WorldWideScience

Sample records for slow twitch muscle

  1. Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration

    Directory of Open Access Journals (Sweden)

    Miyabara E.H.

    2005-01-01

    Full Text Available Calcineurin, a Ca2+/calmodulin-dependent phosphatase, is associated with muscle regeneration via NFATc1/GATA2-dependent pathways. However, it is not clear whether calcineurin preferentially affects the regeneration of slow- or fast-twitch muscles. We investigated the effect of a calcineurin inhibitor, cyclosporin A (CsA, on the morphology and fiber diameter of regenerating slow- and fast-twitch muscles. Adult Wistar rats (259.5 ± 9 g maintained under standard conditions were treated with CsA (20 mg/kg body weight, ip for 5 days, submitted to cryolesion of soleus and tibialis anterior (TA muscles on the 6th day, and then treated with CsA for an additional 21 days. The muscles were removed, weighed, frozen, and stored in liquid nitrogen. Cryolesion did not alter the body weight gain of the animals after 21 days of regeneration (P = 0.001 and CsA significantly reduced the body weight gain (15.5%; P = 0.01 during the same period. All treated TA and soleus muscles showed decreased weights (17 and 29%, respectively, P < 0.05. CsA treatment decreased the cross-sectional area of both soleus and TA muscles of cryoinjured animals (TA: 2108 ± 930 vs 792 ± 640 µm²; soleus: 2209 ± 322 vs 764 ± 439 m²; P < 0.001. Histological sections of both muscles stained with Toluidine blue revealed similar regenerative responses after cryolesion. In addition, CsA was able to minimize these responses, i.e., centralized nuclei and split fibers, more efficiently so in TA muscle. These results indicate that calcineurin preferentially plays a role in regeneration of slow-twitch muscle.

  2. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    Science.gov (United States)

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days

  3. Hydrogen peroxide increases depolarization-induced contraction of mechanically skinned slow twitch fibres from rat skeletal muscles.

    Science.gov (United States)

    Plant, David R; Lynch, Gordon S; Williams, David A

    2002-03-15

    The effect of exogenous hydrogen peroxide (H(2)O(2)) on excitation-contraction (E-C) coupling and sarcoplasmic reticulum (SR) function was compared in mechanically skinned slow twitch fibres (prepared from the soleus muscles) and fast twitch fibres (prepared from the extensor digitorum longus; EDL muscles) of adult rats. Equilibration (5 min) with 1 mM H(2)O(2) diminished the ability of the Ca(2+)-depleted SR to reload Ca(2+) in both slow (P fast twitch fibres (P fast twitch fibres by 24 +/- 5 % (P slow twitch fibres. Treatment with 1 mM H(2)O(2) also increased the peak force of low [caffeine] contracture by approximately 45% in both fibre types compared to control (P slow twitch fibres, compared to control (no H(2)O(2); P fast twitch fibres was not altered by 1 mM H(2)O(2) treatment. Equilibration with 5 mM H(2)O(2) induced a spontaneous force response in both slow and fast twitch fibres, which could be partly reversed by 2 min treatment with 10 mM DTT. Peak DICR was also increased approximately 40% by 5 mM H(2)O(2) in slow twitch fibres compared to control (no H(2)O(2); P slow but not fast twitch fibres. The increase in depolarization-induced contraction in slow twitch fibres might be mediated by an increased SR Ca(2+) release during contraction and/or an increase in Ca(2+) sensitivity.

  4. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.

    Science.gov (United States)

    Macdonald, W A; Stephenson, D G

    2006-05-15

    Slow-twitch mechanically skinned fibres from rat soleus muscle were bathed in solutions mimicking the myoplasmic environment but containing different [ADP] (0.1 microm to 1.0 mm). The effect of ADP on sarcoplasmic reticulum (SR) Ca2+-content was determined from the magnitude of caffeine-induced force responses, while temporal changes in SR Ca2+-content allowed determination of the effective rates of the SR Ca2+-pump and of the SR Ca2+-leak. The SR Ca2+-pump rate, estimated at pCa (-log10[Ca2+]) 7.8, was reduced by 20% as the [ADP] was increased from 0.1 to 40 microm, with no further alteration when the [ADP] was increased to 1.0 mm. The SR Ca2+-leak rate constant was not altered by increasing [ADP] from 0.1 to 40 microm, but was increased by 26% when the [ADP] was elevated to 1.0 mm. This ADP-induced SR Ca2+-leak was insensitive to ruthenium red but was abolished by 2,5-di(tert-butyl)-1,4-hydroquinone (TBQ), indicating that the leak pathway is via the SR Ca2+-pump and not the SR Ca2+-release channel. The decrease in SR Ca2+-pump rate and SR Ca2+-leak rate when [ADP] was increased led to a 40% decrease in SR Ca2+-loading capacity. Elevation of [ADP] had only minor direct effects on the contractile apparatus of slow-twitch fibres. These results suggest that ADP has only limited depressing effects on the contractility of slow-twitch muscle fibres. This is in contrast to the marked effects of ADP on force responses in fast-twitch muscle fibres and may contribute to the fatigue-resistant nature of slow-twitch muscle fibres.

  5. Effect of tibial bone resection on the development of fast- and slow-twitch skeletal muscles in foetal sheep.

    Science.gov (United States)

    West, J M; Williams, N A; Luff, A R; Walker, D W

    2000-04-01

    To determine if longitudinal bone growth affects the differentiation of fast- and slow-twitch muscles, the tibial bone was sectioned at 90 days gestation in foetal sheep so that the lower leg was permanently without structural support. At 140 days (term is approximately 147 days) the contractile properties of whole muscles, activation profiles of single fibres and ultrastructure of fast- and slow-twitch muscles from the hindlimbs were studied. The contractile and activation profiles of the slow-twitch soleus muscles were significantly affected by tibial bone resection (TIBX). The soleus muscles from the TIBX hindlimbs showed: (1) a decrease in the time to peak of the twitch responses from 106.2 +/- 10.7 ms (control, n = 4) to 65.1 +/- 2.48 ms (TIBX, n = 5); (2) fatigue profiles more characteristic of those observed in the fast-twitch muscles: and (3) Ca2+ - and Sr2+ -activation profiles of skinned fibres similar to those from intact hindlimbs at earlier stages of gestation. In the FDL, TIBX did not significantly change whole muscle twitch contraction time, the fatigue profile or the Ca2+ - and Sr2+ -activation profiles of skinned fibres. Electron microscopy showed an increased deposition of glycogen in both soleus and FDL muscles. This study shows that the development of the slow-twitch phenotype is impeded in the absence of the physical support normally provided by the tibial bone. We suggest that longitudinal stretch is an important factor in allowing full expression of the slow-twitch phenotype.

  6. Differences between glycogen biogenesis in fast- and slow-twitch rabbit muscle

    DEFF Research Database (Denmark)

    Cussó, R; Lerner, L R; Cadefau, J

    2003-01-01

    Skeletal muscle glycogen is an essential energy substrate for muscular activity. The biochemical properties of the enzymes involved in de novo synthesis of glycogen were analysed in two types of rabbit skeletal muscle fiber (fast- and slow-twitch). Glycogen concentration was higher in fast...

  7. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  8. Type 2 iodothyronine deiodinase levels are higher in slow-twitch than fast-twitch mouse skeletal muscle and are increased in hypothyroidism.

    Science.gov (United States)

    Marsili, Alessandro; Ramadan, Waile; Harney, John W; Mulcahey, Michelle; Castroneves, Luciana Audi; Goemann, Iuri Martin; Wajner, Simone Magagnin; Huang, Stephen A; Zavacki, Ann Marie; Maia, Ana Luiza; Dentice, Monica; Salvatore, Domenico; Silva, J Enrique; Larsen, P Reed

    2010-12-01

    Because of its large mass, relatively high metabolic activity and responsiveness to thyroid hormone, skeletal muscle contributes significantly to energy expenditure. Despite the presence of mRNA encoding the type 2 iodothyronine-deiodinase (D2), an enzyme that activates T(4) to T3, very low or undetectable activity has been reported in muscle homogenates of adult humans and mice. With a modified D2 assay, using microsomal protein, overnight incubation and protein from D2 knockout mouse muscle as a tissue-specific blank, we examined slow- and fast-twitch mouse skeletal muscles for D2 activity and its response to physiological stimuli. D2 activity was detectable in all hind limb muscles of 8- to 12-wk old C57/BL6 mice. Interestingly, it was higher in the slow-twitch soleus than in fast-twitch muscles (0.40 ± 0.06 vs. 0.076 ± 0.01 fmol/min · mg microsomal protein, respectively, P Hypothyroidism caused a 40% (P hypothyroidism argue for a more important role for D2-generated T(3) in skeletal muscle physiology than previously assumed.

  9. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat.

    OpenAIRE

    Cairns, S. P.; Dulhunty, A. F.

    1993-01-01

    1. The aim of the experiments was to examined the effects of beta-adrenoceptor activation on twitch and tetanic contractions in fast- and slow-twitch mammalian skeletal muscle fibres. Isometric force was recorded from bundles of intact fibres isolated from the normal and denervated slow-twitch soleus and normal fast-twitch sternomastoid muscles of the rat. 2. Terbutaline (10 microM), a beta 2-adrenoceptor agonist, induced an average 15% potentiation of peak twitch and peak tetanic force in no...

  10. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  11. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  12. L-carnitine pretreatment protects slow-twitch skeletal muscles in a rat model of ischemia-reperfusion injury.

    Science.gov (United States)

    Demirel, Mert; Kaya, Burak; Cerkez, Cem; Ertunc, Mert; Sara, Yildirim

    2013-10-01

    Ischemia-reperfusion (I/R) injury negatively affects the outcome of surgical interventions for amputated or severely traumatized extremities. This study aimed to evaluate the protective role of l-carnitine on the contractile properties of fast-twitch (extensor digitorum longus [EDL]) and slow-twitch (soleus [SOL]) skeletal muscles following I/R-induced injury in a rat model. Rats were divided into 4 groups (1) saline pretreatment, (2) l-carnitine pretreatment, (3) saline pretreatment and I/R, and (4) l-carnitine pretreatment and I/R. Twitch and tetanic contractions in the EDL and SOL muscles in each group were recorded. Additionally, a fatigue protocol was performed in these muscles. Twitch and tetanic contraction amplitudes were lower in the EDL and SOL muscles in which I/R was induced (P contraction amplitude in the SOL muscles following I/R (P muscles. l-Carnitine pretreatment did not alter the fatigue response in any of the muscles.

  13. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.

    Science.gov (United States)

    Baylor, S M; Hollingworth, S

    2003-08-15

    Experiments were carried out to compare the amplitude and time course of Ca2+ release from the sarcoplasmic reticulum (SR) in intact slow-twitch and fast-twitch mouse fibres. Individual fibres within small bundles were injected with furaptra, a low-affinity, rapidly responding Ca2+ indicator. In response to a single action potential at 16 degrees C, the peak amplitude and half-duration of the change in myoplasmic free [Ca2+] (Delta[Ca2+]) differed significantly between fibre types (slow-twitch: peak amplitude, 9.4 +/- 1.0 microM (mean +/- S.E.M.); half-duration, 7.7 +/- 0.6 ms; fast-twitch: peak amplitude 18.5 +/- 0.5 microM; half-duration, 4.9 +/- 0.3 ms). SR Ca2+ release was estimated from Delta[Ca2+] with a computational model that calculated Ca2+ binding to the major myoplasmic Ca2+ buffers (troponin, ATP and parvalbumin); buffer concentrations and reaction rate constants were adjusted to reflect fibre-type differences. In response to an action potential, the total concentration of released Ca2+ (Delta[CaT]) and the peak rate of Ca2+ release ((d/dt)Delta[CaT]) differed about 3-fold between the fibre types (slow-twitch: Delta[CaT], 127 +/- 7 microM; (d/dt)Delta[CaT], 70 +/- 6 microM ms-1; fast-twitch: Delta[CaT], 346 +/- 6 microM; (d/dt)Delta[CaT], 212 +/- 4 microM ms-1). In contrast, the half-duration of (d/dt)Delta[CaT] was very similar in the two fibre types (slow-twitch, 1.8 +/- 0.1 ms; fast-twitch, 1.6 +/- 0.0 ms). When fibres were stimulated with a 5-shock train at 67 Hz, the peaks of (d/dt)Delta[CaT] in response to the second and subsequent shocks were much smaller than that due to the first shock; the later peaks, expressed as a fraction of the amplitude of the first peak, were similar in the two fibre types (slow-twitch, 0.2-0.3; fast-twitch, 0.1-0.3). The results support the conclusion that individual SR Ca2+ release units function similarly in slow-twitch and fast-twitch mammalian fibres.

  14. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  15. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  16. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  17. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging.

    Science.gov (United States)

    Jayasinghe, Isuru D; Munro, Michelle; Baddeley, David; Launikonis, Bradley S; Soeller, Christian

    2014-10-06

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres in the molecular organization of ryanodine receptors (RyRs; the primary calcium release channels) within triads. With the improved resolution offered by dSTORM, abutting arrays of RyRs in transverse view of fast fibres were observed in contrast to the fragmented distribution on slow-twitch muscle that were approximately 1.8 times shorter and consisted of approximately 1.6 times fewer receptors. To the best of our knowledge, for the first time, we have quantified the nanometre-scale spatial association between triadic proteins using multi-colour super-resolution, an analysis difficult to conduct with electron microscopy. Our findings confirm that junctophilin-1 (JPH1), which tethers the sarcoplasmic reticulum ((SR) intracellular calcium store) to the tubular (t-) system at triads, was present throughout the RyR array, whereas JPH2 was contained within much smaller nanodomains. Similar imaging of the primary SR calcium buffer, calsequestrin (CSQ), detected less overlap of the triad with CSQ in slow-twitch muscle supporting greater spatial heterogeneity in the luminal Ca2+ buffering when compared with fast twitch muscle. Taken together, these nanoscale differences can explain the fundamentally different physiologies of fast- and slow-twitch muscle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination.

  19. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  20. The role of Six1 in muscle progenitor cells and the establishment of fast-twitch muscle fibres

    OpenAIRE

    Nord, Hanna

    2014-01-01

    Myogenesis is the process of skeletal muscle tissue formation where committed muscle progenitor cells differentiate into skeletal muscle fibres. Depending on the instructive cues the muscle progenitor cells receive they will differentiate into specific fibre types with different properties. The skeletal muscle fibres can be broadly classified as fast-twitch fibres or slow-twitch fibres, based on their contractile speed. However, subgroups of fast- and slow-twitch fibres with different metabol...

  1. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  2. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    Science.gov (United States)

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  3. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    Science.gov (United States)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  4. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.

    Science.gov (United States)

    Clausen, T; Overgaard, K; Nielsen, O B

    2004-02-01

    Muscles containing predominantly fast-twitch (type II) fibres [ext. dig. longus (EDL)] show considerably lower contractile endurance than muscles containing mainly slow-twitch (type I) fibres (soleus). To assess whether differences in Na+-K+ fluxes and excitability might contribute to this phenomenon, we compared excitation-induced Na+-K+ leaks, Na+ channels, Na+-K+ pump capacity, force and compound action potentials (M-waves) in rat EDL and soleus muscles. Isolated muscles were mounted for isometric contractions in Krebs-Ringer bicarbonate buffer and exposed to direct or indirect continuous or intermittent electrical stimulation. The time-course of force decline and concomitant changes in Na+-K+ exchange and M-waves were recorded. During continuous stimulation at 60-120 Hz, EDL showed around fivefold faster rate of force decline than soleus. This was associated with a faster loss of excitability as estimated from the area and amplitude of the M-waves. The net uptake of Na+ and the release of K+ per action potential were respectively 6.5- and 6.6-fold larger in EDL than in soleus, which may in part be due to the larger content of Na+ channels in EDL. During intermittent stimulation with 1 s 60 Hz pulse trains, EDL showed eightfold faster rate of force decline than soleus. The considerably lower contractile endurance of fast-twitch compared with slow-twitch muscles reflects differences in the rate of excitation-induced loss of excitability. This is attributed to the much larger excitation-induced Na+ influx and K+ efflux, leading to a faster rise in [K+]o in fast-twitch muscles. This may only be partly compensated by the concomitant activation of the Na+-K+ pumps, in particular in fibres showing large passive Na+-K+ leaks or reduced content of Na+-K+ pumps. Thus, endurance depends on the leak/pump ratio for Na+ and K+.

  5. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  6. Comparison of collagen fibre architecture between slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi.

    Science.gov (United States)

    Nakamura, Y N; Iwamoto, H; Tabata, S; Ono, Y

    2003-07-01

    1. Collagen fibre architectures of perimysium and endomysium in the slow-twitch cranial and fast-twitch caudal parts of broiler M. latissimus dorsi were compared. 2. Type I and III collagens were distributed in both perimysium and endomysium as indicated by their positive immunohistochemical reactions to polyclonal antibodies. 3. Cells invested by endomysium with no myofibres were larger in the cranial part because of the presence of larger slow-twitch myofibres. The honeycomb structure of endomysium was divided into several parts by thick perimysium. 4. The thick perimysial collagen fibres with parallel fibrils, which were interconnected by the loose reticular fibrils and thin fibres, were more numerous and thicker in the cranial part than the caudal. 5. Thick endomysial sidewall of cells in the cranial part was composed of a rougher reticulum of slightly thicker collagen fibrils compared with the thin sidewall in the caudal part. 6. These results indicated that both perimysial constitutions of collagen fibres and endomysial collagen fibrils had attained much larger growth in the slow-twitch cranial part than the fast-twitch caudal in broiler latissimus dorsi muscle.

  7. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  8. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  9. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    Science.gov (United States)

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  10. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    1998-04-01

    1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from

  11. Observation of the molecular organization of calcium release sites in fast- and slow-twitch skeletal muscle with nanoscale imaging

    OpenAIRE

    Jayasinghe, Isuru D.; Munro, Michelle; Baddeley, David; Launikonis, Bradley S.; Soeller, Christian

    2014-01-01

    Localization microscopy is a fairly recently introduced super-resolution fluorescence imaging modality capable of achieving nanometre-scale resolution. We have applied the dSTORM variation of this method to image intracellular molecular assemblies in skeletal muscle fibres which are large cells that critically rely on nanoscale signalling domains, the triads. Immunofluorescence staining in fixed adult rat skeletal muscle sections revealed clear differences between fast- and slow-twitch fibres...

  12. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    Science.gov (United States)

    Sanchez, B.; Li, J.; Bragos, R.; Rutkove, S. B.

    2014-05-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz-10 MHz frequency range and modeled to a resistivity Cole-Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease.

  13. Differentiation of the intracellular structure of slow- versus fast-twitch muscle fibers through evaluation of the dielectric properties of tissue

    International Nuclear Information System (INIS)

    Sanchez, B; Li, J; Rutkove, S B; Bragos, R

    2014-01-01

    Slow-twitch (type 1) skeletal muscle fibers have markedly greater mitochondrial content than fast-twitch (type 2) fibers. Accordingly, we sought to determine whether the dielectric properties of these two fiber types differed, consistent with their distinct intracellular morphologies. The longitudinal and transverse dielectric spectrum of the ex vivo rat soleus (a predominantly type 1 muscle) and the superficial layers of rat gastrocnemius (predominantly type 2) (n = 15) were measured in the 1 kHz–10 MHz frequency range and modeled to a resistivity Cole–Cole function. Major differences were especially apparent in the dielectric spectrum in the 1 to 10 MHz range. Specifically, the gastrocnemius demonstrated a well-defined, higher center frequency than the soleus muscle, whereas the soleus muscle showed a greater difference in the modeled zero and infinite resistivities than the gastrocnemius. These findings are consistent with the fact that soleus tissue has larger and more numerous mitochondria than gastrocnemius. Evaluation of tissue at high frequency could provide a novel approach for assessing intracellular structure in health and disease. (paper)

  14. Quantifying Ca2+ release and inactivation of Ca2+ release in fast- and slow-twitch muscles.

    Science.gov (United States)

    Barclay, C J

    2012-12-01

    The aims of this study were to quantify the Ca(2+) release underlying twitch contractions of mammalian fast- and slow-twitch muscle and to comprehensively describe the transient inactivation of Ca(2+) release following a stimulus. Experiments were performed using bundles of fibres from mouse extensor digitorum longus (EDL) and soleus muscles. Ca(2+) release was quantified from the amount of ATP used to remove Ca(2+) from the myoplasm following stimulation. ATP turnover by crossbridges was blocked pharmacologically (N-benzyl-p-toluenesulphonamide for EDL, blebbistatin for soleus) and muscle heat production was used as an index of Ca(2+) pump ATP turnover. At 20°C, Ca(2+) release in response to a single stimulus was 34 and 84 μmol (kg muscle)(-1) for soleus and EDL, respectively, and increased with temperature (30°C: soleus, 61 μmol kg(-1); EDL, 168 μmol kg(-1)). Delivery of another stimulus within 100 ms of the first produced a smaller Ca(2+) release. The maximum magnitude of the decrease in Ca(2+) release was greater in EDL than soleus. Ca(2+) release recovered with an exponential time course which was faster in EDL (mean time constant at 20°C, 32.1 ms) than soleus (65.6 ms) and faster at 30°C than at 20°C. The amounts of Ca(2+) released and crossbridge cycles performed are consistent with a scheme in which Ca(2+) binding to troponin-C allowed an average of ∼1.7 crossbridge cycles in the two muscles.

  15. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  16. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo.

    Science.gov (United States)

    Wang, XinGang; Ono, Yosuke; Tan, Swee Chuan; Chai, Ruth JinFen; Parkin, Caroline; Ingham, Philip W

    2011-10-01

    Sox6 has been proposed to play a conserved role in vertebrate skeletal muscle fibre type specification. In zebrafish, sox6 transcription is repressed in slow-twitch progenitors by the Prdm1a transcription factor. Here we identify sox6 cis-regulatory sequences that drive fast-twitch-specific expression in a Prdm1a-dependent manner. We show that sox6 transcription subsequently becomes derepressed in slow-twitch fibres, whereas Sox6 protein remains restricted to fast-twitch fibres. We find that translational repression of sox6 is mediated by miR-499, the slow-twitch-specific expression of which is in turn controlled by Prdm1a, forming a regulatory loop that initiates and maintains the slow-twitch muscle lineage.

  17. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  18. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each

  19. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    Science.gov (United States)

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  20. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    2001-01-01

    The effects of a ramp stretch (amplitude muscle fibre length (L0), speed twitch tension and twitch tension re-development were examined in intact mammalian (rat) fast and slow muscle fibre bundles. The experiments were done in vitro at 20 degrees C and at an initial sarcomere length of 2.68 microm. In both fibre types, a stretch applied during the rising phase of the twitch response (including the time of stimulation) increased the re-developed twitch tension (15-35%). A stretch applied before the stimulus had little or no effect on the twitch myogram in fast muscle fibres, but it increased the twitch tension (approximately 5%) in slow muscle fibres. A similar stretch had little or no effect on tetanic tension in either muscle fibre type. In general, the results indicate that the contractile-activation mechanism may be stretch sensitive and this is particularly pronounced in slow muscle fibres. Recorded at a high sampling rate and examined at an appropriate time scale, the transitory tension response to a stretch rose in at least two phases; an initial rapid tension rise to a break (break point tension, P1a) followed by a slower tension rise (apparent P2a) to a peak reached at the end of the stretch. Plotted against stretch velocity, P1a tension increased in direct proportion to stretch velocity (viscous-like) whereas, P2a tension (calculated as peak tension minus P1a tension) increased with stretch velocity to a plateau (visco-elastic). Examined at the peak of a twitch, P1a tension had a slope (viscosity coefficient) of 1.8 kN m(-2) per L0 s(-1) in fast fibres and 4.7 kN m(-2) per L0 s(-1) in slow muscle fibres. In the same preparations, P2a tension had a relaxation time of 8 ms in the fast muscle fibres and 25 ms in the slow muscle fibres. The amplitudes of both tension components scaled with the instantaneous twitch tension in qualitatively the same way as the instantaneous fibre stiffness. These fast/slow fibre type differences probably reflect differences in

  1. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.

    Science.gov (United States)

    Bátkai, S; Rácz, I B; Ivanics, T; Tóth, A; Hamar, J; Slaaf, D W; Reneman, R S; Ligeti, L

    1999-10-01

    The understanding of the regulation of the free cytosolic [Ca2+] ([Ca2+]i) in skeletal muscle is hampered by the lack of techniques for quantifying free [Ca2+]i in muscle fibres in situ. We describe a model for studying the dynamics of free [Ca2+]i in the fast-twitch extensor digitorum longus (EDL) and the slow-twitch soleus (SOL) muscles of the rat in vivo using caffeine superfusion to induce changes in free [Ca2+]i. We assumed that differences in sensitivity between the two muscle types for this substance reflect differences in intracellular Ca2+ handling in the fibres of which these muscles consist. The Indo-1 ratiometric method, using intravital microscopy with incident light, was adapted to measure free [Ca2+]i in vivo. Fluorescence images were collected by means of a digital camera. Caffeine superfusion at 37 degrees C for 2 min, at concentrations of 1, 2, 5, 10 or 20 mmol/l, induced a concentration-dependent increase in free [Ca2+]i and revealed differences in caffeine sensitivity between the muscle types, with the SOL being more sensitive. In a separate set of experiments the contracture threshold, as assessed by topical application of caffeine, was determined in both muscle types. EDL had a higher threshold for developing contracture than SOL. These finding are in agreement with previous in vitro studies. We may conclude that the dynamics of free [Ca2+]i can be assessed reliably in intact mammalian muscle in vivo.

  2. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles.

    Science.gov (United States)

    Martelly, I; Soulet, L; Bonnavaud, S; Cebrian, J; Gautron, J; Barritault, D

    2000-11-01

    In the rat, the fast and slow twitch muscles respectively Extensor digitorum longus (EDL) and Soleus present differential characteristics during regeneration. This suggests that their satellite cells responsible for muscle growth and repair represent distinct cellular populations. We have previously shown that satellite cells dissociated from Soleus and grown in vitro proliferate more readily than those isolated from EDL muscle. Fibroblast growth factors (FGFs) are known as regulators of myoblast proliferation and several studies have revealed a relationship between the response of myoblasts to FGF and the expression of myogenic regulatory factors (MRF) of the MyoD family by myoblasts. Therefore, we presently examined the possibility that the satellite cells isolated from EDL and Soleus muscles differ in the expression of FGF receptors (FGF-R) and of MRF expression. FGF-R1 and -R4 were strongly expressed in proliferating cultures whereas FGF-R2 and R3 were not detected in these cultures. In differentiating cultures, only -R1 was present in EDL satellite cells while FGF-R4 was also still expressed in Soleus cells. Interestingly, the unconventional receptor for FGF called cystein rich FGF receptor (CFR), of yet unknown function, was mainly detected in EDL satellite cell cultures. Soleus and EDL satellite cell cultures also differed in the expression MRFs. These results are consistent with the notion that satellite cells from fast and slow twitch muscles belong to different types of myogenic cells and suggest that satellite cells might play distinct roles in the formation and diversification of fast and slow fibres.

  3. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  4. Can fast-twitch muscle fibres be selectively recruited during lengthening contractions? Review and applications to sport movements.

    Science.gov (United States)

    Chalmers, Gordon R

    2008-01-01

    Literature examining the recruitment order of motor units during lengthening (eccentric) contractions was reviewed to determine if fast-twitch motor units can be active while lower threshold slow-twitch motor units are not active. Studies utilizing surface electromyogram (EMG) amplitude, single motor unit activity, spike amplitude-frequency analyses, EMG power spectrum, mechanomyographic, and phosphocreatine-to-creatine ratio (PCr/Cr) techniques were reviewed. Only single motor unit and PCr/Cr data were found to be suitable to address the goals of this review. Nine of ten single motor unit studies, examining joint movement velocities up to 225 degrees/s and forces up to 53% of a maximum voluntary contraction, found that the size principle of motor unit recruitment applied during lengthening contractions. Deviation from the size principle was demonstrated by one study examining movements within a small range of low velocities and modest forces, although other studies examining similar low forces and lengthening velocities reported size-ordered recruitment. The PCr/Cr data demonstrated the activation of all fibre types in lengthening maximal contractions. Most evidence indicates that for lengthening contractions of a wide range of efforts and speeds, fast-twitch muscle fibres cannot be selectively recruited without activity of the slow-twitch fibres of the same muscle.

  5. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  6. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Díaz, Víctor; Soldini, Lavinia

    2013-01-01

    The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirom......The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high......-resolution respirometry and mitochondrial protein expression in soleus, quadricep, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadricep and gastrocnemius), respectively, in young (10-12 weeks) and mature (74-76 weeks......) mice. Electron transport through mitochondrial complexes I and III increases with age in quadricep and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085...

  7. The GLUT4 density in slow fibres is not increased in athletes. How does training increase the GLUT4 pool originating from slow fibres?

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Beck-Nielsen, H

    2001-01-01

    % of the fraction in the control group. Thus, GLUT4 originating from slow-twitch fibres was increased by 30% (Pincreases slow-twitch fibre GLUT4 expression by means of an elevated slow-twitch fibre mass in human skeletal muscle.......The influence of training on GLUT4 expression in slow- and fast-twitch skeletal muscle fibres was studied in male endurance-trained athletes and control subjects. The trained state was ensured by elevated maximal oxygen uptake (29%), as well as citrate synthase (60%) and 3-hydroxy......-acyl-CoA dehydrogenase (38%) activities in muscle biopsy samples of the vastus lateralis. GLUT4 densities in slow- and fast-twitch fibres were measured by the use of a newly developed, sensitive method combining immunohistochemistry with morphometry, and no effect of training was found. GLUT4 density was higher in slow...

  8. Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Morten Munkvik

    Full Text Available During isometric contractions, slow twitch soleus muscles (SOL from rats with chronic heart failure (chf are more fatigable than those of sham animals. However, a muscle normally shortens during activity and fatigue development is highly task dependent. Therefore, we examined the development of skeletal muscle fatigue during shortening (isotonic contractions in chf and sham-operated rats. Six weeks following coronary artery ligation, infarcted animals were classified as failing (chf if left ventricle end diastolic pressure was >15 mmHg. During isoflurane anaesthesia, SOL with intact blood supply was stimulated (1s on 1s off at 30 Hz for 15 min and allowed to shorten isotonically against a constant afterload. Muscle temperature was maintained at 37°C. In resting muscle, maximum isometric force (F(max and the concentrations of ATP and CrP were not different in the two groups. During stimulation, F(max and the concentrations declined in parallel sham and chf. Fatigue, which was evident as reduced shortening during stimulation, was also not different in the two groups. The isometric force decline was fitted to a bi-exponential decay equation. Both time constants increased transiently and returned to initial values after approximately 200 s of the fatigue protocol. This resulted in a transient rise in baseline tension between stimulations, although this effect which was less prominent in chf than sham. Myosin light chain 2s phosphorylation declined in both groups after 100 s of isotonic contractions, and remained at this level throughout 15 min of stimulation. In spite of higher energy demand during isotonic than isometric contractions, both shortening capacity and rate of isometric force decline were as well or better preserved in fatigued SOL from chf rats than in sham. This observation is in striking contrast to previous reports which have employed isometric contractions to induce fatigue.

  9. Changes in contractile activation characteristics of rat fast and slow skeletal muscle fibres during regeneration.

    Science.gov (United States)

    Gregorevic, Paul; Plant, David R; Stupka, Nicole; Lynch, Gordon S

    2004-07-15

    Damaged skeletal muscle fibres are replaced with new contractile units via muscle regeneration. Regenerating muscle fibres synthesize functionally distinct isoforms of contractile and regulatory proteins but little is known of their functional properties during the regeneration process. An advantage of utilizing single muscle fibre preparations is that assessment of their function is based on the overall characteristics of the contractile apparatus and regulatory system and as such, these preparations are sensitive in revealing not only coarse, but also subtle functional differences between muscle fibres. We examined the Ca(2+)- and Sr(2+)-activated contractile characteristics of permeabilized fibres from rat fast-twitch (extensor digitorum longus) and slow-twitch (soleus) muscles at 7, 14 and 21 days following myotoxic injury, to test the hypothesis that fibres from regenerating fast and slow muscles have different functional characteristics to fibres from uninjured muscles. Regenerating muscle fibres had approximately 10% of the maximal force producing capacity (P(o)) of control (uninjured) fibres, and an altered sensitivity to Ca(2+) and Sr(2+) at 7 days post-injury. Increased force production and a shift in Ca(2+) sensitivity consistent with fibre maturation were observed during regeneration such that P(o) was restored to 36-45% of that in control fibres by 21 days, and sensitivity to Ca(2+) and Sr(2+) was similar to that of control (uninjured) fibres. The findings support the hypothesis that regenerating muscle fibres have different contractile activation characteristics compared with mature fibres, and that they adopt properties of mature fast- or slow-twitch muscle fibres in a progressive manner as the regeneration process is completed.

  10. Twitch interpolation technique in testing of maximal muscle strength

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Danneskiold-Samsøe, B

    1993-01-01

    The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects...

  11. The twitch interpolation technique for study of fatigue of human quadriceps muscle

    DEFF Research Database (Denmark)

    Bülow, P M; Nørregaard, J; Mehlsen, J

    1995-01-01

    The aim of the study was to examine if the twitch interpolation technique could be used to objectively measure fatigue in the quadriceps muscle in subjects performing submaximally. The 'true' maximum isometric quadriceps torque was determined in 21 healthy subject using the twitch interpolation...... technique. Then an endurance test was performed in which the subjects made repeated isometric contractions at 50% of the 'true' maximum torque for 4 s, separated by 6 s rest periods. During the test, the force response to single electrical stimulation (twitch amplitude) was measured at 50% and 25......). In conclusion, the twitch technique can be used for objectively measuring fatigue of the quadriceps muscle....

  12. Denervation in murine fast-twitch muscle: short-term physiological changes and temporal expression profiling.

    Science.gov (United States)

    Raffaello, Anna; Laveder, Paolo; Romualdi, Chiara; Bean, Camilla; Toniolo, Luana; Germinario, Elena; Megighian, Aram; Danieli-Betto, Daniela; Reggiani, Carlo; Lanfranchi, Gerolamo

    2006-03-13

    Denervation deeply affects muscle structure and function, the alterations being different in slow and fast muscles. Because the effects of denervation on fast muscles are still controversial, and high-throughput studies on gene expression in denervated muscles are lacking, we studied gene expression during atrophy progression following denervation in mouse tibialis anterior (TA). The sciatic nerve was cut close to trochanter in adult CD1 mice. One, three, seven, and fourteen days after denervation, animals were killed and TA muscles were dissected out and utilized for physiological experiments and gene expression studies. Target cDNAs from TA muscles were hybridized on a dedicated cDNA microarray of muscle genes. Seventy-one genes were found differentially expressed. Microarray results were validated, and the expression of relevant genes not probed on our array was monitored by real-time quantitative PCR (RQ-PCR). Nuclear- and mitochondrial-encoded genes implicated in energy metabolism were consistently downregulated. Among genes implicated in muscle contraction (myofibrillar and sarcoplasmic reticulum), genes typical of fast fibers were downregulated, whereas those typical of slow fibers were upregulated. Electrophoresis and Western blot showed less pronounced changes in myofibrillar protein expression, partially confirming changes in gene expression. Isometric tension of skinned fibers was little affected by denervation, whereas calcium sensitivity decreased. Functional studies in mouse extensor digitorum longus muscle showed prolongation in twitch time parameters and shift to the left in force-frequency curves after denervation. We conclude that, if studied at the mRNA level, fast muscles appear not less responsive than slow muscles to the interruption of neural stimulation.

  13. Fast and slow myosins as markers of muscle injury.

    Science.gov (United States)

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R

    2008-07-01

    The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.

  14. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  15. Cycle Training Increased GLUT4 and Activation of mTOR in Fast Twitch Muscle Fibers

    Science.gov (United States)

    Stuart, Charles A.; Howell, Mary E.A.; Baker, Jonathan D.; Dykes, Rhesa J.; Duffourc, Michelle M.; Ramsey, Michael W.; Stone, Michael H.

    2009-01-01

    Purpose To determine if cycle training of sedentary subjects would increase the expression of the principle muscle glucose transporters, six volunteers completed six weeks of progressively increasing intensity stationary cycle cycling. Methods In vastus lateralis muscle biopsies, changes in expression of GLUT1, GLUT4, GLUT5, and GLUT12 were compared using quantitative immunoblots with specific protein standards. Regulatory pathway components were evaluated by immunoblots of muscle homogenates and immunohistochemistry of microscopic sections. Results GLUT1 was unchanged, GLUT4 increased 66%, GLUT12 increased 104%, and GLUT5 decreased 72%. A mitochondrial marker (cytochrome c) and regulators of mitochondrial biogenesis (PGC-1α and phospho-AMPK) were unchanged, but the muscle hypertrophy pathway component, phospho-mTOR increased 83% after the exercise program. In baseline biopsies, GLUT4 by immunohistochemical techniques was 37% greater in Type I (slow twitch, red) muscle fibers, but the exercise training increased GLUT4 expression in Type II (fast twitch, white) fibers by 50%, achieving parity with the Type I fibers. Baseline phospho-mTOR expression was 50% higher in Type II fibers and increased more in Type II fibers (62%) with training, but also increased in Type I fibers (34%). Conclusion Progressive intensity stationary cycle training of previously sedentary subjects increased muscle insulin-responsive glucose transporters (GLUT4 and GLUT12) and decreased the fructose transporter (GLUT5). The increase in GLUT4 occurred primarily in Type II muscle fibers and this coincided with activation of the mTOR muscle hypertrophy pathway. There was little impact on Type I fiber GLUT4 expression and no evidence of change in mitochondrial biogenesis. PMID:20010125

  16. Age-related differences in twitch properties and muscle activation of the first dorsal interosseous.

    Science.gov (United States)

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B; Nicoll, Justin X

    2017-06-01

    To examine twitch force potentiation and twitch contraction duration, as well as electromyographic amplitude (EMG RMS ) and motor unit mean firing rates (MFR) at targeted forces between young and old individuals in the first dorsal interosseous (FDI). Ultrasonography was used to assess muscle quality. Twenty-two young (YG) (age=22.6±2.7years) and 14 older (OD) (age=62.1±4.7years) individuals completed conditioning contractions at 10% and 50% maximal voluntary contraction, (MVC) during which EMG RMS and MFRs were assessed. Evoked twitches preceded and followed the conditioning contractions. Ultrasound images were taken to quantify muscle quality (cross-sectional area [CSA] and echo intensity [EI]). No differences were found between young and old for CSA, pre-conditioning contraction twitch force, or MFRs (P>0.05). However, OD individuals exhibited greater EI and contraction duration (PMFRs. Ultrasonography suggested age-related changes in muscle structure contributed to altered contractile properties in the OD. Greater muscle activation requirements can have negative implications on fatigue resistance at low to moderate intensities in older individuals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse.

    Science.gov (United States)

    Wright, Craig Robert; Allsopp, Giselle Larissa; Addinsall, Alex Bernard; McRae, Natasha Lee; Andrikopoulos, Sofianos; Stupka, Nicole

    2017-01-01

    Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S ( Seps1 ) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion ( mdx : Seps1 -/+ ) were generated. The mdx:Seps1 -/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 ( Mcp-1 ) ( P = 0.034), macrophage marker F4/80 ( P = 0.030), and transforming growth factor-β1 ( Tgf-β1 ) ( P = 0.056) were increased in mdx:Seps1 -/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  18. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  19. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  20. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization

    International Nuclear Information System (INIS)

    Ryan, E D; Thompson, B J; Sobolewski, E J; Herda, T J; Costa, P B; Walter, A A; Cramer, J T

    2011-01-01

    Passive stiffness measurements are often used as a clinical tool to examine a muscle's passive lengthening characteristics. The purpose of this study was to examine the relationship between passive stiffness and evoked twitch properties prior to and following normalization of passive stiffness to muscle cross-sectional area (CSA). Ten healthy volunteers (mean ± SD age = 23 ± 3 year) performed passive range of motion, evoked twitch, and muscle CSA assessments of the plantar flexor muscles. Passive stiffness was determined from the slope of the final 5° of the angle–torque curve. Peak twitch torque (PTT) and rate of torque development (RTD) were determined via transcutaneous electrical stimulation, and muscle CSA was assessed using a peripheral quantitative computed tomography scanner. Pearson product moment correlation coefficients (r) were used to assess the relationships between passive stiffness and PTT and RTD and normalized passive stiffness (passive stiffness . muscle CSA −1 ) and PTT and RTD. Significant positive relationships were observed between passive stiffness and PTT (P = 0.003, r = 0.828) and RTD (P = 0.003, r = 0.825). There were no significant relationships between normalized passive stiffness and PTT (P = 0.290, r = 0.372) or RTD (P = 0.353, r = 0.329) demonstrating that stiffness did not account for a significant portion of the variance in twitch properties. Passive stiffness was largely influenced by the amount of muscle tissue in this study. Future studies that examine muscle stiffness and its relationship with performance measures, among different populations, and following various interventions may consider normalizing stiffness measurements to muscle CSA

  1. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse

    Directory of Open Access Journals (Sweden)

    Craig Robert Wright

    2017-01-01

    Full Text Available Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD. There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S (Seps1 are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1−/+ were generated. The mdx:Seps1−/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1 (P=0.034, macrophage marker F4/80 (P=0.030, and transforming growth factor-β1 (Tgf-β1 (P=0.056 were increased in mdx:Seps1−/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.

  2. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  3. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?

    DEFF Research Database (Denmark)

    Gaster, M; Staehr, P; Beck-Nielsen, H

    2001-01-01

    To gain further insight into the mechanisms underlying muscle insulin resistance, the influence of obesity and type 2 diabetes on GLUT4 immunoreactivity in slow and fast skeletal muscle fibers was studied. Through a newly developed, very sensitive method using immunohistochemistry combined...... with morphometry, GLUT4 density was found to be significantly higher in slow compared with fast fibers in biopsy specimens from lean and obese subjects. In contrast, in type 2 diabetic subjects, GLUT4 density was significantly lower in slow compared with fast fibers. GLUT4 density in slow fibers from diabetic...... was reduced to 77% in the obese subjects and to 61% in type 2 diabetic patients compared with the control subjects. We propose that a reduction in the fraction of slow-twitch fibers, combined with a reduction in GLUT4 expression in slow fibers, may reduce the insulin-sensitive GLUT4 pool in type 2 diabetes...

  4. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  5. Lactate Accumulation in Muscle and Blood during Submaximal Exercise

    Science.gov (United States)

    1981-09-21

    exercise, fast and slow twitch fibers Short title: Lactate in muscle and blood P.A. Tesch, W.L. Daniels and D.S. Sharp Exercise Physiology Division, U.S...KIRBY, R.L. & BELCASTRO, A.N. 1978. Relationship between slow - twitch muscle fibres and lactic acid removal. Can J Appl Sports Sci 3:160-162. BRODAL, P...oxygen uptake (Karlsson 1971, Knuttgen & Saltin 1972). It is generally agreed that the main muscle fiber type to be recruited below this level is the slow

  6. Women at Altitude: Voluntary Muscle Exercise Performance with and Without a-Adrenergic Receptor Blockage

    Science.gov (United States)

    1999-02-01

    proportion of active muscle volume occupied by slow - twitch fibers (a consequence of women having a smaller, fast - twitch fiber cross-sectional area (11,27...oxidative metabolism and in the ratio of slow -to- fast twitch fiber area must be considered with caution, however, since the proportion of slow fatiguing...ventilatory acclimatization to 4300m. Respir.Physiol. 70: 195-204,1987. 27. Nygaard, E. Skeletal muscle fibre characteristics in young women. Acta

  7. Plasticity of the transverse tubules following denervation and subsequent reinnervation in rat slow and fast muscle fibres.

    Science.gov (United States)

    Takekura, Hiroaki; Tamaki, Hiroyuki; Nishizawa, Tomie; Kasuga, Norikatsu

    2003-01-01

    We have studied the effects of short term denervation followed by reinnervation on the ultrastructure of the membrane systems and on the content of and distribution of key proteins involved in calcium regulation of fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus (SOL) muscle fibres. Ischiadic nerve freezing resulted in total lack of neuromuscular transmission for 3 days followed by a slow recovery, but no decline in twitch force elicited by direct stimulation. The latter measurements indicate no significant atrophy within this time frame. The membrane systems of skeletal muscle fibres were visualized using Ca92+)-K3Fe(CN)6-OsO4 techniques and observed using a high voltage electron microscope. [3H]nitrendipine binding was used to detect levels of dihydropyridine receptor (DHPR) expression. The Ca2+ pumping free sarcoplasmic reticulum domains were not affected by the denervation, but the Ca2+ release domains were dramatically increased, particularly in the FT-EDL muscle fibres. The increase is evidenced by a doubling up of the areas of contacts between SR and transverse (t-) tubules, so that in place of the normal triadic arrangement, pentadic and heptadic junctions, formed by multiple interacting layers of ST and t-tubules are seen. Frequency of pentads and heptads increases and declines in parallel to the denervation and reinnervation but with a delay. Immunofluorecence and electron microscopy observations show presence of DHPR and ryanodine receptor clusters at pentads and heptads junctions. A significant (P muscle fibres indicating that overexpression of DHPRs accompanies the build up extra junctional contacts. The results indicate that denervation reversibly affects the domains of the membrane systems involved in excitation-contraction coupling.

  8. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    OpenAIRE

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  9. Single muscle fiber adaptations with marathon training.

    Science.gov (United States)

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P training program. Muscle fiber size declined (P training. P(o) was maintained in both fiber types with training and increased (P 60% increase (P training and was unchanged in MHC IIa fibers. Peak power increased (P training with a further increase (P marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  10. De novo synthesis of purine nucleotides in different fiber types of rat skeletal muscle

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.; Hood, D.A.; Terjung, R.L.

    1986-01-01

    The contribution of de novo purine nucleotide synthesis to nucleotide metabolism in skeletal muscles is not known. The authors have determined rates of de novo synthesis in soleus (slow-twitch red), red gastrocnemius (fast-twitch red), and white gastrocnemius (fast-twitch white) using the perfused rat hindquarter. 14 C glycine incorporation into ATP was linear after 1 and 2 hours of perfusion with 0.2 mM added glycine. The intracellular (I) and extracellular (E) specific activity of 14 C glycine was determined by HPLC of phenylisothiocyanate derivatives of neutralized PCA extracts. The rates of de novo synthesis when expressed relative to muscle ATP content show slow and fast-twitch red muscles to be similar and about twice as great as fast-twitch white muscles. This could represent a greater turnover of the adenine nucleotide pool in more oxidative red muscle types

  11. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  12. Time-resolved X-ray diffraction studies of frog skeletal muscle isometrically twitched by two successive stimuli using synchrotron radiation

    International Nuclear Information System (INIS)

    Tanaka, Hidehiro; Kobayashi, Takakazu; Wakabayashi, Katsuzo

    1986-01-01

    In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 0 C by two successive stimuli at an interval during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1,0 and 1,1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections, the delay between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contr0116e to tension development after their arrival in the vicinity of the thin filaments during contraction. (Auth.)

  13. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  14. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2003-01-01

    The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.

  15. Recovery of Action Potentials and Twitches after K-contractures in Frog Skeletal Muscle(Physiology)

    OpenAIRE

    Atsuko, Suzuki; Ibuki, Shirakawa; Kazunari, Noguchi; Hirohiko, Kishi; Haruo, Sugi; Department of Physiology, School of Medicine, Teikyo University:(Present office)Department of Physical Therapy, Health Science University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University; Department of Physiology, School of Medicine, Teikyo University

    2004-01-01

    To give information about intracellular Ca^ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3℃) that greatly reduced the rate of Ca^ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling pha...

  16. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers.

