ‘unstable’

  3. Calculation of coupling to slow and fast waves in the LHRF from phased waveguide arrays

    International Nuclear Information System (INIS)

    Pinsker, R.I.; Duvall, R.E.; Fortgang, C.M.; Colestock, P.L.

    1986-04-01

    A previously reported algorithm for solving the problem of coupling electromagnetic energy in the LHRF from a phased array of identical rectangular waveguides to a plane-stratified, magnetized cold plasma is numerically implemented. The resulting computer codes are sufficiently general to allow for an arbitrary number of waveguides with finite dimensions in both poloidal and toroidal directions, and are thus capable of computing coupling to both slow and fast waves in the plasma. Some of the details of the implementation and the extension of the algorithm to allow study of the Fourier spectrum of slow and fast waves launched by the array are discussed. Good agreement is found with previously reported, less general work for the slow wave launching case. The effect of phasing multirow arrays in the poloidal direction is studied, and an asymmetry between phasing 'up' and 'down' is found that persists in the case where the plasma adjacent to the array is uniform. A 4 x 3 array designed to launch fast waves of high phase velocity is studied. By using the optimal poloidal phasing, low reflection coefficients (absolute value of R 2 less than or equal to 20%) are found under some not unrealistic edge plasma conditions, but most of the input power is trapped in the outermost layer of the plasma. Implications of our results for fast wave current drive experiments are discussed

  4. Efficiency of conscious access improves with coupling of slow and fast neural oscillations.

    Science.gov (United States)

    Nakatani, Chie; Raffone, Antonino; van Leeuwen, Cees

    2014-05-01

    Global workspace access is considered as a critical factor for the ability to report a visual target. A plausible candidate mechanism for global workspace access is coupling of slow and fast brain activity. We studied coupling in EEG data using cross-frequency phase-amplitude modulation measurement between delta/theta phases and beta/gamma amplitudes from two experimental sessions, held on different days, of a typical attentional blink (AB) task, implying conscious access to targets. As the AB effect improved with practice between sessions, theta-gamma and theta-beta coupling increased generically. Most importantly, practice effects observed in delta-gamma and delta-beta couplings were specific to performance on the AB task. In particular, delta-gamma coupling showed the largest increase in cases of correct target detection in the most challenging AB conditions. All these practice effects were observed in the right temporal region. Given that the delta band is the main frequency of the P3 ERP, which is a marker of global workspace activity for conscious access, and because the gamma band is involved in visual object processing, the current results substantiate the role of phase-amplitude modulation in conscious access to visual target representations.

  5. Intimate Coupling of Photocatalysis and Biodegradation for Degrading Phenol Using Different Light Types: Visible Light vs UV Light.

    Science.gov (United States)

    Zhou, Dandan; Xu, Zhengxue; Dong, Shanshan; Huo, Mingxin; Dong, Shuangshi; Tian, Xiadi; Cui, Bin; Xiong, Houfeng; Li, Tingting; Ma, Dongmei

    2015-07-07

    Intimate coupling of photocatalysis and biodegradation (ICPB) technology is attractive for phenolic wastewater treatment, but has only been investigated using UV light (called UPCB). We examined the intimate coupling of visible-light-induced photocatalysis and biodegradation (VPCB) for the first time. Our catalyst was prepared doping both of Er(3+) and YAlO3 into TiO2 which were supported on macroporous carriers. The macroporous carriers was used to support for the biofilms as well. 99.8% removal efficiency of phenol was achieved in the VPCB, and this was 32.6% higher than that in the UPCB. Mineralization capability of UPCB was even worse, due to less adsorbable intermediates and cell lysis induced soluble microbial products release. The lower phenol degradation in the UPCB was due to the serious detachment of the biofilms, and then the microbes responsible for phenol degradation were insufficient due to disinfection by UV irradiation. In contrast, microbial communities in the carriers were well protected under visible light irradiation and extracellular polymeric substances secretion was enhanced. Thus, we found that the photocatalytic reaction and biodegradation were intimately coupled in the VPCB, resulting in 64.0% removal of dissolved organic carbon. Therefore, we found visible light has some advantages over UV light in the ICPB technology.

  6. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  7. Renormalization group equations with multiple coupling constants

    International Nuclear Information System (INIS)

    Ghika, G.; Visinescu, M.

    1975-01-01

    The main purpose of this paper is to study the renormalization group equations of a renormalizable field theory with multiple coupling constants. A method for the investigation of the asymptotic stability is presented. This method is applied to a gauge theory with Yukawa and self-quartic couplings of scalar mesons in order to find the domains of asymptotic freedom. An asymptotic expansion for the solutions which tend to the origin of the coupling constants is given

  8. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu

    2012-10-01

    The coupling between free space radiation and optical media critically influences the performance of optical devices. We show that, for any given photonic structure, the sum of the external coupling rates for all its optical modes are subject to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar absorbers. © 2012 American Physical Society.

  9. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    Science.gov (United States)

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  10. Slow and stopped light in active gain composite materials of metal nanoparticles. Ultralarge group index-bandwidth product predicted

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon; Choe, Song-Hyok [Institute of Lasers, State Academy of Sciences, Unjong District, Pyongyang (Korea, Democratic People' s Republic of)

    2017-08-15

    Chip-compatible slow light devices with large group index-bandwidth products and low losses are of great interest in the community of modern photonics. In this work, active gain materials containing metal nanoparticles are proposed as the slow and stopped light materials. Gain-assisted high field enhancement in metal nanoparticles and the resultant strong dispersion lead to such phenomena. From the Maxwell-Garnett model, it is revealed that the metal nanocomposite exhibits the infinitely large group index when the gain of the host medium and the filling factor of metal nanoparticles satisfy a critical condition. For the gain of the host above the critical value, one can observe slowing down effect with amplification of light pulses. Significantly large group index-bandwidth products, which vary from a few to several thousand or even infinity depending on the gain value of the host medium, have been numerically predicted in active silica glasses containing spheroidal metal nanoparticles, as examples. The proposed scheme inherently provides the widely varying operating spectral range by changing the aspect ratio of metal nanoparticles and chip-compatibility with low cost. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Multiple-input multiple-output visible light communication system based on disorder dispersion components

    Science.gov (United States)

    Yang, Tao; Zhang, Qi; Hao, Yue; Zhou, Xin-hui; Yi, Ming-dong; Wei, Wei; Huang, Wei; Li, Xing-ao

    2017-10-01

    A multiple-input multiple-output visible light communication (VLC) system based on disorder dispersion components is presented. Instead of monochromatic sources and large size photodetectors used in the traditional VLC systems, broadband sources with different spectra act as the transmitters and a compact imaging chip sensor accompanied by a disorder dispersion component and a calculating component serve as the receivers in the proposed system. This system has the merits of small size, more channels, simple structure, easy integration, and low cost. Simultaneously, the broadband sources are suitable to act as illumination sources for their white color. A regularized procedure is designed to solve a matrix equation for decoding the signals at the receivers. A proof-of-concept experiment using on-off keying modulation has been done to prove the feasibility of the design. The experimental results show that the signals decoded by the receivers fit well with those generated from the transmitters, but the bit error ratio is increased with the number of the signal channels. The experimental results can be further improved using a high-speed charge-coupled device, decreasing noises, and increasing the distance between the transmitters and the receivers.

  12. Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.

    Science.gov (United States)

    Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin

    2015-11-21

    Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.

  13. Controlling microwave signals by means of slow and fast light effects in SOA-EA structures

    DEFF Research Database (Denmark)

    Sales, Salvador; Öhman, Filip; Capmany, José

    2007-01-01

    We present a novel scheme for the control of microwave signals in the optical domain. We propose the use of alternating amplifying and absorbing sections to implement phase control by using fast and slow light effects in semiconductors. The potential benefits from the proposed semiconductor optic...

  14. Theoretical and computational studies of disorder-induced scattering and nonlinear optical interactions in slow-light photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan Singh

    Photonic crystal waveguides (PCWs) are nano-scale devices offering an exciting platform for exploring and exploiting enhanced linear and nonlinear light-matter interactions, aided in-part by slowing down the group velocity (vg) of on-chip photons. However, with potential applications in telecommunications, bio-sensing and quantum computing, the road to commercialization and practical devices is hindered by our limited understanding of the influence of structural disorder on linear and nonlinear light propagation. This thesis refines and develops state-of-the-art mathematical and numerical models for understanding the important role of disorder-related optical phenomena for PCWs in the linear and optical nonlinear regime. The importance of Bloch modes is demonstrated by computing the power loss caused by disorder-induced scattering for various dispersion engineered PCWs. The theoretical results are found to be in very good agreement with related experiments and it is shown how dispersion engineered designs can minimize the Bloch fields around spatial imperfections resulting in a radical departure from the usual assumed scaling vg. -2 of backscatteringlosses. We also conduct a systematic investigation of the influence of intra-hole correlation length, a parameter characterizing disorder on backscattering losses and find the loss behaviour to be qualitatively dependent on waveguide design and frequency. We then model disorder-induced resonance shifts to compute the ensemble averaged disordered density of states, accounting for important local field effects which are crucial in achieving good qualitative agreement with experiments. Lastly, motivated by emerging experiments examining enhanced nonlinear interactions, we develop an intuitive time dependent coupled mode formalism to derive propagation equations describing nonlinear pulse propagation in the presence of disorder-induced multiple scattering. The framework establishes a natural length scale for each physical

  15. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  16. An Intrinsic Value System for Developing Multiple Invariant Representations with Incremental Slowness Learning

    Directory of Open Access Journals (Sweden)

    Matthew David Luciw

    2013-05-01

    Full Text Available Curiosity Driven Modular Incremental Slow Feature Analysis (CD-MISFA;~cite{cdmisfa} is a recently introduced model of intrinsically-motivated invariance learning, which shows how curiosity enables the orderly formation of multiple stable sensory representations, through which the agent can simplify its complex sensory input. Here, we first discuss the computational properties of the CD-MISFA model itself, followed by a discussion of neurophysiological analogs fulfilling similar functional roles. CD-MISFA combines 1. unsupervised representation learning through the slowness principle, 2. generation of an intrinsic reward signal through the learning progress of the developing features, and 3. balancing of exploration and exploitation in order to maximize learning progress and quickly learn multiple feature sets for perceptual simplification. Experimental results on synthetic observations and on the iCub robot show that the intrinsic value system is an essential component to representation learning, further, the model explores such that the representations are typically learned in order from least to most costly, as predicted by the theory of Artificial Curiosity.

  17. Generalized phase contrast-enhanced diffractive coupling to light-driven microtools

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2015-01-01

    capability of the microtools, the applied spatial light modulator has been illuminated with a properly matched input beam cross section based on the generalized phase contrast method. Our results show a significant gain in the output at the tip of each microtool as measured from the fluorescence signal...... of the coupling spots is done in real time following the position of each microtool with the aid of an object tracking routine. This approach allows continuous coupling of light through the microtools which can be useful in a variety of biophotonics applications. To complement the targeted-light delivery...

  18. Atom-field dressed states in slow-light waveguide QED

    Science.gov (United States)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  19. Demonstration of tunable microwave photonic notch filters using slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Mørk, Jesper

    2009-01-01

    We introduce a novel scheme based on slow and fast light effects in semiconductor optical amplifiers, to implement a microwave photonic notch filter with ~100% fractional tuning range at a microwave frequency of 30 GHz....

  20. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  1. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...

  2. Unstart Coupling Mechanism Analysis of Multiple-Modules Hypersonic Inlet

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2013-01-01

    Full Text Available The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  3. Unstart coupling mechanism analysis of multiple-modules hypersonic inlet.

    Science.gov (United States)

    Hu, Jichao; Chang, Juntao; Wang, Lei; Cao, Shibin; Bao, Wen

    2013-01-01

    The combination of multiplemodules in parallel manner is an important way to achieve the much higher thrust of scramjet engine. For the multiple-modules scramjet engine, when inlet unstarted oscillatory flow appears in a single-module engine due to high backpressure, how to interact with each module by massflow spillage, and whether inlet unstart occurs in other modules are important issues. The unstarted flowfield and coupling characteristic for a three-module hypersonic inlet caused by center module II and side module III were, conducted respectively. The results indicate that the other two hypersonic inlets are forced into unstarted flow when unstarted phenomenon appears on a single-module hypersonic inlet due to high backpressure, and the reversed flow in the isolator dominates the formation, expansion, shrinkage, and disappearance of the vortexes, and thus, it is the major factor of unstart coupling of multiple-modules hypersonic inlet. The coupling effect among multiple modules makes hypersonic inlet be more likely unstarted.

  4. Detection of bifurcations in noisy coupled systems from multiple time series

    International Nuclear Information System (INIS)

    Williamson, Mark S.; Lenton, Timothy M.

    2015-01-01

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system

  5. Detection of bifurcations in noisy coupled systems from multiple time series

    Science.gov (United States)

    Williamson, Mark S.; Lenton, Timothy M.

    2015-03-01

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.

  6. Detection of bifurcations in noisy coupled systems from multiple time series

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Mark S., E-mail: m.s.williamson@exeter.ac.uk; Lenton, Timothy M. [Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE (United Kingdom)

    2015-03-15

    We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.

  7. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  8. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  9. Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (2) - light dynamics and light-matter entanglement -

    Science.gov (United States)

    Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.

    Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.

  10. Cross Talk Analysis on Multiple Coupled Transmission Lines; (The calculation of transfer functions on multiple coupled tansmission lines in an inhomogeneous dielectric medium)

    DEFF Research Database (Denmark)

    Dalby, Arne Brejning

    1994-01-01

    A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed to calcul......A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed...

  11. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Sales, Salvador; Capmany, Jose

    2010-01-01

    In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360° microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz) by slow light effects. The proposed device exploits the phenomenon of coherent population oscillat...... of the suggested technique, dictated by the underlying physics, are also analyzed....

  12. Thermodynamic Upper Bound on Broadband Light Coupling with Photonic Structures

    KAUST Repository

    Yu, Zongfu; Raman, Aaswath; Fan, Shanhui

    2012-01-01

    to an upper bound dictated by the second law of thermodynamics. Such bound limits how efficient light can be coupled to any photonic structure. As one example of application, we use this upper bound to derive the limit of light absorption in broadband solar

  13. Demonstration of bicolor slow-light channelization in rubidium vapor

    International Nuclear Information System (INIS)

    Bashkansky, Mark; Fatemi, Fredrik K.; Reintjes, John; Dutton, Zachary; Steiner, Michael

    2007-01-01

    We experimentally demonstrate a proof-of-principle of a previously proposed 'channelization' architecture for wideband slow-light propagation in atomic vapors using electromagnetically induced transparency (EIT). We use two optical frequencies to generate a sine wave signal which is delayed in rubidium vapor. The optical frequencies were tuned near the EIT resonances of two Zeeman sublevels, which are shifted from each other well beyond the EIT linewidth by a uniform magnetic field. We varied the Zeeman shift between these two levels (relative to the optical frequency splitting) and measured the delay versus Zeeman shift. Significant delays were observed and were in agreement with a theoretical model treating each Zeeman sublevel as part of an independent three-level system. We achieved delay of a signal with a bandwidth 16 times the EIT linewidth and confirmed our earlier theoretical models that delay occurs only when the optical spectral separation slightly exceeds the Zeeman splitting

  14. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    Science.gov (United States)

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  15. Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

    Science.gov (United States)

    Jeong, Seungwon; Lee, Ye-Ryoung; Choi, Wonjun; Kang, Sungsam; Hong, Jin Hee; Park, Jin-Sung; Lim, Yong-Sik; Park, Hong-Gyu; Choi, Wonshik

    2018-05-01

    The efficient delivery of light energy is a prerequisite for the non-invasive imaging and stimulating of target objects embedded deep within a scattering medium. However, the injected waves experience random diffusion by multiple light scattering, and only a small fraction reaches the target object. Here, we present a method to counteract wave diffusion and to focus multiple-scattered waves at the deeply embedded target. To realize this, we experimentally inject light into the reflection eigenchannels of a specific flight time to preferably enhance the intensity of those multiple-scattered waves that have interacted with the target object. For targets that are too deep to be visible by optical imaging, we demonstrate a more than tenfold enhancement in light energy delivery in comparison with ordinary wave diffusion cases. This work will lay a foundation to enhance the working depth of imaging, sensing and light stimulation.

  16. The Light-Emitting Diode as a Light Detector

    Science.gov (United States)

    Baird, William H.; Hack, W. Nathan; Tran, Kiet; Vira, Zeeshan; Pickett, Matthew

    2011-01-01

    A light-emitting diode (LED) and operational amplifier can be used as an affordable method to provide a digital output indicating detection of an intense light source such as a laser beam or high-output LED. When coupled with a microcontroller, the combination can be used as a multiple photogate and timer for under $50. A similar circuit is used…

  17. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...... taking into account that the light-matter coupling is strongly enhanced due to the significant slow-down of light in the photonic crystal waveguides....

  18. Recovery of slow potentials in AC-coupled electrocorticography: application to spreading depolarizations in rat and human cerebral cortex

    DEFF Research Database (Denmark)

    Hartings, Jed A; Watanabe, Tomas; Dreier, Jens P

    2009-01-01

    Cortical spreading depolarizations (spreading depressions and peri-infarct depolarizations) are a pathology intrinsic to acute brain injury, generating large negative extracellular slow potential changes (SPCs) that, lasting on the order of minutes, are studied with DC-coupled recordings in animals...... of the inverse filter was validated by its ability to recover both simulated and real low-frequency input test signals. The inverse filter was then applied to AC-coupled ECoG recordings from five patients who underwent invasive monitoring after aneurysmal subarachnoid hemorrhage. For 117 SPCs, the inverse filter...

  19. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  20. Wirelessly powered submerged-light illuminated photobioreactors for efficient microalgae cultivation

    DEFF Research Database (Denmark)

    Murray, Alexandra Marie; Fotidis, Ioannis; Isenschmid, Alex

    2017-01-01

    A novel submerged-light photobioreactor (SL-PBR) with free-floating, wireless internal light sources powered by near-field resonant inductive coupling was investigated using a quick (Chlorella vulgaris) and a slow (Haematococcus pluvialis) growing microalgal species. During testing of the SL......, respectively. Thus, the wireless internal light source was proven to be up to fivefold more effective light delivery system compared to the conventional illumination system. Meanwhile, it was discovered that some of the internal light sources had ceased to function, which might have caused underestimation...

  1. Multiple scattering of slow muons in an electron gas

    International Nuclear Information System (INIS)

    Archubi, C.D.; Arista, N.R.

    2017-01-01

    A comparative study of the angular dispersion of slow muons in an electron gas is performed using 3 dielectric models which represent the case of metals (Lindhard model for a free electron gas) and the cases of semiconductors and insulators (Levine and Louie model and Brandt and Reinheimer model for systems with a band gap) and a non-linear model for both cases at very low velocities. The contribution of collective electronic excitations according to the dielectric model are found to be negligible. The results from the calculation using Lindhard expressions for the angular half width are consistent with the result of a multiple scattering model. In particular, the effects produced by the band gap of the material are analyzed in detail. Finally, as the recoil effect is negligible, there is an almost exact scaling, for a given velocity, between the proton and the muon results. (authors)

  2. Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.

    Science.gov (United States)

    Zhang, Rui; Schweizer, Kenneth S

    2018-04-05

    The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.

  3. Quantum catastrophe of slow light

    OpenAIRE

    Leonhardt, Ulf

    2001-01-01

    Catastrophes are at the heart of many fascinating optical phenomena. The rainbow, for example, is a ray catastrophe where light rays become infinitely intense. The wave nature of light resolves the infinities of ray catastrophes while drawing delicate interference patterns such as the supernumerary arcs of the rainbow. Black holes cause wave singularities. Waves oscillate with infinitely small wave lengths at the event horizon where time stands still. The quantum nature of light avoids this h...

  4. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  5. Taming light with cold atoms

    International Nuclear Information System (INIS)

    Vestergaard Hau, Lene

    2002-01-01

    Much of the extraordinary progress of developments in communication (e-mail, and/or internet) has been achieved due to improvements in optical communication. This paper describes a new approach which could improve the speed of communication. The ability to stop light in its tracks by passing it through a cloud of ultracold atoms could lead to new techniques for optical storage. The described slow-light experiments have triggered new physics both on the experimental and theoretical fronts. The cold atom system allows the steepest possible refractive index profiles, and therefore the most dramatic effects, as Doppler effects are eliminated. Furthermore, cold atoms provide maximum flexibility in the choice of beam geometry. This is important for the storage and retrieval of multiple pulses of optical information in an atomic medium, as it would allow individual pulses to be selectively addressed. Slow and stopped light have many potential applications in optical communication and processing, including optical information storage, ultra-sensitive optical switches, and optical delay lines. It could also be used in quantum-information processing, in which quantum-mechanical information is used for computing and communication purposes. On a very different front, slow light provides us with a totally new way of probing the unusual properties of Bose-Einstein condensates

  6. Processes for design, construction and utilisation of arrays of light-emitting diodes and light-emitting diode-coupled optical fibres for multi-site brain light delivery.

    Science.gov (United States)

    Bernstein, Jacob G; Allen, Brian D; Guerra, Alexander A; Boyden, Edward S

    2015-05-01

    Optogenetics enables light to be used to control the activity of genetically targeted cells in the living brain. Optical fibers can be used to deliver light to deep targets, and LEDs can be spatially arranged to enable patterned light delivery. In combination, arrays of LED-coupled optical fibers can enable patterned light delivery to deep targets in the brain. Here we describe the process flow for making LED arrays and LED-coupled optical fiber arrays, explaining key optical, electrical, thermal, and mechanical design principles to enable the manufacturing, assembly, and testing of such multi-site targetable optical devices. We also explore accessory strategies such as surgical automation approaches as well as innovations to enable low-noise concurrent electrophysiology.

  7. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  8. Slow Images and Entangled Photons

    International Nuclear Information System (INIS)

    Swordy, Simon

    2007-01-01

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  9. Perfect coupling of light to a periodic dielectric/metal/dielectric structure

    Science.gov (United States)

    Wang, Zhengling; Li, Shiqiang; Chang, R. P. H.; Ketterson, John B.

    2014-07-01

    Using the finite difference time domain method, it is demonstrated that perfect coupling can be achieved between normally incident light and a periodic dielectric/metal/dielectric structure. The structure serves as a diffraction grating that excites modes related to the long range surface plasmon and short range surface plasmon modes that propagate on continuous metallic films. By optimizing the structural dimensions, perfect coupling is achieved between the incident light and these modes. A high Q of 697 and an accompanying ultrasharp linewidth of 0.8 nm are predicted for a 10 nm silver film for optimal conditions.

  10. Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-06-01

    A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.

  11. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  12. Wireless Power Transmission to Organic Light Emitting Diode Lighting Panel with Magnetically Coupled Resonator

    Science.gov (United States)

    Kim, Yong-Hae; Han, Jun-Han; Kang, Seung-Youl; Cheon, Sanghoon; Lee, Myung-Lae; Ahn, Seong-Deok; Zyung, Taehyoung; Lee, Jeong-Ik; Moon, Jaehyun; Chu, Hye Yong

    2012-09-01

    We are successful to lit the organic light emitting diode (OLED) lighting panel through the magnetically coupled wireless power transmission technology. For the wireless power transmission, we used the operation frequency 932 kHz, specially designed double spiral type transmitter, small and thin receiver on the four layered printed circuit board, and schottky diodes for the full bridge rectifier. Our white OLED is a hybrid type, in which phosphorescent and fluorescent organics are used together to generate stable white color. The total efficiency of power transmission is around 72%.

  13. Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Sales, Salvador; Xue, Weiqi; Mørk, Jesper

    2010-01-01

    We provide a comprehensive review of the application of slow and fast light (SFL) techniques to the field of microwave photonics. Basic principles leading to the implementation of phase shifting and true time delay operations which are instrumental in this field are first considered. We then focus....... Finally, the main results obtained for several microwave photonic applications such as filtering, arbitrary waveform generation and optoelectronic scillators (OEOs)are reviewed, and other directions for future research in the field are discussed....

  14. Complex modal properties of coupled moderately light equipment-structure systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Jaw Jingwen

    1986-01-01

    A new improved perturbation method for evaluating complex modal properties of coupled equipment-structure systems is presented. The method is applicable even when the equipment is not very light, and when the secondary system (equipment) introduces static constraint on the primary system (structure). The new method is applied to nine 8DOF coupled multiply connected equipment-structure systems. It is shown that the new method yields results which are in excellent agreement with the corresponding exact results. (orig.)

  15. High coupling efficiency of foam spherical hohlraum driven by 2ω laser light

    Science.gov (United States)

    Chen, Yao-Hua; Lan, Ke; Zheng, Wanguo; Campbell, E. M.

    2018-02-01

    The majority of solid state laser facilities built for laser fusion research irradiate targets with third harmonic light (0.35 μm) up-converted from the fundamental Nd wavelength at 1.05 μm. The motivation for this choice of wavelength is improved laser-plasma coupling. Significant disadvantages to this choice of wavelength are the reduced damage threshold of optical components and the efficiency of energy conversion to third harmonic light. Both these issues are significantly improved if second harmonic (0.53 μm) radiation is used, but theory and experiments have shown lower optical to x-ray energy conversion efficiency and increased levels of laser-plasma instabilities, resulting in reduced laser-target coupling. In this letter, we propose to use a 0.53 μm laser for the laser ignition facilities and use a low density foam wall to increase the coupling efficiency from the laser to the capsule and present two-dimensional radiation-hydrodynamic simulations of 0.53 μm laser light irradiating an octahedral-spherical hohlraum with a low density foam wall. The simulations show that the reduced optical depth of the foam wall leads to an increased laser-light conversion into thermal x-rays and about 10% higher radiation flux on the capsule than that achieved with 0.35 μm light irradiating a solid density wall commonly used in laser indirect drive fusion research. The details of the simulations and their implications and suggestions for wavelength scaling coupled with innovative hohlraum designs will be discussed.

  16. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    Directory of Open Access Journals (Sweden)

    Junya Uchida

    2010-12-01

    Full Text Available In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height. Slow-manifold analysis is shown to apply to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus- capped boundary layer; simulations with different initial inversion heights collapse onto single relationships of cloud properties with inversion height. Depending on the initial inversion height, the simulations evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the large-eddy simulations, these evolutions occur on two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced. Applications to analysis of stratocumulus observations and to pockets of open cells and ship tracks are proposed.