    Science.gov (United States)

    Misawa, Hidemi; Inomata, Daijiro; Kikuchi, Miseri; Maruyama, Sae; Moriwaki, Yasuhiro; Okuda, Takashi; Nukina, Nobuyuki; Yamanaka, Tomoyuki

    2016-11-01

    VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology. © 2016 Wiley Periodicals, Inc.

  17. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  18. Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres.

    Science.gov (United States)

    Hanft, Laurin M; McDonald, Kerry S

    2010-08-01

    According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length

  19. Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    MacIntosh Brian R

    2002-12-01

    Full Text Available Abstract Background It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence. Methods Mouse extensor digitorum longus (EDL muscles were dissected to small bundles of fibers, which permit measurement of sarcomere length (SL, by laser diffraction. In vitro fixed-end contractions of EDL fiber bundles were elicited at 22°C and 35°C at sarcomere lengths ranging from 2.35 μm to 3.85 μm. Twitch contractions were assessed before and after 1.5 s of 75 Hz stimulation at 22°C or during 10 s of 10 Hz stimulation at 22°C or 35°C. Results Staircase potentiation was greater at 35°C than 22°C, and the relative magnitude of the twitch contraction (Pt*/Pt was proportional to sarcomere length with a negative slope, over the range 2.3 μm – 3.7 μm. Linear regression yielded the following: Pt*/Pt = -0.59·SL+3.27 (r2 = 0.74; Pt*/Pt = -0.39·SL+2.34 (r2 = 0.48; and Pt*/Pt = -0.50·SL+2.45 (r2 = 0.80 for staircase at 35°C, and 22°C and posttetanic response respectively. Posttetanic depression rather than potentiation was present at long SL. This indicates that there may be two processes operating in these muscles to modulate the force: one that enhances and a second that depresses the force. Either or both of these processes may have a length-dependence of its mechanism. Conclusion There is no evidence that posttetanic potentiation is fundamentally different from staircase in these muscles.

  20. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates.

    Science.gov (United States)

    Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K

    2015-06-01

    We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.

  1. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    Science.gov (United States)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  2. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength

    Science.gov (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen

    2011-01-01

    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  3. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  4. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.

    NARCIS (Netherlands)

    Janssen, T.W.; Hopman, M.T.E.

    2003-01-01

    OBJECTIVES: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. DESIGN: Intervention with within-subject comparisons. SETTING: University research

  5. The age related slow and fast contributions to the overall changes in tibialis anterior contractile features disclosed by maximal single twitch scan.

    Science.gov (United States)

    Orizio, Claudio; Cogliati, Marta; Bissolotti, Luciano; Diemont, Bertrand; Gobbo, Massimiliano; Celichowski, Jan

    2016-01-01

    This work aimed to verify if maximal electrically evoked single twitch (STmax) scan discloses the relative functional weight of fast and slow small bundles of fibres (SBF) in determining the contractile features of tibialis anterior (TA) with ageing. SBFs were recruited by TA main motor point stimulation through 60 increasing levels of stimulation (LS): 20 stimuli at 2Hz for each LS. The lowest and highest LS provided the least ST and STmax, respectively. The scanned STmax was decomposed into individual SBF STs. They were identified when twitches from adjacent LS were significantly different and then subtracted from each other. Nine young (Y) and eleven old (O) subjects were investigated. Contraction time (CT) and STarea/STpeak (A/PT) were calculated per each SBF ST. 143 and 155 SBF STs were obtained in Y and O, respectively. Y: CT and A/PT range: 45-105ms and 67-183mNs/mN, respectively. Literature data set TA fast fibres at 34% so, from the arrays of CT and A/PT, 65ms and 100mNs/mN were identified as the upper limit for SBF fast ST classification. O: no SBF ST could be classified as fast. STmax scan reveals age-related changes in the relative contribution of fast and slow SBFs to the overall muscle mechanics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  7. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii

  8. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach.

    Science.gov (United States)

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo

    2014-12-01

    One hundred and eighty six enzymatically dissociated murine muscle fibres were loaded with Mag-Fluo-4 AM, and adhered to laminin, to evaluate the effect of modulating cytosolic Ca(2+) buffers and sarcoendoplasmic reticulum Ca(2+) ATPase (SERCA), mitochondria, and Na(+)/Ca(2+) exchanger (NCX) on the differential tetanic Ca(2+) transient kinetics found in different fibre types. Tetanic Ca(2+) transients were classified as morphology type I (MT-I) or type II (MT-II) according to their shape. The first peak of the MT-I (n = 25) and MT-II (n = 23) tetanic Ca(2+) transients had an amplitude (∆F/F) of 0.41 ± 0.03 and 0.83 ± 0.05 and a rise time (ms) of 1.35 and 0.98, respectively. MT-I signals had a time constant of decay (τ1, ms) of 75.9 ± 4.2 while MT-II transients showed a double exponential decay with time constants of decay (τ1 and τ2, ms) of 18.3 ± 1.4 and 742.2 ± 130.3. Sarcoendoplasmic reticulum Ca(2+) ATPase inhibition demonstrated that the decay phase of the tetanic transients mostly rely on SERCA function. Adding Ca(2+) chelators in the AM form to MT-I fibres changed the morphology of the initial five peaks to a MT-II one, modifying the decay phase of the signal in a dose-dependent manner. Mitochondria and NCX function have a minor role in explaining differences in tetanic Ca(2+) transients among fibre types but still help in removing Ca(2+) from the cytosol in both MT-I and MT-II fibres. Cytoplasmic Ca(2+) buffering capacity and SERCA function explain most of the different kinetics found in tetanic Ca(2+) transients from different fibre types, but mitochondria and NCX have a measurable role in shaping tetanic Ca(2+) responses in both slow and fast-twitch muscle fibre types. We provided experimental evidence on the mechanisms that help understand the kinetics of tetanic Ca(2+) transients themselves and explain kinetic differences found among fibre types.

  9. Muscle sarcomere lesions and thrombosis after spaceflight and suspension unloading

    Energy Technology Data Exchange (ETDEWEB)

    Riley, D.A.; Ellis, S.; Giometti, C.S.; Hoh, J.F.Y.; Ilyina-Kakueva, E.I.; Oganov, V.S.; Slocum, G.R.; Bain, J.L.W.; Sedlak, F.R. (Argonne National Lab., IL (United States))

    1992-08-01

    Extended exposure of humans to spaceflight produces a progressive loss of skeletal muscle strength. This process must be understood to design effective countermeasures. The present investigation examined hindlimb muscles from flight rats killed as close to landing as possible. Spaceflight and tail suspension-hindlimb unloading (unloaded) produced significant decreases in fiber cross-sectional areas of the adductor longus (AL), a slow-twitch antigravity muscle. However, the mean wet weight of the flight AL muscles was near normal, whereas that of the suspension unloaded AL muscles was significantly reduced. Interstitial edema within the flight AL, but not in the unloaded AL, appeared to account for this apparent disagreement.In both conditions, the slow-twitch oxidative fibers atrophied more than the fast-twitch oxidative-glycolytic fibers. Microcirculation was also compromised by spaceflight, such that there was increased formation of thrombi in the postcapillary venules and capillaries.

  10. GLUT11, but not GLUT8 or GLUT12, is expressed in human skeletal muscle in a fibre type-specific pattern

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Schürmann, A

    2004-01-01

    or amyotrophic lateral sclerosis (ALS) were studied. GLUT8 and 12 immunoreactivity was below detection level in both developing and adult muscle fibres. GLUT11 immunoreactivity, however, was present in slow-twitch muscle fibres, but not in fast twitch fibres. Since, in contrast, GLUT4 was expressed in all...... exclusively in slow-twitch muscle fibres and is unaffected by physiological and pathophysiological conditions except in primary myopathy. GLUT8 and GLUT12 do not appear to be of importance in human muscle under physiological and pathophysiological conditions....... to induce GLUT8 or -12 expression. Likewise, the fibre type-dependent pattern of GLUT11 immunoreactivity was unaltered. However, some slow muscle fibres lose their GLUT11 immunoreactivity under regeneration. Our results indicate that GLUT11 immunoreactivity, in contrast to that of GLUT4, is expressed...

  11. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal....

  12. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    Science.gov (United States)

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  13. Mitochondrial oxidative enzyme activity in individual fibre types in hypo- and hyperthyroid rat skeletal muscles.

    Science.gov (United States)

    Johnson, M A; Turnbull, D M

    1984-04-01

    Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.

  14. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres.

    Science.gov (United States)

    Wendowski, Oskar; Redshaw, Zoe; Mutungi, Gabriel

    2017-02-01

    Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) and the soleus (a slow-twitch muscle) of adult mice of different ages (range 100-900 days old) were used to investigate the effects of ageing and dihydrotestosterone (DHT) treatment on protein synthesis as well as the expression and function of two amino acid transporters; the sodium-coupled neutral amino acid transporter (SNAT) 2, and the sodium-independent L-type amino-acid transporter (LAT) 2. At all ages investigated, protein synthesis was always higher in the slow-twitch than in the fast-twitch muscle fibres and decreased with age in both fibre types. However, the decline was greater in the fast-twitch than in the slow-twitch fibres and was accompanied by a reduction in the expression of SNAT2 and LAT2 at the protein level. Again, the decrease in the expression of the amino acid transporters was greater in the fast-twitch than in the slow-twitch fibres. In contrast, ageing had no effect on SNAT2 and LAT2 expressions at the mRNA level. Treating the muscle fibre bundles with physiological concentrations (~2 nM) of DHT for 1 h completely reversed the effects of ageing on protein synthesis and the expression of SNAT2 and LAT2 protein in both fibre types. From the observations that ageing is accompanied by a reduction in protein synthesis and transporter expression and that these effects are reversed by DHT treatment, we conclude that sarcopenia arises from an age-dependent reduction in protein synthesis caused, in part, by the lack of or by the low bioavailability of the male sex steroid, DHT.

  15. Effect of Age and Sex on Histomorphometrical Characteristics of Two Muscles of Laticauda Lambs

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available The aim of the present experiment was to determine the effect of sex and age on histochemical and morphometric characteristics of muscle fibres (myocytes in lambs born by single, twin, triplet and quadruplet birth. Thirty lambs were slaughtered at 60 days of age; thirty were weaned at 60 days and fed until 120 days with flakes (60% and food supplements, and then slaughtered. Muscle tissues were obtained from two muscles, namely m. semitendinosus and m. longissimus dorsi of all lambs. For each fibre type, area perimeter and diameter (maximum and minimum were measured and slow-twitch oxidative fibres, fast-twitch glycolytic fibres, fast-twitch oxidative-glycolytic fibres were histochemically differentiated. The muscles were stained for myosin ATPase, and succinic dehydrogenase. At 60 days, females had fibres larger than males, whereas the opposite was observed at 120 days. Besides, at 60 days, the lambs born by single birth had fibres larger than those born by multiple birth, whereas the opposite was observed at 120 days. Single lambs were heavier than twin lambs and multiple lambs. Fast-twitch glycolytic fibres had the largest size, followed by slow-twitch oxidative and fast-twitch oxidative glycolytic fibres. The dimensions of fibre types in m. longissimus dorsi were larger than in m. semitendinosus (P < 0.001.These muscle fibre characteristics are thought to be important factors influencing meat quality, which is often related to metabolic and contractile properties as determined by the muscle fibre type distribution.

  16. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    Science.gov (United States)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  17. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    Science.gov (United States)

    2008-04-01

    PT, Zhang, CY, Wu, Z, Boss, O et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow - twitch muscle fibres . Nature...Calcineurin and CaMK signaling pathways in fast -to- slow fiber type transformation of cultured mouse skeletal muscle fibers Xiaodong Mu, PhD The John...Surgery”). 3. Ectopic bone formation in fast and slow skeletal muscle (Meszaros L., “Influence of vascularity on muscle regeneration, fibrosis and

  18. Time-resolved x-ray diffraction from frog skeletal muscle during an isotonic twitch under a small load

    International Nuclear Information System (INIS)

    Sugi, Haruo; Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1978-01-01

    A time-resolved x-ray diffraction technique was used to study the time course of change in the intensity ratio Isub(1,0)/Isub(1,1) during isotonic twitch (initial sarcomere, 2.4 μm) under a small load and to determine the kinetic properties of the crossbridges responsible for muscle contraction. Isotonic twitches in four other preparations with an initial sarcomere of 2.4 μm and in two with an initial sarcomere of 2.3 μm and 2.2 μm, respectively, were examined. In each case, the intensity ratio started to decrease at stimulation, reached a minimum value of 0.8 - 1.0 within the first 20 - 30% of the shortening phase, and maintained this value until the beginning of the relaxation phase. Gradual recovery of the intensity ratio to the resting value was seen during the relaxation phase. During the recovery phase, the intensity ratio appeared to exhibit oscillatory changes. Though the extent of shortening was reduced by about 30% at the end of each experiment, the duration of the shortening phase remained almost unchanged in all the preparations examined. The time course of change in the intensity ratio was also examined during an isometric twitch in four preparations (sarcomere, 2.4 μm) with the tibial end connected to a strain gauge. The extent of internal shortening of muscle fibres against the tendons and the recording system during an isometric twitch or a tetanus at low temperatures was estimated. The intensity ratio decreased to a minimum value of 0.5 - 0.6 during the rising phase of isometric tension and started to return to the resting value after the beginning of relaxation. In both isotonic and isometric twitches, a decrease in the intensity ratio resulted from both a decrease in the 1,0 intensity and an increase in the 1,1 intensity. (J.P.N.)

  19. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  20. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    Science.gov (United States)

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Actions of lyotropic anions on the mechanical properties of fast and slow twitch rat muscles at different temperatures

    Czech Academy of Sciences Publication Activity Database

    Wondmikun, Y.; Soukup, Tomáš; Asmussen, G.

    2003-01-01

    Roč. 52, č. 1 (2003), s. 123-129 ISSN 0862-8408 R&D Projects: GA ČR GA304/00/1653 Grant - others:Deutsche Forschungsgemeinschaft(DE) -; Schwerpunkt Muskelforschung(DE) As 74/1-2 Institutional research plan: CEZ:AV0Z5011922 Keywords : slow and fast muscles * contractile properties * lyotropic anions Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  2. Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism

    Science.gov (United States)

    Lee, Kevin Y.; Singh, Manvendra K.; Ussar, Siegfried; Wetzel, Petra; Hirshman, Michael F.; Goodyear, Laurie J.; Kispert, Andreas; Kahn, C. Ronald

    2015-01-01

    Skeletal muscle is composed of both slow-twitch oxidative myofibers and fast-twitch glycolytic myofibers that differentially impact muscle metabolism, function and eventually whole-body physiology. Here we show that the mesodermal transcription factor T-box 15 (Tbx15) is highly and specifically expressed in glycolytic myofibers. Ablation of Tbx15 in vivo leads to a decrease in muscle size due to a decrease in the number of glycolytic fibres, associated with a small increase in the number of oxidative fibres. This shift in fibre composition results in muscles with slower myofiber contraction and relaxation, and also decreases whole-body oxygen consumption, reduces spontaneous activity, increases adiposity and glucose intolerance. Mechanistically, ablation of Tbx15 leads to activation of AMPK signalling and a decrease in Igf2 expression. Thus, Tbx15 is one of a limited number of transcription factors to be identified with a critical role in regulating glycolytic fibre identity and muscle metabolism. PMID:26299309

  3. Does metabosensitive afferent fibers activity differ from slow- and fast-twitch muscles?

    Science.gov (United States)

    Caron, Guillaume; Decherchi, Patrick; Marqueste, Tanguy

    2015-09-01

    This study was designed to investigate the metabosensitive afferent response evoked by electrically induced fatigue (EIF), lactic acid (LA) and potassium chloride (KCl) in three muscle types. We recorded the activity of groups III-IV afferents originating from soleus, gastrocnemius and tibialis anterior muscles. Our data showed a same pattern of response in the three muscles after chemical injections, i.e., a bell curve with maximal discharge rate at 1 mM for LA injections and a linear relationship between KCl concentrations and the afferent discharge rate. Furthermore, a stronger response was recorded after EIF in the gastrocnemius muscle compared to the two other muscles. The change in afferent discharge after 1 mM LA injection was higher for the gastrocnemius muscle compared to the response obtained with the corresponding concentration applied in the two other muscles, whereas changes to KCl injections did not dramatically differ between the three muscles. We conclude that anatomical (mass, phenotype, vascularization, receptor and afferent density…) and functional (flexor vs. extensor) differences between muscles could explain the amplitude of these responses.

  4. Electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induces involuntary reflex contraction of the frontalis muscles.

    Science.gov (United States)

    Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Ryokuya

    2013-02-01

    The levator and frontalis muscles lack interior muscle spindles, despite consisting of slow-twitch fibres that involuntarily sustain eyelid-opening and eyebrow-raising against gravity. To compensate for this anatomical defect, this study hypothetically proposes that initial voluntary contraction of the levator fast-twitch muscle fibres stretches the mechanoreceptors in Müller's muscle and evokes proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study sought to determine whether unilateral transcutaneous electrical stimulation to the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle could induce electromyographic responses in the frontalis muscles, with monitoring responses in the orbicularis oculi muscles. The study population included 27 normal subjects and 23 subjects with aponeurotic blepharoptosis, who displayed persistently raised eyebrows on primary gaze and light eyelid closure. The stimulation induced a short-latency response in the ipsilateral frontalis muscle of all subjects and long-latency responses in the bilateral frontalis muscles of normal subjects. However, it did not induce long-latency responses in the bilateral frontalis muscles of subjects with aponeurotic blepharoptosis. The orbicularis oculi muscles showed R1 and/or R2 responses. The stimulation might reach not only the proprioceptive fibres, but also other sensory fibres related to the blink or corneal reflex. The experimental system can provoke a monosynaptic short-latency response in the ipsilateral frontalis muscle, probably through the mesencephalic trigeminal proprioceptive neuron and the frontalis motor neuron, and polysynaptic long-latency responses in the bilateral frontalis muscles through an unknown pathway. The latter neural circuit appeared to be engaged by the circumstances of aponeurotic blepharoptosis.

  5. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    Science.gov (United States)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  6. Differentiation and fiber type-specific activity of a muscle creatine kinase intronic enhancer

    Directory of Open Access Journals (Sweden)

    Tai Phillip WL

    2011-07-01

    Full Text Available Abstract Background Hundreds of genes, including muscle creatine kinase (MCK, are differentially expressed in fast- and slow-twitch muscle fibers, but the fiber type-specific regulatory mechanisms are not well understood. Results Modulatory region 1 (MR1 is a 1-kb regulatory region within MCK intron 1 that is highly active in terminally differentiating skeletal myocytes in vitro. A MCK small intronic enhancer (MCK-SIE containing a paired E-box/myocyte enhancer factor 2 (MEF2 regulatory motif resides within MR1. The SIE's transcriptional activity equals that of the extensively characterized 206-bp MCK 5'-enhancer, but the MCK-SIE is flanked by regions that can repress its activity via the individual and combined effects of about 15 different but highly conserved 9- to 24-bp sequences. ChIP and ChIP-Seq analyses indicate that the SIE and the MCK 5'-enhancer are occupied by MyoD, myogenin and MEF2. Many other E-boxes located within or immediately adjacent to intron 1 are not occupied by MyoD or myogenin. Transgenic analysis of a 6.5-kb MCK genomic fragment containing the 5'-enhancer and proximal promoter plus the 3.2-kb intron 1, with and without MR1, indicates that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers (types I and IIa, respectively, but is not required for expression in fast-twitch muscle fibers (types IIb and IId. Conclusions In this study, we discovered that MR1 is critical for MCK expression in slow- and intermediate-twitch muscle fibers and that MR1's positive transcriptional activity depends on a paired E-box MEF2 site motif within a SIE. This is the first study to delineate the DNA controls for MCK expression in different skeletal muscle fiber types.

  7. Anatomical and Physiological Characteristics of the Ferret Lateral Rectus Muscle and Abducena Nucleus

    Science.gov (United States)

    2007-01-25

    from the ferret LR Slow Resistant group is larger than the typically powerful Fast Fatigable motor units in the cat. Whole Muscle Contractile...623-632, 1990. 21. HESS A and PILAR G. SLOW FIBRES IN THE EXTRAOCULAR MUSCLES OF THE CAT. J Physiol 169: 780-798, 1963. 22. Jacoby J, Chiarandini DJ...were split between the LR and retractor bulbi (RB) muscle slips. In addition to individual motor units, the whole LR muscle was evaluated for twitch

  8. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  9. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. L-acetylcarnitine enhances functional muscle re-innervation.

    Science.gov (United States)

    Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S

    1991-01-01

    The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.

  11. New Insights into Muscle Fibre Types in Casertana Pig

    Directory of Open Access Journals (Sweden)

    Salvatore Velotto

    2010-01-01

    Full Text Available Little is known about the Casertana pig. The aim of this study was to evaluate the effect of sex on histochemical and morphometrical characteristics of muscle fibres (myocytes in this pure breed and to verify the presence of giant fibres as well as vascularity of the muscle. Finally, maximum shortening velocity and isometric tension were measured in single muscle fibres. Sixteen Casertana pigs (8 males, 8 females from a farm in Campania (Italy were slaughtered at one year of age. Muscle tissues were obtained from psoas minor, rhomboideus and longissimus dorsi. Myofibres were stained for myosin adenosine triphosphatase, succinic dehydrogenase, and α-amylase-periodic acid schiff. For all fibre types, the area and perimeter were measured. Slowtwitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed significant differences between the sexes in the size of all three fibre types. The psoas minor muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than rhomboideus and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibre types was larger in longissimus dorsi than in rhomboideus and psoas minor muscles; the giant fibres were present in the longissimus dorsi muscle only. Besides, isometric tension values were higher in fast-twitch glycolytic fibres than in the other ones. Variations in fibre type composition may contribute to meat quality.

  12. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats.

    Directory of Open Access Journals (Sweden)

    Christopher J Lynch

    Full Text Available Second generation antipsychotics (SGAs, like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1, while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.

  13. The Action of Botulinum Toxin at the Neuromuscular Junction

    Science.gov (United States)

    1980-12-22

    fast - twitch " (gastrocnemius) and " slow - twitch " (soleus) muscles ... muscle fibers -"_re not significantly affected by the toxin. It is interesting to note that, although fast - twitch and slow - twitch mucles were...Duchen LW: An electron microscopic study of the changes induced by borulinum o::in in the motor end-plates of slow and fast skeletal muscle fibres of

  14. The expression of NFATc1 in adult rat skeletal muscle fibres.

    Science.gov (United States)

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  15. A study of fatigue in rabbit skeletal muscle by in vivo 31P MRS

    International Nuclear Information System (INIS)

    Koga, Keiko; Miura, Iwao

    1989-01-01

    Energy metabolism during exercise and recovery process of rabbit skeletal muscle was obserbed by in vivo 31 P MRS. The small value of the ratio of the intensities between inorganic phosphate and phosphocreatine at rest indicated that the observed moiety of muscle had high fast-twitch fiber content. More than half of ATP and almost all of phosphocreatine were depleted by electric stimulation at 4Hz. The extreme intracellular pH was 5.9. The recovery from this metabolic state was very slow, and only a small amount of ATP was resynthesized after 40 minutes of recovery. These phenomena show the characteristic features of the energy metabolism in the fatigue of fast-twitch muscle. The metabolic state as indicated by the intensity of phosphocreatine and intracellular pH during exercise was not always parallel to contraction power measured by straingauge. Two inorganic phosphate peaks were observed, which are regarded as the signals from fast-twitch fiber and slow-twitch fiber from their pH values. The ratios of these two peaks were different between 1Hz, 2Hz, and 4Hz electric stimulation. We conclude that we are observing the different recruitment of fiber types at different exercise level in vivo. (author)

  16. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    Science.gov (United States)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  17. Muscle and liver glycogen, protein, and triglyceride in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Sonne, Bente; Joensen Mikines, Kari

    1984-01-01

    in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho......-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did...... not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did...

  18. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.

    Science.gov (United States)

    Cairns, Simeon P; Borrani, Fabio

    2015-11-01

    Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline

  19. Partial transformation from fast to slow muscle fibers induced by deafferentation of capsaicin-sensitive muscle afferents.

    Science.gov (United States)

    Brunetti, O; Barazzoni, A M; Della Torre, G; Clavenzani, P; Pettorossi, V E; Bortolami, R

    1997-11-01

    Mechanical and histochemical characteristics of the lateral gastrocnemius (LG) muscle of the rat were examined 21 days after capsaicin injection into the LG muscle. The capsaicin caused a decrease in generation rate of twitch and tetanic tension and an increase in fatigue resistance of LG muscle. The histochemical muscle fiber profile evaluated by myosin adenosine triphosphatase and reduced nicotinamide adenine dinucleotide tetrazolium reductase methods showed an increase of type I and IIC fibers and a decrease of the type IIB in whole muscle, and a decrease of the IIA, IIX fibers in the red part accompanied by their increase in the white part. Therefore the capsaicin treatment, which selectively eliminated fibers belonging to the III and IV groups of muscle afferents, induced muscle fiber transformation from fast contracting fatiguing fibers to slowly contracting nonfatiguing ones.

  20. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Schjerling, Peter; Viollet, Benoit

    2008-01-01

    into muscle by certain stimuli. In contrast, no clear function has yet been determined for alpha(1) AMPK in skeletal muscle, possibly due to alpha-AMPK isoform signaling redundancy. By applying low-intensity twitch-contraction and H(2)O(2) stimulation to activate alpha(1) AMPK, but not alpha(2) AMPK......, in wildtype and alpha-AMPK transgenic mouse muscles, this study aimed to define conditions where alpha(1) AMPK is required to increase muscle glucose uptake. METHODOLOGY/PRINCIPAL FINDINGS: Following stimulation with H(2)O(2) (3 mM, 20 min) or twitch-contraction (0.1 ms pulse, 2 Hz, 2 min), signaling and 2......-deoxyglucose uptake were measured in incubated soleus muscles from wildtype and muscle-specific kinase-dead AMPK (KD), alpha(1) AMPK knockout or alpha(2) AMPK knockout mice. H(2)O(2) increased the activity of both alpha(1) and alpha(2) AMPK in addition to Akt phosphorylation, and H(2)O(2)-stimulated glucose...

  1. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres.

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2010-02-01

    It is generally believed that steroid hormones have both genomic and non-genomic (rapid) actions. Although the latter form an important component of the physiological response of these hormones, little is known about the cellular signalling pathway(s) mediating these effects and their physiological functions in adult mammalian skeletal muscle fibres. Therefore, the primary aim of this study was to investigate the non-genomic actions of dihydrotestosterone (DHT) and their physiological role in isolated intact mammalian skeletal muscle fibre bundles. Our results show that treating the fibre bundles with physiological concentrations of DHT increases both twitch and tetanic contractions in fast twitch fibres. However, it decreases them in slow twitch fibres. These changes in force are accompanied by an increase in the phosphorylation of MAPK/ERK1/2 in both fibre types and that of regulatory myosin light chains in fast twitch fibres. Both effects were insensitive to inhibitors of Src kinase, androgen receptor, insulin-like growth factor 1 receptor and platelet-derived growth factor receptor. However, they were abolished by the MAPK/ERK1/2 kinase inhibitor PD98059 and the epidermal growth factor (EGF) receptor inhibitor tyrphostin AG 1478. In contrast, testosterone had no effect on force and increased the phosphorylation of ERK1/2 in slow twitch fibres only. From these results we conclude that sex steroids have non-genomic actions in isolated intact mammalian skeletal muscle fibres. These are mediated through the EGF receptor and one of their main physiological functions is the enhancement of force production in fast twitch skeletal muscle fibres.

  2. Decrease in sarcoplasmic reticulum calcium content, not myofilament function, contributes to muscle twitch force decline in isolated cardiac trabeculae

    Science.gov (United States)

    Milani-Nejad, Nima; Brunello, Lucia; Gyorke, Sándor; Janssen, Paul M.L.

    2014-01-01

    We set out to determine the factors responsible for twitch force decline in isolated intact rat cardiac trabeculae. The contractile force of trabeculae declined over extended periods of isometric twitch contractions. The force-frequency relationship within the frequency range of 4–8 Hz, at 37 °C, became more positive and the frequency optimum shifted to higher rates with this decline in baseline twitch tensions. The post-rest potentiation (37 °C), a phenomenon highly dependent on calcium handling mechanisms, became more pronounced with decrease in twitch tensions. We show that the main abnormality during muscle run-down was not due to a deficit in the myofilaments; maximal tension achieved using a K+ contracture protocol was either unaffected or only slightly decreased. Conversely, the sarcoplasmic reticulum (SR) calcium content, as assessed by rapid cooling contractures (from 27 °C to 0 °C), decreased, and had a close association with the declining twitch tensions (R2 ~ 0.76). SR Ca2+-ATPase, relative to Na+/Ca2+ exchanger activity, was not altered as there was no significant change in paired rapid cooling contracture ratios. Furthermore, confocal microscopy detected no abnormalities in the overall structure of the cardiomyocytes and t-tubules in the cardiac trabeculae (~23 °C). Overall, the data indicates that the primary mechanism responsible for force run-down in multi-cellular cardiac preparations is a decline in the SR calcium content and not the maximal tension generation capability of the myofilaments. PMID:25056841

  3. Models of disuse - A comparison of hindlimb suspension and immobilization

    Science.gov (United States)

    Fitts, R. H.; Metzger, J. M.; Riley, D. A.; Unsworth, B. R.

    1986-01-01

    The effects of 1 and 2 weeks of hindlimb suspension (HS) on the contractile properties of fast- and slow-twitch skeletal muscles of male Sprague Dawley rats are studied and compared with hindlimb immobilization (HI) data. The optimal length and contractile properties of the slow-twitch soleus, fast-twitch extensor digitorum longus, and the vastus lateralis are measured. It is observed that HS and HI affect slow-twitch muscles; isometric twitch duration in the slow-twitch soleus is decreased. Soleus muscle mass and peak tetanic tension declines with disuse. A major difference in the influence of HS and HI on the maximal speed of soleus muscle shortening, V(max) is detected; HS produced a twofold increase in V(max) compared to control data and HI had no significant effect on V(max). The relation between V(max) and myosin concentration is analyzed. The data reveal that HS modifies slow-twitch muscle yielding hybrid fibers with elevated shortening velocities and this change may be dependent on the elimination of load-bearing contractions.

  4. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.

    Science.gov (United States)

    Scheuermann, B W; Hoelting, B D; Noble, M L; Barstow, T J

    2001-02-15

    1. We hypothesized that either the recruitment of additional muscle motor units and/or the progressive recruitment of less efficient fast-twitch muscle fibres was the predominant contributor to the additional oxygen uptake (VO2) observed during heavy exercise. Using surface electromyographic (EMG) techniques, we compared the VO2 response with the integrated EMG (iEMG) and mean power frequency (MPF) response of the vastus lateralis with the VO2 response during repeated bouts of moderate (below the lactate threshold, LT) intensity cycle ergometer exercise. 2. Seven male subjects (age 29 +/- 7 years, mean +/- S.D.) performed three transitions to a work rate (WR) corresponding to 90 % LT and two transitions to a work rate that would elicit a VO2 corresponding to 50 % of the difference between peak VO2 and the LT (i.e. Delta50 %, > LT1 and > LT2). 3. The VO2 slow component was significantly reduced by prior heavy intensity exercise (> LT1, 410 +/- 196 ml min(-1); > LT2, 230 +/- 191 ml min-1). The time constant (tau), amplitude (A) and gain (DeltaVO2/DeltaWR) of the primary VO2 response (phase II) were not affected by prior heavy exercise when a three-component, exponential model was used to describe the V2 response. 4. Integrated EMG and MPF remained relatively constant and at the same level throughout both > LT1 and > LT2 exercise and therefore were not associated with the VO2 slow component. 5. These data are consistent with the view that the increased O2 cost (i.e. VO2 slow component) associated with performing heavy exercise is coupled with a progressive increase in ATP requirements of the already recruited motor units rather than to changes in the recruitment pattern of slow versus fast-twitch motor units. Further, the lack of speeding of the kinetics of the primary VO2 component with prior heavy exercise, thought to represent the initial muscle VO2 response, are inconsistent with O2 delivery being the limiting factor in V > O2 kinetics during heavy exercise.

  5. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    International Nuclear Information System (INIS)

    Richter, E.A.; Hansen, S.A.; Hansen, B.F.

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 μU/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 μmol·g -1 ·h -1 at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[ 14 C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal

  6. Calcium currents in a fast-twitch skeletal muscle of the rat

    OpenAIRE

    1983-01-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calci...

  7. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  8. Muscle and bone follow similar temporal patterns of recovery from muscle-induced disuse due to botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-01-01

    If muscle force is a primary source for triggering bone adaptation, with disuse and reloading, bone changes should follow muscle changes. We examined the timing and magnitude of changes in muscle cross-sectional area (MCSA) and bone architecture in response to muscle inactivity following botulinum toxin (BTX) injection. We hypothesized that MCSA would return to baseline levels sooner than bone properties following BTX injection. Female BALB mice (15 weeks old) were injected with 20 muL of BTX (1 U/100 g body mass, n=18) or saline (SAL, n=18) into the posterior calf musculature of one limb. The contralateral limb (CON) served as an internal control. MCSA and bone properties were assessed at baseline, 2, 4, 8, 12, and 16 weeks post-injection using in vivo micro-CT at the tibia proximal metaphysis (bone only) and diaphysis. Muscles were dissected and weighed after sacrifice. Significant GroupxLegxTime interactions indicated that the maximal decrease in MCSA (56%), proximal metaphyseal BV/TV (38%) and proximal diaphyseal Ct.Ar (7%) occurred 4 weeks after injection. There was no delay prior to bone recovery as both muscle and bone properties began to recover after this time, but MCSA and BV/TV remained 15% and 20% lower, respectively, in the BTX-injected leg than the BTX-CON leg 16 weeks post-injection. Gastrocnemius mass (primarily fast-twitch) was 14% lower in the BTX-injected leg than the SAL-injected leg, while soleus mass (primarily slow-twitch) was 15% greater in the BTX group than the SAL group. Our finding that muscle size and bone began to recover at similar times after BTX injection was unexpected. This suggested that partial weight-bearing and/or return of slow-twitch muscle activity in the BTX leg may have been sufficient to stimulate bone recovery. Alternatively, muscle function may have recovered sooner than MCSA. Our results indicated that muscle cross-sectional area, while important, may not be the primary factor associated with bone loss and recovery

  9. Muscle glycogen depletion and lactate concentration during downhill skiing.

    Science.gov (United States)

    Tesch, P; Larsson, L; Eriksson, A; Karlsson, J

    1978-01-01

    Skilled and unskilled skiers were studied during downhill skiing. Muscle glycogen and muscle lactate concentrations in the vastus lateralis muscle were determined following different skiing conditions. Heavy glycogen utilization was found in the groups studied during a day of skiing. The skilled and unskilled skiers differed with respect to selective glycogen depletion pattern and the skilled subjects demonstrated greater depletion of slow twitch fibers than the unskilled subjects. Lactate concentrations ranged from approximately 5-26 mmoles x kg-1 wet muscle after approximately one minute of maximal skiing. This wide range was not found to be related to the level of skiing proficiency. However, skiing with varyingly angled boots, resulting in different knee angles, did affect lactate concentration. Lactate concentration was positively correlated to individual muscle fiber composition expressed as a percent of fast twitch fibers. The results suggest more pronounced involvement of aerobic energy metabolism in skilled skiers than in unskilled skiers.

  10. The Functional Role of Calcineurin in Hypertrophy, Regeneration, and Disorders of Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Kunihiro Sakuma

    2010-01-01

    Full Text Available Skeletal muscle uses calcium as a second messenger to respond and adapt to environmental stimuli. Elevations in intracellular calcium levels activate calcineurin, a serine/threonine phosphatase, resulting in the expression of a set of genes involved in the maintenance, growth, and remodeling of skeletal muscle. In this review, we discuss the effects of calcineurin activity on hypertrophy, regeneration, and disorders of skeletal muscle. Calcineurin is a potent regulator of muscle remodeling, enhancing the differentiation through upregulation of myogenin or MEF2A and downregulation of the Id1 family and myostatin. Foxo may also be a downstream candidate for a calcineurin signaling molecule during muscle regeneration. The strategy of controlling the amount of calcineurin may be effective for the treatment of muscular disorders such as DMD, UCMD, and LGMD. Activation of calcineurin produces muscular hypertrophy of the slow-twitch soleus muscle but not fast-twitch muscles.

  11. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch.

    Directory of Open Access Journals (Sweden)

    Juri Vogel

    Full Text Available By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice.Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice.Thus, exercise-induced muscle fibre switch is Nox4-independent.

  12. TWITCH PARAMETERS IN TRANSVERSAL AND LONGITUDINAL BICEPS BRACHII RESPONSE

    Directory of Open Access Journals (Sweden)

    Boštjan Šimunič

    2010-01-01

    Full Text Available Assessment of the contractile properties of skeletal muscles is continuing to be an important issue and a difficult task methodologically. Longitudinal direction of skeletal muscle contraction blurs intrinsic muscle belly contractile properties with many factors. This study evaluates and explains contractile properties such as: delay time (Td, contraction time (Tc, half relaxation time (Tr and maximal amplitude (Dm extracted from twitch transversal response and compare them with torque response. In fifteen healthy males (age 23.7 ± 3.4 years isometric twitch transversal and torque responses were simultaneously recorded during graded electrically elicited contractions in the biceps brachii muscle. The amplitude of electrical stimulation was increased in 5 mA steps from a threshold up to a maximal response. The muscles’ belly transversal response was measured by a high precision mechanical displacement sensor while elbow joint torque was calculated from force readings. Results indicate a parabolic relation between the transversal displacement and the torque Dm. A significantly shorter Tc was found in transversal response without being correlated to torque Tc (r = -0.12; > 0.05. A significant correlation was found between torque Tc and the time occurrence of the second peak in the transversal response (r = 0.83; < 0.001. Electrical stimulation amplitude dependant variation of the Tc was notably different in transversal than in torque response. Td was similar at submaximal and maximal responses but larger in transversal at just above threshold contractions. Tr has a similar linear trend in both responses, however, the magnitude and the slope are much larger in the transversal response. We could conclude that different mechanisms affect longitudinal and transversal twitch skeletal muscle deformations. Contractile properties extracted from the transversal response enable alternative insights into skeletal muscle contraction mechanics.

  13. A membrane glucocorticoid receptor mediates the rapid/non-genomic actions of glucocorticoids in mammalian skeletal muscle fibres.

    Science.gov (United States)

    Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel

    2013-10-15

    Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.

  14. Effects of caffeine at different temperatures on contractile properties of slow-twitch and fast-twitch rat muscles

    Czech Academy of Sciences Publication Activity Database

    Wondmikun, Y.; Soukup, Tomáš; Asmussen, G.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 641-652 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327 Grant - others:Schwerpunkt Muskelforschung(DE) As 74/1-2; MYORES(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : MyHC mRNA transcripts and protein isoforms * altered thyroid status * rat muscles Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  15. Fnip1 regulates skeletal muscle fiber type specification, fatigue resistance, and susceptibility to muscular dystrophy

    Science.gov (United States)

    Reyes, Nicholas L.; Banks, Glen B.; Tsang, Mark; Margineantu, Daciana; Gu, Haiwei; Djukovic, Danijel; Chan, Jacky; Torres, Michelle; Liggitt, H. Denny; Hirenallur-S, Dinesh K.; Hockenbery, David M.; Raftery, Daniel; Iritani, Brian M.

    2015-01-01

    Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases. PMID:25548157

  16. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.

    Science.gov (United States)

    Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J

    2013-07-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.

  17. U-14C-lactate-to-glycogen conversion and glycogen resynthesis rates in Type I and Type II human vastus lateralis muscle determined from biopsy samples following supramaximal and submaximal exhaustive one-leg cycling: an in vitro versus in vivo comparison

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1987-01-01

    To determine the in vitro lactate-to-glycogen conversion potential of human muscle, samples were incubated in U- 14 C-lactate. Because evidence existed suggesting that lactate-to-glycogen conversion occurred at a faster rate in Type II muscle in vivo glycogen resynthesis was calculated by the difference in muscle glycogen concentrations over the initial half-hour recovery period in the FT (Type II, fast-twitch) and ST (Type I, slow-twitch) muscle fiber pools from two of the original eight subjects

  18. De novo synthesis of adenine nucleotides in different skeletal muscle fiber types

    International Nuclear Information System (INIS)

    Tullson, P.C.; John-Alder, H.B.; Hood, D.A.; Terjung, R.L.

    1988-01-01

    Management of adenine nucleotide catabolism differs among skeletal muscle fiber types. This study evaluated whether there are corresponding differences in the rates of de novo synthesis of adenine nucleotide among fiber type sections of skeletal muscle using an isolated perfused rat hindquarter preparation. Label incorporation into adenine nucleotides from the [1-14C]glycine precursor was determined and used to calculate synthesis rates based on the intracellular glycine specific radioactivity. Results show that intracellular glycine is closely related to the direct precursor pool. Rates of de novo synthesis were highest in fast-twitch red muscle (57.0 +/- 4.0, 58.2 +/- 4.4 nmol.h-1.g-1; deep red gastrocnemius and vastus lateralis), relatively high in slow-twitch red muscle (47.0 +/- 3.1; soleus), and low in fast-twitch white muscle (26.1 +/- 2.0 and 21.6 +/- 2.3; superficial white gastrocnemius and vastus lateralis). Rates for four mixed muscles were intermediate, ranging between 32.3 and 37.3. Specific de novo synthesis rates exhibited a strong correlation (r = 0.986) with muscle section citrate synthase activity. Turnover rates (de novo synthesis rate/adenine nucleotide pool size) were highest in high oxidative muscle (0.82-1.06%/h), lowest in low oxidative muscle (0.30-0.35%/h), and intermediate in mixed muscle (0.44-0.55%/h). Our results demonstrate that differences in adenine nucleotide management among fiber types extends to the process of de novo adenine nucleotide synthesis

  19. Contracture of Slow Striated Muscle during Calcium Deprivation

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1963-01-01

    When deprived of calcium the slow striated muscle fibers of the frog develop reversible contractures in either hypertonic or isotonic solutions. While calcium deprivation continues because of a flowing calcium-free solution the muscles relax slowly and completely. Restoration of calcium during contracture relaxes the muscle promptly to initial tension. When relaxed during calcium lack the return of calcium does not change tension and the muscle stays relaxed. When contractures are induced by solutions containing small amounts of calcium relaxation does not occur or requires several hours. The rate of tension development depends upon the rate at which calcium moves outward since the contractures develop slower in low concentrations of calcium and are absent or greatly slowed in a stagnant calcium-free solution. Withdrawal of calcium prevents the contractile responses to ACh, KCl, or electrical stimulation through the nerve. Muscles return to their original excitability after calcium is restored. Origin of the contractures is unrelated to nerve activity since they are maximal during transmission failure from calcium lack, occur in denervated muscles, and are not blocked by high concentrations of d-tubocurarine, procaine, or atropine. The experiments also indicate that the contractures do not originate from repetitive activity of muscle membranes. The findings are most simply explained by relating the outward movement of calcium as a link for initiating contraction in slow type striated muscle. PMID:14065284

  20. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    Science.gov (United States)

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  1. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery

    Science.gov (United States)

    Py, G; Ramonatxo, C; Sirvent, P; Sanchez, A M J; Philippe, A G; Douillard, A; Galbès, O; Lionne, C; Bonnieu, A; Chopard, A; Cazorla, O; Lacampagne, A; Candau, R B

    2015-01-01

    Clenbuterol is a β2-adrenergic receptor agonist known to induce skeletal muscle hypertrophy and a slow-to-fast phenotypic shift. The aim of the present study was to test the effects of chronic clenbuterol treatment on contractile efficiency and explore the underlying mechanisms, i.e. the muscle contractile machinery and calcium-handling ability. Forty-three 6-week-old male Wistar rats were randomly allocated to one of six groups that were treated with either subcutaneous equimolar doses of clenbuterol (4 mg kg−1 day−1) or saline solution for 9, 14 or 21 days. In addition to the muscle hypertrophy, although an 89% increase in absolute maximal tetanic force (Po) was noted, specific maximal tetanic force (sPo) was unchanged or even depressed in the slow twitch muscle of the clenbuterol-treated rats (P muscle contraction and relaxation force kinetics indicated that clenbuterol treatment significantly reduced the rate constant of force development and the slow and fast rate constants of relaxation in extensor digitorum longus muscle (P fast rate constant of relaxation in soleus muscle (P fibres (fast twitch fibres) from clenbuterol-treated animals demonstrated decreased amplitude after 14 days (−19%, P < 0.01) and 21 days (−25%, P < 0.01). In conclusion, we showed that chronic clenbuterol treatment reduces contractile efficiency, with altered contraction and relaxation kinetics, but without directly altering the contractile machinery. Lower Ca2+ release during contraction could partially explain these deleterious effects. PMID:25656230

  2. Response of mef2 Gene of Slow and Fast Twitch Muscles of Wistar Male Rats to One Bout of Resistance Exercise

    Directory of Open Access Journals (Sweden)

    M Fathi

    2016-11-01

    Full Text Available Introduction: Myocyte Enhancer Factor 2 (mef2 gene relates with multiple myogenic transcriptional factors that induces activation Muscle-specific genes. MEF2 contributes in muscular cells development and differentiation as well as in fibers transition in response to stimulants. Therefore, the aim of this study was to evaluate the effect of one bout of resistance exercise (RE on mef2 gene expression in fast and slow skeletal muscles of Wistar male rats. Methods: For this experimental study, 15 rats from Pasteur Institute were prepared and housed under natural conditions (temperature, light/dark (12:12 cycle, with ad libitum access to food and water and then randomly divided assigned to RE (n=10 and control groups (n=5; the RE group performed one RE session. 3 and 6 hours following, the rats were anaesthetized and sacrificed, then the soleus and Extensor digitorum longus (EDL muscles were removed. determine mef2 gene expression rate, the Quantitative Real time RT-PCR was used. Data were analyzed by one sample and independent samples t test. Results: In EDL muscle, in response to one RE session, the mef2 gene expression increased non significantly at 3 hour (p=0/093 and increased significantly (p=/008 at 6 hour after exercise, but in soleus muscle, the mef2 gene expression decreased significantly at 3 hour (p=0/01, and at 6 hour after RE session there was no observed significant change (p=0.247. Conclusion: Mef2 expression gene is differently changes in muscle fibers, which are likely associated with changes in fiber type in response to resistance exercise.

  3. Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets

    Directory of Open Access Journals (Sweden)

    Michael J. Wacker

    2016-05-01

    Full Text Available Autosomal recessive hypophosphatemic rickets (ARHR is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL- fast-twitch muscle, soleus (SOL- slow-twitch muscle, heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2a or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In

  4. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Directory of Open Access Journals (Sweden)

    Peter Steinbacher

    Full Text Available PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2. Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak. Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  5. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans.

    Science.gov (United States)

    Steinbacher, Peter; Feichtinger, René G; Kedenko, Lyudmyla; Kedenko, Igor; Reinhardt, Sandra; Schönauer, Anna-Lena; Leitner, Isabella; Sänger, Alexandra M; Stoiber, Walter; Kofler, Barbara; Förster, Holger; Paulweber, Bernhard; Ring-Dimitriou, Susanne

    2015-01-01

    PGC-1α (peroxisome proliferator-activated receptor γ co-activator 1α) is an important regulator of mitochondrial biogenesis and a master regulator of enzymes involved in oxidative phosphorylation. Recent evidence demonstrated that the Gly482Ser single nucleotide polymorphism (SNP) in the PGC-1α gene affects insulin sensitivity, blood lipid metabolism and binding to myocyte enhancer factor 2 (MEF2). Individuals carrying this SNP were shown to have a reduced cardiorespiratory fitness and a higher risk to develop type 2 diabetes. Here, we investigated the responses of untrained men with the Gly482Ser SNP to a 10 week programme of endurance training (cycling, 3 x 60 min/week, heart rate at 70-90% VO2peak). Quantitative data from analysis of biopsies from vastus lateralis muscle revealed that the SNP group, in contrast to the control group, lacked a training-induced increase in content of slow contracting oxidative fibres. Capillary supply, mitochondrial density, mitochondrial enzyme activities and intramyocellular lipid content increased similarly in both groups. These results indicate that the impaired binding of MEF2 to PGC-1α in humans with this SNP impedes exercise-induced fast-to-slow muscle fibre transformation.