  17. Equivalence principle violations and couplings of a light dilaton

    International Nuclear Information System (INIS)

    Damour, Thibault; Donoghue, John F.

    2010-01-01

    We consider possible violations of the equivalence principle through the exchange of a light 'dilaton-like' scalar field. Using recent work on the quark-mass dependence of nuclear binding, we find that the dilaton-quark-mass coupling induces significant equivalence-principle-violating effects varying like the inverse cubic root of the atomic number - A -1/3 . We provide a general parametrization of the scalar couplings, but argue that two parameters are likely to dominate the equivalence-principle phenomenology. We indicate the implications of this framework for comparing the sensitivities of current and planned experimental tests of the equivalence principle.

  18. Modeling of mode-locked coupled-resonator optical waveguide lasers

    DEFF Research Database (Denmark)

    Agger, Christian; Skovgård, Troels Suhr; Gregersen, Niels

    2010-01-01

    Coupled-resonator optical waveguides made from coupled high-Q photonic crystal nanocavities are investigated for use as cavities in mode-locked lasers. Such devices show great potential in slowing down light and can serve to reduce the cavity length of a mode-locked laser. An explicit expression...... of the emerging pulse train. A range of tuning around this frequency allows for effective mode locking. Finally, noise is added to the generalized single-cavity eigenfrequencies in order to evaluate the effects of fabrication imperfections on the cold-cavity transmission properties and consequently on the locking...

  19. Slow-light enhanced absorption for bio-chemical sensing applications: potential of low-contrast lossy materials

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    Slow-light enhanced absorption in liquid-infiltrated photonic crystals has recently been proposed as a route to compensate for the reduced optical path in typical lab-on-a-chip systems for bio-chemical sensing applications. A simple perturbative expression has been applied to ideal structures...... composed of lossless dielectrics. In this work we study the enhancement in structures composed of lossy dielectrics such as a polymer. For this particular sensing application we find that the material loss has an unexpected limited drawback and surprisingly, it may even add to increase the bandwidth...

  20. gVSγ coupling constant in light cone QCD

    International Nuclear Information System (INIS)

    Aydin, C.; Keskin, F.; Yilmaz, A. H.; Aydin, S. H.

    2011-01-01

    We recalculated the coupling constants g φσγ , g φa 0 γ , g ωσγ , g a 0 ωγ , g ρσγ , and g a 0 ργ by taking into account the contributions of the three-particle up to twist-4 distribution amplitudes of the photon involving quark-gluon and quark-anti-quark-photon fields in the light-cone sum-rule framework.

  1. Multiplicities of pions and slow protons in nuclear interactions at relativistic energies

    International Nuclear Information System (INIS)

    Idh, J.

    1993-02-01

    The distributions of the transverse energy and the multiplicity of charged particles in oxygen induced reactions are examined in the Fritiof Monte Carlo model. The shape of the distributions are found to be determined by the distribution of the number of particle-emitting sources, i.e. strings. The fluctuations in particle emission from each string is hidden by these much larger fluctuations. The fluctuations of these distributions when partial phase space coverage is used is well described by purely stochastic emission. Distributions of slow singly-charged fragments in the target region is measured for both hadron and oxygen induced reactions. The distributions extends to much larger values than simulated data from the Monte Carlo models Fritiof 1.7 and Venus 3.14. The hadron induced reactions give distributions that can be reproduced assuming that each participating target nucleon produced fragments according to a geometric distribution, where the average number of fragments per participating target nucleon is target dependent. The extracted average number of produced fragments are similar for proton and pion induced reactions. When the tails of the distributions are studied their extension can be parametrized, and for such an approach a target dependence of A 2/3 is found for all projectiles. The data for 60 and 200 A GeV are almost identical for distributions as well as angular and energy examined distributions. The angular distributions follow an exponential in cos(θ). If the slopes of the angular distributions are examined and target dependences as well as centrality dependences are extracted. For light targets there is a strong target dependence, but for targets heavier than copper there is not any great differences. The centrality dependence is almost negligible for a gold-target but for a copper-target the most central collisions have more forward peaked distributions. (62 refs.)

  2. Coupled Flow and Geomechanics Modeling of Slow Earthquakes: Application to Slow Slip Events (SSE) in the Guerrero Gap, Mexico

    Science.gov (United States)

    Alves da Silva Junior, J.; Frank, W.; Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Three major cycles of slow slip events (SSE) have been reported since the early 2000s in the Guerrero gap, Mexico, on the boundary between the Cocos and North American plates. Analysis of teleseismic waveforms recorded on a dense temporary seismic network in the Guerrero gap have found low S-wave velocity and high Vp/Vs ratios at the depths corresponding to the sources of SSE, implying the possible presence of fluids and thus an active dewatering process that may result in near-lithostatic pore pressure at the plate interface. Here we use coupled flow and geomechanics analysis of the Guerrero gap to model transient changes in the stress field in the subduction zone as a result of pore pressure fluctuations and potential fluid flow along the subduction interface. Our computational modeling approach couples a multiphase flow simulator with a mechanical simulator using the unconditionally stable fixed stress scheme for the sequential solution of the two-way coupling between flow and geomechanics (Jha and Juanes, 2014). We assume quasi-static mechanical deformation and neglect the inertial term in the solid momentum balance equation—an approximation that is valid to model SSE assuming aseismic slip. We represent the subducting Cocos fault as a surface embedded in a three-dimensional medium, and use zero thickness interface elements to accurately model stick-slip behavior under dynamically evolving fluid pressure and fault strength. We employ the rate- and state-dependent friction model in the evolution of the coefficient of friction. We calibrate our model using two distinct datasets—GPS data and tremor catalogs in the area of Guerrero gap—and by separately constraining the rate of water production from a model of mineral hydration with depth. Our quantitative modeling approach furnishes a mechanistic understanding of the relationship between pore pressure evolution, stress transfer and tremor migration, and helps elucidate the origin of SSE in this area.

  3. Light chain deposition disease in multiple myeloma: MR imaging features correlated with histopathological findings

    International Nuclear Information System (INIS)

    Baur, A.; Staebler, A.; Reiser, M.; Lamerz, R.; Bartl, R.

    1998-01-01

    The clinical, histopathological, and imaging findings on MRI of a 56-year-old woman with light chain deposition disease occurring in multiple myeloma are presented. Light chain deposition disease is a variant of multiple myeloma with distinct clinical and histological characteristics. MRI of this patient also revealed an infiltration pattern in the bone marrow distinct from that of typical multiple myeloma. Multiple small foci of low signal intensity were present on T1- and T2-weighted spin echo and STIR images, corresponding to conglomerates of light chains in bone marrow biopsy. Contrast-enhanced T1-weighted spin echo images show diffuse enhancement of 51% over all vertebral bodies, with a minor enhancement of the focal conglomerates of light chains. Light chain deposition disease in multiple myeloma should be added to the list of those few entities with normal radiographs and discrete low-signal marrow lesions on T1- and T2-weighted spin echo pulse sequences. (orig.)

  4. Slow walking model for children with multiple disabilities via an application of humanoid robot

    Science.gov (United States)

    Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing

    2016-02-01

    Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.

  5. Vowel Acoustics in Parkinson's Disease and Multiple Sclerosis: Comparison of Clear, Loud, and Slow Speaking Conditions

    Science.gov (United States)

    Tjaden, Kris; Lam, Jennifer; Wilding, Greg

    2013-01-01

    Purpose: The impact of clear speech, increased vocal intensity, and rate reduction on acoustic characteristics of vowels was compared in speakers with Parkinson's disease (PD), speakers with multiple sclerosis (MS), and healthy controls. Method: Speakers read sentences in habitual, clear, loud, and slow conditions. Variations in clarity,…

  6. Application of a Light-Front Coupled Cluster Method

    International Nuclear Information System (INIS)

    Chabysheva, S.S.; Hiller, J.R.

    2012-01-01

    As a test of the new light-front coupled-cluster method in a gauge theory, we apply it to the nonperturbative construction of the dressed-electron state in QED, for an arbitrary covariant gauge, and compute the electron's anomalous magnetic moment. The construction illustrates the spectator and Fock-sector independence of vertex and self-energy contributions and indicates resolution of the difficulties with uncanceled divergences that plague methods based on Fock-space truncation. (author)

  7. Highly dispersive transparency in coupled metamaterials

    International Nuclear Information System (INIS)

    Thuy, V T T; Park, J W; Lee, Y P; Tung, N T; Lam, V D; Rhee, J Y

    2010-01-01

    We investigate the coupling between bright and quasi-dark eigenmodes in a planar metamaterial supporting highly dispersive transparency. The specific design of such a metamaterial consists of a cut wire (CW) and a single-gap split-ring resonator (SRR). Through the numerical simulation and the equivalent-circuit analysis, we demonstrate that the response of the SRR, which is weakly excited by external electric field, plays the role of a quasi-dark eigenmode in the presence of a strongly radiative CW. Furthermore, by extending and relating our study to the trapped mode resonances and the coupling between dark and bright modes, a more comprehensive perspective for the metamaterial realization of highly dispersive transmission and slow-light applications is provided

  8. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo.

    Science.gov (United States)

    Paoletti, Elena

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.

  9. Suppression of chaos at slow variables by rapidly mixing fast dynamics

    Science.gov (United States)

    Abramov, R.

    2012-04-01

    One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.

  10. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    Directory of Open Access Journals (Sweden)

    T. Pfadler

    2015-06-01

    Full Text Available Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  11. Mode coupling in terahertz metamaterials using sub-radiative and super-radiative resonators

    International Nuclear Information System (INIS)

    Qiao, Shen; Zhang, Yaxin; Zhao, Yuncheng; Xu, Gaiqi; Sun, Han; Yang, Ziqiang; Liang, Shixiong

    2015-01-01

    We theoretically and experimentally explored the electromagnetically induced transparency (EIT) mode-coupling in terahertz (THz) metamaterial resonators, in which a dipole resonator with a super-radiative mode is coupled to an inductance-capacitance resonator with a sub-radiative mode. The interference between these two resonators depends on the relative spacing between them, resulting in a tunable transparency window in the absorption spectrum. Mode coupling was experimentally demonstrated for three spacing dependent EIT metamaterials. Transmittance of the transparency windows could be either enhanced or suppressed, producing different spectral linewidths. These spacing dependent mode-coupling metamaterials provide alternative ways to create THz devices, such as filters, absorbers, modulators, sensors, and slow-light devices

  12. SU(4) flavor symmetry breaking in D-meson couplings to light hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Fontoura, C.E. [Instituto Tecnologico da Aeronautica, DCTA, Sao Jose dos Campos, SP (Brazil); Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil); Haidenbauer, J. [Institute for Advanced Simulation, Institut fuer Kernphysik, and Juelich Center for Hadron Physics, Forschungszentrum Juelich, Juelich (Germany); Krein, G. [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The validity of SU(4)-flavor symmetry relations of couplings of charmed D-mesons to light mesons and baryons is examined with the use of {sup 3}P{sub 0} quark-pair creation model and nonrelativistic quark-model wave functions. We focus on the three-meson couplings ππρ, KKρ and DDρ and baryon-baryon-meson couplings NNπ, NΛK and NΛ{sub c}D. It is found that SU(4)-flavor symmetry is broken at the level of 30% in the DDρ tree-meson couplings and 20% in the baryon-baryon-meson couplings. Consequences of these findings for DN cross sections and existence of bound states D-mesons in nuclei are discussed. (orig.)

  13. Experimental demonstration of multiple-inputs multiple-outputs OFDM/OQAM visible light communications

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Ghassemlooy, Zabih; Lin, Chun; Zhang, Min

    2017-10-01

    We experimentally demonstrate a 2×2 optical multiple-inputs multiple-outputs (MIMO) visible light communications system based on the modified orthogonal frequency-division multiplexing/offset quadrature amplitude modulation scheme. The adjacent subcarrier frequency-domain averaging (ASFA) with the full-loaded (FL) and half-loaded (HL) preamble structures is proposed for demultiplexing and mitigating the intrinsic imaginary interference (IMI) effect. Compared with the conventional channel estimation (CE) method, ASFA offers improved transmission performance. With the FL method, we obtain more accurate MIMO CE to mitigate the IMI effect and the optical noise compared to the HL method.

  14. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  15. Direct imaging of slow, stored and stationary EIT polaritons

    Science.gov (United States)

    Campbell, Geoff T.; Cho, Young-Wook; Su, Jian; Everett, Jesse; Robins, Nicholas; Lam, Ping Koy; Buchler, Ben

    2017-09-01

    Stationary and slow light effects are of great interest for quantum information applications. Using laser-cooled Rb87 atoms, we performed side imaging of our atomic ensemble under slow and stationary light conditions, which allows direct comparison with numerical models. The polaritons were generated using electromagnetically induced transparency (EIT), with stationary light generated using counter-propagating control fields. By controlling the power ratio of the two control fields, we show fine control of the group velocity of the stationary light. We also compare the dynamics of stationary light using monochromatic and bichromatic control fields. Our results show negligible difference between the two situations, in contrast to previous work in EIT-based systems.

  16. Slow light brings faster communications

    International Nuclear Information System (INIS)

    Gauthier, D.

    2006-01-01

    Two teams of researchers have managed to significantly reduce the speed of light in an optical fibre, which could open the door to all-optical routers for telecommunications, as Daniel Gauthier explains. Optical engineers around the globe are working hard to meet the ever-growing demand for higher-speed information networks, and the latest systems being developed operate at rates close to 160 GB per second - which is over 100 times quicker than the fastest broadband services currently available and a world away from the 56 kb per second dial-up connections of the early years of the Internet. Paradoxically, it seems that making light travel slower rather than faster might be the best way to meet these high-speed challenges. (U.K.)

  17. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light

    DEFF Research Database (Denmark)

    Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund

    2009-01-01

    and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing......We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...... the full quantum model of multiple scattering....

  18. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    Directory of Open Access Journals (Sweden)

    Hosea Joel

    2017-01-01

    Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.

  19. Proton energy dependence of slow neutron intensity

    International Nuclear Information System (INIS)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro

    2001-01-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  20. Group-index limitations in slow-light photonic crystals

    DEFF Research Database (Denmark)

    Grgic, Jure; Pedersen, Jesper Goor; Xiao, Sanshui

    2010-01-01

    radiation, and in-plane leakage. Often, the different mechanisms are playing in concert, leading to attenuation and scattering of electromagnetic modes. The very same broadening mechanisms also limit the attainable slow-down which we mimic by including a small imaginary part to the otherwise real...

  1. Novel InN/InGaN multiple quantum well structures for slow-light generation at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, F.B.; Valdueza-Felip, S.; Gonzalez-Herraez, M. [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Kandaswamy, P.K.; Lahourcade, L.; Calvo, V.; Monroy, E. [CEA-Grenoble, INAC/SP2M, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France); Martin-Lopez, S.; Corredera, P. [Departamento de Metrologia, Instituto de Fisica Aplicada (CSIC), 28006 Madrid (Spain)

    2010-01-15

    The third order susceptibility is responsible for a variety of optical non-linear phenomena - like self focusing, phase conjugation and four-wave mixing - with applications in coherent control of optical communication. InN is particularly attractive due to its near-IR bandgap and predicted high nonlinear effects. Moreover, the synthesis of InN nanostructures makes possible to taylor the absorption edge in the telecomunication spectral range and enhance nonlinear parameters thanks to carrier confinement. In this work, we assess the nonlinear optical behavior of InN/In{sub x}Ga{sub (1-x)}N (0.9 > x > 0.7) multiple-quantum-well (MQW) structures grown by plasma-assisted MBE on GaN-on-sapphire templates. Low-temperature (5 K) photoluminescence measurements show near-IR emission whose intensity increases with the In content in the barriers, which is explained in terms of the existence of piezoelectric fields in the structures. The nonlinear optical absorption coefficient, {alpha}{sub 2}, were measured at 1.55 {mu}m using the Z-scan method. We observe a strong dependence of the nonlinear absorption coefficient on the In content in the barriers. Saturable absorption is observed for the sample with x = 0.9, with {alpha}{sub 2} {proportional_to} -9 x 10{sub 3} cm/GW. For this sample, an optically controlled reduction of the speed of light by a factor S {proportional_to} 80 is obtained at 1.55 {mu}m (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.

    2017-12-01

    The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow

  3. Phenomenology of enhanced light quark Yukawa couplings and the W{sup ±}h charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Felix [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University, Mainz, 55099 (Germany)

    2017-02-15

    I propose the measurement of the W{sup ±}h charge asymmetry as a consistency test for the Standard Model (SM) Higgs, which is sensitive to enhanced Yukawa couplings of the first and second generation quarks. I present a collider analysis for the charge asymmetry in the same-sign lepton final state, pp→W{sup ±}h→(ℓ{sup ±}ν)(ℓ{sup ±}νjj), aimed at discovery significance for the SM W{sup ±}h production mode in each charge channel with 300 fb{sup −1} of 14 TeV LHC data. Using this decay mode, I estimate the statistical precision on the charge asymmetry should reach 0.4% with 3 ab{sup −1} luminosity, enabling a strong consistency test of the SM Higgs hypothesis. I also discuss direct and indirect constraints on light quark Yukawa couplings from direct and indirect probes of the Higgs width as well as Tevatron and Large Hadron Collider Higgs data. While the main effect from enhanced light quark Yukawa couplings is a rapid increase in the total Higgs width, such effects could be mitigated in a global fit to Higgs couplings, leaving the W{sup ±}h charge asymmetry as a novel signature to test directly the Higgs couplings to light quarks.

  4. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    Energy Technology Data Exchange (ETDEWEB)

    Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it

    2005-04-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.

  5. Ozone slows stomatal response to light and leaf wounding in a Mediterranean evergreen broadleaf, Arbutus unedo

    International Nuclear Information System (INIS)

    Paoletti, Elena

    2005-01-01

    The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening

  6. Coupled dark matter-dark energy in light of near Universe observations

    CERN Document Server

    Honorez, Laura Lopez; Mena, Olga; Verde, Licia; Jimenez, Raul

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified --and thus can be probed by a combination of tests for the expansion history and the growth of structure--, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inco...

  7. Quantum theory of dynamic multiple light scattering in fluctuating disordered media

    International Nuclear Information System (INIS)

    Skipetrov, S. E.

    2007-01-01

    We formulate a quantum theory of dynamic multiple light scattering in fluctuating disordered media and calculate the fluctuation and the autocorrelation function of the photon number operator for light transmitted through a disordered slab. The effect of disorder on the information capacity of a quantum communication channel operating in a disordered environment is estimated, and the use of squeezed light in diffusing-wave spectroscopy is discussed

  8. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    International Nuclear Information System (INIS)

    Hao Yinghang; Gong, Yubing; Wang Li; Ma Xiaoguang; Yang Chuanlu

    2011-01-01

    Research highlights: → Single synchronization transition for gap-junctional coupling. → Multiple synchronization transitions for chemical synaptic coupling. → Gap junctions and chemical synapses have different impacts on synchronization transition. → Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  9. Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Hao Yinghang [School of Physics, Ludong University, Yantai 264025 (China); Gong, Yubing, E-mail: gongyubing09@hotmail.co [School of Physics, Ludong University, Yantai 264025 (China); Wang Li; Ma Xiaoguang; Yang Chuanlu [School of Physics, Ludong University, Yantai 264025 (China)

    2011-04-15

    Research highlights: Single synchronization transition for gap-junctional coupling. Multiple synchronization transitions for chemical synaptic coupling. Gap junctions and chemical synapses have different impacts on synchronization transition. Chemical synapses may play a dominant role in neurons' information processing. - Abstract: In this paper, we have studied time delay- and coupling strength-induced synchronization transitions in scale-free modified Hodgkin-Huxley (MHH) neuron networks with gap-junctions and chemical synaptic coupling. It is shown that the synchronization transitions are much different for these two coupling types. For gap-junctions, the neurons exhibit a single synchronization transition with time delay and coupling strength, while for chemical synapses, there are multiple synchronization transitions with time delay, and the synchronization transition with coupling strength is dependent on the time delay lengths. For short delays we observe a single synchronization transition, whereas for long delays the neurons exhibit multiple synchronization transitions as the coupling strength is varied. These results show that gap junctions and chemical synapses have different impacts on the pattern formation and synchronization transitions of the scale-free MHH neuronal networks, and chemical synapses, compared to gap junctions, may play a dominant and more active function in the firing activity of the networks. These findings would be helpful for further understanding the roles of gap junctions and chemical synapses in the firing dynamics of neuronal networks.

  10. Spatiotemporal light-beam compression from nonlinear mode coupling

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan

    2018-04-01

    We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

  11. Coupling of slow waves near the lower hybrid frequency in JET

    International Nuclear Information System (INIS)

    Litaudon, X.; Moreau, D.

    1990-01-01

    The physical properties of the JET lower hybrid antenna have been investigated numerically with a two-dimensional computer code based on the linear coupling theory. The antenna is made from an array of multijunction units which divide the incident power along the toroidal direction. The main properties of this new coupler are investigated and compared with those of the conventional grills generally used in previous lower hybrid experiments. In the light of this study, the general design of the multijunction antenna is presented; the importance of the geometrical parameters of the multijunction unit (e.g. choice of the location of the E-plane junctions, septum width between waveguides) is stressed. These parameters are optimized and their values are taken into account in launcher manufacturing. With such an optimization, the electric field enhancement in each secondary waveguide is minimized for an electron density at the launcher of about 10 18 m -3 , the power reflection coefficient is below 1.5% and the 'n parallel -weighted antenna directivity' is expected to lie between 60% and 70% in a large range of plasma densities around the optimum density. By using two shorted passive waveguides on each side of the antenna, the edge effects are reduced. The effect of the accessibility limit on coupling is also investigated. (author). 18 refs, 19 figs

  12. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    International Nuclear Information System (INIS)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti; Wu, Chih-I

    2013-01-01

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts

  13. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yung-Ting [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China); Liu, Shun-Wei [Department of Electronic Engineering, Mingchi University of Technology, New Taipei, Taiwan 24301, Taiwan (China); Yuan, Chih-Hsien; Lee, Chih-Chien [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, Taiwan (China); Ho, Yu-Hsuan; Wei, Pei-Kuen [Research Center for Applied Science Academia Sinica, Taipei, Taiwan 11527, Taiwan (China); Chen, Kuan-Yu [Chilin Technology Co., LTD, Tainan City, Taiwan 71758, Taiwan (China); Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Taiwan (China); Wu, Chih-I, E-mail: cchen@chem.sinica.edu.tw, E-mail: chihiwu@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan (China)

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  14. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    Science.gov (United States)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  15. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  16. Numerical simulation of aerodynamic performance of a couple multiple units high-speed train

    Science.gov (United States)

    Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng

    2017-05-01

    In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.

  17. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  18. Optical-response properties in hybrid optomechanical systems with quadratic coupling

    Science.gov (United States)

    Sun, Xue-Jian; Wang, Xin; Liu, Li-Na; Liu, Wen-Xiao; Fang, Ai-Ping; Li, Hong-Rong

    2018-02-01

    We theoretically investigate the optical-response properties of the four-mode quadratically coupled optomechanical system (OMS), in which two standard OMSs with quadratic coupling are coupled to each other via a common waveguide. In the presence of a strong control field applied to one cavity and a weak probe field applied to the other, we show that by suitably tuning the system parameters, there appears the normal mode splitting, optomechanically induced absorption, and double or triple electromagnetically induced transparency phenomena in the probe absorption spectrum. In particular, the explicit physical explanations for those fantastic phenomena are detailed discussed. Moreover, we also show that our proposal can be exploited to implement the optical switch as well as the slow and fast light effects.

  19. Coherent light from E-field induced quantum coupling of exciton states in superlattice-like quantum wells

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Østergaard, John Erland; Hvam, Jørn Märcher

    1999-01-01

    Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we investig......Summary form only given. We focus on the ability to control the electronic coupling in coupled quantum wells with external E-fields leading to a strong modification of the coherent light emission, in particular at a bias where a superlattice-like miniband is formed. More specifically, we...... investigate a MBE-grown GaAs sample with a sequence of 15 single quantum wells having a successive increase of 1 monolayer in width ranging from 62 A to 102 A and with AlGaAs barriers of 17 Å....

  20. Self-interacting asymmetric dark matter coupled to a light massive dark photon

    International Nuclear Information System (INIS)

    Petraki, Kalliopi; Pearce, Lauren; Kusenko, Alexander

    2014-01-01

    Dark matter (DM) with sizeable self-interactions mediated by a light species offers a compelling explanation of the observed galactic substructure; furthermore, the direct coupling between DM and a light particle contributes to the DM annihilation in the early universe. If the DM abundance is due to a dark particle-antiparticle asymmetry, the DM annihilation cross-section can be arbitrarily large, and the coupling of DM to the light species can be significant. We consider the case of asymmetric DM interacting via a light (but not necessarily massless) Abelian gauge vector boson, a dark photon. In the massless dark photon limit, gauge invariance mandates that DM be multicomponent, consisting of positive and negative dark ions of different species which partially bind in neutral dark atoms. We argue that a similar conclusion holds for light dark photons; in particular, we establish that the multi-component and atomic character of DM persists in much of the parameter space where the dark photon is sufficiently light to mediate sizeable DM self-interactions. We discuss the cosmological sequence of events in this scenario, including the dark asymmetry generation, the freeze-out of annihilations, the dark recombination and the phase transition which gives mass to the dark photon. We estimate the effect of self-interactions in DM haloes, taking into account this cosmological history. We place constraints based on the observed ellipticity of large haloes, and identify the regimes where DM self-scattering can affect the dynamics of smaller haloes, bringing theory in better agreement with observations. Moreover, we estimate the cosmological abundance of dark photons in various regimes, and derive pertinent bounds

  1. Light effects in asymmetric vertically coupled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Stavrou, V.N., E-mail: vstavrou@newton.physics.uiowa.edu

    2015-12-15

    In this paper, the dependence of circular light polarization on the size asymmetry of self-assembled coupled quantum dots (SACQDs) has been studied. The heterostructure consists of ellipsoidal shaped QDs made with InAs which are embedded in a wetting layer and are surrounded by GaAs. By considering fully spin-polarized carriers within the QD structure, the light polarization has been estimated along the plane of spin polarized electrons (or holes). Circularly polarized light strongly depends on the ratio related to the different QD volumes. In the case of elongated QDs, small interdot distance and large volume ratio, the light polarization observed along the plane (110) receives the largest value (∼90%). On the other hand, the polarization efficiency of the emitted light decreases as the QD elongation decreases and finally vanishes for axially symmetric QD caps.