  6. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Ruderman, N B; Galbo, H

    1982-01-01

    The role of alpha- and beta-adrenergic receptor stimulation for the effect of epinephrine on muscle glycogenolysis, glucose- and oxygen uptake and muscle performance was studied in the perfused rat hindquarter at rest and during electrical stimulation (60 contractions/min). Adrenergic stimulation...... was obtained by epinephrine in a physiological concentration (2.4 X 10(-8) M) and alpha- and beta-adrenergic blockade by 10(-5) M phentolamine and propranolol, respectively. Epinephrine enhanced net glycogenolysis during contractions most markedly in slow-twitch red fibers. In these fibers the effect...... was mediated by alpha- as well as by beta-adrenergic stimulation, the latter involving production of cAMP, phosphorylase activation and synthase inactivation. In contrast, in fast-twitch fibers only beta-adrenergic mechanisms were involved in the glycogenolytic effect of epinephrine. Moreover, inactivation...

  7. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    Science.gov (United States)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  8. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  9. Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback

    Directory of Open Access Journals (Sweden)

    Ricky eMehta

    2014-10-01

    Full Text Available Although individual heads of triceps surae, soleus (SO and medial gastrocnemius (MG muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1 inhibition occurs at high movement velocities and mediated by velocity-dependent sensory feedback and (2 inhibition depends on the ankle-knee joint moment combination and does not require high movement velocities. The hypotheses were tested by comparing the SO EMG/MG EMG ratio during fast and slow motor behaviors (cat paw shake responses vs. back, straight leg load lifting in humans, which had the same ankle extension-knee flexion moment combination; and during fast and slow behaviors with the ankle extension-knee extension moment combination (human vertical jumping and stance phase of walking in cats and leg load lifting in humans. In addition, SO EMG/MG EMG ratio was determined during cat paw shake responses and walking before and after removal of stretch velocity-dependent sensory feedback by self-reinnervating SO and/or gastrocnemius. We found the ratio SO EMG/MG EMG below 1 (p<0.05 during fast paw shake responses and slow back load lifting, requiring the ankle extension-knee flexion moment combination; whereas the ratio SO EMG/MG EMG was above 1 (p<0.05 during fast vertical jumping and slow tasks of walking and leg load lifting, requiring ankle extension-knee extension moments. Removal of velocity-dependent sensory feedback did not affect the SO EMG/MG EMG ratio in cats. We concluded that the relative inhibition of SO does not require high muscle velocities, depends on ankle-knee moment combinations, and is mechanically advantageous for allowing a greater MG contribution to ankle extension and knee flexion moments.

  10. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    International Nuclear Information System (INIS)

    Ploug, T.; Stallknecht, B.M.; Pedersen, O.; Kahn, B.B.; Ohkuwa, T.; Vinten, J.; Galbo, H.

    1990-01-01

    The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters

  11. Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation.

    Science.gov (United States)

    Muthny, Tomas; Kovarik, Miroslav; Sispera, Ludek; Tilser, Ivan; Holecek, Milan

    2008-02-01

    The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.

  12. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    Science.gov (United States)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  13. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Science.gov (United States)

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  14. Ischemia Increases the Twitch Latent Period in the Soleus and Extensor Carpi Radialis Longus Muscles from Adult Rats.

    Science.gov (United States)

    Morales, Camilo; Fierro, Leonardo

    2017-10-01

    Complete ischemia and reperfusion effects on twitch force (∫(F·t)), twitch latent period (TLP), maximal rate of rise of twitch tension (δF/δt) max , and twitch maximum relaxation rate (TMRR) were assessed. We divided 36 adult rats into four groups; two control groups (n = 9), a group undergoing 1 hour of ischemia followed by 1 hour of reperfusion (n = 9), and one group exposed to 2 hours of ischemia followed by 1 hour of reperfusion (n = 9). We have induced twitch contractions every 10 minutes in the soleus and the extensor carpi radialis longus (ECRL). Twitch contractions were recorded and then analyzed for ∫(F·t), TLP, (δF/δt) max , and TMRR. During 1 hour and 40 minutes of ischemia, TLP increased to 179 ± 24% (p values.

  15. The effects of tetracaine on charge movement in fast twitch rat skeletal muscle fibres.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1990-02-01

    1. The effects of tetracaine, a local anaesthetic that inhibits muscle contraction, on membrane potential and intramembrane charge movements were investigated in fast twitch rat muscle fibres (extensor digitorum longus). 2. The resting membrane potentials of surface fibres from muscles bathed in isotonic Ringer solution containing 2 mM-tetracaine were well maintained, but higher concentrations of tetracaine caused a time-dependent fall of potential. Muscle fibres bathed in hypertonic solutions containing 2 mM-tetracaine were rapidly depolarized. In both isotonic and hypertonic solutions, the depolarizing effect of tetracaine could not be reversed. 3. Charge movement measurements were made using the middle-of-the-fibre voltage clamp technique. The voltage dependence of charge movements measured in cold isotonic solutions was well fitted by a Boltzmann distribution (Q(V) = Qmax/(1 + exp(-(V-V)/k] where Qmax = 37.3 +/- 2.8 nC muF-1, V = -17.9 +/- 1.2 mV and k = 12.6 +/- 0.8 mV (n = 6, 2 degrees C; means +/- S.E. of means). Similar values were obtained when 2 mM-tetracaine was added to the isotonic bathing fluid (Qmax = 40.6 +/- 2.3 nC microF-1, V = -14.1 +/- 1.3 mV, k = 15.3 +/- 0.8 mV; n = 8, 2 degrees C). 4. Charge movements measured around mechanical threshold in muscle fibres bathed in hypertonic solutions were reduced when 2 mM-tetracaine was added to the bathing fluid. The tetracaine-sensitive component of charge was well fitted with an unconstrained Boltzmann distribution which gave: Qmax = 7.5 nC microF-1, V = -46.5 mV, k = 5.5 mV. The e-fold rise of the foot of the curve was 9.3 mV.

  16. Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats

    OpenAIRE

    Martinez, Paula Felippe [UNESP; Bonomo, Camila [UNESP; Guizoni, Daniele Mendes [UNESP; Oliveira Junior, Silvio Assis [UNESP; Damatto, Ricardo Luiz [UNESP; Cezar, Marcelo Diarcadia Mariano [UNESP; Lima, Aline Regina Ruiz [UNESP; Pagan, Luana Urbano [UNESP; Seiva, Fabio Rodrigues; Fernandes, Denise Castro; Laurindo, Francisco Rafael Martins; Novelli, Ethel Lourenzi Barbosa [UNESP; Matsubara, Luiz Shiguero [UNESP; Zornoff, Leonardo Antonio Mamede [UNESP; Okoshi, Katashi [UNESP

    2015-01-01

    Background: Chronic heart failure is characterized by decreased exercise capacity with early exacerbation of fatigue and dyspnea. Intrinsic skeletal muscle abnormalities can play a role in exercise intolerance. Causal or contributing factors responsible for muscle alterations have not been completely defined. This study evaluated skeletal muscle oxidative stress and NADPH oxidase activity in rats with myocardial infarction (MI) induced heart failure. Methods and Results: Four months after MI,...

  17. Coordination Mechanism in Fast Human Movements - Experimental and Modelling Studies. Volume 2.

    Science.gov (United States)

    1982-02-01

    the involved muscle . Knapik and Ramos (33) have proposed that fast twitch muscle fiber may be responsible for a maximun speed move- ment, while slow ...repetition with submaximun weight (low intensity), Wolcott (56) attempted to selectively fatigue the fast and slow twitch muscle fiber. Both intensities of...B. "Enzyme Activity and Fibre Composition in Skeletal Muscle of Trained and Untrained Men." Journal of Applied Physiology 33: 312-319, 1972. 40

  18. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    Science.gov (United States)

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  19. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    Science.gov (United States)

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  20. Calcium and the role of motoneuronal doublets in skeletal muscle control

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2009-01-01

    + resources and the dynamics of calcium transport is proposed. The model correctly accounts for catch-like effects in slow and fast-twitch fibers during long-train stimulations and force-frequency relations in different muscle types. Results obtained from the model compare favorably to experiments showing...... in the central nervous system. This is a potentially very useful property directly mediated by the catch-like process modeled here. One further prediction of the model is that the slope of the frequency-tension profile of a given muscle is highly sensitive to changes in the efficiency and temporal...

  1. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  2. Insulin binding to individual rat skeletal muscles

    International Nuclear Information System (INIS)

    Koerker, D.J.; Sweet, I.R.; Baskin, D.G.

    1990-01-01

    Studies of insulin binding to skeletal muscle, performed using sarcolemmal membrane preparations or whole muscle incubations of mixed muscle or typical red (soleus, psoas) or white [extensor digitorum longus (EDL), gastrocnemius] muscle, have suggested that red muscle binds more insulin than white muscle. We have evaluated this hypothesis using cryostat sections of unfixed tissue to measure insulin binding in a broad range of skeletal muscles; many were of similar fiber-type profiles. Insulin binding per square millimeter of skeletal muscle slice was measured by autoradiography and computer-assisted densitometry. We found a 4.5-fold range in specific insulin tracer binding, with heart and predominantly slow-twitch oxidative muscles (SO) at the high end and the predominantly fast-twitch glycolytic (FG) muscles at the low end of the range. This pattern reflects insulin sensitivity. Evaluation of displacement curves for insulin binding yielded linear Scatchard plots. The dissociation constants varied over a ninefold range (0.26-2.06 nM). Binding capacity varied from 12.2 to 82.7 fmol/mm2. Neither binding parameter was correlated with fiber type or insulin sensitivity; e.g., among three muscles of similar fiber-type profile, the EDL had high numbers of low-affinity binding sites, whereas the quadriceps had low numbers of high-affinity sites. In summary, considerable heterogeneity in insulin binding was found among hindlimb muscles of the rat, which can be attributed to heterogeneity in binding affinities and the numbers of binding sites. It can be concluded that a given fiber type is not uniquely associated with a set of insulin binding parameters that result in high or low binding

  3. Calcium currents in a fast-twitch skeletal muscle of the rat.

    Science.gov (United States)

    Donaldson, P L; Beam, K G

    1983-10-01

    Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially

  4. Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

    Science.gov (United States)

    Camerino, Giulia M.; Bianchini, Elisa; Ciciliot, Stefano; Danieli-Betto, Daniela; Dobrowolny, Gabriella; Furlan, Sandra; Germinario, Elena; Goto, Katsumasa; Gutsmann, Martina; Kawano, Fuminori; Nakai, Naoya; Ohira, Takashi; Ohno, Yoshitaka; Picard, Anne; Salanova, Michele; Schiffl, Gudrun; Blottner, Dieter; Musarò, Antonio; Ohira, Yoshinobu; Betto, Romeo; Conte, Diana; Schiaffino, Stefano

    2012-01-01

    The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures. PMID:22470446

  5. Adaptation of mouse skeletal muscle to long-term microgravity in the MDS mission.

    Directory of Open Access Journals (Sweden)

    Dorianna Sandonà

    Full Text Available The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5-20 day spaceflights. The mice drawer system (MDS program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1 into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca(2+-activated K(+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  7. GH/IGF-I Transgene Expression on Muscle Homeostasis

    Science.gov (United States)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  8. The Gross Morphology and Histochemistry of Respiratory Muscles in Bottlenose Dolphins, Tursiops truncatus

    Science.gov (United States)

    Cotten, Pamela B.; Piscitelli, Marina A.; McLellan, William A.; Rommel, Sentiel A.; Dearolf, Jennifer L.; Pabst, D. Ann

    2011-01-01

    Most mammals possess stamina because their locomotor and respiratory (i.e., ventilatory) systems are mechanically coupled. These systems are decoupled, however, in bottlenose dolphins (Tursiops truncatus) as they swim on a breath-hold. Locomotion and ventilation are coupled only during their brief surfacing event, when they respire explosively (up to 90% of total lung volume in approximately 0.3s) (Ridgway et al., 1969). The predominantly slow-twitch fiber profile of their diaphragm (Dearolf, 2003) suggests that this muscle does not likely power their rapid ventilatory event. Based upon Bramble's (1989) biomechanical model of locomotor-respiratory coupling in galloping mammals, it was hypothesized that locomotor muscles function to power ventilation in bottlenose dolphins. It was further hypothesized that these muscles would be composed predominantly of fast-twitch fibers to facilitate the bottlenose dolphin's rapid ventilation. The gross morphology of cranio-cervical (scalenus, sternocephalicus, sternohyoid), thoracic (intercostals, transverse thoracis), and lumbo-pelvic (hypaxialis, rectus abdominis, abdominal obliques) muscles (n=7) and the fiber-type profiles (n=6) of selected muscles (scalenus, sternocephalicus, sternohyoid, rectus abdominis) of bottlenose dolphins were investigated. Physical manipulations of excised thoracic units were carried out to investigate potential actions of these muscles. Results suggest that the cranio-cervical muscles act to draw the sternum and associated ribs cranio-dorsally, which flares the ribs laterally, and increases the thoracic cavity volume required for inspiration. The lumbo-pelvic muscles act to draw the sternum and caudal ribs caudally, which decreases the volumes of the thoracic and abdominal cavities required for expiration. All muscles investigated were composed predominantly of fast-twitch fibers (range 61-88% by area) and appear histochemically poised for rapid contraction. These combined results suggest that

  9. Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion

    DEFF Research Database (Denmark)

    Krustrup, Peter; Söderlund, Karin; Relu, Mihai U.

    2009-01-01

    temperature increase (DeltaT(m)) in RF was 0.52+/-0.09 degrees C, which was 57% and 73% higher (Pmuscle CP in slow twitch (ST) and fast......The involvement of quadriceps femoris muscle portions and fibre type recruitment was studied during submaximal knee-extensor exercise without and with thigh occlusion (OCC) and compared with responses during intense exercise. Six healthy male subjects performed 90-s of moderate exercise without...... twitch (FT) fibres was 81% and 91% of resting levels, respectively, with lower (Pfibres had CP levels below mean-1 SD, respectively, with corresponding values for FT fibres being 41...

  10. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  11. Impact of titin strain on the cardiac slow force response.

    Science.gov (United States)

    Ait-Mou, Younss; Zhang, Mengjie; Martin, Jody L; Greaser, Marion L; de Tombe, Pieter P

    2017-11-01

    Stretch of myocardium, such as occurs upon increased filling of the cardiac chamber, induces two distinct responses: an immediate increase in twitch force followed by a slower increase in twitch force that develops over the course of several minutes. The immediate response is due, in part, to modulation of myofilament Ca 2+ sensitivity by sarcomere length (SL). The slowly developing force response, termed the Slow Force Response (SFR), is caused by a slowly developing increase in intracellular Ca 2+ upon sustained stretch. A blunted immediate force response was recently reported for myocardium isolated from homozygous giant titin mutant rats (HM) compared to muscle from wild-type littermates (WT). Here, we examined the impact of titin isoform on the SFR. Right ventricular trabeculae were isolated and mounted in an experimental chamber. SL was measured by laser diffraction. The SFR was recorded in response to a 0.2 μm SL stretch in the presence of [Ca 2+ ] o  = 0.4 mM, a bathing concentration reflecting ∼50% of maximum twitch force development at 25 °C. Presence of the giant titin isoform (HM) was associated with a significant reduction in diastolic passive force upon stretch, and ∼50% reduction of the magnitude of the SFR; the rate of SFR development was unaffected. The sustained SL stretch was identical in both muscle groups. Therefore, our data suggest that cytoskeletal strain may underlie directly the cellular mechanisms that lead to the increased intracellular [Ca 2+ ] i that causes the SFR, possibly by involving cardiac myocyte integrin signaling pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chronic β2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men.

    Science.gov (United States)

    Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens

    2018-01-15

    While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P

  13. Single muscle fiber gene expression with run taper.

    Directory of Open Access Journals (Sweden)

    Kevin Murach

    Full Text Available This study evaluated gene expression changes in gastrocnemius slow-twitch myosin heavy chain I (MHC I and fast-twitch (MHC IIa muscle fibers of collegiate cross-country runners (n = 6, 20±1 y, VO₂max = 70±1 ml•kg-1•min-1 during two distinct training phases. In a controlled environment, runners performed identical 8 kilometer runs (30:18±0:30 min:s, 89±1% HRmax while in heavy training (∼72 km/wk and following a 3 wk taper. Training volume during the taper leading into peak competition was reduced ∼50% which resulted in improved race times and greater cross-section and improved function of MHC IIa fibers. Single muscle fibers were isolated from pre and 4 hour post run biopsies in heavily trained and tapered states to examine the dynamic acute exercise response of the growth-related genes Fibroblast growth factor-inducible 14 (FN14, Myostatin (MSTN, Heat shock protein 72 (HSP72, Muscle ring-finger protein-1 (MURF1, Myogenic factor 6 (MRF4, and Insulin-like growth factor 1 (IGF1 via qPCR. FN14 increased 4.3-fold in MHC IIa fibers with exercise in the tapered state (P<0.05. MSTN was suppressed with exercise in both fiber types and training states (P<0.05 while MURF1 and HSP72 responded to running in MHC IIa and I fibers, respectively, regardless of training state (P<0.05. Robust induction of FN14 (previously shown to strongly correlate with hypertrophy and greater overall transcriptional flexibility with exercise in the tapered state provides an initial molecular basis for fast-twitch muscle fiber performance gains previously observed after taper in competitive endurance athletes.

  14. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    Science.gov (United States)

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    Science.gov (United States)

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  16. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.

    Science.gov (United States)

    Broxterman, Ryan M; Layec, Gwenael; Hureau, Thomas J; Amann, Markus; Richardson, Russell S

    2017-05-01

    Although all-out exercise protocols are commonly used, the physiological mechanisms underlying all-out exercise performance are still unclear, and an in-depth assessment of skeletal muscle bioenergetics is lacking. Therefore, phosphorus magnetic resonance spectroscopy ( 31 P-MRS) was utilized to assess skeletal muscle bioenergetics during a 5-min all-out intermittent isometric knee-extensor protocol in eight healthy men. Metabolic perturbation, adenosine triphosphate (ATP) synthesis rates, ATP cost of contraction, and mitochondrial capacity were determined from intramuscular concentrations of phosphocreatine (PCr), inorganic phosphate (P i ), diprotonated phosphate ([Formula: see text]), and pH. Peripheral fatigue was determined by exercise-induced alterations in potentiated quadriceps twitch force (Q tw ) evoked by supramaximal electrical femoral nerve stimulation. The oxidative ATP synthesis rate (ATP OX ) attained and then maintained peak values throughout the protocol, despite an ~63% decrease in quadriceps maximal force production. ThusATP OX normalized to force production (ATP OX gain) significantly increased throughout the exercise (1st min: 0.02 ± 0.01, 5th min: 0.04 ± 0.01 mM·min -1 ·N -1 ), as did the ATP cost of contraction (1st min: 0.048 ± 0.019, 5th min: 0.052 ± 0.015 mM·min -1 ·N -1 ). Additionally, the pre- to postexercise change in Q tw (-52 ± 26%) was significantly correlated with the exercise-induced change in intramuscular pH ( r = 0.75) and [Formula: see text] concentration ( r = 0.77). In conclusion, the all-out exercise protocol utilized in the present study elicited a "slow component-like" increase in intramuscular ATP OX gain as well as a progressive increase in the phosphate cost of contraction. Furthermore, the development of peripheral fatigue was closely related to the perturbation of specific fatigue-inducing intramuscular factors (i.e., pH and [Formula: see text] concentration). NEW & NOTEWORTHY The physiological mechanisms

  17. Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.

    Science.gov (United States)

    Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien

    2017-06-01

    Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. (TNNC1) gene in goat

    African Journals Online (AJOL)

    Yomi

    2012-02-23

    Feb 23, 2012 ... (soleus), but was not expressed in fast skeletal muscle (longissimus muscle, gluteus maximus) and brain, kidney, lung ... Muscle fibre can be classified according to their ... muscle and TNNC1 express in slow skeletal muscle and cardiac ..... and expression of the human slow twitch skeletal muscle/cardiac.

  19. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the "shoulder lock" in albatrosses.

    Science.gov (United States)

    Meyers, Ron A; Stakebake, Eric F

    2005-01-01

    As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.

  20. An Approach for Simulation of the Muscle Force Modeling It by Summation of Motor Unit Contraction Forces

    Directory of Open Access Journals (Sweden)

    Rositsa Raikova

    2013-01-01

    Full Text Available Muscle force is due to the cumulative effect of repetitively contracting motor units (MUs. To simulate the contribution of each MU to whole muscle force, an approach implemented in a novel computer program is proposed. The individual contraction of an MU (the twitch is modeled by a 6-parameter analytical function previously proposed; the force of one MU is a sum of its contractions due to an applied stimulation pattern, and the muscle force is the sum of the active MUs. The number of MUs, the number of slow, fast-fatigue-resistant, and fast-fatigable MUs, and their six parameters as well as a file with stimulation patterns for each MU are inputs for the developed software. Different muscles and different firing patterns can be simulated changing the input data. The functionality of the program is illustrated with a model consisting of 30 MUs of rat medial gastrocnemius muscle. The twitches of these MUs were experimentally measured and modeled. The forces of the MUs and of the whole muscle were simulated using different stimulation patterns that included different regular, irregular, synchronous, and asynchronous firing patterns of MUs. The size principle of MUs for recruitment and derecruitment was also demonstrated using different stimulation paradigms.

  1. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  2. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2015-05-15

    A computer model of a skeletal muscle bioenergetic system is used to study the background of the slow component of oxygen consumption V̇O2 on-kinetics in skeletal muscle. Two possible mechanisms are analyzed: inhibition of ATP production by anaerobic glycolysis by progressive cytosol acidification (together with a slow decrease in ATP supply by creatine kinase) and gradual increase of ATP usage during exercise of constant power output. It is demonstrated that the former novel mechanism is potent to generate the slow component. The latter mechanism further increases the size of the slow component; it also moderately decreases metabolite stability and has a small impact on muscle pH. An increase in anaerobic glycolysis intensity increases the slow component, elevates cytosol acidification during exercise, and decreases phosphocreatine and Pi stability, although slightly increases ADP stability. A decrease in the P/O ratio (ATP molecules/O2 molecules) during exercise cannot also be excluded as a relevant mechanism, although this issue requires further study. It is postulated that both the progressive inhibition of anaerobic glycolysis by accumulating protons (together with a slow decrease of the net creatine kinase reaction rate) and gradual increase of ATP usage during exercise, and perhaps a decrease in P/O, contribute to the generation of the slow component of the V̇O2 on-kinetics in skeletal muscle. Copyright © 2015 the American Physiological Society.

  3. Autonomic components of Complex Regional Pain Syndrome (CRPS) are favourably affected by Electrical Twitch-Obtaining Intramuscular Stimulation (ETOIMS): effects on blood pressure and heart rate.

    Science.gov (United States)

    Chu, Jennifer; Bruyninckx, Frans; Neuhauser, Duncan V

    2017-07-01

    Favourable pain relief results on evoking autonomous twitches at myofascial trigger points with Electrical Twitch Obtaining Intramuscular Stimulation (ETOIMS). To document autonomic nervous system (ANS) dysfunction in Complex Regional Pain Syndrome (CRPS) from blood pressure (BP) and pulse/heart rate changes with ETOIMS. A patient with persistent pain regularly received serial ETOIMS sessions of 60, 90, 120 or ≥150 min over 24 months. Outcome measures include BP: systolic, diastolic, pulse pressure and pulse/heart rate, pre-session/immediate-post-session summed differences (SDPPP index), and pain reduction. His results were compared with that of two other patients and one normal control. Each individual represented the following maximal elicitable twitch forces (TWF) graded 1-5: maximum TWF2: control subject; maximum TWF3: CRPS patient with suspected ANS dysfunction; and maximum TWF4 and TWF5: two patients with respective slow-fatigue and fast-fatigue twitches who during ETOIMS had autonomous twitching at local and remote myotomes simultaneously from denervation supersensitivity. ETOIMS results between TWFs were compared using one-way analysis of variance test. The patients showed immediate significant pain reduction, BP and pulse/heart rate changes/reduction(s) except for diastolic BP in the TWF5 patient. TWF2 control subject had diastolic BP reduction with ETOIMS but not with rest. Linear regression showed TWF grade to be the most significant variable in pain reduction, more so than the number of treatments, session duration and treatment interval. TWF grade was the most important variable in significantly reducing outcome measures, especially pulse/heart rate. Unlike others, the TWF3 patient had distinctive reductions in SDPPP index. Measuring BP and pulse/heart rate is clinically practical for alerting ANS dysfunction maintained CRPS. SDPPP index (≥26) and pulse/heart rate (≥8) reductions with almost every ETOIMS treatment, plus inability to evoke

  4. Proteomic and carbonylation profile analysis of rat skeletal muscles following acute swimming exercise.

    Directory of Open Access Journals (Sweden)

    Francesca Magherini

    Full Text Available Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.

  5. Skeletal Myocyte Types and Vascularity in the Black Sicilian Pig

    Directory of Open Access Journals (Sweden)

    S. Velotto

    2007-01-01

    Full Text Available The objective of this study was to verify the presence of giant fibres in the Black Sicilian pig skeletal muscle and to evaluate the effect of sex on histochemical and morphometric characteristics of the myocytes (myofibres as well as vascularity of the muscle. Twenty Black Sicilian pigs (10 males, 10 females from a farm in Sicily (Italy were slaughtered at two years of age. Muscle tissues were obtained from three muscles: psoas major, longissimus dorsi, and trapezius. Myofibres were stained for myosin ATPase, succinic dehydrogenase, and α-amylase-PAS. For all fibre types, area and perimeter were measured. Slow-twitch oxidative fibres, fast-twitch glycolytic fibres and fast-twitch oxidative-glycolytic fibres were histochemically differentiated; an image-analyzing system was used. The results showed no differences between males and females in percentage of the fibre types, but there were significant differences between sexes in size of all the three fibre types. Psoas major muscle had a high percentage of slow-twitch oxidative fibres and contained more capillaries per fibre and per mm2 than trapezius and longissimus dorsi, in which fast-twitch glycolytic fibres dominated. The cross-sectional area of all fibres types was larger in longissimus dorsi than in trapezius and psoas major muscles; the giant fibres were absent in all the muscles studied. Fibre type composition may contribute to the variation of meat quality.

  6. miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy

    Directory of Open Access Journals (Sweden)

    Gang Li

    2016-01-01

    Full Text Available Denervation often results in skeletal muscle atrophy. Different mechanisms seem to be involved in the determination between denervated slow and fast skeletal muscle atrophy. At the epigenetic level, miRNAs are thought to be highly involved in the pathophysiological progress of denervated muscles. We used miRNA microarrays to determine miRNA expression profiles from a typical slow muscle (soleus muscle and a typical fast muscle (tibialis anterior muscle at an early denervation stage in a rat model. Results showed that miR-206, miR-195, miR-23a, and miR-30e might be key factors in the transformation process from slow to fast muscle in denervated slow muscles. Additionally, certain miRNA molecules (miR-214, miR-221, miR-222, miR-152, miR-320, and Let-7e could be key regulatory factors in the denervated atrophy process involved in fast muscle. Analysis of signaling pathway networks revealed the miRNA molecules that were responsible for regulating certain signaling pathways, which were the final targets (e.g., p38 MAPK pathway; Pax3/Pax7 regulates Utrophin and follistatin by HDAC4; IGF1/PI3K/Akt/mTOR pathway regulates atrogin-1 and MuRF1 expression via FoxO phosphorylation. Our results provide a better understanding of the mechanisms of denervated skeletal muscle pathophysiology.

  7. The augmenting action of banana tree juice on skeletal muscle contraction.

    Science.gov (United States)

    Singh, Y N; Dryden, W F

    1990-01-01

    An extract obtained from juice expressed from the stem of the plantain banana tree (Musa sapientum L., var. paradisiaca) induces twitch augmentation in skeletal muscles. The mechanism of this action was investigated in the mouse hemi-diaphragm preparation. Directly evoked twitches and potassium induced (K+) contractures were both augmented by the extract. Twitch augmentation was partly dependent on extracellular Ca2+. The action on K(+)-contractures was unaffected by tetrodotoxin, but the rate of relaxation was enhanced in the absence of extracellular calcium (0[Ca2+]o). Muscle contracture induced by high concentrations of extract was also augmented in 0[Ca2+]o and in the presence of the Ca2(+)-channel blocking agent, nifedipine. The time course of the contracture was shortened in 0[Ca2+]o, but not by nifedipine. Nifedipine enhanced the augmenting effect of the extract on twitches but shortened the time-course of this action. In addition, a muscle contracture was superimposed on the twitching muscle at higher concentrations of nifedipine. Manganese, on the other hand, reduced or abolished the augmenting action of the extract. The results are consistent with an action of banana tree juice on the molecule responsible for excitation-contraction coupling in skeletal muscle, resulting in a labilization of intracellular Ca2+.

  8. Anatomy and histochemistry of hindlimb flight posture in birds. I. The extended hindlimb posture of shorebirds.

    Science.gov (United States)

    McFarland, Joshua C; Meyers, Ron A

    2008-08-01

    Birds utilize one of two hindlimb postures during flight: an extended posture (with the hip and knee joints flexed, while the ankle joint is extended caudally) or a flexed posture (with the hip, knee, and ankle joints flexed beneath the body). American Avocets (Recurvirostra americana) and Black-necked Stilts (Himantopus mexicanus) extend their legs caudally during flight and support them for extended periods. Slow tonic and slow twitch muscle fibers are typically found in muscles functioning in postural support due to the fatigue resistance of these fibers. We hypothesized that a set of small muscles composed of high percentages of slow fibers and thus dedicated to postural support would function in securing the legs in the extended posture during flight. This study examined the anatomy and histochemical profile of eleven hindlimb muscles to gain insight into their functional roles during flight. Contrary to our hypothesis, all muscles possessed both fast twitch and slow twitch or slow tonic fibers. We believe this finding is due to the versatility of dynamic and postural functions the leg muscles must facilitate, including standing, walking, running, swimming, and hindlimb support during flight. Whether birds use an extended or flexed hindlimb flight posture may be related to the aerodynamic effect of leg position or may reflect evolutionary history. (c) 2008 Wiley-Liss, Inc.

  9. Use it or lose it: tonic activity of slow motoneurons promotes their survival and preferentially increases slow fiber-type groupings in muscles of old lifelong recreational sportsmen

    Directory of Open Access Journals (Sweden)

    Simone Mosole

    2016-11-01

    Full Text Available Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i denervation contributes to muscle atrophy, ii impaired mobility accelerates the process, and iii lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers; 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers; 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always

  10. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  11. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-09-15

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  12. S-glutathionylation of troponin I (fast) increases contractile apparatus Ca2+ sensitivity in fast-twitch muscle fibres of rats and humans.

    Science.gov (United States)

    Mollica, J P; Dutka, T L; Merry, T L; Lamboley, C R; McConell, G K; McKenna, M J; Murphy, R M; Lamb, G D

    2012-03-15

    Oxidation can decrease or increase the Ca2+ sensitivity of the contractile apparatus in rodent fast-twitch (type II) skeletal muscle fibres, but the reactions and molecular targets involved are unknown. This study examined whether increased Ca2+ sensitivity is due to S-glutathionylation of particular cysteine residues. Skinned muscle fibres were directly activated in heavily buffered Ca2+ solutions to assess contractile apparatus Ca2+ sensitivity. Rat type II fibres were subjected to S-glutathionylation by successive treatments with 2,2′-dithiodipyridine (DTDP) and glutathione (GSH), and displayed a maximal increase in pCa50 (−log10 [Ca2+] at half-maximal force) of ∼0.24 pCa units, with little or no effect on maximum force or Hill coefficient. Partial similar effect was produced by exposure to oxidized gluthathione (GSSG, 10 mM) for 10 min at pH 7.1, and near-maximal effect by GSSG treatment at pH 8.5. None of these treatments significantly altered Ca2+ sensitivity in rat type I fibres. Western blotting showed that both the DTDP–GSH and GSSG–pH 8.5 treatments caused marked S-glutathionylation of the fast troponin I isoform (TnI(f)) present in type II fibres, but not of troponin C (TnC) or myosin light chain 2. Both the increased Ca2+ sensitivity and glutathionylation of TnI(f) were blocked by N-ethylmaleimide (NEM). S-nitrosoglutathione (GSNO) also increased Ca2+ sensitivity, but only in conditions where it caused S-glutathionylation of TnI(f). In human type II fibres from vastus lateralis muscle, DTDP–GSH treatment also caused similar increased Ca2+ sensitivity and S-glutathionylation of TnI(f). When the slow isoform of TnI in type I fibres of rat was partially substituted (∼30%) with TnI(f), DTDP–GSH treatment caused a significant increase in Ca2+ sensitivity (∼0.08 pCa units). TnIf in type II fibres from toad and chicken muscle lack Cys133 present in mammalian TnIf, and such fibres showed no change in Ca2+ sensitivity with DTDP–GSH nor any S

  13. Preferential type II muscle fiber damage from plyometric exercise.

    Science.gov (United States)

    Macaluso, Filippo; Isaacs, Ashwin W; Myburgh, Kathryn H

    2012-01-01

    Plyometric training has been successfully used in different sporting contexts. Studies that investigated the effect of plyometric training on muscle morphology are limited, and results are controversial with regard to which muscle fiber type is mainly affected. To analyze the skeletal muscle structural and ultrastructural change induced by an acute bout of plyometric exercise to determine which type of muscle fibers is predominantly damaged. Descriptive laboratory study. Research laboratory. Eight healthy, untrained individuals (age = 22 ± 1 years, height = 179.2 ± 6.4 cm, weight = 78.9 ± 5.9 kg). Participants completed an acute bout of plyometric exercise (10 sets of 10 squat-jumps with a 1-minute rest between sets). Blood samples were collected 9 days and immediately before and 6 hours and 1, 2, and 3 days after the acute intervention. Muscle samples were collected 9 days before and 3 days after the exercise intervention. Blood samples were analyzed for creatine kinase activity. Muscle biopsies were analyzed for damage using fluorescent and electron transmission microscopy. Creatine kinase activity peaked 1 day after the exercise bout (529.0 ± 317.8 U/L). Immunofluorescence revealed sarcolemmal damage in 155 of 1616 fibers analyzed. Mainly fast-twitch fibers were damaged. Within subgroups, 7.6% of type I fibers, 10.3% of type IIa fibers, and 14.3% of type IIx fibers were damaged as assessed by losses in dystrophin staining. Similar damage was prevalent in IIx and IIa fibers. Electron microscopy revealed clearly distinguishable moderate and severe sarcomere damage, with damage quantifiably predominant in type II muscle fibers of both the glycolytic and oxidative subtypes (86% and 84%, respectively, versus only 27% of slow-twitch fibers). We provide direct evidence that a single bout of plyometric exercise affected mainly type II muscle fibers.

  14. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  15. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    Science.gov (United States)

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the

  16. MAGNETIC VERSUS ELECTRICAL STIMULATION IN THE INTERPOLATION TWITCH TECHNIQUE OF ELBOW FLEXORS

    Directory of Open Access Journals (Sweden)

    Sofia I. Lampropoulou

    2012-12-01

    Full Text Available The study compared peripheral magnetic with electrical stimulation of the biceps brachii m. (BB in the single pulse Interpolation Twitch Technique (ITT. 14 healthy participants (31±7 years participated in a within-subjects repeated-measures design study. Single, constant-current electrical and magnetic stimuli were delivered over the motor point of BB with supramaximal intensity (20% above maximum at rest and at various levels of voluntary contraction. Force measurements from right elbow isometric flexion and muscle electromyograms (EMG from the BB, the triceps brachii m. (TB and the abductor pollicis brevis m. (APB were obtained. The twitch forces at rest and maximal contractions, the twitch force-voluntary force relationship, the M-waves and the voluntary activation (VA of BB between magnetic and electrical stimulation were compared. The mean amplitude of the twitches evoked at MVC was not significantly different between electrical (0.62 ± 0.49 N and magnetic (0.81 ± 0.49 N stimulation (p > 0.05, and the maximum VA of BB was comparable between electrical (95% and magnetic (93% stimulation (p > 0. 05. No differences (p >0.05 were revealed in the BB M-waves between electrical (13.47 ± 0.49 mV.ms and magnetic (12.61 ± 0.58 mV.ms stimulation. The TB M-waves were also similar (p > 0.05 but electrically evoked APB M-waves were significantly larger than those evoked by magnetic stimulation (p < 0.05. The twitch-voluntary force relationship over the range of MVCs was best described by non-linear functions for both electrical and magnetic stimulation. The electrically evoked resting twitches were consistently larger in amplitude than the magnetically evoked ones (mean difference 3.1 ± 3.34 N, p < 0.05. Reduction of the inter-electrodes distance reduced the twitch amplitude by 6.5 ± 6.2 N (p < 0.05. The fundamental similarities in voluntary activation assessment of BB with peripheral electrical and magnetic stimulation point towards a promising

  17. PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Leone Teresa C

    2005-01-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha-/- mice. With age, the PGC-1alpha-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  18. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  19. Altered myoplasmic Ca(2+) handling in rat fast-twitch skeletal muscle fibres during disuse atrophy.

    Science.gov (United States)

    Weiss, Norbert; Andrianjafiniony, Tina; Dupré-Aucouturier, Sylvie; Pouvreau, Sandrine; Desplanches, Dominique; Jacquemond, Vincent

    2010-03-01

    Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca(2+) homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca(2+) current was found similar in fibres from control and HU animals. In fibres loaded with the Ca(2+) dye indo-1, the value for the rate of [Ca(2+)] decay after the end of 5-100-ms-long voltage-clamp depolarisations from -80 to +10 mV was found to be 30-50% lower in fibres from HU animals. This effect was consistent with a reduced contribution of both saturable and non-saturable components of myoplasmic Ca(2+) removal. However, there was no change in the relative amount of parvalbumin, and type 1 sarco-endoplasmic reticulum Ca(2+)-ATPase was increased by a factor of three in the atrophied muscles. Confocal imaging of mitochondrial membrane potential showed that atrophied FDB fibres had significantly depolarized mitochondria as compared to control fibres. Depolarization of mitochondria in control fibres with carbonyl cyanide-p-trifluoromethoxyphenylhydrazone induced a slowing of the decay of [Ca(2+)] transients accompanied by an increase in resting [Ca(2+)] and a reduction of the peak amplitude of the transients. Overall results provide the first functional evidence for severely altered intracellular Ca(2+) removal capabilities in atrophied fast-type muscle fibres and highlight the possible contribution of reduced mitochondrial polarisation.

  20. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  1. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics.

    Science.gov (United States)

    Zoladz, Jerzy A; Gladden, L Bruce; Hogan, Michael C; Nieckarz, Zenon; Grassi, Bruno

    2008-08-01

    The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.

  2. Factors in Maximal Power Production and in Exercise Endurance Relative to Maximal Power

    Science.gov (United States)

    1988-10-13

    Mechanical efficiency of fast -and slow - twitch muscle fibers in mnan during cycling. J. ADLi Physiol.:Reespirat. Environ. Exercise Physiol. 47: 263- 267...R.S. Hikida, and F.C. Hagerman. Myofibrillar ATPase activity in hu-man muscle fast - twitch subtypes. Histochem. 78: 405-408, 1983. 31. Suzuki, Y...capacity and muscle fibre composition in mnan. J. Physiol (London) 354: 73P, 1984. 21. Margaria, R., P. Aghemo, and E. Rovelli. Measurement of muscular

  3. Reflexive contraction of the levator palpebrae superioris muscle to involuntarily sustain the effective eyelid retraction through the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle: verification with evoked electromyography.

    Science.gov (United States)

    Ban, Ryokuya; Matsuo, Kiyoshi; Osada, Yoshiro; Ban, Midori; Yuzuriha, Shunsuke

    2010-01-01

    We have proposed a hypothetical mechanism to involuntarily sustain the effective eyelid retraction, which consists of not only voluntary but also reflexive contractions of the levator palpebrae superior muscle (LPSM). Voluntary contraction of fast-twitch fibres of the LPSM stretches the mechanoreceptors in Mueller's muscle to evoke trigeminal proprioception, which induces continuous reflexive contraction of slow-twitch fibres of the LPSM through the trigeminal proprioceptive nerve fibres innervating the mechanoreceptors in Mueller's muscle via the oculomotor neurons, as a tonic trigemino-oculomotor reflex. In the common skeletal mixed muscles, electrical stimulation of the proprioceptive nerve, which apparently connects the mechanoreceptors in muscle spindles to the motoneurons, induces the electromyographic response as the Hoffmann reflex. To verify the presence of the trigemino-oculomotor reflex, we confirmed whether intra-operative electrical simulation of the transverse trigeminal proprioceptive nerve on the proximal Mueller's muscle evokes an electromyographic response in the LPSM under general anaesthesia in 12 patients. An ipsilateral, phasic, short-latency response (latency: 2.8+/-0.3 ms) was induced in the ipsilateral LPSM in 10 of 12 subjects. As successful induction of the short-latency response in the ipsilateral LPSM corresponds to the Hoffmann reflex in the common skeletal mixed muscles, the present study is the first electromyographic verification of the presence of the monosynaptic trigemino-oculomotor reflex to induce reflexive contraction of the LPSM. The presence of the trigemino-oculomotor reflex may elucidate the unexplainable blepharoptosis due to surgery, trauma and tumour, all of which may damage the trigeminal proprioceptive nerve fibres to impair the trigemino-oculomotor reflex. Copyright (c) 2008. Published by Elsevier Ltd.

  4. Electrically and hybrid-induced muscle activations: effects of muscle size and fiber type

    Directory of Open Access Journals (Sweden)

    Kelly Stratton

    2016-07-01

    Full Text Available The effect of three electrical stimulation (ES frequencies (10, 35, and 50 Hz on two muscle groups with different proportions of fast and slow twitch fibers (abductor pollicis brevis (APB and vastus lateralis (VL was explored. We evaluated the acute muscles’ responses individually and during hybrid activations (ES superimposed by voluntary activations. Surface electromyography (sEMG and force measurements were evaluated as outcomes. Ten healthy adults (mean age: 24.4 ± 2.5 years participated after signing an informed consent form approved by the university Institutional Review Board. Protocols were developed to: 1 compare EMG activities during each frequency for each muscle when generating 25% Maximum Voluntary Contraction (MVC force, and 2 compare EMG activities during each frequency when additional voluntary activation was superimposed over ES-induced 25% MVC to reach 50% and 75% MVC. Empirical mode decomposition (EMD was utilized to separate ES artifacts from voluntary muscle activation. For both muscles, higher stimulation frequency (35 and 50Hz induced higher electrical output detected at 25% of MVC, suggesting more recruitment with higher frequencies. Hybrid activation generated proportionally less electrical activity than ES alone. ES and voluntary activations appear to generate two different modes of muscle recruitment. ES may provoke muscle strength by activating more fatiguing fast acting fibers, but voluntary activation elicits more muscle coordination. Therefore, during the hybrid activation, less electrical activity may be detected due to recruitment of more fatigue-resistant deeper muscle fibers, not reachable by surface EMG.

  5. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    Science.gov (United States)

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  6. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    Science.gov (United States)

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  7. Heart size and mean muscle fibre cross-sectional area related to birth weight in pigs

    Directory of Open Access Journals (Sweden)

    M. RUUSUNEN

    2008-12-01

    Full Text Available One of the aims in domestic pig breeding has been to increase the size of litters resulting in variation in birth weight of piglets. Pig breeding has also resulted in increased body muscle mass. Muscles with the same size can consist either of large number of thin muscle fibres or small number of thick muscle fibres. Larger body muscle content means that in living animal the heart must pump blood to larger muscle mass than earlier. Our interest in this study was to investigate the relationship between the pig’s birth weight and (i growth performance and carcass composition, (ii the size of organs, and (iii the mean muscle fibre cross-sectional area at slaughter. The study consisted of twenty pigs slaughtered at the age of 165±2 days. The day after the slaughter, the carcass composition was determined by dissecting the chilled carcass into lean, fat, bones, and skin and organs were weighed. The average cross sectional area of muscle fibres was determined from three fast-twitch muscles longissimus dorsi, semimembranosus, gluteus superficialis, and two slow-twitch muscles infraspinatus and masseter. The birth weight of pigs ranged from 0.9 to 2.2 kg. We found no clear relationships between the birth weight and the pig’s growth performance from birth to slaughter. When the birth weight increased the heart weight at slaughter increased as well (P < 0.01. The heart weight was higher in those pigs with high carcass weight (P < 0.05 and with the high weight of total muscle mass in the carcass (P < 0.001. The cross sectional area of muscle fibres in M. longissimus dorsi (P < 0.05, M. semimembranosus (P < 0.10, and M. gluteus superficialis (P < 0.05 was larger in those pigs with low birth weight compared to those found in pigs with high birth weight.;

  8. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs.

    Science.gov (United States)

    Qaisar, Rizwan; Renaud, Guillaume; Hedstrom, Yvette; Pöllänen, Eija; Ronkainen, Paula; Kaprio, Jaakko; Alen, Markku; Sipilä, Sarianna; Artemenko, Konstantin; Bergquist, Jonas; Kovanen, Vuokko; Larsson, Lars

    2013-05-01

    Ageing is associated with a decline in muscle mass and strength leading to increased physical dependency in old age. Postmenopausal women experience a greater decline than men of similar age in parallel with the decrease in female sex steroid hormone production. We recruited six monozygous female twin pairs (55-59 years old) where only one twin pair was on hormone replacement therapy (HRT use = 7.8 ± 4.3 years) to investigate the association of HRT with the cytoplasmic volume supported by individual myonuclei (myonuclear domain (MND) size,) together with specific force at the single fibre level. HRT use was associated with a significantly smaller (∼27%; P muscle fibres expressing the type I but not the IIa myosin heavy chain (MyHC) isoform. In comparison to non-users, higher specific force was recorded in HRT users both in muscle fibres expressing type I (∼27%; P fibre-type dependent, i.e. the higher specific force in fast-twitch muscle fibres was primarily caused by higher force per cross-bridge while slow-twitch fibres relied on both a higher number and force per cross-bridge. HRT use had no effect on fibre cross-sectional area (CSA), velocity of unloaded shortening (V0) and relative proportion of MyHC isoforms. In conclusion, HRT appears to have significant positive effects on both regulation of muscle contraction and myonuclei organization in postmenopausal women.

  9. ATP sensitive potassium channels in the skeletal muscle functions : involvement of the KCNJ11(Kir6.2 gene in the determination of Warner Bratzer shear force

    Directory of Open Access Journals (Sweden)

    Domenico eTricarico

    2016-05-01

    Full Text Available The ATP-sensitive K+-channels (KATP are distributed in the tissues coupling metabolism with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1, KCNJ11 (Kir6.2, ABCC8 (SUR1 and ABCC9 (SUR2 genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibres is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.