  2. Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze [School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074 (China); Xue, Chao [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Physics and Astronomy, Sun Yat-sen University, Guangzhou 510275 (China); Shao, Cheng-Gang, E-mail: cgshao@mail.hust.edu.cn; Wu, Jun-Fei [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Milyukov, Vadim [Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2016-08-15

    In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.

  3. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication

    Science.gov (United States)

    Matsuura, Toshiki; Takai, Takanari; Iwata, Futoshi

    2017-10-01

    We describe a novel three-dimensional fabrication technique using local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator (SLM). In a solution containing nanometer-scale colloidal Au particles, multiple laser spots formed on a conductive substrate by the SLM gathered the nanoparticles together, and then the nanoparticles were electrophoretically deposited onto the substrate by an applied electrical field. However, undesirable sub-spots often appeared due to optical interference from the multiple laser spots, which deteriorated the accuracy of the deposition. To avoid the appearance of undesirable sub-spots, we proposed a method using quasi-multiple spots, which we realized by switching the position of a single spot briefly using the SLM. The method allowed us to deposit multiple dots on the substrate without undesirable sub-dot deposition. By moving the substrate downward during deposition, multiple micro-pillar structures could be fabricated. As a fabrication property, the dependence of the pillar diameter on laser intensity was investigated by changing the number of laser spots. The smallest diameter of the four pillars fabricated in this study was 920 nm at the laser intensity of 2.5 mW. To demonstrate the effectiveness of the method, multiple spiral structures were fabricated. Quadruple spirals of 46 µm in height were successfully fabricated with a growth rate of 0.21 µm/s using 2200 frames of the CGH patterns displayed in the SLM at a frame rate of 10 fps.

  4. Laser coupling to reduced-scale targets at Nif Early Light

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, D.E.; Schneider, M.B.; Young, B.K.; Holder, J.P.; Langdon, A.B.; Bonanno, G.; Bower, D.E.; Bruns, H.C.; Campbell, K.M.; Celeste, J.R.; Compton, S.; Costa, R.L.; Dewald, E.L.; Dixit, S.N.; Eckart, M.J.; Eder, D.C.; Edwards, M.J.; Ellis, A.D.; Emig, J.A.; Froula, D.H.; Glenzer, S.H.; Hargrove, D.; Haynam, C.A.; Heeter, R.F.; Henesian, M.A.; Holtmeier, G.; James, D.L.; Jancaitis, K.S.; Kalantar, K.H.; Kamperschroer, J.H.; Kauffman, R.L.; Kimbrough, J.; Kirkwood, R.K.; Koniges, A.E.; Landen, O.L.; Landon, M.; Lee, F.D.; MacGowan, B.J.; Mackinnon, A.J.; Manes, K.R.; Marshall, C.; May, M.J.; McDonald, J.W.; Menapace, J.; Moses, S.E.I.; Munro, D.H.; Murray, J.R.; Niemann, C.; Power, G.D.; Rekow, V.; Ruppe, J.A.; Schein, J.; Shepherd, R.; Singh, M.S.; Springer, P.T.; Still, C.H.; Suter, L.J.; Tietbohl, G.L.; Turner, R.E.; VanWonterghem, B.M.; Wallace, R.J.; Warrick, A.; Weber, F.; Wegner, P.J.; Williams, E.A.; Young, P.E. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Baldis, H.A. [California at Davis Univ., CA (United States); Pellinen, D.; Watts, P. [Bechtel Nevada Corporation, Livermore, CA (United States)

    2006-06-15

    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility (NIF) under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light. (authors)

  5. Extraction of surface plasmons in organic light-emitting diodes via high-index coupling.

    Science.gov (United States)

    Scholz, Bert J; Frischeisen, Jörg; Jaeger, Arndt; Setz, Daniel S; Reusch, Thilo C G; Brütting, Wolfgang

    2012-03-12

    The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

  6. Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy

    International Nuclear Information System (INIS)

    Snooks, S.J.; Swash, M.

    1985-01-01

    Transcutaneous electrical stimulation of the central nervous system was used to measure motor conduction velocity in the human spinal cord in 21 subjects aged 22 to 75 years (mean 55 years), none of whom had neurological disease. The motor conduction velocity between the sixth cervical (C6) and first lumbar (L1) vertebral levels was 67.4+-9.1 m/s. This probably represents conduction velocity in the corticospinal tracts. In these subjects the motor conduction velocity in the cauda equina, between the first lumbar (L1) and fourth lumbar (L4) vertebral levels, was 57.9+-10.3 m/s. In four of five patients with multiple sclerosis, all with corticospinal signs in the legs, motor conduction velocity between C6 and L1 was slowed (41.8+-16.8 m/s), but cauda equina conduction was normal (55.8+-7.8 m/s). Similar slowing of spinal cord motor conduction was found in a patient with radiation myelopathy. This method should provide a relevant, simple clinical test in patients with spinal cord disease. (author)

  7. Solution of neutron slowing down equation including multiple inelastic scattering

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Saad, A.E.

    1977-01-01

    The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained

  8. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  9. Spatiotemporal multiple coherence resonances and calcium waves in a coupled hepatocyte system

    International Nuclear Information System (INIS)

    Bao-Hua, Wang; Qi-Shao, Lu; Shu-Juan, Lü; Xiu-Feng, Lang

    2009-01-01

    Spatiotemporal multiple coherence resonances for calcium activities induced by weak Gaussian white noise in coupled hepatocytes are studied. It is shown that bi-resonances in hepatocytes are induced by the interplay and competition between noise and coupling of cells, in other words, the cell in network can be excited either by noise or by its neighbour via gap junction which can transfer calcium ions between cells. Furthermore, the intercellular annular calcium waves induced by noise are observed, in which the wave length decreases with noise intensity augmenting but increases monotonically with coupling strength increasing. And for a fixed noise level, there is an optimal coupling strength that makes the coherence resonance reach maximum. (general)

  10. Noise analysis of a white-light supercontinuum light source for multiple wavelength confocal laser scanning fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Gail [Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom)

    2005-08-07

    Intensity correlations of a Ti : sapphire, Kr/Ar and a white-light supercontinuum were performed to quantify the typical signal amplitude fluctuations and hence ascertain the comparative output stability of the white-light supercontinuum source for confocal laser scanning microscopy (CLSM). Intensity correlations across a two-pixel sample (n = 1000) of up to 98%, 95% and 94% were measured for the Ti : sapphire, Kr/Ar and white-light supercontinuum source, respectively. The white-light supercontinuum noise level is therefore acceptable for CLSM, with the added advantage of wider wavelength flexibility over traditional CLSM excitation sources. The relatively low-noise white-light supercontinuum was then used to perform multiple wavelength sequential CLSM of guinea pig detrusor to confirm the reliability of the system and to demonstrate system flexibility.

  11. An agent-based negotiation approach for balancing multiple coupled control domains

    DEFF Research Database (Denmark)

    Umair, Aisha; Clausen, Anders; Jørgensen, Bo Nørregaard

    2015-01-01

    Solving multi-objective multi-issue negotiation problems involving interdependent issues distributed among multiple control domains is inherent to most non-trivial cyber-physical systems. In these systems, the coordinated operation of interconnected subsystems performing autonomous control....... The proposed approach can solve negotiation problems with interdependent issues across multiple coupled control domains. We demonstrate our approach by solving a coordination problem where a Combined Heat and Power Plant must allocate electricity for three commercial greenhouses to ensure the required plant...

  12. Coupled microrings data buffer using fast light

    Science.gov (United States)

    Scheuer, Jacob; Shahriar, Selim

    2013-03-01

    We present a theoretical study of a trap-door optical buffer based on a coupled microrings add/drop filter (ADF) utilizing the white light cavity (WLC). The buffer "trap-door" can be opened and closed by tuning the resonances of the microrings comprising the ADF and trap/release optical pulses. We show that the WLC based ADF yields a maximally flat filter which exhibits superior performances in terms of bandwidth and flatness compared to previous design approaches. We also present a realistic, Silicon-over-Insulator based, design and performance analysis taking into consideration the realistic properties and limitations of the materials and the fabrication process, leading to delays exceeding 850ps for 80GHz bandwidth, and a corresponding delay-bandwidth product of approximately 70.

  13. Slowing techniques for loading a magneto-optical trap of CaF molecules

    Science.gov (United States)

    Truppe, Stefan; Fitch, Noah; Williams, Hannah; Hambach, Moritz; Sauer, Ben; Hinds, Ed; Tarbutt, Mike

    2016-05-01

    Ultracold molecules in a magneto-optical trap (MOT) are useful for testing fundamental physics and studying strongly-interacting quantum systems. With experiments starting with a relatively fast (50-200 m/s) buffer-gas beam, a primary concern is decelerating molecules to below the MOT capture velocity, typically 10 m/s. Direct laser cooling, where the molecules are slowed via momentum transfer from a chirped counter-propagating narrowband laser, is a natural choice. However, chirping the cooling and repump lasers requires precise control of multiple laser frequencies simultaneously. Another approach, called ``white-light slowing'' uses a broadband laser such that all fast molecules in the beam are decelerated. By addressing numerous velocities no chirping is needed. Unfortunately, both techniques have significant losses as molecules are transversely heated during the optical cycling. Ideally, the slowing method would provide simultaneous deceleration and transverse guiding. A newly developed technique, called Zeeman-Sisyphus deceleration, is potentially capable of both. Using permanent magnets and optical pumping, the number of scattered photons is reduced, lessening transverse heating and relaxing the repump requirements. Here we compare all three options for CaF.

  14. Effectiveness of light paths coupled with personal emergency response systems in preventing functional decline among the elderly

    Directory of Open Access Journals (Sweden)

    Florent Lachal

    2016-08-01

    Full Text Available Introduction: The elderly population is at high risk of functional decline, which will induce significant costs due to long-term care. Dependency could be delayed by preventing one of its major determinants: falls. Light paths coupled with personal emergency response systems could prevent the functional decline through fall prevention. Methods: This study aimed to evaluate the effectiveness of light paths coupled with personal emergency response systems on the functional decline in an elderly population living at home. It is a secondary analysis on data from a previous cohort. In all, 190 older adults (aged 65 years or more living at home participated. Participants in the exposed group were equipped with home-based technologies: light paths coupled with personal emergency response systems. The participants’ functional status was assessed using the Functional Autonomy Measurement System scale at baseline (T0 and at the end of the study (T12-month. Baseline characteristics were evaluated by a comprehensive geriatric assessment. Results: After 1 year, 43% of the unexposed group had functional decline versus 16% of the exposed group. Light paths coupled with personal emergency response systems were significantly associated with a decrease in the functional decline (Δ Functional Autonomy Measurement System ⩾ 5 at home (odds ratio = 0.24, 95% confidence interval (0.11–0.54, p = 0.002. Discussion: This study suggests that light paths coupled with personal emergency response systems prevent the functional decline over 12 months. This result may encourage the prescription and use of home-based technologies to postpone dependency and institutionalization, but they need a larger cost-effectiveness study to demonstrate the efficiency of these technologies.

  15. On the emission of fast and slow target fragments from 84Kr-AgBr interactions at 0.95 GeV/A

    International Nuclear Information System (INIS)

    Bhattacharjee, B.; Mukhopadhyay, A.; Singh, V.; Tuli, S.K.; Sengupta, S.

    2003-01-01

    Multiplicity distributions of secondary charged particles coming out of 84 Kr-AgBr interaction at 0.95 GeV/A have been reported. Angular distributions of fast and slow target fragments have also been studied. The sharp forward peak in the angular distribution of knocked out protons has further been analyzed in the light of intermittency and scaled factorial moment

  16. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling; Huang, Bin-Juine; Wu, Po-Hsien; Kao, Yeong-Chuan

    2014-01-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector

  17. Three-Week Bright-Light Intervention Has Dose-Related Effects on Threat-Related Corticolimbic Reactivity and Functional Coupling

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Madsen, Martin K; Mc Mahon, Brenda

    2014-01-01

    environmental stimuli (e.g., threat) and may underlie these effects. Serotonin signaling modulates this circuit and is implicated in the pathophysiology of seasonal and other affective disorders. METHODS: We evaluated the effects of a bright-light intervention protocol on threat-related corticolimbic reactivity......-related amygdala and prefrontal reactivity in a dose-dependent manner. Conversely, amygdala-prefrontal and intraprefrontal functional coupling increased significantly in a dose-dependent manner. Genotype status significantly moderated bright-light intervention effects on intraprefrontal functional coupling....... CONCLUSIONS: This is the first study to evaluate the effects of clinically relevant bright-light intervention on threat-related brain function. We show that amygdala-prefrontal reactivity and communication are significantly affected by bright-light intervention, an effect partly moderated by genotype...

  18. Generation of microwaves by a slow wave electron cyclotron maser with axial injection

    International Nuclear Information System (INIS)

    Michie, R.B.; Vomvoridis, J.

    1984-01-01

    Experimental measurements of microwave generation by a new electron beam wave interaction is presented. This slow wave electron cyclotron maser (ECM) has a continuous electron beam injected axially into a slow wave structure containing a circularly polarized HE, hybrid electric (HE) mode. A longitudinal magnetic field produces microwaves by maser action. The slow wave structure allows energy to be coupled out of an electron beam with no initial transverse momentum. This is similar to klystrons, traveling wave tubes, and Cherenkov masers, but there is no axial beam bunching. Therefore, ECM designs using relativistic electron beams are allowed. This ECM is similar to a gyrotron in that the electrons are coupled through their cyclotron motion to the wave, but there is no need for initial electron velocity perpendicular to the background magnetic field. Therefore, a narrower spread of electron beam energy about the ECM resonance is possible which gives higher theoretical efficiency. A nonlinear analysis of energy coupling of electrons to the slow wave in the ECM and the design of the slow wave ECM microwave amplifier at 10 GHz using a 200 KeV axial electron beam in 3 KG magnetic field is included

  19. On the reasons for bombarding uranium with slow neutrons

    International Nuclear Information System (INIS)

    Xu Diyu

    1997-01-01

    Form the concepts of slow neutrons, the binding energy and the excitation energy of complex nuclei, and the activation energy in nuclear fission, the four reasons for bombarding uranium with slow neutrons are summed up. Not only the reasons for uranium fission are brought in light, but also the micromechanism is dealt with

  20. WOW: light print, light propel, light point

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas

    2012-01-01

    anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light...... propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation...

  1. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  2. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples

    Science.gov (United States)

    Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  3. An artificial light-harvesting array constructed from multiple Bodipy dyes.

    Science.gov (United States)

    Ziessel, Raymond; Ulrich, Gilles; Haefele, Alexandre; Harriman, Anthony

    2013-07-31

    An artificial light-harvesting array, comprising 21 discrete chromophores arranged in a rational manner, has been synthesized and characterized fully. The design strategy follows a convergent approach that leads to a molecular-scale funnel, having an effective chromophore concentration of 0.6 M condensed into ca. 55 nm(3), able to direct the excitation energy to a focal point. A cascade of electronic energy-transfer steps occurs from the rim to the focal point, with the rate slowing down as the exciton moves toward its ultimate target. Situated midway along each branch of the V-shaped array, two chromophoric relays differ only slightly in terms of their excitation energies, and this situation facilitates reverse energy transfer. Thus, the excitation energy becomes spread around the array, a situation reminiscent of a giant holding pattern for the photon that can sample many different chromophores before being trapped by the terminal acceptor. At high photon flux under conditions of relatively slow off-load to a device, such as a solar cell, electronic energy transfer encounters one or more barriers that hinder forward progress of the exciton and thereby delays arrival of the second photon. Preliminary studies have addressed the ability of the array to function as a sensitizer for amorphous silicon solar cells.

  4. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide

    NARCIS (Netherlands)

    Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid

    2016-01-01

    We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode

  5. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro-actuation requ......With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro...... waveguides (WOWs) [2]. As the WOWs are optically trapped and maneuvered in 3D-space, it is important to maintain efficient light-coupling through these free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track...... and couple to the WOWs during full volume operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking...

  6. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    Science.gov (United States)

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of many-particle interactions on slow light phenomena in quantum dots

    DEFF Research Database (Denmark)

    Houmark-Nielsen, Jakob; Jauho, Antti-Pekka; Nielsen, Torben Roland

    2008-01-01

    We investigate the impact of many-particle interactions on group-velocity slowdown achieved via Electromagnetically Induced Transparency (EIT) in quantum dots. Using a ladder scheme we find in the steady-state an increase in maximum slow-down as compared to the non-interacting case, which can...... be attributed to Coulomb interaction effects. The necessary pump power at which maximum slow down is obtained EIT remains, however....

  8. Extreme control of light in metamaterials: Complete and loss-free stopping of light

    International Nuclear Information System (INIS)

    Tsakmakidis, Kosmas L.; Hess, Ortwin

    2012-01-01

    We present an overview of recent advances within the field of slow- and stopped-light in metamaterial and plasmonic waveguides. We start by elucidating the mechanisms by which these configurations can enable complete stopping of light. Decoherence mechanisms may destroy the zero-group-velocity condition for real-frequency/complex-wavevector modes, but we show that metamaterial and nanoplasmonic waveguides also support complex-frequency/real-wavevector modes that uphold the light-stopping condition. A further point of focus is how, by using gain, dissipative losses can be overcome in the slow- and stopped-light regimes. To this end, on the basis of full-wave finite-difference time-domain (FDTD) simulations and analytic transfer-matrix calculations, we show that the incorporation of thin layers made of an active medium, placed adjacently to the core layer of a negative-refractive-index waveguide, can fully remove dissipative losses - in a slow- or stopped-light regime where the effective index of the guided lightwave remains negative.

  9. Coupled dark matter-dark energy in light of near universe observations

    International Nuclear Information System (INIS)

    Honorez, Laura Lopez; Reid, Beth A.; Verde, Licia; Jimenez, Raul; Mena, Olga

    2010-01-01

    Cosmological analysis based on currently available observations are unable to rule out a sizeable coupling among the dark energy and dark matter fluids. We explore a variety of coupled dark matter-dark energy models, which satisfy cosmic microwave background constraints, in light of low redshift and near universe observations. We illustrate the phenomenology of different classes of dark coupling models, paying particular attention in distinguishing between effects that appear only on the expansion history and those that appear in the growth of structure. We find that while a broad class of dark coupling models are effectively models where general relativity (GR) is modified — and thus can be probed by a combination of tests for the expansion history and the growth of structure —, there is a class of dark coupling models where gravity is still GR, but the growth of perturbations is, in principle modified. While this effect is small in the specific models we have considered, one should bear in mind that an inconsistency between reconstructed expansion history and growth may not uniquely indicate deviations from GR. Our low redshift constraints arise from cosmic velocities, redshift space distortions and dark matter abundance in galaxy voids. We find that current data constrain the dimensionless coupling to be |ξ| < 0.2, but prospects from forthcoming data are for a significant improvement. Future, precise measurements of the Hubble constant, combined with high-precision constraints on the growth of structure, could provide the key to rule out dark coupling models which survive other tests. We shall exploit as well weak equivalence principle violation arguments, which have the potential to highly disfavour a broad family of coupled models

  10. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin

    2018-05-01

    We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.

  11. CMOS-compatible plenoptic detector for LED lighting applications.

    Science.gov (United States)

    Neumann, Alexander; Ghasemi, Javad; Nezhadbadeh, Shima; Nie, Xiangyu; Zarkesh-Ha, Payman; Brueck, S R J

    2015-09-07

    LED lighting systems with large color gamuts, with multiple LEDs spanning the visible spectrum, offer the potential of increased lighting efficiency, improved human health and productivity, and visible light communications addressing the explosive growth in wireless communications. The control of this "smart lighting system" requires a silicon-integrated-circuit-compatible, visible, plenoptic (angle and wavelength) detector. A detector element, based on an offset-grating-coupled dielectric waveguide structure and a silicon photodetector, is demonstrated with an angular resolution of less than 1° and a wavelength resolution of less than 5 nm.

  12. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  13. Self-action of Bessel wave packets in a system of coupled light guides and formation of light bullets

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, A. A., E-mail: balakin.alexey@yandex.ru; Mironov, V. A.; Skobelev, S. A., E-mail: sk.sa1981@gmail.com [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2017-01-15

    The self-action of two-dimensional and three-dimensional Bessel wave packets in a system of coupled light guides is considered using the discrete nonlinear Schrödinger equation. The features of the self-action of such wave fields are related to their initial strong spatial inhomogeneity. The numerical simulation shows that for the field amplitude exceeding a critical value, the development of an instability typical of a medium with the cubic nonlinearity is observed. Various regimes are studied: the self-channeling of a wave beam in one light guide at powers not strongly exceeding a critical value, the formation of the “kaleidoscopic” picture of a wave packet during the propagation of higher-power radiation along a stratified medium, the formation of light bullets during competition between self-focusing and modulation instabilities in the case of three-dimensional wave packets, etc. In the problem of laser pulse shortening, the situation is considered when the wave-field stratification in the transverse direction dominates. This process is accompanied by the self-compression of laser pulses in well enough separated light guides. The efficiency of conversion of the initial Bessel field distribution to two flying parallel light bullets is about 50%.

  14. Laser coupling to reduced-scale targets at NIF Early Light

    International Nuclear Information System (INIS)

    Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A; Bonanno, G; Bower, D E; Bruns, H C; Campbell, K M; Celeste, J R; Compton, S; Costa, R L; Dewald, E L; Dixit, S N; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A D; Emig, J A; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Henesian, M A; Holtmeier, G; James, D L; Jancaitis, K S; Kalantar, D H; Kamperschroer, J H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Landen, O L; Landon, M; Lee, F D; MacGowan, B J; Mackinnon, A J; Manes, K R; Marshall, C; May, M J; McDonald, J W; Menapace, J; Moses, S I; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Power, G D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P; Still, C H; Suter, L J; Tietbohl, G L; Turner, R E; VanWonterghem, B M; Wallace, R J; Warrick, A; Watts, P; Weber, F; Wegner, P J; Williams, E A; Young, P E

    2005-01-01

    Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light

  15. Reply to "Comment on `Dynamics of slow light and light storage in a Doppler-broadened electromagnetically-induced-transparency medium: A numerical approach' "

    Science.gov (United States)

    Gou, Shih-Chuan; Su, Shih-Wei; Yu, Ite A.

    2017-10-01

    A damping term in the theoretical model of our paper [Phys. Rev. A 83, 013827 (2011), 10.1103/PhysRevA.83.013827] was questioned by the author of the Comment. The author argued this damping term cannot exactly describe the spontaneous decay or quantum jump process and, thus, concluded that our results are prone to be incorrect. However, the physics of electromagnetically induced transparency (EIT) is mainly determined by the ground-state coherence and the optical coherence of the probe transition. We show here that the damping term in our paper described the relaxation process of optical coherence in the EIT system, but not the spontaneous decay process of the population. The case of spontaneous decay used in the argument of the Comment is not an issue in typical EIT studies, in which the probe field is weak and treated as the perturbation. Furthermore, the experimental data in the paper were taken under the condition of a weak probe field. Our theoretical model in the weak-probe condition actually deals with the two coherences of EIT physics, and is suitable for analysis of the data. We believe the results of the study, focusing on the dynamics of slow light and light storage in Doppler-broadened EIT media, are correct.

  16. A new approach to sum frequency generation of single-frequency blue light in a coupled ring cavity

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2014-01-01

    We present a generic approach for the generation of tunable single-frequency light and demonstrate generation of more than 300 mW tunable light around 460 nm. One tapered diode laser is operated in a coupled ring cavity containing the nonlinear crystal and another tapered diode laser is sent thro...... through the nonlinear crystal in a single pass. A high conversion efficiency of more than 25 % of the single-pass laser is enabled by the high circulating power in the coupled cavity. The system is entirely self-stabilized with no need for electronic locking....

  17. Cavity mode control in side-coupled periodic waveguides: theory and experiment

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei

    2010-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....

  18. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  19. Point spread function due to multiple scattering of light in the atmosphere

    International Nuclear Information System (INIS)

    Pękala, J.; Wilczyński, H.

    2013-01-01

    The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower

  20. Coupled catastrophes: sudden shifts cascade and hop among interdependent systems

    Science.gov (United States)

    Barnett, George; D'Souza, Raissa M.

    2015-01-01

    An important challenge in several disciplines is to understand how sudden changes can propagate among coupled systems. Examples include the synchronization of business cycles, population collapse in patchy ecosystems, markets shifting to a new technology platform, collapses in prices and in confidence in financial markets, and protests erupting in multiple countries. A number of mathematical models of these phenomena have multiple equilibria separated by saddle-node bifurcations. We study this behaviour in its normal form as fast–slow ordinary differential equations. In our model, a system consists of multiple subsystems, such as countries in the global economy or patches of an ecosystem. Each subsystem is described by a scalar quantity, such as economic output or population, that undergoes sudden changes via saddle-node bifurcations. The subsystems are coupled via their scalar quantity (e.g. trade couples economic output; diffusion couples populations); that coupling moves the locations of their bifurcations. The model demonstrates two ways in which sudden changes can propagate: they can cascade (one causing the next), or they can hop over subsystems. The latter is absent from classic models of cascades. For an application, we study the Arab Spring protests. After connecting the model to sociological theories that have bistability, we use socioeconomic data to estimate relative proximities to tipping points and Facebook data to estimate couplings among countries. We find that although protests tend to spread locally, they also seem to ‘hop' over countries, like in the stylized model; this result highlights a new class of temporal motifs in longitudinal network datasets. PMID:26559684

  1. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    Science.gov (United States)

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  2. Light U(1) gauge boson coupled to baryon number

    International Nuclear Information System (INIS)

    Carone, C.D.; Murayama, Hitoshi

    1995-06-01

    The authors discuss the phenomenology of a light U(1) gauge boson, γ B , that couples only to baryon number. Gauging baryon number at high energies can prevent dangerous baryon-number violating operators that may be generated by Planck scale physics. However, they assume at low energies that the new U(1) gauge symmetry is spontaneously broken and that the γ B mass m B is smaller than m z . They show for m Υ B z that the γB coupling α B can be as large as ∼ 0.1 without conflicting with the current experimental constraints. The authors argue that α B ∼ 0.1 is large enough to produce visible collider signatures and that evidence for the γ B could be hidden in existing LEP data. They show that there are realistic models in which mixing between the γ B and the electroweak gauge bosons occurs only as a radiative effect and does not lead to conflict with precision electroweak measurements. Such mixing may nevertheless provide a leptonic signal for models of this type at an upgraded Tevatron

  3. Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lei, E-mail: dinglei@sust.edu.cn [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China); Wang, Lu-Wei [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China); Zhou, Lei, E-mail: zhzhlei@gmail.com [Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai' an 223003 (China); Zhang, Fang-hui [College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021 (China)

    2016-12-15

    Highlights: • An out-coupling membrane embedded with a scattering film of SiO{sub 2} spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm{sup 2} OLEDs. • Remarkable enhancement in efficiency was achieved from the OLEDs with out- coupling membrane. • The uniformity of large-size GOLED lighting panel is remarkably improved. - Abstract: An out-coupling membrane embedded with a scattering film of SiO{sub 2} spheres and polyethylene terephthalate (PET) plastic was successfully developed for 150 × 150 mm{sup 2} green OLEDs. Comparing with a reference OLED panel, an approximately 1-fold enhancement in the forward emission was obtained with an out-coupling membrane adhered to the surface of the external glass substrate of the panel. Moreover, it was verified that the emission color at different viewing angles can be stabilized without apparent spectral distortion. Particularly, the uniformity of the large-area OLEDs was greatly improved. Theoretical calculation clarified that the improved performance of the lighting panels is primarily attributed to the effect of particle scattering.

  4. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  5. Dependence of transmittance and group index on the coupling strength between constituents of a metamaterial

    International Nuclear Information System (INIS)

    Thuy Vu, Tran Thanh; Lee, Young Pak; Nguyen, Thanh Tung; Rhee, Joo Yull; Vu, Dinh Lam

    2011-01-01

    Recent studies on the coupling effects between constituent elements of metamaterials have opened up a new gateway to many fascinating electromagnetic properties and functionalities that cannot be explained by the uncoupled point of view. In this work, we numerically investigated, in a THz regime, the coupling between a cut wire and a split-ring resonator, which gives rise to an interesting phenomenon—the so-called electromagnetically induced transparency-like effect. The trade-off between the maximum transmittance of the transmission window and the group index, which depends on the coupling strength between constituent elements, was systematically studied. Furthermore, by characterizing this trade-off by the transmittance-delay product (figure of merit), a criterion for slow-light applications was provided

  6. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  7. A grating coupler with a trapezoidal hole array for perfectly vertical light coupling between optical fibers and waveguides

    Science.gov (United States)

    Mizutani, Akio; Eto, Yohei; Kikuta, Hisao

    2017-12-01

    A grating coupler with a trapezoidal hole array was designed and fabricated for perfectly vertical light coupling between a single-mode optical fiber and a silicon waveguide on a silicon-on-insulator (SOI) substrate. The grating coupler with an efficiency of 53% was computationally designed at a 1.1-µm-thick buried oxide (BOX) layer. The grating coupler and silicon waveguide were fabricated on the SOI substrate with a 3.0-µm-thick BOX layer by a single full-etch process. The measured coupling efficiency was 24% for TE-polarized light at 1528 nm wavelength, which was 0.69 times of the calculated coupling efficiency for the 3.0-µm-thick BOX layer.

  8. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Science.gov (United States)

    Kemiche, Malik; Lhuillier, Jérémy; Callard, Ségolène; Monat, Christelle

    2018-01-01

    We exploit slow light (high ng) modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28), this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate) of the pulsed laser signal.

  9. Design optimization of a compact photonic crystal microcavity based on slow light and dispersion engineering for the miniaturization of integrated mode-locked lasers

    Directory of Open Access Journals (Sweden)

    Malik Kemiche

    2018-01-01

    Full Text Available We exploit slow light (high ng modes in planar photonic crystals in order to design a compact cavity, which provides an attractive path towards the miniaturization of near-infrared integrated fast pulsed lasers. By applying dispersion engineering techniques, we can design structures with a low dispersion, as needed by mode-locking operation. Our basic InP SiO2 heterostructure is robust and well suited to integrated laser applications. We show that an optimized 30 μm long cavity design yields 9 frequency-equidistant modes with a FSR of 178 GHz within a 11.5 nm bandwidth, which could potentially sustain the generation of optical pulses shorter than 700 fs. In addition, the numerically calculated quality factors of these modes are all above 10,000, making them suitable for reaching laser operation. Thanks to the use of a high group index (28, this cavity design is almost one order of magnitude shorter than standard rib-waveguide based mode-locked lasers. The use of slow light modes in planar photonic crystal based cavities thus relaxes the usual constraints that tightly link the device size and the quality (peak power, repetition rate of the pulsed laser signal.

  10. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    Science.gov (United States)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  11. Light-water-reactor coupled neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1982-01-01

    An overview is presented of computer codes that model light water reactor cores with coupled neutronics and thermal-hydraulics. This includes codes for transient analysis and codes for steady state analysis which include fuel depletion and fission product buildup. Applications in nuclear design, reactor operations and safety analysis are given and the major codes in use in the USA are identified. The neutronic and thermal-hydraulic methodologies and other code features are outlined for three steady state codes (PDQ7, NODE-P/B and SIMULATE) and four dynamic codes (BNL-TWIGL, MEKIN, RAMONA-3B, RETRAN-02). Speculation as to future trends with such codes is also presented

  12. The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Öhman, Filip

    2009-01-01

    We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We...... demonstrate ~120º phase delay as well as ~170º phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based...

  13. Light-matter interaction in the strong coupling regime: configurations, conditions, and applications.

    Science.gov (United States)

    Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R

    2018-02-22

    Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).

  14. The Potential of/for 'Slow': Slow Tourists and Slow Destinations

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available Slow tourism practices are nothing new; in fact, they were once the norm and still are for millions of people whose annual holiday is spent camping, staying in caravans, rented accommodation, with friends and relations or perhaps in a second home, who immerse themselves in their holiday environment, eat local food, drink local wine and walk or cycle around the area. So why a special edition about slow tourism? Like many aspects of life once considered normal (such as organic farming or free-range eggs, the emergence of new practices has highlighted differences and prompted a re-evaluation of once accepted practices and values. In this way, the concept of ‘slow tourism’ has recently appeared as a type of tourism that contrasts with many contemporary mainstream tourism practices. It has also been associated with similar trends already ‘branded’ slow: slow food and cittaslow (slow towns and concepts such as mindfulness, savouring and well-being.

  15. Fining of Red Wine Monitored by Multiple Light Scattering.

    Science.gov (United States)

    Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo

    2017-07-12

    This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.

  16. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    in the group velocity acquiring a finite value above zero at the band-gap edges while attaining uperluminal values within the band gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric function or, equivalently, the linewidth of the broadened states......While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results...... are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  17. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    Controlled and oriented immobilisation of proteins for biosensor purposes is of extreme interest since this provides more efficient sensors with a larger density of active binding sites per area compared to sensors produced by conventional immobilisation. In this paper oriented coupling of a major...... histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  18. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Pooya Azarhoosh

    2016-09-01

    Full Text Available The hybrid perovskite CH3NH3PbI3 (MAPI exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  19. Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells

    Science.gov (United States)

    Azarhoosh, Pooya; McKechnie, Scott; Frost, Jarvist M.; Walsh, Aron; van Schilfgaarde, Mark

    2016-09-01

    The hybrid perovskite CH3NH3PbI3 (MAPI) exhibits long minority-carrier lifetimes and diffusion lengths. We show that slow recombination originates from a spin-split indirect-gap. Large internal electric fields act on spin-orbit-coupled band extrema, shifting band-edges to inequivalent wavevectors, making the fundamental gap indirect. From a description of photoluminescence within the quasiparticle self-consistent GW approximation for MAPI, CdTe, and GaAs, we predict carrier lifetime as a function of light intensity and temperature. At operating conditions we find radiative recombination in MAPI is reduced by a factor of more than 350 compared to direct gap behavior. The indirect gap is retained with dynamic disorder.

  20. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.

    2014-09-17

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  1. Superluminal two-color light in a multiple Raman gain medium

    KAUST Repository

    Kudriašov, V.; Ruseckas, J.; Mekys, A.; Ekers, Aigars; Bezuglov, N.; Juzeliūnas, G.

    2014-01-01

    We investigate theoretically the formation of two-component light with superluminal group velocity in a medium controlled by four Raman pump fields. In such an optical scheme only a particular combination of the probe fields is coupled to the matter and exhibits superluminal propagation; the orthogonal combination is uncoupled. The individual probe fields do not have a definite group velocity in the medium. Calculations demonstrate that this superluminal component experiences an envelope advancement in the medium with respect to the propagation in vacuum.

  2. Managing multiple roles - Personality, stress, and work-family interference in dual-earner couples

    NARCIS (Netherlands)

    Wierda-Boer, H.H.; Gerris, J.R.M.; Vermulst, A.A.

    2009-01-01

    Today many parents have multiple roles. This study examined how personality, domain-specific stress, and work-family interference are interrelated. Questionnaire data of 276 Dutch dual-earner couples with young children were analyzed using structural equation modeling. Findings demonstrated that job

  3. Quantized orbits in weakly coupled Belousov-Zhabotinsky reactors

    Science.gov (United States)

    Weiss, S.; Deegan, R. D.

    2015-06-01

    Using numerical and experimental tools, we study the motion of two coupled spiral cores in a light-sensitive variant of the Belousov-Zhabotinsky reaction. Each core resides on a separate two-dimensional domain, and is coupled to the other by light. When both spirals have the same sense of rotation, the cores are attracted to a circular trajectory with a diameter quantized in integer units of the spiral wavelength λ. When the spirals have opposite senses of rotation, the cores are attracted towards different but parallel straight trajectories, separated by an integer multiple of λ/2. We present a model that explains this behavior as the result of a spiral wavefront-core interaction that produces a deterministic displacement of the core and a retardation of its phase.

  4. Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

    Science.gov (United States)

    Wu, Wen-Jun; Yue, Bao-Zeng; Huang, Hua

    2016-02-01

    This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D'Alembert's principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the coupling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.

  5. Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory

    Science.gov (United States)

    Usselman, Austin

    We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one

  6. Hidden slow pulsars in binaries

    Science.gov (United States)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  7. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light.

    Science.gov (United States)

    Chen, Lei; Han, Ya; Liu, Qian; Liu, Yan-Ge; Zhang, Weigang; Chou, Keng C

    2018-04-15

    After a fiber Bragg grating (FBG) is fabricated, the reflection spectrum of the FBG is generally not tunable without mechanical deformation or temperature adjustment. Here we present a microcavity-coupled FBG with both a tunable reflection lineshape and dispersion using electromagnetically induced transparency. The Fano interference of light in the FBG and the microcavity allows for dramatic modification of the reflection spectrum. The phase of the reflected spectrum is continuously tunable between 0 and 2π to produce various Fano lineshapes. The dispersion of the output light is adjustable from normal dispersion to abnormal dispersion, consequently providing an adjustable speed of light. Additionally, it allows the FBG to switch from a notch filter to a bandpass filter at the resonant wavelength, which is not possible in a conventional uniform FBG.

  8. Towards strong light-matter coupling at the single-resonator level with sub-wavelength mid-infrared nano-antennas

    Energy Technology Data Exchange (ETDEWEB)

    Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it [Istituto Italiano di Tecnologia, Via Morego, 30, I-16163 Genova (Italy); Ongarello, T.; Paulillo, B.; Manceau, J.-M.; Beaudoin, G.; Sagnes, I.; Colombelli, R., E-mail: raffaele.colombelli@u-psud.fr [Centre for Nanoscience and Nanotechnology (C2N Orsay), CNRS UMR9001, Univ. Paris Sud, Univ. Paris Saclay, 91405 Orsay (France)

    2016-07-11

    We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.

  9. Dynamic nonlinear thermal optical effects in coupled ring resonators

    Directory of Open Access Journals (Sweden)

    Chenguang Huang

    2012-09-01

    Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.

  10. Theoretical comparison of light scattering and guided wave coupling in multilayer coated optical components with random interface roughness

    International Nuclear Information System (INIS)

    Elson, J.M.

    1995-01-01

    In this work, we use first-order perturbation theory to calculate and then compare the (1) angular distribution of incident light scattered from a multilayer-coated optical component and (2) the angular distribution of incident light coupled into guided waves supported by the multilayer component. The incident beam is assumed to be a monochromatic plane wave and the scattering/coupling is assumed to be caused by roughness at the interfaces of the optical component. Numerical results show that for high quality (low root mean square roughness) optical components, comparison of the relative amounts of incident energy (1) scattered out of the specular beam and (2) coupled into guided waves are comparable. It follows that the guided wave energy will further contribute to the scattered field via radiative decay or be converted to heat. Thus, this work can help provide an estimation of when guided wave coupling can occur along with the expected magnitude. (orig.)

  11. An empirical correction for moderate multiple scattering in super-heterodyne light scattering.

    Science.gov (United States)

    Botin, Denis; Mapa, Ludmila Marotta; Schweinfurth, Holger; Sieber, Bastian; Wittenberg, Christopher; Palberg, Thomas

    2017-05-28

    Frequency domain super-heterodyne laser light scattering is utilized in a low angle integral measurement configuration to determine flow and diffusion in charged sphere suspensions showing moderate to strong multiple scattering. We introduce an empirical correction to subtract the multiple scattering background and isolate the singly scattered light. We demonstrate the excellent feasibility of this simple approach for turbid suspensions of transmittance T ≥ 0.4. We study the particle concentration dependence of the electro-kinetic mobility in low salt aqueous suspension over an extended concentration regime and observe a maximum at intermediate concentrations. We further use our scheme for measurements of the self-diffusion coefficients in the fluid samples in the absence or presence of shear, as well as in polycrystalline samples during crystallization and coarsening. We discuss the scope and limits of our approach as well as possible future applications.

  12. The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network

    International Nuclear Information System (INIS)

    Zhao, Zhiguo; Gu, Huaguang

    2015-01-01

    Highlights: • Time delay-induced multiple synchronous behaviors was simulated in neuronal networks. • Multiple behaviors appear at time delays shorter than a bursting period of neurons. • The more spikes per burst of bursting, the more synchronous regions of time delay. • From regular to random via small-world networks, synchronous degree becomes weak. • An interpretation of the multiple behaviors and the influence of network are provided. - Abstract: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of

  13. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    International Nuclear Information System (INIS)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua; Gong Zhao

    2008-01-01

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 μm, the splitting length of the devices is only 35 μm even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits

  14. Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Yu Tianbao; Zhou Haifeng; Yang Jianyi; Jiang Xiaoqing; Wang Minghua [Department of Information Science and Electronic Engineering, Zhejiang University, 310027 Hangzhou (China); Gong Zhao [Zhejiang University City College, 310027 Hangzhou (China)

    2008-05-07

    Ultracompact 1 x N (N > 2) beam splitters based on coupling of multiple photonic crystal waveguides (PCWs) are numerically demonstrated. The operation of the devices is on the basis of the self-imaging phenomenon. Variation of the effective index of modified rods induces the transverse redistribution of the N-fold images with the same coupling length, and uniform or free splitting can be achieved. The devices with three and four output channels are discussed in details as examples. Results show that this kind of beam splitters are very short. At the operating wavelength of 1.55 {mu}m, the splitting length of the devices is only 35 {mu}m even if the output channel number reaches 20. It provides a new method and a compact model to export freely the beam to N channels in PCW devices and can find practical applications in future photonic integrated circuits.

  15. Global Effects of Superparameterization on Hydrothermal Land-Atmosphere Coupling on Multiple Timescales

    Science.gov (United States)

    Qin, Hongchen; Pritchard, Michael S.; Kooperman, Gabriel J.; Parishani, Hossein

    2018-02-01

    Many conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce what is now recognized as overly strong land-atmosphere (L-A) coupling. We investigate the effects of cloud Superparameterization (SP) on L-A coupling on timescales beyond diurnal where it has been recently shown to have a favorable muting effect hydrologically. Using the Community Atmosphere Model v3.5 (CAM3.5) and its Superparameterized counterpart SPCAM3.5, we conducted soil moisture interference experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. The results show that, on weekly-to-subseasonal timescales, SP also mutes hydrologic L-A coupling. This is detectable globally, and happens through the evapotranspiration-precipitation segment. But on seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two robust regional effects of SP on thermal L-A coupling have also been explored. Over the Arabian Peninsula, SP reduces thermal L-A coupling through a straightforward control by mean rainfall reduction. More counterintuitively, over the Southwestern US and Northern Mexico, SP enhances the thermal L-A coupling in a way that is independent of rainfall and soil moisture. This signal is associated with a systematic and previously unrecognized effect of SP that produces an amplified Bowen ratio, and is detectable in multiple SP model versions and experiment designs. In addition to amplifying the present-day Bowen ratio, SP is found to amplify the climate sensitivity of Bowen ratio as well, which likely plays a role in influencing climate change predictions at the L-A interface.

  16. Once upon a (slow) time in the land of recurrent neuronal networks….

    Science.gov (United States)

    Huang, Chengcheng; Doiron, Brent

    2017-10-01

    The brain must both react quickly to new inputs as well as store a memory of past activity. This requires biology that operates over a vast range of time scales. Fast time scales are determined by the kinetics of synaptic conductances and ionic channels; however, the mechanics of slow time scales are more complicated. In this opinion article we review two distinct network-based mechanisms that impart slow time scales in recurrently coupled neuronal networks. The first is in strongly coupled networks where the time scale of the internally generated fluctuations diverges at the transition between stable and chaotic firing rate activity. The second is in networks with finitely many members where noise-induced transitions between metastable states appear as a slow time scale in the ongoing network firing activity. We discuss these mechanisms with an emphasis on their similarities and differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. 7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer

    Directory of Open Access Journals (Sweden)

    Heusch M.

    2010-10-01

    Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.

  18. Light therapy for multiple sclerosis-associated fatigue: Study protocol for a randomized controlled trial.

    Science.gov (United States)

    Mateen, Farrah J; Manalo, Natalie C; Grundy, Sara J; Houghton, Melissa A; Hotan, Gladia C; Erickson, Hans; Videnovic, Aleksandar

    2017-09-01

    Fatigue is the most commonly reported symptom among multiple sclerosis (MS) patients, more than a quarter of whom consider fatigue to be their most disabling symptom. However, there are few effective treatment options for fatigue. We aim to investigate whether supplemental exposure to bright white light will reduce MS-associated fatigue. Eligible participants will have clinically confirmed multiple sclerosis based on the revised McDonald criteria (2010) and a score ≥36 on the Fatigue Severity Scale (FSS). Participants will be randomized 1:1 to bright white light (10,000 lux; active condition) or dim red light (treatment period, and a 4-week washout period. Participants will record their sleep duration, exercise, caffeine, and medication intake daily. Participants will record their fatigue using the Visual Analogue Fatigue Scale (VAFS) 4 times every third day, providing snapshots of their fatigue level at different times of day. Participants will self-report their fatigue severity using FSS on 3 separate visits: at baseline (week 0), following completion of the treatment phase (week 6), and at study completion (week 10). The primary outcome will be the change in the average FSS score after light therapy. We will perform an intention-to-treat analysis, comparing the active and control groups to assess the postintervention difference in fatigue levels reported on FSS. Secondary outcome measures include change in global VAFS scores during the light therapy and self-reported quality of life in the Multiple Sclerosis Quality of Life-54. We present a study design and rationale for randomizing a nonpharmacological intervention for MS-associated fatigue, using bright light therapy. The study limitations relate to the logistical issues of a self-administered intervention requiring frequent participant self-report in a relapsing condition. Ultimately, light therapy for the treatment of MS-associated fatigue may provide a low-cost, noninvasive, self-administered treatment

  19. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  20. Computation of saddle-type slow manifolds using iterative methods

    DEFF Research Database (Denmark)

    Kristiansen, Kristian Uldall

    2015-01-01

    with respect to , appropriate estimates are directly attainable using the method of this paper. The method is applied to several examples, including a model for a pair of neurons coupled by reciprocal inhibition with two slow and two fast variables, and the computation of homoclinic connections in the Fitz......This paper presents an alternative approach for the computation of trajectory segments on slow manifolds of saddle type. This approach is based on iterative methods rather than collocation-type methods. Compared to collocation methods, which require mesh refinements to ensure uniform convergence...

  1. Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers.

    Science.gov (United States)

    Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper

    2009-04-01

    We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.

  2. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  3. Spectra and hadronic couplings of light hermaphrodite mesons

    International Nuclear Information System (INIS)

    Latorre, J.I.; Pascual, P.

    1987-01-01

    We clarify the discrepancies of previous results for the masses and decay amplitudes of hermaphrodite mesons obtained from QCD sum rules. We study the case of the strange quark within a light quark expansion formalism. We find that the hermaphrodite masses are much higher than the ones of their ordinary meson partners. Our values of the set of masses and continuum thresholds are compared with some other sum rule results. We analyze the hadronic couplings of the isovector 1 -+ exotic hermaprodite ρ tilde using a three-point function sum rule evaluated at the symmetric euclidean point. We find that the ρ tilde can be very broad and prefers to decay into ρπ and K * K. Its most characteristic decays are the ones into πγ, ηπ and η'π. The former and the latter are of the order of (3∝8) MeV. (orig.)

  4. Spectra and hadronic couplings of light hermaphrodite mesons

    International Nuclear Information System (INIS)

    Latorre, J.I.; Pascual, P.; Narison, S.

    1985-12-01

    We clarify the discrepancies of previous results for the masses and decay amplitudes of hermaphrodite mesons obtained from QCD sum rules. We study the case of the strange quark within a light quark expansion formalism. We find that the hermaphrodite masses are much higher than the ones of their ordinary meson partners. Our values of the set of masses and continuum thresholds are compared with some other sum rule results. We analyze the hadronic couplings of the isovector 1 -+ exotic hermaphrodite rho-tilde using a three-point function sum rule evaluated at the symmetric euclidean point. We find that the rho-tilde can be very broad and prefers to decay into rhoπ and K*K. Its most characteristic decays are the ones into πγ, etaπ and eta'π. The former and the latter are of the order of (3 to 8) MeV. (author)

  5. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  6. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2010-01-01

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).

  7. Life cycle based dynamic assessment coupled with multiple criteria decision analysis

    DEFF Research Database (Denmark)

    Sohn, Joshua; Kalbar, Pradip; Birkved, Morten

    2017-01-01

    the service life of the building. This case study uses both the established and the coupled MCDA assessment methods to quantify and assess the balance of impacts between the production of mineral wool insulation versus the production of space heat. The use of TOPSIS method for calculating single scores......This work looks at coupling Life cycle assessment (LCA) with a dynamic inventory and multiple criteria decision analysis (MCDA) to improve the validity and reliability of single score results for complex systems. This is done using the case study of a representative Danish single family home over...... not matter which impact assessment is applied. However, for the scenarios where other impact categories vary inversely or independently from the climate change impact indicator, such as with renewable energy production, there is need for a more unconventional method, such as the TOPSIS method...

  8. Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Thomas, G.H.; Park, S.D.

    1979-01-01

    Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with [ 3 H]thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of [ 3 H]thymidine incorporation. The ability of synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normalsized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added during the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentsoum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive. (Auth.)

  9. Quantum correlations induced by multiple scattering of quadrature squeezed light

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2006-01-01

    Propagating quadrature squeezed light through a multiple scattering random medium is found to induce pronounced spatial quantum correlations that have no classical analogue. The correlations are revealed in the number of photons transported through the sample that can be measured from the intensity...... fluctuations of the total transmission or reflection. In contrast, no pronounced spatial quantum correlations appear in the quadrature amplitudes where excess noise above the shot noise level is found....

  10. EEG slow-wave coherence changes in propofol-induced general anesthesia: Experiment and theory

    Directory of Open Access Journals (Sweden)

    Kaier eWang

    2014-10-01

    Full Text Available The electroencephalogram (EEG patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. [Physical Review X 3(2, 021005 (2013] proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing and time (Hopf, modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing--Hopf balance (wake to Hopf-dominated chaotic slow-waves (unconsciousness. Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05--1.5 Hz slow-wave coherence between frontal, occipital, and frontal-occipital electrode pairs, with the most pronounced wake-versus-unconscious coherence changes occurring at the frontal cortex.

  11. Critical slowing down of spin fluctuations in BiFeO3

    International Nuclear Information System (INIS)

    Scott, J F; Singh, M K; Katiyar, R S

    2008-01-01

    In earlier work we reported the discovery of phase transitions in BiFeO 3 evidenced by divergences in the magnon light-scattering cross-sections at 140 and 201 K (Singh et al 2008 J. Phys.: Condens. Matter 20 252203) and fitted these intensity data to critical exponents α = 0.06 and α' = 0.10 (Scott et al 2008 J. Phys.: Condens. Matter 20 322203), under the assumption that the transitions are strongly magnetoelastic (Redfern et al 2008 at press) and couple to strain divergences through the Pippard relationship (Pippard 1956 Phil. Mag. 1 473). In the present paper we extend those criticality studies to examine the magnon linewidths, which exhibit critical slowing down (and hence linewidth narrowing) of spin fluctuations. The linewidth data near the two transitions are qualitatively different and we cannot reliably extract a critical exponent ν, although the mean field value ν = 1/2 gives a good fit near the lower transition.

  12. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    Science.gov (United States)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  13. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  15. Eoet-Wash constraints on multiple Yukawa interactions and on a coupling to ''isospin''

    International Nuclear Information System (INIS)

    Stubbs, C.W.

    1989-01-01

    The final results of our lead-source runs are presented. Our data rule out at 2σ the possibility of accounting for all the composition-dependent results in terms of a coupling to ''isospin.'' By exploiting the fact that our hillside layout is fairly complex, we have also set limits on multiple-Yukawa scenarios. 15 refs., 3 figs

  16. Inverse chaos synchronization in linearly and nonlinearly coupled systems with multiple time-delays

    International Nuclear Information System (INIS)

    Shahverdiev, E.M.; Hashimov, R.H.; Nuriev, R.A.; Hashimova, L.H.; Huseynova, E.M.; Shore, K.A.

    2005-04-01

    We report on inverse chaos synchronization between two unidirectionally linearly and nonlinearly coupled chaotic systems with multiple time-delays and find the existence and stability conditions for different synchronization regimes. We also study the effect of parameter mismatches on synchonization regimes. The method is tested on the famous Ikeda model. Numerical simulations fully support the analytical approach. (author)

  17. Experimental studies of heavy-ion slowing down in matter

    International Nuclear Information System (INIS)

    Geissel, H.; Weick, H.; Scheidenberger, C.; Bimbot, R.; Gardes, D.