  10. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  11. Tetranectin in slow intra- and extrafusal chicken muscle fibers

    DEFF Research Database (Denmark)

    Xu, X; Gilpin, B; Iba, K

    2001-01-01

    Tetranectin is a C-type lectin that occurs in the mammalian musculoskeletal system. In the present report we describe the first studies on an avian tetranectin. A full-length chicken tetranectin cDNA was isolated. Comparison of the deduced amino acid sequence of chicken tetranectin with mouse...... and human tetranectin showed an identity of 67 and 68%, respectively. Northern blot analysis demonstrated broad expression of chicken tetranectin mRNA, which was first detected on embryonic day 4. Tetranectin protein was detected in chicken serum and egg yolk. Since muscle is one of few tissues in which...... tetranectin protein is retained, we examined the distribution of tetranectin in various muscle types in chicken. Myofibers strongly positive for tetranectin were observed in several muscles including m. tibialis ant. and m. sartorius (from embryonic day 10 to adult). Using antibodies to fast and slow myosin...

  12. Human faces are slower than chimpanzee faces.

    Directory of Open Access Journals (Sweden)

    Anne M Burrows

    Full Text Available While humans (like other primates communicate with facial expressions, the evolution of speech added a new function to the facial muscles (facial expression muscles. The evolution of speech required the development of a coordinated action between visual (movement of the lips and auditory signals in a rhythmic fashion to produce "visemes" (visual movements of the lips that correspond to specific sounds. Visemes depend upon facial muscles to regulate shape of the lips, which themselves act as speech articulators. This movement necessitates a more controlled, sustained muscle contraction than that produced during spontaneous facial expressions which occur rapidly and last only a short period of time. Recently, it was found that human tongue musculature contains a higher proportion of slow-twitch myosin fibers than in rhesus macaques, which is related to the slower, more controlled movements of the human tongue in the production of speech. Are there similar unique, evolutionary physiologic biases found in human facial musculature related to the evolution of speech?Using myosin immunohistochemistry, we tested the hypothesis that human facial musculature has a higher percentage of slow-twitch myosin fibers relative to chimpanzees (Pan troglodytes and rhesus macaques (Macaca mulatta. We sampled the orbicularis oris and zygomaticus major muscles from three cadavers of each species and compared proportions of fiber-types. Results confirmed our hypothesis: humans had the highest proportion of slow-twitch myosin fibers while chimpanzees had the highest proportion of fast-twitch fibers.These findings demonstrate that the human face is slower than that of rhesus macaques and our closest living relative, the chimpanzee. They also support the assertion that human facial musculature and speech co-evolved. Further, these results suggest a unique set of evolutionary selective pressures on human facial musculature to slow down while the function of this muscle

  13. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding

    Directory of Open Access Journals (Sweden)

    Paula Bresciani M. De Andrade

    2015-09-01

    Full Text Available Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i higher expression of muscle deiodinase type 3 (DIO3 which inactivates tri-iodothyronine (T3, and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2, (ii slower net formation of T3 from its T4 precursor in muscles, and (iii accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development.We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. Energy-sparing effects persist during weight recovery and likely contribute to catch-up fat.

  14. Caloric restriction induces energy-sparing alterations in skeletal muscle contraction, fiber composition and local thyroid hormone metabolism that persist during catch-up fat upon refeeding.

    Science.gov (United States)

    De Andrade, Paula B M; Neff, Laurence A; Strosova, Miriam K; Arsenijevic, Denis; Patthey-Vuadens, Ophélie; Scapozza, Leonardo; Montani, Jean-Pierre; Ruegg, Urs T; Dulloo, Abdul G; Dorchies, Olivier M

    2015-01-01

    Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.

  15. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    CHF Bortoluci

    Full Text Available A general analysis of the behaviour of “Cebus” shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG, Fast Twitch Oxidative Glycolitic (FOG and Slow Twitc (SO. In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  16. Histochemistry profile of the biceps brachii muscle fibres of capuchin monkeys (Cebus apella, Linnaeus, 1758).

    Science.gov (United States)

    Bortoluci, C H F; Simionato, L H; Rosa Junior, G M; Oliveira, J A; Lauris, J R P; Moraes, L H R; Rodrigues, A C; Andreo, J C

    2014-08-01

    A general analysis of the behaviour of "Cebus" shows that when this primate moves position to feed or perform another activity, it presents different ways of locomotion. This information shows that the brachial biceps muscle of this animal is frequently used in their locomotion activities, but it should also be remembered that this muscle is also used for other development activities like hiding, searching for objects, searching out in the woods, and digging in the soil. Considering the above, it was decided to research the histoenzimologic characteristics of the brachial biceps muscle to observe whether it is better adpted to postural or phasic function. To that end, samples were taken from the superficial and deep regions, the inserts proximal (medial and lateral) and distal brachial biceps six capuchin monkeys male and adult, which were subjected to the reactions of m-ATPase, NADH-Tr. Based on the results of these reactions fibres were classified as in Fast Twitch Glycolitic (FG), Fast Twitch Oxidative Glycolitic (FOG) and Slow Twitc (SO). In general, the results, considering the muscle as a whole, show a trend of frequency FOG> FG> SO. The data on the frequency were studied on three superficial regions FOG=FG>SO; the deep regions of the inserts proximal FOG=FG=SO and inserting the distal FOG>FG=SO. In conclusion, the biceps brachii of the capuchin monkey is well adapted for both postural and phasic activities.

  17. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  18. Advanced Development of an Active Neuromusculature Response to Mechanical Stress.

    Science.gov (United States)

    1984-10-31

    muscle (Hatze, 1981, p. 62) For slow motor units (n-0) m • 3-72 and for fast motor units (n-1) m » 18.5. Again an average value is used for...skeletal muscle fibre arrangement. z-disk I-band Fig. 2 Molecular substructure of mammalian skeletal muscle . 11 • • • • ••_» ’J. -J.-J... twitch ) motor units and Type II ( fast twitch ) motor units (Close, 1972). Type I motor units have slower contraction times, tend to be more aerobic and

  19. INTERACTION OF VERAPAMIL AND LITHIUM AT THE NEUROMUSCULAR JUNCTION ON RAT ISOLATED MUSCLE-HEMIDIAPHRAGM

    Directory of Open Access Journals (Sweden)

    H. R. Sadeghipour

    1998-08-01

    Full Text Available It has been reported that cither lithium or verapamil can potentiate the neuromuscular blocking activity of certain neuromuscular blockers. In the present investigation, possible interaction of verapamil with lithium has been described. The dose ■ response effects of verapamil and lithium on diaphragmatic contractility were assessed in vitro. Mechanical responses of the muscle to indirect (nerve and direct (muscle electrical stimulation were recorded. Verapamil depressed rat diaphragm twitch tensions induced by nerve stimulation in a dose - dependent manner with the 50 percent depression of the original twitch tensions (ICSQ by 5.6 xlO^mmol/l."nThe IC50 of verapamil for direct stimulation of the muscle was LI x W'5 mmol II. Partial replacement of sodium chloride by lithium chloride (0.5, 1.5 and 5 mmol /1 in the medium did not change the depressant effect of verapamil on muscle twitches induced by direct (muscle or indirect (nerve electrical stimulation.

  20. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2016-07-01

    Full Text Available Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC. Short-term high-fat diet (HFD feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα, which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control.

  1. Effects of Endurance Training on A12 Acetyl Cholinesterase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Ali Gorzi

    2013-10-01

    Full Text Available Background: Endurance training improves the activity of G4 type acetylcholine esterase (AchE in muscle fibres. The purpose of this study was to investigate the effects of 8 weeks of endurance training (ET on activity of A12 type of AchE in Flexor Hallucis Longus (FHL and Soleus (SOL muscles of rats. Materials and Methods: 16 male wistar rats (age: 10 weeks and weight: 172.17±10.080 gr, were randomly divided in 2 groups (control; N=8 and ET; N=8. Training group carried out 8 weeks (5 session/week of endurance training on animal treadmill with speed of 10 m/min for 30 min at the first week which was gradually increased to 30 m/min for 60 min (70-80% of VO2max at the last week. Forty eight hours after last session of training, FHL and Sol muscles of animals were moved out under sterilized situation by cutting on posterio-lateral side of hind limb. For separating AchE subunits, homogenization and electrophoresis (0.06 non-denaturaing polyacrilamide methods were used. AchE activity was measured by Elisa kit.Results: The activity of this protein significantly (p=0.017 increased in SOL muscle of ET group by 119%, but did not changed in FHL. In both groups (ET and Con, FHL muscle had significantly (ET: p=0.028 and Con p=0.01 higher basic levels of AchE activity compared to SOL muscle. This significant increase in AchE of SOL might be indicative of responsiveness of AchE of this muscle following endurance training for improving acetylcholine (Ach cycle in neuromuscular junction.Conclusion: Endurance training might increase the A12 type AchE activity to improve the Ach cycle as part of the adaptation of neuromuscular junction to increased level of physical activity.

  2. A new method for non-invasive estimation of human muscle fiber type composition.

    Directory of Open Access Journals (Sweden)

    Audrey Baguet

    Full Text Available BACKGROUND: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT or type-II fibers and slow-twitch (ST or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative. METHODOLOGY: Eighty-three control subjects, 15 talented young track-and-field athletes, 51 elite athletes and 14 ex-athletes volunteered to participate in the current study. The carnosine content of all 163 subjects was measured in the gastrocnemius muscle by proton magnetic resonance spectroscopy ((1H-MRS. Muscle biopsies for fiber typing were taken from 12 untrained males. PRINCIPAL FINDINGS: A significant positive correlation was found between muscle carnosine, measured by (1H-MRS, and percentage area occupied by type II fibers. Explosive athletes had ∼30% higher carnosine levels compared to a reference population, whereas it was ∼20% lower than normal in typical endurance athletes. Similar results were found in young talents and ex-athletes. When active elite runners were ranked according to their best running distance, a negative sigmoidal curve was found between logarithm of running distance and muscle carnosine. CONCLUSIONS: Muscle carnosine content shows a good reflection of the disciplines of elite track-and-field athletes and is able to distinguish between individual track running distances. The differences between endurance and sprint muscle types is also observed in young talents and former athletes, suggesting this characteristic is genetically determined and can be applied in early talent identification. This quick method provides a valid alternative for the muscle biopsy method. In addition, this technique may also contribute to the diagnosis and monitoring of many conditions and

  3. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells

    Science.gov (United States)

    Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong; Shi, Xingming; Fulzele, Sadanand; Hill, William D.; Isales, Carlos M.; Hamrick, Mark W.

    2013-01-01

    The activin A-myostatin-follistatin system is thought to play an important role in the regulation of muscle and bone mass throughout growth, development, and aging; however, the effects of these ligands on progenitor cell proliferation and differentiation in muscle and bone are not well understood. In addition, age-associated changes in the relative expression of these factors in musculoskeletal tissues have not been described. We therefore examined changes in protein levels of activin A, follistatin, and myostatin (GDF-8) in both muscle and bone with age in C57BL6 mice using ELISA. We then investigated the effects of activin A, myostatin and follistatin on the proliferation and differentiation of primary myoblasts and mouse bone marrow stromal cells (BMSCs) in vitro. Myostatin levels and the myostatin:follistatin ratio increased with age in the primarily slow-twitch mouse soleus muscle, whereas the pattern was reversed with age in the fast-twitch extensor digitorum longus muscle. Myostatin levels and the myostatin: follistatin ratio increased significantly (+75%) in mouse bone marrow with age, as did activin A levels (+17%). Follistatin increased the proliferation of primary myoblasts from both young and aged mice, whereas myostatin increased proliferation of younger myoblasts but decreased proliferation of older myoblasts. Myostatin reduced proliferation of both young and aged BMSCs in a dose-dependent fashion, and activin A increased mineralization in both young and aged BMSCs. Together these data suggest that aging in mice is accompanied by changes in the expression of activin A and myostatin, as well as changes in the response of bone and muscle progenitor cells to these factors. Myostatin appears to play a particularly important role in the impaired proliferative capacity of muscle and bone progenitor cells from aged mice. PMID:23178301

  4. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  5. Experiments on Factors That Influence Muscular Function in Man.

    Science.gov (United States)

    1983-05-25

    Publications resulting from A.F. Contract: The blood pressure response during isometric exercise in fast and slow twitch skeletal muscle in the cat... slow tiwtch muscle in the cat. J.S.Petrofsky and A.R. Lind. Pflugers Arch. 398: 149-154, 1981. The influence of fiber composition, recruitment order and...present indicating that p-adrenergic fibres mediated the vaso- constrictor response to the fatiguing muscles . Others have demonstrated changes in

  6. Function of skeletal muscle tissue formed after myoblast transplantation into irradiated mouse muscles.

    Science.gov (United States)

    Wernig, A; Zweyer, M; Irintchev, A

    2000-01-15

    1. Pretreatment of muscles with ionising radiation enhances tissue formation by transplanted myoblasts but little is known about the effects on muscle function. We implanted myoblasts from an expanded, male-donor-derived, culture (i28) into X-ray irradiated (16 Gy) or irradiated and damaged soleus muscles of female syngeneic mice (Balb/c). Three to 6 months later the isometric contractile properties of the muscles were studied in vitro, and donor nuclei were visualised in muscle sections with a Y chromosome-specific DNA probe. 2. Irradiated sham-injected muscles had smaller masses than untreated solei and produced less twitch and tetanic force (all by about 18 %). Injection of 106 myoblasts abolished these deficiencies and innervation appeared normal. 3. Cryodamage of irradiated solei produced muscle remnants with few (1-50) or no fibres. Additional myoblast implantation led to formation of large muscles (25 % above normal) containing numerous small-diameter fibres. Upon direct electrical stimulation, these muscles produced considerable twitch (53 % of normal) and tetanic forces (35 % of normal) but innervation was insufficient as indicated by weak nerve-evoked contractions and elevated ACh sensitivity. 4. In control experiments on irradiated muscles, reinnervation was found to be less complete after botulinum toxin paralysis than after nerve crush indicating that proliferative arrest of irradiated Schwann cells may account for the observed innervation deficits. 5. Irradiation appears to be an effective pretreatment for improving myoblast transplantation. The injected cells can even produce organised contractile tissue replacing whole muscle. However, impaired nerve regeneration limits the functional performance of the new muscle.

  7. Twitching in sensorimotor development from sleeping rats to robots.

    Science.gov (United States)

    Blumberg, Mark S; Marques, Hugo Gravato; Iida, Fumiya

    2013-06-17

    It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    Full Text Available BACKGROUND: Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. METHODOLOGY/PRINCIPAL FINDINGS: We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1 and fast-glycolytic (type 2B fibers through transcriptome analysis at the single fiber level (microgenomics. Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. CONCLUSIONS/SIGNIFICANCE: As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological conditions.

  9. Redox responses are preserved across muscle fibres with differential susceptibility to aging.

    Science.gov (United States)

    Smith, Neil T; Soriano-Arroquia, Ana; Goljanek-Whysall, Katarzyna; Jackson, Malcolm J; McDonagh, Brian

    2018-04-15

    Age-related loss of muscle mass and function is associated with increased frailty and loss of independence. The mechanisms underlying the susceptibility of different muscle types to age-related atrophy are not fully understood. Reactive oxygen species (ROS) are recognised as important signalling molecules in healthy muscle and redox sensitive proteins can respond to intracellular changes in ROS concentrations modifying reactive thiol groups on Cysteine (Cys) residues. Conserved Cys residues tend to occur in functionally important locations and can have a direct impact on protein function through modifications at the active site or determining protein conformation. The aim of this work was to determine age-related changes in the redox proteome of two metabolically distinct murine skeletal muscles, the quadriceps a predominantly glycolytic muscle and the soleus which contains a higher proportion of mitochondria. To examine the effects of aging on the global proteome and the oxidation state of individual redox sensitive Cys residues, we employed a label free proteomics approach including a differential labelling of reduced and reversibly oxidised Cys residues. Our results indicate the proteomic response to aging is dependent on muscle type but redox changes that occur primarily in metabolic and cytoskeletal proteins are generally preserved between metabolically distinct tissues. Skeletal muscle containing fast twitch glycolytic fibres are more susceptible to age related atrophy compared to muscles with higher proportions of oxidative slow twitch fibres. Contracting skeletal muscle generates reactive oxygen species that are required for correct signalling and adaptation to exercise and it is also known that the intracellular redox environment changes with age. To identify potential mechanisms for the distinct response to age, this article combines a global proteomic approach and a differential labelling of reduced and reversibly oxidised Cysteine residues in two

  10. A General Mathematical Algorithm for Predicting the Course of Unfused Tetanic Contractions of Motor Units in Rat Muscle.

    Directory of Open Access Journals (Sweden)

    Rositsa Raikova

    Full Text Available An unfused tetanus of a motor unit (MU evoked by a train of pulses at variable interpulse intervals is the sum of non-equal twitch-like responses to these stimuli. A tool for a precise prediction of these successive contractions for MUs of different physiological types with different contractile properties is crucial for modeling the whole muscle behavior during various types of activity. The aim of this paper is to develop such a general mathematical algorithm for the MUs of the medial gastrocnemius muscle of rats. For this purpose, tetanic curves recorded for 30 MUs (10 slow, 10 fast fatigue-resistant and 10 fast fatigable were mathematically decomposed into twitch-like contractions. Each contraction was modeled by the previously proposed 6-parameter analytical function, and the analysis of these six parameters allowed us to develop a prediction algorithm based on the following input data: parameters of the initial twitch, the maximum force of a MU and the series of pulses. Linear relationship was found between the normalized amplitudes of the successive contractions and the remainder between the actual force levels at which the contraction started and the maximum tetanic force. The normalization was made according to the amplitude of the first decomposed twitch. However, the respective approximation lines had different specific angles with respect to the ordinate. These angles had different and non-overlapping ranges for slow and fast MUs. A sensitivity analysis concerning this slope was performed and the dependence between the angles and the maximal fused tetanic force normalized to the amplitude of the first contraction was approximated by a power function. The normalized MU contraction and half-relaxation times were approximated by linear functions depending on the normalized actual force levels at which each contraction starts. The normalization was made according to the contraction time of the first contraction. The actual force levels

  11. Coexistence of potentiation and fatigue in skeletal muscle

    Directory of Open Access Journals (Sweden)

    D.E. Rassier

    2000-05-01

    Full Text Available Twitch potentiation and fatigue in skeletal muscle are two conditions in which force production is affected by the stimulation history. Twitch potentiation is the increase in the twitch active force observed after a tetanic contraction or during and following low-frequency stimulation. There is evidence that the mechanism responsible for potentiation is phosphorylation of the regulatory light chains of myosin, a Ca2+-dependent process. Fatigue is the force decrease observed after a period of repeated muscle stimulation. Fatigue has also been associated with a Ca2+-related mechanism: decreased peak Ca2+ concentration in the myoplasm is observed during fatigue. This decrease is probably due to an inhibition of Ca2+ release from the sarcoplasmic reticulum. Although potentiation and fatigue have opposing effects on force production in skeletal muscle, these two presumed mechanisms can coexist. When peak myoplasmic Ca2+ concentration is depressed, but myosin light chains are relatively phosphorylated, the force response can be attenuated, not different, or enhanced, relative to previous values. In circumstances where there is interaction between potentiation and fatigue, care must be taken in interpreting the contractile responses.

  12. Adaptation in properties of skeletal muscle to coronary artery occlusion/reperfusion in rats

    International Nuclear Information System (INIS)

    Ogoh, Shigehiko; Taguchi, Sadayoshi

    2002-01-01

    The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n=6) group compared with that of age-matched sham-operated (Sham, n=6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic

  13. Adaptation in properties of skeletal muscle to coronary artery occlusion/reperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Ogoh, Shigehiko [Univ. of North Texas, Fort Worth, TX (United States). Health Science Center; Hirai, Taku [Kyoto Univ. (Japan). Graduate School of Medicine; Nohara, Ryuuji [Kitano Hospital, Osaka (Japan); Taguchi, Sadayoshi [Kyoto Univ. (Japan). Graduate School of Human and Environmental Studies

    2002-10-01

    The present study was designed to determine if changes in function and metabolism of heart muscle induce alterations in characteristics of skeletal muscle. We investigated the histochemical and biochemical properties of soleus (SOL) and extensor digitorum longus (EDL) muscles in Wistar rats at the chronic phase after coronary artery occlusion/reperfusion. The size of myocardial infarct region was evaluated using a high resolution pinhole single photo emission computed tomography (SPECT) system. 4wk after left coronary artery occlusion/reperfusion, the SOL and EDL of hindlimb were dissected out and immersed in isopentane cooled with liquid nitrogen for subsequent histochemical and biochemical analysis. From SPECT imaging, the blood circulation was recovered, but the recovery of fatty acid metabolism was not observed in infarct region of heart. Citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activities in infarct region of heart were lower in the myocardial infarction (MI, n=6) group compared with that of age-matched sham-operated (Sham, n=6) group. In addition, heart muscle hypertrophy caused by the dysfunction in MI group was observed. In skeletal muscle, the atrophy and transition of fiber type distribution in MI group, reported in previous studies of heart failure, were not observed. However, the succinate dehydrogenase (SDH) activity in the slow twitch oxidative (SO) from SOL of MI group decreased by 9.8% and in the fast twitch oxidative glycolytic fibers (FOG), 8.0% as compared with sham group. Capillary density of the SO fibers from SOL of MI group also reduced by 18.5% and in the FOG fibers, 18.2% as compared with Sham group. Decreased capillary density in this study related significantly to decreased SDH activity of single muscle fibers in chronic phase of perfusion after surgical infarction. Our results make it clear that there is a difference in the reaction of skeletal muscle to coronary artery occlusion/reperfusion compared with chronic

  14. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  15. Muscle dysfunction in a zebrafish model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Widrick, Jeffrey J; Alexander, Matthew S; Sanchez, Benjamin; Gibbs, Devin E; Kawahara, Genri; Beggs, Alan H; Kunkel, Louis M

    2016-11-01

    Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening. Copyright © 2016 the American Physiological Society.

  16. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    Science.gov (United States)

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the

  17. The action of ryanodine on rat fast and slow intact skeletal muscles.

    Science.gov (United States)

    Fryer, M W; Lamb, G D; Neering, I R

    1989-07-01

    1. The action of ryanodine on force development of bundles dissected from rat extensor digitorum longus (EDL) and soleus muscles has been examined. 2. Ryanodine (100-5000 nM) irreversibly depressed twitch and tetanic tension of both muscle types in a dose-related manner. 3. At concentrations above 250 nM, ryanodine induced a slowly developing, dose-dependent contracture which could not be blocked by 5 mM-Co2+. Increasing the stimulation rate or decreasing the oxygenation of the preparation accelerated the rate of contracture development while the total removal of extracellular Ca2+ was required to prevent it. 4. Following the relaxation of the initial contracture (IC) in Ca2+-free solution, a second type of contracture (SC) could be induced by the readdition of Ca2+. This contracture differed from IC in that it was dependent on Ca2+ in the millimolar range and was prevented by 5 mM-Co2+. Both IC and SC were relaxed by perfusion with Ca2+-free, EGTA-containing solution. 5. Subcontracture doses of ryanodine (100 nM) markedly potentiated caffeine contractures of both muscle types. 6. Asymmetric charge movement in EDL fibres was recorded with the Vaseline-gap technique. The amount of charge moved near threshold was virtually unaffected by the presence of 10 microM-ryanodine over the time examined. 7. The results are consistent with the suggestion that ryanodine locks the calcium release channels of the sarcoplasmic reticulum (SR) in an open subconductance state with reduced conductance. It appears that lowering the external calcium concentration might still inactivate the release channels after they have been blocked open by ryanodine, possibly by an effect on the T-tubular voltage sensor.

  18. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions

    Science.gov (United States)

    Colliander, E. B.; Dudley, G. A.; Tesch, P. A.

    1988-01-01

    Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.

  19. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, B. M. [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States); Frye, G. S.; Ahn, B.; Ferreira, L. F. [1864 Stadium Road, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610 (United States); Judge, A.R., E-mail: arjudge@phhp.ufl.edu [1225 Center Drive, HPNP Building Room 1142, Department of Physical Therapy, University of Florida, Gainesville, FL 32610 (United States)

    2013-06-07

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  20. Cancer cachexia decreases specific force and accelerates fatigue in limb muscle

    International Nuclear Information System (INIS)

    Roberts, B.M.; Frye, G.S.; Ahn, B.; Ferreira, L.F.; Judge, A.R.

    2013-01-01

    Highlights: •C-26 cancer cachexia causes a significant decrease in limb muscle absolute force. •C-26 cancer cachexia causes a significant decrease in limb muscle specific force. •C-26 cancer cachexia decreases fatigue resistance in the soleus muscle. •C-26 cancer cachexia prolongs time to peak twitch tension in limb muscle. •C-26 cancer cachexia prolongs one half twitch relaxation time in limb muscle. -- Abstract: Cancer cachexia is a complex metabolic syndrome that is characterized by the loss of skeletal muscle mass and weakness, which compromises physical function, reduces quality of life, and ultimately can lead to mortality. Experimental models of cancer cachexia have recapitulated this skeletal muscle atrophy and consequent decline in muscle force generating capacity. However, more recently, we provided evidence that during severe cancer cachexia muscle weakness in the diaphragm muscle cannot be entirely accounted for by the muscle atrophy. This indicates that muscle weakness is not just a consequence of muscle atrophy but that there is also significant contractile dysfunction. The current study aimed to determine whether contractile dysfunction is also present in limb muscles during severe Colon-26 (C26) carcinoma cachexia by studying the glycolytic extensor digitorum longus (EDL) muscle and the oxidative soleus muscle, which has an activity pattern that more closely resembles the diaphragm. Severe C-26 cancer cachexia caused significant muscle fiber atrophy and a reduction in maximum absolute force in both the EDL and soleus muscles. However, normalization to muscle cross sectional area further demonstrated a 13% decrease in maximum isometric specific force in the EDL and an even greater decrease (17%) in maximum isometric specific force in the soleus. Time to peak tension and half relaxation time were also significantly slowed in both the EDL and the solei from C-26 mice compared to controls. Since, in addition to postural control, the oxidative

  1. Isokinetic and isometric muscle strength combined with transcutaneous electrical muscle stimulation in primary fibromyalgia syndrome

    DEFF Research Database (Denmark)

    Jacobsen, Søren; Wildschiødtz, Gordon; Danneskiold-Samsøe, B

    1991-01-01

    Twenty women with primary fibromyalgia syndrome and 20 age matched healthy women were investigated. The subjects performed maximum voluntary isokinetic contractions of the right quadriceps in an isokinetic dynamometer. Maximum voluntary isometric contractions of the right quadriceps were performed...... of superimposed twitches was 65% in the patient group and 15% in the control group (p = 0.003). Patients with primary fibromyalgia have a lower maximum voluntary muscle strength than expected. The increased presence of superimposed electrically elicited twitches during maximum voluntary contraction indicates...... submaximal force application in primary fibromyalgia syndrome....

  2. Calsequestrin content and SERCA determine normal and maximal Ca2+ storage levels in sarcoplasmic reticulum of fast- and slow-twitch fibres of rat.

    Science.gov (United States)

    Murphy, Robyn M; Larkins, Noni T; Mollica, Janelle P; Beard, Nicole A; Lamb, Graham D

    2009-01-15

    Whilst calsequestrin (CSQ) is widely recognized as the primary Ca2+ buffer in the sarcoplasmic reticulum (SR) in skeletal muscle fibres, its total buffering capacity and importance have come into question. This study quantified the absolute amount of CSQ isoform 1 (CSQ1, the primary isoform) present in rat extensor digitorum longus (EDL) and soleus fibres, and related this to their endogenous and maximal SR Ca2+ content. Using Western blotting, the entire constituents of minute samples of muscle homogenates or segments of individual muscle fibres were compared with known amounts of purified CSQ1. The fidelity of the analysis was proven by examining the relative signal intensity when mixing muscle samples and purified CSQ1. The CSQ1 contents of EDL fibres, almost exclusively type II fibres, and soleus type I fibres [SOL (I)] were, respectively, 36 +/- 2 and 10 +/- 1 micromol (l fibre volume)(-1), quantitatively accounting for the maximal SR Ca2+ content of each. Soleus type II [SOL (II)] fibres (approximately 20% of soleus fibres) had an intermediate amount of CSQ1. Every SOL (I) fibre examined also contained some CSQ isoform 2 (CSQ2), which was absent in every EDL and other type II fibre except for trace amounts in one case. Every EDL and other type II fibre had a high density of SERCA1, the fast-twitch muscle sarco(endo)plasmic reticulum Ca2+-ATPase isoform, whereas there was virtually no SERCA1 in any SOL (I) fibre. Maximal SR Ca2+ content measured in skinned fibres increased with CSQ1 content, and the ratio of endogenous to maximal Ca2+ content was inversely correlated with CSQ1 content. The relative SR Ca2+ content that could be maintained in resting cytoplasmic conditions was found to be much lower in EDL fibres than in SOL (I) fibres (approximately 20 versus >60%). Leakage of Ca2+ from the SR in EDL fibres could be substantially reduced with a SR Ca2+ pump blocker and increased by adding creatine to buffer cytoplasmic [ADP] at a higher level, both results

  3. Thermodynamic analysis of the squid mantle muscles and giant axon during slow swimming and jet escape propulsion

    International Nuclear Information System (INIS)

    Yalçınkaya, Bahar Hazal; Erikli, Şükrü; Özilgen, Burak Arda; Olcay, Ali Bahadır; Sorgüven, Esra; Özilgen, Mustafa

    2016-01-01

    Squids have two substantially different types of muscle fibers: superficial mitochondria rich fibers, which perform aerobic respiration during slow swimming, and central mitochondria poor fibers, which perform anaerobic respiration during jet escape. A detailed thermodynamic analysis shows that during slow swimming, 3.82 J/(kg s) of chemical exergy is consumed, and a total muscle work of 0.28 J/(kg s) is produced. 0.27 J/(kg s) of this is produced by the fin to generate lift, and the rest by the mantle volume contraction. During the jet escape at a speed of 3 mantle length/s, squid consumes an exergy of 9.97 J/(kg s) and produces a muscle work of 0.16 J/(kg s). Exergy destruction rates during slow swimming and jet escape modes are 3.54 and 9.81 J/(kg s), respectively. Exergy destroyed because of the action potential propagation in the squid giant axon is calculated as 0.03 and 0.10 J/(kg s) for the slow and fast swimming modes, respectively. - Highlights: • Slow and fast swimming modes of a squid is thermodynamically analyzed. • As swimming speed increases, respiration mode switches from aerobic to anaerobic, and respiration efficiency decreases. • During fast swimming ca. 2.6 times more chemical exergy is consumed. • Both muscles and giant axon destroy nearly 3 times more exergy during jet escape. • Contraction efficiency decreases from 36.8% to 4.7% as the volume of the passive tissue increases from 5% to 95%.

  4. Time course in calpain activity and autolysis in slow and fast skeletal muscle during clenbuterol treatment.

    Science.gov (United States)

    Douillard, Aymeric; Galbes, Olivier; Rossano, Bernadette; Vernus, Barbara; Bonnieu, Anne; Candau, Robin; Py, Guillaume

    2011-02-01

    Calpains are Ca2+ cysteine proteases that have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. Cumulative evidence also suggests that β2-agonists can lead to skeletal muscle hypertrophy through a mechanism probably related to calcium-dependent proteolytic enzyme. The aim of our study was to monitor calpain activity as a function of clenbuterol treatment in both slow and fast phenotype rat muscles. For this purpose, for 21 days we followed the time course of the calpain activity and of the ubiquitous calpain 1 and 2 autolysis, as well as muscle remodeling in the extensor digitorum longus (EDL) and soleus muscles of male Wistar rats treated daily with clenbuterol (4 mg·kg-1). A slow to fast fiber shift was observed in both the EDL and soleus muscles after 9 days of treatment, while hypertrophy was observed only in EDL after 9 days of treatment. Soleus muscle but not EDL muscle underwent an early apoptonecrosis phase characterized by hematoxylin and eosin staining. Total calpain activity was increased in both the EDL and soleus muscles of rats treated with clenbuterol. Moreover, calpain 1 autolysis increased significantly after 14 days in the EDL, but not in the soleus. Calpain 2 autolysis increased significantly in both muscles 6 hours after the first clenbuterol injection, indicating that clenbuterol-induced calpain 2 autolysis occurred earlier than calpain 1 autolysis. Together, these data suggest a preferential involvement of calpain 2 autolysis compared with calpain 1 autolysis in the mechanisms underlying the clenbuterol-induced skeletal muscle remodeling.

  5. The final common pathway in postural control - Developmental perspective

    NARCIS (Netherlands)

    Kernell, D

    A brief review is given concerning postural specialisations among mammalian muscle fibres and motor units. Most skeletal muscles contain a mixture of fibres with different characteristics, and their slow-twitch (S) units are well-known to possess properties suitable for postural tasks: they are

  6. GENE RESPONSE OF THE GASTROCNEMIUS AND SOLEUS MUSCLES TO AN ACUTE AEROBIC RUN IN RATS

    Directory of Open Access Journals (Sweden)

    Michael J. McKenzie

    2011-06-01

    Full Text Available Genes can be activated or inhibited by signals within the tissues in response to an acute bout of exercise. It is unclear how a particular aerobic exercise bout may influence two muscles with similar actions to the activity. Therefore, the purposes of this investigation was to determine the gene response of selected genes involved in the "stress" response of the gastrocnemius (fast-twitch and soleus (slow-twitch muscles to a single two hour aerobic exercise bout in female Sprague-Dawley Rats at the 1 hour time point after the exercise. Exercised rats were run (n=8 for 2 hours at 20 m.min-1 and one hour after the completion of the bout had their soleus (S and gastrocnemius (G muscles removed. Age and timed matched sedentary control rats had both S and G muscles removed also. RNA was isolated from all muscles. Real-time PCR analysis was performed on the following genes: NFκB, TNFα, and Atf3. GAPDH was used as the housekeeping gene for both muscles. S muscle showed more genes altered (n = 52 vs G (n = 26. NFκB gene expression was 0.83 ± 0.14 in the exercised S but was + 1.36 ± 0.58 in the exercised G and was not significantly different between the muscles. TNFα was altered 1.30 ± 0. 34 in the exercised S and 1.36 ± 0.71 in the exercised G and was not significantly different between the muscles. The gene Atf3 was significantly altered at 4.97 ± 1.01 in the exercised S, while it was not significantly altered in the exercised G (0.70 ± 0.55. This study demonstrates that an acute bout of aerobic exercise can alter gene expression to a different extent in both the S and G muscles. It is highly likely that muscle recruitment was a factor which influenced the gene expression in theses muscles. It is interesting to note that some genes were similarly activated in these two muscles but other genes may demonstrate a varied response to the same exercise bout depending on the type of muscle

  7. Relative differences in strength and power from slow to fast isokinetic velocities may reflect dynapenia.

    Science.gov (United States)

    Jenkins, Nathaniel D M; Housh, Terry J; Palmer, Ty B; Cochrane, Kristen C; Bergstrom, Haley C; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2015-07-01

    We compared absolute and normalized values for peak torque (PT), mean power (MP), rate of velocity development, and electromyography (EMG) amplitude during maximal isometric and concentric isokinetic leg extension muscle actions, as well as the %decrease in PT and %increase in MP from 1.05 to 3.14 rad·s(-1) in younger versus older men. Measurements were performed twice for reliability. Isokinetic measurements were normalized to the isometric muscle actions. Absolute isometric PT, isokinetic PT and MP, and EMG amplitudes at 1.05 and 3.14 rad·s(-1) were greater in the younger men, although normalizing to isometric PT eliminated the age differences. The older men exhibited greater %decrease in PT (37.2% vs. 31.3%) and lower %increase in MP (87.6% vs. 126.4%) regardless of normalization. Normalization eliminated absolute differences in isokinetic strength and power, but the relative differences from slow to fast velocities may reflect dynapenia characterized by age-related decreases in fast-twitch fiber function. © 2014 Wiley Periodicals, Inc.

  8. Serum levo-carnitine levels and skeletal muscle functions in type 2 diabetes mellitus in rodents

    International Nuclear Information System (INIS)

    Aleem, S.B.; Hussain, M.M.; Farooq, Y.

    2013-01-01

    Objective: To study serum levo-carnitine (l-carnitine) levels and isometric contraction, force frequency relationship and fatigue of rodent skeletal muscles in type 2 diabetes mellitus. Study Design: Randomized controlled trial. Place and Duration of Study: Physiology Department, Army Medical College, Rawalpindi, from January 2009 to January 2010. Methodology: Sixty Sprague-Dawley rats were randomly divided into two groups; group I (control), fed on normal diet ad libitum and Group II (diabetic), fed on high fat diet and administered streptozocin to induce type 2 diabetes mellitus (T2DM). At 21st day, plasma glucose and TG/HDL ratio were measured to confirm the development of T2DM in group II. At 28th day, blood was drawn by intracardiac puncture to estimate serum levo-carnitine levels. Contractile functions of skeletal muscles were assessed by using iWorx AHK/214 physiological data acquisition unit. Simple muscle twitches, maximum isometric twitch tension (MITT), time-to-peak twitch tension (TPTT) and time-to-relax to 50% of the peak twitch tension (1/2RT) of extensor digitorum muscles were recorded. Muscles were stimulated at higher frequencies to determine maximum fused tetanic tension (MFTT), maximum fused tetanic tension after fatigue protocol (TTFP) and recovery from fatigue (RF). Results: Serum levo-carnitine level decreased significantly in the diabetic group. Both groups had similar MITT, TPTT and 1/2RT but decline in MFTT, TTFP and RF was significant in the diabetic rats. Conclusion: T2DM adversely affected serum levo-carnitine levels and the contractile functions of rodent skeletal muscle at high frequency stimulation. (author)

  9. A novel noninvasive method for measuring fatigability of the quadriceps muscle in noncooperating healthy subjects

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Rose, Martin Høyer; Møller, Kirsten

    2015-01-01

    days, nonvoluntary isometric contractions (twitch and tetanic) of the quadriceps femoris muscle evoked by transcutaneous electrical muscle stimulation were recorded in twelve healthy adults. For tetanic contractions, the Fatigue Index (ratio of peak torque values) and the slope of the regression line...... of peak torque values were primary outcome measures. For twitch contractions, maximum peak torque and rise time were calculated. Relative (intraclass correlation, ICC3.1) and absolute (standard error of measurement, SEM) reliability were assessed and minimum detectable change was calculated using a 95...... fatigability of the quadriceps muscle produces reliable results in healthy subjects and may provide valuable data on quantitative changes in muscle working capacity and treatment effects in patients who are incapable of producing voluntary muscle contractions....

  10. Functional characterization of muscle fibres from patients with chronic fatigue syndrome: case-control study.

    Science.gov (United States)

    Pietrangelo, T; Toniolo, L; Paoli, A; Fulle, S; Puglielli, C; Fanò, G; Reggiani, C

    2009-01-01

    Chronic fatigue syndrome (CFS) is a disabling condition characterized by unexplained chronic fatigue that impairs normal activities. Although immunological and psychological aspects are present, symptoms related to skeletal muscles, such as muscle soreness, fatigability and increased lactate accumulation, are prominent in CFS patients. In this case-control study, the phenotype of the same biopsy samples was analyzed by determining i) fibre-type proportion using myosin isoforms as fibre type molecular marker and gel electrophoresis as a tool to separate and quantify myosin isoforms, and ii) contractile properties of manually dissected, chemically made permeable and calcium-activated single muscle fibres. The results showed that fibre-type proportion was significantly altered in CSF samples, which showed a shift from the slow- to the fast-twitch phenotype. Cross sectional area, force, maximum shortening velocity and calcium sensitivity were not significantly changed in single muscle fibres from CSF samples. Thus, the contractile properties of muscle fibres were preserved but their proportion was changed, with an increase in the more fatigue-prone, energetically expensive fast fibre type. Taken together, these results support the view that muscle tissue is directly involved in the pathogenesis of CSF and it might contribute to the early onset of fatigue typical of the skeletal muscles of CFS patients.

  11. Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy

    Science.gov (United States)

    Belau, Markus; Ninck, Markus; Hering, Gernot; Spinelli, Lorenzo; Contini, Davide; Torricelli, Alessandro; Gisler, Thomas

    2010-09-01

    We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a function of lag time, τ, and time after stimulus, t. The analysis of g(1)(τ,t) measured on the human M. biceps brachii during repetitive electrical stimulation, using optical properties measured with time-resolved reflectance spectroscopy, shows that the tissue dynamics giving rise to the speckle fluctuations can be described by a combination of diffusion and shearing. The evolution of the tissue Cauchy strain e(t) shows a strong correlation with the force, indicating that a significant part of the shear observed with DWS is due to muscle contraction. The evolution of the DWS decay time shows quantitative differences between the M. biceps brachii and the M. gastrocnemius, suggesting that DWS allows to discriminate contraction of fast- and slow-twitch muscle fibers.

  12. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    Science.gov (United States)

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  13. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression

    Directory of Open Access Journals (Sweden)

    Giuliana Rossi

    2016-03-01

    Full Text Available Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway.

  14. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    Science.gov (United States)

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Frequency-dependence of the slow force response.

    Science.gov (United States)

    von Lewinski, Dirk; Zhu, Danan; Khafaga, Mounir; Kockskamper, Jens; Maier, Lars S; Hasenfuss, Gerd; Pieske, Burkert

    2008-05-01

    Stretch induces biphasic inotropic effects in mammalian myocardium. A delayed component (slow force response, SFR) has been demonstrated in various species, however, experimental conditions varied and the underlying mechanisms are controversial. The physiological relevance of the SFR is poorly understood. Experiments were performed in ventricular muscle strips from failing human hearts and non-failing rabbit hearts. Upon stretch, twitch force was assessed at basal conditions (1 Hz, 37 degrees C) and after changing stimulation frequency with and without blockade of the Na+/H+-exchanger-1 (NHE1) or reverse-mode Na+/Ca2+-exchange (NCX). Action potential duration (APD) was assessed using floating electrodes. Low stimulation rates (0.2 Hz) potentiated and higher stimulation rates (2 and 3 Hz) reduced the SFR. The extent of SFR inhibition by NHE1 or NCX inhibition was not affected by stimulation rate. APD decreased at 0.2 Hz but was not altered at higher stimulation rates. The data demonstrate frequency-dependence of the SFR with greater positive inotropic effects at lower stimulation rates. Subcellular mechanisms underlying the SFR are not fundamentally affected by stimulation rate. The SFR may have more pronounced physiological effects at lower heart rates.

  16. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  17. Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism

    Science.gov (United States)

    Hamdi, M M; Mutungi, G

    2011-01-01

    Abstract Dihydrotestosterone (DHT) has acute/non-genomic actions in adult mammalian skeletal muscles whose physiological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the acute/non-genomic effects of DHT on amino acid uptake as well as the cellular signal transduction events underlying these actions in mouse fast- and slow-twitch skeletal muscle fibre bundles. 14C-Labelled amino acids were used to investigate the effects of DHT and testosterone (T) on amino acid uptake and pharmacological interventions were used to determine the cellular signal transduction events mediating these actions. While T had no effect on the uptake of isoleucine (Ile) and α-methylaminoisobutyric acid (MeAIB) in both fibre types, DHT increased their uptake in the fast-twitch fibre bundles. This effect was reversed by inhibitors of protein translation, the epidermal growth factor receptor (EGFR), system A, system L, mTOR and MEK. However, it was relatively insensitive to inhibitors of transcription, androgen receptors and PI3K/Akt. Additionally, DHT treatment increased the expression of LAT2 and the phosphorylation of the EGFR in the fast-twitch fibre bundles and that of ERK1/2, RSK1/2 and ATF2 in both fibre types. Also, it decreased the phosphorylation of eEF2 and increased the incorporation of Ile into proteins in both fibre types. Most of these effects were reversed by EGFR and MEK inhibitors. From these findings we suggest that another physiological function of the acute/non-genomic actions of DHT in isolated mammalian skeletal muscle fibres is to stimulate amino acid uptake. This effect is mediated through the EGFR and involves the activation of the MAPK pathway and an increase in LAT2 expression. PMID:21606113

  18. Experiment K-7-29: Connective Tissue Studies. Part 2; Changes in Muscle Serine Proteases, Serpins and Matrix Molecules

    Science.gov (United States)

    Festoff, B. W.; Ilyina-Kakueva, E. I.; Rayford, A. R.; Burkovskaya, T. E.; Reddy, B. R.; Rao, J. S.

    1994-01-01

    In zero or micro-gravity, type 1 muscle fibers atrophy and lose predominance, especially in slow-twitch muscles. No increase in mononuclear cells has been observed, just as in simple denervation, where both types 1 and 2 fibers atrophy, again without infiltration of cells, but with clear satellite cell proliferation. However, extracellular matrix (ECM) degradation takes place after denervation and if re-innervation is encouraged, functional recovery to near control levels may be achieved. No information is available concerning the ECM milieu, the activation of serine proteases, their efficacy in degrading ECM components and the production of locally-derived natural protease inhibitors (serpins) in effecting surface proteolytic control. In addition, no studies are available concerning the activation of these enzymes in micro- or zero gravity or their response to muscle injury on the ground and what alterations, if any, occur in space. These studies were the basis for the experiments in Cosmos 2044.

  19. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Galbo, H

    1986-01-01

    and after 15 min of intermittent electrical muscle stimulation. Before stimulation, glycogen was higher in rats that swam on the preceding day (supercompensated rats) compared with controls. During muscle contractions, glycogen breakdown in fast-twitch red and white fibers was larger in supercompensated...

  20. EMG analysis tuned for determining the timing and level of activation in different motor units.

    Science.gov (United States)

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Torque decrease during submaximal evoked contractions of the quadriceps muscle is linked not only to muscle fatigue.

    Science.gov (United States)

    Matkowski, Boris; Lepers, Romuald; Martin, Alain

    2015-05-01

    The aim of this study was to analyze the neuromuscular mechanisms involved in the torque decrease induced by submaximal electromyostimulation (EMS) of the quadriceps muscle. It was hypothesized that torque decrease after EMS would reflect the fatigability of the activated motor units (MUs), but also a reduction in the number of MUs recruited as a result of changes in axonal excitability threshold. Two experiments were performed on 20 men to analyze 1) the supramaximal twitch superimposed and evoked at rest during EMS (Experiment 1, n = 9) and 2) the twitch response and torque-frequency relation of the MUs activated by EMS (Experiment 2, n = 11). Torque loss was assessed by 15 EMS-evoked contractions (50 Hz; 6 s on/6 s off), elicited at a constant intensity that evoked 20% of the maximal voluntary contraction (MVC) torque. The same stimulation intensity delivered over the muscles was used to induce the torque-frequency relation and the single electrical pulse evoked after each EMS contraction (Experiment 2). In Experiment 1, supramaximal twitch was induced by femoral nerve stimulation. Torque decreased by ~60% during EMS-evoked contractions and by only ~18% during MVCs. This was accompanied by a rightward shift of the torque-frequency relation of MUs activated and an increase of the ratio between the superimposed and posttetanic maximal twitch evoked during EMS contraction. These findings suggest that the torque decrease observed during submaximal EMS-evoked contractions involved muscular mechanisms but also a reduction in the number of MUs recruited due to changes in axonal excitability. Copyright © 2015 the American Physiological Society.

  2. EXERCISE, MANUAL THERAPY AND POSTURAL RE-EDUCATION FOR UNCONTROLLED EAR TWITCHING AND RELATED IMPAIRMENTS AFTER WHIPLASH INJURY: A CASE REPORT.

    Science.gov (United States)

    Flanders, Kelsey; Feldner, Heather

    2017-10-01

    presentations in the future. Further research is needed to examine the etiology of ear twitching caused by muscle spasm and to develop additional evidence-based interventions for Whiplash Associated Disorders. Level 4.

  3. Heat production during contraction in skeletal muscle of hypothyroid mice

    International Nuclear Information System (INIS)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G.