    2002-08-01

    Measurements of heavy-ion slowing down in matter differ in many aspects from experiments with light particles like protons and α-particles. An overview of the special experimental requirements, methods, data analysis and interpretation is presented for heavy-ion stopping powers, energy- and angular-straggling and ranges in the energy domain from keV/u up to GeV/u. Characteristic experimental results are presented and compared with theory and semiempirical predictions. New applications are outlined, which represent a challenge to continuously improve the knowledge of heavy-ion slowing down. (orig.)

  18. Spiral multiple-effect diffusion solar still coupled with vacuum-tube collector and heat pipe

    KAUST Repository

    Huang, Bin-Juine; Chong, Tze-Ling; Wu, Po-Hsien; Dai, Han-Yi; Kao, Yeong-Chuan

    2015-01-01

    © 2015 Elsevier B.V. A novel solar still with spiral-shape multiple-effect diffusion unit is developed in the present study. The test results of a 14-effect unit coupled with vacuum-tube solar collector (absorber area 1.08m2) show that the highest

  19. WOW: light print, light propel, light point

    Science.gov (United States)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  20. Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution.

    Science.gov (United States)

    Coates, Colin G; Denvir, Donal J; McHale, Noel G; Thornbury, Keith D; Hollywood, Mark A

    2004-01-01

    The back-illuminated electron multiplying charge-coupled device (EMCCD) camera is having a profound influence on the field of low-light dynamic cellular microscopy, combining highest possible photon collection efficiency with the ability to virtually eliminate the readout noise detection limit. We report here the use of this camera, in 512 x 512 frame-transfer chip format at 10-MHz pixel readout speed, in optimizing a demanding ultra-low-light intracellular calcium flux microscopy setup. The arrangement employed includes a spinning confocal Nipkow disk, which, while facilitating the need to both generate images at very rapid frame rates and minimize background photons, yields very weak signals. The challenge for the camera lies not just in detecting as many of these scarce photons as possible, but also in operating at a frame rate that meets the temporal resolution requirements of many low-light microscopy approaches, a particular demand of smooth muscle calcium flux microscopy. Results presented illustrate both the significant sensitivity improvement offered by this technology over the previous standard in ultra-low-light CCD detection, the GenIII+intensified charge-coupled device (ICCD), and also portray the advanced temporal and spatial resolution capabilities of the EMCCD. Copyright 2004 Society of Photo-Optical Instrumentation Engineers.

  1. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  2. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums

    Directory of Open Access Journals (Sweden)

    L. Cheng

    1996-01-01

    Full Text Available This article deals with the modeling of vibrating structures immersed in both light and heavy fluids, and possible applications to noise control problems and industrial vessels containing fluids. A theoretical approach, using artificial spring systems to characterize the mechanical coupling between substructures, is extended to include fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed acoustic cavity is analyzed. After a brief description of the proposed technique, a number of numerical results are presented. The analysis addresses the following specific issues: the coupling between the plate and the shell; the coupling between the structure and the enclosure; the possibilities and difficulties regarding internal soundproofing through modifications of the joint connections; and the effects of fluid loading on the vibration of the structure.

  3. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  4. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  5. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  6. Grating-assisted superresolution of slow waves in Fourier space

    DEFF Research Database (Denmark)

    Thomas, N. Le; Houdré, R.; Frandsen, Lars Hagedorn

    2007-01-01

    with a high numerical aperture Fourier space imaging set-up. A high-resolution spectroscopy of the far-field emission diagram allows us to accurately and efficiently determine the dispersion curve and the group-index dispersion of planar photonic waveguides operating in the slow light regime....

  7. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  8. Slow Orbit Feedback at the ALS Using Matlab

    International Nuclear Information System (INIS)

    Portmann, G.

    1999-01-01

    The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the global orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS

  9. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.

    Directory of Open Access Journals (Sweden)

    Sidarta Ribeiro

    2004-01-01

    Full Text Available The discovery of experience-dependent brain reactivation during both slow-wave (SW and rapid eye-movement (REM sleep led to the notion that the consolidation of recently acquired memory traces requires neural replay during sleep. To date, however, several observations continue to undermine this hypothesis. To address some of these objections, we investigated the effects of a transient novel experience on the long-term evolution of ongoing neuronal activity in the rat forebrain. We observed that spatiotemporal patterns of neuronal ensemble activity originally produced by the tactile exploration of novel objects recurred for up to 48 h in the cerebral cortex, hippocampus, putamen, and thalamus. This novelty-induced recurrence was characterized by low but significant correlations values. Nearly identical results were found for neuronal activity sampled when animals were moving between objects without touching them. In contrast, negligible recurrence was observed for neuronal patterns obtained when animals explored a familiar environment. While the reverberation of past patterns of neuronal activity was strongest during SW sleep, waking was correlated with a decrease of neuronal reverberation. REM sleep showed more variable results across animals. In contrast with data from hippocampal place cells, we found no evidence of time compression or expansion of neuronal reverberation in any of the sampled forebrain areas. Our results indicate that persistent experience-dependent neuronal reverberation is a general property of multiple forebrain structures. It does not consist of an exact replay of previous activity, but instead it defines a mild and consistent bias towards salient neural ensemble firing patterns. These results are compatible with a slow and progressive process of memory consolidation, reflecting novelty-related neuronal ensemble relationships that seem to be context- rather than stimulus-specific. Based on our current and previous results

  10. Engineering light emission of two-dimensional materials in both the weak and strong coupling regimes

    Science.gov (United States)

    Brotons-Gisbert, Mauro; Martínez-Pastor, Juan P.; Ballesteros, Guillem C.; Gerardot, Brian D.; Sánchez-Royo, Juan F.

    2018-01-01

    Two-dimensional (2D) materials have promising applications in optoelectronics, photonics, and quantum technologies. However, their intrinsically low light absorption limits their performance, and potential devices must be accurately engineered for optimal operation. Here, we apply a transfer matrix-based source-term method to optimize light absorption and emission in 2D materials and related devices in weak and strong coupling regimes. The implemented analytical model accurately accounts for experimental results reported for representative 2D materials such as graphene and MoS2. The model has been extended to propose structures to optimize light emission by exciton recombination in MoS2 single layers, light extraction from arbitrarily oriented dipole monolayers, and single-photon emission in 2D materials. Also, it has been successfully applied to retrieve exciton-cavity interaction parameters from MoS2 microcavity experiments. The present model appears as a powerful and versatile tool for the design of new optoelectronic devices based on 2D semiconductors such as quantum light sources and polariton lasers.

  11. γ-ray emission from slow pulsars

    International Nuclear Information System (INIS)

    Morini, M.; Treves, A.

    1981-01-01

    The scope of this communication is to calculate the expected γ-ray flux from slow pulsars, neglecting the problem of the reliability of the observations. The key hypothesis is that since the γ-ray luminosity is a substantial fraction of Lsub(T) (the intrinsic energy loss), it should be produced in the vicinity of the speed of light radius. This comes from the well known argument of simultaneous conservation of energy and angular momentum. (Auth.)

  12. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  13. Fluctuation-Response Relation and modeling in systems with fast and slow dynamics

    Directory of Open Access Journals (Sweden)

    G. Lacorata

    2007-10-01

    Full Text Available We show how a general formulation of the Fluctuation-Response Relation is able to describe in detail the connection between response properties to external perturbations and spontaneous fluctuations in systems with fast and slow variables. The method is tested by using the 360-variable Lorenz-96 model, where slow and fast variables are coupled to one another with reciprocal feedback, and a simplified low dimensional system. In the Fluctuation-Response context, the influence of the fast dynamics on the slow dynamics relies in a non trivial behavior of a suitable quadratic response function. This has important consequences for the modeling of the slow dynamics in terms of a Langevin equation: beyond a certain intrinsic time interval even the optimal model can give just statistical prediction.

  14. Fast and slow light property improvement in erbium-doped amplifier

    Science.gov (United States)

    Peng, P. C.; Wu, F. K.; Kao, W. C.; Chen, J.; Lin, C. T.; Chi, S.

    2013-01-01

    This work experimentally demonstrates improvement of the fast light property in erbium-doped amplifiers at room temperature. The difference between the signal power and the pump power associated with bending loss is used to control the signal power at the different positions of the erbium-doped fiber (EDF) to improve the fast light property. Periodic bending of the EDF increases the time advance of the probe signal by over 288%. Additionally, this concept also could improve the fast light property using coherent population oscillations in semiconductor optical amplifiers.

  15. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  16. Value of the free light chain analysis in the clinical evaluation of response in multiple myeloma patients receiving anti-myeloma therapy

    DEFF Research Database (Denmark)

    Toftmann Hansen, Charlotte; Pedersen, Per T.; Jensen, Bo Amdi

    Value of the free light chain analysis in the clinical evaluation of response in multiple myeloma patients receiving anti-myeloma therapy.......Value of the free light chain analysis in the clinical evaluation of response in multiple myeloma patients receiving anti-myeloma therapy....

  17. Charged particle multiplicities in heavy and light quark initiated events above the $Z^0$ peak

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    We have measured the mean charged particle multiplicities separately for bbbar, ccbar and light quark (uubar, ddbar, ssbar) initiated events produced in e+e- annihilations at LEP. The data were recorded with the OPAL detector at eleven different energies above Z0 peak, corresponding to the full statistics collected at LPE1.5 and LEP2. The difference in mean charged and particle multiplicities for bbbar and light quark events, delta_bl, measured over this energy range is consistent with an energy independent behaviour, as predicted by QCD, but is inconsistent with the prediction of a more phenomenological approach which assumes that the multiplicity accompanying the decay of a heavy quark is independent of the quark mass itself. Our results, which can be combined into the single measurement delta_bl = 3.44+-0.40(stat)+-0.89(syst) at a luminosity weighted average centre-of mass energy of 195 GeV, are also consistent with an energy independent behaviour as extrapolated from lower energy data.

  18. A modal approach to light emission and propagation in coupled cavity waveguide systems

    DEFF Research Database (Denmark)

    Gregersen, Niels; Kristensen, P. T.; de Lasson, Jakob Rosenkrantz

    2016-01-01

    We theoretically investigate systems of optical cavities coupled to waveguides,which necessitates the introduction of non-trivial radiation conditions and normalization procedures. In return, the approach provides simple and accurate modeling of Green functions,Purcell factors and perturbation...... corrections, as well as an alternative approach to the so-calledcoupled mode theory. In combination, these results may form part of the foundations for highly efficient, yet physically transparent models of light emission and propagation in both classical and quantum integrated photonic circuits....

  19. Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Pariser, David; Loss, Robert; Jarratt, Michael; Abramovits, William; Spencer, James; Geronemus, Roy; Bailin, Philip; Bruce, Suzanne

    2008-10-01

    The use of light-emitting diode light offers practical advantages in photodynamic therapy (PDT) with topical methyl-aminolevulinate (MAL) for management of actinic keratoses (AK). We sought to evaluate the efficacy of MAL PDT using red light-emitting diode light. We conducted a multicenter, double-blind, randomized study. A total of 49 patients with 363 AK lesions had 16.8% MAL cream applied under occlusion for 3 hours, and 47 patients with 360 AK lesions had vehicle cream similarly applied. The lesions were then illuminated (630 nm, light dose 37 J/cm2) with repeated treatment 1 week later. Complete lesion and patient (all lesions showing complete response) response rates were evaluated 3 months after last treatment. MAL PDT was superior (PAK. MAL PDT using red light-emitting diode light is an appropriate treatment alternative for multiple AK lesions.

  20. Role of Ag2S coupling on enhancing the visible-light-induced catalytic property of TiO2 nanorod arrays

    Science.gov (United States)

    Li, Zhengcao; Xiong, Shan; Wang, Guojing; Xie, Zheng; Zhang, Zhengjun

    2016-01-01

    In order to obtain a better photocatalytic performance under visible light, Ag2S-coupled TiO2 nanorod arrays (NRAs) were prepared through the electron beam deposition with glancing angle deposition (GLAD) technique, annealing in air, followed by the successive ionic layer absorption and reaction (SILAR) method. The properties of the photoelectrochemical and photocatalytic degradation of methyl orange (MO) were thus conducted. The presence of Ag2S on TiO2 NRAs was observed to have a significant improvement on the response to visible light. It’s resulted from that Ag2S coupling can improve the short circuit photocurrent density and enhance the photocatalytic activity remarkably.

  1. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    Science.gov (United States)

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  2. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  3. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    Science.gov (United States)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  4. Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture

    Science.gov (United States)

    Kubis, Hans-Peter; Haller, Ernst-August; Wetzel, Petra; Gros, Gerolf

    1997-01-01

    A primary muscle cell culture derived from newborn rabbit muscle and growing on microcarriers in suspension was established. When cultured for several weeks, the myotubes in this model develop the completely adult pattern of fast myosin light and heavy chains. When Ca2+ ionophore is added to the culture medium on day 11, raising intracellular [Ca2+] about 10-fold, the myotubes develop to exhibit properties of an adult slow muscle by day 30, expressing slow myosin light as well as heavy chains, elevated citrate synthase, and reduced lactate dehydrogenase. The remarkable plasticity of these myotubes becomes apparent, when 8 days after withdrawal of the ionophore a marked slow-to-fast transition, as judged from the expression of isomyosins and metabolic enzymes, occurs. PMID:9108130

  5. Differential BPFs with Multiple Transmission Zeros Based on Terminated Coupled Lines

    Science.gov (United States)

    Niu, Yiming; Yang, Guo; Wu, Wen

    2018-04-01

    Differential bandpass filters (BPFs) named Filter A and Filter B based on Terminated Coupled Lines (TCLs) are proposed in this letter. The TCLs contributes to not only three poles in differential-mode (DM) for wideband filtering response but also multiple zeros in both DM and common-mode (CM) offering wide DM out-of-band rejection and good CM suppression. Fabricated filters centred at 3.5 GHz with wide DM passband and wideband CM suppression have been designed and measured. The filters improved the noise suppression capability of the communication and radiometer systems. The simulated and measured results are in good agreement.

  6. Atomic precision tests and light scalar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [CEA, IPhT, CNRS, URA 2306, Gif-sur-Yvette (France). Inst. de Physique Theorique; Burrage, Clare [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geneve Univ. (Switzerland). Dept. de Physique Theorique

    2010-10-15

    We calculate the shift in the atomic energy levels induced by the presence of a scalar field which couples to matter and photons. We find that a combination of atomic measurements can be used to probe both these couplings independently. A new and stringent bound on the matter coupling springs from the precise measurement of the 1s to 2s energy level difference in the hydrogen atom, while the coupling to photons is essentially constrained by the Lamb shift. Combining these constraints with current particle physics bounds we find that the contribution of a scalar field to the recently claimed discrepancy in the proton radius measured using electronic and muonic atoms is negligible. (orig.)

  7. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO_4 inverse opals

    International Nuclear Information System (INIS)

    Fang, Liang; Nan, Feng; Yang, Ying; Cao, Dawei

    2016-01-01

    BiVO_4 photonic crystal inverse opals (io-BiVO_4) with highly dispersed Ag nanoparticles (NPs) were prepared by the nanosphere lithography method combining the pulsed current deposition method. The incorporation of the Ag NPs can significantly improve the photoelectrochemical and photocatalytic activity of BiVO_4 inverse opals in the visible light region. The photocurrent density of the Ag/io-BiVO_4 sample is 4.7 times higher than that of the disordered sample without the Ag NPs, while the enhancement factor of the corresponding kinetic constant in photocatalytic experiment is approximately 3. The improved photoelectrochemical and photocatalytic activity is benefited from two reasons: one is the enhanced light harvesting owing to the coupling between the slow light and localized surface plasmon resonance effect; the other is the efficient separation of charge carriers due to the Schottky barriers.

  8. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  9. Multiple bio-monitoring system using visible light for electromagnetic-wave free indoor healthcare

    Science.gov (United States)

    An, Jinyoung; Pham, Ngoc Quan; Chung, Wan-Young

    2017-12-01

    In this paper, a multiple biomedical data transmission system with visible light communication (VLC) is proposed for an electromagnetic-wave-free indoor healthcare. VLC technology has emerged as an alternative solution to radio-frequency (RF) wireless systems, due to its various merits, e.g., ubiquity, power efficiency, no RF radiation, and security. With VLC, critical bio-medical signals, including electrocardiography (ECG), can be transmitted in places where RF radiation is restricted. This potential advantage of VLC could save more lives in emergency situations. A time hopping (TH) scheme is employed to transfer multiple medical-data streams in real time with a simple system design. Multiple data streams are transmitted using identical color LEDs and go into an optical detector. The received multiple data streams are demodulated and rearranged using a TH-based demodulator. The medical data is then monitored and managed to provide the necessary medical care for each patient.

  10. Broadband Light Collection Efficiency Enhancement of Carbon Nanotube Excitons Coupled to Metallo-Dielectric Antenna Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shayan, Kamran [Department; Rabut, Claire [Department; Kong, Xiaoqing [Department; Li, Xiangzhi [Department; Luo, Yue [Department; Mistry, Kevin S. [National Renewable; Blackburn, Jeffrey L. [National Renewable; Lee, Stephanie S. [Department; Strauf, Stefan [Department

    2017-11-09

    The realization of on-chip quantum networks ideally requires lossless interfaces between photons and solid-state quantum emitters. We propose and demonstrate on-chip arrays of metallo-dielectric antennas (MDA) that are tailored toward efficient and broadband light collection from individual embedded carbon nanotube quantum emitters by trapping air gaps on chip that form cavity modes. Scalable implementation is realized by employing polymer layer dry-transfer techniques that avoid solvent incompatibility issues, as well as a planar design that avoids solid-immersion lenses. Cryogenic measurements demonstrate 7-fold enhanced exciton intensity when compared to emitters located on bare wafers, corresponding to a light collection efficiency (LCE) up to 92% in the best case (average LCE of 69%) into a narrow output cone of +/-15 degrees that enables a priori fiber-to-chip butt coupling. The demonstrated MDA arrays are directly compatible with other quantum systems, particularly 2D materials, toward enabling efficient on-chip quantum light sources or spin-photon interfaces requiring unity light collection, both at cryogenic or room temperature.

  11. The Slow Control System of the Auger Fluorescence Detectors

    Science.gov (United States)

    Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.

    2003-07-01

    The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.

  12. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    Science.gov (United States)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  13. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    Science.gov (United States)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  14. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  15. Hydro-Mechanical Modelling of Slow Slip Phenomena at the Subduction Interface.

    Science.gov (United States)

    Petrini, C.; Gerya, T.; Madonna, C.; van Dinther, Y.

    2016-12-01

    Subduction zones experience a spectrum of slip phenomena, ranging from large devastating megathrust earthquakes to aseismic slow slip events. Slow slip events, lasting hours to years and being perceptible only by instruments, are believed to have the capability to induce large earthquakes. It is also repeatedly proposed that such slow events are controlled by fluid-rock interactions along the subduction interface, thus calling for development of fully coupled seismo-hydro-mechanical modeling approaches to identify their physics and controlling parameters. We present a newly developed finite difference visco-elasto-plastic numerical code with marker-in-cell technique, which fully couples mechanical deformation and fluid flow. We use this to investigate how the presence of fluids in the pore space of a (de)compacting rock matrix affects elastic stress accumulation and release along a fluid-bearing subduction interface. The model simulates the spontaneous occurrence of quasi-periodic slow slip phenomena along self-consistently forming highly localized shearbands, which accommodate shear displacement between two plates. The produced elastic rebound events show a slip velocity on the order of cm/yr, which is in good agreement with measured data. The governing gradual strength decrease along the slowly propagating shear bands is related to a drop in total pressure caused by shear localization at nearly constant (slightly decreasing) fluid pressure. Gradual reduction of the difference between the total and fluid pressure decreases brittle/plastic strength of fluid-bearing rocks along the shear bands, thus providing a dynamic feedback mechanism for the accumulated elastic stress release at the subduction interface.

  16. A two-Lane model with anomalous slow dynamics

    Science.gov (United States)

    Linford, Dan; Richards, Trevor; Pleimling, Michel

    2011-10-01

    It is known that in one-dimensional equilibrium systems with short range interactions a phase transition cannot exist at finite, non-zero temperatures. However, far from equilibrium, one-dimensional systems with local interactions can exhibit a phase transition. The ABC model, a three species model defined on a chain characterized by non-symmetric exchanges between particles, is known to possess a non-equilibrium phase transition. This model exhibits anomalous slow dynamics that we investigate in some detail using two-time quantities. In addition we discuss an extension of this model to a case where this single lane is coupled to a one-dimensional particle bath. This coupling yields an additional phase transition that we discuss in some detail.

  17. The Effect of Nitrogen-Doped ATO Nanotubes on Radical Multiplication of Buffer Media by Visible Light Photocatalysis Rather UV

    Directory of Open Access Journals (Sweden)

    Kan-Hung Hu

    2012-01-01

    Full Text Available The use of TiO2 in photodynamic therapy for the treatment of cancer has generally been studied in cultured cancer cells in serum-containing RPMI 1640 medium under visible light application rather than ultraviolet (UV light. An ordered channel array of N-doped anodic titanium dioxide (ATO has been successfully made for visible light application. ATO nanotubes in the anatase form with a length of 10 μm are more effective than nanotubes of 1.8 μm in length as a photocatalyst for radical multiplication in buffer solution by generating hydroxyl radicals and superoxide radical anions under UV-A exposure. Only the N-doped ATO is applicable to visible light photocatalysis for radical multiplication in RPMI 1640+1% FBS and acrylamide, a free radical carrier.

  18. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  19. Preliminary measurement of the charged multiplicities in b, c and light quark events from Z0 decays

    International Nuclear Information System (INIS)

    1996-06-01

    Average charged multiplicities have been measured separately in b, c and light quark (u, d, s) events from Z 0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of b and light quark events, and reconstructed charmed mesons were used to select c quark events. We measured the charged multiplicities: anti n uds = 20.21 ± 0.10 (stat.) ± 0.17 (syst.), anti n c = 21.28 ± 0.46 (stat.) -0.33 +0.38 (syst.) and anti n b = 23.14 ± 0.10 (stat.) -0.34 +0.35 (syst.), from which we derived the differences between the total average charged multiplicities of c or b quark events and light quark events: Δ anti n c = 1.07 ± 0.47 (stat.) -0.30 +0.36 (syst.) and Δ anti n b = 2.93 ± 0.14 (stat.) -0.29 +0.30 (syst.). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation

  20. Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements

    International Nuclear Information System (INIS)

    Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

    2007-01-01

    We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement

  1. Transition among synchronous schemes in coupled nonidentical multiple time delay systems

    International Nuclear Information System (INIS)

    Thang Manh Hoang

    2009-01-01

    We present the transition among possible synchronous schemes in coupled nonidentical multiple time delay systems, i.e., lag, projective-lag, complete, anticipating and projective-anticipating synchronization. The number of nonlinear transforms in the master's equation can be different from that in slave's, and nonlinear transforms can be in various forms. The driving signal is the sum of nonlinearly transformed components of delayed state variable. Moreover, the equation representing for driving signal is constructed exactly so that the difference between the master's and slave's structures is complemented. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed models.

  2. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.

    Science.gov (United States)

    Zhou, Ji; He, Zhihong; Ma, Yu; Dong, Shikui

    2014-09-20

    This paper discusses Gaussian laser transmission in double-refraction crystal whose incident light wavelength is within its absorption wave band. Two scenarios for coupled radiation and heat conduction are considered: one is provided with an applied external electric field, the other is not. A circular heat source with a Gaussian energy distribution is introduced to present the crystal's light-absorption process. The electromagnetic field frequency domain analysis equation and energy equation are solved to simulate the phenomenon by using the finite element method. It focuses on the influence of different values such as wavelength, incident light intensity, heat transfer coefficient, ambient temperature, crystal thickness, and applied electric field strength. The results show that the refraction index of polarized light increases with the increase of crystal temperature. It decreases as the strength of the applied electric field increases if it is positive. The mechanism of electrical modulation for the thermo-optical effect is used to keep the polarized light's index of refraction constant in our simulation. The quantitative relation between thermal boundary condition and strength of applied electric field during electrical modulation is determined. Numerical results indicate a possible approach to removing adverse thermal effects such as depolarization and wavefront distortion, which are caused by thermal deposition during linear laser absorption.

  3. Surface preparation and coupling in plastic scintillator dosimetry

    International Nuclear Information System (INIS)

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-01-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity

  4. Slow Manifold and Hannay Angle in the Spinning Top

    Science.gov (United States)

    Berry, M. V.; Shukla, P.

    2011-01-01

    The spin of a top can be regarded as a fast variable, coupled to the motion of the axis which is slow. In pure precession, the rotation of the axis round a cone (without nutation), can be considered as the result of a reaction from the fast spin. The resulting restriction of the total state space of the top is an illustrative example, at…

  5. Primordial spectra of slow-roll inflation at second-order with the Gauss-Bonnet correction

    Science.gov (United States)

    Wu, Qiang; Zhu, Tao; Wang, Anzhong

    2018-05-01

    The slow-roll inflation for a single scalar field that couples to the Gauss-Bonnet (GB) term represents an important higher-order curvature correction inspired by string theory. With the arrival of the era of precision cosmology, it is expected that the high-order corrections become more and more important. In this paper we study the observational predictions of the slow-roll inflation with the GB term by using the third-order uniform asymptotic approximation method. We calculate explicitly the primordial power spectra, spectral indices, running of the spectral indices for both scalar and tensor perturbations, and the ratio between tensor and scalar spectra. These expressions are all written in terms of the Hubble and GB coupling flow parameters and expanded up to the next-to-leading order in the slow-roll expansions so they represent the most accurate results obtained so far in the literature. In addition, by studying the theoretical predictions of the scalar spectral index and the tensor-to-scalar ratio with the Planck 2015 constraints in a model with power-law potential and GB coupling, we show that the second-order corrections are important in the future measurements. We expect that the understanding of the GB corrections in the primordial spectra and their constraints by forthcoming observational data will provide clues for the UV complete theory of quantum gravity, such as the string/M-theory.

  6. Slow Movement/Slow University: Critical Engagements. Introduction to the Thematic Section

    Directory of Open Access Journals (Sweden)

    Maggie O'Neill

    2014-09-01

    Full Text Available This thematic section emerged from two seminars that took place at Durham University in England in November 2013 and March 2014 on the possibilities for thinking through what a change movement towards slow might mean for the University. Slow movements have emerged in relation to a number of topics: Slow food, Citta slow and more recently, slow science. What motivated us in the seminars was to explore how far these movements could help us address the acceleration and intensification of work within our own and other universities, and indeed, what new learning, research, philosophies, practices, structures and governance might emerge. This editorial introduction presents the concept of the "slow university" and introduces our critical engagements with slow. The articles presented here interrogate the potentialities, challenges, problems and pitfalls of the slow university in an era of corporate culture and management rationality. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1403166

  7. Multiple Sclerosis

    Science.gov (United States)

    Multiple sclerosis (MS) is a nervous system disease that affects your brain and spinal cord. It damages the myelin sheath, the material that surrounds and protects your nerve cells. This damage slows down ...

  8. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    Science.gov (United States)

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fully coupled multiphysics modeling of enhanced thermal conductivity UO{sub 2}–BeO fuel performance in a light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Zhou, W., E-mail: wenzzhou@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Shen, P. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Prudil, A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Chan, P.K. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario (Canada)

    2015-12-15

    Highlights: • LWR fuel performance modeling capability developed. • Fully coupled multiphysics studies for enhanced thermal conductivity UO{sub 2}–BeO fuel. • UO{sub 2}–BeO fuel decreases fuel temperature and lessens thermal stresses. • UO{sub 2}–BeO fuel facilitates a reduction in PCMI. • Reactor safety can be improved for UO{sub 2}–BeO fuel. - Abstract: Commercial light water reactor fuel UO{sub 2} has a low thermal conductivity that leads to the development of a large temperature gradient across the fuel pellet, limiting the reactor operational performance due to the effects that include thermal stresses causing pellet cladding interaction and the release of fission product gases. This study presents the development of a modeling and simulation for enhanced thermal conductivity UO{sub 2}–BeO fuel behavior in a light water reactor, using self-defined multiple physics models fully coupled based on the framework of COMSOL Multiphysics. Almost all the related physical models are considered, including heat generation and conduction, species diffusion, thermomechanics (thermal expansion, elastic strain, densification, and fission product swelling strain), grain growth, fission gas production and release, gap heat transfer, mechanical contact, gap/plenum pressure with plenum volume, cladding thermal and irradiation creep and oxidation. All the phenomenal models and materials properties are implemented into COMSOL Multiphysics finite-element platform with a 2D axisymmetric geometry of a fuel pellet and cladding. UO{sub 2}–BeO enhanced thermal conductivity nuclear fuel would decrease fuel temperatures and facilitate a reduction in pellet cladding interaction from our simulation results through lessening thermal stresses that result in fuel cracking, relocation, and swelling, so that the safety of the reactor would be improved.

  10. Critical slowing down and the gradient flow coupling in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Patrick; Stollenwerk, Felix [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Ramos, Alberto [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    We study the sensitivity of the gradient flow coupling to sectors of different topological charge and its implications in practical situations. Furthermore, we investigate an alternative definition of the running coupling that is expected to be less sensitive to the problems of the HMC algorithm to efficiently sample all topological sectors.

  11. Critical slowing down and the gradient flow coupling in the Schroedinger functional

    International Nuclear Information System (INIS)

    Fritzsch, Patrick; Stollenwerk, Felix; Ramos, Alberto

    2013-11-01

    We study the sensitivity of the gradient flow coupling to sectors of different topological charge and its implications in practical situations. Furthermore, we investigate an alternative definition of the running coupling that is expected to be less sensitive to the problems of the HMC algorithm to efficiently sample all topological sectors.

  12. 3D Light-driven Micro-tools with Nano-probes

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2014-01-01

    At DTU Fotonik in Denmark, we have previously proposed and demonstrated microtargetedlight-delivery [1] and the opto-mechanical capabilities of so-called wave-guidedoptical wave-guides (WOWs) [2]. As the microscopic WOWs are optically trapped andmaneuvered in 3D-space, it is important to maintain...... efficient light-coupling throughthese free-standing waveguides within their operating volume [3]. We propose the use ofdynamic diffractive techniques to create focal spots that will track and couple to the WOWs during full volume operation and with six-degrees-of-freedom. This is done by using a Hamamatsu...... Photonics LCoS-SLM to encode the necessary diffractive phasepatterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have demonstrated dynamic tracking and coupling for both lateral and axial displacements on our proprietary Biophotonics...

  13. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  14. Human gamma oscillations during slow wave sleep.

    Directory of Open Access Journals (Sweden)

    Mario Valderrama

    Full Text Available Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS. At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30-50 Hz and high (60-120 Hz frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves ("IN-phase" pattern, confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave ("ANTI-phase" pattern. This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks.

  15. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  16. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  17. Dynamics of interacting Dicke model in a coupled-cavity array

    Science.gov (United States)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  18. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    Science.gov (United States)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    particular interest: a b-value of 1 coupled with subevent durations that scale linearly with their moments, as suggested by previous observations of slow earthquakes (Ide et al, 2007). Our work thus lends further plausibility to the existence of a single family of slow earthquakes, possibly governed by a single physical mechanism.

  19. Emergence of slow collective oscillations in neural networks with spike-timing dependent plasticity

    DEFF Research Database (Denmark)

    Mikkelsen, Kaare; Imparato, Alberto; Torcini, Alessandro

    2013-01-01

    The collective dynamics of excitatory pulse coupled neurons with spike timing dependent plasticity (STDP) is studied. The introduction of STDP induces persistent irregular oscillations between strongly and weakly synchronized states, reminiscent of brain activity during slow-wave sleep. We explain...

  20. Smart brake light system would provide more information to drivers

    OpenAIRE

    Trulove, Susan

    2008-01-01

    You are driving in heavy traffic. The brake lights on the car in front of you come on. Is the car slowing or is it going to stop? It slows to 25 mph and the lights go off. You drop back. The car in front of you stops suddenly! You stop just in time. The car behind you collects your rear bumper.

  1. Multiple scattering of elliptically polarized light in two-dimensional medium with large inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Gorodnichev, E. E., E-mail: gorodn@theor.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    For elliptically polarized light incident on a two-dimensional medium with large inhomogeneities, the Stokes parameters of scattered waves are calculated. Multiple scattering is assumed to be sharply anisotropic. The degree of polarization of scattered radiation is shown to be a nonmonotonic function of depth when the incident wave is circularly polarized or its polarization vector is not parallel to the symmetry axis of the inhomogeneities.

  2. Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials

    Science.gov (United States)

    Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan

    2016-01-01

    Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034

  3. Synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yi; Heo, Sung Hwan; Kim, Yong Nam; Yoo, Seung Hwa; Cho, Sung Oh, E-mail: socho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong, Yuseong, Daejeon 305-701 (Korea, Republic of)

    2010-01-08

    We present the synthesis and visible-light-induced catalytic activity of Ag{sub 2}S-coupled TiO{sub 2} nanoparticles (NPs) and TiO{sub 2} nanowires (NWs). Through a simple wet chemical process from a mixture of peroxo titanic acid (PTA) solution, thiourea and AgAc, a composite of Ag{sub 2}S NPs and TiO{sub 2} NPs with sizes of less than 7 nm was formed. When the NP composite was further treated with NaOH solution followed by annealing at ambient conditions, a new nanocomposite material comprising Ag{sub 2}S NPs on TiO{sub 2} NWs was created. Due to the coupling with such a low bandgap material as Ag{sub 2}S, the TiO{sub 2} nanocomposites could have a visible-light absorption capability much higher than that of pure TiO{sub 2}. As a result, the synthesized Ag{sub 2}S/TiO{sub 2} nanocomposites exhibited much higher catalytic efficiency for the decomposition of methyl orange than commercial TiO{sub 2} (Degussa P25, Germany) under visible light.

  4. Slow waves in microchannel metal waveguides and application to particle acceleration

    OpenAIRE

    L. C. Steinhauer; W. D. Kimura

    2003-01-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong ex...

  5. Enhanced visible-light activities for PEC water reduction of CuO nanoplates by coupling with anatase TiO2 and mechanism

    International Nuclear Information System (INIS)

    Li, Zhijun; Qu, Yang; He, Guangwen; Humayun, Muhammad; Chen, Shuangying; Jing, Liqiang

    2015-01-01

    Graphical abstract: - Highlights: • CuO nanoplates were successfully prepared as photocathodes for PEC water reduction. • Visible-light activity for PEC water reduction is improved after coupling with TiO 2 . • Improved PEC performance is attributed to the enhanced visible-excited charge separation. • Enhanced charge separation results from high-energy electron transfer from CuO to TiO 2 . - Abstract: CuO nanoplates were prepared by a feasible hydrothermal method, and then utilized as photocathodes for photoelectrochemical (PEC) water reduction in a neutral medium under visible-light irradiation. It is clearly demonstrated that the visible-light activities of the resulting nanoplates for PEC water reduction could be greatly improved after coupling with a proper amount of nanocrystalline anatase TiO 2 . This is attributed to the enhanced charge separation in the fabricated TiO 2 /CuO nanoplate composites mainly based on the atmosphere-controlled steady-state surface photovoltage spectra. Moreover, it is suggested that the enhanced charge separation resulted from the transfer of visible-light-excited high-energy electrons from CuO to TiO 2 as confirmed from the single-wavelength PEC behavior

  6. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    Science.gov (United States)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  7. Quantum condensates and topological bosons in coupled light-matter excitations

    Energy Technology Data Exchange (ETDEWEB)

    Janot, Alexander

    2016-02-29

    Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.

  8. Consumption of polyphenol plants may slow aging and associated diseases.

    Science.gov (United States)

    Uysal, Utku; Seremet, Sila; Lamping, Jeffrey W; Adams, Jerome M; Liu, Deede Y; Swerdlow, Russell H; Aires, Daniel J

    2013-01-01

    Slowing aging is a widely shared goal. Plant-derived polyphenols, which are found in commonly consumed food plants such as tea, cocoa, blueberry and grape, have been proposed to have many health benefits, including slowing aging. In-vivo studies have demonstrated the lifespan-extending ability of six polyphenol-containing plants. These include five widely consumed foods (tea, blueberry, cocoa, apple, pomegranate) and a flower commonly used as a folk medicine (betony). These and multiple other plant polyphenols have been shown to have beneficial effects on aging-associated changes across a variety of organisms from worm and fly to rodent and human.

  9. The role of multiple ionization and subshell coupling effects in L-shell ionization of Au by oxygen ions

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Pajek, M.; Semaniak, J.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2002-01-01

    The ionization of L-subshell electrons in gold by the impact of 0.4-2.2 MeV amu -1 O ions was studied by observing excited Lγ(L-N, O) x-rays. We demonstrate that both the multiple ionization in outer M- and N-shells as well as the coupling effects in the L-shell play an important role in understanding the measured L-subshell ionization cross sections. The multiple ionization was found to be important in two aspects: first, the analysis of x-ray energy shifts and line broadening was crucial for proper interpretation of measured x-ray spectra; second, the additional vacancies in the M- and N-shells substantially influenced the L 1 -subshell fluorescence and Coster-Kronig (CK) yields, mainly by closing strong L 1 -L 3 M 4,5 CK transitions. The data are compared with the simplified coupled-channels calculations using the 'coupled-subshell model' (CSM) based on the semiclassical approximation (SCA), which describes both direct Coulomb ionization as well as the L-subshell couplings within the same theoretical approach. A good agreement of the present data with the theoretical predictions based on the discussed SCA-CSM approach is observed. Present findings partly explain the long-standing problem of inadequate theoretical description of L-shell ionization by heavy ion impact. (author)

  10. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    International Nuclear Information System (INIS)

    Wang, Yongjin; Zhu, Guixia; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo; Cai, Wei

    2016-01-01

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  11. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  12. Touched by Light

    Directory of Open Access Journals (Sweden)

    Siegrun Appelt

    2017-06-01

    Full Text Available With LED as illuminant a new era of dealing with lighting has dawned. Digitalisation, light guidance and light quality take on greater significance. Physical and emotional impacts of light on the human being have become common topics in the everyday life of a modern society. The amount of light which determines the character of spaces is steadily increasing. Our visual perception has adapted and assimilated to it over the years, decades, centuries. What was once perceived as bright today can’t either be used in a functional way or even less meet current standardization regulations. The project “Langsames Licht / Slow Light” searches for ways to practically implement theoretical insights and experience from the subjects of art, science and design, allowing a targeted use of light.

  13. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    Science.gov (United States)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  14. Slow decay of magnetic fields in open Friedmann universes

    International Nuclear Information System (INIS)

    Barrow, John D.; Tsagas, Christos G.

    2008-01-01

    Magnetic fields in Friedmann universes can experience superadiabatic growth without departing from conventional electromagnetism. The reason is the relativistic coupling between vector fields and spacetime geometry, which slows down the decay of large-scale magnetic fields in open universes, compared to that seen in perfectly flat models. The result is a large relative gain in magnetic strength that can lead to astrophysically interesting B fields, even if our Universe is only marginally open today

  15. Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light-dark transitions.

    Science.gov (United States)

    Ellington, M J K; Richardson, D J; Ferguson, S J

    2003-04-01

    Rhodobacter capsulatus N22DNAR(+) possesses a periplasmic nitrate reductase and is capable of reducing nitrate to nitrite under anaerobic conditions. In the absence of light this ability cannot support chemoheterotrophic growth in batch cultures. This study investigated the effect of nitrate reduction on the growth of R. capsulatus N22DNAR(+) during multiple light-dark cycles of anaerobic photoheterotrophic/dark chemoheterotrophic growth conditions in carbon-limited continuous cultures. The reduction of nitrate did not affect the photoheterotrophic growth yield of R. capsulatus N22DNAR(+). After a transition from photoheterotrophic to dark chemoheterotrophic growth conditions, the reduction of nitrate slowed the initial washout of a R. capsulatus N22DNAR(+) culture. Towards the end of a period of darkness nitrate-reducing cultures maintained higher viable cell counts than non-nitrate-reducing cultures. During light-dark cycling of a mixed culture, the strain able to reduce nitrate (N22DNAR(+)) outcompeted the strain which was unable to reduce nitrate (N22). The evidence indicates that the periplasmic nitrate reductase activity supports slow growth that retards the washout of a culture during anaerobic chemoheterotrophic conditions, and provides a protonmotive force for cell maintenance during the dark period before reillumination. This translates into a selective advantage during repeated light-dark cycles, such that in mixed culture N22DNAR(+) outcompetes N22. Exposure to light-dark cycles will be a common feature for R. capsulatus in its natural habitats, and this study shows that nitrate respiration may provide a selective advantage under such conditions.

  16. Light coupling and distribution for Si3N4/SiO2 integrated multichannel single-mode sensing system

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Schrevens, Olivier; Giannone, Domenico; Bouville, David; Cassan, Eric; Gylfason, Kristinn B.; Sohlström, Hans; Sanchez, Benito; Griol, Amadeu; Hill, Daniel

    2009-01-01

    We present an efficient and highly alignment-tolerant light coupling and distribution system for a multichannel Si3N4/SiO2 single-mode photonics sensing chip. The design of the input and output couplers and the distribution splitters is discussed. Examples of multichannel data obtained with the system are given.

  17. Relationship between platelet-to-lymphocyte ratio and coronary slow flow.

    Science.gov (United States)

    Oylumlu, Muhammed; Doğan, Adnan; Oylumlu, Mustafa; Yıldız, Abdülkadir; Yüksel, Murat; Kayan, Fethullah; Kilit, Celal; Amasyalı, Basri

    2015-05-01

    The coronary slow flow phenomenon (CSFP), which is characterized by delayed distal vessel opacification in the absence of significant epicardial coronary disease, is an angiographic finding. The aim of this study is to investigate the association between platelet-to-lymphocyte ratio (PLR) and coronary blood flow rate. This is a retrospective observational study. It was based on two medical centers. A total of 197 patients undergoing coronary angiography were included in the study, 95 of whom were patients with coronary slow flow without stenosis in coronary angiography and 102 of whom had normal coronary arteries and normal flow. The PLR was higher in the coronary slow flow group compared with the control groups (p=0.001). In the correlation analysis, PLR showed a significant correlation with left anterior descending (LAD) artery thrombolysis in myocardial infarction (TIMI) frame count. After multiple logistic regression, high levels of PLR were independently associated with coronary slow flow, together with hemoglobin. PLR was higher in patients with CSFP, and we also showed that PLR was significantly and independently associated with CSFP.

  18. Symbolic dynamics and synchronization of coupled map networks with multiple delays

    International Nuclear Information System (INIS)

    Atay, Fatihcan M.; Jalan, Sarika; Jost, Juergen

    2010-01-01

    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.

  19. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    Science.gov (United States)

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  20. Multiple time scale analysis of pressure oscillations in solid rocket motors

    Science.gov (United States)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  1. Single-frequency blue light generation by single-pass sum-frequency generation in a coupled ring cavity tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Petersen, Paul Michael

    2013-01-01

    A generic approach for generation of tunable single frequency light is presented. 340 mW of near diffraction limited, single-frequency, and tunable blue light around 459 nm is generated by sum-frequency generation (SFG) between two tunable tapered diode lasers. One diode laser is operated in a ring...... cavity and another tapered diode laser is single-passed through a nonlinear crystal which is contained in the coupled ring cavity. Using this method, the single-pass conversion efficiency is more than 25%. In contrast to SFG in an external cavity, the system is entirely self-stabilized with no electronic...

  2. Neuronal ensemble for visual working memory via interplay of slow and fast oscillations.

    Science.gov (United States)

    Mizuhara, Hiroaki; Yamaguchi, Yoko

    2011-05-01

    The current focus of studies on neural entities for memory maintenance is on the interplay between fast neuronal oscillations in the gamma band and slow oscillations in the theta or delta band. The hierarchical coupling of slow and fast oscillations is crucial for the rehearsal of sensory inputs for short-term storage, as well as for binding sensory inputs that are represented in spatially segregated cortical areas. However, no experimental evidence for the binding of spatially segregated information has yet been presented for memory maintenance in humans. In the present study, we actively manipulated memory maintenance performance with an attentional blink procedure during human scalp electroencephalography (EEG) recordings and identified that slow oscillations are enhanced when memory maintenance is successful. These slow oscillations accompanied fast oscillations in the gamma frequency range that appeared at spatially segregated scalp sites. The amplitude of the gamma oscillation at these scalp sites was simultaneously enhanced at an EEG phase of the slow oscillation. Successful memory maintenance appears to be achieved by a rehearsal of sensory inputs together with a coordination of distributed fast oscillations at a preferred timing of the slow oscillations. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Performance analysis of photocatalytic CO2 reduction in optical fiber monolith reactor with multiple inverse lights

    International Nuclear Information System (INIS)

    Yuan, Kai; Yang, Lijun; Du, Xiaoze; Yang, Yongping

    2014-01-01

    Highlights: • A new optical fiber monolith reactor model for CO 2 reduction was developed. • Methanol concentration versus fiber location and operation parameters was obtained. • Reaction efficiency increases by 31.1% due to the four fibers and inverse layout. • With increasing space of fiber and channel center, methanol concentration increases. • Methanol concentration increases as the vapor ratio and light intensity increase. - Abstract: Photocatalytic CO 2 reduction seems potential to mitigate greenhouse gas emissions and produce renewable energy. A new model of photocatalytic CO 2 reduction in optical fiber monolith reactor with multiple inverse lights was developed in this study to improve the conversion of CO 2 to CH 3 OH. The new light distribution equation was derived, by which the light distribution was modeled and analyzed. The variations of CH 3 OH concentration with the fiber location and operation parameters were obtained by means of numerical simulation. The results show that the outlet CH 3 OH concentration is 31.1% higher than the previous model, which is attributed to the four fibers and inverse layout. With the increase of the distance between the fiber and the monolith center, the average CH 3 OH concentration increases. The average CH 3 OH concentration also rises as the light input and water vapor percentage increase, but declines with increasing the inlet velocity. The maximum conversion rate and quantum efficiency in the model are 0.235 μmol g −1 h −1 and 0.0177% respectively, both higher than previous internally illuminated monolith reactor (0.16 μmol g −1 h −1 and 0.012%). The optical fiber monolith reactor layout with multiple inverse lights is recommended in the design of photocatalytic reactor of CO 2 reduction

  4. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    Science.gov (United States)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  5. Early Prognostic Value of Monitoring Serum Free Light Chain in Patients with Multiple Myeloma Undergoing Autologous Stem Cell Transplantation.

    Science.gov (United States)

    Özkurt, Zübeyde Nur; Sucak, Gülsan Türköz; Akı, Şahika Zeynep; Yağcı, Münci; Haznedar, Rauf

    2017-03-16

    We hypothesized the levels of free light chains obtained before and after autologous stem cell transplantation can be useful in predicting transplantation outcome. We analyzed 70 multiple myeloma patients. Abnormal free light chain ratios before stem cell transplantation were found to be associated early progression, although without any impact on overall survival. At day +30, the normalization of levels of involved free light chain related with early progression. According to these results almost one-third reduction of free light chain levels can predict favorable prognosis after autologous stem cell transplantation.

  6. Multiple scattering of polarized light: comparison of Maxwell theory and radiative transfer theory.

    Science.gov (United States)

    Voit, Florian; Hohmann, Ansgar; Schäfer, Jan; Kienle, Alwin

    2012-04-01

    For many research areas in biomedical optics, information about scattering of polarized light in turbid media is of increasing importance. Scattering simulations within this field are mainly performed on the basis of radiative transfer theory. In this study a polarization sensitive Monte Carlo solution of radiative transfer theory is compared to exact Maxwell solutions for all elements of the scattering Müller matrix. Different scatterer volume concentrations are modeled as a multitude of monodisperse nonabsorbing spheres randomly positioned in a cubic simulation volume which is irradiated with monochromatic incident light. For all Müller matrix elements effects due to dependent scattering and multiple scattering are analysed. The results are in overall good agreement between the two methods with deviations related to dependent scattering being prominent for high volume concentrations and high scattering angles.

  7. Revealing the cluster of slow transients behind a large slow slip event.

    Science.gov (United States)

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  8. Role of self-assembly coated Er3+: YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions

    International Nuclear Information System (INIS)

    Dong, Shanshan; Dong, Shuangshi; Tian, Xiadi; Xu, Zhengxue; Ma, Dongmei; Cui, Bin; Ren, Nanqi; Rittmann, Bruce E.

    2016-01-01

    Highlights: • First study on intimate coupling of photocatalysis & biodegradation by visible light. • Self-assembly was used to coat Er 3+ : YAlO 3 /TiO 2 on the sponge carriers. • Fewer accumulated intermediates & higher phenol removal for VPCB than VPC or B alone. • Self-regulation in VPCB contributes to the high degradation efficiency. - Abstract: Conventionally used ultraviolet light can result in dissolved organic carbon (DOC) increasing and biofilm damage in intimate coupling of photocatalysis and biodegradation (ICPB). Visible-light-responsive photocatalysis offers an alternative for achieving ICPB. In this study, composite-cubes were developed using self-assembly to coat a thin and even layer of visible-light-responsive photocatalyst (Er 3+ : YAlO 3 /TiO 2 ) on sponge-type carriers, followed by biofilm cultivation. The degradations of phenol (50 mg L −1 ) were compared for four protocols in circulating beds: adsorption (AD), visible-light-responsive photocatalysis (VPC), biodegradation (B), and intimately coupled visible-light-responsive photocatalysis and biodegradation (VPCB). The phenol and DOC removal efficiencies using VPCB in 16 h were 99.8% and 65.2%, respectively, i.e., higher than those achieved using VPC (71.6% and 50.0%) or B (99.4% and 58.2%). The phenol removal of 96.3% could be obtained even after 3 additional cycles. The 6.17-min intermediate detected by HPLC, continuously accumulated for VPC, appeared at 1–6 h and then was completely removed for VPCB in 10 h. ICPB was further illustrated in that most of the biofilm was protected in the carrier interiors, with less protection on the carrier exterior in VPCB. A self-regulation mechanism that helped photocatalyst exposure to visible-light irradiation was identified, promoting the combined photocatalysis and biodegradation.

  9. PBN (Phenyl-N-Tert-Butylnitrone-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage.

    Directory of Open Access Journals (Sweden)

    Megan Stiles

    Full Text Available A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD, and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control. In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat

  10. PBN (Phenyl-N-Tert-Butylnitrone)-Derivatives Are Effective in Slowing the Visual Cycle and Rhodopsin Regeneration and in Protecting the Retina from Light-Induced Damage.

    Science.gov (United States)

    Stiles, Megan; Moiseyev, Gennadiy P; Budda, Madeline L; Linens, Annette; Brush, Richard S; Qi, Hui; White, Gary L; Wolf, Roman F; Ma, Jian-Xing; Floyd, Robert; Anderson, Robert E; Mandal, Nawajes A

    2015-01-01

    A2E and related toxic molecules are part of lipofuscin found in the retinal pigment epithelial (RPE) cells in eyes affected by Stargardt's disease, age-related macular degeneration (AMD), and other retinal degenerations. A novel therapeutic approach for treating such degenerations involves slowing down the visual cycle, which could reduce the amount of A2E in the RPE. This can be accomplished by inhibiting RPE65, which produces 11-cis-retinol from all-trans-retinyl esters. We recently showed that phenyl-N-tert-butylnitrone (PBN) inhibits RPE65 enzyme activity in RPE cells. In this study we show that like PBN, certain PBN-derivatives (PBNDs) such as 4-F-PBN, 4-CF3-PBN, 3,4-di-F-PBN, and 4-CH3-PBN can inhibit RPE65 and synthesis of 11-cis-retinol in in vitro assays using bovine RPE microsomes. We further demonstrate that systemic (intraperitoneal, IP) administration of these PBNDs protect the rat retina from light damage. Electroretinography (ERG) and histological analysis showed that rats treated with PBNDs retained ~90% of their photoreceptor cells compared to a complete loss of function and 90% loss of photoreceptors in the central retina in rats treated with vehicle/control injections. Topically applied PBN and PBNDs also significantly slowed the rate of the visual cycle in mouse and baboon eyes. One hour dark adaptation resulted in 75-80% recovery of bleachable rhodopsin in control/vehicle treated mice. Eye drops of 5% 4-CH3-PBN were most effective, inhibiting the regeneration of bleachable rhodopsin significantly (60% compared to vehicle control). In addition, a 10% concentration of PBN and 5% concentration of 4-CH3-PBN in baboon eyes inhibited the visual cycle by 60% and by 30%, respectively. We have identified a group of PBN related nitrones that can reach the target tissue (RPE) by systemic and topical application and slow the rate of rhodopsin regeneration and therefore the visual cycle in mouse and baboon eyes. PBNDs can also protect the rat retina from

  11. GreenLight Model 960.

    Science.gov (United States)

    Fernandes, Richard; Carey, Conn; Hynes, James; Papkovsky, Dmitri

    2013-01-01

    The importance of food safety has resulted in a demand for a more rapid, high-throughput method for total viable count (TVC). The industry standard for TVC determination (ISO 4833:2003) is widely used but presents users with some drawbacks. The method is materials- and labor-intensive, requiring multiple agar plates per sample. More importantly, the method is slow, with 72 h typically required for a definitive result. Luxcel Biosciences has developed the GreenLight Model 960, a microtiter plate-based assay providing a rapid high-throughput method of aerobic bacterial load assessment through analysis of microbial oxygen consumption. Results are generated in 1-12 h, depending on microbial load. The mix and measure procedure allows rapid detection of microbial oxygen consumption and equates oxygen consumption to microbial load (CFU/g), providing a simple, sensitive means of assessing the microbial contamination levels in foods (1). As bacteria in the test sample grow and respire, they deplete O2, which is detected as an increase in the GreenLight probe signal above the baseline level (2). The time required to reach this increase in signal can be used to calculate the CFU/g of the original sample, based on a predetermined calibration. The higher the initial microbial load, the earlier this threshold is reached (1).