    1987-01-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was 2+ cycling, these findings suggest that ATP splitting due to the Ca 2+ cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported 45 Ca 2+ -uptake activity and 45 Ca 2+ -loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state

  4. Inter- and Intrasubject Similarity of Muscle Synergies During Bench Press With Slow and Fast Velocity.

    Science.gov (United States)

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intrasubject similarity of muscle synergies during bench press. A total of 13 trained male subjects underwent two exercise conditions: a slow- and a fast-velocity bench press. Surface electromyography was recorded from 13 muscles, and muscle synergies were extracted using a nonnegative matrix factorization algorithm. The intrasubject similarity across conditions and intersubject similarity within conditions were computed for muscle synergy vectors and activation coefficients. Two muscle synergies were sufficient to describe the dataset variability. For the second synergy activation coefficient, the intersubject similarity within the fast-velocity condition was greater than the intrasubject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector. We concluded that the activation coefficients are robust within conditions, indicating a robust temporal pattern of muscular activity across individuals, but the muscle synergy vector seemed to be individually assigned.

  5. Reflections of hunger and satiation in the structure of temporal organization of slow electrical and spike activities of fundal and antral stomach muscles in rabbits.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2012-11-01

    Manifestations of hunger and satiation in myoelectric activity patterns in different portions of the stomach were studied in chronic experiments. The state of hunger manifested in the structure of temporal organization of slow electric activity of muscles in the stomach body and antrum in the form of bimodal distributions of slow electric wave periods, while satiation as unimodal distribution. In hunger-specific bimodal distribution of slow electric wave periods generated by muscles of the stomach body and antrum, the position of the first maximum carries the information about oncoming food reinforcement, since this particular range of slow wave fluctuations determines temporal parameters of slow electric activity of muscles in all stomach regions in the course of subsequent successive food-procuring behavior. Under conditions of hunger, the pacemaker features of muscles in the lesser curvature are realized incompletely. Complete realization is achieved in the course of food intake and at the state of satiation.

  6. Contracture Coupling of Slow Striated Muscle in Non-Ionic Solutions and Replacement of Calcium, Sodium, and Potassium

    Science.gov (United States)

    Irwin, Richard L.; Hein, Manfred M.

    1964-01-01

    The development of contracture related to changes of ionic environment (ionic contracture coupling) has been studied in the slowly responding fibers of frog skeletal muscle. When deprived of external ions for 30 minutes by use of solutions of sucrose, mannitol, or glucose, the slow skeletal muscle fibers, but not the fast, develop pronounced and easily reversible contractures. Partial replacement of the non-ionic substance with calcium or sodium reduces the development of the contractures but replacement by potassium does not. The concentration of calcium necessary to prevent contracture induced by a non-ionic solution is greater than that needed to maintain relaxation in ionic solutions. To suppress the non-ionic-induced contractures to the same extent as does calcium requires several fold higher concentrations of sodium. Two types of ionic contracture coupling occur in slow type striated muscle fibers: (a) a calcium deprivation type which develops maximally at full physiological concentration of external sodium, shows a flow rate dependency for the calcium-depriving fluid, and is lessened when the sodium concentration is decreased by replacement with sucrose; (b) a sodium deprivation type which occurs maximally without external sodium, is lessened by increasing the sodium concentration, and has no flow rate dependency for ion deprivation. Both types of contracture are largely prevented by the presence of sufficient calcium. There thus seem to be calcium- and sodium-linked processes at work in the ionic contracture coupling of slow striated muscle. PMID:14127603

  7. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    Science.gov (United States)

    2010-12-01

    fascia around the opened wound were retracted to make a reservoir to hold warm mineral oil to maintain the temperature between 36.5°C to 37.5°C monitored...EDL) as the representative fast-twitch muscle. The EDL is a dorsi flexor, while the PL is a planter flexor. It is possible, as with HLU, plantar

  8. Characterization of disuse skeletal muscle atrophy and the efficacy of a novel muscle atrophy countermeasure during spaceflight and simulated microgravity

    Science.gov (United States)

    Hanson, Andrea Marie

    degradation at early time points that predominantly affected slow-twitch muscle fibers. A second study examined the use of exercise as a means of recovery from disuse atrophy. Contrary to previous reports, a short duration of exercise following disuse provided a functional benefit to contractile mechanisms and increased resistance to fatigue---possibly due to increased expression of fast-twitch fibers. Two additional studies examined the efficacy of a myostatin inhibitor in combination with hindlimb unloading and in spaceflight. Myostatin inhibition increased expression of markers within the muscle synthesis pathway in both models. The myostatin inhibitors were potent enough for the skeletal muscles to overcome the atrophying effects of musculoskeletal unloading as demonstrated by increased mass and strength. Myostatin inhibition is demonstrated to be a very promising and effective treatment for disuse muscle atrophy that may benefit astronauts and patients with muscle wasting diseases. This dissertation provides the first analyses of an unloading model in combination with a myostatin inhibitor as a countermeasure for skeletal muscle disuse atrophy while exploring the specific roles of muscle function, morphology, and translational signaling pathways.

  9. Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity

    Science.gov (United States)

    Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul; Gollnick, Philip A.; Dudley, Gary A.

    1989-01-01

    The effect of transcutaneous electromyostimulation (EMS) on the development of atrophy and the loss of strength in lower limb musculature in humans exposed to microgravity was determined in three subjects who received EMS twice daily in a 3-d on/1-d off cycle on their dominant leg during 30 days of bedrest. The output waveform from the stimulator was sequenced to the knee extensors, knee flexors, ankle extensors, and ankle flexors, and caused three isometric contractions of each muscle group per minute. It was found that, in the dominant leg, EMS acted to attenuate the changes caused by bedrest, such as reductions in the leg volume, muscle compartment size, cross-sectional area of slow- and fast-twitch fibers, strength, and aerobic enzyme activities, and an increase in leg compliance.

  10. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    Science.gov (United States)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  11. Neuromuscular organization of avian flight muscle: architecture of single muscle fibres in muscle units of the pectoralis (pars thoracicus) of pigeon (Columba livia)

    Science.gov (United States)

    Sokoloff, A. J.

    1999-01-01

    The M. pectoralis (pars thoracicus) of pigeons (Columba livia) is comprised of short muscle fibres that do not extend from muscle origin to insertion but overlap 'in-series'. Individual pectoralis motor units are limited in territory to a portion of muscle length and are comprised of either fast twitch, oxidative and glycolytic fibres (FOG) or fast twitch and glycolytic fibres (FG). FOG fibres make up 88 to 90% of the total muscle population and have a mean diameter one-half of that of the relatively large FG fibres. Here we report on the organization of individual fibres identified in six muscle units depleted of glycogen, three comprised of FOG fibres and three comprised of FG fibres. For each motor unit, fibre counts revealed unequal numbers of depleted fibres in different unit cross-sections. We traced individual fibres in one unit comprised of FOG fibres and a second comprised of FG fibres. Six fibres from a FOG unit (total length 15.45 mm) ranged from 10.11 to 11.82 mm in length and averaged (± s.d.) 10.74 ± 0.79 mm. All originated bluntly (en mass) from a fascicle near the proximal end of the muscle unit and all terminated intramuscularly. Five of these ended in a taper and one ended bluntly. Fibres coursed on average for 70% of the muscle unit length. Six fibres from a FG unit (total length 34.76 mm) ranged from 8.97 to 18.38 mm in length and averaged 15.32 ± 3.75 mm. All originated bluntly and terminated intramuscularly; one of these ended in a taper and five ended bluntly. Fibres coursed on average for 44% of the muscle unit length. Because fibres of individual muscle units do not extend the whole muscle unit territory, the effective cross-sectional area changes along the motor unit length. These non-uniformities in the distribution of fibres within a muscle unit emphasize that the functional interactions within and between motor units are complex.

  12. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    Science.gov (United States)

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  13. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  14. Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation.

    Science.gov (United States)

    Guillon, Emilie; Bretaud, Sandrine; Ruggiero, Florence

    2016-03-02

    The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an

  15. Molecular regulation of high muscle mass in developing Blonde d'Aquitaine cattle foetuses

    Directory of Open Access Journals (Sweden)

    Isabelle Cassar-Malek

    2017-10-01

    Full Text Available The Blonde d'Aquitaine (BA is a French cattle breed with enhanced muscularity, partly attributable to a MSTN mutation. The BA m. Semitendinosus has a faster muscle fibre isoform phenotype comprising a higher proportion of fast type IIX fibres compared to age-matched Charolais (CH. To better understand the molecular network of modifications in BA compared to CH muscle, we assayed the transcriptomes of the m. Semitendinosus at 110, 180, 210 and 260 days postconception (dpc. We used a combination of differential expression (DE and regulatory impact factors (RIF to compare and contrast muscle gene expression between the breeds. Prominently developmentally regulated genes in both breeds reflected the replacement of embryonic myosin isoforms (MYL4, MYH3 with adult isoforms (MYH1 and the upregulation of mitochondrial metabolism (CKMT2, AGXT2L1 in preparation for birth. However, the transition to a fast, glycolytic muscle phenotype in the MSTN mutant BA is detectable through downregulation of various slow twitch subunits (TNNC1, MYH7, TPM3, CSRP3 beyond 210 dpc, and a small but consistent genome-wide reduction in mRNA encoding the mitoproteome. Across the breeds, NRIP2 is the regulatory gene possessing a network change most similar to that of MSTN.

  16. Inter- and intrasubject similarity of muscle synergies during bench press with slow and fast velocity

    DEFF Research Database (Denmark)

    Samani, Afshin; Kristiansen, Mathias

    2018-01-01

    We investigated the effect of low and high bar velocity on inter- and intra-subject similarity of muscle synergies during bench press. Thirteen trained male subjects underwent two exercise conditions, i.e. a slow and a fast velocity bench press. Surface electromyography was recorded from thirteen...... to describe the dataset variability. For the second activation coefficient, the inter-subject similarity within the fast velocity condition was greater than the intra-subject similarity of the activation coefficient across the conditions. An opposite pattern was observed for the first muscle synergy vector...

  17. Reperfusion Strategies in the Management of Extremity Vascular Injury with Ischaemia

    Science.gov (United States)

    2012-01-01

    28: 1026–1031. 45 Gürke L, Marx A, Sutter PM, Stierli P, Harder F, Heberer M. Function of fast - and slow - twitch rat skeletal muscle following ischemia...influence muscle necrosis, including temperature, muscle fibre type, muscle location and residual blood flow15,16. The earliest effects of limb...Crawford et al.11 reported that in a murine model of limb ischaemia ethyl pyruvate pretreatment resulted in a lower percentage of injured muscle fibres

  18. Time-resolved x-ray diffraction from frog skeletal muscle during shortening against an inertial load and a quick release

    International Nuclear Information System (INIS)

    Amemiya, Yoshiyuki; Hashizume, Hiroo; Tameyasu, Tsukasa; Tanaka, Hidehiro; Sugi, Haruo.

    1980-01-01

    A group of Japanese researchers conducted, for the first time in this field, experiments on time-resolved x-ray diffraction of frog (bullfrog, Rana catesbeiana) skeletal muscle in conditions where both the force and the muscle length change with time. During an isotonic twitch under a load of about 0.3 P 0 , the intensity ratio started falling on stimulation and reached a minimum value of 0.5 - 0.6 at the early shortening phase, which was maintained until the beginning of relaxation. Except that the minimum value was not retained until the start of relaxation, the same was observed during a twitch against an inertial load whereby the peak force exerted by the muscle was about 0.4 P 0 . The results may be taken to indicate that the change in the intensity ratio reflects not the time course of shortening but that of force generation. When a quick release (3 - 4% of muscle length) was applied during the rising phase of an isometric twitch, the intensity ratio showed no distinct change. Judging from tentative calculation results, however, the foregoing result is subject to further experiments with a much improved time resolution of the measurements. (Kitajima, A.)

  19. Movement - uncontrolled or slow

    Science.gov (United States)

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  20. Visualization of Twitching Motility and Characterization of the Role of the PilG in Xylella fastidiosa.

    Science.gov (United States)

    Shi, Xiangyang; Lin, Hong

    2016-04-08

    Xylella fastidiosa is a Gram-negative non-flagellated bacterium that causes a number of economically important diseases of plants. The twitching motility provides X. fastidiosa a means for long-distance intra-plant movement and colonization, contributing toward pathogenicity in X. fastidiosa. The twitching motility of X. fastidiosa is operated by type IV pili. Type IV pili of Xylella fastidiosa are regulated by pilG, a chemotaxis regulator in Pil-Chp operon encoding proteins that are involved with signal transduction pathways. To elucidate the roles of pilG in the twitching motility of X. fastidiosa, a pilG-deficient mutant XfΔpilG and its complementary strain XfΔpilG-C containing native pilG were developed. A microfluidic chambers integrated with a time-lapse image recording system was used to observe twitching motility in XfΔpilG, XfΔpilG-C and its wild type strain. Using this recording system, it permits long-term spatial and temporal observations of aggregation, migration of individual cells and populations of bacteria via twitching motility. X. fastidiosa wild type and complementary XfΔpilG-C strain showed typical twitching motility characteristics directly observed in the microfluidic flow chambers, whereas mutant XfΔpliG exhibited the twitching deficient phenotype. This study demonstrates that pilG contributes to the twitching motility of X. fastidiosa. The microfluidic flow chamber is used as a means for observing twitching motility.

  1. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  2. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  3. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox.

    Science.gov (United States)

    Holt, N C; Wakeling, J M; Biewener, A A

    2014-05-22

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.

  4. Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.

    Science.gov (United States)

    von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert

    2003-03-15

    Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.

  5. Regulation of skeletal muscle glycogenolysis during exercise

    DEFF Research Database (Denmark)

    Hargreaves, M; Richter, Erik

    1988-01-01

    Muscle-glycogen breakdown during exercise is influenced by both local and systemic factors. Contractions per se increase glycogenolysis via a calcium-induced, transient increase in the activity of phosphorylase a, and probably also via increased concentrations of Pi. In fast-twitch muscle...... in contracting muscle by increasing the phosphorylase a activity via increased cyclic AMP production. The availability of blood-borne substrates may also influence muscle glycogenolysis and, therefore, exercise performance......., increases in the AMP and IMP levels may increase phosphorylase activity. The rate of muscle-glycogen breakdown during exercise depends on the pre-exercise glycogen concentration and is also influenced by hormones. Insulin may inhibit glycogen breakdown, whereas epinephrine enhances the rate of glycogen use...

  6. Anatomy and histochemistry of spread-wing posture in birds. I. Wing drying posture in the double-crested cormorant, Phalacrocorax auritus.

    Science.gov (United States)

    Meyers, Ron A

    1997-07-01

    Spread-wing postures of birds often have been studied with respect to the function of behavior, but ignored with regard to the mechanism by which the birds accomplish posture. The double-crested cormorant, Phalacrocorax auritus, was used as a model for this study of spread-wing posture. Those muscles capable of positioning and maintaining the wing in extension and protraction were assayed histochemically for the presence of slow (postural) muscle fibers. Within the forelimb of Phalacrocorax, Mm. coracobrachialis cranialis, pectoralis thoracicus (cranial portion), deltoideus minor, triceps scapularis, and extensor metacarpi radialis pars dorsalis and ventralis were found to contain populations of slow-twitch or slow-tonic muscle fibers. These slow fibers in the above muscles are considered to function during spread-wing posture in this species. J Morphol 233:67-76, 1997. © 1997 Wiley-Liss, Inc. Copyright © 1997 Wiley-Liss, Inc.

  7. Glycogen depletion and resynthesis during 14 days of chronic low-frequency stimulation of rabbit muscle

    DEFF Research Database (Denmark)

    Prats, C; Bernal, C; Cadefau, J A

    2002-01-01

    Electro-stimulation alters muscle metabolism and the extent of this change depends on application intensity and duration. The effect of 14 days of chronic electro-stimulation on glycogen turnover and on the regulation of glycogen synthase in fast-twitch muscle was studied. The results showed that...

  8. Moving People from Science Adjacent to Science Doers with Twitch.tv

    Science.gov (United States)

    Gay, Pamela L.; CosmoQuest

    2017-10-01

    The CosmoQuest community is testing the ability to attract people from playing online videogames to doing fully online citizen science by engaging people through the Twitch.tv streaming platform. Twitch.tv launched in 2011 as an online platform for video gamers to stream their gameplay while providing narrative. In its six years of regular growth, the platform has added support for people playing non-video games, and for those participating in non-game activities. As part of their expansion, in April 2017, Twitch.tv hosted a science week during which they streamed the Cosmos series and allowed different feeds provide real-time commentary. They also hosted panel discussions on a variety of science topics. CosmoQuest participated in this event and used it as a jumping off point for beginning to interact with Twitch.tv community members online. With CosmoQuest’s beta launch of Image Detectives, they expanded their use of this streaming platform to include regular “office hours”, during which team members did science with CosmoQuest’s online projects, took questions from community members, and otherwise promoted the CosmoQuest community. This presentation examines this case study, and looks at how well different kinds of Twitter engagements attracted audiences, the conversion rate from viewer to subscriber, and at how effectively CosmoQuest was able to migrate users from viewing citizen science on Twitch.tv to participating in citizen science on CosmoQuest.org.This project was supported through NASA cooperative agreement NNX17AD20A.

  9. Heat production during contraction in skeletal muscle of hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. (Free Univ., Amsterdam (Netherlands))

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  10. GLUT4 expression in human muscle fibres is not correlated with intracellular triglyceride (TG) content. Is TG a maker or a marker of insulin resistance?

    DEFF Research Database (Denmark)

    Gaster, M; Ottosen, P D; Vach, W

    2003-01-01

    diabetic subjects, and young lean controls. TG density was significantly higher in slow compared to fast fibres in all studied subjects (pslow twitch fibres of obese diabetic subjects compared to obese (p...We have recently reported a progressive decline in the expression of glucose transporter isoform 4 (GLUT4) from control subjects through obese non-diabetics to obese type 2 diabetic subjects, indicating that the reduced GLUT4 in slow twitch fibres could be secondary to obesity. In this study we...... densities in slow and fast fibres did not correlate with the corresponding GLUT4 density in the same fibres in our study groups (p>0.05). Plasma TG and FFA did not correlate with GLUT4 expression in slow or fast fibres (p>0.05). In conclusion, TG content was increased in diabetic slow fibres with a reduced...

  11. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: Transient and transgenic analysis of torafugu MYHM86-2 promoter in zebrafish embryos

    International Nuclear Information System (INIS)

    Asaduzzaman, Md.; Kinoshita, Shigeharu; Bhuiyan, Sharmin Siddique; Asakawa, Shuichi; Watabe, Shugo

    2013-01-01

    The myosin heavy chain gene, MYH M86-2 , exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYH M86-2 promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614 bp 5′-flanking sequences of MYH M86-2 contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYH M86-2 expression in the fast muscle fibers. The transcriptional mechanism that prevents MYH M86-2 expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYH M86-2 expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYH M86-2 expression. - Highlights: ► MYH M86-2 is highly expressed in slow muscle fibers of torafugu embryos and larvae. ► MYH M86-2 promoter activity depends on the hedgehog signaling. ► Sox6 binding elements inhibits MYH M86-2 expression in fast muscle fibers. ► Sox6 elements function as transcriptional repressor of MYH M86-2 promoter activity. ► NFAT and MEF2 binding elements play a key role for directing MYH M86-2 expression

  12. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  13. Adaptation of motor unit contractile properties in rat medial gastrocnemius to treadmill endurance training: Relationship to muscle mitochondrial biogenesis.

    Science.gov (United States)

    Kryściak, Katarzyna; Majerczak, Joanna; Kryściak, Jakub; Łochyński, Dawid; Kaczmarek, Dominik; Drzymała-Celichowska, Hanna; Krutki, Piotr; Gawedzka, Anna; Guzik, Magdalena; Korostynski, Michał; Szkutnik, Zbigniew; Pyza, Elżbieta; Jarmuszkiewicz, Wiesława; Zoladz, Jerzy A; Celichowski, Jan

    2018-01-01

    This study aimed at investigating the effects of 2, 4 and 8 weeks of endurance training on the contractile properties of slow (S), fast fatigue resistant (FR) and fast fatigable (FF) motor units (MUs) in rat medial gastrocnemius (MG) in relation to the changes in muscle mitochondrial biogenesis. The properties of functionally isolated MUs were examined in vivo. Mitochondrial biogenesis was judged based on the changes in mitochondrial DNA copy number (mtDNA), the content of the electron transport chain (ETC) proteins and PGC-1α in the MG. Moreover, the markers of mitochondria remodeling mitofusins (Mfn1, Mfn2) and dynamin-like protein (Opa1) were studied using qPCR. A proportion of FR MUs increased from 37.9% to 50.8% and a proportion of FF units decreased from 44.7% to 26.6% after 8 weeks of training. The increased fatigue resistance, shortened twitch duration, and increased ability to potentiate force were found as early as after 2 weeks of endurance training, predominantly in FR MUs. Moreover, just after 2 weeks of the training an enhancement of the mitochondrial network remodeling was present as judged by an increase in expression of Mfn1, Opa1 and an increase in PGC-1α in the slow part of MG. Interestingly, no signs of intensification of mitochondrial biogenesis assessed by ETC proteins content and mtDNA in slow and fast parts of gastrocnemius were found at this stage of the training. Nevertheless, after 8 weeks of training an increase in the ETC protein content was observed, but mainly in the slow part of gastrocnemius. Concluding, the functional changes in MUs' contractile properties leading to the enhancement of muscle performance accompanied by an activation of signalling that controls the muscle mitochondrial network reorganisation and mitochondrial biogenesis belong to an early muscle adaptive responses that precede an increase in mitochondrial ETC protein content.

  14. Histochemical and functional parameters in Nordic combination athletes.

    Science.gov (United States)

    Matolín, S; Vaverka, F; Lunák, J; Novák, J; Horák, V; Krejcí, P

    1994-01-01

    Bioptic samples from the vastus lateralis muscle were analyzed in a group of Czechoslovak representatives in the Nordic combination (ski-jumping and 15 km cross-country skiing). The distribution of individual muscle fibre types (FG, FOG and SO) was detected and correlated with values obtained by motor and functional performance tests. Histochemical analysis of the bioptic samples revealed a considerably heterogeneous distribution of muscle fibre types in the group studied. No typical profilation for this sport discipline was found. Weak correlation between the proportion of fast muscle fibres and explosive strength parameters was ascertained. The correlation between the proportion of slow muscle fibres and the capacity of O2 utilization (VO2max) was statistically significant. Strong correlation between the proportion of fast twitch fibres and relative maximal strength of knee extensors (N/kg) was disclosed. A non-linear relation between the area of fast twitch fibres and vigour of take-off was found.

  15. The effects of local forearm muscle cooling on motor unit properties.

    Science.gov (United States)

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  16. [Effects of dauricine on action potentials and slow inward currents of guinea pig ventricular papillary muscles].

    Science.gov (United States)

    Li, S N; Zhang, K Y

    1992-11-01

    Effects of dauricine (Dau) on the action potentials (AP), the slow action potentials (SAP), and the slow inward currents (Isi) of guinea pig ventricular papillary muscles were observed by means of intracellular microelectrode and single sucrose gap voltage clamp technique. In the early stage, Dau shortened action potential duration 100 (APD100) and effective refractory period (ERP) (ERP/APD ERP, and APD20, significantly decreased action potential amplitude (APA), maximum velocity (Vmax), and overshot (OS) (ERP/APD > 1; P SAP induced by isoprenaline (P < 0.01), and remarkably inhibited Isi (P < 0.01). The results suggested that Dau exerted an inhibitory effect on Na+, Ca2+, and K+ channels.

  17. Il sistema calpaina/calpastatina in 3 muscoli dell’arto pelvico di struzzo African Black. Studio istochimico, immunoistochimico e morfometrico

    OpenAIRE

    Gomez De Ayala, Diego

    2006-01-01

    In the present research a description of the pelvic limb musculature of ostrich (African Black) was given. Muscle tissues were obtained from three muscles namely: Gastrocnemius pars externa, Tibialis .cranialis caput tibiale, Tbialis cranialis caput femorale. Haematoxilin-eosin technique was used to verify the morphologic aspect of the tissues (fibers integrity). The histochemical results revealed the presence of three fibre types only in the gastrocnemus pars extena uscle : slow-twitch o...

  18. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats

    Directory of Open Access Journals (Sweden)

    Tetsuro eTamaki

    2014-10-01

    Full Text Available Qualitative changes in the peripheral motor system were examined using Young, Adult, Middle-aged and Old-aged rats in order to assess before and after the appearance of sarcopenia symptoms. Significant loss of muscle mass and strength, and slow-type fiber grouping with a loss of innervated nerve fibers were used as typical markers of sarcopenia. Dynamic twitch and tetanus tension and evoked electromyogram (EEMG were measured via electrical stimulation through the sciatic nerve under anesthesia using our force-distance transducer system before and after sciatectomy. Digital and analogue data sampling was performed and shortening and relaxing velocity of serial twitches was calculated with tension force. Muscle tenderness in passive stretching was also measured as stretch absorption ability, associated with histological quantitation of muscle connective tissues. The results indicated the validity of the present model, in which Old-aged rats clearly showed the typical signs of sarcopenia, specifically in the fast-type plantaris muscles, while the slow-type soleus showed relatively mild syndromes. These observations suggest the following qualitative alterations as the pathophysiological mechanism of sarcopenia: 1 reduction of shortening and relaxing velocity of twitch; 2 decline of muscle tenderness following an increase in the connective tissue component; 3 impaired recruitment of motor units (sudden depression of tetanic force and EEMG in higher stimulation frequencies over 50-60 Hz; and 4 easy fatigability in the neuromuscular junctions. These findings are likely to be closely related to significant losses in fast-type motor units, muscle strength and contraction velocity, which could be a causative factor in falls in the elderly. Importantly, some of these symptoms began in Middle-aged rats that showed no other signs of sarcopenia. Thus, prevention should be started in middle age that could be retained relatively higher movement ability.

  19. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion.

    Science.gov (United States)

    Raikova, Rositsa; Aladjov, Hristo

    2003-06-01

    A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.

  20. Pacing Strategy, Muscle Fatigue, and Technique in 1500-m Speed-Skating and Cycling Time Trials.

    Science.gov (United States)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-04-01

    To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500-m speed-skating and cycling time trials when a faster or slower start is instructed. Nine speed skaters and 9 cyclists, all competing at regional or national level, performed two 1500-m time trials in their sport. Athletes were instructed to start faster than usual in 1 trial and slower in the other. Mean velocity was measured per 100 m. Blood lactate concentrations were measured. Maximal voluntary contraction (MVC), voluntary activation (VA), and potentiated twitch (PT) of the quadriceps muscles were measured to estimate central and peripheral contributions to muscle fatigue. In speed skating, knee, hip, and trunk angles were measured to evaluate technique. Cyclists showed a more explosive start than speed skaters in the fast-start time trial (cyclists performed first 300 m in 24.70 ± 1.73 s, speed skaters in 26.18 ± 0.79 s). Both trials resulted in reduced MVC (12.0% ± 14.5%), VA (2.4% ± 5.0%), and PT (25.4% ± 15.2%). Blood lactate concentrations after the time trial and the decrease in PT were greater in the fast-start than in the slow-start trial. Speed skaters showed higher trunk angles in the fast-start than in the slow-start trial, while knee angles remained similar. Despite similar instructions, behavioral adaptations in pacing differed between the 2 sports, resulting in equal central and peripheral contributions to muscle fatigue in both sports. This provides evidence for the importance of neurophysiological aspects in the regulation of pacing. It also stresses the notion that optimal pacing needs to be studied sport specifically, and coaches should be aware of this.

  1. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  2. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    Science.gov (United States)

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of

  3. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  4. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    Science.gov (United States)

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  5. EFFECTS OF VERAPAMIL ON CHICKEN BIVENTER - CERVICIS MUSCLE

    Directory of Open Access Journals (Sweden)

    F.Farokhy

    1999-06-01

    Full Text Available - Verapamil produces a sustained contraction in isolated biventer-cervicis muscle of chickens between 2-8 days old. From cumulative dose-response curves, ED50 of was calculated for this effect of verapamil. when isolated chicken biventer-cervicis muscle was electrically stimulated, verapamil had no effect on twitch contractures but increased the base line tone of the muscle. Glycerol treatment of the muscle reduced the responses to acetylcholine and KCl but had little effect on contracture produced by verapamil, and no effect on contracture produced by caffeine. Incubation of the muscles with calcium-free Krcbs solution omitted the responses of the muscle to acetylcholine and reduced the response to caffeine. Again, the responses to caffeine and verapamil were less affected compared to KCL. Addition of ethylene glycol tetra-acetic acid (EGTA (2.5 mM abolished the responses of muscle to all compounds. It was concluded that verapamil produces contracture of the muscle by release of calcium from intracellular stores.

  6. Visualization of the diaphragm muscle with ultrasound improves diagnostic accuracy of phrenic nerve conduction studies.

    Science.gov (United States)

    Johnson, Nicholas E; Utz, Michael; Patrick, Erica; Rheinwald, Nicole; Downs, Marlene; Dilek, Nuran; Dogra, Vikram; Logigian, Eric L

    2014-05-01

    Evaluation of phrenic neuropathy (PN) with phrenic nerve conduction studies (PNCS) is associated with false negatives. Visualization of diaphragmatic muscle twitch with diaphragm ultrasound (DUS) when performing PNCS may help to solve this problem. We performed bilateral, simultaneous DUS-PNCS in 10 healthy adults and 12 patients with PN. The amplitude of the diaphragm compound muscle action potential (CMAP) (on PNCS) and twitch (on DUS) was calculated. Control subjects had phrenic CMAP (on PCNS). In the 12 patients with PN, 12 phrenic neuropathies were detected. Three of these patients had either significant side-to-side asymmetry or absolute reduction in diaphragm movement that was not detected with PNCS. There were no cases in which the PNCS showed an abnormality but the DUS did not. The addition of DUS to PNCS enhances diagnostic accuracy in PN. Copyright © 2013 Wiley Periodicals, Inc.

  7. The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise.

    Science.gov (United States)

    Siegler, Jason C; Mudie, Kurt; Marshall, Paul

    2016-11-01

    What is the central question of this study? Does metabolic alkalosis in humans, induced by sodium bicarbonate, affect rates of skeletal muscle fatigue differentially in muscle groups composed predominately of slow- and fast-twitch fibres? What is the main finding and its importance? Sodium bicarbonate exhibited no effect on the fatigue profile observed between triceps surae and brachii muscle groups during and after 2 min of tetanic stimulation. For the first time in exercising humans, we have profiled the effect of sodium bicarbonate on the voluntary and involuntary contractile characteristics of muscle groups representative of predominately slow- and fast-twitch fibres. The effect of metabolic alkalosis on fibre-specific maximal force production and rates of force development (RFD) has been investigated previously in animal models, with evidence suggesting an improved capacity to develop force rapidly in fast- compared with slow-twitch muscle. We have attempted to model in vivo the fatigue profile of voluntary and involuntary maximal force and RFD in the triceps surae and brachii after sodium bicarbonate (NaHCO 3 ) ingestion. In a double-blind, three-way repeated-measures design, participants (n = 10) ingested either 0.3 g kg -1 NaHCO 3 (ALK) or equivalent calcium carbonate (PLA) prior to 2 min of continuous (1 Hz) supramaximal stimulation (300 ms at 40 Hz) of the triceps surae or brachii, with maximal voluntary efforts (maximal voluntary torque) coupled with direct muscle stimulation also measured at baseline, 1 and 2 min. Metabolic alkalosis was achieved in both ALK trials but was not different between muscle groups. Regardless of the conditions, involuntary torque declined nearly 60% in the triceps brachii (P < 0.001) and ∼30% in the triceps surae (P < 0.001). In all trials, there was a significant decline in normalized involuntary RFD (P < 0.05). Maximal voluntary torque declined nearly 28% but was not different between conditions (P < 0

  8. Free radicals in alcoholic myopathy: indices of damage and preventive studies.

    Science.gov (United States)

    Preedy, Victor R; Adachi, Junko; Asano, Migiwa; Koll, Michael; Mantle, David; Niemela, Onni; Parkkila, Seppo; Paice, Alistair G; Peters, Timothy; Rajendram, Rajkumar; Seitz, Helmut; Ueno, Yasuhiro; Worrall, Simon

    2002-04-15

    Chronic alcoholic myopathy affects up to two-thirds of all alcohol misusers and is characterized by selective atrophy of Type II (glycolytic, fast-twitch, anaerobic) fibers. In contrast, the Type I fibers (oxidative, slow-twitch, aerobic) are relatively protected. Alcohol increases the concentration of cholesterol hydroperoxides and malondialdehyde-protein adducts, though protein-carbonyl concentration levels do not appear to be overtly increased and may actually decrease in some studies. In alcoholics, plasma concentrations of alpha-tocopherol may be reduced in myopathic patients. However, alpha-tocopherol supplementation has failed to prevent either the loss of skeletal muscle protein or the reductions in protein synthesis in alcohol-dosed animals. The evidence for increased oxidative stress in alcohol-exposed skeletal muscle is thus inconsistent. Further work into the role of ROS in alcoholic myopathy is clearly warranted.

  9. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A Ca2+-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions

    DEFF Research Database (Denmark)

    Rose, Adam John; Alsted, Thomas Junker; Jensen, Thomas Elbenhardt

    2009-01-01

    Skeletal muscle protein synthesis rate decreases during contractions but the underlying regulatory mechanisms are poorly understood. It was hypothesised that there would be a coordinated regulation of eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E-binding protein 1 (4EBP1......) phosphorylation by signalling cascades downstream of rises in intracellular [Ca(2+)] and decreased energy charge via AMP activated protein kinase (AMPK) in contracting skeletal muscle. When fast-twitch skeletal muscles were contracted ex vivo using different protocols, the suppression of protein synthesis...... correlated more closely with changes in eEF2 rather than 4EBP1 phosphorylation. Using a combination of Ca(2+) release agents and ATPase inhibitors it was shown that the 60-70% suppression of fast-twitch skeletal muscle protein synthesis during contraction was equally distributed between Ca(2+) and energy...

  11. Neural control of muscle force: indications from a simulation model

    Science.gov (United States)

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  12. Effects of thyroid hormones on calcium contents and 45Ca exchange in rat skeletal muscle

    International Nuclear Information System (INIS)

    Everts, M.E.; Clausen, T.

    1986-01-01

    In 4-wk-old rats, pretreatment with L-triiodothyronine (T3) increased calcium content by 100% and the 30-min 45 Ca uptake by 64% in the soleus, whereas the extensor digitorum longus (EDL) muscle showed no significant change. The stimulation of 45 Ca uptake was resistant to dantrolene and methoxyverapamil (D600) and could not be attributed to altered permeability of the plasma membrane to calcium, but appears to reflect increased net accumulation of calcium in intracellular pools. The stimulating effect of high K0 (20 mM) on 45 Ca uptake was more pronounced in soleus than in EDL and could be suppressed by dantrolene and D600. The results indicate that the effects of T3 on calcium content and 45 Ca exchange are primarily exerted on muscles containing a large proportion of slow-twitch, oxidative fibers. In soleus muscle from hyperthyroid rats the stimulating effects of high K0 on 45 Ca uptake and lactate production were, respectively, 3.4 and 4.5 times larger than in those obtained from controls. These observations further support the earlier proposed idea [C. van Hardeveld and T. Clausen. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E421-E430, 1984] that the metabolic effects of thyroid hormone depend on the availability of cellular as well as extracellular calcium

  13. Effects of thyroid hormones on calcium contents and 45Ca exchange in rat skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Everts, M.E.; Clausen, T.

    1986-09-01

    In 4-wk-old rats, pretreatment with L-triiodothyronine (T3) increased calcium content by 100% and the 30-min /sup 45/Ca uptake by 64% in the soleus, whereas the extensor digitorum longus (EDL) muscle showed no significant change. The stimulation of /sup 45/Ca uptake was resistant to dantrolene and methoxyverapamil (D600) and could not be attributed to altered permeability of the plasma membrane to calcium, but appears to reflect increased net accumulation of calcium in intracellular pools. The stimulating effect of high K0 (20 mM) on /sup 45/Ca uptake was more pronounced in soleus than in EDL and could be suppressed by dantrolene and D600. The results indicate that the effects of T3 on calcium content and /sup 45/Ca exchange are primarily exerted on muscles containing a large proportion of slow-twitch, oxidative fibers. In soleus muscle from hyperthyroid rats the stimulating effects of high K0 on /sup 45/Ca uptake and lactate production were, respectively, 3.4 and 4.5 times larger than in those obtained from controls. These observations further support the earlier proposed idea (C. van Hardeveld and T. Clausen. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E421-E430, 1984) that the metabolic effects of thyroid hormone depend on the availability of cellular as well as extracellular calcium.

  14. Cloning of a neonatal calcium atpase isoform (SERCA 1B) from extraocular muscle of adult blue marlin (Makaira nigricans).

    Science.gov (United States)

    Londraville, R L; Cramer, T D; Franck, J P; Tullis, A; Block, B A

    2000-10-01

    Complete cDNAs for the fast-twitch Ca2+ -ATPase isoform (SERCA 1) were cloned and sequenced from blue marlin (Makaira nigricans) extraocular muscle (EOM). Complete cDNAs for SERCA 1 were also cloned from fast-twitch skeletal muscle of the same species. The two sequences are identical over the coding region except for the last five codons on the carboxyl end; EOM SERCA 1 cDNA codes for 996 amino acids and the fast-twitch cDNAs code for 991 aa. Phylogenetic analysis revealed that EOM SERCA 1 clusters with an isoform of Ca2+ -ATPase normally expressed in early development of mammals (SERCA 1B). This is the first report of SERCA 1B in an adult vertebrate. RNA hybridization assays indicate that 1B expression is limited to extraocular muscles. Because EOM gives rise to the thermogenic heater organ in marlin, we investigated whether SERCA 1B may play a role in heat generation, or if 1B expression is common in EOM among vertebrates. Chicken also expresses SERCA 1B in EOM, but rat expresses SERCA 1A; because SERCA 1B is not specific to heater tissue we conclude it is unlikely that it plays a specific role in intracellular heat production. Comparative sequence analysis does reveal, however, several sites that may be the source of functional differences between fish and mammalian SERCAs.

  15. Effect of heat stress on contractility of tissue-engineered artificial skeletal muscle.

    Science.gov (United States)

    Takagi, Shunya; Nakamura, Tomohiro; Fujisato, Toshia

    2018-01-23

    The effects of heat stress on tissue like skeletal muscle have been widely studied. However, the mechanism responsible for the effect of heat stress is still unclear. A useful experimental tissue model is necessary because muscle function in cell culture may differ from native muscle and measuring its contractility is difficult. We previously reported three-dimensional tissue-engineered artificial skeletal muscle (TEM) that can be easily set in a measurement apparatus for quantitative evaluation of contractility. We have now applied TEM to the investigation of heat stress. We analyzed contractility immediately after thermal exposure at 39 °C for 24 or 48 h to evaluate the acute effects and after thermal exposure followed by normal culture to evaluate the aftereffects. Peak twitch contractile force and time-to-peak twitch were used as contractile parameters. Heat stress increased the TCF in the early stage (1 week) after normal culture; the TCF decreased temporarily in the middle to late stages (2-3 weeks). These results suggest that heat stress may affect both myoblast fusion and myotube differentiation in the early stage of TEM culture, but not myotube maturation in the late stage. The TCF increase rate with thermal exposure was significantly higher than that without thermal exposure. Although detailed analysis at the molecular level is necessary for further investigation, our artificial skeletal muscle may be a promising tool for heat stress investigation.

  16. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    Science.gov (United States)

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID

  17. The Regulation of Skeletal Muscle Active Hyperemia: The Differential Role of Adenosine in Muscles of Varied Fiber Types

    Science.gov (United States)

    1986-04-21

    cyclase mediates the coronary relaxation induced by adenosine. Adenosine-induced relaxation is accompanied by cyclic AMP accumulation in bovine ...and the reaction was started by adding 0.01 ml L-glutamic dehydrogenase ( bovine liver; 1200 U•ml-1 in SO% glycerol and vhosphate buffer; p~ 7.4...Physiol: London 68: 213-237, 1929. Dudley, G.A. and R.L. Terjung. Influence of acidosis on AMP deaTIIinase activity in contracting fast-twitch muscle

  18. The adequate rocuronium dose required for complete block of the adductor muscles of the thigh.

    Science.gov (United States)

    Fujimoto, M; Kawano, K; Yamamoto, T

    2018-03-01

    Rocuronium can prevent the obturator jerk during transurethral resection of bladder tumors. We investigated the adequate rocuronium dose required for complete block of the thigh adductor muscles, and its correlation with individual responses of the adductor pollicis muscle to rocuronium. Eleven patients scheduled for transurethral resection of bladder tumors under general anesthesia were investigated. After general anesthesia induction, neuromuscular monitoring of the adductor pollicis muscle and ultrasonography-guided stimulation of the obturator nerve was commenced. Rocuronium, 0.15 mg/kg, was repeatedly administered intravenously. The adequate rocuronium dose required for complete block of the thigh muscles, defined as the cumulative dose of rocuronium administered until that time, and its correlation with the first twitch response of the adductor pollicis muscle on train-of-four stimulation after initial rocuronium administration was analyzed. The rocuronium dose found adequate for complete block of the thigh muscles was 0.30 mg/kg in seven patients and 0.45 mg/kg in the remaining four patients, which did not correlate with the first twitch response. At the time of complete block of the thigh muscles, the neuromuscular blockade level of the adductor pollicis muscle varied greatly, although the level was never more profound than a post-tetanic count of 1. Although the response of the adductor pollicis muscle to rocuronium cannot be used to determine the adequate rocuronium dose required for complete block of the thigh muscles, intense blockade, with maintenance of post-tetanic count at ≤ 1 in the adductor pollicis muscle is essential to prevent the obturator jerk. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  20. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    Science.gov (United States)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  1. Quantitative differences among EMG activities of muscles innervated by subpopulations of hypoglossal and upper spinal motoneurons during non-REM sleep - REM sleep transitions: a window on neural processes in the sleeping brain.

    Science.gov (United States)

    Rukhadze, I; Kamani, H; Kubin, L

    2011-12-01

    In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.

  2. Consequences of Late-Stage Non-Small-Cell Lung Cancer Cachexia on Muscle Metabolic Processes.

    Science.gov (United States)

    Murton, Andrew J; Maddocks, Matthew; Stephens, Francis B; Marimuthu, Kanagaraj; England, Ruth; Wilcock, Andrew

    2017-01-01

    The loss of muscle is common in patients with advanced non-small-cell lung cancer (NSCLC) and contributes to the high morbidity and mortality of this group. The exact mechanisms behind the muscle loss are unclear. To investigate this, 4 patients with stage IV NSCLC who met the clinical definitions for sarcopenia and cachexia were recruited, along with 4 age-matched healthy volunteers. After an overnight fast, biopsy specimens were obtained from the vastus lateralis, and the key components associated with inflammation and the control of muscle protein, carbohydrate, and fat metabolism were assessed. Compared with the healthy volunteers, significant increases in mRNA levels for interleukin-6 and NF-κB signaling and lower intramyocellular lipid content in slow-twitch fibers were observed in NSCLC patients. Although a significant decrease in phosphorylation of the mechanistic target of rapamycin (mTOR) signaling protein 4E-BP1 (Ser 65 ) was observed, along with a trend toward reduced p70 S6K (Thr 389 ) phosphorylation (P = .06), no difference was found between groups for the mRNA levels of MAFbx (muscle atrophy F box) and MuRF1 (muscle ring finger protein 1), chymotrypsin-like activity of the proteasome, or protein levels of multiple proteasome subunits. Moreover, despite decreases in intramyocellular lipid content, no robust changes in mRNA levels for key proteins involved in insulin signaling, glycolysis, oxidative metabolism, or fat metabolism were observed. These findings suggest that examining the contribution of suppressed mTOR signaling in the loss of muscle mass in late-stage NSCLC patients is warranted and reinforces our need to understand the potential contribution of impaired fat metabolism and muscle protein synthesis in the etiology of cancer cachexia. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    Science.gov (United States)

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  4. Muscle glucose metabolism following exercise in the rat

    DEFF Research Database (Denmark)

    Richter, Erik; Garetto, L P; Goodman, M N

    1982-01-01

    Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during...... in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell. Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was unaltered......; however its ability to stimulate the incorporation of [(14)C]glucose into glycogen in certain muscles was enhanced. Thus at a concentration of 75 muU/ml insulin stimulated glycogen synthesis eightfold more in the fast-twitch red fibers of the red gastrocnemius than it did in the same muscle...

  5. Time course of action and endotracheal intubating conditions of Org 9487, a new short-acting steroidal muscle relaxant; a comparison with succinylcholine

    NARCIS (Netherlands)

    Wierda, JMKH; van den Broek, L; Proost, JH; Verbaan, BW; Hennis, PJ

    In a randomized study, we evaluated lag time (time from the end of injection of muscle relaxant until the first depression of the train-of-four response [TOF]), onset time (time from the end of injection of muscle relaxant until the maximum depression of the first twitch of the TOF [T1]),

  6. Predicting Effects of Tropomyosin Mutations on Cardiac Muscle Contraction through Myofilament Modeling

    Directory of Open Access Journals (Sweden)

    Lorenzo Rakesh Sewanan

    2016-10-01

    Full Text Available Point mutations to the human gene TPM1 have been implicated in the development of both hypertrophic and dilated cardiomyopathies. Such observations have led to studies investigating the link between single residue changes and the biophysical behavior of the tropomyosin molecule. However, the degree to which these molecular perturbations explain the performance of intact sarcomeres containing mutant tropomyosin remains uncertain. Here, we present a modeling approach that integrates various aspects of tropomyosin’s molecular properties into a cohesive paradigm representing their impact on muscle function. In particular, we considered the effects of tropomyosin mutations on (1 persistence length, (2 equilibrium between thin filament blocked and closed regulatory states, and (3 the crossbridge duty cycle. After demonstrating the ability of the new model to capture Ca-dependent myofilament responses during both dynamic and steady-state activation, we used it to capture the effects of hypertrophic cardiomyopathy (HCM related E180G and D175N mutations on skinned myofiber mechanics. Our analysis indicates that the fiber-level effects of the two mutations can be accurately described by a combination of changes to the three tropomyosin properties represented in the model. Subsequently, we used the model to predict mutation effects on muscle twitch. Both mutations led to increased twitch contractility as a consequence of diminished cooperative inhibition between thin filament regulatory units. Overall, simulations suggest that a common twitch phenotype for HCM-linked tropomyosin mutations includes both increased contractility and elevated diastolic tension.

  7. Copper pyrithione, a booster biocide, induces abnormal muscle and notochord architecture in zebrafish embryogenesis.

    Science.gov (United States)

    Almond, Kelly M; Trombetta, Louis D

    2017-09-01

    The metal pyrithiones, principally zinc (ZnPT) and copper (CuPT), are replacing tributyltin (TBT) as antifouling agents. Zebrafish embryos were exposed within the first hour after fertilization to 12 and 64 µg/L of CuPT for 24 h. Morphological abnormalities in notochord and muscle architecture were observed at 96 h post fertilization (hpf). TEM revealed abnormal electron dense deposits in the notochord sheath and muscle fiber degeneration in animals treated with 12 µg/L of CuPT. Embryos that were exposed to 64 µg/L of CuPT displayed severe muscle fiber degeneration including abnormal A and I band patterning and altered z disk arrangement. Abnormalities in the notochord sheath, swelling of the mitochondria and numerous lipid whorls were also noted. Total antioxidant capacity was significantly decreased in embryos exposed to 12 and 64 µg/L of CuPT. Acridine orange staining revealed an increase in apoptosis particularly in the brain, eye, heart and tail regions of both treatment groups. Apoptosis was confirmed with an increase in caspase 3/7 activity in both treatment groups. Severe alternations in primary motor neuron axon extensions, slow tonic muscle fibers and fast twitch fibers were observed in CuPT treated embryos. There was a significant upregulation in sonic hedgehog and myod1 expression at 24 hpf in the 12 µg/L treatment group. Exposed zebrafish embryos showed ultra-structural hallmarks of peroxidative injury and cell death via apoptosis. These changes question the use of copper pyrithione as an antifouling agent.

  8. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    Science.gov (United States)

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  9. The uremic environment and muscle dysfunction in man and rat

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Nielsen, Arne Høj; Eidemak, I.

    2006-01-01

    Background: Patients reaching end-stage renal disease experience debilitating fatigue, with progression of this disease, rendering patients dysfunctional in their everyday lives. Methods: In vivo measurements of muscle function, assessed using surface electromyography (EMG), were made on 25...... patients prior to and after a session of hemodialysis (HD) treatment, alongside in vitro measurements of muscle function in isolated rat muscles incubated in normal or uremic conditions approximating to those found in uremic rats (rat uremic: RU) or uremic humans (human uremic: HU). Results: HD...... significantly affected plasma values, e.g. reducing urea (69%), creatinine (62%), potassium (23%) and phosphate (48%) concentrations in patients (all pimproved the EMG frequency of 2nd dorsal interosseous (fast-twitch) (p

  10. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways

    Directory of Open Access Journals (Sweden)

    Naomi Elisabeth Brooks

    2014-03-01

    Full Text Available Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilisation, disuse and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fibre attrition. Skeletal muscle stem cells (satellite cells and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signalling pathways activated in muscle fibres by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g. amino acids may further enhance recovery (or reduce atrophy despite unloading or ageing is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy.

  11. Effects of intra-arterial epinephrine on energy metabolism in exercising rabbit gastrocnemius muscle, studied by in vivo phosphorus nuclear magnetic resonance.

    Science.gov (United States)

    Argov, Z; Nioka, S; Eleff, S; Chance, B

    1991-10-01

    Epinephrine has an inotropic effect on skeletal muscle, especially on glycolytic type 2 fibers. The mechanism of this effect is not completely clear and its association with a change in oxidative metabolism or glycolytic activation was not fully investigated. Epinephrine's effects on muscle bioenergetics were studied by in vivo 31P nuclear magnetic resonance to find if mitochondrial metabolism is changed during the inotropic action and if the known glycolytic activation by epinephrine is operative during muscle twitch. The study was also used as a model for the application of in vivo 31P nuclear magnetic resonance in the evaluation of short-term acting drugs. When injected intra-arterially, epinephrine (1 micrograms/kg) augmented the twitch tension of indirectly stimulated, continuously working rabbit gastrocnemius muscle by 15.4 + 6.5%. This increase in work was associated with reduction of phosphocreatine to inorganic phosphate ratio (PCr/Pi) from 3.4 to 2.1 without change in ATP levels. Intracellular pH was reduced from 6.9 to 6.75, but no accumulation of glycolytic intermediates could be observed. The increase in work was not associated with a rise in ADP. All these changes occurred for a few minutes only. The findings suggest that epinephrine's inotropic action is not mediated by a change in mitochondrial metabolism. Glycolytic activation by epinephrine occurs even during twitch and contributes partly to the energy demands of the augmented force. Epinephrine's inotropic effect is, however, not primarily due to changes in bioenergetic kinetics, but to effects on force generating mechanisms, with secondary reduction in energy state.

  12. Slow early growers have more muscle in relation to adult activity: evidence from Cebu, Philippines.

    Science.gov (United States)

    Workman, M; McDade, T W; Adair, L S; Kuzawa, C W

    2015-12-01

    Adult skeletal muscle mass (SMM) protects against type 2 diabetes, but little is known about its developmental antecedents. We examined whether pace of early weight gain predicted adult SMM in a birth cohort from Cebu City, Philippines. In addition, we examined whether increases in SMM associated with adult muscle-building exercise varied according to the early growth. Data came from 1472 participants of the Cebu Longitudinal Health and Nutrition Survey. Weight was measured at birth and at 6-month intervals through the age of 24 months. Adult SMM was estimated from anthropometric measurements when participants were 20-22-years old. Interviews provided the information on adult exercise/lifestyle habits. SMM (mean ± s.d.) was 20.8 ± 3.9 kg (men) and 13.6 ± 3.4 kg (women). Faster early weight gain predicted a higher adult SMM. After adjustment for height and lifestyle factors, strongest associations with SMM were found for 6-12 months growth in men (β=0.17, P=0.001) and for birth weight in women (β=0.14, P=0.001). Individuals who had grown slowly displayed greater SMM in association with adult weightlifting, basketball playing and physically demanding forms of employment (men) or household chores (women). These results suggest heightened sensitivity of activity-induced muscle hypertrophy among the adults who were born light or who gained weight slowly as infants. Future research should test this finding by comparing responses of muscle mass to an intervention in slow vs fast early growers. Findings suggest that adults who display a reduced SMM following suboptimal early growth may be good candidates for new anti-diabetes interventions that promote muscle-building activities.

  13. Antagonism of botulinum toxin-induced muscle weakness by aminopyridines in rat phrenic nerve-hemidiaphragm preparations

    Energy Technology Data Exchange (ETDEWEB)

    Adler, M.; Scovill, J.; Deshpande, S.S.

    1993-05-13

    The effects of the potassium channel inhibitor and putative botulinum toxin antagonists 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP) were investigated in vitro on the contractile and electrophysiological properties of rat diaphragm muscle. In the presence of 300 pM botulinum toxin A (BoTx A), twitches elicited by supramaximal nerve stimulation (0. 1 Hz) were reduced by over 80% in 3 hr. The time to block decreased with increases in temperature, toxin concentration and stimulation frequency. Addition of 4-AP or 3,4-DAP led to a prompt reversal of the BoTx A-induced depression of twitch tension. This reversal was concentration-dependent such that, in the presence of 1 mM 4-AP, reversal of the BoTx A-induced blockade was complete in 6.7 min. The beneficial effect of the APs were well maintained and persisted for up to 6 hr after addition. Application of 1 microns M neostigmine 1 hr after 3,4-DAP produced a further potentiation of twitch tensions, but this action lasted for < 5 min and led to the appearance of tetanic fade during repetitive stimulation. It is concluded that the APs are of benefit in antagonizing the muscle paralysis following exposure to botulinum toxin. Co-application of neostigmine, however, appears to confer no additional benefit.

  14. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa

    OpenAIRE

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A.; De La Fuente, Leonardo; Hoch, Harvey C.; Burr, Thomas J.

    2017-01-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this prote...

  15. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  16. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    Science.gov (United States)

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary

  17. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    significantly to both hindlimb unloading and exposure to 2-G. Thirteen genes were up-regulated and 85 were down-regulated. In conclusion, long-term gravitational unloading of mouse caused shift of fiber phenotype toward fast-twitch type and atrophy of slow-twitch fibers in neck muscle. These responses were closely related to the up- or down-regulation of genes, suggesting that oxidative muscular metabolism may be inhibited in microgravity environment.

  18. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway.

    Science.gov (United States)

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-07-01

    Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Comparison of Mitochondrial Reactive Oxygen Species Production of Ectothermic and Endothermic Fish Muscle

    Directory of Open Access Journals (Sweden)

    Lilian Wiens

    2017-09-01

    Full Text Available Recently we demonstrated that the capacity of isolated muscle mitochondria to produce reactive oxygen species, measured as H2O2 efflux, is temperature-sensitive in isolated muscle mitochondria of ectothermic fish and the rat, a representative endothermic mammal. However, at physiological temperatures (15° and 37°C for the fish and rat, respectively, the fraction of total mitochondrial electron flux that generated H2O2, the fractional electron leak (FEL, was far lower in the rat than in fish. Those results suggested that the elevated body temperatures associated with endothermy may lead to a compensatory decrease in mitochondrial ROS production relative to respiratory capacity. To test this hypothesis we compare slow twitch (red muscle mitochondria from the endothermic Pacific bluefin tuna (Thunnus orientalis with mitochondria from three ectothermic fishes [rainbow trout (Oncorhynchus mykiss, common carp (Cyprinus carpio, and the lake sturgeon (Acipenser fulvescens] and the rat. At a common assay temperature (25°C rates of mitochondrial respiration and H2O2 efflux were similar in tuna and the other fishes. The thermal sensitivity of fish mitochondria was similar irrespective of ectothermy or endothermy. Comparing tuna to the rat at a common temperature, respiration rates were similar, or lower depending on mitochondrial substrates. FEL was not different across fish species at a common assay temperature (25°C but was markedly higher in fishes than in rat. Overall, endothermy and warming of Pacific Bluefin tuna red muscle may increase the potential for ROS production by muscle mitochondria but the evolution of endothermy in this species is not necessarily associated with a compensatory reduction of ROS production relative to the respiratory capacity of mitochondria.

  20. Slow VO2 off-kinetics in skeletal muscle is associated with fast PCr off-kinetics--and inversely.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2013-09-01

    The computer model of the bioenergetic system in skeletal muscle, developed previously, was used to study the effect of the characteristic decay time of the parallel activation of oxidative phosphorylation [τ(OFF)] during muscle recovery on the muscle oxygen consumption rate (Vo2) and phosphocreatine (PCr) work-to-rest transition (off)-kinetics and on the relationship between the Vo2 and PCr rest-to-work transition (on)- and off-kinetics in moderate and heavy exercise. An increase in τ(OFF) slows down the initial phase of the muscle Vo2 off-kinetics and accelerates the PCr off-kinetics. As a result, the relationship between the initial phase of the Vo2 off-kinetics (lasting approximately 3-60 s in computer simulations) and the PCr off-kinetics is inverse: the slower the former, the faster the latter. A faster initial phase of the Vo2 off-kinetics is associated with a slower late phase of the Vo2 off-kinetics, and as a result, the integral of Vo2 above baseline during recovery, representing the oxygen debt, is identical in all cases [values of τ(OFF)] for a given PCr decrease. Depending on τ(OFF), the muscle Vo2 on-kinetics was either equally fast or slower than the Vo2 off-kinetics in moderate exercise and always slower in heavy exercise. PCr on-kinetics was always faster than PCr off-kinetics. This study clearly demonstrates that τ(OFF) has a pronounced impact on the mutual relations between the muscle Vo2 and PCr on- and off-kinetics.

  1. Muscle plasticity related to changes in tubulin and αB-crystallin levels induced by eccentric contraction in rat skeletal muscles.

    Science.gov (United States)

    Jee, H; Ochi, E; Sakurai, T; Lim, J-Y; Nakazato, K; Hatta, H

    2016-09-01

    We used the model of eccentric contraction of the hindlimb muscle by Ochi et al. to examine the role of eccentric contraction in muscle plasticity. This model aims to focus on stimulated skeletal muscle responses by measuring tissue weights and tracing the quantities of αB-crystallin and tubulin. The medial gastrocnemius muscle (GCM) responded to electrically induced eccentric contraction (EIEC) with significant increases in tissue weight (p muscle weight after EIEC. EIEC in the GCM caused contractile-induced sustenance of the traced proteins, but the soleus muscle exhibited a remarkable decrease in α-tubulin and a 19% decrease in αB-crystallin. EIEC caused fast-to-slow myosin heavy chain (MHC) isoform type-oriented shift within both the GCM and soleus muscle. These results have shown that different MHC isoform type-expressing slow and fast muscles commonly undergo fast-to-slow type MHC isoform transformation. This suggests that different levels of EIEC affected each of the slow and fast muscles to induce different quantitative changes in the expression of αB-crystallin and α-tubulin.

  2. Charge Movement in a Fast Twitch Skeletal Muscle from Rat

    OpenAIRE

    Simon, B. J.; Beam, K. G.

    1983-01-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Qmax/{1 + exp[-(V - V)/k]}, with Qmax = 28.5 nC/μF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to t...

  3. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  4. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.

    Science.gov (United States)

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B

    2017-08-01

    What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units

  5. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    Full Text Available Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus. Adult C57Bl/N6 male mice (n = 5 flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013, a sex and age-matched cohort were housed in standard vivarium cages (n = 5, or in a replicate flight habitat as ground control (n = 5. Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response. Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6 were further validated by quantitative real-time PCR (qRT-PCR. Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  6. Beneficial effects of GH/IGF-1 on skeletal muscle atrophy and function in experimental heart failure.

    Science.gov (United States)

    Dalla Libera, Luciano; Ravara, Barbara; Volterrani, Maurizio; Gobbo, Valerio; Della Barbera, Mila; Angelini, Annalisa; Danieli Betto, Daniela; Germinario, Elena; Vescovo, Giorgio

    2004-01-01

    Muscle atrophy is a determinant of exercise capacity in heart failure (CHF). Myocyte apoptosis, triggered by tumor necrosis factor-alpha (TNF-alpha) or its second messenger sphingosine (SPH), is one of the causes of atrophy. Growth hormone (GH) improves hemodynamic and cardiac trophism in several experimental models of CHF, but its effect on skeletal muscle in CHF is not yet clear. We tested the hypothesis that GH can prevent skeletal muscle apoptosis in rats with CHF. CHF was induced by injecting monocrotaline. After 2 wk, 2 groups of rats were treated with GH (0.2 mg.kg(-1).day(-1) and 1.0 mg.kg(-1).day(-1)) subcutaneously. A third group of controls had saline. After 2 additional weeks, rats were killed. Tibialis anterior cross-sectional area, myosin heavy chain (MHC) composition, and a study on myocyte apoptosis and serum levels of TNF-alpha and SPH were carried out. The number of apoptotic nuclei, muscle atrophy, and serum levels of TNF-alpha and SPH were decreased with GH at high but not at low doses compared with CHF rats. Bcl-2 was increased, whereas activated caspases and bax were decreased. The MHC pattern in GH-treated animals was similar to that of controls. Monocrotaline slowed down both contraction and relaxation but did not affect specific tetanic force, whereas absolute force was decreased. GH treatment restored contraction and relaxation to control values and brought muscle mass and absolute twitch and tetanic tension to normal levels. These findings may provide an insight into the therapeutic strategy of GH given to patients with CHF to improve exercise capacity.

  7. Effect of speed endurance training and reduced training volume on running economy and single muscle fiber adaptations in trained runners.

    Science.gov (United States)

    Skovgaard, Casper; Christiansen, Danny; Christensen, Peter M; Almquist, Nicki W; Thomassen, Martin; Bangsbo, Jens

    2018-02-01

    The aim of the present study was to examine whether improved running economy with a period of speed endurance training and reduced training volume could be related to adaptations in specific muscle fibers. Twenty trained male (n = 14) and female (n = 6) runners (maximum oxygen consumption (VO 2 -max): 56.4 ± 4.6 mL/min/kg) completed a 40-day intervention with 10 sessions of speed endurance training (5-10 × 30-sec maximal running) and a reduced (36%) volume of training. Before and after the intervention, a muscle biopsy was obtained at rest, and an incremental running test to exhaustion was performed. In addition, running at 60% vVO 2 -max, and a 10-km run was performed in a normal and a muscle slow twitch (ST) glycogen-depleted condition. After compared to before the intervention, expression of mitochondrial uncoupling protein 3 (UCP3) was lower (P economy at 60% vVO 2 -max (11.6 ± 0.2 km/h) and at v10-km (13.7 ± 0.3 km/h) was ~2% better (P economy with intense training may be related to changes in expression of proteins linked to energy consuming processes in primarily ST muscle fibers. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  9. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  10. Muskler arbejder, men hjernen bliver traet

    DEFF Research Database (Denmark)

    Secher, Niels H; Quistorff, Bjørn; Dalsgaard, Mads K

    2006-01-01

    Central fatigue is the term used to describe when muscle contractions become limited by the ability of the central nervous system to recruit motor neurones. Central fatigue becomes manifest when the effort is intense and is associated not only with reduced strength but also with an inability...... to maintain the contraction. The contractions thereby resemble those developed during partial neuromuscular blockade that mainly affect slow twitch muscle fibres. We suggest that central fatigue also manifests as a reduction in the ratio between the brain's uptake of oxygen relative to that of carbohydrate...

  11. Muscle fatigue in relation to forearm pain and tenderness among professional computer users

    DEFF Research Database (Denmark)

    Thomsen, GF; Johnson, PW; Svendsen, Susanne Wulff

    2007-01-01

    ABSTRACT: BACKGROUND: To examine the hypothesis that forearm pain with palpation tenderness in computer users is associated with increased extensor muscle fatigue. METHODS: Eighteen persons with pain and moderate to severe palpation tenderness in the extensor muscle group of the right forearm...... response was not explained by differences in the MVC or body mass index. CONCLUSION: Computer users with forearm pain and moderate to severe palpation tenderness had diminished forearm extensor muscle fatigue response. Additional studies are necessary to determine whether this result reflects an adaptive...... and twenty gender and age matched referents without such complaints were enrolled from the Danish NUDATA study of neck and upper extremity disorders among technical assistants and machine technicians. Fatigue of the right forearm extensor muscles was assessed by muscle twitch forces in response to low...

  12. A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre

    Directory of Open Access Journals (Sweden)

    Ting Tao

    2007-06-01

    Full Text Available Abstract Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1. Transgenic mice (MIG which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for

  13. Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Li, Yaxin; Zaini, Paulo A; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J

    2009-10-01

    A mutation in the Xylella fastidiosa tonB1 gene resulted in loss of twitching motility and in significantly less biofilm formation as compared with a wild type. The altered motility and biofilm phenotypes were restored by complementation with a functional copy of the gene. The mutation affected virulence as measured by Pierce's disease symptoms on grapevines. The role of TonB1 in twitching and biofilm formation appears to be independent of the characteristic iron-uptake function of this protein. This is the first report demonstrating a functional role for a tonB homolog in X. fastidiosa.

  14. Slow movement resistance training using body weight improves muscle mass in the elderly: A randomized controlled trial.

    Science.gov (United States)

    Tsuzuku, S; Kajioka, T; Sakakibara, H; Shimaoka, K

    2018-04-01

    To examine the effect of a 12-week slow movement resistance training using body weight as a load (SRT-BW) on muscle mass, strength, and fat distribution in healthy elderly people. Fifty-three men and 35 women aged 70 years old or older without experience in resistance training participated, and they were randomly assigned to a SRT-BW group or control group. The control group did not receive any intervention, but participants in this group underwent a repeat measurement 12 weeks later. The SRT-BW program consisted of 3 different exercises (squat, tabletop push-up, and sit-up), which were designed to stimulate anterior major muscles. Initially, these exercises were performed by 2 sets of 10 repetitions, and subsequently, the number of repetitions was increased progressively by 2 repetitions every 4 weeks. Participants were instructed to perform each eccentric and concentric phase of movement slowly (spending 4 seconds on each movement), covering the full range of motion. We evaluated muscle mass, strength, and fat distribution at baseline and after 12 weeks of training. Changes over 12 weeks were significantly greater in the SRT-BW group than in the control group, with a decrease in waist circumference, hip circumference, and abdominal preperitoneal and subcutaneous fat thickness, and an increase in thigh muscle thickness, knee extension strength, and hip flexion strength. In conclusion, relatively short-term SRT-BW was effective in improving muscle mass, strength, and fat distribution in healthy elderly people. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women

    DEFF Research Database (Denmark)

    Suetta, C; Aagaard, P; Magnusson, S P

    2007-01-01

    quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men......%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38......-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present...

  16. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  17. Glycogen synthesis from lactate in a chronically active muscle

    International Nuclear Information System (INIS)

    Talmadge, R.J.; Scheide, J.I.; Silverman, H.

    1989-01-01

    In response to neural overactivity (pseudomyotonia), gastrocnemius muscle fibers from C57Bl/6Jdy2J/dy2J mice have different metabolic profiles compared with normal mice. A population of fibers in the fast-twitch superficial region of the dy2J gastrocnemius stores unusually high amounts of glycogen, leading to an increased glycogen storage in the whole muscle. The dy2J muscle also contains twice as much lactate as normal muscle. A [ 14 C]lactate intraperitoneal injection leads to preferential 14 C incorporation into glycogen in the dy2J muscle compared with normal muscle. To determine whether skeletal muscles were incorporating lactate into glycogen without body organ (liver, kidney) input, gastrocnemius muscles were bathed in 10 mM [ 14 C]lactate with intact neural and arterial supply but with impeded venous return. The contralateral gastrocnemius serves as a control for body organ input. By using this in situ procedure, we demonstrate that under conditions of high lactate both normal and dy2J muscle can directly synthesize glycogen from lactate. In this case, normal whole muscle incorporates [14C] lactate into glycogen at a higher rate than dy2J whole muscle. Autoradiography, however, suggests that the high-glycogen-containing muscle fibers in the dy2J muscle incorporate lactate into glycogen at nearly four times the rate of normal or surrounding muscle fibers

  18. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans.

    Science.gov (United States)

    Lamboley, C R; Wyckelsma, V L; Dutka, T L; McKenna, M J; Murphy, R M; Lamb, G D

    2015-06-01

    Muscle weakness in old age is due in large part to an overall loss of skeletal muscle tissue, but it remains uncertain how much also stems from alterations in the properties of the individual muscle fibres. This study examined the contractile properties and amount of stored intracellular calcium in single muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) adults. The maximum level of force production (per unit cross-sectional area) in fast twitch fibres in Old subjects was lower than in Young subjects, and the fibres were also less sensitive to activation by calcium. The amount of calcium stored inside muscle fibres and available to trigger contraction was also lower in both fast- and slow-twitch muscle fibres in the Old subjects. These findings indicate that muscle weakness in old age stems in part from an impaired capacity for force production in the individual muscle fibres. This study examined the contractile properties and sarcoplasmic reticulum (SR) Ca(2+) content in mechanically skinned vastus lateralis muscle fibres of Old (70 ± 4 years) and Young (22 ± 3 years) humans to investigate whether changes in muscle fibre properties contribute to muscle weakness in old age. In type II fibres of Old subjects, specific force was reduced by ∼17% and Ca(2+) sensitivity was also reduced (pCa50 decreased ∼0.05 pCa units) relative to that in Young. S-Glutathionylation of fast troponin I (TnIf ) markedly increased Ca(2+) sensitivity in type II fibres, but the increase was significantly smaller in Old versus Young (+0.136 and +0.164 pCa unit increases, respectively). Endogenous and maximal SR Ca(2+) content were significantly smaller in both type I and type II fibres in Old subjects. In fibres of Young, the SR could be nearly fully depleted of Ca(2+) by a combined caffeine and low Mg(2+) stimulus, whereas in fibres of Old the amount of non-releasable Ca(2+) was significantly increased (by > 12% of endogenous Ca(2+) content). Western

  19. Contractile Activity Is Necessary to Trigger Intermittent Hypobaric Hypoxia-Induced Fiber Size and Vascular Adaptations in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    David Rizo-Roca

    2018-05-01

    Full Text Available Altitude training has become increasingly popular in recent decades. Its central and peripheral effects are well-described; however, few studies have analyzed the effects of intermittent hypobaric hypoxia (IHH alone on skeletal muscle morphofunctionality. Here, we studied the effects of IHH on different myofiber morphofunctional parameters, investigating whether contractile activity is required to elicit hypoxia-induced adaptations in trained rats. Eighteen male Sprague-Dawley rats were trained 1 month and then divided into three groups: (1 rats in normobaria (trained normobaric inactive, TNI; (2 rats subjected daily to a 4-h exposure to hypobaric hypoxia equivalent to 4,000 m (trained hypobaric inactive, THI; and (3 rats subjected daily to a 4-h exposure to hypobaric hypoxia just before performing light exercise (trained hypobaric active, THA. After 2 weeks, the tibialis anterior muscle (TA was excised. Muscle cross-sections were stained for: (1 succinate dehydrogenase to identify oxidative metabolism; (2 myosin-ATPase to identify slow- and fast-twitch fibers; and (3 endothelial-ATPase to stain capillaries. Fibers were classified as slow oxidative (SO, fast oxidative glycolytic (FOG, fast intermediate glycolytic (FIG or fast glycolytic (FG and the following parameters were measured: fiber cross-sectional area (FCSA, number of capillaries per fiber (NCF, NCF per 1,000 μm2 of FCSA (CCA, fiber and capillary density (FD and CD, and the ratio between CD and FD (C/F. THI rats did not exhibit significant changes in most of the parameters, while THA animals showed reduced fiber size. Compared to TNI rats, FOG fibers from the lateral/medial fields, as well as FIG and FG fibers from the lateral region, had smaller FCSA in THA rats. Moreover, THA rats had increased NCF in FG fibers from all fields, in medial and posterior FIG fibers and in posterior FOG fibers. All fiber types from the three analyzed regions (except the posterior FG fibers displayed a

  20. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    Science.gov (United States)

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  1. Systematic review of the synergist muscle ablation model for compensatory hypertrophy.

    Science.gov (United States)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Bussadori, Sandra Kalill; Deana, Alessandro Melo; Mesquita-Ferrari, Raquel Agnelli

    2017-02-01

    The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  2. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    Science.gov (United States)

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  3. Pre- and postsynaptic effects of brimonidine on isolated rabbit iris dilator muscles

    Directory of Open Access Journals (Sweden)

    Tatsui S

    2016-05-01

    Full Text Available Sonoko Tatsui,1 Hitoshi Ishikawa,2 Kimiya Shimizu,1 Kimiyo Mashimo1 1Department of Ophthalmology, School of Medicine, Kitasato University, 2Department of Orthoptics and Visual Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan Purpose: Brimonidine is an imidazoline compound used for the treatment of glaucoma, but having very little effect on pupil diameter. Like para-aminoclonidine, most imidazoline compounds interact with postsynaptic α-adrenoceptors and cause pupil dilatation. Therefore, as part of an investigation of the mechanism of action of brimonidine on pupil diameter, the present study was initiated to measure, in vitro, the relative potency of brimonidine on the pre- and postsynaptic α-adrenoceptors of rabbit iris dilator muscle. Methods: The contractile activity of brimonidine and its effect on twitch contraction evoked by electrical field stimulation were studied in isolated rabbit iris dilator muscles by isometric tension recording. Results: Brimonidine significantly inhibited the twitch contraction of the dilator muscle caused by field stimulation, without affecting the response to exogenously applied phenylephrine. Compared to phenylephrine, brimonidine caused only a small contractile response with % maximum contraction values of<10%. Conclusion: These results suggest that brimonidine may act on nerve endings to inhibit adrenergic neurotransmission with very little effect on postsynaptic α-adrenoceptors. This may indicate that brimonidine reduced the pupil diameter just a little, thus improving night vision. Keywords: brimonidine, rabbit iris dilator, electrical field stimulation, presynaptic α2-adrenoceptor, postsynaptic α1-adrenoceptor, imidazolin

  4. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    Science.gov (United States)

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  5. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3.

    Directory of Open Access Journals (Sweden)

    Ligen Lin

    Full Text Available We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3. Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER, indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction.

  6. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog.

    Science.gov (United States)

    Cruz, Luisa F; Parker, Jennifer K; Cobine, Paul A; De La Fuente, Leonardo

    2014-12-01

    The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. High Intensity Interval Training (HIIT) Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles.

    Science.gov (United States)

    Ramos-Filho, Dionizio; Chicaybam, Gustavo; de-Souza-Ferreira, Eduardo; Guerra Martinez, Camila; Kurtenbach, Eleonora; Casimiro-Lopes, Gustavo; Galina, Antonio

    2015-01-01

    High intensity interval training (HIIT) is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2) plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage) in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10) and HIIT (n=10, swimming training). We collected the tibialis anterior (TA-fast), gastrocnemius (GAST-fast/slow) and soleus (SOL-slow) muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS) activity. A multi-substrate (glycerol phosphate (G3P), pyruvate, malate, glutamate and succinate) approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH) was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.

  9. High Intensity Interval Training (HIIT Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles.

    Directory of Open Access Journals (Sweden)

    Dionizio Ramos-Filho

    Full Text Available High intensity interval training (HIIT is characterized by vigorous exercise with short rest intervals. Hydrogen peroxide (H2O2 plays a key role in muscle adaptation. This study aimed to evaluate whether HIIT promotes similar H2O2 formation via O2 consumption (electron leakage in three skeletal muscles with different twitch characteristics. Rats were assigned to two groups: sedentary (n=10 and HIIT (n=10, swimming training. We collected the tibialis anterior (TA-fast, gastrocnemius (GAST-fast/slow and soleus (SOL-slow muscles. The fibers were analyzed for mitochondrial respiration, H2O2 production and citrate synthase (CS activity. A multi-substrate (glycerol phosphate (G3P, pyruvate, malate, glutamate and succinate approach was used to analyze the mitochondria in permeabilized fibers. Compared to the control group, oxygen flow coupled to ATP synthesis, complex I and complex II was higher in the TA of the HIIT group by 1.5-, 3.0- and 2.7-fold, respectively. In contrast, oxygen consumed by mitochondrial glycerol phosphate dehydrogenase (mGPdH was 30% lower. Surprisingly, the oxygen flow coupled to ATP synthesis was 42% lower after HIIT in the SOL. Moreover, oxygen flow coupled to ATP synthesis and complex II was higher by 1.4- and 2.7-fold in the GAST of the HIIT group. After HIIT, CS activity increased 1.3-fold in the TA, and H2O2 production was 1.3-fold higher in the TA at sites containing mGPdH. No significant differences in H2O2 production were detected in the SOL. Surprisingly, HIIT increased H2O2 production in the GAST via complex II, phosphorylation, oligomycin and antimycin by 1.6-, 1.8-, 2.2-, and 2.2-fold, respectively. Electron leakage was 3.3-fold higher in the TA with G3P and 1.8-fold higher in the GAST with multiple substrates. Unexpectedly, the HIIT protocol induced different respiration and electron leakage responses in different types of muscle.

  10. Train-of-four recovery precedes twitch recovery during reversal with sugammadex in pediatric patients: A retrospective analysis.

    Science.gov (United States)

    Vieira Carlos, Ricardo; Luis Abramides Torres, Marcelo; de Boer, Hans Donald

    2018-04-01

    After reversal of a rocuronium-induced neuromuscular blockade with sugammadex, the recovery of train-of-four ratio to 0.9 is faster than recovery of first twitch of the train-of-four to 90% in adults. These findings after reversal of neuromuscular blockade with sugammadex have not yet been investigated in pediatric patients. The aim of this retrospective analysis was to investigate the relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio after reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric patients. Patients ASA I-III, aged 2-11 years, and who underwent abdominal and/or perineal surgery were included in the analysis. After extracting the necessary data from the hospital database, the patients were divided into 2 groups based on the dose of sugammadex received: group A: 2 mg.kg -1 for reversal of moderate neuromuscular blockade and group B: 4 mg.kg -1 for reversal of deep neuromuscular blockade. The relationship of the recovery of first twitch of the train-of-four height and train-of-four ratio in these 2 groups were analyzed. Data from 43 pediatric patients aged 2-11 years could be analyzed. The first twitch of the train-of-four height at the recovery of train-of-four ratio to 0.9 in group B was statistically significantly lower compared with group A. This height 3 and 5 minutes after the train-of-four ratio reached 0.9 showed no statistically significant differences between groups. The results were in line with the results found in adults and showed that the train-of-four ratio recovered to 0.9 was faster than first twitch of the train-of-four height recovered to the same level. © 2018 John Wiley & Sons Ltd.

  11. Electrical Stimulation of Artificial Heart Muscle: a look into the electrophysiological and genetic implications

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    2016-01-01

    Development of tissue-engineered hearts for treatment of myocardial infarction or biological pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. In order to further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histological observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHM. Improvements in electrophysiology within the AHM was noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHM. Genes expressing key electrophysiological and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHM capable of replacing damaged heart tissue in either a contractile or electrophysiological capacity. Optimized AHM can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis. PMID:28459744

  12. Electrical Stimulation of Artificial Heart Muscle: A Look Into the Electrophysiologic and Genetic Implications.

    Science.gov (United States)

    Mohamed, Mohamed A; Islas, Jose F; Schwartz, Robert J; Birla, Ravi K

    Development of tissue-engineered hearts for treatment of myocardial infarction or biologic pacemakers has been hindered by the production of mostly arrhythmic or in-synergistic constructs. Electrical stimulation (ES) of these constructs has been shown to produce tissues with greater twitch force and better adrenergic response. To further our understanding of the mechanisms underlying the effect of ES, we fabricated a bioreactor capable of delivering continuous or intermittent waveforms of various types to multiple constructs simultaneously. In this study, we examined the effect of an intermittent biphasic square wave on our artificial heart muscle (AHM) composed of neonatal rat cardiac cells and fibrin gel. Twitch forces, spontaneous contraction rates, biopotentials, gene expression profiles, and histologic observations were examined for the ES protocol over a 12 day culture period. We demonstrate improved consistency between samples for twitch force and contraction rate, and higher normalized twitch force amplitudes for electrically stimulated AHMs. Improvements in electrophysiology within the AHM were noted by higher conduction velocities and lower latency in electrical response for electrically stimulated AHMs. Genes expressing key electrophysiologic and structural markers peaked at days 6 and 8 of culture, only a few days after the initiation of ES. These results may be used for optimization strategies to establish protocols for producing AHMs capable of replacing damaged heart tissue in either a contractile or electrophysiologic capacity. Optimized AHMs can lead to alternative treatments to heart failure and alleviate the limited donor supply crisis.

  13. Phosphocreatine kinetics at the onset of contractions in skeletal muscle of MM creatine kinase knockout mice

    Science.gov (United States)

    Roman, Brian B.; Meyer, Ronald A.; Wiseman, Robert W.

    2002-01-01

    Phosphocreatine (PCr) depletion during isometric twitch stimulation at 5 Hz was measured by (31)P-NMR spectroscopy in gastrocnemius muscles of pentobarbital-anesthetized MM creatine kinase knockout (MMKO) vs. wild-type C57B (WT) mice. PCr depletion after 2 s of stimulation, estimated from the difference between spectra gated to times 200 ms and 140 s after 2-s bursts of contractions, was 2.2 +/- 0.6% of initial PCr in MMKO muscle vs. 9.7 +/- 1.6% in WT muscles (mean +/- SE, n = 7, P muscle after 2 s only if ADP-stimulated oxidative phosphorylation was included in the model. Taken together, the results suggest that cytoplasmic ADP more rapidly increases and oxidative phosphorylation is more rapidly activated at the onset of contractions in MMKO compared with WT muscles.

  14. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  15. Twitching motility of bacteria with type-IV pili: Fractal walks, first passage time, and their consequences on microcolonies

    Science.gov (United States)

    Bisht, Konark; Klumpp, Stefan; Banerjee, Varsha; Marathe, Rahul

    2017-11-01

    A human pathogen, Neisseria gonorrhoeae (NG), moves on surfaces by attaching and retracting polymeric structures called Type IV pili. The tug-of-war between the pili results in a two-dimensional stochastic motion called twitching motility. In this paper, with the help of real-time NG trajectories, we develop coarse-grained models for their description. The fractal properties of these trajectories are determined and their influence on first passage time and formation of bacterial microcolonies is studied. Our main observations are as follows: (i) NG performs a fast ballistic walk on small time scales and a slow diffusive walk over long time scales with a long crossover region; (ii) there exists a characteristic persistent length lp*, which yields the fastest growth of bacterial aggregates or biofilms. Our simulations reveal that lp*˜L0.6 , where L ×L is the surface on which the bacteria move; (iii) the morphologies have distinct fractal characteristics as a consequence of the ballistic and diffusive motion of the constituting bacteria.

  16. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring.

    Science.gov (United States)

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C

    2009-02-01

    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  17. Maternal creatine supplementation during pregnancy prevents acute and long-term deficits in skeletal muscle after birth asphyxia: a study of structure and function of hind limb muscle in the spiny mouse.

    Science.gov (United States)

    LaRosa, Domenic A; Ellery, Stacey J; Snow, Rod J; Walker, David W; Dickinson, Hayley

    2016-12-01

    Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.

  18. American football and other sports injuries may cause migraine/persistent pain decades later and can be treated successfully with electrical twitch-obtaining intramuscular stimulation (ETOIMS).

    Science.gov (United States)

    Chu, J; McNally, S; Bruyninckx, F; Neuhauser, D

    2017-04-01

    Autonomous twitch elicitation at myofascial trigger points from spondylotic radiculopathies-induced denervation supersensitivity can provide favourable pain relief using electrical twitch-obtaining intramuscular stimulation (ETOIMS). To provide objective evidence that ETOIMS is safe and efficacious in migraine and persistent pain management due to decades-old injuries to head and spine from paediatric American football. An 83-year-old mildly hypertensive patient with 25-year history of refractory migraine and persistent pain self-selected to regularly receive fee-for-service ETOIMS 2/week over 20 months. He had 180 sessions of ETOIMS. Pain levels, blood pressure (BP) and heart rate/pulse were recorded before and immediately after each treatment alongside highest level of clinically elicitable twitch forces/session, session duration and intervals between treatments. Twitch force grades recorded were from 1 to 5, grade 5 twitch force being strongest. Initially, there was hypersensitivity to electrical stimulation with low stimulus parameters (500 µs pulse-width, 30 mA stimulus intensity, frequency 1.3 Hz). This resolved with gradual stimulus increments as tolerated during successive treatments. By treatment 27, autonomous twitches were noted. Spearman's correlation coefficients showed that pain levels are negatively related to twitch force, number of treatments, treatment session duration and directly related to BP and heart rate/pulse. Treatment numbers and session durations directly influence twitch force. At end of study, headaches and quality of life improved, hypertension resolved and antihypertensive medication had been discontinued. Using statistical process control methodology in an individual patient, we showed long-term safety and effectiveness of ETOIMS in simultaneous diagnosis, treatment, prognosis and prevention of migraine and persistent pain in real time obviating necessity for randomised controlled studies.

  19. Nandrolone decanoate treatment affects sarcoplasmic reticulum Ca(2+) ATPase function in skinned rat slow- and fast-twitch fibres.

    Science.gov (United States)

    Bouhlel, Aicha; Joumaa, Wissam H; Léoty, Claude

    2003-09-01

    The effects of anabolic-androgenic steroid administration on the function of the sarcoplasmic reticulum (SR) pump were investigated in chemically skinned fibres from the extensor digitorum longus (EDL) and soleus muscles of sedentary rats. Twenty male rats were divided into two groups, one group received an intramuscular injection of nandrolone decanoate (15 mg x kg(-1)) weekly for 8 weeks, the second received similar weekly doses of vehicle (sterile peanut oil). Compared with control muscles, nandrolone decanoate treatment reduced SR Ca(2+) loading in EDL and soleus fibres by 49% and 29%, respectively. In control and treated muscles, the rate of Ca(2+) leakage depended on the quantity of Ca(2+) loaded. Furthermore, for similar SR Ca(2+) contents, the Ca(2+) leakage rate was not significantly modified by nandrolone decanoate treatment. Nandrolone decanoate treatment thus affects Ca (2+) uptake by the SR in a fibre-type dependent manner.

  20. Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans).

    Science.gov (United States)

    Morrissette, Jeffery M; Franck, Jens P G; Block, Barbara A

    2003-03-01

    A thermogenic organ is found beneath the brain of billfishes (Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel (Scombridae). The heater organ has been shown to warm the brain and eyes up to 14 degrees C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR) enriched in Ca(2+)-ATPase (SERCA) pumps and ryanodine receptors (RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca(2+). In this study, Ca(2+) fluxes in heater SR vesicles derived from blue marlin (Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca(2+). Uptake of Ca(2+) was thapsigargin sensitive, and maximum loading ranged between 0.8 micro mol Ca(2+) mg(-1) protein and 1.0 micro mol Ca(2+) mg(-1) protein. Upon the addition of 10 mmol l(-1) caffeine or 350 micro mol l(-1) ryanodine, heater SR vesicles released only a small fraction of the loaded Ca(2+). However, ryanodine could elicit a much larger Ca(2+) release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca(2+) is elevated, a condition that normally closes RyRs. The fast Ca(2+) sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca(2+) cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs

  1. THE CONTRIBUTION OF 'RESTING' BODY MUSCLES TO THE SLOW COMPONENT OF PULMONARY OXYGEN UPTAKE DURING HIGH-INTENSITY CYCLING

    Directory of Open Access Journals (Sweden)

    Susan A. Ward

    2012-12-01

    Full Text Available Oxygen uptake (VO2 kinetics during moderate constant- workrate (WR exercise (>lactate-threshold (ӨL are well described as exponential. AboveӨL, these kinetics are more complex, consequent to the development of a delayed slow component (VO2sc, whose aetiology remains controversial. To assess the extent of the contribution to the VO2sc from arm muscles involved in postural stability during cycling, six healthy subjects completed an incremental cycle-ergometer test to the tolerable limit for estimation of ӨL and determination of peak VO2. They then completed two constant-WR tests at 90% of ӨL and two at 80% of ∆ (difference between ӨL and VO2peak. Gas exchange variables were derived breath-by-breath. Local oxygenation profiles of the vastus lateralis and biceps brachii muscles were assessed by near-infrared spectroscopy, with maximal voluntary contractions (MVC of the relevant muscles being performed post-exercise to provide a frame of reference for normalising the exercise-related oxygenation responses across subjects. Above supra-ӨL, VO2 rose in an exponential-like fashion ("phase 2, with a delayed VO2sc subsequently developing. This was accompanied by an increase in [reduced haemoglobin] relative to baseline (∆[Hb], which attained 79 ± 13 % (mean, SD of MVC maximum in vastus lateralis at end-exercise and 52 ± 27 % in biceps brachii. Biceps brachii ∆[Hb] was significantly correlated with VO2 throughout the slow phase. In contrast, for sub- L exercise, VO2 rose exponentially to reach a steady state with a more modest increase in vastus lateralis ∆[Hb] (30 ± 11 %; biceps brachii ∆[Hb] was minimally affected (8 ± 2 %. That the intramuscular O2 desaturation profile in biceps brachii was proportional to that for VO2sc during supra-ӨL cycle ergometry is consistent with additional stabilizing arm work contributing to the VO2sc

  2. Disturbances of the sarcoplasmic reticulum and transverse tubular system in 24-h electrostimulated fast-twitch skeletal muscle

    DEFF Research Database (Denmark)

    Frías, J A; Cadefau, J A; Prats, C

    2005-01-01

    Chronic low-frequency stimulation of rabbit tibialis anterior muscle over a 24-h period induces a conspicuous loss of isometric tension that is unrelated to muscle energy metabolism (J.A. Cadefau, J. Parra, R. Cusso, G. Heine, D. Pette, Responses of fatigable and fatigue-resistant fibres of rabbit...... muscle to low-frequency stimulation, Pflugers Arch. 424 (1993) 529-537). To assess the involvement of sarcoplasmic reticulum and transverse tubular system in this force impairment, we isolated microsomal fractions from stimulated and control (contralateral, unstimulated) muscles on discontinuous sucrose...... of muscles stimulated for 24 h underwent acute changes in the pattern of protein bands. First, light fractions from longitudinal sarcoplasmic reticulum, enriched in Ca2+-ATPase activity, R1 and R2, were greatly reduced (67% and 51%, respectively); this reduction was reflected in protein yield of crude...

  3. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles

    DEFF Research Database (Denmark)

    Søgaard, Karen; Gandevia, Simon C; Todd, Gabrielle

    2006-01-01

    Subjects quickly fatigue when they perform maximal voluntary contractions (MVCs). Much of the loss of force is from processes within muscle (peripheral fatigue) but some occurs because voluntary activation of the muscle declines (central fatigue). The role of central fatigue during submaximal...... contractions is not clear. This study investigated whether central fatigue developed during prolonged low-force voluntary contractions. Subjects (n=9) held isometric elbow flexions of 15% MVC for 43 min. Voluntary activation was measured during brief MVCs every 3 min. During each MVC, transcranial magnetic...... several minutes while MVC torque only returned to approximately 85% baseline. The resting twitch showed no recovery. Thus, as well as fatigue in the muscle, the prolonged low-force contraction produced progressive central fatigue, and some of this impairment of the subjects' ability to drive the muscle...

  4. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  5. A system for time-resolved x-ray diffraction and its application to muscle contraction

    International Nuclear Information System (INIS)

    Amemiya, Yoshiyuki; Hashizume, Hiroo.

    1979-01-01

    A data-collection system has been built which permits time-resolved studies of X-ray diffraction diagrams obtained from contracting muscle on millisecond time scale. The system consists of a linear delay-line position sensitive proportional counter (PSPC), a special data transfer unit and an on-line computer. The PSPC used with a mirror-monochromator camera can detect equatorial reflections from stimulated muscle in a total exposure time of a few seconds. Time-resolved data-collection is achieved by stimulating muscle at a regular time interval, dividing a complete cycle of muscle contraction into many successive time slices and accumulating in computer memory X-ray data for each time slice from many repeated cycles of stimulation. The performances of the system have been demonstrated by recording equatorial reflections from frog skeletal muscle during isometric and isotonic twitch with a time resolution of 25 ms. (author)

  6. Effects of electric stimulation of the hunger center in the lateral hypothalamus on slow electric activity and spike activity of fundal and antral stomach muscles in rabbits under conditions of hunger and satiation.

    Science.gov (United States)

    Kromin, A A; Zenina, O Yu

    2013-09-01

    In chronic experiments on rabbits, the effect of electric stimulation of the hunger center in the lateral hypothalamus on myoelectric activity of the fundal and antral parts of the stomach was studied under conditions of hunger and satiation in the absence of food. Stimulation of the lateral hypothalamus in rabbits subjected to 24-h food deprivation and in previously fed rabbits produced incessant seeking behavior, which was followed by reorganization of the structure of temporal organization of slow wave electric activity of muscles of the stomach body and antrum specific for hungry and satiated animals. Increased hunger motivation during electric stimulation of the lateral hypothalamus manifested in the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles in rabbits subjected to 24-h food deprivation in the replacement of bimodal distribution of slow wave periods to a trimodal type typical of 2-day deprivation, while transition from satiation to hunger caused by electric stimulation of the lateral hypothalamus was associated with a shift from monomodal distributions of slow wave periods to a bimodal type typical of 24-h deprivation. Reorganization of the structure of temporal organization of slow wave electric activity of the stomach body and antrum muscles during electric stimulation of the lateral hypothalamus was determined by descending inhibitory influences of food motivational excitation on activity of the myogenic pacemaker of the lesser curvature of the stomach.

  7. Inhibition of sarcoplasmic Ca2+-ATPase increases caffeine- and halothane-induced contractures in muscle bundles of malignant hyperthermia susceptible and healthy individuals

    Directory of Open Access Journals (Sweden)

    Roewer Norbert

    2005-06-01

    Full Text Available Abstract Background Malignant hyperthermia (MH is triggered by halogenated anaesthetics and depolarising muscle relaxants, leading to an uncontrolled hypermetabolic state of skeletal muscle. An uncontrolled sarcoplasmic Ca2+ release is mediated via the ryanodine receptor. A compensatory mechanism of increased sarcoplasmic Ca2+-ATPase activity was described in pigs and in transfected cell lines. We hypothesized that inhibition of Ca2+ reuptake via the sarcoplasmic Ca2+-ATPase (SERCA enhances halothane- and caffeine-induced muscle contractures in MH susceptible more than in non-susceptible skeletal muscle. Methods With informed consent, surplus muscle bundles of 7 MHS (susceptible, 7 MHE (equivocal and 16 MHN (non-susceptible classified patients were mounted to an isometric force transducer, electrically stimulated, preloaded and equilibrated. Following 15 min incubation with cyclopiazonic acid (CPA 25 μM, the European MH standard in-vitro-contracture test protocol with caffeine (0.5; 1; 1.5; 2; 3; 4 mM and halothane (0.11; 0.22; 0.44; 0.66 mM was performed. Data as median and quartiles; Friedman- and Wilcoxon-test for differences with and without CPA; p Results Initial length, weight, maximum twitch height, predrug resting tension and predrug twitch height of muscle bundles did not differ between groups. CPA increased halothane- and caffeine-induced contractures significantly. This increase was more pronounced in MHS and MHE than in MHN muscle bundles. Conclusion Inhibition of the SERCA activity by CPA enhances halothane- and caffeine-induced contractures especially in MHS and MHE skeletal muscle and may help for the diagnostic assignment of MH susceptibility. The status of SERCA activity may play a significant but so far unknown role in the genesis of malignant hyperthermia.