  12. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  13. Superintensive pulse slow neutron source SIN based on kaon factory

    International Nuclear Information System (INIS)

    Kolmichkov, N.V.; Laptev, V.D.; Matveev, V.A.

    1991-01-01

    Possibility of intensive pulse slow neutron source creation based on 45-GeV proton synchrotron of K-meson factory, planned to construction in INR AS USSR is considered. Calculated peak thermal neutrons flux density value, averaged on 'radiating' light-water moderator surface of 100 cm 2 is 6.6 x 10 17 neutrons/(cm 2 sec) for pulse duration of 35 microseconds. (author)

  14. Hermitian symmetry free optical-single-carrier frequency division multiple access for visible light communication

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2018-05-01

    Optical-orthogonal frequency division multiplexing (O-OFDM) is an effective scheme for visible light communications (VLC), offering a candid extension to multiple access (MA) scenarios, i.e., O-OFDMA. However, O-OFDMA exhibits high peak-to-average power ratio (PAPR), which exacerbates the non-linear distortions from the light emitting diode (LED). To overcome high PAPR while sustaining MA, optical-single-carrier frequency-division multiple access (O-SCFDMA) is used. For both O-OFDMA and O-SCFDMA, Hermitian symmetry (HS) constraint is imposed in frequency-domain (FD) to obtain a real-valued time-domain (TD) signal for intensity modulation-direct detection (IM-DD) implementation of VLC. Howbeit, HS results in an increase of PAPR for O-SCFDMA. In this regard, we propose HS free (HSF) O-SCFDMA (HSFO-SCFDMA). We compare HSFO-SCFDMA with several approaches in key parameters, such as, bit error rate (BER), optical power penalty, PAPR, quantization, electrical power efficiency and system complexity. BER performance and optical power penalty is evaluated considering multipath VLC channel and taking into account the bandwidth limitation of LED in combination with its optimized driver. It is illustrated that HSFO-SCFDMA outperforms other alternatives.

  15. Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan; Hughes, Stephen

    2018-02-01

    We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.

  16. Higgs couplings and supersymmetry in the light of early LHC results

    International Nuclear Information System (INIS)

    Stefaniak, Tim

    2014-07-01

    We present phenomenological studies investigating the implications of early results from the Large Hadron Collider (LHC) for models beyond the Standard Model (BSM), mostly focusing on Supersymmetry (SUSY). Our work covers different aspects in this wide field of research. We describe the development and basic concepts of the public computer codes HiggsBounds (version 4) and HiggsSignals. These confront the Higgs sector predictions of BSM models with results from LEP, Tevatron and LHC Higgs searches. While HiggsBounds tests the model against experimental null-results, HiggsSignals evaluates the model's chi-squared compatibility with the signal rate and mass measurements of the Higgs boson, that was discovered by the LHC in 2012. We then perform a systematic study of potential deviations in the Higgs couplings from their Standard Model (SM) prediction. No significant deviations are found. Future capabilities of Higgs coupling determination at the later LHC stages and at the International Linear Collider (ILC) are explored. We also study the implications of the Higgs discovery for the Minimal Supersymmetric Standard Model (MSSM), considering either the light or the heavy CP-even Higgs boson as the discovered state. We show that both interpretations are viable and discuss their phenomenology. Finally, we study the LHC signatures of resonant scalar lepton production, which may arise in SUSY models with R-parity violation (RPV). These are confronted with early LHC results, yielding constraints on the relevant RPV operators.

  17. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Won; Lee, Yun-Seong, E-mail: leeeeys@kaist.ac.kr; Chang, Hong-Young [Low-temperature Plasma Laboratory, Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); An, Sang-Hyuk [Agency of Defense Development, Yuseong-gu, Daejeon 305-151 (Korea, Republic of)

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  18. Designing a light controller for a multi-user lighting environment

    NARCIS (Netherlands)

    Magielse, R.; Hengeveld, B.J.; Frens, J.W.

    2013-01-01

    Intelligent lighting systems of the future consist of many distributed, interconnected light sources (i.e. LEDs and/or OLEDs) controlled by microprocessors that are coupled to sensor networks and adapt to the needs of users. Control over such lighting systems can be automated, or users can be put in

  19. III–V quantum light source and cavity-QED on Silicon

    Science.gov (United States)

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  20. III-V quantum light source and cavity-QED on silicon.

    Science.gov (United States)

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  1. Corrections to di-Higgs boson production with light stops and modified Higgs couplings

    Science.gov (United States)

    Huang, Peisi; Joglekar, Aniket; Li, Min; Wagner, Carlos E. M.

    2018-04-01

    The Higgs pair production in gluon fusion is a sensitive probe of beyond-standard model (BSM) phenomena and its detection is a major goal for the LHC and higher energy hadron collider experiments. In this work we reanalyze the possible modifications of the Higgs pair production cross section within low energy supersymmetry models. We show that the supersymmetric contributions to the Higgs pair production cross section are strongly correlated with the ones of the single Higgs production in the gluon fusion channel. Motivated by the analysis of ATLAS and CMS Higgs production data, we show that the scalar superpartners' contributions may lead to significant modification of the di-Higgs production rate and invariant mass distribution with respect to the SM predictions. We also analyze the combined effects on the di-Higgs production rate of a modification of the Higgs trilinear and top-quark Yukawa couplings in the presence of light stops. In particular, we show that due to the destructive interference of the triangle and box amplitude contributions to the di-Higgs production cross section, even a small modification of the top-quark Yukawa coupling can lead to a significant increase of the di-Higgs production rate.

  2. Prototype of a new tip developed to be coupled to dental light-curing units for optimizing bonding of orthodontic brackets and accessories

    Directory of Open Access Journals (Sweden)

    Sergio Luiz Mota Júnior

    2013-12-01

    Full Text Available OBJECTIVE: development of a new device to be coupled to light-curing units for bonding orthodontic brackets and accessories, and test its efficacy in an in vitro mechanical trial. The inner surface of the device is mirrored and is based on physical concepts of light refraction and reflection. The main advantage of such device is the reduced clinical time needed for bonding and the low possibility of contamination during the process. METHODS: One hundred and twenty specimens were used for testing the shear bond strength of brackets bonded with the device. The Adhesive Remnant Index (ARI was also determined. The sample was divided into 2 groups. In group 1 a halogen light-curing unit was used while in group 2 a led light-curing unit was used. Each group was then subdivided. In subgroups H1 and L1, a conventional light guide rod was used while in subgroups H2 and L2 bonding was performed with the mirrored device coupled to the tip of the guide light rod. RESULTS: The values obtained for the shear bond strength and the ARI in the subgroups were compared. Results showed that there was no statistically significant difference for the shear strength (p > 0.05 and the ARI (p > 0.05 between the subgroups. CONCLUSION: The tests of mechanical trials and the ARI analysis showed that the new device fulfilled the requirements for bonding orthodontic accessories, and that the time for bonding was reduced to half, being necessary only one light exposure.

  3. Light out-coupling from LEDs by means of metal nanoparticles; Lichtauskopplung aus LEDs mittels Metallnanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Goehler, Tino

    2010-12-17

    The external quantum efficiency of light-emitting diodes (LEDs) based on Al- GaAs/InGaAlP is limited by total internal reflection because of the high refractive index (typically between 3 and 4) of the semiconductor. Metal nanoparticles (MNP) deposited on the surface of the LED can be used as dipole scatterers in order to enhance the emission of the LED. In this thesis, first, single gold nanoparticles of various sizes deposited on such an LED were investigated. A clear enhancement is detected as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into suppression. Numerical simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing extra absorption. Arrays of MNPs can be produced by a special mask technique called ''Fischer pattern nanolithography'' and manipulated in shape and size by additional steps. Originally, the MNPs produced by this technique are triangular in shape and turn out to suppress the LED emission. After transformation of the particles to spheres, a clear enhancement was detected. Light that would otherwise remain trapped inside the substrate is coupled out by resonant plasmonic scattering. Investigations on analogous structures on a transparent high-index material (GaP) indicate a stronger coupling between the particles than expected on the basis of literature data. (orig.)

  4. Continuous control of light group velocity from subluminal to superluminal propagation with a standing-wave coupling field in a Rb vapor cell

    International Nuclear Information System (INIS)

    Bae, In-Ho; Moon, Han Seb

    2011-01-01

    We present the continuous control of the light group velocity from subluminal to superluminal propagation with an on-resonant standing-wave coupling field in the 5S 1/2 -5P 1/2 transition of the Λ-type system of 87 Rb atoms. When a coupling field was changed from a traveling-wave to a standing-wave field by adjusting the power of a counterpropagating coupling field, the probe pulse propagation continuously transformed from subluminal propagation, due to electromagnetically induced transparency with the traveling-wave coupling field, to superluminal propagation, due to narrow enhanced absorption with the standing-wave coupling field. The group velocity of the probe pulse was measured to be approximately 0.004c to -0.002c as a function of the disparity between the powers of the copropagating and the counterpropagating coupling fields.

  5. Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Schmidt, Bjørn; Loeschner, Katrin; Hadrup, Niels; Mortensen, Alicja; Sloth, Jens J; Koch, Christian Bender; Larsen, Erik H

    2011-04-01

    An analytical platform coupling asymmetric flow field-flow fractionation (AF(4)) with multiangle light scattering (MALS), dynamic light scattering (DLS), and inductively coupled plasma mass spectrometry (ICPMS) was established and used for separation and quantitative determination of size and mass concentration of nanoparticles (NPs) in aqueous suspension. Mixtures of three polystyrene (PS) NPs between 20 and 100 nm in diameter and mixtures of three gold (Au) NPs between 10 and 60 nm in diameter were separated by AF(4). The geometric diameters of the separated PS NPs and the hydrodynamic diameters of the Au and PS NPs were determined online by MALS and DLS, respectively. The three separated Au NPs were quantified by ICPMS and recovered at 50-95% of the injected masses, which ranged between approximately 8-80 ng of each nanoparticle size. Au NPs adhering to the membrane in the separation channel was found to be a major cause for incomplete recoveries. The lower limit of detection (LOD) ranged between 0.02 ng Au and 0.4 ng Au, with increasing LOD by increasing nanoparticle diameter. The analytical platform was applied to characterization of Au NPs in livers of rats, which were dosed with 10 nm, 60 nm, or a mixture of 10 and 60 nm nanoparticles by intravenous injection. The homogenized livers were solubilized in tetramethylammonium hydroxide (TMAH), and the recovery of Au NPs from the livers amounted to 86-123% of their total Au content. In spite of successful stabilization with bovine serum albumin even in alkaline medium, separation of the Au NPs by AF(4) was not possible due to association with undissolved remains of the alkali-treated liver tissues as demonstrated by electron microscopy images.

  6. The frequency content of Double-Mode Cepheids light curves and the importance of the cross-coupling terms

    OpenAIRE

    Poretti, Ennio

    1997-01-01

    The recent results (Pardo & Poretti 1997, A&A 324, 121; Poretti & Pardo 1997, A&A 324, 133) obtained on the frequency content of Double-Mode Cepheids light curves and the properties of their Fourier parameters are reviewed. Some points briefly discussed in previous papers (no third periodicity, methodological aspects on the true peaks detection, the action of the cross coupling terms and the impact on theoretical models) are described.

  7. Multiple spectator condensates from inflation

    Science.gov (United States)

    Hardwick, Robert J.

    2018-05-01

    We investigate the development of spectator (light test) field condensates due to their quantum fluctuations in a de Sitter inflationary background, making use of the stochastic formalism to describe the system. In this context, a condensate refers to the typical field value found after a coarse-graining using the Hubble scale H, which can be essential to seed the initial conditions required by various post-inflationary processes. We study models with multiple coupled spectators and for the first time we demonstrate that new forms of stationary solution exist (distinct from the standard exponential form) when the potential is asymmetric. Furthermore, we find a critical value for the inter-field coupling as a function of the number of fields above which the formation of stationary condensates collapses to H. Considering some simple two-field example potentials, we are also able to derive a lower limit on the coupling, below which the fluctuations are effectively decoupled, and the standard stationary variance formulae for each field separately can be trusted. These results are all numerically verified by a new publicly available python class (nfield) to solve the coupled Langevin equations over a large number of fields, realisations and timescales. Further applications of this new tool are also discussed.

  8. Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu

    2018-01-01

    Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.

  9. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    Science.gov (United States)

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  10. A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications.

    Science.gov (United States)

    Rahman, MuhibUr; Ko, Dong-Sik; Park, Jung-Dong

    2017-09-25

    We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband.

  11. Multiple-effect diffusion solar still coupled with a vacuum-tube collector and heat pipe

    KAUST Repository

    Chong, Tze-Ling

    2014-08-01

    The present study develops a multiple-effect diffusion solar still (MEDS) with a bended-plate design in multiple-effect diffusion unit (MDU) to solve the peel-off problem of wick material. The MDU is coupled with a vacuum-tube solar collector to produce a high temperature gradient for high productivity. A heat pipe is used to transfer the solar heat to the MDU. A prototype MEDS-1L was built and tested outdoors. Four performance indexes are proposed for the performance evaluation of MEDS, including daily pure water production per unit area of glass cover, solar absorber, and evaporating surface (Mcov, Msol, Mevp, respectively), and solar distillation efficiency Rcov. The outdoor test results of MEDS-1L show that the solar collector supply temperature Th reaches 100°C at solar radiation 800Wm-2. The highest Mcov is 23.9kgm-2d-1 which is about 29% higher than the basin-type MEDS [11]. The highest value is 25.9kgm-2d-1 for Msol and 2.79kgm-2d-1 for Mevp. The measured Rcov is 1.5-2.44, higher than the basin-type MEDS (1.45-1.88). The Mcov, Msol, Mevp and Rcov of MEDS-1L are all higher than the theoretical calculation of a MEDS with a flat-plate solar collector coupled with a heat pipe (MEDS-FHP) [17].© 2014 Elsevier B.V.

  12. Fast light in atomic media

    International Nuclear Information System (INIS)

    Akulshin, Alexander M; McLean, Russell J

    2010-01-01

    Atomic media have played a major role in studies of fast light. One of their attractive features is the ability to manipulate experimental parameters to control the dispersive properties that determine the group velocity of a propagating light pulse. We give an overview of the experimental methods, based on both linear and nonlinear atom–light interaction, that have produced superluminal propagation in atomic media, and discuss some of the significant theoretical contributions to the issues of pulse preservation and reconciling faster-than-light propagation and the principle of causality. The comparison of storage of light, enhanced Kerr nonlinearity and efficient wave mixing processes in slow and fast light atomic media illustrates their common and distinct features. (review article)

  13. Digestible information: The impact of Multiple Traffic Light nutritional labeling in a developing country

    OpenAIRE

    Defago, Daniel; Geng, José F.; Molina, Oswaldo; Santa María, Diego

    2017-01-01

    Bad dietary habits are among the main causes of increasing obesity and other health problems. According to the literature, information asymmetry and cognitive biases may lead to suboptimal decisions by individuals regarding food consumption. Many countries have implemented different forms of nutritional labelling in order to provide individuals with better information when making choices. We assess the Multiple Traffic Light (MTL) system, an alternative and simplified labelling format impleme...

  14. Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting

    Directory of Open Access Journals (Sweden)

    A. T. Wieg

    2016-12-01

    Full Text Available We introduce high thermal conductivity aluminum nitride (AlN as a transparent ceramic host for Ce3+, a well-known active ion dopant. We show that the Ce:AlN ceramics have overlapping photoluminescent (PL emission peaks that cover almost the entire visible range resulting in a white appearance under 375 nm excitation without the need for color mixing. The PL is due to a combination of intrinsic AlN defect complexes and Ce3+ electronic transitions. Importantly, the peak intensities can be tuned by varying the Ce concentration and processing parameters, causing different shades of white light without the need for multiple phosphors or light sources. The Commission Internationale de l’Eclairage coordinates calculated from the measured spectra confirm white light emission. In addition, we demonstrate the viability of laser driven white light emission by coupling the Ce:AlN to a readily available frequency tripled Nd-YAG laser emitting at 355 nm. The high thermal conductivity of these ceramic down-converters holds significant promise for producing higher power white light sources than those available today.

  15. Constraining Light-Quark Yukawa Couplings from Higgs Distributions

    CERN Document Server

    Bishara, Fady

    2017-03-20

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting LHC measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavour tagging. Compared to other proposals it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated to quark-initiated production. We derive constraints using data from LHC Run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  16. Awakened Oscillations in Coupled Consumer-Resource Pairs

    Directory of Open Access Journals (Sweden)

    Almaz Mustafin

    2014-01-01

    Full Text Available The paper concerns two interacting consumer-resource pairs based on chemostat-like equations under the assumption that the dynamics of the resource is considerably slower than that of the consumer. The presence of two different time scales enables to carry out a fairly complete analysis of the problem. This is done by treating consumers and resources in the coupled system as fast-scale and slow-scale variables, respectively, and subsequently considering developments in phase planes of these variables, fast and slow, as if they are independent. When uncoupled, each pair has unique asymptotically stable steady state and no self-sustained oscillatory behavior (although damped oscillations about the equilibrium are admitted. When the consumer-resource pairs are weakly coupled through direct reciprocal inhibition of consumers, the whole system exhibits self-sustained relaxation oscillations with a period that can be significantly longer than intrinsic relaxation time of either pair. It is shown that the model equations adequately describe locally linked consumer-resource systems of quite different nature: living populations under interspecific interference competition and lasers coupled via their cavity losses.

  17. Controlling the speed of light in semiconductor waveguides: Physics and applications

    DEFF Research Database (Denmark)

    Mørk, Jesper; Xue, Weiqi; Chen, Yaohui

    2009-01-01

    We review the physics of slow and fast light effects in semiconductor optical waveguides. Recent experimental and theoretical results on enhancing the phase shift using optical filtering are presented and applications in microwave photonics are discussed.......We review the physics of slow and fast light effects in semiconductor optical waveguides. Recent experimental and theoretical results on enhancing the phase shift using optical filtering are presented and applications in microwave photonics are discussed....

  18. Development and evaluation of a light-emitting diode endoscopic light source

    Science.gov (United States)

    Clancy, Neil T.; Li, Rui; Rogers, Kevin; Driscoll, Paul; Excel, Peter; Yandle, Ron; Hanna, George; Copner, Nigel; Elson, Daniel S.

    2012-03-01

    Light-emitting diode (LED) based endoscopic illumination devices have been shown to have several benefits over arclamp systems. LEDs are energy-efficient, small, durable, and inexpensive, however their use in endoscopy has been limited by the difficulty in efficiently coupling enough light into the endoscopic light cable. We have demonstrated a highly homogenised lightpipe LED light source that combines the light from four Luminus LEDs emitting in the red, green, blue and violet using innovative dichroics that maximise light throughput. The light source spectrally combines light from highly divergent incoherent sources that have a Lambertian intensity profile to provide illumination matched to the acceptance numerical aperture of a liquid light guide or fibre bundle. The LED light source was coupled to a standard laparoscope and performance parameters (power, luminance, colour temperature) compared to a xenon lamp. Although the total illuminance from the endoscope was lower, adjustment of the LEDs' relative intensities enabled contrast enhancement in biological tissue imaging. The LED light engine was also evaluated in a minimally invasive surgery (MIS) box trainer and in vivo during a porcine MIS procedure where it was used to generate 'narrowband' images. Future work using the violet LED could enable photodynamic diagnosis of bladder cancer.

  19. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Science.gov (United States)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  20. Anderson localization with second quantized fields in a coupled array of waveguides

    International Nuclear Information System (INIS)

    Thompson, Clinton; Vemuri, Gautam; Agarwal, G. S.

    2010-01-01

    We report a theoretical study of Anderson localization of nonclassical light in an array of waveguides in which neighboring waveguides are evanescently coupled and in which the disorder can be added in a controlled manner. We use squeezed light at the input to investigate the effects of nonclassicality and compare the results with those obtained by using conventional classical fields, such as a coherent field and a Gaussian field. Our results show that there is an enhancement in fluctuations of localized light due to the medium's disorder. We find superbunching of the localized light, which may be useful for enhancing the interaction between radiation and matter. Another important consequence of sub-Poissonian statistics of the incoming light is to quench the total fluctuations at the output. Finally, we show that as a result of the multiplicative noise in the problem, the output field is far from Gaussian even if the input is a coherent field.

  1. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes

    Energy Technology Data Exchange (ETDEWEB)

    Tikare, Veena [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hernandez-Rivera, Efrain [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holm, Elizabeth Ann [Carnegie Mellon Univ., Pittsburgh, PA (United States); Patterson, Burton R. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Homer, Eric R. [Brigham Young Univ., Provo, UT (United States). Dept. of Mechanical Engineering

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  2. Constraining Light-Quark Yukawa Couplings from Higgs Distributions

    Science.gov (United States)

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-01

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  3. Constraining Light-Quark Yukawa Couplings from Higgs Distributions.

    Science.gov (United States)

    Bishara, Fady; Haisch, Ulrich; Monni, Pier Francesco; Re, Emanuele

    2017-03-24

    We propose a novel strategy to constrain the bottom and charm Yukawa couplings by exploiting Large Hadron Collider (LHC) measurements of transverse momentum distributions in Higgs production. Our method does not rely on the reconstruction of exclusive final states or heavy-flavor tagging. Compared to other proposals, it leads to an enhanced sensitivity to the Yukawa couplings due to distortions of the differential Higgs spectra from emissions which either probe quark loops or are associated with quark-initiated production. We derive constraints using data from LHC run I, and we explore the prospects of our method at future LHC runs. Finally, we comment on the possibility of bounding the strange Yukawa coupling.

  4. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.

    Directory of Open Access Journals (Sweden)

    Taishi Yoshii

    2009-04-01

    Full Text Available Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 muT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b and cry(OUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system

  5. Electromechanical coupling in electrostatic micro-power generators

    International Nuclear Information System (INIS)

    Mahmoud, M A E; El-Saadany, E F; Mansour, R R; Abdel-Rahman, E M

    2010-01-01

    Electrostatic micro-power generators (MPGs) are modeled and analyzed with particular emphasis on electromechanical coupling and its impact on the system dynamics. We identify two qualitatively different regimes in the MPG response, dubbed slow and fast. A linearized electromechanically coupled model of an electrostatic MPG and two simplified linear models are used to study the response of the MPG. Linear models are found adequate to represent the dynamic response of fast MPGs but inadequate to represent the response of slow and mixed domain MPGs. A nonlinear model is developed and validated to describe the response of those MPGs under moderately large excitations. On the basis of this analysis, we describe a method and provide design rules for realizing wideband electrostatic MPGs, and develop closed-form formulae for the extracted power for MPGs under moderately large excitations

  6. Cosmological tests of coupled Galileons

    International Nuclear Information System (INIS)

    Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia

    2015-01-01

    We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM

  7. Slow briefs: slow food....slow architecture

    OpenAIRE

    Crotch, Joanna

    2012-01-01

    We are moving too fast…fast lives, fast cars, fast food…..and fast architecture. We are caught up in a world that allows no time to stop and think; to appreciate and enjoy all the really important things in our lives. Recent responses to this seemingly unstoppable trend are the growing movements of Slow Food and Cittaslow. Both initiatives are, within their own realms, attempting to reverse speed, homogeny, expediency and globalisation, considering the values of regionality, patience, craft, ...

  8. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6° through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350 mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  9. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes.

    Science.gov (United States)

    Tunney, Tyler D; McCann, Kevin S; Jarvis, Lauren; Lester, Nigel P; Shuter, Brian J

    2018-04-01

    Habitat coupling is a concept that refers to consumer integration of resources derived from different habitats. This coupling unites fundamental food web pathways (e.g., cross-habitat trophic linkages) that mediate key ecological processes such as biomass flows, nutrient cycling, and stability. We consider the influence of water transparency, an important environmental driver in aquatic ecosystems, on habitat coupling by a light-sensitive predator, walleye (Sander vitreus), and its prey in 33 Canadian lakes. Our large-scale, across-lake study shows that the contribution of nearshore carbon (δ 13 C) relative to offshore carbon (δ 13 C) to walleye is higher in less transparent lakes. To a lesser degree, the contribution of nearshore carbon increased with a greater proportion of prey in nearshore compared to offshore habitats. Interestingly, water transparency and habitat coupling predict among-lake variation in walleye relative biomass. These findings support the idea that predator responses to changing conditions (e.g., water transparency) can fundamentally alter carbon pathways, and predator biomass, in aquatic ecosystems. Identifying environmental factors that influence habitat coupling is an important step toward understanding spatial food web structure in a changing world.

  10. Quantum ring with the Rashba spin-orbit interaction in the regime of strong light-matter coupling

    Science.gov (United States)

    Kozin, V. K.; Iorsh, I. V.; Kibis, O. V.; Shelykh, I. A.

    2018-04-01

    We developed the theory of electronic properties of semiconductor quantum rings with the Rashba spin-orbit interaction irradiated by an off-resonant high-frequency electromagnetic field (dressing field). Within the Floquet theory of periodically driven quantum systems, it is demonstrated that the dressing field drastically modifies all electronic characteristics of the rings, including spin-orbit coupling, effective electron mass, and optical response. In particular, the present effect paves the way to controlling the spin polarization of electrons with light in prospective ring-shaped spintronic devices.