  8. Systematic review of the synergist muscle ablation model for compensatory hypertrophy

    Directory of Open Access Journals (Sweden)

    Stella Maris Lins Terena

    Full Text Available Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training regarding the characteristics involved in the hypertrophy process (acute and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.

  9. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle

    DEFF Research Database (Denmark)

    Ploug, T; Stallknecht, B M; Pedersen, O

    1990-01-01

    exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training...... session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold......The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers...

  10. Total and regional blood flows in vascularized skeletal muscle grafts in rabbits

    International Nuclear Information System (INIS)

    Burton, H.W.; Stevenson, T.R.; Dysko, R.C.; Gallagher, K.P.; Faulkner, J.A.

    1988-01-01

    The transplantation of whole skeletal muscles is a common clinical procedure. Although atypical blood flows have been reported in small free muscle grafts, the blood flow of large neurovascular-intact (NVI) and neurovascular-anastomosed (NVA) grafts have not been measured. Because the maximum specific force (N/cm 2 ) of NVI and NVA grafts is 65% that of control muscles, we hypothesized that total and regional blood flows of NVI and NVA grafts at rest and during twitch contractions are significantly lower than lower flows of control muscles. In rabbits, blood flows of control rectus femoris (RFM) muscles and NVI and NVA grafts of RFM muscles were measured by the radioactive-microsphere technique. Total blood flows in grafts were not different from the control RFM muscle values, except for a higher resting flow in NVA grafts and a lower flow at 3 Hz in NVI grafts. Minor variations in regional flows were observed. We conclude that the operative procedures of grating and repair of blood vessels affect the vascular bed of muscles minimally, and the deficits observed in grafts do not arise from inadequate perfusion

  11. Influence of temperature on muscle recruitment and muscle function in vivo.

    Science.gov (United States)

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  12. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md Asaduzzaman

    2018-02-01

    Full Text Available In modern aquaculture, dietary supplementation of probiotics is a novel approach for enhancing growth performance of slow-growing fish. However, the actual role of probiotics in regulating muscle growth at cellular and molecular levels in fish still needs to be clarified. In this study, we hypothesized that host gut derived probiotic bacteria would enhance cellular muscle growth, and upregulate growth-related gene expression in slow-growing Malaysian mahseer Tor tambroides. Therefore, three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastro-intestinal tract of T. tambroides and screened based on their digestive enzyme activity. A fishmeal and casein based control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each isolated host-derived bacteria, suspended in sterile phosphate buffered saline (PBS, to achieve a final concentration of approximately 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (initial weight 1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the fish body weight per day for 90 days. Growth performance (weight gain and specific growth rate of T. tambroides juveniles were significantly higher in Alcaligenes sp. AFG22 and Bacillus sp. AHG22 supplemented diet treatments. Muscle morphometric analysis revealed that dietary supplementation of host-associated probiotic bacteria did not influence the frequency distribution of hyperplastic (class 10 small diameter fibers (≤10 μm. However, hypertrophic (Class 50, Class 60 and Class 70 large diameter fibers (>50 μm were significantly higher in Alcaligenes sp. AFG22 and Bacillus sp. AHG22 supplemented treatments, indicating that increased growth rate of T

  13. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  14. Spatial heterogeneity of metabolism in skeletal muscle in vivo studied by 31P-NMR spectroscopy

    International Nuclear Information System (INIS)

    Challiss, R.A.J.; Blackledge, M.J.; Radda, G.K.

    1988-01-01

    Phase modulated rotating-frame imaging, a localization technique for phosphorus nuclear magnetic resonance spectroscopy, has been applied to obtain information on heterogeneity of phosphorus-containing metabolites in skeletal muscle of the rat in vivo. The distal muscles of the rat hindlimb have been studied at rest and during steady-state isometric twitch contraction; the use of a transmitter surface coil and an electrically isolated, orthogonal receiver Helmholtz coil ensure accurate spatial assignment (1 mm resolution). At rest, intracellular pH was higher and PCr/(PCr + P i ) was lower in deeper muscle compared with superficial muscle of the distal hindlimb. Upon steady-state stimulation, the relatively more alkaline pH of deep muscle was maintained, whereas greater changes in PCr/(PCr + P i ) and P i /ATP occurred in the superficial muscle layer. This method allows rapid (75 min for each spectral image) acquisition of quantitative information on metabolic heterogeneity in vivo

  15. Baseline muscle mass is a poor predictor of functional overload-induced gain in the mouse model

    Directory of Open Access Journals (Sweden)

    Audrius Kilikevicius

    2016-11-01

    Full Text Available Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response.The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n=17, BALB/cByJ (n=7, DBA/2J (D2, n=12, B6.A-(rs3676616-D10Utsw1/Kjn (B6.A, n=9, C57BL/6J-Chr10A/J/NaJ (B6.A10, n=8, BEH+/+ (n=11, BEH (n=12 and DUHi (n=12, were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline varied from 5.2±07 mg soleus and 11.4±1.3 mg plantaris in D2 mice to 18.0±1.7 mg soleus in DUHi and 43.7±2.6 mg plantaris in BEH (p<0.001 for both muscles. In addition, soleus in the B6.A10 strain was ~40% larger (p<0.001 compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p<0.01 and plantaris (p<0.02 even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth and maintenance, and in the process of adaptive

  16. Altered Elementary Calcium Release Events and Enhanced Calcium Release by Thymol in Rat Skeletal Muscle

    OpenAIRE

    Szentesi, Péter; Szappanos, Henrietta; Szegedi, Csaba; Gönczi, Monika; Jona, István; Cseri, Julianna; Kovács, László; Csernoch, László

    2004-01-01

    The effects of thymol on steps of excitation-contraction coupling were studied on fast-twitch muscles of rodents. Thymol was found to increase the depolarization-induced release of calcium from the sarcoplasmic reticulum, which could not be attributed to a decreased calcium-dependent inactivation of calcium release channels/ryanodine receptors or altered intramembrane charge movement, but rather to a more efficient coupling of depolarization to channel opening. Thymol increased ryanodine bind...

  17. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  18. Functional Segregation within the Muscles of Aquatic Propulsion in the Asiatic Water Monitor (Varanus salvator

    Directory of Open Access Journals (Sweden)

    Bruce Arthur Young

    2016-09-01

    Full Text Available Water monitor lizards (Varanus salvator swim using sinusoidal oscillations generated at the base of their long (50% of total body length tail. In an effort to determine which level of the structural/organizational hierarchy of muscle is associated with functional segregation between the muscles of the tail base, an array of muscle features — myosin heavy chain profiles, enzymatic fiber types, twitch and tetanic force production, rates of fatigue, muscle compliance, and electrical activity patterns — were quantitated. The two examined axial muscles, longissimus and iliocaudalis, were generally similar at the molecular, biochemical, and physiological levels, but differed at the biomechanics level and in their activation pattern. The appendicular muscle examined, caudofemoralis, differed from the axial muscles particularly at the molecular and physiological levels, and it exhibited a unique compliance profile and pattern of electrical activation. There were some apparent contradictions between the different structural/organizational levels examined. These contradictions, coupled with a unique myosin heavy chain profile, lead to the hypothesis that there are previously un-described molecular/biochemical specializations within varanid skeletal muscles.

  19. Acetyl group availability influences phosphocreatine degradation even during intense muscle contraction.

    Science.gov (United States)

    Timmons, James A; Constantin-Teodosiu, Dumitru; Poucher, Simon M; Greenhaff, Paul L

    2004-12-15

    We previously established that activation of the pyruvate dehydrogenase complex (PDC) using dichloroacetate (DCA) reduced the reliance on substrate-level phosphorylation (SLP) at the onset of exercise, with normal and reduced blood flow. PDC activation also reduced fatigue development during contraction with reduced blood flow. Since these observations, several studies have re-evaluated our observations. One study demonstrated a performance benefit without a reduction in SLP, raising a question mark over PDC's role in the regulation of ATP regeneration and our interpretation of fatigue mechanisms. Using a model of muscle contraction similar to the conflicting study (i.e. tetanic rather than twitch stimulation), we re-examined this question. Using canine skeletal muscle, one group was infused with saline while the other was pretreated with 300 mg (kg body mass)(-1) DCA. Muscle biopsies were taken at rest, peak tension (1 min) and after 6 min of tetanic electrical stimulation (75 ms on-925 ms off per second) and blood flow was limited to 25% of normal values observed during contraction. DCA reduced phosphocreatine (PCr) degradation by 40% during the first minute of contraction, but did not prevent the almost complete depletion of PCr stores at 6 min, while muscle fatigue did not differ between the two groups. During intermittent tetanic stimulation PCr degradation was 75% greater than with our previous 3 Hz twitch contraction protocol, despite a similar rate of oxygen consumption at 6 min. Thus, in the present study enhanced acetyl group availability altered the time course of PCr utilization but did not prevent the decline towards depletion. Consistent with our earlier conclusions, DCA pretreatment reduces muscle fatigue only when SLP is attenuated. The present study and our met-analysis indicates that enhanced acetyl group availability results in a readily measurable reduction in SLP when the initial rate of PCr utilization is approximately 1 mmol (kg dry mass)(-1

  20. Alpha-adrenergic receptors in rat skeletal muscle

    DEFF Research Database (Denmark)

    Rattigan, S; Appleby, G J; Edwards, S J

    1986-01-01

    Sarcolemma-enriched preparations from muscles rich in slow oxidative red fibres contained specific binding sites for the alpha 1 antagonist, prazosin (e.g. soleus Kd 0.13 nM, Bmax 29 fmol/mg protein). Binding sites for prazosin were almost absent from white muscle. Displacement of prazosin bindin...... adrenergic receptors are present on the sarcolemma of slow oxidative red fibres of rat skeletal muscle. The presence provides the mechanistic basis for apparent alpha-adrenergic effects to increase glucose and oxygen uptake in perfused rat hindquarter....

  1. Leucine Supplementation Accelerates Connective Tissue Repair of Injured Tibialis Anterior Muscle

    Directory of Open Access Journals (Sweden)

    Marcelo G. Pereira

    2014-09-01

    Full Text Available This study investigated the effect of leucine supplementation on the skeletal muscle regenerative process, focusing on the remodeling of connective tissue of the fast twitch muscle tibialis anterior (TA. Young male Wistar rats were supplemented with leucine (1.35 g/kg per day; then, TA muscles from the left hind limb were cryolesioned and examined after 10 days. Although leucine supplementation induced increased protein synthesis, it was not sufficient to promote an increase in the cross-sectional area (CSA of regenerating myofibers (p > 0.05 from TA muscles. However, leucine supplementation reduced the amount of collagen and the activation of phosphorylated transforming growth factor-β receptor type I (TβR-I and Smad2/3 in regenerating muscles (p < 0.05. Leucine also reduced neonatal myosin heavy chain (MyHC-n (p < 0.05, increased adult MyHC-II expression (p < 0.05 and prevented the decrease in maximum tetanic strength in regenerating TA muscles (p < 0.05. Our results suggest that leucine supplementation accelerates connective tissue repair and consequent function of regenerating TA through the attenuation of TβR-I and Smad2/3 activation. Therefore, future studies are warranted to investigate leucine supplementation as a nutritional strategy to prevent or attenuate muscle fibrosis in patients with several muscle diseases.

  2. Glucose stimulates protein synthesis in skeletal muscle of neonatal pigs through an AMPK- and mTOR-independent process.

    Science.gov (United States)

    Jeyapalan, Asumthia S; Orellana, Renan A; Suryawan, Agus; O'Connor, Pamela M J; Nguyen, Hanh V; Escobar, Jeffery; Frank, Jason W; Davis, Teresa A

    2007-08-01

    Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E.eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E.eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.

  3. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    International Nuclear Information System (INIS)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-01-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC 50 = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC 50 = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1 2 β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC 50 = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1 2 β1γδ) than for the mouse (α1 2 β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  4. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    Science.gov (United States)

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P exercise. Similarly, the median frequency increased during eccentric (P exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P unit torque was lower for eccentric than concentric contractions (P exercise resulted in significant isometric strength loss (P exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  5. Reduced phrenic motoneuron recruitment during sustained inspiratory threshold loading compared to single-breath loading: a twitch interpolation study

    Directory of Open Access Journals (Sweden)

    Mathieu Raux

    2016-11-01

    Full Text Available In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganisation and automatisation, but could proceed from sensory and/or affective habituation. To corroborate the existence of motor reorganisation between single-breath and sustained inspiratory loading (namely changes in motor neurones recruitment, we conducted a diaphragm twitch interpolation study based on the hypothesis that motor reorganisation should result in changes in the twitch interpolation slope. Fourteen healthy subjects (age: 21 – 40 years were studied. Bilateral phrenic stimulation was delivered at rest, upon prepared and targeted voluntary inspiratory efforts (vol, upon unprepared inspiratory efforts against a single-breath inspiratory threshold load (single-breath, and upon sustained inspiratory efforts against the same type of load (continuous. The slope of the relationship between diaphragm twitch transdiaphragmatic pressure and the underlying transdiaphragmatic pressure was –1.1 ± 0.2 during vol, –1.5 ± 0.7 during single-breath, and -0.6 ± 0.4 during continuous (all slopes expressed in percent of baseline.percent of baseline-1 all comparisons significant at the 5% level. The contribution of the diaphragm to inspiration, as assessed by the gastric pressure to transdiaphragmatic pressure ratio, was 31 ± 17 % during vol, 22 ± 16 % during single-breath (p=0.13, and 19 ± 9 % during continuous (p = 0.0015 vs. vol. This study shows that the relationship between the amplitude of the transdiaphragmatic pressure produced by a diaphragm twitch and its counterpart produced by the underlying diaphragm contraction is not unequivocal. If twitch interpolation is interpreted as

  6. Músculo tiroaritenoideo e som basal: uma revisão de literatura Thyroarytenoid muscle and vocal fry: a literature review

    Directory of Open Access Journals (Sweden)

    Carla Aparecida Cielo

    2011-09-01

    last 20 years on the subject was performed in the databases LILACS, SciELO, PUBMED, Web of Science and Google Scholar. It was found that the internal beam of the TA has slow twitch fibers, isotonic, resistant to fatigue; the external beam provides fast twitch, fatigable and isometric fibers. The VF is characterized by the perception of the vibration of the glottal pulses during the emission of the lowest frequencies in the vocal range (crackling in bass or vocal fry, mainly by the action of the TA, especially its inner portion, which shows evident shortening, dropping the mucosa in great volume along the free edge, increasing subglottic pressure and jitter, shimmer and noise levels, and reducing the airflow. Based on the literature, the isometric exercise with the external TA happens with VF sustained in the lowest possible frequency to the subject (maximum contraction, for six seconds, five to ten times daily, consistent with its predominance of fast twitch fibers. In the isotonic exercise with the internal TA, high sounds must be to stretch the muscle, alternating emissions by VF (concentric contraction and in modal register and falsetto head (high-pitched sounds (eccentric contraction with several daily series of eight to 12 repetitions, consistent with the predominance of slow twitch fibers.

  7. Slow component of VO2 kinetics: Mechanistic bases and practical applications

    DEFF Research Database (Denmark)

    Jones, Andrew M; Grassi, Bruno; Christensen, Peter Møller

    2011-01-01

    with the progressive recruitment of additional (type II) muscle fibers that are presumed to have lower efficiency. Recent studies, however, indicate that muscle efficiency is also lowered (resulting in a 'mirror-image'V¿O2 slow component) during fatiguing, high-intensity exercise in which additional fiber recruitment...

  8. Hsp72 preserves muscle function and slows progression of severe muscular dystrophy.

    Science.gov (United States)

    Gehrig, Stefan M; van der Poel, Chris; Sayer, Timothy A; Schertzer, Jonathan D; Henstridge, Darren C; Church, Jarrod E; Lamon, Severine; Russell, Aaron P; Davies, Kay E; Febbraio, Mark A; Lynch, Gordon S

    2012-04-04

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.

  9. Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture

    Science.gov (United States)

    Kubis, Hans-Peter; Haller, Ernst-August; Wetzel, Petra; Gros, Gerolf

    1997-01-01

    A primary muscle cell culture derived from newborn rabbit muscle and growing on microcarriers in suspension was established. When cultured for several weeks, the myotubes in this model develop the completely adult pattern of fast myosin light and heavy chains. When Ca2+ ionophore is added to the culture medium on day 11, raising intracellular [Ca2+] about 10-fold, the myotubes develop to exhibit properties of an adult slow muscle by day 30, expressing slow myosin light as well as heavy chains, elevated citrate synthase, and reduced lactate dehydrogenase. The remarkable plasticity of these myotubes becomes apparent, when 8 days after withdrawal of the ionophore a marked slow-to-fast transition, as judged from the expression of isomyosins and metabolic enzymes, occurs. PMID:9108130

  10. An Intermediate in the evolution of superfast sonic muscles

    Directory of Open Access Journals (Sweden)

    Mok Hin-Kiu

    2011-11-01

    Full Text Available Abstract Background Intermediate forms in the evolution of new adaptations such as transitions from water to land and the evolution of flight are often poorly understood. Similarly, the evolution of superfast sonic muscles in fishes, often considered the fastest muscles in vertebrates, has been a mystery because slow bladder movement does not generate sound. Slow muscles that stretch the swimbladder and then produce sound during recoil have recently been discovered in ophidiiform fishes. Here we describe the disturbance call (produced when fish are held and sonic mechanism in an unrelated perciform pearl perch (Glaucosomatidae that represents an intermediate condition in the evolution of super-fast sonic muscles. Results The pearl perch disturbance call is a two-part sound produced by a fast sonic muscle that rapidly stretches the bladder and an antagonistic tendon-smooth muscle combination (part 1 causing the tendon and bladder to snap back (part 2 generating a higher-frequency and greater-amplitude pulse. The smooth muscle is confirmed by electron microscopy and protein analysis. To our knowledge smooth muscle attachment to a tendon is unknown in animals. Conclusion The pearl perch, an advanced perciform teleost unrelated to ophidiiform fishes, uses a slow type mechanism to produce the major portion of the sound pulse during recoil, but the swimbladder is stretched by a fast muscle. Similarities between the two unrelated lineages, suggest independent and convergent evolution of sonic muscles and indicate intermediate forms in the evolution of superfast muscles.

  11. Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C

    Science.gov (United States)

    Vandenboom, Rene

    2014-01-01

    Ca2+ entry during the action potential stimulates muscle contraction. During repetitive low frequency stimulation, skeletal muscle undergoes staircase potentiation (SP), a progressive increase in the peak twitch force induced by each successive stimulus. Multiple mechanisms, including myosin regulatory light chain phosphorylation, likely contribute to SP, a temperature-dependent process. Here, we used the Ca2+-sensitive fluorescence indicators acetoxymethyl (AM)-furaptra and AM-fura-2 to examine the intracellular Ca2+ transient (ICT) and the baseline Ca2+ level at the onset of each ICT during SP at 30 and 37°C in mouse lumbrical muscle. The stimulation protocol, 8 Hz for 8 s, resulted in a 27 ± 3% increase in twitch force at 37°C and a 7 ± 2% decrease in twitch force at 30°C (P < 0.05). Regardless of temperature, the peak rate of force production (+df/dt) was higher in all twitches relative to the first twitch (P < 0.05). Consistent with the differential effects of stimulation on twitch force at the two temperatures, raw ICT amplitude decreased during repetitive stimulation at 30°C (P < 0.05) but not at 37°C. Cytosolic Ca2+ accumulated during SP such that baseline Ca2+ at the onset of ICTs occurring late in the train was higher (P < 0.05) than that of those occurring early in the train. ICT duration increased progressively at both temperatures. This effect was not entirely proportional to the changes in twitch duration, as twitch duration characteristically decreased before increasing late in the protocol. This is the first study identifying a changing ICT as an important, and temperature-sensitive, modulator of muscle force during repetitive stimulation. Moreover, we extend previous observations by demonstrating that contraction-induced increases in baseline Ca2+ coincide with greater +df/dt but not necessarily with higher twitch force. PMID:25422504

  12. Long-term high-level exercise promotes muscle reinnervation with age.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra

    2014-04-01

    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.

  13. Factors associated with night-time calf muscle cramps: a case-control study.

    Science.gov (United States)

    Hawke, Fiona; Chuter, Vivienne; Burns, Joshua

    2013-03-01

    Although highly prevalent and painful, night-time calf muscle cramping is poorly understood, and no treatment has shown consistent efficacy or safety. One hundred sixty adults were recruited from New South Wales, Australia, including 80 who had night-time calf cramping at least once per week and 80 age- and gender-matched adults who did not. Participants were assessed using reliable tests of lower limb strength, flexibility, morphometrics, circulation, and sensation, and were questioned about health and lifestyle factors, diet, medications, exercise, symptomatology, sleeping habits, and footwear. Conditional logistic regression identified 3 factors independently associated with night-time calf muscle cramps: muscle twitching (OR 4.6, 95% CI 1.6-15.5, P = 0.01); lower limb tingling (OR 4.1, 95% CI 1.6-10.3, P = 0.003); and foot dorsiflexion weakness (OR 1.02, 95% CI 1.01-1.03, P = 0.002), which represented other measures of lower limb weakness in the model. Night-time calf muscle cramps were associated with markers of neurological dysfunction and potential musculoskeletal therapeutic targets. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  14. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (pmotor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Gunnarsson, Thomas Gunnar Petursson; Thomassen, Martin

    2015-01-01

    perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50...... DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ...... of oxidative enzymes in fast-twitch fibers, and did not change V˙O2 kinetics....

  16. Metabolic and functional effects of beta-hydroxy-beta-methylbutyrate (HMB) supplementation in skeletal muscle.

    Science.gov (United States)

    Pinheiro, Carlos Hermano da Justa; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Souza, Alcione Lescano; Vitzel, Kaio Fernando; Nachbar, Renato Tadeu; Nunes, Maria Tereza; Curi, Rui

    2012-07-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

  17. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    Science.gov (United States)

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Objectivity of two methods of differentiating fibre types and repeatability of measurements by application of the TEMA image analysis system.

    Science.gov (United States)

    Henckel, P; Ducro, B; Oksbjerg, N; Hassing, L

    1998-01-01

    The objectivity of two of the most widely used methods for differentiation of fibre types, i.e. 1) the myosin ATP-ase method (Brooke and Kaiser, 1970a,b) and 2) the combined method, by which the myosin ATP-ase reaction is used to differentiate between fast and slow twitch fibres and NADH-tetrazolium reductase activity is used to identify the subgroups of fast twitch fibres (Ashmore and Doerr, 1970, Peter et al., 1972), was assessed in muscle samples from horses, calves and pigs. We also assessed the objectivity of the alpha-amylase-PAS preparation for the visualisation of capillaries (Andersen, 1975) in these species. For the purpose of reducing the time costs of histochemical analysis of muscle samples, we have developed an interactive image analysis system which is described. All analyses are performed on this system. In accordance with several other investigations, differences between the two methods of differentiating fibre types were found only for the relative distribution of the fast-twitch fibre subgroups (p 87%), the impact of differences in pre-requisites (varied degrees of overlap between the fibre types) for performing the differentiation by the combined method raises a question of the reliability of this method. Apparently, no general rules for comparison of results of distribution of the two subgroups of fast twitch fibres by the two methods are applicable. The alpha-amylase-PAS method was found to be a fairly objective method to identify capillaries in muscles from horses, calves and pigs. However, as capillarity described in combination with other traits to give an indication of diffusion characteristics is significantly influenced by person, it is recommended that the same person perform all the analysis of a project. In addition to the methodological results in this study, we have shown that by application of the TEMA image analysis system, which is more rapid compared with the time-consuming traditional method for evaluation of histochemical

  19. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Grandič, Marjana [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia); Aráoz, Romulo; Molgó, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Turk, Tom; Sepčić, Kristina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Benoit, Evelyne [CNRS, Institut de Neurobiologie Alfred Fessard, FRC 2118, Laboratoire de Neurobiologie et Développement, UPR 3294, F-91198 Gif-sur-Yvette Cedex (France); Frangež, Robert, E-mail: robert.frangez@vf.uni-lj.si [Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana (Slovenia)

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  20. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.

    Science.gov (United States)

    Dowden, Brett R; Wilder, Andrew M; Hiatt, Scott D; Normann, Richard A; Brown, Nicholas A T; Clark, Gregory A

    2009-12-01

    The muscles of the hamstring group can produce different combinations of hip and knee torque. Thus, the ability to activate the different hamstring muscles selectively is of particular importance in eliciting functional movements such as stance and gait in a person with spinal cord injury. We investigated the ability of intrafascicular stimulation of the muscular branch of the sciatic nerve to recruit the feline hamstring muscles in a selective and graded fashion. A Utah Slanted Electrode Array, consisting of 100 penetrating microelectrodes, was implanted into the muscular branch of the sciatic nerve in six cats. Muscle twitches were evoked in the three compartments of biceps femoris (anterior, middle, and posterior), as well as semitendinosus and semimembranosus, using pulse-width modulated constant-voltage pulses. The resultant compound muscle action potentials were recorded using intramuscular fine-wire electrodes. 74% of the electrodes per implant were able to evoke a threshold response in these muscles, and these electrodes were evenly distributed among the instrumented muscles. Of the five muscles instrumented, on average 2.5 could be selectively activated to 90% of maximum EMG, and 3.5 could be selectively activated to 50% of maximum EMG. The muscles were recruited selectively with a mean stimulus dynamic range of 4.14 +/- 5.05 dB between threshold and either spillover to another muscle or a plateau in the response. This selective and graded activation afforded by intrafascicular stimulation of the muscular branch of the sciatic nerve suggests that it is a potentially useful stimulation paradigm for eliciting distinct forces in the hamstring muscle group in motor neuroprosthetic applications.

  1. Jaw muscle fiber type distribution in Hawaiian gobioid stream fishes: histochemical correlations with feeding ecology and behavior.

    Science.gov (United States)

    Maie, Takashi; Meister, Andrew B; Leonard, Gerald L; Schrank, Gordon D; Blob, Richard W; Schoenfuss, Heiko L

    2011-12-01

    Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  3. [Cellular mechanism of the generation of spontaneous activity in gastric muscle].

    Science.gov (United States)

    Nakamura, Eri; Kito, Yoshihiko; Fukuta, Hiroyasu; Yanai, Yoshimasa; Hashitani, Hikaru; Yamamoto, Yoshimichi; Suzuki, Hikaru

    2004-03-01

    In gastric smooth muscles, interstitial cells of Cajal (ICC) might be the pacemaker cells of spontaneous activities since ICC are rich in mitochondria and are connected with smooth muscle cells via gap junctions. Several types of ICC are distributed widely in the stomach wall. A group of ICC distributed in the myenteric layer (ICC-MY) were the pacemaker cells of gastrointestinal smooth muscles. Pacemaker potentials were generated in ICC-MY, and the potentials were conducted to circular smooth muscles to trigger slow waves and also conducted to longitudinal muscles to form follower potentials. In circular muscle preparations, interstitial cells distributed within muscle bundles (ICC-IM) produced unitary potentials, which were conducted to circular muscles to form slow potentials by summation. In mutant mice lacking inositol trisphosphate (IP(3)) receptor, slow waves were absent in gastric smooth muscles. The generation of spontaneous activity was impaired by the inhibition of Ca(2+)-release from internal stores through IP(3) receptors, inhibition of mitochondrial Ca(2+)-handling with proton pump inhibitors, and inhibition of ATP-sensitive K(+)-channels at the mitochondrial inner membrane. These results suggested that mitochondrial Ca(2+)-handling causes the generation of spontaneous activity in pacemaker cells. Possible involvement of protein kinase C (PKC) in the Ca(2+) signaling system was also suggested.

  4. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  5. A proteomics analysis for certain signature proteins of rabbit lacrimal passages after 125I seeds brachytherapy

    International Nuclear Information System (INIS)

    Li Dandan; Liu Lin; Gao Shi; Qi Liangchen; Ma Qingjie; Jin Longyun

    2010-01-01

    To search for certain signature proteins and the expression profiles in lacrimal passage stenosis, rabbit models of lacrimal passage stenosis were treated by 125 I seed brachytherapy. All the signature proteins were separated by two-dimensional electrophoresis, and identified by mass spectrometry. The results show that the up-regulated proteins are peptidyl-prolyl cis-trans isomerase A (PPIase A), and epidermal fatty acid-binding protein (E-FABP), while the down-regulated proteins are myosin light chain 1 (isomer of skeletal muscle), myosin light polypeptide 6 (isomer 1 of smooth muscle and non-muscle), myosin light chain 1 (isomer of slow-twitch muscle A), isomer 2 of ERC protein 2, and α-crystalline family protein. The proteins may play a role in healing the wound and regulating synaptic active zone of neurons due to correlation to cell apoptosis, proliferation and migration of smooth muscle cell. These provide molecular mechanism for preventing stenosis and restenosis of lacrimal passage. (authors)

  6. Regulation of myostatin expression is associated with growth and muscle development in commercial broiler and DMC muscle

    NARCIS (Netherlands)

    Dou, Tengfei; Li, Zhengtian; Wang, Kun; Liu, Lixian; Rong, Hua; Xu, Zhiqiang; Huang, Ying; Gu, Dahai; Chen, Xiaobo; Hu, Wenyuan; Zhang, Jiarong; Zhao, Sumei; Jois, Markandeya; Li, Qihua; Ge, Changrong; Pas, te Marinus F.W.; Jia, Junjing

    2018-01-01

    Myostatin is a negative regulator of skeletal muscle growth. Muscle tissue is the largest tissue in the body and influences body growth. Commercial Avian broiler chickens are selected for high growth rate and muscularity. Daweishan mini chickens are a slow growing small-sized chicken breed. We

  7. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  8. Velocity-specific strength recovery after a second bout of eccentric exercise.

    Science.gov (United States)

    Barss, Trevor S; Magnus, Charlene R A; Clarke, Nick; Lanovaz, Joel L; Chilibeck, Philip D; Kontulainen, Saija A; Arnold, Bart E; Farthing, Jonathan P

    2014-02-01

    A bout of eccentric exercise (ECC) has the protective effect of reducing muscle damage during a subsequent bout of ECC known as the "repeated bout effect" (RBE). The purpose of this study was to determine if the RBE is greater when both bouts of ECC are performed using the same vs. different velocity of contraction. Thirty-one right-handed participants were randomly assigned to perform an initial bout of either fast (3.14 rad·s [180°·s]) or slow (0.52 rad·s [30°·s]) maximal isokinetic ECCs of the elbow flexors. Three weeks later, the participants completed another bout of ECC at the same velocity (n = 16), or at a different velocity (n = 15). Indirect muscle damage markers were measured before, immediately after, and at 24, 48, and 72 hours postexercise. Measures included maximal voluntary isometric contraction (MVC) strength (dynamometer), muscle thickness (MT; ultrasound), delayed onset muscle soreness (DOMS; visual analog scale), biceps and triceps muscle activation amplitude (electromyography), voluntary activation (interpolated twitch), and twitch torque. After the repeated bout, MVC strength recovered faster compared with the same time points after the initial bout for only the same velocity group (p = 0.017), with no differences for all the other variables. Irrespective of velocity, MT and DOMS were reduced after the repeated bout compared with that of the initial bout at 24, 48, and 72 hours with a corresponding increase in TT at 72 hours (p effects contribute to the RBE. The current findings support the idea of multiple mechanisms contributing to the RBE.

  9. Lower Extremity Muscle Activity During a Women's Overhand Lacrosse Shot

    Directory of Open Access Journals (Sweden)

    Millard Brianna M.

    2014-07-01

    Full Text Available The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG leads to measure muscle activity of the rectus femoris (RF, biceps femoris (BF, tibialis anterior (TA, and medial gastrocnemius (GA. Participants completed five trials of a warm-up speed shot (Slow and a game speed shot (Fast. Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration. Average EMG per muscle was analyzed using a 4 (Phase x 2 (Speed ANOVA. BF was greater during Fast vs. Slow for all phases (p0.05. RF and GA were each influenced by the interaction of Phase and Speed (p<0.05 with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05 but only tended to be greater during Stick Acceleration (p=0.076 for Fast vs. Slow. The greater muscle activity (BF, RF, GA during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements.

  10. Muscle contractility decrement and correlated morphology during the pathogenesis of streptozotocin-diabetic mice.

    Science.gov (United States)

    Fahim, M A; el-Sabban, F; Davidson, N

    1998-06-01

    Peripheral neuropathy of both motor and sensory nerves has been well documented in diabetes mellitus, but the evidence for physiological and correlated morphological changes during the pathogenesis of myopathy is scarce. In the present report, we have chosen the dorsiflexor muscle of adult male mice as a model for studying in situ muscle contraction and neuromuscular ultrastructure during the pathogenesis of streptozotocin-induced diabetes. Thirty mice (30 g bodyweight) were injected once i.p. with streptozotocin solution (200 mg/Kg) to induce experimental diabetes mellitus. Comparative analyses of in situ muscle isometric contractile characteristics were studied (at 1 Hz, 5 Hz and 30 Hz nerve stimulation) in urethane-anesthetized (2 mg/g, i.p.) control and diabetic mice at three time points, 2 weeks, 4 weeks, and 8 weeks postinjection. Synaptic delay was also recorded in diabetic and age-matched control mice. There was a significant increase in synaptic delay in both 4-week and 8-week diabetic mice compared with control mice (8.9 +/- 1.2 msec and 7.6 +/- 0.6 msec, respectively, compared with 6.1 +/- 0.5 msec). At all three stimulation frequencies, diabetes did not affect muscle contractile speed but significantly reduced the twitch tension after 8 weeks, with no changes at 2 weeks or 4 weeks. The recorded single-twitch tension values were 2.6 +/- 0.3 g, 2.1 +/- 0.6 g, 2.2 +/- 0.7 g, and 1.2 +/- 0.1 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. At 30 Hz, the recorded tension values were 4.6 +/- 1.6 g, 3.1 +/- 1.2 g, 3.1 +/- 1.1 g, and 2.1 +/- 1.0 g for control, 2 weeks, 4 weeks, and 8 weeks, respectively. Ultrastructural changes in neuromuscular junctions were similar to those that have been described in disuse and aging. These changes were observed after 8 weeks and included serve loss of synaptic vesicles, electron-dense bodies, and myelin-like figures as well as degeneration of mitochondria. The results reveal that streptozotocin-induced diabetes

  11. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  12. The influence of D2O, perchlorate, and variation in temperature on the potential-dependent contractile function of frog skeletal muscle

    International Nuclear Information System (INIS)

    Foulks, J.G.; Morishita, L.

    1985-01-01

    D 2 O and perchlorate manifest opposing effects on the contractile function of skeletal muscle (amplitude of twitches and maximum K contractures, potential dependence of contraction and inactivation), and when combined the influence of one may effectively antagonize that of the other. The ratio of perchlorate concentrations required to produce effects of equal intensity, (e.g., twitch enhancement and restoration of maximum K contractures in media lacking divalent cations or containing a depressant concentration of a cationic amphipath) in H 2 O and D 2 O solutions was generally rather constant. These findings are compatible with the view that both agents can influence contractile function by virtue of their effects on solvent structure. In the absence of divalent cations, the effects of reduced temperature resemble those of D 2 O whereas the effects of increased temperature resemble those of the chaotropic anion. However, in other media, variation in temperature was found to result in additional nonsolvent effects so that low temperature could oppose rather than enhance the effects of D 2 O. These observations are discussed in terms of a model which postulates a role for solvent influences on the kinetics of two separate potential-dependent conformational transitions of membrane proteins which mediate the activation and inactivation of contraction in skeletal muscle

  13. Effects of nerve growth factor on the neurotization of denervated muscles.

    Science.gov (United States)

    Menderes, Adnan; Yilmaz, Mustafa; Vayvada, Haluk; Ozer, Erdener; Barutçu, Ali

    2002-04-01

    Studies on surgical repair techniques of the peripheral nerve are still trying to improve the outcome. There are many studies on the effects of various neurotrophic factors on the transected peripheral nerve. Muscular neurotization, which is the direct implantation of the nerve to the target denervated skeletal muscle, is one of the techniques used when the primary repair of the peripheral nerves is not possible. The effects of nerve growth factor (NGF), which is one of the primary neurotrophic factors, on the reinnervation of denervated muscles by neurotization is investigated in this experimental study. The denervated soleus muscle was neurotized via peroneal nerve implantation (group 1), and NGF was administered to the neurotized muscle (group 2). All animals were evaluated at weeks 8, 10, and 12 using electromyography. Muscle contractility, muscle weight, and histological morphometric tests were performed at week 12. The experimental groups were compared with each other and normal control values. Electromyographically, group 2 (direct nerve implantation + NGF) demonstrated better reinnervation in all evaluations. The study of muscle weight showed that the muscle mass was 75% of the normal soleus muscle in group 1 and was 85% of the normal side in group 2 at the end of week 12. In group 1, the twitch force was 56% of the normal soleus muscle and was 71% in group 2. Tetanic force was 53% of the normal soleus muscle in group 1 and 68% in group 2. Histological morphometric studies revealed that there was a decrease in the density of the motor end plates in group 1, but there was no statistically significant difference between the normal soleus muscles and the NGF applied to group 2. The positive effects of NGF on the neurotization of denervated muscles seen in this study suggest that it may be useful for treating some difficult reconstructions caused by denervation.

  14. Bilateral experimental neck pain reorganize axioscapular muscle coordination and pain sensitivity.

    Science.gov (United States)

    Christensen, S W; Hirata, R P; Graven-Nielsen, T

    2017-04-01

    Neck pain is a large clinical problem where reorganized trunk and axioscapular muscle activities have been hypothesised contributing to pain persistence and pain hypersensitivity. This study investigated the effects of bilateral experimental neck pain on trunk and axioscapular muscle function and pain sensitivity. In 25 healthy volunteers, bilateral experimental neck pain was induced in the splenius capitis muscles by hypertonic saline injections. Isotonic saline was used as control. In sitting, subjects performed slow, fast and slow-resisted unilateral arm movements before, during and after injections. Electromyography (EMG) was recorded from eight shoulder and trunk muscles bilaterally. Pressure pain thresholds (PPTs) were assessed bilaterally at the neck, head and arm. Data were normalized to the before-measures. Compared with control and post measurements, experimental neck pain caused (1) decreased EMG activity of the ipsilateral upper trapezius muscles during all but slow-resisted down movements (p neck pain reorganized axioscapular and trunk muscle activity together with local hyperalgesia and widespread hypoalgesia indicating that acute neck pain immediately affects trunk and axioscapular function which may affect both assessment and treatment. Bilateral clinical neck pain alters axioscapular muscle coordination but only effects of unilateral experimental neck pain has been investigated. Bilateral experimental neck pain causes task-dependent reorganized axioscapular and trunk muscle activity in addition to widespread decrease in pressure pain sensitivity. © 2016 European Pain Federation - EFIC®.

  15. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    Science.gov (United States)

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  16. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  17. Capillary network in slow and fast muscles and in oxidative and glycolytic muscle fibres

    Czech Academy of Sciences Publication Activity Database

    Čebašek, V.; Kubínová, Lucie; Ribarič, S.; Eržen, I.

    2005-01-01

    Roč. 24, March (2005), s. 51-58 ISSN 1580-3139 Grant - others:SI-CZ(CZ) KONTAKT 19/2005 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * skeletal muscle fibre s-oxidative and glycolytic * stereology Subject RIV: EA - Cell Biology

  18. "Fast" and "slow" skeleto-fusimotor innervation in cat tenuissimus spindles; a study with the glycogen-depletion method.

    Science.gov (United States)

    Jami, L; Lan-Couton, D; Malmgren, K; Petit, J

    1978-07-01

    The glycogen-depletion method was used to investigate the motor supply to tenuissimus with respect to the presence of fast beta axons and to assess the total proportion of both fast and slow beta-innervated spindles in this muscle. In a first series of 5 expts., groups of motor axons with conduction velocities higher than 85 m/s were repetitively stimulated so as to produce glycogen depletion in the muscle fibres they innervated. The whole muscle was then quick-frozen, serially cut, stained to demonstrate glycogen and examined for intrafusal glycogen depletion. Zones of glycogen depletion were found in 16 of the 46 examined spindles; they were most frequently located in the longest of the chain intrafusal muscle fibres. Since it is known that there are no purely fusimotor axons to tenuissimus with conduction velocities above 50 m/s, it was concluded that beta axons are present among the fastest axons to this muscle. In a second series of 5 expts. as many motor axons as possible with conduction velocities above 60 m/s were stimulated. Zones of glycogen depletion were found in 19 of the 47 examined spindles. They affected chain fibres in about half of the instances and bag1 fibers in the others. As this latter location is characteristic of slow dynamic beta axons, it was concluded that both slow and fast beta axons occur regularly in the motor supply to tenuissimus. beta-innervation is present in at least 40% of tenuissimus spindles with almost no convergence of fast and slow beta axons onto the same spindle.

  19. Decrease of Na, K-ATPase Electrogenic Contribution and Resting Membrane Potential of Rat Soleus after 3 Days of Hindlimb Unloading

    Science.gov (United States)

    Krivoi, I. I.; Kravtsova, V. V.; Drabkina, T. M.; Prokofiev, A. V.; Nikolsky, E. E.; Shenkman, B. S.

    2008-06-01

    The Na,K-ATPase activity is critically important for excitability, electrogenesis and contractility of skeletal muscle expressing ? and ? isoforms of the enzyme [6, 9]. It is well known that disuse induced by hindlimb unloading (HU) leads to progressive atrophy of skeletal muscle; the muscle undergoes a number of dramatic remodeling events. In particular, changes in ion channel expression in response to muscle unweighting were observed [1, 8]. Decrease of resting membrane potential (RMP), electrogenic contribution of Na,K-ATPase and membrane resistance during 7-28 days of HU was shown [8, 10]. The intrinsic mechanisms involved in the process have not been revealed until present. At the same time, the understanding of these mechanisms could be crucial for the disclosing the mechanisms underlying the resting Ca2+ accumulation in the cytoplasm of the unloaded muscle [3, 7]. In the present study, the effect of early (3 days) HU-induced disuse of slow-twitch soleus muscle on membrane electrogenesis as well as on electrogenic contribution of Na,K-ATPase isoforms was investigated.

  20. "Positive people always win" : en studie av hur kvinnor som livestreamar på Twitch.tv upplever interaktionen med sina tittare i kanalchatten

    OpenAIRE

    Thoresen, Josef; Elfwendahl, Sofia

    2017-01-01

    I denna studie har vi undersökt kvinnor som livestreamar sitt datorspelande på hemsidan Twitch.tv och deras erfarenheter gällande chattkommentarer på deras livesändningar. Vi har främst fokuserat på negativa chattkommentarer och hur dessa påverkar kvinnorna, då tidigare forskning redan har visat på att kvinnor utsätts för fler trakasserier än män, både generellt på internet och på Twitch.tv (Nakandala, Ciampaglia, Su & Ahn. 2016). Vidare ville vi också se hur kvinnorna hanterar dessa nega...

  1. Motor cortical representation of the pelvic floor muscles.

    Science.gov (United States)

    Schrum, A; Wolff, S; van der Horst, C; Kuhtz-Buschbeck, J P

    2011-07-01

    Pelvic floor muscle training involves rhythmical voluntary contractions of the external urethral sphincter and ancillary pelvic floor muscles. The representation of these muscles in the motor cortex has not been located precisely and unambiguously. We used functional magnetic resonance imaging to determine brain activity during slow and fast pelvic floor contractions. Cerebral responses were recorded in 17 healthy male volunteers, 21 to 47 years old, with normal bladder control. Functional magnetic resonance imaging was performed during metronome paced slow (0.25 Hertz) and fast (0.7 Hertz) contractions of the pelvic floor that mimicked the interruption of voiding. To study the somatotopy of the cortical representations, flexion-extension movements of the right toes were performed as a control task. Functional magnetic resonance imaging during pelvic floor contractions detected activity of the supplementary motor area in the medial wall and of the midcingulate cortex, insula, posterior parietal cortex, putamen, thalamus, cerebellar vermis and upper ventral pons. There were no significant differences in activation between slow and fast contractions. Toe movements involved significantly stronger activity of the paracentral lobule (ie the medial primary motor cortex) than did the pelvic floor contractions. Otherwise the areas active during pelvic floor and leg muscle contractions overlapped considerably. The motor cortical representation of pelvic floor muscles is located mostly in the supplementary motor area. It extends further ventrally and anteriorly than the representation of distal leg muscles. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Resistance to rocuronium of rat diaphragm as compared with limb muscles.

    Science.gov (United States)

    Huang, Lina; Yang, Meirong; Chen, Lianhua; Li, Shitong

    2014-12-01

    Skeletal muscles are composed of different muscle fiber types. We investigated the different potency to rocuronium among diaphragm (DIA), extensor digitorum longus (EDL), and soleus (SOL) in vitro as well as to investigate the differences of acetylcholine receptors (AChRs) among these three typical kinds of muscles. The isolated left hemidiaphragm nerve-muscle preparations, the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations were established to evaluate the potency to rocuronium. Concentration-response curves were constructed and the values of IC50 were obtained. The density of AChRs at the end plate and the number of AChRs per unit fiber cross fiber area (CSA), AChR affinity for muscle relaxants were evaluated. The concentration-twitch tension curves of rocuronium were significantly different. The curves demonstrated a shift to the right of the DIA compared with the EDL and SOL (P  0.05). IC50 was significantly largest in DIA, second largest in SOL, and smallest in EDL (P rocuronium of DIA compared with EDL and SOL was verified. The DIA was characterized by the largest number of AChRs per unit fiber CSA and the lowest affinity of the AChRs. Although compared with SOL, EDL was proved to have larger number of AChRs per unit fiber CSA and the lower affinity of the AChRs. These findings may be the mechanisms of different potency to rocuronium in DIA, EDL, and SOL. The results of the study could help to explain the relationship between different composition of muscle fibers and the potency to muscle relaxants. Extra caution should be taken in clinical practice when monitoring muscle relaxation in anesthetic management using different muscles. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    Science.gov (United States)

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P motor units in the tibialis anterior.

  4. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease

    DEFF Research Database (Denmark)

    Berchtold, M W; Brinkmeier, H; Müntener, M

    2000-01-01

    in the sarcoplasmic reticulum. In addition, a multitude of Ca(2+)-binding proteins is present in muscle tissue including parvalbumin, calmodulin, S100 proteins, annexins, sorcin, myosin light chains, beta-actinin, calcineurin, and calpain. These Ca(2+)-binding proteins may either exert an important role in Ca(2......Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based...... on the potential of the muscle fibers to undergo changes of their cytoarchitecture and composition of specific muscle protein isoforms. Adaptive changes of the muscle fibers occur in response to a variety of stimuli such as, e.g., growth and differentition factors, hormones, nerve signals, or exercise...

  5. Functional evaluation of artificial skeletal muscle tissue constructs fabricated by a magnetic force-based tissue engineering technique.

    Science.gov (United States)

    Yamamoto, Yasunori; Ito, Akira; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2011-01-01

    Skeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs. Histological studies revealed that elongated and multinucleated myotubes were observed within the tissue. Expression of muscle-specific markers, such as myogenin, myosin heavy chain and tropomyosin, were detected in the tissue constructs by western blot analysis. Further, creatine kinase activity increased during differentiation. In response to electric pulses, the artificial tissue constructs contracted to generate a physical force (the maximum twitch force, 33.2 μN [1.06 mN/mm2]). Rheobase and chronaxie of the tissue were determined as 4.45 V and 0.72 ms, respectively. These results indicate that the artificial skeletal muscle tissue constructs fabricated in this study were physiologically functional and the data obtained for the evaluation of their functional properties may provide useful information for future skeletal muscle tissue engineering studies.

  6. Dimethylarginine Dimethylaminohydrolase Overexpression enhances Insulin Sensitivity

    Science.gov (United States)

    Sydow, Karsten; Mondon, Carl E.; Schrader, Joerg; Konishi, Hakuoh; Cooke, John P.

    2011-01-01

    Objective Previous studies suggest that nitric oxide (NO) may modulate insulin-induced uptake of glucose in insulin-sensitive tissues. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthase (NOS). We hypothesized that a reduction in endogenous ADMA would increase NO synthesis and thereby enhance insulin sensitivity. Methods and Results To test this hypothesis we employed a transgenic mouse in which we overexpressed human dimethylarginine dimethylaminohydrolase (DDAH-I). The DDAH-I mice had lower plasma ADMA at all ages (22–70 weeks) by comparison to wild-type (WT) littermates. With a glucose challenge, WT mice showed a prompt increase in ADMA, whereas DDAH-I mice had a blunted response. Furthermore, DDAH-I mice had a blunted increase in plasma insulin and glucose levels after glucose challenge, with a 50% reduction in the insulin resistence index, consistent with enhanced sensitivity to insulin. In liver, we observed an increased Akt phosphorylation in the DDAH-I mice after i.p. glucose challenge. Incubation of skeletal muscle from WT mice ex vivo with ADMA (2μM) markedly suppressed insulin-induced glycogen synthesis in fast-twitch but not slow-twitch muscle. Conclusions These findings suggest that the endogenous NOS inhibitor ADMA reduces insulin sensitivity, consistent with previous observations that NO plays a role in insulin sensitivity. PMID:18239148

  7. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    Science.gov (United States)

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  8. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  9. Fibre composition and enzyme activities in six muscles of the Swedish reindeer (Rangifer tarandus tarandus

    Directory of Open Access Journals (Sweden)

    K-H. Kiessling

    1983-05-01

    Full Text Available Six skeletal muscles have been studied as regards fibre properties and enzyme activities. The muscles are cranial part of M. gluteobiceps, M. semitendinosus, M. semimembranosus, M. longissimus dorsi, M. brachiocephalicus and M. sternocephalicus. Two histochemical methods were used for fibre identification, one based on myosin ATPase activities after preincubation at pH 4.3 and 4.6 and the other on oxidative capacity measured as NADH dehydrogenase activity. The two methods gave slightly differing results but allowed the general conclusion that of the three fibre types (I, II A and II B the type II B fibres, which are fast-twitch, glycolytic, make up some 40 - 60 % (mean 50 % of the muscles. Type I fibres, which are slow-twitch, oxidative, account for 30% of the total muscle volume in the two neck muscles but for only 20% or less in the rest. The third type, II A, which is fast-twitch, oxidative, glycolytic, accounts for only 20% of the volume in the neck muscles but as much as 40% in M. longissimus dorsi. Oxidative capacity is high throughout. This is valid also to the capacity to oxidize fatty acids, though reaching only half the activity previously found in the Svalbard reindeer (Kiessling and Kiessling, 1983. Lactate dehydrogenase activity is comparatively low in all muscles. The high respiratory chain activity and fatty acid oxidation and the low lactate dehydrogenase activities do not fit at all well with the high content of type II B fibres in the muscles. This high II B content is also unexpected when considering the activity pattern of the reindeer. An altogether different role for the type II B fibres, besides the traditional one, is therefore discussed.Fibersammansåttning och enzymaktiviteter i sex muskler från svensk tamren (Rangifer tarandus tarandus.Abstract in Swedish / Sammandrag: Sex skelettmuskler har undersokts med avseende på fiberegenskaper och enzymaktiviteter. De sex musklerna år kranial del av M. gluteobiceps. M

  10. Cellular location of rat muscle ferritins and their preferential loss during cell isolation.

    Science.gov (United States)

    Linder, M C; Roboz, M; McKown, M J; Pardridge, W M; Zak, R

    1984-04-10

    Heart and other muscles of the rat contain two forms of ferritin separable in polyacrylamide gel electrophoresis. The cellular location of the fast- and slow-migrating ferritins was investigated using primary cultures of hindlimb skeletal muscle, and isolated myocardial cell populations. Muscle and non-muscle cells were isolated in good yield from hearts of adult rats pretreated with large doses of iron to increase their ferritin content. In virtually all cases, the isolated muscle cells contained traces only of the fast-migrating species and the non-muscle cells contained small amounts of the slow-migrating ferritin. During cell isolation, 90-100% of both ferritins was lost and could be recovered in the perfusates and solutions employed, while one third of the total tissue protein, and a larger percentage of creatine phosphokinase, was recovered in the isolated cells. Primary cultures of thigh muscle from adult rats which had differentiated into multi-nucleated myotubes, were incubated for 1-3 days with chelated iron. These cells contained substantial amounts of the electrophoretically fast migrating ferritin, with its characteristic larger Stokes' radius (determined by quantitative polyacrylamide gel electrophoresis). None of the slow-migrating ferritin species was detected, although hindlimb muscle from iron-treated rats contained both forms. It is concluded that the fast-migrating ferritin of muscle, which is much larger and more asymmetric than other ferritins, is confined to the muscle cell population, while the other form is predominantly or exclusively in the non-muscle cells. Both ferritins are lost preferentially over other proteins during procedures which injure muscle tissue.

  11. YouTube Live and Twitch: A Tour of User-Generated Live Streaming Systems

    OpenAIRE

    Pires , Karine; SIMON , Gwendal

    2015-01-01

    International audience; User-Generated live video streaming systems are services that allow anybody to broadcast a video stream over the Internet. These Over-The-Top services have recently gained popularity, in particular with e-sport, and can now be seen as competitors of the traditional cable TV. In this paper, we present a dataset for further works on these systems. This dataset contains data on the two main user-generated live streaming systems: Twitch and the live service of YouTube. We ...

  12. Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content

    DEFF Research Database (Denmark)

    Asp, S; Rohde, T; Richter, Erik

    1997-01-01

    Our purpose was to investigate whether the slow rate of muscle glycogen resynthesis after a competitive marathon is associated with a decrease in the total muscle content of the muscle glucose transporter (GLUT-4). Seven well-trained marathon runners participated in the study, and muscle biopsies...... were obtained from the lateral head of the gastrocnemius muscle before, immediately after, and 1, 2, and 7 days after the marathon, as were venous blood samples. Muscle GLUT-4 content was unaltered over the experimental period. Muscle glycogen concentration was 758 +/- 53 mmol/kg dry weight before...... the marathon and decreased to 148 +/- 39 mmol/kg dry weight immediately afterward. Despite a carbohydrate-rich diet (containing at least 7 g carbohydrate.kg body mass-1.day-1), the muscle glycogen concentration remained 30% lower than before-race values 2 days after the race, whereas it had returned to before...

  13. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise.

    Science.gov (United States)

    McHugh, Malachy P

    2003-04-01

    The repeated bout effect refers to the adaptation whereby a single bout of eccentric exercise protects against muscle damage from subsequent eccentric bouts. While the mechanism for this adaptation is poorly understood there have been significant recent advances in the understanding of this phenomenon. The purpose of this review is to provide an update on previously proposed theories and address new theories that have been advanced. The potential adaptations have been categorized as neural, mechanical and cellular. There is some evidence to suggest that the repeated bout effect is associated with a shift toward greater recruitment of slow twitch motor units. However, the repeated bout effect has been demonstrated with electrically stimulated contractions, indicating that a peripheral, non-neural adaptation predominates. With respect to mechanical adaptations there is evidence that both dynamic and passive muscle stiffness increase with eccentric training but there are no studies on passive or dynamic stiffness adaptations to a single eccentric bout. The role of the cytoskeleton in regulating dynamic stiffness is a possible area for future research. With respect to cellular adaptations there is evidence of longitudinal addition of sarcomeres and adaptations in the inflammatory response following an initial bout of eccentric exercise. Addition of sarcomeres is thought to reduce sarcomere strain during eccentric contractions thereby avoiding sarcomere disruption. Inflammatory adaptations are thought to limit the proliferation of damage that typically occurs in the days following eccentric exercise. In conclusion, there have been significant advances in the understanding of the repeated bout effect, however, a unified theory explaining the mechanism or mechanisms for this protective adaptation remains elusive.

  14. Recovery of voluntary and evoked muscle performance following intermittent-sprint exercise in the heat.

    Science.gov (United States)

    Duffield, Rob; King, Monique; Skein, Melissa

    2009-06-01

    This study investigated the effects of hot conditions on the acute recovery of voluntary and evoked muscle performance and physiological responses following intermittent exercise. Seven youth male and six female team-sport athletes performed two sessions separated by 7 d, involving a 30-min exercise protocol and 60-min passive recovery in either 22 degrees C or 33 degrees C and 40% relative humidity. The exercise protocol involved a 20-s maximal sprint every 5 min, separated by constant-intensity exercise at 100 W on a cycle ergometer. Maximal voluntary contraction (MVC) and a resting evoked twitch (Pf) of the right knee extensors were assessed before and immediately following exercise and again 15, 30, and 60 min postexercise, and capillary blood was obtained at the same time points to measure lactate, pH, and HCO3. During and following exercise, core temperature, heart rate and rating of perceived exertion (RPE) were also measured. No differences (P=0.73 to 0.95) in peak power during repeated sprints were present between conditions. Postexercise MVC was reduced (Pheat (83+/-10 vs 74+/-11% recovered). Both heart rate and core temperature were significantly higher (Precovery in the heat. Capillary blood values did not differ between conditions at any time point, whereas sessional RPE was higher 60 min postexercise in the heat. The current data suggests that passive recovery in warm temperatures not only delays cardiovascular and thermal recovery, but may also slow the recovery of MVC and RPE.

  15. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.

    Science.gov (United States)

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.

  16. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    Science.gov (United States)

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  17. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6

    Directory of Open Access Journals (Sweden)

    An Chung-Il

    2011-10-01

    Full Text Available Abstract Background Sox6 is a multi-faceted transcription factor involved in the terminal differentiation of many different cell types in vertebrates. It has been suggested that in mice as well as in zebrafish Sox6 plays a role in the terminal differentiation of skeletal muscle by suppressing transcription of slow fiber specific genes. In order to understand how Sox6 coordinately regulates the transcription of multiple fiber type specific genes during muscle development, we have performed ChIP-seq analyses to identify Sox6 target genes in mouse fetal myotubes and generated muscle-specific Sox6 knockout (KO mice to determine the Sox6 null muscle phenotype in adult mice. Results We have identified 1,066 Sox6 binding sites using mouse fetal myotubes. The Sox6 binding sites were found to be associated with slow fiber-specific, cardiac, and embryonic isoform genes that are expressed in the sarcomere as well as transcription factor genes known to play roles in muscle development. The concurrently performed RNA polymerase II (Pol II ChIP-seq analysis revealed that 84% of the Sox6 peak-associated genes exhibited little to no binding of Pol II, suggesting that the majority of the Sox6 target genes are transcriptionally inactive. These results indicate that Sox6 directly regulates terminal differentiation of muscle by affecting the expression of sarcomere protein genes as well as indirectly through influencing the expression of transcription factors relevant to muscle development. Gene expression profiling of Sox6 KO skeletal and cardiac muscle revealed a significant increase in the expression of the genes associated with Sox6 binding. In the absence of the Sox6 gene, there was dramatic upregulation of slow fiber-specific, cardiac, and embryonic isoform gene expression in Sox6 KO skeletal muscle and fetal isoform gene expression in Sox6 KO cardiac muscle, thus confirming the role Sox6 plays as a transcriptional suppressor in muscle development

  18. Injury to skeletal muscle of mice following acute and sub-acute pregabalin exposure

    Directory of Open Access Journals (Sweden)

    Mohammad Moshiri

    2017-03-01

    Full Text Available Objective(s: Pregabalin (PGB is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal muscle, the animals were exposed to a single dose of 1, 2 or 5 g /kg or daily doses of 20, 40 or 80 mg/kg for 21 days, intraperitoneally (IP. Twaenty-four hr after the last drug administration, all animals were sacrificed. The level of fast-twitch skeletal muscle troponin I and CK-MM activity were evaluated in blood as an indicator of muscle injury. Skeletal muscle pathological findings were also reported as scores ranging from 1 to 3 based on the observed lesion. Results: In the acute and sub-acute toxicity assay IP injection of PGB significantly increased the activity and levels of CK-MM and fsTnI compared to the control group. Sub-acute exposure to PGB caused damages that include muscle atrophy, infiltration of inflammatory cells and cell degeneration. Conclusion: PGB administration especially in long term care causes muscle atrophy with infiltration of inflammatory cells and cell degeneration. The fsTnI and CK-MM are reliable markers in PGB-related muscle injury. The exact mechanisms behind the muscular damage are unclear and necessitate further investigations.

  19. Development and evaluation of a removable tissue-engineered muscle with artificial tendons.

    Science.gov (United States)

    Nakamura, Tomohiro; Takagi, Shunya; Kamon, Takafumi; Yamasaki, Ken-Ichi; Fujisato, Toshia

    2017-02-01

    Tissue-engineered skeletal muscles were potentially useful as physiological and biochemical in vitro models. Currently, most of the similar models were constructed without tendons. In this study, we aimed to develop a simple, highly versatile tissue-engineered muscle with artificial tendons, and to evaluate the contractile, histological and molecular dynamics during differentiation. C2C12 cells were embedded in a cold type-І collagen gel and placed between two artificial tendons on a silicone sheet. The construct shrank and tightly attached to the artificial tendons with differentiation, finally detaching from the silicone sheet within 1 week of culture onset. We successfully developed a tissue-engineered skeletal muscle with two artificial tendons from C2C12 myoblasts embedded in type-І collagen gel. The isometric twitch contractile force (TCF) significantly increased during differentiation. Time to Peak Tension (TPT) and Half-Relaxation Time (1/2RT) were significantly shortened during differentiation. Myogenic regulatory factors were maximally expressed at 2 weeks, and subsequently decreased at 3 weeks of culture. Histological analysis indicated that myotube formation increased markedly from 2 weeks and well-ordered sarcomere structures were observed on the surface of the 3D engineered muscle at 3 weeks of culture. These results suggested that robust muscle structure occurred by 3 weeks in the tissue-engineered skeletal muscle. Moreover, during the developmental process, the artificial tendons might contribute to well-ordered sarcomere formation. Our results indicated that this simple culture system could be used to evaluate the effects of various pharmacological and mechanical cues on muscle contractility in a variety of research areas. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  1. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres.

    Science.gov (United States)

    Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W

    2005-01-01

    We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.

  2. NF-κB mediates the transcription of mouse calsarcin-1 gene, but not calsarcin-2, in C2C12 cells

    Directory of Open Access Journals (Sweden)

    Mu Yulian

    2007-03-01

    Full Text Available Abstract Background The calsarcins comprise a novel family of muscle-specific calcineurin-interaction proteins that play an important role in modulating both the function and substrate specificity of calcineurin in muscle cells. The expression of calsarcin-1 (CS-1 is restricted to slow-twitch skeletal muscle fibres, whereas that of both calsarcin-2 (CS-2 and calsarcin-3 (CS-3 is enriched in fast-twitch fibres. However, the transcriptional control of this selective expression has not been previously elucidated. Results Our real-time RT-PCR analyses suggest that the expression of CS-1 and CS-2 is increased during the myogenic differentiation of mouse C2C12 cells. Promoter deletion analysis further suggests that an NF-κB binding site within the CS-1 promoter is responsible for the up-regulation of CS-1 transcription, but no similar mechanism was evident for CS-2. These findings are further supported by the results of EMSA analysis, as well as by overexpression and inhibition experiments in which NF-κB function was blocked by treatment with its inhibitor, PDTC. In addition, the overexpression of NFATc4 induces both the CS-1 and CS-2 promoters, whereas MEF2C only activates CS-1. Conclusion Our present data suggest that NF-κB is required for the transcription of mouse CS-1 but not CS-2, and that the regulation of the calsarcins is mediated also by the NFAT and MEF2 transcription factors. These results provide new insights into the molecular mechanisms governing transcription in specific muscle fibre cells. The calsarcins may also serve as a valuable mechanistic tool to better understand the regulation of calcineurin signalling during muscle differentiation.

  3. The role of central and peripheral muscle fatigue in postcancer fatigue: a randomized controlled trial.

    Science.gov (United States)

    Prinsen, Hetty; van Dijk, Johannes P; Zwarts, Machiel J; Leer, Jan Willem H; Bleijenberg, Gijs; van Laarhoven, Hanneke W M

    2015-02-01

    Postcancer fatigue is a frequently occurring problem, impairing quality of life. Little is known about (neuro)physiological factors determining postcancer fatigue. It may be hypothesized that postcancer fatigue is characterized by low peripheral muscle fatigue and high central muscle fatigue. The aims of this study were to examine whether central and peripheral muscle fatigue differ between fatigued and non-fatigued cancer survivors and to examine the effect of cognitive behavioral therapy (CBT) on peripheral and central muscle fatigue of fatigued cancer survivors in a randomized controlled trial. Sixteen fatigued patients in the intervention group (CBT) and eight fatigued patients in the waiting list group were successfully assessed at baseline and six months later. Baseline measurements of 20 fatigued patients were compared with 20 non-fatigued patients. A twitch interpolation technique and surface electromyography were applied, respectively, during sustained contraction of the biceps brachii muscle. Muscle fiber conduction velocity (MFCV) and central activation failure (CAF) were not significantly different between fatigued and non-fatigued patients. Change scores of MFCV and CAF were not significantly different between patients in the CBT and waiting list groups. Patients in the CBT group reported a significantly larger decrease in fatigue scores than patients in the waiting list group. Postcancer fatigue is neither characterized by abnormally high central muscle fatigue nor by low peripheral muscle fatigue. These findings suggest a difference in the underlying physiological mechanism of postcancer fatigue vs. other fatigue syndromes. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  4. Effects of tripolar TENS on slow and fast motoneurons: a preliminary study using H-reflex recovery curve method.

    Science.gov (United States)

    Simorgh, L; Torkaman, G; Firoozabadi, S M

    2008-01-01

    This study aimed at examining the effect of tripolar TENS of vertebral column on the activity of slow and fast motoneurons on 10 healthy non-athlete women aged 22.7 +/- 2.21 yrs. H-reflex recovery curve of soleus (slow) and gastrocnemius (fast) muscles were recorded before and after applying tripolar TENS. For recording of this curve, rectangular paired stimuli were applied on tibial nerve (with 40-520 ISI, frequency of 0.2 Hz and pulse width of 600 micros). Our findings showed that maximum H-reflex recovery in gastrocnemius muscle appeared in the shorter ISI, while in soleus muscle, it appeared in the longer ISI and its amplitude slightly decreased after applying tripolar TENS. It is suggested that tripolar TENS excites not only the skin but also Ia and Ib afferents in the dorsal column. A Synaptic interaction of these afferents in spinal cord causes the inhibition of type I MNs and facilitation of type II MNs. This effect can be used in muscle tone modulation.

  5. Method to Measure Tone of Axial and Proximal Muscle

    Science.gov (United States)

    Gurfinkel, Victor S.; Cacciatore, Timothy W.; Cordo, Paul J.; Horak, Fay B.

    2011-01-01

    The control of tonic muscular activity remains poorly understood. While abnormal tone is commonly assessed clinically by measuring the passive resistance of relaxed limbs1, no systems are available to study tonic muscle control in a natural, active state of antigravity support. We have developed a device (Twister) to study tonic regulation of axial and proximal muscles during active postural maintenance (i.e. postural tone). Twister rotates axial body regions relative to each other about the vertical axis during stance, so as to twist the neck, trunk or hip regions. This twisting imposes length changes on axial muscles without changing the body's relationship to gravity. Because Twister does not provide postural support, tone must be regulated to counteract gravitational torques. We quantify this tonic regulation by the restive torque to twisting, which reflects the state of all muscles undergoing length changes, as well as by electromyography of relevant muscles. Because tone is characterized by long-lasting low-level muscle activity, tonic control is studied with slow movements that produce "tonic" changes in muscle length, without evoking fast "phasic" responses. Twister can be reconfigured to study various aspects of muscle tone, such as co-contraction, tonic modulation to postural changes, tonic interactions across body segments, as well as perceptual thresholds to slow axial rotation. Twister can also be used to provide a quantitative measurement of the effects of disease on axial and proximal postural tone and assess the efficacy of intervention. PMID:22214974

  6. Physiological studies of muscle rigor mortis in the fowl

    International Nuclear Information System (INIS)

    Nakahira, S.; Kaneko, K.; Tanaka, K.

    1990-01-01

    A simple system was developed for continuous measurement of muscle contraction during nor mortis. Longitudinal muscle strips dissected from the Peroneus Longus were suspended in a plastic tube containing liquid paraffin. Mechanical activity was transmitted to a strain-gauge transducer which is connected to a potentiometric pen-recorder. At the onset of measurement 1.2g was loaded on the muscle strip. This model was used to study the muscle response to various treatments during nor mortis. All measurements were carried out under the anaerobic condition at 17°C, except otherwise stated. 1. The present system was found to be quite useful for continuous measurement of muscle rigor course. 2. Muscle contraction under the anaerobic condition at 17°C reached a peak about 2 hours after the onset of measurement and thereafter it relaxed at a slow rate. In contrast, the aerobic condition under a high humidity resulted in a strong rigor, about three times stronger than that in the anaerobic condition. 3. Ultrasonic treatment (37, 000-47, 000Hz) at 25°C for 10 minutes resulted in a moderate muscle rigor. 4. Treatment of muscle strip with 2mM EGTA at 30°C for 30 minutes led to a relaxation of the muscle. 5. The muscle from the birds killed during anesthesia with pentobarbital sodium resulted in a slow rate of rigor, whereas the birds killed one day after hypophysectomy led to a quick muscle rigor as seen in intact controls. 6. A slight muscle rigor was observed when muscle strip was placed in a refrigerator at 0°C for 18.5 hours and thereafter temperature was kept at 17°C. (author)

  7. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    Science.gov (United States)

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  8. Effects of slow repetitive transcranial magnetic stimulation in patients with corticobasal syndrome.

    Science.gov (United States)

    Civardi, Carlo; Pisano, Fabrizio; Delconte, Carmen; Collini, Alessandra; Monaco, Francesco

    2015-06-01

    Corticobasal syndrome is characterized by asymmetric cortical sensorimotor dysfunction and parkinsonism; an altered cortical excitability has been reported. We explored with transcranial magnetic stimulation the motor cortical excitability in corticobasal syndrome, and the effects of slow repetitive transcranial magnetic stimulation. With transcranial magnetic stimulation, we studied two corticobasal syndrome patients. We determined bilaterally from the first dorsal interosseous muscle: relaxed threshold, and contralateral and ipsilateral silent period. We also evaluated the contralateral silent period after active/sham slow repetitive transcranial magnetic stimulation on the most affected side. At T0 the silent period was bilaterally short. On the most affected side, active slow repetitive transcranial magnetic stimulation induced a short lasting prolongation of the contralateral silent period. In corticobasal syndrome, transcranial magnetic stimulation showed a reduction cortical inhibitory phenomenon potentially reversed transiently by slow repetitive transcranial magnetic stimulation.

  9. Antifibrotic effects of Smad4 small interfering RNAs in injured skeletal muscle after acute contusion.

    Science.gov (United States)

    Li, H; Chen, J; Chen, S; Zhang, Q; Chen, S

    2011-10-01

    Muscle injuries are common musculoskeletal problems encountered in sports medicine clinics. In this study, we examined the effect of lentivirus-mediated small interfering RNA (siRNA) targeting Smad4 on the suppression of the fibrosis in injured skeletal muscles. We found that Smad4-siRNA could efficiently knock down the expression of Smad4 in the C2C12 myoblast cells and in the contunded mice gastrocnemius muscle. The expression of mRNA level of Smad4 decreased to 11% and 49% compared to the control group, respectively, and the expression of protein level decreased to 13% and 57% respectively. Moreover, the lentivirus-mediated siRNA was stably transfected only into the skeletal muscle and not into the liver of the animals. In contunded mice gastrocnemius, the collagenous and vimentin-positive area in the Smad4 siRNA group reduced to 36% and 37% compared to the control group, respectively. Furthermore, compared to the scrambled Smad4 siRNA-injected mice and PBS control-injected mice, the muscle function of the mice injected with lentivirus-mediated Smad4 siRNA improved in terms of both fast-twitch and tetanic strength (P<0.05). The results suggest that the gene therapy of inhibiting Smad4 by lentivirus-mediated siRNA could be a useful approach to prevent scar tissue formation and improve the function of injured skeletal muscle. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Type IV Pili are required for virulence, twitching motility, and biofilm formation of acidovorax avenae subsp. Citrulli.

    Science.gov (United States)

    Bahar, Ofir; Goffer, Tal; Burdman, Saul

    2009-08-01

    Acidovorax avenae subsp. citrulli is the causal agent of bacterial fruit blotch (BFB), a threatening disease of watermelon, melon, and other cucurbits. Despite the economic importance of BFB, relatively little is known about basic aspects of the pathogen's biology and the molecular basis of its interaction with host plants. To identify A. avenae subsp. citrulli genes associated with pathogenicity, we generated a transposon (Tn5) mutant library on the background of strain M6, a group I strain of A. avenae subsp. citrulli, and screened it for reduced virulence by seed-transmission assays with melon. Here, we report the identification of a Tn5 mutant with reduced virulence that is impaired in pilM, which encodes a protein involved in assembly of type IV pili (TFP). Further characterization of this mutant revealed that A. avenae subsp. citrulli requires TFP for twitching motility and wild-type levels of biofilm formation. Significant reductions in virulence and biofilm formation as well as abolishment of twitching were also observed in insertional mutants affected in other TFP genes. We also provide the first evidence that group I strains of A. avenae subsp. citrulli can colonize and move through host xylem vessels.

  11. The Potential of/for 'Slow': Slow Tourists and Slow Destinations

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available Slow tourism practices are nothing new; in fact, they were once the norm and still are for millions of people whose annual holiday is spent camping, staying in caravans, rented accommodation, with friends and relations or perhaps in a second home, who immerse themselves in their holiday environment, eat local food, drink local wine and walk or cycle around the area. So why a special edition about slow tourism? Like many aspects of life once considered normal (such as organic farming or free-range eggs, the emergence of new practices has highlighted differences and prompted a re-evaluation of once accepted practices and values. In this way, the concept of ‘slow tourism’ has recently appeared as a type of tourism that contrasts with many contemporary mainstream tourism practices. It has also been associated with similar trends already ‘branded’ slow: slow food and cittaslow (slow towns and concepts such as mindfulness, savouring and well-being.

  12. CONTRACTION CHARACTERISTICS AND MYOSIN HEAVY-CHAIN COMPOSITION OF RABBIT MASSETER MOTOR UNITS

    NARCIS (Netherlands)

    KWA, SHS; WEIJS, WA; JUCH, PJW

    1. We studied isometric twitch peak force (TPF) and twitch contraction time (TCT) of 249 motor units of the masseter muscle in 41 rabbits after extracellular electrical stimulation of single trigeminal motoneurons in the brain stem. In 41 of these units we determined the amount of tension decrease

  13. Regulation of slow and fast muscle myofibrillogenesis by Wnt/beta-catenin and myostatin signaling.

    NARCIS (Netherlands)

    Tee, J.M.; van Rooijen, C.R.; Boonen, R.A.C.M.; Zivkovic, D.

    2009-01-01

    Deviation from proper muscle development or homeostasis results in various myopathic conditions. Employing genetic as well as chemical intervention, we provide evidence that a tight regulation of Wnt/beta-catenin signaling is essential for muscle fiber growth and maintenance. In zebrafish embryos,

  14. Slow-Adhering Stem Cells Derived from Injured Skeletal Muscle Have Improved Regenerative Capacity

    Science.gov (United States)

    2011-08-01

    stress urinary incontinence . Urology 2006, 68:449–454 15. Chermansky CJ, Tarin T, Kwon DD, Jankowski RJ, Cannon TW, de Groat WC, Huard J, Chancellor...from control noninjured muscle. These data suggest that traumatic injury may modify stem cell characteristics through trophic factors and improve the...alter the microenvironment of resident muscle cells (ie, stimu- lating cell dedifferentiation on various trophic factors )20,21 and result in profound

  15. Regional organization of fibre types in normal and reinnervated hindlimb muscles

    NARCIS (Netherlands)

    Wang, Liangchun

    2001-01-01

    The present thesis concerns the spatial distribution of the "slow" type I fibres within muscles of the hindlimb. It is known since long ago that some muscles may have strikingly heterogeneous distributions of type I and II fibres, but this phenomenon of "fibre type regionalization" has still not

  16. Muscle wasting and resistance of muscle anabolism: the "anabolic threshold concept" for adapted nutritional strategies during sarcopenia.

    Science.gov (United States)

    Dardevet, Dominique; Rémond, Didier; Peyron, Marie-Agnès; Papet, Isabelle; Savary-Auzeloux, Isabelle; Mosoni, Laurent

    2012-01-01

    Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.

  17. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available Two endothelin receptor antagonists (ERAs, bosentan and ambrisentan, are currently approved for the treatment of pulmonary arterial hypertension (PAH, a devastating disease involving an activated endothelin system and aberrant contraction and proliferation of pulmonary arterial smooth muscle cells (PASMC. The novel ERA macitentan has recently concluded testing in a Phase III morbidity/mortality clinical trial in PAH patients. Since the association and dissociation rates of G protein-coupled receptor antagonists can influence their pharmacological activity in vivo, we used human PASMC to characterize inhibitory potency and receptor inhibition kinetics of macitentan, ambrisentan and bosentan using calcium release and inositol-1-phosphate (IP(1 assays. In calcium release assays macitentan, ambrisentan and bosentan were highly potent ERAs with K(b values of 0.14 nM, 0.12 nM and 1.1 nM, respectively. Macitentan, but not ambrisentan and bosentan, displayed slow apparent receptor association kinetics as evidenced by increased antagonistic potency upon prolongation of antagonist pre-incubation times. In compound washout experiments, macitentan displayed a significantly lower receptor dissociation rate and longer receptor occupancy half-life (ROt(1/2 compared to bosentan and ambrisentan (ROt(1/2:17 minutes versus 70 seconds and 40 seconds, respectively. Because of its lower dissociation rate macitentan behaved as an insurmountable antagonist in calcium release and IP(1 assays, and unlike bosentan and ambrisentan it blocked endothelin receptor activation across a wide range of endothelin-1 (ET-1 concentrations. However, prolongation of the ET-1 stimulation time beyond ROt(1/2 rendered macitentan a surmountable antagonist, revealing its competitive binding mode. Bosentan and ambrisentan behaved as surmountable antagonists irrespective of the assay duration and they lacked inhibitory activity at high ET-1 concentrations. Thus, macitentan is a competitive

  18. Physiological, biochemical, anthropometric, and biomechanical influences on exercise economy in humans

    DEFF Research Database (Denmark)

    Lundby, C; Montero, D; Gehrig, S

    2017-01-01

    and cycling EE within a single study. In 22 healthy males (VO2max range 45.5-72.1 mL·min-1·kg-1), no factor related to skeletal muscle structure (% slow-twitch fiber content, number of capillaries per fiber), mitochondrial properties (volume density, oxidative capacity, or mitochondrial efficiency...... were correlated (R2=.94; Pindividual running and cycling EE considering that during cycle ergometer exercise, the biomechanical influence on EE would be small because of the fixed......Interindividual variation in running and cycling exercise economy (EE) remains unexplained although studied for more than a century. This study is the first to comprehensively evaluate the importance of biochemical, structural, physiological, anthropometric, and biomechanical influences on running...

  19. Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle.

    Science.gov (United States)

    Manno, Carlo; Sztretye, Monika; Figueroa, Lourdes; Allen, Paul D; Ríos, Eduardo

    2013-01-15

    The buffering power, B, of the sarcoplasmic reticulum (SR), ratio of the changes in total and free [Ca(2+)], was determined in fast-twitch mouse muscle cells subjected to depleting membrane depolarization. Changes in total SR [Ca(2+)] were measured integrating Ca(2+) release flux, determined with a cytosolic [Ca(2+)] monitor. Free [Ca(2+)](SR) was measured using the cameleon D4cpv-Casq1. In 34 wild-type (WT) cells average B during the depolarization (ON phase) was 157 (SEM 26), implying that of 157 ions released, 156 were bound inside the SR. B was significantly greater when BAPTA, which increases release flux, was present in the cytosol. B was greater early in the pulse - when flux was greatest - than at its end, and greater in the ON than in the OFF. In 29 Casq1-null cells, B was 40 (3.6). The difference suggests that 75% of the releasable calcium is normally bound to calsequestrin. In the nulls the difference in B between ON and OFF was less than in the WT but still significant. This difference and the associated decay in B during the ON were not artifacts of a slow SR monitor, as they were also found in the WT when [Ca(2+)](SR) was tracked with the fast dye fluo-5N. The calcium buffering power, binding capacity and non-linear binding properties of the SR measured here could be accounted for by calsequestrin at the concentration present in mammalian muscle, provided that its properties were substantially different from those found in solution. Its affinity should be higher, or K(D) lower than the conventionally accepted 1 mm; its cooperativity (n in a Hill fit) should be higher and the stoichiometry of binding should be at the higher end of the values derived in solution. The reduction in B during release might reflect changes in calsequestrin conformation upon calcium loss.

  20. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  1. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    Science.gov (United States)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  2. Recruitment order of quadriceps motor units: femoral nerve vs. direct quadriceps stimulation.

    Science.gov (United States)

    Rodriguez-Falces, Javier; Place, Nicolas

    2013-12-01

    To investigate potential differences in the recruitment order of motor units (MUs) in the quadriceps femoris when electrical stimulation is applied over the quadriceps belly versus the femoral nerve. M-waves and mechanical twitches were evoked using femoral nerve stimulation and direct quadriceps stimulation of gradually increasing intensity from 20 young, healthy subjects. Recruitment order was investigated by analysing the time-to-peak twitch and the time interval from the stimulus artefact to the M-wave positive peak (M-wave latency) for the vastus medialis (VM) and vastus lateralis (VL) muscles. During femoral nerve stimulation, time-to-peak twitch and M-wave latency decreased consistently (P  0.05). For the VM muscle, M-wave latency decreased with increasing stimulation level for both femoral nerve and direct quadriceps stimulation, whereas, for the VL muscle, the variation of M-wave latency with stimulus intensity was different for the two stimulation geometries (P recruitment order during direct quadriceps stimulation was more complex, depending ultimately on the architecture of the peripheral nerve and its terminal branches below the stimulating electrodes for each muscle. For the VM, MUs were orderly recruited for both stimulation geometries, whereas, for the VL muscle, MUs were orderly recruited for femoral nerve stimulation, but followed no particular order for direct quadriceps stimulation.

  3. Muscle trade-offs in a power-amplified prey capture system.

    Science.gov (United States)

    Blanco, M Mendoza; Patek, S N

    2014-05-01

    Should animals operating at great speeds and accelerations use fast or slow muscles? The answer hinges on a fundamental trade-off: muscles can be maximally fast or forceful, but not both. Direct lever systems offer a straightforward manifestation of this trade-off, yet the fastest organisms use power amplification, not direct lever action. Power-amplified systems typically use slow, forceful muscles to preload springs, which then rapidly release elastic potential energy to generate high speeds and accelerations. However, a fast response to a stimulus may necessitate fast spring-loading. Across 22 mantis shrimp species (Stomatopoda), this study examined how muscle anatomy correlates with spring mechanics and appendage type. We found that muscle force is maximized through physiological cross-sectional area, but not through sarcomere length. Sit-and-wait predators (spearers) had the shortest sarcomere lengths (fastest contractions) and the slowest strike speeds. The species that crush shells (smashers) had the fastest speeds, most forceful springs, and longest sarcomeres. The origin of the smasher clade yielded dazzlingly high accelerations, perhaps due to the release from fast spring-loading for evasive prey capture. This study offers a new window into the dynamics of force-speed trade-offs in muscles in the biomechanical, comparative evolutionary framework of power-amplified systems. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  5. Effects of cross-education on the muscle after a period of unilateral limb immobilization using a shoulder sling and swathe.

    Science.gov (United States)

    Magnus, Charlene R A; Barss, Trevor S; Lanovaz, Joel L; Farthing, Jonathan P

    2010-12-01

    The purpose of this study was to apply cross-education during 4 wk of unilateral limb immobilization using a shoulder sling and swathe to investigate the effects on muscle strength, muscle size, and muscle activation. Twenty-five right-handed participants were assigned to one of three groups as follows: the Immob + Train group wore a sling and swathe and strength trained (n = 8), the Immob group wore a sling and swathe and did not strength train (n = 8), and the Control group received no treatment (n = 9). Immobilization was applied to the nondominant (left) arm. Strength training consisted of maximal isometric elbow flexion and extension of the dominant (right) arm 3 days/wk. Torque (dynamometer), muscle thickness (ultrasound), maximal voluntary activation (interpolated twitch), and electromyography (EMG) were measured. The change in right biceps and triceps brachii muscle thickness [7.0 ± 1.9 and 7.1 ± 2.2% (SE), respectively] was greater for Immob + Train than Immob (0.4 ± 1.2 and -1.9 ± 1.7%) and Control (0.8 ± 0.5 and 0.0 ± 1.1%, P effect on maximal voluntary activation or EMG. The cross-education effect on the immobilized limb was greater after elbow extension training. This study suggests that strength training the nonimmobilized limb benefits the immobilized limb for muscle size and strength.

  6. RAPID KNEE-EXTENSIONS TO INCREASE QUADRICEPS MUSCLE ACTIVITY IN PATIENTS WITH TOTAL KNEE ARTHROPLASTY

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  7. Rapid knee-extensions to increase quadriceps muscle activity in patients with total knee arthroplasty

    DEFF Research Database (Denmark)

    Husted, Rasmus Skov; Wilquin, Lousia; Jakobsen, Thomas Linding

    2017-01-01

    rapid knee-extensions were associated with greater voluntary quadriceps muscle activity during an experimental strength training session, compared to that elicited using slow knee-extensions. STUDY DESIGN: A randomized cross-over study. METHODS: Twenty-four patients (age 66.5) 4-8 weeks post total knee...... agonist muscle activity, especially if the exercise is conducted using rapid muscle contractions. PURPOSE: The purpose of this study was to examine if patients with total knee arthroplasty could perform rapid knee-extensions using a 10 RM load four to eight weeks after surgery, and the degree to which...... arthroplasty randomly performed one set of five rapid, and one set of five slow knee-extensions with the operated leg, using a load of their 10 repetition maximum, while surface electromyography recordings were obtained from the vastus medialis and lateralis of the quadriceps muscle. RESULTS: Data from 23...

  8. In vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus.

    Science.gov (United States)

    Wooldridge, Anne A; Eades, Susan C; Hosgood, Giselle L; Moore, Rustin M

    2002-12-01

    To characterize the in vitro effects of oxytocin, acepromazine, xylazine, butorphanol, detomidine, dantrolene, isoproterenol, and terbutaline on skeletal and smooth muscle from the equine esophagus. 14 adult horses without digestive tract disease. Circular and longitudinal strips from the skeletal and smooth muscle of the esophagus were suspended in tissue baths, connected to force-displacement transducers interfaced with a physiograph, and electrical field stimulation was applied. Cumulative concentration-response curves were generated for oxytocin, acepromazine, xylazine, detomidine, butorphanol, isoproterenol, terbutaline, and dantrolene. Mean maximum twitch amplitude for 3 contractions/min was recorded and compared with predrug-vehicle values for the skeletal muscle segments, and area under the curve (AUC) for 3 contractions/min was compared with predrug-vehicle values for the smooth muscle segments. No drugs caused a significant change in skeletal muscle response. In smooth muscle, isoproterenol, terbutaline, and oxytocin significantly reduced AUC in a concentration-dependent manner. Maximum reduction in AUC was 69% at 10(-4) M for isoproterenol, 63% at 10(-6) M for terbutaline, and 64% at 10(-4) M for oxytocin. Isoproterenol, terbutaline, and oxytocin cause relaxation of the smooth muscle portion of the esophagus. The clinical relaxant effects on the proximal portion of the esophagus reported of drugs such as oxytocin, detomidine, and acepromazine may be the result of centrally mediated mechanisms.

  9. Real Time RT-PCR with a Newly Designed Set of Promers Confirmed the Presence of 2b and 2x/d Myosim Heavy Chain mRNAs in the Rat Slow Soleus Muscle

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, Jitka; Půta, F.; Stopková, R.; Soukup, Tomáš

    2008-01-01

    Roč. 57, č. 6 (2008), s. 973-978 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/1115; GA ČR(CZ) GA304/08/0256 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat slow soleus muscle * myosin heavy chain isoforms * real time RT-PCR Subject RIV: ED - Physiology Impact factor: 1.653, year: 2008

  10. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes.

    Science.gov (United States)

    Zhong, Wendy W H; Withers, Kerry W; Hoh, Joseph F Y

    2010-04-01

    Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.

  11. Postactivation Potentiation of the Plantar Flexors Does Not Directly Translate to Jump Performance in Female Elite Young Soccer Players.

    Science.gov (United States)

    Prieske, Olaf; Maffiuletti, Nicola A; Granacher, Urs

    2018-01-01

    High-intensity muscle actions have the potential to temporarily improve muscle contractile properties (i.e., postactivation potentiation, PAP) thereby inducing acute performance enhancements. There is evidence that balance training can improve performance during strength exercises. Taking these findings together, the purpose of this study was to examine the acute effects of a combined balance and strength (B+S) exercise vs. a strength only (S) exercise on twitch contractile properties, maximum voluntary strength, and jump performance in young athletes. Female elite young soccer players ( N = 12) aged 14-15 years conducted three experimental conditions in randomized order: S included 3 sets of 8-10 dynamic leg extensions at 80% of the 1-repetition maximum, B+S consisted of 3 sets of 40 s double-leg stances on a balance board prior to leg extensions (same as S), and a resting control period. Before and 7 min after exercise, participants were tested for their electrically-evoked isometric twitches (i.e., twitch peak torque, twitch rate of torque development) and maximal voluntary contraction (MVC) torque of the plantar flexor muscles. Additionally, countermovement (CMJ) and drop jump (DJ) performances (i.e., CMJ/DJ height, DJ ground contact time) were assessed. Significant effects of condition on twitch contractile properties ( p jump performance outputs ( p jump performance. It is concluded that PAP effects in the plantar flexors may not directly translate to improved jump performance in female elite young soccer players. Therefore, the observed gains in jump performance following B+S are most likely related to neuromuscular changes (e.g., intramuscular coordination) rather than improved contractile properties.

  12. When phosphorylated at Thr148, the β2-subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle.

    Science.gov (United States)

    Xu, Hongyang; Frankenberg, Noni T; Lamb, Graham D; Gooley, Paul R; Stapleton, David I; Murphy, Robyn M

    2016-07-01

    The 5'-AMP-activated protein kinase (AMPK), a heterotrimeric complex that functions as an intracellular fuel sensor that affects metabolism, is activated in skeletal muscle in response to exercise and utilization of stored energy. The diffusibility properties of α- and β-AMPK were examined in isolated skeletal muscle fiber segments dissected from rat fast-twitch extensor digitorum longus and oxidative soleus muscles from which the surface membranes were removed by mechanical dissection. After the muscle segments were washed for 1 and 10 min, ∼60% and 75%, respectively, of the total AMPK pools were found in the diffusible fraction. After in vitro stimulation of the muscle, which resulted in an ∼80% decline in maximal force, 20% of the diffusible pool became bound in the fiber. This bound pool was not associated with glycogen, as determined by addition of a wash step containing amylase. Stimulation of extensor digitorum longus muscles resulted in 28% glycogen utilization and a 40% increase in phosphorylation of the downstream AMPK target acetyl carboxylase-CoA. This, however, had no effect on the proportion of total β2-AMPK that was phosphorylated in whole muscle homogenates measured by immunoprecipitation. These findings suggest that, in rat skeletal muscle, β2-AMPK is not associated with glycogen and that activation of AMPK by muscle contraction does not dephosphorylate β2-AMPK. These findings question the physiological relevance of the carbohydrate-binding function of β2-AMPK in skeletal muscle. Copyright © 2016 the American Physiological Society.

  13. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice.

    Science.gov (United States)

    Horvath, Deanna M; Murphy, Robyn M; Mollica, Janelle P; Hayes, Alan; Goodman, Craig A

    2016-11-01

    This study investigated the effect of taurine and β-alanine supplementation on muscle function and muscle taurine transporter (TauT) protein expression in mdx mice. Wild-type (WT) and mdx mice (5 months) were supplemented with taurine or β-alanine for 4 weeks, after which in vitro contractile properties, fatigue resistance and force recovery, and the expression of the TauT protein and proteins involved in excitation-contraction (E-C) coupling were examined in fast-twitch muscle. There was no difference in basal TauT protein expression or basal taurine content between mdx than WT muscle. Supplementation with taurine and β-alanine increased and reduced taurine content, respectively, in muscle from WT and mdx mice but had no effect of TauT protein. Taurine supplementation reduced body and muscle mass, and enhanced fatigue resistance and force recovery in mdx muscle. β-Alanine supplementation enhanced fatigue resistance in WT and mdx muscle. There was no difference in the basal expression of key E-C coupling proteins [ryanodine receptor 1 (RyR1), dihydropyridine receptor (DHPR), sarco(endo)plasmic reticulum Ca 2+ -ATPase 1 (SERCA1) or calsequestrin 1 (CSQ1)] between WT and mdx mice, and the expression of these proteins was not altered by taurine or β-alanine supplementation. These findings suggest that TauT protein expression is relatively insensitive to changes in muscle taurine content in WT and mdx mice, and that taurine and β-alanine supplementation may be viable therapeutic strategies to improve fatigue resistance of dystrophic skeletal muscle.

  14. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  15. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    Science.gov (United States)

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  16. Muscle Wasting and Resistance of Muscle Anabolism: The “Anabolic Threshold Concept” for Adapted Nutritional Strategies during Sarcopenia

    Directory of Open Access Journals (Sweden)

    Dominique Dardevet

    2012-01-01

    Full Text Available Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.

  17. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  18. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    Science.gov (United States)

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  19. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  20. Delayed Effect of Blood-Flow-Restricted Resistance Training on Rapid Force Capacity

    DEFF Research Database (Denmark)

    Nielsen, Jakob Lindberg; Frandsen, Ulrik; Prokhorova, Tatyana

    2017-01-01

    of knee extensor exercise (20%1RM) to concentric failure during concurrent BFR of the thigh (100mmHg), while eight work-matched controls (21.9±3.0 years) trained without BFR (CON). Twenty-three training sessions were performed within 19 days. Maximal slow and fast knee joint velocity muscle strength......PURPOSE: The aim of the present study was to investigate the effect and time course of high-frequent low-load resistance training with blood-flow restriction (BFR) on rapid force capacity (i.e. rate of torque development (RTD)). METHODS: Ten male subjects (22.8±2.3 years) performed four sets...... and rapid force capacity (e.g. RTD) as well as evoked twitch contractile parameters was assessed before (Pre) and 5 and 12 days after training (Post5, Post12). Muscle biopsies were obtained Pre, after 8 days (Mid8) and 3 and 10 days post training (Post3, Post10) to examine changes in myofiber area...