  11. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  12. Reciprocal Influence of Slow Waves Extracted in Intracranial Pressure, Arterial Pressure and Cerebral Blood Velocity Signals

    National Research Council Canada - National Science Library

    Cervenansky, F

    2001-01-01

    ...), and arterial blood pressure (ABP). To clarify the links, we compared two frequency methods based on coherence function to estimate the influence of ICP, ABP, and CBV on couples, respectively CBV-ABP, ICP-CBV and ICP-ABP, of slow waves...

  13. Laser Cooling and Slowing of a Diatomic Molecule

    Science.gov (United States)

    2013-12-01

    124]. For this example, we assume Mik = 0. The population fractions obey nj + Ng∑ i=1 ni = 1, (3.17) 11i.e. no π pulses, stimulated raman adiabatic...expensive for transitions requiring a CW dye laser (∼ $200k) or frequency doubled Raman fiber laser (∼ $120k) since generating light with the ∼ 15 GHz...lower than the mean thermal velocities of He, N2 or H20 at 293 K, which are ≈ 1250, 590 and 470 m/s respectively. Conceptually, the slow SrF molecules

  14. Coupled multiple-response versus free-response conceptual assessment: An example from upper-division physics

    Directory of Open Access Journals (Sweden)

    Bethany R. Wilcox

    2014-10-01

    Full Text Available Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE, provide rich, fine-grained information about students’ reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase the scalability and usability of the CUE, we set out to create a new version of the assessment that preserves the insights afforded by a free-response format while exploiting the logistical advantages of a multiple-choice assessment. We used our extensive database of responses to the free-response CUE to construct distractors for a new version where students can select multiple responses and receive partial credit based on the accuracy and consistency of their selections. Here, we describe the development of this modified CUE format, which we call coupled multiple response (CMR, and present data from direct comparisons of both versions. We find that the two formats have the same average score and perform similarly on multiple measures of validity and reliability, suggesting that the new version is a potentially viable alternative to the original CUE for the purpose of large-scale research-based assessment. We also compare the details of student responses on each of the two versions. While the CMR version does not capture the full scope of potential student responses, nearly three-quarters of our students’ responses to the free-response version contained one or more elements that matched options provided on the CMR version.

  15. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    Science.gov (United States)

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  16. Slow neutron scattering by water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Stancic, V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1970-07-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  17. Slow neutron scattering by water molecules

    International Nuclear Information System (INIS)

    Stancic, V.

    1970-01-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  18. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  19. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Bergbauer, Werner [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); FH Deggendorf (Germany); Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold [OSRAM Opto Semiconductors GmbH, Regensburg (Germany); Benstetter, Guenther [FH Deggendorf (Germany)

    2008-07-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift.

  20. Temperature and current dependent electroluminescence measurements on colour-coded multiple quantum well light emitting diodes

    International Nuclear Information System (INIS)

    Bergbauer, Werner; Laubsch, Ansgar; Peter, Matthias; Mayer, Tobias; Bader, Stefan; Oberschmid, Raimund; Hahn, Berthold; Benstetter, Guenther

    2008-01-01

    As the efficiency and the luminous flux have been increased enormously in the last few years, today Light Emitting Diodes (LEDs) are even pushed to applications like general lighting and Home Cinema Projection. Still, InGaN/GaN heterostructure based LEDs suffer from loss-mechanisms like non-radiative defect and Auger recombination, carrier leakage and piezo-field induced carrier separation. To optimize the high current efficiency we evaluated the benefit of Multiple Quantum Well (MQW) compared to Single Quantum Well (SQW) LEDs. Temperature dependent electroluminescence of colour-coded structures with different Indium content in certain Quantum Wells was measured. The experiments demonstrated a strong temperature and current dependence of the MQW operation. The comparison between different LED structures showed effectively the increased LED performance of those structures which operate with a well adjusted MQW active area. Due to the enhanced carrier distribution in the high current range, these LEDs show a higher light output and additionally a reduced wavelength shift

  1. Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone

    International Nuclear Information System (INIS)

    Vidales, María J. Martín de; Barba, Silvia; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A.

    2014-01-01

    Highlights: • Single sonolysis and photolysis technologies entail a slight progesterone removal and nil mineralization. • Synergistic effects of irradiating UV light and US are clearly observed in the oxidation rate. • The energy required by CDSEO and CDSPEO prevents against their application. • CDSEO mainly favors the mass transfer of organics to the conductive-diamond surface. • CDPEO promotes the formation of radicals in the bulk solution. - Abstract: This work focusses on the improvement of the efficiency of Conductive Diamond Electrochemical Oxidation (CDEO) by coupling US and UV irradiation in the degradation of progesterone from wastewater. Results show that CDEO is a promising technology for the degradation of progesterone, just the opposite of that observed for single sonolysis and photolysis technologies, which only entail a slight removal of progesterone and nil mineralization. Coupling UV light and US irradiations with CDEO seems to have a very positive effect, improving results obtained by single CDEO very significantly. Conductive Diamond Sono Electrochemical Oxidation (CDSEO) mainly seems to improve the transfer of pollutants to the conductive-diamond surface, while Conductive Diamond Photo Electrochemical Oxidation (CDPEO) seems to promote the formation of radicals from oxidants produced electrochemically. Soft oxidation conditions are obtained with the single application of both irradiation technologies, whereas an efficient mineralization is attained with CDEO, CDSEO, CDPEO and Conductive Diamond Sono-Photo Electrochemical Oxidation (CDSPEO). However, the high energy demands of US irradiation technologies advices against the use of CDSEO and CDSPEO

  2. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    Science.gov (United States)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on

  3. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  4. Light-initiated detonation systems

    Science.gov (United States)

    Cooper, Stafford S.; Malone, Philip G.; Bartholomew, Stephen W.; Necker, William J.

    1986-09-01

    Numerous light sources could be employed in detonation systems, but lasers have the most efficient coupling to optical fibers and can generate energetic light pulses required for detonation. Flash lamp-pumped, solid state lasers are presently the most useful light source for explosive initiation. Laser diodes in current production cannot generate enough energy for practical applications. The most useful optical fiber for blast line application is a step index fiber with a large core-to-cladding ratio. The large core minimizes energy losses due to misalignment core of fibers in connectors. Couplers that involve mechanically crimped connectors and cleaved fibers, rather than the epoxy-cemented connectors with polished fibers, provide superior energy transmission due to the reduced carbonization at the fiber end. Detonators for optical initiation systems are similar in basic construction to those employed in electrical initiation systems. Explosive and pyrotechnic charges can also be similar. Either primary or secondary explosives can be initiated in present laser-based systems. Two laser detonation systems are presently accessible; a multiple-shot laser with a single-shot, single fiber system designed for use with detonators containing primary explosives. Additional research related to development of low-energy, photoreactive detonators, continuity checking techniques and improved connectors and fibers can produce significant improvements in presently fielded systems.

  5. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  6. Interactions of light gravitinos

    International Nuclear Information System (INIS)

    Clark, T.E.; Lee, T.; Love, S.T.; Wu, G.

    1998-01-01

    In models of spontaneously broken supersymmetry, certain light gravitino processes are governed by the coupling of their Goldstino components. The rules for constructing SUSY and gauge invariant actions involving the Goldstino couplings to matter and gauge fields are presented. The explicit operator construction is found to be at variance with some previously reported claims. A phenomenological consequence arising from light gravitino interactions in supernova is reexamined and scrutinized. copyright 1998 The American Physical Society

  7. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    International Nuclear Information System (INIS)

    Tolstikhina, Inga Yu.; Kato, Daiji

    2010-01-01

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  8. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  9. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  10. Collinear light scattering using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Harris, S.E.; Sokolov, A.V.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.

    2001-01-01

    The paper describes two types of nonlinear optical processes which are based on electromagnetically induced transparency. These are: (1) Collinear generation of FM-like Raman sidebands and (2) a type of pondermotive light scattering which is inherent to the interaction of slow light with cold atoms. Connections to other areas of EIT-based nonlinear optics are also described

  11. A novel inter-fibre light coupling sensor probe using plastic optical fibre for ethanol concentration monitoring at initial production rate

    Science.gov (United States)

    Memon, Sanober F.; Lewis, Elfed; Pembroke, J. Tony; Chowdhry, Bhawani S.

    2017-04-01

    A novel, low cost and highly sensitive optical fibre probe sensor for concentration measurement of ethanol solvent (C2H5OH) corresponding to bio-ethanol production rate by an algae is reported. The principle of operation of the sensor is based on inter-fibre light coupling through an evanescent field interaction to couple the light between two multimode fibres mounted parallel to each other at a minimum possible separation i.e. plastic optical fibre (POF) and was characterized for real time measurement in the broadband spectrum including visible and near infra-red. The wavelength dependency of this sensor design was also investigated by post processing analysis of real time data and hence the optimum wavelength range determined. The proposed sensor has shown significant response in the range of 0.005 - 0.1 %v/v (%volume/volume or volume concentration) which depicts the high sensitivity for monitoring very minute changes in concentration corresponding refractive index changes of the solution. Numerically, sensor has shown the sensitivity of 21945 intensity counts/%v/v or 109.7 counts per every 0.0050 %v/v.

  12. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  13. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  14. Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation.

    Science.gov (United States)

    Han, Dehui; Tong, Xia; Zhao, Yue

    2012-02-07

    We report the design and demonstration of a dual-stimuli-responsive block copolymer (BCP) micelle with increased complexity and control. We have synthesized and studied a new amphiphilic ABA-type triblock copolymer whose hydrophobic middle block contains two types of stimuli-sensitive functionalities regularly and repeatedly positioned in the main chain. Using a two-step click chemistry approach, disulfide and o-nitrobenzyle methyl ester groups are inserted into the main chain, which react to reducing agents and light, respectively. With the end blocks being poly(ethylene oxide), micelles formed by this BCP possess a core that can be disintegrated either rapidly via photocleavage of o-nitrobenzyl methyl esters or slowly through cleavage of disulfide groups by a reducing agent in the micellar solution. This feature makes possible either burst release of an encapsulated hydrophobic species from disintegrated micelles by UV light, or slow release by the action of a reducing agent, or release with combined fast-slow rate profiles using the two stimuli.

  15. Interferon Treatment of Multiple Sclerosis

    OpenAIRE

    Alajbegovic, Azra; Deljo, Dervis; Alajbegovic, Salem; Djelilovic-Vranic, Jasminka; Todorovic, Ljubica; Tiric-Campara, Merita

    2012-01-01

    Introduction: In the treatment of Multiple Sclerosis (MS) differ: treatment of relapse, treatment slow the progression of the disease (immunomodulators and immunosuppression), and symptomatic treatment. The aim: The aim of this study is to analyze the application of interferon therapy in the treatment of MS-E: Process the disease, patients with multiple sclerosis who have passed the commission for multiple sclerosis at the Neurology Clinic of Clinical Center of Sarajevo University as a refere...

  16. Excitation of simple atoms by slow magnetic monopoles

    International Nuclear Information System (INIS)

    Kroll, N.M.; Parke, S.J.; Ganapathi, V.; Drell, S.D.

    1984-01-01

    We present a theory of excitation of simple atoms by slow moving massive monopoles. Previously presented results for a monopole of Dirac strength on hydrogen and helium are reviewed. The hydrogen theory is extended to include arbitrary integral multiples of the Dirac pole strength. The excitation of helium by double strength poles and by dyons is also discussed. It is concluded that a helium proportional counter is a reliable and effective detector for monopoles of arbitrary strength, and for negatively charged dyons

  17. Light-voltage conversion apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, Yoshiki

    1987-09-19

    In a light-voltage conversion unit, when input signal is applied, the output signal to the control circuit has quick rise-up time and slow breaking time. In order to improve this, a short-circuit transistor is placed at the diode, and this transistor is forced ON, when an output signal to the control circuit is lowered down to a constant voltage, to short-circuit between the output terminals. This, however, has a demerit of high power consumption by a transistor. In this invention, by connecting a light-emitting element which gets ON at the first transition and a light-emitting element which gets ON at the last transition, placing a light receiving element in front of each light-emitting element, when an input signal is applied; thus a load is driven only with ON signal of each light-emitting element, eliminating the delay in the last transition. All of these give a quick responsive light-voltage conversion without unnecessary power consumption. (5 figs)

  18. Optical model with multiple band couplings using soft rotator structure

    Science.gov (United States)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  19. Giant amplification in degenerate band edge slow-wave structures interacting with an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Othman, Mohamed A. K.; Veysi, Mehdi; Capolino, Filippo [Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697 (United States); Figotin, Alexander [Department of Mathematics, University of California, Irvine, California 92697 (United States)

    2016-03-15

    We propose a new amplification regime based on a synchronous operation of four degenerate electromagnetic (EM) modes in a slow-wave structure and the electron beam, referred to as super synchronization. These four EM modes arise in a Fabry-Pérot cavity when degenerate band edge (DBE) condition is satisfied. The modes interact constructively with the electron beam resulting in superior amplification. In particular, much larger gains are achieved for smaller beam currents compared to conventional structures based on synchronization with only a single EM mode. We demonstrate giant gain scaling with respect to the length of the slow-wave structure compared to conventional Pierce type single mode traveling wave tube amplifiers. We construct a coupled transmission line model for a loaded waveguide slow-wave structure exhibiting a DBE, and investigate the phenomenon of giant gain via super synchronization using the Pierce model generalized to multimode interaction.

  20. Characterizing free volumes and layer structures in polymeric membranes using slow positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Jean, Y C; Chen Hongmin; Awad, Somia; Zhang Sui; Chen Hangzheng; Lau, Cher Hon; Wang Huan; Li Fuyun; Chung, Tai-Shung; Lee, L James; Huang, James

    2011-01-01

    Positron annihilation spectroscopy coupled with a newly built slow positron beam at National University of Singapore has been used to study the free volume, pore, and depth profile (0 - 10 μm) in cellulose acetate polymeric membrane at the bottom and top sides of membranes for ionic separation in water purification applications. The S and R parameters from Doppler broadening energy of annihilation radiation representing free volumes (0.1-1 nm size) and pores (>1 nm-μm) as a function of depth have been analyzed into multilayers, i.e. skin dense, transition, and porous layers, respectively. The top side of membrane has large free volumes and pores and the bottom side has a skin dense layer, which plays a key role in membrane performance. Positron annihilation lifetime results provide additional information about free-volume size and distribution at the atomic and molecular scale in polymeric membrane systems. Doppler broadening energy and lifetime spectroscopies coupled with a variable mono-energy slow positron beam are sensitive and novel techniques for characterization of polymeric membrane in separation applications.

  1. Developing a compact multiple laser diode combiner with a single fiber stub output for handheld IoT devices

    Science.gov (United States)

    Lee, Minseok; June, Seunghyeok; Kim, Sehwan

    2018-01-01

    Many biomedical applications require an efficient combination and localization of multiple discrete light sources ( e.g., fluorescence and absorbance imaging). We present a compact 6 channel combiner that couples the output of independent solid-state light sources into a single 400-μm-diameter fiber stub for handheld Internet of Things (IoT) devices. We demonstrate average coupling efficiencies > 80% for each of the 6 laser diodes installed into the prototype. The design supports the use of continuous wave and intensity-modulated laser diodes. This fiber-stub-type beam combiner could be used to construct custom multi-wavelength sources for tissue oximeters, microscopes and molecular imaging technologies. In order to validate its suitability, we applied the developed fiber-stub-type beam combiner to a multi-wavelength light source for a handheld IoT device and demonstrated its feasibility for smart healthcare through a tumor-mimicking silicon phantom.

  2. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  3. Microwave photonics processing controlling the speed of light in semiconductor waveguides

    DEFF Research Database (Denmark)

    Xue, Weiqi; Chen, Yaohui; Sales, Salvador

    2009-01-01

    We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like optoelect......We review the theory of slow and fast light effect in semiconductor waveguides and potential applications of these effects in microwave photonic systems as RF phase shifters. Recent applications as microwave photonic filters is presented. Also, in the presentation more applications like...

  4. The unappreciated slowness of conventional tourism

    Directory of Open Access Journals (Sweden)

    G.R. Larsen

    2016-05-01

    Full Text Available Most tourists are not consciously engaging in ‘slow travel’, but a number of travel behaviours displayed by conventional tourists can be interpreted as slow travel behaviour. Based on Danish tourists’ engagement with the distances they travel across to reach their holiday destination, this paper explores unintended slow travel behaviours displayed by these tourists. None of the tourists participating in this research were consciously doing ‘slow travel’, and yet some of their most valued holiday memories are linked to slow travel behaviours. Based on the analysis of these unintended slow travel behaviours, this paper will discuss the potential this insight might hold for promotion of slow travel. If unappreciated and unintentional slow travel behaviours could be utilised in the deliberate effort of encouraging more people to travel slow, ‘slow travel’ will be in a better position to become integrated into conventional travel behaviour.

  5. Role of self-assembly coated Er{sup 3+}: YAlO{sub 3}/TiO{sub 2} in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shanshan [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Dong, Shuangshi, E-mail: dongshuangshi@gmail.com [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Tian, Xiadi; Xu, Zhengxue; Ma, Dongmei; Cui, Bin [Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); Ren, Nanqi, E-mail: rnq@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Rittmann, Bruce E. [Swette Center for Environmetal Technology, Biodesign Institute at Arizona State University, Tempe, AZ, 85287-5701 (United States)

    2016-01-25

    Highlights: • First study on intimate coupling of photocatalysis & biodegradation by visible light. • Self-assembly was used to coat Er{sup 3+}: YAlO{sub 3}/TiO{sub 2} on the sponge carriers. • Fewer accumulated intermediates & higher phenol removal for VPCB than VPC or B alone. • Self-regulation in VPCB contributes to the high degradation efficiency. - Abstract: Conventionally used ultraviolet light can result in dissolved organic carbon (DOC) increasing and biofilm damage in intimate coupling of photocatalysis and biodegradation (ICPB). Visible-light-responsive photocatalysis offers an alternative for achieving ICPB. In this study, composite-cubes were developed using self-assembly to coat a thin and even layer of visible-light-responsive photocatalyst (Er{sup 3+}: YAlO{sub 3}/TiO{sub 2}) on sponge-type carriers, followed by biofilm cultivation. The degradations of phenol (50 mg L{sup −1}) were compared for four protocols in circulating beds: adsorption (AD), visible-light-responsive photocatalysis (VPC), biodegradation (B), and intimately coupled visible-light-responsive photocatalysis and biodegradation (VPCB). The phenol and DOC removal efficiencies using VPCB in 16 h were 99.8% and 65.2%, respectively, i.e., higher than those achieved using VPC (71.6% and 50.0%) or B (99.4% and 58.2%). The phenol removal of 96.3% could be obtained even after 3 additional cycles. The 6.17-min intermediate detected by HPLC, continuously accumulated for VPC, appeared at 1–6 h and then was completely removed for VPCB in 10 h. ICPB was further illustrated in that most of the biofilm was protected in the carrier interiors, with less protection on the carrier exterior in VPCB. A self-regulation mechanism that helped photocatalyst exposure to visible-light irradiation was identified, promoting the combined photocatalysis and biodegradation.

  6. Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator.

    Science.gov (United States)

    He, Yong

    2017-06-23

    We utilize the surface plasmon field of a metal nanoparticle (MNP) to show strain-mediated coupling in a quantum dot-mechanical resonator hybrid system including a quantum dot (QD) embedded within a conical nanowire (NW) and a MNP in the presence of an external field. Based on the numerical solutions of the master equation, we find that a slow oscillation, originating from the strain-mediated coupling between the QD and the NW, appears in the time evolution of the plasmon field enhancement. The results show that the period (about [Formula: see text]) of the slow oscillation is equal to that of the mechanical resonator of NW, which suggests that the time-resolved measurement of the plasmon field enhancement can be easily achieved based on the current experimental conditions. Its amplitude increases with the increasing strain-mediated coupling strength, and under certain conditions there is a linear relationship between them. The slow oscillation of the plasmon field enhancement provides valuable tools for measurements of the mechanical frequency and the strain-mediated coupling strength.

  7. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  8. Light pollution : working paper

    NARCIS (Netherlands)

    Lechner, Stefan; Arns, Marieke

    2013-01-01

    Light pollution is one of the fastest growing and most pervasive of environmental pollution (Chepesiuk, 2009). In the last couple of years, a lot of research has been done about the effects of light pollution. The interest in light pollution has been growing in many fields of science, extending from

  9. An efficient and cost-effective microchannel plate detector for slow neutron radiography

    Science.gov (United States)

    Wiggins, B. B.; Vadas, J.; Bancroft, D.; deSouza, Z. O.; Huston, J.; Hudan, S.; Baxter, D. V.; deSouza, R. T.

    2018-05-01

    A novel approach for efficiently imaging objects with slow neutrons in two dimensions is realized. Neutron sensitivity is achieved by use of a boron doped microchannel plate (MCP). The resulting electron avalanche is further amplified with a Z-stack MCP before being sensed by two orthogonally oriented wire planes. Coupling of the wire planes to delay lines efficiently encodes the position information as a time difference. To determine the position resolution, slow neutrons were used to illuminate a Cd-mask placed directly in front of the detector. Peaks in the resulting spectrum exhibited an average peak width of 329 μm FWHM, corresponding to an average intrinsic resolution of 216 μm. The center region of the detector exhibits a significantly better spatial resolution with an intrinsic resolution of <100 μm observed.

  10. Comparison of electromagnetically induced transparency schemes in semiconductor quantum dot structures: Impact of many-body interactions

    DEFF Research Database (Denmark)

    Houmark-Nielsen, Jakob; Nielsen, Torben Roland; Mørk, Jesper

    2009-01-01

    an important impact on the slow light properties. In the case of the Lambda and V schemes, the minimum required coupling power to achieve slow light is significantly reduced by many-body interactions. V type schemes are found to be generally preferable due to a favorable redistribution of carriers in energy......We investigate the impact of many-body interactions on group-velocity slowdown achieved via electromagnetically induced transparency in quantum dots using three different coupling-probe schemes (ladder, V, and Lambda, respectively). We find that for all schemes many-body interactions have...

  11. Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using -NO2 as a leaving group.

    Science.gov (United States)

    Zhang, Na; Quan, Zheng-Jun; Zhang, Zhang; Da, Yu-Xia; Wang, Xi-Cun

    2016-12-06

    The straightforward visible-light-induced synthesis of stilbene compounds via the cross-coupling of nitroalkenes and diazonium tetrafluoroborates under transition-metal-free conditions is described. The protocol uses green LEDs as light sources and eosin Y as an organophotoredox catalyst. Broad substrate scope and exclusive selectivity for the (E)-configuration of stilbenes are observed. This protocol proceeds via a radical pathway, with nitroalkenes serving as the radical acceptor, and the nitro group is cleaved during the process.

  12. Taking apart the enhanced backscattering cone: Interference fringes from reciprocal paths in multiple light scattering

    International Nuclear Information System (INIS)

    Bret, Boris P. J.; Ferreira, Flavio P.; Nunes-Pereira, Eduardo J.; Belsley, Michael

    2010-01-01

    We report the decomposition of the enhanced backscattering cone into its constitutive interference fringes. These fringes are due to the constructive interference between reciprocal paths of any multiply scattered wave after ensemble averaging. An optical setup combining a two-point continuous-wave illumination and matching detection allows the observation of the fringes and, therefore, the quantitative characterization of the Green's function for light propagation between the two points in a multiple-scattering media.

  13. Quantum simulations and many-body physics with light.

    Science.gov (United States)

    Noh, Changsuk; Angelakis, Dimitris G

    2017-01-01

    In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.

  14. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  15. Light Absorption Enhancement of Silicon-Based Photovoltaic Devices with Multiple Bandgap Structures of Porous Silicon

    Directory of Open Access Journals (Sweden)

    Kuen-Hsien Wu

    2015-09-01

    Full Text Available Porous-silicon (PS multi-layered structures with three stacked PS layers of different porosity were prepared on silicon (Si substrates by successively tuning the electrochemical-etching parameters in an anodization process. The three PS layers have different optical bandgap energy and construct a triple-layered PS (TLPS structure with multiple bandgap energy. Photovoltaic devices were fabricated by depositing aluminum electrodes of Schottky contacts on the surfaces of the developed TLPS structures. The TLPS-based devices exhibit broadband photoresponses within the spectrum of the solar irradiation and get high photocurrent for the incident light of a tungsten lamp. The improved spectral responses of devices are owing to the multi-bandgap structures of TLPS, which are designed with a layered configuration analog to a tandem cell for absorbing a wider energy range of the incidental sun light. The large photocurrent is mainly ascribed to an enhanced light-absorption ability as a result of applying nanoporous-Si thin films as the surface layers to absorb the short-wavelength light and to improve the Schottky contacts of devices. Experimental results reveal that the multi-bandgap PS structures produced from electrochemical-etching of Si wafers are potentially promising for development of highly efficient Si-based solar cells.

  16. Controllable group velocity of the probe light in a Λ-type system with two fold levels

    International Nuclear Information System (INIS)

    Jin Lihui; Gong Shangqing; Niu Yueping; Li Ruxin; Jin Shiqi

    2006-01-01

    The group velocities of the probe laser field are studied in a Λ-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance, we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light

  17. Silicon Mie resonators for highly directional light emission from monolayer MoS2

    Science.gov (United States)

    Cihan, Ahmet Fatih; Curto, Alberto G.; Raza, Søren; Kik, Pieter G.; Brongersma, Mark L.

    2018-05-01

    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire.

  18. Investigating the influence of diffusional coupling on mixture permeation across porous membranes

    NARCIS (Netherlands)

    Krishna, R.; van Baten, J.M.

    2013-01-01

    A careful analysis of published experimental data on permeation of a variety of binary mixtures reveals that there are fundamentally two types of diffusional coupling effects that need to be recognized. The first type of coupling occurs when the less-mobile species slows down its more mobile partner

  19. Strong coupling constant extraction from high-multiplicity Z +jets observables

    Science.gov (United States)

    Johnson, Mark; Maître, Daniel

    2018-03-01

    We present a strong coupling constant extraction at next-to-leading order QCD accuracy using ATLAS Z +2 ,3,4 jets data. This is the first extraction using processes with a dependency on high powers of the coupling constant. We obtain values of the strong coupling constant at the Z mass compatible with the world average and with uncertainties commensurate with other next-to-leading order extractions at hadron colliders. Our most conservative result for the strong coupling constant is αS(MZ)=0.117 8-0.0043+0.0051 .

  20. Movement - uncontrolled or slow

    Science.gov (United States)

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements