WorldWideScience

Sample records for slow myosin heavy

  1. Adult fast myosin pattern and Ca2+-induced slow myosin pattern in primary skeletal muscle culture

    Science.gov (United States)

    Kubis, Hans-Peter; Haller, Ernst-August; Wetzel, Petra; Gros, Gerolf

    1997-01-01

    A primary muscle cell culture derived from newborn rabbit muscle and growing on microcarriers in suspension was established. When cultured for several weeks, the myotubes in this model develop the completely adult pattern of fast myosin light and heavy chains. When Ca2+ ionophore is added to the culture medium on day 11, raising intracellular [Ca2+] about 10-fold, the myotubes develop to exhibit properties of an adult slow muscle by day 30, expressing slow myosin light as well as heavy chains, elevated citrate synthase, and reduced lactate dehydrogenase. The remarkable plasticity of these myotubes becomes apparent, when 8 days after withdrawal of the ionophore a marked slow-to-fast transition, as judged from the expression of isomyosins and metabolic enzymes, occurs. PMID:9108130

  2. Myosin heavy chain expression in rabbit masseter muscle during postnatal development

    NARCIS (Netherlands)

    Bredman, J. J.; Weijs, W. A.; Korfage, H. A.; Brugman, P.; Moorman, A. F.

    1992-01-01

    The expression of isoforms of myosin heavy chain (MHC) during postnatal development was studied in the masseter muscle of the rabbit. Evidence is presented that in addition to adult fast and slow myosin, the rabbit masseter contains neonatal and 'cardiac' alpha-MHC. During postnatal growth myosin

  3. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    Science.gov (United States)

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  4. Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms

    Science.gov (United States)

    Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.

  5. Fast and slow myosins as markers of muscle injury.

    Science.gov (United States)

    Guerrero, M; Guiu-Comadevall, M; Cadefau, J A; Parra, J; Balius, R; Estruch, A; Rodas, G; Bedini, J L; Cussó, R

    2008-07-01

    The diagnosis of muscular lesions suffered by athletes is usually made by clinical criteria combined with imaging of the lesion (ultrasonography and/or magnetic resonance) and blood tests to detect the presence of non-specific muscle markers. This study was undertaken to evaluate injury to fast and slow-twitch fibres using specific muscle markers for these fibres. Blood samples were obtained from 51 non-sports people and 38 sportsmen with skeletal muscle injury. Western blood analysis was performed to determine fast and slow myosin and creatine kinase (CK) levels. Skeletal muscle damage was diagnosed by physical examination, ultrasonography and magnetic resonance and biochemical markers. The imaging tests were found to be excellent for detecting and confirming grade II and III lesions. However, grade I lesions were often unconfirmed by these techniques. Grade I lesions have higher levels of fast myosin than slow myosin with a very small increase in CK levels. Grade II and III lesions have high values of both fast and slow myosin. The evaluation of fast and slow myosin in the blood 48 h after the lesion occurs is a useful aid for the detection of type I lesions in particular, since fast myosin is an exclusive skeletal muscle marker. The correct diagnosis of grade I lesions can prevent progression of the injury in athletes undergoing continual training sessions and competitions, thus aiding sports physicians in their decision making.

  6. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  7. Myosin content of individual human muscle fibers isolated by laser capture microdissection.

    Science.gov (United States)

    Stuart, Charles A; Stone, William L; Howell, Mary E A; Brannon, Marianne F; Hall, H Kenton; Gibson, Andrew L; Stone, Michael H

    2016-03-01

    Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle. Copyright © 2016 the American Physiological Society.

  8. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  9. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  10. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    Science.gov (United States)

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  11. Protective Effects of Clenbuterol against Dexamethasone-Induced Masseter Muscle Atrophy and Myosin Heavy Chain Transition.

    Directory of Open Access Journals (Sweden)

    Daisuke Umeki

    Full Text Available Glucocorticoid has a direct catabolic effect on skeletal muscle, leading to muscle atrophy, but no effective pharmacotherapy is available. We reported that clenbuterol (CB induced masseter muscle hypertrophy and slow-to-fast myosin heavy chain (MHC isoform transition through direct muscle β2-adrenergic receptor stimulation. Thus, we hypothesized that CB would antagonize glucocorticoid (dexamethasone; DEX-induced muscle atrophy and fast-to-slow MHC isoform transition.We examined the effect of CB on DEX-induced masseter muscle atrophy by measuring masseter muscle weight, fiber diameter, cross-sectional area, and myosin heavy chain (MHC composition. To elucidate the mechanisms involved, we used immunoblotting to study the effects of CB on muscle hypertrophic signaling (insulin growth factor 1 (IGF1 expression, Akt/mammalian target of rapamycin (mTOR pathway, and calcineurin pathway and atrophic signaling (Akt/Forkhead box-O (FOXO pathway and myostatin expression in masseter muscle of rats treated with DEX and/or CB.Masseter muscle weight in the DEX-treated group was significantly lower than that in the Control group, as expected, but co-treatment with CB suppressed the DEX-induced masseter muscle atrophy, concomitantly with inhibition of fast-to-slow MHC isoforms transition. Activation of the Akt/mTOR pathway in masseter muscle of the DEX-treated group was significantly inhibited compared to that of the Control group, and CB suppressed this inhibition. DEX also suppressed expression of IGF1 (positive regulator of muscle growth, and CB attenuated this inhibition. Myostatin protein expression was unchanged. CB had no effect on activation of the Akt/FOXO pathway. These results indicate that CB antagonizes DEX-induced muscle atrophy and fast-to-slow MHC isoform transition via modulation of Akt/mTOR activity and IGF1 expression. CB might be a useful pharmacological agent for treatment of glucocorticoid-induced muscle atrophy.

  12. [Changes in titin and myosin heavy chain isoform composition in skeletal muscles of Mongolian gerbil (Meriones unguiculatus) after 12-day spaceflight].

    Science.gov (United States)

    Okuneva, A D; Vikhliantsev, I M; Shpagina, M D; Rogachevskiĭ, V V; Khutsian, S S; Poddubnaia, Z A; Grigor'ev, A I

    2012-01-01

    Changes of titin and myosin heavy chain isoform composition in skeletal muscles (m. soleus, m. gastrocnemius, m. tibialis anterior, m. psoas major) in Mongolian Gerbil (Meriones unguiculatus ) were investigated after 12-day spaceflight on board of Russian space vehicle "Foton-M3". In m. psoas and m. soleus in the gerbils from "Flight" group the expected increase in the content of fast myosin heavy chain isoforms (IIxd and IIa, respectively) were observed. No significant differences were found in the content of IIxd and IIa isoforms of myosin heavy chain in m. tibialis anterior in the gerbils from control group as compared to that in "Flight" group. An unexpected increase in the content of slow myosin heavy chain I isoform and a decrease in the content of fast IIx/d isoform in m. gastrocnemius of the gerbils from "Flight" group were observed. In skeletal muscles of the gerbils from "Flight" group the relative content of titin N2A-isoform was reduced (by 1,2-1,7 times), although the content of its NT-isoform, which was revealed in striated muscles of mammals in our experiments earlier, remained the same. When the content of titin N2A-isoform was decreased, no predictable abnormalities in sarcomeric structure and contractile ability of skeletal muscles in the gerbils from "Flight" group were found. An assumption on the leading role of titin NT-isoform in maintenance of structural and functional properties of striated muscles of mammals was made.

  13. Direct photoaffinity labeling by nucleotides of the apparent catalytic site on the heavy chains of smooth muscle and Acanthamoeba myosins

    International Nuclear Information System (INIS)

    Maruta, H.; Korn, E.D.

    1981-01-01

    The heavy chains of Acanthamoeba myosins, IA, IB and II, turkey gizzard myosin, and rabbit skeletal muscle myosin subfragment-1 were specifically labeled by radioactive ATP, ADP, and UTP, each of which is a substrate or product of myosin ATPase activity, when irradiated with uv light at 0 0 C. With UTP, as much as 0.45 mol/mol of Acanthamoeba myosin IA heavy chain and 1 mol/mol of turkey gizzard myosin heavy chain was incorporated. Evidence that the ligands were associated with the catalytic site included the observations that reaction occurred only with nucleotides that are substrates or products of the ATPase activity; that the reaction was blocked by pyrophosphate which is an inhibitor of the ATPase activity; that ATP was bound as ADP; and that label was probably restricted to a single peptide following limited subtilisin proteolysis of labeled Acanthamoeba myosin IA heavy chain and extensive cleavage with CNBr and trypsin of labeled turkey gizzard myosin heavy chain

  14. Characterization of human cardiac myosin heavy chain genes

    International Nuclear Information System (INIS)

    Yamauchi-Takihara, K.; Sole, M.J.; Liew, J.; Ing, D.; Liew, C.C.

    1989-01-01

    The authors have isolated and analyzed the structure of the genes coding for the α and β forms of the human cardiac myosin heavy chain (MYHC). Detailed analysis of four overlapping MYHC genomic clones shows that the α-MYHC and β-MYHC genes constitute a total length of 51 kilobases and are tandemly linked. The β-MYHC-encoding gene, predominantly expressed in the normal human ventricle and also in slow-twitch skeletal muscle, is located 4.5 kilobases upstream of the α-MYHC-encoding gene, which is predominantly expressed in normal human atrium. The authors have determined the nucleotide sequences of the β form of the MYHC gene, which is 100% homologous to the cardiac MYHC cDNA clone (pHMC3). It is unlikely that the divergence of a few nucleotide sequences from the cardiac β-MYHC cDNA clone (pHMC3) reported in a MYHC cDNA clone (PSMHCZ) from skeletal muscle is due to a splicing mechanism. This finding suggests that the same β form of the cardiac MYHC gene is expressed in both ventricular and slow-twitch skeletal muscle. The promoter regions of both α- and β-MYHC genes, as well as the first four coding regions in the respective genes, have also been sequenced. The sequences in the 5'-flanking region of the α- and β-MYHC-encoding genes diverge extensively from one another, suggesting that expression of the α- and β-MYHC genes is independently regulated

  15. Reduction in beta-myosin heavy chains in stunned myocardium as assessed by nondenaturing gel electrophoresis.

    Science.gov (United States)

    Garcia, S C; Pomblum, V J; Gams, E; Rupp, H; Schipke, J D

    2007-09-01

    Myosin plays a key role in the structure and function of cardiac muscle. Three myosin isoenzymes (V(1), V(2), and V(3)) with different ATPase activities have been identified in mammalian ventricles based on their heavy chain constituents. The relative amount of myosin isoenzymes changes under physiological and pathological conditions. Until now, myosin isoenzymes have frequently been determined using either tube gel (nondenaturing) polyacrylamide gel electrophoresis (PAGE), or gradient or uniform sodium dodecyl sulfate (denaturing) PAGE. Both methods have disadvantages, e.g., a long running time. We developed, therefore, a uniform, nondenaturing PAGE with slab minigel format for analyzing the myosin isoenzymes in normoxic and stunned rabbit hearts. In normoxic hearts of adult rabbits, V(3) predominated over V(1) (46 vs 41%). In turn, in the stunned hearts, V(1) predominated over V(3) (70 vs 30%), and the heterodimeric V(2) was not anymore detectable. This alteration appears to result from a selective loss of myosin heavy chain (MHC)-beta. In parallel, the biochemical markers troponin I and creatine kinase were increased in the stunned hearts. We suggest that alterations of myosin isoenzymes in stunned myocardium can be monitored with native PAGE. The present analysis of myosin isoenzyme appears thus as a new tool for evaluating defects in MHC dimer formation in postischemic hearts.

  16. Calcineurin regulates slow myosin, but not fast myosin or metabolic enzymes, during fast-to-slow transformation in rabbit skeletal muscle cell culture

    Science.gov (United States)

    Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter

    2001-01-01

    The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of

  17. Cloning of skeletal myosin heavy chain gene family from adult pleopod muscle and whole larvae of shrimps.

    Science.gov (United States)

    Koyama, Hiroki; Piyapattanakorn, Sanit; Watabe, Shugo

    2013-06-01

    The physiological and biological properties of skeletal muscle in crustacea have not been well understood compared with those of vertebrates. The present study focused on myosin, the major protein in skeletal muscle, from shrimps. In our previous study, two full-length genes encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle of kuruma Marsupenaeus japonicus, black tiger Penaeus monodon and Pacific white Penaeus vannamei shrimps, and named as MHCa and MHCb. In this study, we renamed these as MHC1 and MHC2, respectively, due to the presence of various isoforms newly identified. Partial MHC sequences were identified from pleopod muscle of these shrimps. Two MHCs, named MHC3 and MHC4, were identified from pleopod muscle of kuruma shrimp, whereas two MHCs, named MHC4 and MHC5, were cloned from Pacific white shrimp pleopod. MHC3 was cloned only from black tiger shrimp pleopod. Partial MHC sequences from zoea, mysis, and postlarvae of black tiger and Pacific white shrimps were also determined. The phylogenetic tree demonstrated that most MHCs from pleopod muscle and larval MHCs formed clades with MHC1 and MHC2, respectively. These MHCs were considered to be of fast type, since MHC1 and MHC2 are fast-type MHCs according to our previous study. MHC5 obtained from pleopod muscle of Pacific white shrimp in this study was monophyletic with American lobster Homarus americanus S2 slow tonic MHC previously reported, indicating that MHC5 from Pacific white shrimp is of slow type. Copyright © 2013 Wiley Periodicals, Inc.

  18. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    International Nuclear Information System (INIS)

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M.

    1990-01-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation

  19. Comparison of myosin heavy chain mRNAs, protein isoforms and fiber type proportions in the rat slow and fast muscles

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, J.; Soukup, Tomáš

    2013-01-01

    Roč. 62, č. 4 (2013), s. 445-453 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) LH12058 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : rat * soleus * extensor digitorum longus * myosin heavy chain isoforms * muscle gene expression * quantitative Real Time RT-PCR * SDS - PAGE * fiber type analysis Subject RIV: EA - Cell Biology Impact factor: 1.487, year: 2013

  20. Expression of porcine myosin heavy chain 1 gene in Berkshire loins ...

    African Journals Online (AJOL)

    Expression of porcine myosin heavy chain 1 gene in Berkshire loins with a high pH24 value. Jin Hun Kang, Woo Young Bang, Eun Jung Kwon, Yong Hwa Lee, Da Hye Park, Eun Seok Cho, Min Ji Kim, Jong-Soon Choi, Hwa Chun Park, Beom Young Park, Chul Wook Kim ...

  1. Stimulatory and inhibitory mechanisms of slow muscle-specific myosin heavy chain gene expression in fish: Transient and transgenic analysis of torafugu MYHM86-2 promoter in zebrafish embryos

    International Nuclear Information System (INIS)

    Asaduzzaman, Md.; Kinoshita, Shigeharu; Bhuiyan, Sharmin Siddique; Asakawa, Shuichi; Watabe, Shugo

    2013-01-01

    The myosin heavy chain gene, MYH M86-2 , exhibited restricted expression in slow muscle fibers of torafugu embryos and larvae, suggesting its functional roles for embryonic and larval muscle development. However, the transcriptional mechanisms involved in its expression are still ambiguous. The present study is the first extensive analysis of slow muscle-specific MYH M86-2 promoter in fish for identifying the cis-elements that are crucial for its expression. Combining both transient transfection and transgenic approaches, we demonstrated that the 2614 bp 5′-flanking sequences of MYH M86-2 contain a sufficient promoter activity to drive gene expression specific to superficial slow muscle fibers. By cyclopamine treatment, we also demonstrated that the differentiation of such superficial slow muscle fibers depends on hedgehog signaling activity. The deletion analyses defined an upstream fragment necessary for repressing ectopic MYH M86-2 expression in the fast muscle fibers. The transcriptional mechanism that prevents MYH M86-2 expression in the fast muscle fibers is mediated through Sox6 binding elements. We also demonstrated that Sox6 may function as a transcriptional repressor of MYH M86-2 expression. We further discovered that nuclear factor of activated T cells (NFAT) binding elements plays a key role and myocyte enhancer factor-2 (MEF2) binding elements participate in the transcriptional regulation of MYH M86-2 expression. - Highlights: ► MYH M86-2 is highly expressed in slow muscle fibers of torafugu embryos and larvae. ► MYH M86-2 promoter activity depends on the hedgehog signaling. ► Sox6 binding elements inhibits MYH M86-2 expression in fast muscle fibers. ► Sox6 elements function as transcriptional repressor of MYH M86-2 promoter activity. ► NFAT and MEF2 binding elements play a key role for directing MYH M86-2 expression

  2. Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.

    Science.gov (United States)

    Sato, Osamu; Komatsu, Satoshi; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Tanaka, Ryosuke; Mizutani, Takeomi; Watanabe, Tomonobu M; Ikebe, Reiko; Ikebe, Mitsuo

    2017-06-30

    Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s -1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s -1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effect of ageing on the myosin heavy chain composition of the human sternocleidomastoid muscle.

    Science.gov (United States)

    Meznaric, M; Eržen, I; Karen, P; Cvetko, E

    2018-03-01

    The myosin heavy chain (MyHC) composition of ageing limb muscles is transformed into a slower phenotype and expresses fast-twitch fibre type atrophy, presumably due to age-related motor unit remodelling and a change in the patterns of physical activity. It is not known if ageing affects the sternocleidomastoid muscle (SCM) in a similar way. The goal of the study was to analyze the MyHC composition and the size of muscle fibres in the ageing SCM by immunohistochemical methods and quantitative analysis and stereology using our own software for morphometry. We hypothesize that with ageing the MyHC composition of SCM transforms similarly as in ageing limb muscles, but the size of the muscle fibres is less effected as in limb muscles. The study was performed on the autopsy samples of the SCM in 12 older males. The results were compared with those published in our previous study on 15 young adult males. An ageing SCM transforms into a slower MyHC profile: the percentage of slow-twitch fibres is enhanced (numerical proportion 44.6 vs. 31.5%, Pfibres is diminished (numerical proportion 14.1 vs. 26.8%, Pfast-twitch fibres expressing MyHC-2a and 2x is smaller (50.6 vs. 63.5%, Pfibres expressing the fastest myosin isoform MyHC-2x is smaller too (19.0 vs. 34.5%, Pfibres expressing the fastest MyHC-2x provide circumstantial evidence for: (i) more fast-twitch than slow-twitch motor units being lost; and (ii) reinnervation by the surviving motor units. There appears to be no significant influence on muscle fibre size, which is congruent with relatively unchanged SCM activity during life. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Construction and characterization of the alpha form of a cardiac myosin heavy chain cDNA clone and its developmental expression in the Syrian hamster.

    OpenAIRE

    Liew, C C; Jandreski, M A

    1986-01-01

    A cDNA clone, pVHC1, was isolated from a Syrian hamster heart cDNA library and was compared to the rat alpha (pCMHC21) and beta (pCMHC5) ventricular myosin heavy chain cDNA clones. The DNA sequence and amino acid sequence deducted from the DNA show more homology with pCMHC21 than pCMHC5. This indicates that pVHC1 is an alpha ventricular myosin heavy chain cDNA clone. However, even though pVHC1 shows a high degree of nucleotide and amino acid conservation with the rat myosin heavy chain sequen...

  5. Interaction of thyroid state and denervation on skeletal myosin heavy chain expression

    Science.gov (United States)

    Haddad, F.; Arnold, C.; Zeng, M.; Baldwin, K.

    1997-01-01

    The goal of this study was to examine the effects of altered thyroid state and denervation (Den) on skeletal myosin heavy chain (MHC) expression in the plantaris and soleus muscles. Rats were subjected to unilateral denervation (Den) and randomly assigned to one of three groups: (1) euthyroid; (2) hyperthyroid; (3) and hypothyroid. Denervation caused severe muscle atrophy and muscle-type specific MHC transformation. Denervation transformed the soleus to a faster muscle, and its effects required the presence of circulating thyroid hormone. In contrast, denervation transformed the plantaris to a slower muscle independently of thyroid state. Furthermore, thyroid hormone effects did not depend upon innervation status in the soleus, while they required the presence of the nerve in the plantaris. Collectively, these findings suggest that both thyroid hormone and intact nerve (a) differentially affect MHC transformations in fast and slow muscle; and (b) are important factors in regulating the optimal expression of both type I and IIB MHC genes. This research suggests that for patients with nerve damage and/or paralysis, both muscle mass and biochemical properties can also be affected by the thyroid state.

  6. Effects of proteolysis on the adenosinetriphosphatase activities of thymus myosin

    International Nuclear Information System (INIS)

    Vu, N.D.; Wagner, P.D.

    1987-01-01

    Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of 32 P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca 2+ - and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1. Although this subfragment 1 contained intact light chains, its actin-activated ATPase activity was not affected by light chain phosphorylation

  7. Levels of myosin heavy chain mRNA transcripts and content of protein isoforms in the slow soleus muscle of 7 month-old rats with altered thyroid status

    Czech Academy of Sciences Publication Activity Database

    Vadászová, Adriana; Hudecová, S.; Križanová, O.; Soukup, Tomáš

    2006-01-01

    Roč. 55, č. 2 (2006), s. 221-225 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GD305/03/H148; GA ČR(CZ) GA304/05/0327 Grant - others:VEGA(SK) 2/6078; SAV(SK) APVT-51-027404; NATO(XE) 979876; MYORES(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : myosin heavy chain * thyroid hormones status * mRNA transcripts Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  8. Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin

    DEFF Research Database (Denmark)

    Kriajevska, M; Bronstein, I B; Scott, D J

    2000-01-01

    a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C...

  9. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes.

    Science.gov (United States)

    Zhong, Wendy W H; Withers, Kerry W; Hoh, Joseph F Y

    2010-04-01

    Effects of drug-induced hypothyroidism on myosin heavy chain (MyHC) content and fibre types of fast skeletal muscles were studied in a small marsupial, Antechinus flavipes. SDS-PAGE of MyHCs from the tibialis anterior and gastrocnemius revealed four isoforms, 2B, 2X, 2A and slow, in that order of decreasing abundance. After 5 weeks treatment with methimazole, the functionally fastest 2B MyHC significantly decreased, while 2X, 2A and slow MyHCs increased. Immunohistochemistry using monospecific antibodies to each of the four MyHCs revealed decreased 2b and 2x fibres, and increased 2a and hybrid fibres co-expressing two or three MyHCs. In the normally homogeneously fast superficial regions of these muscles, evenly distributed slow-staining fibres appeared, resembling the distribution of slow primary myotubes in fast muscles during development. Hybrid fibres containing 2A and slow MyHCs were virtually absent. These results are more detailed but broadly similar to the earlier studies on eutherians. We hypothesize that hypothyroidism essentially reverses the effects of thyroid hormone on MyHC gene expression of muscle fibres during myogenesis, which differ according to the developmental origin of the fibre: it induces slow MyHC expression in 2b fibres derived from fast primary myotubes, and shifts fast MyHC expression in fibres of secondary origin towards 2A, but not slow, MyHC.

  10. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  11. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  12. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    International Nuclear Information System (INIS)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev; Renkawitz-Pohl, Renate

    2013-01-01

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity

  13. SNPs within the beta myosin heavy chain (MYH7 and the pyruvate kinase muscle (PKM2 genes in horse

    Directory of Open Access Journals (Sweden)

    Vincenzo Russo

    2010-01-01

    Full Text Available Two highly expressed skeletal muscle genes (the MYH7 gene encoding the myosin heavy chain slow/β-cardiac isoform and the PKM2 gene encoding the pyruvate kinase muscle isoforms were investigated with the objective to identify DNA markers in horses. A panel of DNA samples from different horse breeds was analysed using a PCR-single strand conformation polymorphism (SSCP approach. Four and two alleles were identified for the MYH7 and PKM2 loci, respectively. Mendelian inheritance of alleles of the two investigated genes was confirmed analysing horse families. Sequencing of PCR products obtained from the MYH7 and PKM2 genes made it possible to characterise two SSCP alleles for each gene. The polymorphisms found in the MYH7 and PKM2 genes were further studied in 61 and 68 horses of three (Italian Heavy Draught Horse, Italian Saddler and Murgese and five (Franches-Montagnes, Haflinger, Italian Heavy Draught Horse, Murgese and Standardbred breeds, respectively. Allele frequencies of the two loci varied among the considered breeds. The SNPs discovery in MYH7 and PKM2 genes makes it possible to locate new molecular markers to ECA1. The identified markers could be used in association analysis with performance traits in horses.

  14. Comparative genomic analysis of the arthropod muscle myosin heavy chain genes allows ancestral gene reconstruction and reveals a new type of 'partially' processed pseudogene

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2008-02-01

    Full Text Available Abstract Background Alternative splicing of mutually exclusive exons is an important mechanism for increasing protein diversity in eukaryotes. The insect Mhc (myosin heavy chain gene produces all different muscle myosins as a result of alternative splicing in contrast to most other organisms of the Metazoa lineage, that have a family of muscle genes with each gene coding for a protein specialized for a functional niche. Results The muscle myosin heavy chain genes of 22 species of the Arthropoda ranging from the waterflea to wasp and Drosophila have been annotated. The analysis of the gene structures allowed the reconstruction of an ancient muscle myosin heavy chain gene and showed that during evolution of the arthropods introns have mainly been lost in these genes although intron gain might have happened in a few cases. Surprisingly, the genome of Aedes aegypti contains another and that of Culex pipiens quinquefasciatus two further muscle myosin heavy chain genes, called Mhc3 and Mhc4, that contain only one variant of the corresponding alternative exons of the Mhc1 gene. Mhc3 transcription in Aedes aegypti is documented by EST data. Mhc3 and Mhc4 inserted in the Aedes and Culex genomes either by gene duplication followed by the loss of all but one variant of the alternative exons, or by incorporation of a transcript of which all other variants have been spliced out retaining the exon-intron structure. The second and more likely possibility represents a new type of a 'partially' processed pseudogene. Conclusion Based on the comparative genomic analysis of the alternatively spliced arthropod muscle myosin heavy chain genes we propose that the splicing process operates sequentially on the transcript. The process consists of the splicing of the mutually exclusive exons until one exon out of the cluster remains while retaining surrounding intronic sequence. In a second step splicing of introns takes place. A related mechanism could be responsible for

  15. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    Science.gov (United States)

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  16. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  17. Experimental studies of heavy-ion slowing down in matter

    International Nuclear Information System (INIS)

    Geissel, H.; Weick, H.; Scheidenberger, C.; Bimbot, R.; Gardes, D.

    2002-08-01

    Measurements of heavy-ion slowing down in matter differ in many aspects from experiments with light particles like protons and α-particles. An overview of the special experimental requirements, methods, data analysis and interpretation is presented for heavy-ion stopping powers, energy- and angular-straggling and ranges in the energy domain from keV/u up to GeV/u. Characteristic experimental results are presented and compared with theory and semiempirical predictions. New applications are outlined, which represent a challenge to continuously improve the knowledge of heavy-ion slowing down. (orig.)

  18. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    Science.gov (United States)

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue. PMID:21284933

  19. Real Time RT-PCR with a Newly Designed Set of Promers Confirmed the Presence of 2b and 2x/d Myosim Heavy Chain mRNAs in the Rat Slow Soleus Muscle

    Czech Academy of Sciences Publication Activity Database

    Žurmanová, Jitka; Půta, F.; Stopková, R.; Soukup, Tomáš

    2008-01-01

    Roč. 57, č. 6 (2008), s. 973-978 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/1115; GA ČR(CZ) GA304/08/0256 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : rat slow soleus muscle * myosin heavy chain isoforms * real time RT-PCR Subject RIV: ED - Physiology Impact factor: 1.653, year: 2008

  20. Analysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.

    Science.gov (United States)

    Medler, Scott; Mykles, Donald L

    2003-10-01

    Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype

  1. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    Science.gov (United States)

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  2. Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.; Braddock, Joan M.; Farman, Gerrie P.; Irving, Thomas C.; Swank, Douglas M.; Bernstein, Sanford I.; Maughan, David W.; (RPI); (IIT); (SDSU); (Vermont)

    2009-07-01

    The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifying this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.

  3. Myosin heavy chain composition of tiger (Panthera tigris) and cheetah (Acinonyx jubatus) hindlimb muscles.

    Science.gov (United States)

    Hyatt, Jon-Philippe K; Roy, Roland R; Rugg, Stuart; Talmadge, Robert J

    2010-01-01

    Felids have a wide range of locomotor activity patterns and maximal running speeds, including the very fast cheetah (Acinonyx jubatas), the roaming tiger (Panthera tigris), and the relatively sedentary domestic cat (Felis catus). As previous studies have suggested a relationship between the amount and type of activity and the myosin heavy chain (MHC) isoform composition of a muscle, we assessed the MHC isoform composition of selected hindlimb muscles from these three felid species with differing activity regimens. Using gel electrophoresis, western blotting, histochemistry, and immunohistochemistry with MHC isoform-specific antibodies, we compared the MHC composition in the tibialis anterior, medial gastrocnemius (MG), plantaris (Plt), and soleus muscles of the tiger, cheetah, and domestic cat. The soleus muscle was absent in the cheetah. At least one slow (type I) and three fast (types IIa, IIx, and IIb) MHC isoforms were present in the muscles of each felid. The tiger had a high combined percentage of the characteristically slower isoforms (MHCs I and IIa) in the MG (62%) and the Plt (86%), whereas these percentages were relatively low in the MG (44%) and Plt (55%) of the cheetah. In general, the MHC isoform characteristics of the hindlimb muscles matched the daily activity patterns of these felids: the tiger has daily demands for covering long distances, whereas the cheetah has requirements for speed and power. (c) 2009 Wiley-Liss, Inc.

  4. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  5. An isoform of myosin XI is responsible for the translocation of endoplasmic reticulum in tobacco cultured BY-2 cells.

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Shunpei; Tamura, Kentaro; Orii, Hidefumi; Uchi, Satoko; Sonobe, Seiji; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2009-01-01

    The involvement of myosin XI in generating the motive force for cytoplasmic streaming in plant cells is becoming evident. For a comprehensive understanding of the physiological roles of myosin XI isoforms, it is necessary to elucidate the properties and functions of each isoform individually. In tobacco cultured BY-2 cells, two types of myosins, one composed of 175 kDa heavy chain (175 kDa myosin) and the other of 170 kDa heavy chain (170 kDa myosin), have been identified biochemically and immunocytochemically. From sequence analyses of cDNA clones encoding heavy chains of 175 kDa and 170 kDa myosin, both myosins have been classified as myosin XI. Immunocytochemical studies using a polyclonal antibody against purified 175 kDa myosin heavy chain showed that the 175 kDa myosin is distributed throughout the cytoplasm as fine dots in interphase BY-2 cells. During mitosis, some parts of 175 kDa myosin were found to accumulate in the pre-prophase band (PPB), spindle, the equatorial plane of a phragmoplast and on the circumference of daughter nuclei. In transgenic BY-2 cells, in which an endoplasmic reticulum (ER)-specific retention signal, HDEL, tagged with green fluorescent protein (GFP) was stably expressed, ER showed a similar behaviour to that of 175 kDa myosin. Furthermore, this myosin was co-fractionated with GFP-ER by sucrose density gradient centrifugation. From these findings, it was suggested that the 175 kDa myosin is a molecular motor responsible for translocating ER in BY-2 cells.

  6. Comparison of new ELISA method with established SDS-PAGE method for determination of muscle myosin heavy chain isoforms

    Czech Academy of Sciences Publication Activity Database

    Říčný, Jan; Soukup, Tomáš

    2011-01-01

    Roč. 60, č. 6 (2011), s. 899-904 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : muscle fiber types * myosin heavy chains * SDS - PAGE * immunoreactions * thyroid hormones * ELISA Subject RIV: EA - Cell Biology Impact factor: 1.555, year: 2011

  7. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Science.gov (United States)

    Zawadowska, B; Majerczak, J; Semik, D; Karasinski, J; Kolodziejski, L; Kilarski, W M; Duda, K; Zoladz, J A

    2004-01-01

    Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg) of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A), national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training) and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training). Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC) composition. Significant differences (Pski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A). We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  8. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders

    DEFF Research Database (Denmark)

    Klitgaard, H; Zhou, M.-Y.; Richter, Erik

    1990-01-01

    The myosin heavy chain (MHC) composition of single fibres from m. biceps brachii of young sedentary men (28 +/- 0.4 years, mean +/- SE, n = 4) and male body builders (25 +/- 2.0 years, n = 4) was analysed with a sensitive one-dimensional electrophoretic technique. Compared with sedentary men...... expression of MHC isoforms within histochemical type II fibres of human skeletal muscle with body building. Furthermore, in human skeletal muscle differences in expression of MHC isoforms may not always be reflected in the traditional histochemical classification of types I, IIa, IIb and IIc fibres....

  9. Effect of 48-h food deprivation on the expressions of myosin heavy-chain isoforms and fiber type-related factors in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Sawano, Shoko; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2013-01-01

    The primary aim of this study was to examine the effects of 48-h food deprivation on rat skeletal muscle fiber type, according to myosin heavy-chain (MyHC) isoform composition and some metabolism-related factors in both slow-type dominant and fast-type dominant muscle tissues. Male Wistar rats (7 wk old) were treated with 48-h food deprivation or ad libitum feeding as control. After the treatment, the soleus muscle (slow-type dominant) and the extensor digitorum longus (EDL, fast-type dominant) were excised. We found that 48-h food deprivation did not affect MyHC composition in either the soleus or EDL, compared with fed rats by electrophoretic separation of MyHC isoforms. However, 48-h food deprivation significantly increased the mRNA expression of fast-type MyHC2B in the EDL muscle. Moreover, food deprivation increased fatty acid metabolism, as shown by elevated levels of related serum energy substrates and mRNA expression of mitochondrial uncoupling protein (UCP) 3 and lipoprotein lipase (LPL) in both the soleus and EDL. UCP3 and LPL are generally expressed at higher levels in slow-type fibers. Furthermore, we found that food deprivation significantly decreased the protein amounts of PGC1α and phosphorylated FOXO1, which are known as skeletal muscle fiber type regulators. In conclusion, 48-h food deprivation increased mRNA expression of fast-type MyHC isoform and oxidative metabolism-related factors in EDL, whereas MyHC composition at the protein level did not change in either the soleus or EDL.

  10. Robust mechanobiological behavior emerges in heterogeneous myosin systems

    Science.gov (United States)

    Egan, Paul F.; Moore, Jeffrey R.; Ehrlicher, Allen J.; Weitz, David A.; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2017-09-01

    Biological complexity presents challenges for understanding natural phenomenon and engineering new technologies, particularly in systems with molecular heterogeneity. Such complexity is present in myosin motor protein systems, and computational modeling is essential for determining how collective myosin interactions produce emergent system behavior. We develop a computational approach for altering myosin isoform parameters and their collective organization, and support predictions with in vitro experiments of motility assays with α-actinins as molecular force sensors. The computational approach models variations in single myosin molecular structure, system organization, and force stimuli to predict system behavior for filament velocity, energy consumption, and robustness. Robustness is the range of forces where a filament is expected to have continuous velocity and depends on used myosin system energy. Myosin systems are shown to have highly nonlinear behavior across force conditions that may be exploited at a systems level by combining slow and fast myosin isoforms heterogeneously. Results suggest some heterogeneous systems have lower energy use near stall conditions and greater energy consumption when unloaded, therefore promoting robustness. These heterogeneous system capabilities are unique in comparison with homogenous systems and potentially advantageous for high performance bionanotechnologies. Findings open doors at the intersections of mechanics and biology, particularly for understanding and treating myosin-related diseases and developing approaches for motor molecule-based technologies.

  11. Expression of smooth muscle and non-muscle myosin heavy chain isoforms in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Rovner, A.S.; Murphy, R.A.; Owens, G.K.

    1986-01-01

    Immunocytochemical studies of cultured smooth muscle cells (SMCs) have disagreed on the nature of myosin expression. This investigation was undertaken to test for the presence of heterogeneous myosin heavy chain (MHC) isoforms in cell culture as a possible explanation for these results. Previously, Rovner et al. detected two MHCs in intact smooth muscles which differed in molecular weight by ca. 4000 daltons (SM1 and SM2) using a 3-4% acrylamide gradient SDS gel system. When sub-confluent primary cultures of rat aorta SMCs were assayed by this system, SM1 and SM2 were seen, along with large amounts of a third, unique MHC, NM, which closely resembled the MHC from human platelet in size and antigenicity. Data from 35 S-methionine autoradiograms showed that the log growth phase SMC cultures were producing almost exclusively NM, but the growth arrest, post-confluent cultures synthesized increased relative amounts of the SM MHC forms and contained comparable amounts of SM1, SM2, and NM. The same patterns of MHC synthesis were seen in sub-passaged SMCs. The expression of the SM-specific forms of myosin in quiescent, post-confluent cultures parallels that of smooth muscle actin suggesting that density induced growth arrest promotes cytodifferentiation in cultured vascular SMCs

  12. The importance of subfragment 2 and C-terminus of myosin heavy chain for thick filament assembly in skeletal muscle cells.

    Science.gov (United States)

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Muroya, Susumu; Chikuni, Koichi; Hattori, Akihito; Nishimura, Takanori

    2015-04-01

    In skeletal muscle cells, myofibrillar proteins are highly organized into sarcomeres in which thick filaments interdigitate with thin filaments to generate contractile force. The size of thick filaments, which consist mainly of myosin molecules, is strictly controlled. However, little is known about the mechanisms by which myosin molecules assemble into thick filaments. Here, we assessed the ability of each domain of myosin heavy chain (Myh) to form thick filaments. We showed that exogenously expressed subfragment 2 (S2) + light meromyosin (LMM) of Myh was efficiently incorporated into thick filaments in muscle cells, although neither solely expressed S2 nor LMM targeted to thick filaments properly. In nonmuscle COS7 cells, S2+LMM formed more enlarged filaments/speckles than LMM. These results suggest that Myh filament formation is induced by S2 accompanying LMM. We further examined the effects of Myh C-terminus on thick filament assembly. C-terminal deletion mutants were incorporated not into entire thick filaments but rather into restricted regions of thick filaments. Our findings suggest that the elongation of myosin filaments to form thick filaments is regulated by S2 as well as C-terminus of LMM. © 2014 Japanese Society of Animal Science.

  13. Radioimmunoassay of myosin heavy beta chains in human serum for the evaluation of the size of myocardial infarction: correlation with myocardial Tl-201 SPECT and cardiac angioscintigraphy

    International Nuclear Information System (INIS)

    Facello, A.; Gries, P.; Demangeat, C.; Brunot, B.; Roul, G.; Demangeat, J.L.; Moulichon, M.; Bareiss, P.; Sacrez, A.; Constantinesco, A.

    1990-01-01

    To determine the relationship between serum levels of myosin heavy beta chains assessed by an IRMA technique and other radionuclide and enzymatic parameters in the evaluation of the size of myocardial infarction, we studied 22 patients with acute myocardial infarction. Blood samples taken daily between 1st to 13th day of evolution allow the determination of peak and integral of myosine release that showed a good correlation (p [fr

  14. Myosin heavy chain profile of equine gluteus medius muscle following prolonged draught-exercise training and detraining.

    Science.gov (United States)

    Serrano, A L; Rivero, J L

    2000-04-01

    Fourteen 4-year old Andalusian mares were used to examine the plasticity of myosin heavy chain (MHC) composition in horse skeletal muscle with heavy draught-exercise training and detraining. Seven horses underwent a training programme based on carriage exercises for 8 months. Afterwards, they were kept in paddocks for 3 months. The remaining seven animals were used as control horses. Three gluteus medius muscle biopsies were removed at depths of 20, 40 and 60 mm from each horse before (month 0), during the training (months 3 and 8) and after detraining (month 11). Myosin heavy chain composition was analysed by electrophoresis and immunohistochemically with anti-MHC monoclonal antibodies. Fibre areas, oxidative capacity and capillaries were studied histochemically. After 8 months of training, MHC-IIX and IIX fibres decreased whereas MHC-I and type I and I + IIA fibres increased. Neither MHC-IIA nor the percentage of IIA fibres changed when the data were considered as a whole, but the proportion of MHC-IIA increased in the superficial region of the muscle after 8 months of training. Mean areas of type II fibres were not affected by training and detraining, but the cross-sectional of type I fibres increased after 3 month of training and not further increases were recorded afterward. The percentage of high-oxidative capacity fibres and the number of capillaries per mm2 increased with training. Most of these muscular adaptations reverted after detraining. These results indicate that long term draught-exercise training induces a reversible transition of MHC composition in equine muscle in the order IIX --> IIA --> I. The physiological implication of these changes is an impact on the velocity of shortening and fatigue resistance of muscle fibres.

  15. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    Science.gov (United States)

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Time course of myosin heavy chain transitions in neonatal rats: importance of innervation and thyroid state

    Science.gov (United States)

    Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.

    1999-01-01

    During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.

  17. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle

    Science.gov (United States)

    Baldwin, K. M.; Haddad, F.

    2001-01-01

    The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of

  18. Characteristics of myosin profile in human vastus lateralis muscle in relation to training background.

    Directory of Open Access Journals (Sweden)

    J A Zoladz

    2004-10-01

    Full Text Available Twenty-four male volunteers (mean +/- SD: age 25.4+/-5.8 years, height 178.6+/-5.5 cm, body mass 72.1+/-7.7 kg of different training background were investigated and classified into three groups according to their physical activity and sport discipline: untrained students (group A, national and sub-national level endurance athletes (group B, 7.8+/-2.9 years of specialised training and sprint-power athletes (group C, 12.8+/-8.7 years of specialised training. Muscle biopsies of vastus lateralis were analysed histochemically for mATPase and SDH activities, immunohistochemically for fast and slow myosin, and electrophoretically followed by Western immunoblotting for myosin heavy chain (MyHC composition. Significant differences (P<0.05 regarding composition of muscle fibre types and myosin heavy chains were found only between groups A (41.7+/-1.6% of MyHCI, 40.8+/-4.0% of MyHCIIA and 17.5+/-4.0% of MyHCIIX and B (64.3+/-0.8% of MyHCI, 34.0+/-1.4% of MyHCIIA and 1.7+/-1.4% of MyHCIIX and groups A and C (59.6+/-1.6% of MyHCI, 37.2+/-1.3% of MyHCIIA and 3.2+/-1.3% of MyHCIIX. Unexpectedly, endurance athletes (group B such as long-distance runners, cyclists and cross country skiers, did not differ from the athletes representing short term, high power output sports (group C such as ice hockey, karate, ski-jumping, volleyball, soccer and modern dance. Furthermore, the relative amount of the fastest MyHCIIX isoform in vastus lateralis muscle was significantly lower in the athletes from group C than in students (group A. We conclude that the myosin profile in the athletes belonging to group C was unfavourable for their sport disciplines. This could be the reason why those athletes did not reach international level despite of several years of training.

  19. The Effect of Experimental Hyperthyroidism on Characteristics of Actin-Myosin Interaction in Fast and Slow Skeletal Muscles.

    Science.gov (United States)

    Kopylova, G V; Shchepkin, D V; Bershitsky, S Y

    2018-05-01

    The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin-myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.

  20. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

    NARCIS (Netherlands)

    Homburger, J.R. (Julian R.); Green, E.M. (Eric M.); Caleshu, C. (Colleen); Sunitha, M.S. (Margaret S.); Taylor, R.E. (Rebecca E.); Ruppel, K.M. (Kathleen M.); Metpally, R.P.R. (Raghu Prasad Rao); S.D. Colan (Steven); M. Michels (Michelle); Day, S.M. (Sharlene M.); I. Olivotto (Iacopo); Bustamante, C.D. (Carlos D.); Dewey, F.E. (Frederick E.); Ho, C.Y. (Carolyn Y.); Spudich, J.A. (James A.); Ashley, E.A. (Euan A.)

    2016-01-01

    textabstractMyosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac

  1. Acceleration of the sliding movement of actin filaments with the use of a non-motile mutant myosin in in vitro motility assays driven by skeletal muscle heavy meromyosin.

    Directory of Open Access Journals (Sweden)

    Kohei Iwase

    Full Text Available We examined the movement of an actin filament sliding on a mixture of normal and genetically modified myosin molecules that were attached to a glass surface. For this purpose, we used a Dictyostelium G680V mutant myosin II whose release rates of Pi and ADP were highly suppressed relative to normal myosin, leading to a significantly extended life-time of the strongly bound state with actin and virtually no motility. When the mixing ratio of G680V mutant myosin II to skeletal muscle HMM (heavy myosin was 0.01%, the actin filaments moved intermittently. When they moved, their sliding velocities were about two-fold faster than the velocity of skeletal HMM alone. Furthermore, sliding movements were also faster when the actin filaments were allowed to slide on skeletal muscle HMM-coated glass surfaces in the motility buffer solution containing G680V HMM. In this case no intermittent movement was observed. When the actin filaments used were copolymerized with a fusion protein consisting of Dictyostelium actin and Dictyostelium G680V myosin II motor domain, similar faster sliding movements were observed on skeletal muscle HMM-coated surfaces. The filament sliding velocities were about two-fold greater than the velocities of normal actin filaments. We found that the velocity of actin filaments sliding on skeletal muscle myosin molecules increased in the presence of a non-motile G680V mutant myosin motor.

  2. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  3. Slowing down of relativistic heavy ions and new applications

    International Nuclear Information System (INIS)

    Geissel, H.; Scheidenberger, C.

    1997-10-01

    New precision experiments using powerful accelerator facilities and high-resolution spectrometers have contributed to a better understanding of the atomic and nuclear interactions of relativistic heavy ions with matter. Experimental results on stopping power and energy-loss straggling of bare heavy projectiles demonstrate large systematic deviations from theories based on first order perturbation. The energy-loss straggling is more than a factor of two enhanced for the heaviest projectiles compared to the relativistic Bohr formula. The interaction of cooled relativistic heavy ions with crystals opens up new fields for basic research and applications, i. e., for the first time resonant coherent excitations of both atomic and nuclear levels can be measured at the first harmonic. The spatial monoisotopic separation of exotic nuclei with in-flight separators and the tumor therapy with heavy ions are new applications based on a precise knowledge of slowing down. (orig.)

  4. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms

    Science.gov (United States)

    Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.

    1999-01-01

    Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.

  5. Single-fiber myosin heavy chain polymorphism during postnatal development: modulation by hypothyroidism

    Science.gov (United States)

    di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.

    2000-01-01

    The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.

  6. The local expression of adult chicken heart myosins during development. I. The three days embryonic chicken heart

    NARCIS (Netherlands)

    Sanders, E.; Moorman, A. F.; Los, J. A.

    1984-01-01

    Immunofluorescence studies were performed on serial sections of three days embryonic chicken hearts using antibodies specific for adult atrial and ventricular myosin heavy chains respectively. The anti-ventricular myosin serum reacted with the entire myocardium showing a decreasing intensity going

  7. Increased myosin heavy chain-beta with atrial expression of ventricular light chain-2 in canine cardiomyopathy.

    Science.gov (United States)

    Fuller, Geraldine A; Bicer, Sabahattin; Hamlin, Robert L; Yamaguchi, Mamoru; Reiser, Peter J

    2007-10-01

    Dilated cardiomyopathy is a naturally occurring disease in humans and dogs. Human studies have shown increased levels of myosin heavy chain (MHC)-beta in failing ventricles and the left atria (LA) and of ventricular light chain (VLC)-2 in the right atria in dilated cardiomyopathy. This study evaluates the levels of MHC-beta in all heart chambers in prolonged canine right ventricular pacing. In addition, we determined whether levels of VLC2 were altered in these hearts. Failing hearts demonstrated significantly increased levels of MHC-beta in the right atria, right atrial appendage, LA, left atrial appendage (LAA), and right ventricle compared with controls. Significant levels of VLC2 were detected in the right atria of paced hearts. Differences in MHC-beta expression were observed between the LA and the LAA of paced and control dogs. MHC-beta expression was significantly greater in the LA of paced and control dogs compared with their respective LAA. The cardiac myosin isoform shifts in this study were similar to those observed in end-stage human heart failure and more severe than those reported in less prolonged pacing models, supporting the use of this model for further study of end-stage human heart failure. The observation of consistent differences between sampling sites, especially LA versus LAA, indicates the need for rigorous sampling consistency in future studies.

  8. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training.

    Science.gov (United States)

    Łochyński, Dawid; Kaczmarek, Dominik; Mrówczyński, Włodzimierz; Warchoł, Wojciech; Majerczak, Joanna; Karasiński, Janusz; Korostyński, Michał; Zoladz, Jerzy A; Celichowski, Jan

    2016-10-01

    Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca 2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca 2+ -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca 2+ -handling genes. Copyright © 2016 the American Physiological Society.

  9. Drosophila UNC-45 prevents heat-induced aggregation of skeletal muscle myosin and facilitates refolding of citrate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Melkani, Girish C.; Lee, Chi F.; Cammarato, Anthony [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States); Bernstein, Sanford I., E-mail: sbernst@sciences.sdsu.edu [Department of Biology and the Molecular Biology Institute, San Diego State University, San Diego, CA 92182-4614 (United States)

    2010-05-28

    UNC-45 belongs to the UCS (UNC-45, CRO1, She4p) domain protein family, whose members interact with various classes of myosin. Here we provide structural and biochemical evidence that Escherichia coli-expressed Drosophila UNC-45 (DUNC-45) maintains the integrity of several substrates during heat-induced stress in vitro. DUNC-45 displays chaperone function in suppressing aggregation of the muscle myosin heavy meromyosin fragment, the myosin S-1 motor domain, {alpha}-lactalbumin and citrate synthase. Biochemical evidence is supported by electron microscopy, which reveals the first structural evidence that DUNC-45 prevents inter- or intra-molecular aggregates of skeletal muscle heavy meromyosin caused by elevated temperatures. We also demonstrate for the first time that UNC-45 is able to refold a denatured substrate, urea-unfolded citrate synthase. Overall, this in vitro study provides insight into the fate of muscle myosin under stress conditions and suggests that UNC-45 protects and maintains the contractile machinery during in vivo stress.

  10. Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for Hedgehog and Prdm1 activity.

    Science.gov (United States)

    Elworthy, Stone; Hargrave, Murray; Knight, Robert; Mebus, Katharina; Ingham, Philip W

    2008-06-01

    The zebrafish embryo develops a series of anatomically distinct slow twitch muscle fibres that characteristically express genes encoding lineage-specific isoforms of sarcomeric proteins such as MyHC and troponin. We show here that different subsets of these slow fibres express distinct members of a tandem array of slow MyHC genes. The first slow twitch muscle fibres to differentiate, which are specified by the activity of the transcription factor Prdm1 (also called Ubo or Blimp1) in response to Hedgehog (Hh) signalling, express the smyhc1 gene. Subsequently, secondary slow twitch fibres differentiate in most cases independently of Hh activity. We find that although some of these later-forming fibres also express smyhc1, others express smyhc2 or smyhc3. We show that the smyhc1-positive fibres express the ubo (prdm1) gene and adopt fast twitch fibre characteristics in the absence of Prdm1 activity, whereas those that do not express smyhc1 can differentiate independently of Prdm1 function. Conversely, some smyhc2-expressing fibres, although independent of Prdm1 function, require Hh activity to form. The adult trunk slow fibres express smyhc2 and smyhc3, but lack smyhc1 expression. The different slow fibres in the craniofacial muscles variously express smyhc1, smyhc2 and smyhc3, and all differentiate independently of Prdm1.

  11. Carboxyl-terminal-dependent recruitment of nonmuscle myosin II to megakaryocyte contractile ring during polyploidization.

    Science.gov (United States)

    Badirou, Idinath; Pan, Jiajia; Legrand, Céline; Wang, Aibing; Lordier, Larissa; Boukour, Siham; Roy, Anita; Vainchenker, William; Chang, Yunhua

    2014-10-16

    Endomitosis is a unique megakaryocyte (MK) differentiation process that is the consequence of a late cytokinesis failure associated with a contractile ring defect. Evidence from in vitro studies has revealed the distinct roles of 2 nonmuscle myosin IIs (NMIIs) on MK endomitosis: only NMII-B (MYH10), but not NMII-A (MYH9), is localized in the MK contractile ring and implicated in mitosis/endomitosis transition. Here, we studied 2 transgenic mouse models in which nonmuscle myosin heavy chain (NMHC) II-A was genetically replaced either by II-B or by a chimeric NMHCII that combined the head domain of II-A with the rod and tail domains of II-B. This study provides in vivo evidence on the specific role of NMII-B on MK polyploidization. It demonstrates that the carboxyl-terminal domain of the heavy chains determines myosin II localization to the MK contractile ring and is responsible for the specific role of NMII-B in MK polyploidization.

  12. Myosin isoform fiber type and fiber size in the tail of the Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Hazimihalis, P J; Gorvet, M A; Butcher, M T

    2013-01-01

    Muscle fiber type is a well studied property in limb muscles, however, much less is understood about myosin heavy chain (MHC) isoform expression in caudal muscles of mammalian tails. Didelphid marsupials are an interesting lineage in this context as all species have prehensile tails, but show a range of tail-function depending on either their arboreal or terrestrial locomotor habits. Differences in prehensility suggest that MHC isoform fiber types may also be different, in that terrestrial opossums may have a large distribution of oxidative fibers for object carrying tasks instead of faster, glycolytic fiber types expected in mammals with long tails. To test this hypothesis, MHC isoform fiber type and their regional distribution (proximal/transitional/distal) were determined in the tail of the Virginia opossum (Didelphis virginiana). Fiber types were determined by a combination of myosin-ATPase histochemistry, immunohistochemistry, and SDS-PAGE. Results indicate a predominance of the fast MHC-2A and -2X isoforms in each region of the tail. The presence of two fast isoforms, in addition to the slow MHC-1 isoform, was confirmed by SDS-PAGE analysis. The overall MHC isoform fiber type distribution for the tail was: 25% MHC-1, 71% MHC-2A/X hybrid, and 4% MHC-1/2A hybrid. Oxidative MHC-2A/X isoform fibers were found to be relatively large in cross-section compared to slow, oxidative MHC-1 and MHC-1/2A hybrid fibers. A large percentage of fast MHC-2A/X hybrids fibers may be suggestive of an evolutionary transition in MHC isoform distribution (fast-to-slow fiber type) in the tail musculature of an opossum with primarily a terrestrial locomotor habit and adaptive tail-function. Copyright © 2012 Wiley Periodicals, Inc.

  13. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  14. The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle.

    Science.gov (United States)

    Cooke, Roger

    2011-03-01

    Resting skeletal muscle is a major contributor to adaptive thermogenesis, i.e., the thermogenesis that changes in response to exposure to cold or to overfeeding. The identification of the "furnace" that is responsible for increased heat generation in resting muscle has been the subject of a number of investigations. A new state of myosin, the super relaxed state (SRX), with a very slow ATP turnover rate has recently been observed in skeletal muscle (Stewart et al. in Proc Natl Acad Sci USA 107:430-435, 2010). Inhibition of the myosin ATPase activity in the SRX was suggested to be caused by binding of the myosin head to the core of the thick filament in a structural motif identified earlier by electron microscopy. To be compatible with the basal metabolic rate observed in vivo for resting muscle, most myosin heads would have to be in the SRX. Modulation of the population of this state, relative to the normal relaxed state, was proposed to be a major contributor to adaptive thermogenesis in resting muscle. Transfer of only 20% of myosin heads from the SRX into the normal relaxed state would cause muscle thermogenesis to double. Phosphorylation of the myosin regulatory light chain was shown to transfer myosin heads from the SRX into the relaxed state, which would increase thermogenesis. In particular, thermogenesis by myosin has been proposed to play a role in the dissipation of calories during overfeeding. Up-regulation of muscle thermogenesis by pharmaceuticals that target the SRX would provide new approaches to the treatment of obesity or high blood sugar levels.

  15. Slowing-down of heavy ions in a fusible D-3He mixture

    International Nuclear Information System (INIS)

    Cocu, Francis; Uzureau, Jose; Lachkar, Jean.

    1982-01-01

    First experimental results connected with the study of the slowing-down of heavy ions ( 16 O, 63 Cu, 109 Ag) at energies of approximately 1 MeV/A in a fusible mixture of D- 3 He indicate that the higher is the projectile mass the greater is the fusion reaction rate [fr

  16. Random myosin loss along thick-filaments increases myosin attachment time and the proportion of bound myosin heads to mitigate force decline in skeletal muscle

    Science.gov (United States)

    Tanner, Bertrand C.W.; McNabb, Mark; Palmer, Bradley M.; Toth, Michael J.; Miller, Mark S.

    2014-01-01

    Diminished skeletal muscle performance with aging, disuse, and disease may be partially attributed to the loss of myofilament proteins. Several laboratories have found a disproportionate loss of myosin protein content relative to other myofilament proteins, but due to methodological limitations, the structural manifestation of this protein loss is unknown. To investigate how variations in myosin content affect ensemble cross-bridge behavior and force production we simulated muscle contraction in the half-sarcomere as myosin was removed either i) uniformly, from the Z-line end of thick-filaments, or ii) randomly, along the length of thick-filaments. Uniform myosin removal decreased force production, showing a slightly steeper force-to-myosin content relationship than the 1:1 relationship that would be expected from the loss of cross-bridges. Random myosin removal also decreased force production, but this decrease was less than observed with uniform myosin loss, largely due to increased myosin attachment time (ton) and fractional cross-bridge binding with random myosin loss. These findings support our prior observations that prolonged ton may augment force production in single fibers with randomly reduced myosin content from chronic heart failure patients. These simulation also illustrate that the pattern of myosin loss along thick-filaments influences ensemble cross-bridge behavior and maintenance of force throughout the sarcomere. PMID:24486373

  17. Myonuclear domain size and myosin isoform expression in muscle fibres from mammals representing a 100,000-fold difference in body size.

    Science.gov (United States)

    Liu, Jing-Xia; Höglund, Anna-Stina; Karlsson, Patrick; Lindblad, Joakim; Qaisar, Rizwan; Aare, Sudhakar; Bengtsson, Ewert; Larsson, Lars

    2009-01-01

    This comparative study of myonuclear domain (MND) size in mammalian species representing a 100,000-fold difference in body mass, ranging from 25 g to 2500 kg, was undertaken to improve our understanding of myonuclear organization in skeletal muscle fibres. Myonuclear domain size was calculated from three-dimensional reconstructions in a total of 235 single muscle fibre segments at a fixed sarcomere length. Irrespective of species, the largest MND size was observed in muscle fibres expressing fast myosin heavy chain (MyHC) isoforms, but in the two smallest mammalian species studied (mouse and rat), MND size was not larger in the fast-twitch fibres expressing the IIA MyHC isofom than in the slow-twitch type I fibres. In the larger mammals, the type I fibres always had the smallest average MND size, but contrary to mouse and rat muscles, type IIA fibres had lower mitochondrial enzyme activities than type I fibres. Myonuclear domain size was highly dependent on body mass in the two muscle fibre types expressed in all species, i.e. types I and IIA. Myonuclear domain size increased in muscle fibres expressing both the beta/slow (type I; r = 0.84, P fast IIA MyHC isoform (r = 0.90; P muscle fibre type, independent of species. However, myosin isoform expression is not the sole protein determining MND size, and other protein systems, such as mitochondrial proteins, may be equally or more important determinants of MND size.

  18. Immunolabelling, histochemistry and in situ hybridisation in human skeletal muscle fibres to detect myosin heavy chain expression at the protein and mRNA level

    Science.gov (United States)

    SERRANO, A. L.; PÉREZ, MARGARITA; LUCÍA, A.; CHICHARRO, J. L.; QUIROZ-ROTHE, E.; RIVERO, J. L. L.

    2001-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in vastus lateralis muscle biopsies of 15 young men (with an average age of 22 y) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry and in situ hybridisation with probes specific for MHC β-slow, MHC-IIA and MHC-IIX. The characterisation of a large number of individual fibres was compared and correlated on a fibre-to-fibre basis. The panel of monoclonal antibodies used in the study allowed classification of human skeletal muscle fibres into 5 categories according to the MHC isoform they express at the protein level, types I, I+IIA, IIA, IIAX and IIX. Hybrid fibres coexpressing two isoforms represented a considerable proportion of the fibre composition (about 14%) and were clearly underestimated by mATPase histochemistry. For a very high percentage of fibres there was a precise correspondence between the MHC protein isoforms and mRNA transcripts. The integrated methods used demonstrate a high degree of precision of the immunohistochemical procedure used for the identification and quantification of human skeletal muscle fibre types. The monoclonal antibody S5-8H2 is particularly useful for identifying hybrid IIAX fibres. This protocol offers new prospects for muscle fibre classification in human experimental studies. PMID:11554510

  19. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  20. Levels of myosin heavy chain mRNA transcripts and protein isoforms in the fast extensor digitorum longus muscle of 7-month-old rats with chronic thyroid status alterations

    Czech Academy of Sciences Publication Activity Database

    Vadászová, Adriana; Hudecová, S.; Križanová, O.; Soukup, Tomáš

    2006-01-01

    Roč. 55, č. 6 (2006), s. 707-710 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/05/0327 Grant - others:VEGA(SK) 2/4106; NATO(XE) 979876; SAV(SK) APVT-51-027404; MYORES(XE) 511978 Institutional research plan: CEZ:AV0Z50110509 Keywords : myosin heavy chain isoforms * thyroid hormones * muscle differentiation Subject RIV: ED - Physiology Impact factor: 2.093, year: 2006

  1. Native myosin from adult rabbit skeletal muscle: isoenzymes and states of aggregation.

    Science.gov (United States)

    Morel, J E; D'hahan, N; Taouil, K; Francin, M; Aguilar, A; Dalbiez, J P; Merah, Z; Grussaute, H; Hilbert, B; Ollagnon, F; Selva, G; Piot, F

    1998-04-21

    The globular heads of skeletal muscle myosin have been shown to exist as isoenzymes S1 (A1) and S1 (A2), and there are also isoforms of the heavy chains. Using capillary electrophoresis, we found two dominant isoenzymes of the whole native myosin molecule, in agreement with what has previously been found by various techniques for native and nondenatured myosin from adult rabbits. Findings about possible states of aggregation of myosin and its heads are contradictory. By analytical ultracentrifugation, we confirmed the existence of a tail-tail dimer. By laser light scattering, we found a head-head dimer in the presence of MgATP. Capillary electrophoresis coupled with analytical ultracentrifugation and laser light scattering led us to refine these results. We found tail-tail dimers in a conventional buffer. We found tail-tail and head-head dimers in the presence of 0.5 mM MgATP and pure head-head dimers in the presence of 6 mM MgATP. All the dimers were homodimers. Naming the dominant isoenzymes of myosin a and b, we observed tail-tail dimers with isoenzyme a (TaTa) and with isoenzyme b (TbTb) and also head-head dimers with isoenzyme a (HaHa) and with isoenzyme b (HbHb).

  2. Alterations in rat cardiac myosin isozymes induced by whole-body irradiation are prevented by 3,5,3'-L-triiodothyronine

    International Nuclear Information System (INIS)

    Litten, R.Z.; Fein, H.G.; Gainey, G.T.; Walden, T.L.; Smallridge, R.C.

    1990-01-01

    Changes in cardiac myosin isozymes and serum thyroid hormone levels were investigated in rats following 10 Gy whole-body gamma irradiation. The percent beta-myosin heavy chain increased from 21.3 ± 1.8 to 28.1 ± 6.8 (NS) at 3-day postirradiation, 37.7 ± 1.9 (P less than .001) at 6-day postirradiation, and 43.8 ± 3.3 (P less than .001) at 9-day postirradiation. Along with the change in myosin isozymes was a significant 53% decrease (P less than .001) in the serum thyroxine (T4) level by day 3 postirradiation, remaining depressed through day 9 postirradiation. The serum 3,5,3'-triiodothyronine (T3) level, however, was normal until day 9, when significant depression was also observed. In contrast, the thyroid-stimulating hormone (TSH) level was significantly increased by fourfold at day 3, returning to near normal values by day 9 postirradiation. Daily injections of physiological doses of T3 (0.3 microgram/100 g body weight) prevented the change in the myosin isozymes following whole-body irradiation. Daily pharmacological injections of T3 (3.0 micrograms/100 g body weight) to the irradiated rats produced a further decrease in the percent beta-myosin heavy chain (below control values) indicating tissue hyperthyroidism. Thus, this study suggests that the change in myosin isozymes following whole-body irradiation is caused by an alteration in thyroid hormone activity

  3. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates.

    Science.gov (United States)

    Willoughby, Christy L; Fleuriet, Jérome; Walton, Mark M; Mustari, Michael J; McLoon, Linda K

    2015-06-01

    We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.

  4. Corticosteroid injections, eccentric decline squat training and heavy slow resistance training in patellar tendinopathy

    DEFF Research Database (Denmark)

    Kongsgaard, M.; Kovanen, V.; Aagaard, P.

    2009-01-01

    A randomized-controlled single-blind trial was conducted to investigate the clinical, structural and functional effects of peritendinous corticosteroid injections (CORT), eccentric decline squat training (ECC) and heavy slow resistance training (HSR) in patellar tendinopathy. Thirty-nine male...

  5. RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization.

    Science.gov (United States)

    Lordier, Larissa; Bluteau, Dominique; Jalil, Abdelali; Legrand, Céline; Pan, Jiajia; Rameau, Philippe; Jouni, Dima; Bluteau, Olivier; Mercher, Thomas; Leon, Catherine; Gachet, Christian; Debili, Najet; Vainchenker, William; Raslova, Hana; Chang, Yunhua

    2012-03-06

    Megakaryocytes are unique mammalian cells that undergo polyploidization (endomitosis) during differentiation, leading to an increase in cell size and protein production that precedes platelet production. Recent evidence demonstrates that endomitosis is a consequence of a late failure in cytokinesis associated with a contractile ring defect. Here we show that the non-muscle myosin IIB heavy chain (MYH10) is expressed in immature megakaryocytes and specifically localizes in the contractile ring. MYH10 downmodulation by short hairpin RNA increases polyploidization by inhibiting the return of 4N cells to 2N, but other regulators, such as of the G1/S transition, might regulate further polyploidization of the 4N cells. Conversely, re-expression of MYH10 in the megakaryocytes prevents polyploidization and the transition of 2N to 4N cells. During polyploidization, MYH10 expression is repressed by the major megakaryocyte transcription factor RUNX1. Thus, RUNX1-mediated silencing of MYH10 is required for the switch from mitosis to endomitosis, linking polyploidization with megakaryocyte differentiation.

  6. Rapid switch-off of the human myosin heavy chain IIX gene after heavy load muscle contractions is sustained for at least four days.

    Science.gov (United States)

    Andersen, J L; Gruschy-Knudsen, T

    2018-02-01

    Long-term heavy load contractions decrease the relative amount of the myosin heavy chain (MHC) IIX isoform in human skeletal muscle, but the timing of the down-regulation in the short term is unknown. Untrained subjects performed two resistance bouts, in two consecutive days, with one leg, the other leg serving as a control (age 24±1, n=5). Muscle biopsies were obtained in both legs before, immediately after, and 24, 54, and 96 hours after exercise. Serial cryosection analysis combined immunohistochemistry and ATPase histochemistry with In Situ hybridization to identify the distribution of MHC isoforms and their corresponding transcripts, enabling identification of transitional fibers. Fibers positive solely for MHC IIX mRNA decreased in the exercised leg throughout the study period. At 96 hours post-exercise, no fibers solely expressed MHC IIX mRNA. In contrast, the number of fibers expressing MHC IIA mRNA increased throughout the study period. The percentage of fibers expressing mRNA for MHC I was unchanged in both legs at all time points. Pronounced depletion of glycogen in the MHC IIX fibers of the exercised leg verifies that the type IIX fibers were active during the heavy load contractions. Major mismatch between MHC at the mRNA and protein levels was only found in the fibers of the exercised leg. These data provide unequivocal in situ evidence of an immediate shutdown of the MHC IIX gene after resistance exercise. A further novel finding was that the silencing of the MHC IIX gene is sustained at least 4 days after removal of the stimulus. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Flexibility of the myosin heavy chain: direct evidence that the region containing SH/sub 1/ and SH/sub 2/ can move 10 /Angstrom/ under the influence of nucleotide binding

    Energy Technology Data Exchange (ETDEWEB)

    Huston, E.E.; Grammer, J.C.; Yount, R.G.

    1988-12-13

    Previous experiments demonstrated that two thiols of skeletal myosin subfragment 1 (SF/sub 1/) could be oxidized to a disulfide bond by treatment with a 2-fold excess of 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) in the presence of MgADP. The resulting characteristic changes in the ATPase activities of SF/sub 1/ and the fact that MgADP was stably trapped at the active site, suggested that the two thiols cross-linked were SH/sub 1/ (Cys-707) and SH/sub 2/ (Cys-697) from the myosin heavy chain. To verify this suggestion, SF/sub 1/, after DTNB treatment as above, was treated with an excess of N-ethylmaleimide to block all accessible thiols. The single protein disulfide produced by DTNB oxidation was reduced with dithioerythritol and the modified SF/sub 1/ internally cross-linked with equimolar (/sup 14/C)p-phenylenedimaleimide (pPDM) in the presence of MgADP. After extensive trypsinization, the major /sup 14/C-labeled peptide was isolated, characterized, and shown to be Cys-Asn-Gly-Val-Leu-Gly-Ile-Arg-Ile-Cys-Arg, in which the two cysteines were cross-linked by pPDM. This peptide is known to contain SH/sub 2/ and SH/sub 1/ in this order and to come from residues 697-708 in the rabbit skeletal myosin heavy chain. Parallel experiments with (/sup 14/C)pPDM and unmodified SF/sub 1/ similar to those above gave an identical SH/sub 1/, SH/sub 2/ tryptic peptide, verifying earlier labeling results. These combined results demonstrate that SH/sub 1/ and SH/sub 2/ cross-linked by pPDM (12-13 /Angstrom/, S to S) or by oxidation with DTNB (2 /Angstrom/, S to S) can move a minimum of 10 /Angstrom/ under the influence of nucleotide binding. Because these residues are separated by only nine amino acids in the primary sequence, this small section of the heavy chain must possess extraordinary flexibility.

  8. Phosphorylated peptides occur in a non-helical portion of the tail of a catch muscle myosin

    International Nuclear Information System (INIS)

    Castellani, L.; Elliott, B.W. Jr.; Cohen, C.

    1987-01-01

    Myosin from a molluscan catch muscle (the Anterior Byssus Retractor (ABRM) of Mytilus edulis) is unusual in being phosphorylated in the rod by an endogenous heavy-chain kinase. This phosphorylation enhances myosin solubility at low ionic strength and induces molecular folding of the myosin tail. Papain and chymotryptic cleavage of this myosin, phosphorylated with [γ- 32 P]ATP, indicates that the phosphorylated residues are associated with the carboxy-terminal end of the light meromyosin. Ion-exchange and reverse-phase HPLC of radiolabeled chymotryptic peptides allow the isolation of two different peptides with high specific activity. One of these peptides is rich in lysine and arginine residues, a finding consistent with the observation that basic residues often determine the substrate specificity of protein kinases. The second peptide contains proline residues. Taken together, these results suggest that, as in the case of Acanthamoeba myosin, phosphorylation occurs in a nonhelical portion of the rod that may also control solubility. Identification of the residues that are phosphorylated and their location in the rod may reveal how the phosphorylation-dependent changes observed in the myosin in vitro are related to changes in intermolecular interactions in the thick filaments in vivo

  9. Alterations in rat cardiac myosin isozymes induced by whole-body irradiation are prevented by 3,5,3'-L-triiodothyronine

    Energy Technology Data Exchange (ETDEWEB)

    Litten, R.Z.; Fein, H.G.; Gainey, G.T.; Walden, T.L.; Smallridge, R.C. (Armed Forces Radiobiology Research Institute, Bethesda, MD (USA))

    1990-01-01

    Changes in cardiac myosin isozymes and serum thyroid hormone levels were investigated in rats following 10 Gy whole-body gamma irradiation. The percent beta-myosin heavy chain increased from 21.3 {plus minus} 1.8 to 28.1 {plus minus} 6.8 (NS) at 3-day postirradiation, 37.7 {plus minus} 1.9 (P less than .001) at 6-day postirradiation, and 43.8 {plus minus} 3.3 (P less than .001) at 9-day postirradiation. Along with the change in myosin isozymes was a significant 53% decrease (P less than .001) in the serum thyroxine (T4) level by day 3 postirradiation, remaining depressed through day 9 postirradiation. The serum 3,5,3'-triiodothyronine (T3) level, however, was normal until day 9, when significant depression was also observed. In contrast, the thyroid-stimulating hormone (TSH) level was significantly increased by fourfold at day 3, returning to near normal values by day 9 postirradiation. Daily injections of physiological doses of T3 (0.3 microgram/100 g body weight) prevented the change in the myosin isozymes following whole-body irradiation. Daily pharmacological injections of T3 (3.0 micrograms/100 g body weight) to the irradiated rats produced a further decrease in the percent beta-myosin heavy chain (below control values) indicating tissue hyperthyroidism. Thus, this study suggests that the change in myosin isozymes following whole-body irradiation is caused by an alteration in thyroid hormone activity.

  10. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  11. Synthesis of total protein (TP) and myosin heavy chain (HC) isozymes in pressure overloaded rabbit hearts

    International Nuclear Information System (INIS)

    Nagai, R.; Martin, B.J.; Pritzl, N.; Zak, R.; Low, R.B.; Stirewalt, W.S.; Alpert, N.R.; Litten, R.Z.

    1986-01-01

    Pulmonary artery banding (PO) leads to a rapid increase in right ventricular (RV) weight as well as a shift toward β myosin isozyme. They determined: (1) the contributions of changes in the capacity (RNA content) and efficiency of total protein synthesis to the increase in RV weight; and (2) the relative contributions of translational and pretranslational mechanisms to the shift in myosin HC isotypes. The rates of synthesis in vivo of TP, α- and β-HC were measured by a constant infusion technique using 3 H-leucine. TP synthesis was 7 +/- 2(SD) mg/day in control (RV:367 +/- 70 mg) and was increased by 2.6 fold at day 2 and 2.9 fold at day 4 following PO (p < 0.01). RV RNA content was increased by 83% at day 2 and 103% at day 4 PO (p < 0.05). The efficiency of synthesis (rate/RNA) was also significantly higher at these time points (1.4- and 1.3-fold). β-HC synthesis was 0.6 +/- 0.2 mg/day in control and increased by 2.6 fold at day 2 and 3.5 fold at day 4 following PO. In contrast, the rate of synthesis of α-HC was unchanged. The relative rates of β-HC to total HC synthesis was correlated linearly with the relative levels of β-myosin mRNA as measured by S1 nuclease mapping. They conclude that increases in the proportion of β-HC myosin following PO is due to increases in the relative amount of β-myosin mRNA and therefore involves modulation of a pretranslational mechanism

  12. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    Science.gov (United States)

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  13. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  14. A novel de novo mutation of β-cardiac myosin heavy chain gene ...

    Indian Academy of Sciences (India)

    2014-08-18

    Aug 18, 2014 ... It is one of the most important diseases causing a sud- den death in ... familial HCM encode contractile proteins such as β-cardiac myosin ... A previously healthy 12-year-old boy was admitted to our hospital for .... Maron B. J. 2002 Hypertrophic cardiomyopathy: A systematic review. JAMA 287, 1308–1320.

  15. Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9-related disease

    DEFF Research Database (Denmark)

    Pecci, A.; Panza, E.; Pujol-Moix, N.

    2008-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness...... to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis...... and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC...

  16. Polymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.

    OpenAIRE

    Salviati, G; Betto, R; Danieli Betto, D

    1982-01-01

    Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide 'maps' published in Cleveland. Fisch...

  17. Genotype phenotype correlations of cardiac beta-myosin heavy chain mutations in Indian patients with hypertrophic and dilated cardiomyopathy

    DEFF Research Database (Denmark)

    Rai, Taranjit Singh; Ahmad, Shamim; Bahl, Ajay

    2009-01-01

    The aim of the current study was to determine the frequency of mutations in the beta-myosin heavy chain gene (MYH7) in a cohort of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) and their families, and to investigate correlations between genotype and phenotype. About 130...... consecutive patients diagnosed with HCM or DCM (69 with HCM and 61 with DCM) attending the cardiology clinic of Post Graduate Institute of Medical Education and Research were screened for mutations in the MYH7 gene. The control group for genetic studies consisted of 100 healthy subjects. We report 14...... mutations in 6 probands (5 probands in HCM and 1 proband in DCM) and their family members. Out of these 6 mutations, 3 are new and are being reported for the first time. One known mutation (p.Gly716Arg) was found to be "de novo" which resulted in severe asymmetric septal hypertrophy (31 mm) and resulted...

  18. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    International Nuclear Information System (INIS)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-01-01

    Highlights: ► Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. ► Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. ► It is a widely believed that MYL2 is a poor substrate for smMLCK. ► In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. ► Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca 2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis–Menten V max and K M for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  19. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  20. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  1. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1966-03-01

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 ± 0.3 μs has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 μs. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 ±2.4 μs. The approach to the equilibrium spectrum takes place with a time constant of 33 ±4 μs, and the equilibrium has been established after about 200 μs. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time

  2. Heavy Slow Resistance Versus Eccentric Training as Treatment for Achilles Tendinopathy

    DEFF Research Database (Denmark)

    Beyer, Rikke; Kongsgaard, Mads; Hougs Kjær, Birgitte

    2015-01-01

    BACKGROUND: Previous studies have shown that eccentric training has a positive effect on Achilles tendinopathy, but few randomized controlled trials have compared it with other loading-based treatment regimens. PURPOSE: To evaluate the effectiveness of eccentric training (ECC) and heavy slow...... (Victorian Institute of Sports Assessment-Achilles), tendon pain during activity (visual analog scale), tendon swelling, tendon neovascularization, and treatment satisfaction were assessed at 0 and 12 weeks and at the 52-week follow-up. Analyses were performed on an intention-to-treat basis. RESULTS: Both...... groups showed significant (P tendon...

  3. Dlc1 interaction with non-muscle myosin heavy chain II-A (Myh9 and Rac1 activation

    Directory of Open Access Journals (Sweden)

    Mohammad G. Sabbir

    2016-04-01

    Full Text Available The Deleted in liver cancer 1 (Dlc1 gene codes for a Rho GTPase-activating protein that also acts as a tumour suppressor gene. Several studies have consistently found that overexpression leads to excessive cell elongation, cytoskeleton changes and subsequent cell death. However, none of these studies have been able to satisfactorily explain the Dlc1-induced cell morphological phenotypes and the function of the different Dlc1 isoforms. Therefore, we have studied the interacting proteins associated with the three major Dlc1 transcriptional isoforms using a mass spectrometric approach in Dlc1 overexpressing cells. We have found and validated novel interacting partners in constitutive Dlc1-expressing cells. Our study has shown that Dlc1 interacts with non-muscle myosin heavy chain II-A (Myh9, plectin and spectrin proteins in different multiprotein complexes. Overexpression of Dlc1 led to increased phosphorylation of Myh9 protein and activation of Rac1 GTPase. These data support a role for Dlc1 in induced cell elongation morphology and provide some molecular targets for further analysis of this phenotype.

  4. Radioimmunoassay of myosin heavy beta chains in human serum for the evaluation of the size of myocardial infarction: correlation with myocardial Tl-201 SPECT and cardiac angioscintigraphy. Le dosage des chaines lourdes beta de la myosine serique dans l'approche de la taille de l'infarctus du myocarde: correlation avec la tomoscintigraphie myocardique au Tl-201 et l'angioscintigraphie cardiaque

    Energy Technology Data Exchange (ETDEWEB)

    Facello, A.; Gries, P.; Demangeat, C.; Brunot, B.; Roul, G.; Demangeat, J.L.; Moulichon, M.; Bareiss, P.; Sacrez, A.; Constantinesco, A. (Centre Hospitalier Universitaire Hautepierre, 67 - Strasbourg (FR))

    1990-01-01

    To determine the relationship between serum levels of myosin heavy beta chains assessed by an IRMA technique and other radionuclide and enzymatic parameters in the evaluation of the size of myocardial infarction, we studied 22 patients with acute myocardial infarction. Blood samples taken daily between 1st to 13th day of evolution allow the determination of peak and integral of myosine release that showed a good correlation (p<0.01) with myocardial underperfusion score in T1-201 SPECT, left ventricular ejection fractions at 1st day and at the pre-discharge study, just as CPK peak. This new assay is an interesting mean to evaluate the size of myocardial infarction.

  5. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans.

    Science.gov (United States)

    Callister, Robert J; Pierce, Patricia A; McDonagh, Jennifer C; Stuart, Douglas G

    2005-04-01

    A description is provided of the ratio of slow-tonic vs. slow- and fast-twitch fibers for five muscles in the adult turtle, Pseudemys (Trachemys) scripta elegans. The cross-sectional area of each fiber type and an estimation of the relative (weighted) cross-sectional area occupied by the different fiber types are also provided. Two hindlimb muscles (flexor digitorum longus, FDL; external gastrocnemius, EG) were selected on the basis of their suitability for future motor-unit studies. Three neck muscles (the fourth head of testo-cervicis, TeC4; the fourth head of retrahens capitus collique, RCCQ4; transversalis cervicis, TrC) were chosen for their progressively decreasing oxidative capacity. Serial sections were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH). Conventional fiber-type classification was then performed using indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism: i.e., slow oxidative (SO, including slow-twitch and possibly slow-tonic fibers), fast-twitch, oxidative-glycolytic (FOG), and fast-twitch glycolytic (Fg) fibers. Slow-tonic fibers in the SO class were then revealed by directing the monoclonal antibody, ALD-58 (raised against the slow-tonic fiber myosin heavy chain of chicken anterior latissimus dorsi), to additional muscle cross sections. All five of the tested muscles contained the four fiber types, with the ATPase-stained fibers including both slow-tonic and slow-twitch fibers. The extreme distributions of SO fibers were in the predominately glycolytic TrC vs. the predominately oxidative TeC4 muscle (TrC-SO, 9%; FOG, 20%; Fg, 71% vs. TeC4-SO, 58%: FOG, 16%; Fg, 25%). Across the five muscles, the relative prevalence of slow-tonic fibers (4-47%) paralleled that of the SO fibers (9-58%). TeC4 had the highest prevalence of slow-tonic fibers (47%). The test muscles exhibited varying degrees of regional concentration of each

  6. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

    Science.gov (United States)

    Orfanos, Zacharias; Sparrow, John C

    2013-01-01

    During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.

  7. Experimental and theoretical study of heavy ion slowing down in solid targets

    International Nuclear Information System (INIS)

    Mehana, A.

    1993-06-01

    Heavy ion energy losses in C, Al, Cu, Ag, Ta and Au solid targets have been measured at high energy (0.2 to 5 MeV/u), using the backward secondary ion technique, and at low energy (0.1 to 0.25 MeV/u) for the C, N and O ions, using the particle backscatter method. A brief review of the various matter-induced charged particle slowing down theories, and especially the Lindhard dielectric theory, is first presented. Then, the various models for the evaluation of the effective charge and of the high order correction, are discussed and compared. Experimental techniques and data processing methods are described, and the experimental results are compared to calculations derived from the dielectric theory. In particular, the effective charges and the high order corrections (Barkas-Bloch) are examined and compared to the models for the determination of the z 3 and z 4 terms for heavy ions

  8. Myosin Binding Protein-C Slow Phosphorylation is Altered in Duchenne Dystrophy and Arthrogryposis Myopathy in Fast-Twitch Skeletal Muscles.

    Science.gov (United States)

    Ackermann, Maegen A; Ward, Christopher W; Gurnett, Christina; Kontrogianni-Konstantopoulos, Aikaterini

    2015-08-19

    Myosin Binding Protein-C slow (sMyBP-C), encoded by MYBPC1, comprises a family of regulatory proteins of skeletal muscles that are phosphorylated by PKA and PKC. MYBPC1 missense mutations are linked to the development of Distal Arthrogryposis-1 (DA-1). Although structure-function details for this myopathy are evolving, function is undoubtedly driven by sequence variations and post-translational modifications in sMyBP-C. Herein, we examined the phosphorylation profile of sMyBP-C in mouse and human fast-twitch skeletal muscles. We used Flexor Digitorum Brevis (FDB) isolated from young (~2-months old) and old (~14-months old) wild type and mdx mice, and human Abductor Hallucis (AH) and gastrocnemious muscles carrying the DA-1 mutations. Our results indicate both constitutive and differential phosphorylation of sMyBP-C in aged and diseased muscles. We report a 7-35% reduction in the phosphorylation levels of select sites in old wild type and young or old mdx FDB mouse muscles, compared to young wild type tissue. Similarly, we observe a 30-70% decrease in the phosphorylation levels of all PKA and PKC phospho-sites in the DA-1 AH, but not gastrocnemius, muscle. Overall, our studies show that the phosphorylation pattern of sMyBP-C is differentially regulated in response to age and disease, suggesting that phosphorylation plays important roles in these processes.

  9. Azidoblebbistatin, a photoreactive myosin inhibitor

    Science.gov (United States)

    Képiró, Miklós; Várkuti, Boglárka H.; Bodor, Andrea; Hegyi, György; Drahos, László; Kovács, Mihály; Málnási-Csizmadia, András

    2012-01-01

    Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC50 ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC50 = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions. PMID:22647605

  10. Slow extraction control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Yuan Youjin; Mao Ruishi; Zhao Tiecheng

    2013-01-01

    For heavy-ion radiotherapy, HIRFL-CSR (Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring) needs a long term uniform ion beam extraction from HIRFL-CSR main ring to high energy beam transport line to meet the requirement of heavy-ion radiotherapy's ion beam. Slow extraction control system uses the synchronous signal of HIRFL-CSR control system's timing system to realize process control. When the synchronous event data of HIRFL-CSR control system's timing system trigger controlling and changing data (frequency value, tune value, voltage value), the waveform generator will generate waveform by frequency value, tune value and voltage value, and will amplify the generated waveform by power amplifier to electrostatic deflector to achieve RF-KO slow extraction. The synchronous event receiver of slow extraction system is designed by using FPGA and optical fiber interface to keep high transmission speed and anti-jamming. HIRFL-CSR's running for heavy-ion radiotherapy and ten thousand seconds long period slow extraction experiments show that slow extraction control system is workable and can meet the requirement of heavy-ion radiotherapy's ion beam. (authors)

  11. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles.

    Science.gov (United States)

    Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C

    2012-08-29

    Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.

  12. Contractile properties, fiber types, and myosin isoforms in fast and slow muscles of hyperactive Japanese waltzing mice

    Czech Academy of Sciences Publication Activity Database

    Asmussen, G.; Schmalbruch, I.; Soukup, Tomáš; Pette, D.

    2003-01-01

    Roč. 184, č. 2 (2003), s. 758-766 ISSN 0014-4886 R&D Projects: GA ČR GA304/00/1653 Grant - others:Deutsche Forschungsgemeinschaft(DE) -; Sonderforschungsbereich(DE) 156; Schwerpunkt Muskelforschung(DE) As 74/1-2 Institutional research plan: CEZ:AV0Z5011922 Keywords : Japanese waltzing mouse * muscle contraction * myosin isoforms Subject RIV: ED - Physiology Impact factor: 3.676, year: 2003

  13. Interaction of c-Cbl with myosin IIA regulates Bleb associated macropinocytosis of Kaposi's sarcoma-associated herpesvirus.

    Directory of Open Access Journals (Sweden)

    Mohanan Valiya Veettil

    2010-12-01

    Full Text Available KSHV is etiologically associated with Kaposi's sarcoma (KS, an angioproliferative endothelial cell malignancy. Macropinocytosis is the predominant mode of in vitro entry of KSHV into its natural target cells, human dermal microvascular endothelial (HMVEC-d cells. Although macropinocytosis is known to be a major route of entry for many viruses, the molecule(s involved in the recruitment and integration of signaling early during macropinosome formation is less well studied. Here we demonstrate that tyrosine phosphorylation of the adaptor protein c-Cbl is required for KSHV induced membrane blebbing and macropinocytosis. KSHV induced the tyrosine phosphorylation of c-Cbl as early as 1 min post-infection and was recruited to the sites of bleb formation. Infection also led to an increase in the interaction of c-Cbl with PI3-K p85 in a time dependent manner. c-Cbl shRNA decreased the formation of KSHV induced membrane blebs and macropinocytosis as well as virus entry. Immunoprecipitation of c-Cbl followed by mass spectrometry identified the interaction of c-Cbl with a novel molecular partner, non-muscle myosin heavy chain IIA (myosin IIA, in bleb associated macropinocytosis. Phosphorylated c-Cbl colocalized with phospho-myosin light chain II in the interior of blebs of infected cells and this interaction was abolished by c-Cbl shRNA. Studies with the myosin II inhibitor blebbistatin demonstrated that myosin IIA is a biologically significant component of the c-Cbl signaling pathway and c-Cbl plays a new role in the recruitment of myosin IIA to the blebs during KSHV infection. Myosin II associates with actin in KSHV induced blebs and the absence of actin and myosin ubiquitination in c-Cbl ShRNA cells suggested that c-Cbl is also responsible for the ubiquitination of these proteins in the infected cells. This is the first study demonstrating the role of c-Cbl in viral entry as well as macropinocytosis, and provides the evidence that a signaling complex

  14. Electron microscopic evidence for the myosin head lever arm mechanism in hydrated myosin filaments using the gas environmental chamber

    International Nuclear Information System (INIS)

    Minoda, Hiroki; Okabe, Tatsuhiro; Inayoshi, Yuhri; Miyakawa, Takuya; Miyauchi, Yumiko; Tanokura, Masaru; Katayama, Eisaku; Wakabayashi, Takeyuki; Akimoto, Tsuyoshi; Sugi, Haruo

    2011-01-01

    Research highlights: → We succeeded in recording structural changes of hydrated myosin cross-bridges. → We succeeded in position-marking the cross-bridges with site-directed antibodies. → We recorded cross-bridge movement at different regions in individual cross-bridge. → The movement was smallest at the cross-bridge-subfragment two boundary. → The results provide evidence for the cross-bridge lever arm mechanism. -- Abstract: Muscle contraction results from an attachment-detachment cycle between the myosin heads extending from myosin filaments and the sites on actin filaments. The myosin head first attaches to actin together with the products of ATP hydrolysis, performs a power stroke associated with release of hydrolysis products, and detaches from actin upon binding with new ATP. The detached myosin head then hydrolyses ATP, and performs a recovery stroke to restore its initial position. The strokes have been suggested to result from rotation of the lever arm domain around the converter domain, while the catalytic domain remains rigid. To ascertain the validity of the lever arm hypothesis in muscle, we recorded ATP-induced movement at different regions within individual myosin heads in hydrated myosin filaments, using the gas environmental chamber attached to the electron microscope. The myosin head were position-marked with gold particles using three different site-directed antibodies. The amplitude of ATP-induced movement at the actin binding site in the catalytic domain was similar to that at the boundary between the catalytic and converter domains, but was definitely larger than that at the regulatory light chain in the lever arm domain. These results are consistent with the myosin head lever arm mechanism in muscle contraction if some assumptions are made.

  15. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  16. A global, myosin light chain kinase-dependent increase in myosin II contractility accompanies the metaphase-anaphase transition in sea urchin eggs.

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R; Shuster, Charles B

    2006-09-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase-anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase-anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus.

  17. A Global, Myosin Light Chain Kinase-dependent Increase in Myosin II Contractility Accompanies the Metaphase–Anaphase Transition in Sea Urchin Eggs

    Science.gov (United States)

    Lucero, Amy; Stack, Christianna; Bresnick, Anne R.

    2006-01-01

    Myosin II is the force-generating motor for cytokinesis, and although it is accepted that myosin contractility is greatest at the cell equator, the temporal and spatial cues that direct equatorial contractility are not known. Dividing sea urchin eggs were placed under compression to study myosin II-based contractile dynamics, and cells manipulated in this manner underwent an abrupt, global increase in cortical contractility concomitant with the metaphase–anaphase transition, followed by a brief relaxation and the onset of furrowing. Prefurrow cortical contractility both preceded and was independent of astral microtubule elongation, suggesting that the initial activation of myosin II preceded cleavage plane specification. The initial rise in contractility required myosin light chain kinase but not Rho-kinase, but both signaling pathways were required for successful cytokinesis. Last, mobilization of intracellular calcium during metaphase induced a contractile response, suggesting that calcium transients may be partially responsible for the timing of this initial contractile event. Together, these findings suggest that myosin II-based contractility is initiated at the metaphase–anaphase transition by Ca2+-dependent myosin light chain kinase (MLCK) activity and is maintained through cytokinesis by both MLCK- and Rho-dependent signaling. Moreover, the signals that initiate myosin II contractility respond to specific cell cycle transitions independently of the microtubule-dependent cleavage stimulus. PMID:16837551

  18. Human Masseter Muscle Fibers From the Elderly Express Less Neonatal Myosin Than Those of Young Adults

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Janáček, Jiří; Kubínová, Lucie; Plasencia, A.L.; Eržen, I.

    2012-01-01

    Roč. 295, č. 8 (2012), s. 1364-1372 ISSN 1932-8486 R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) MEB090910 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : aging * confocal microscopy * myosin heavy chain * immunohistochemistry * muscle fiber types Subject RIV: FH - Neurology Impact factor: 1.343, year: 2012

  19. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation.

    Science.gov (United States)

    Chauvigné, F; Ralliere, C; Cauty, C; Rescan, P Y

    2006-01-01

    Much of the present information on muscle differentiation in fish concerns the early embryonic stages. To learn more about the maturation and the diversification of the fish myotomal fibres in later stages of ontogeny, we investigated, by means of in situ hybridisation, the developmental expression of a large repertoire of muscle-specific genes in trout larvae from hatching to yolk resorption. At hatching, transcripts for fast and slow muscle protein isoforms, namely myosins, tropomyosins, troponins and myosin binding protein C were present in the deep fast and the superficial slow areas of the myotome, respectively. During myotome expansion that follows hatching, the expression of fast isoforms became progressively confined to the borders of the fast muscle mass, whereas, in contrast, slow muscle isoform transcripts were uniformly expressed in all the slow fibres. Transcripts for several enzymes involved in oxidative metabolism such as citrate synthase, cytochrome oxidase component IV and succinate dehydrogenase, were present throughout the whole myotome of hatching embryos but in later stages became concentrated in slow fibre as well as in lateral fast fibres. Surprisingly, the slow fibres that are added externally to the single superficial layer of the embryonic (original) slow muscle fibres expressed not only slow twitch muscle isoforms but also, transiently, a subset of fast twitch muscle isoforms including MyLC1, MyLC3, MyHC and myosin binding protein C. Taken together these observations show that the growth of the myotome of the fish larvae is associated with complex patterns of muscular gene expression and demonstrate the unexpected presence of fast muscle isoform-expressing fibres in the most superficial part of the slow muscle.

  20. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.

    Science.gov (United States)

    Scheuermann, B W; Hoelting, B D; Noble, M L; Barstow, T J

    2001-02-15

    1. We hypothesized that either the recruitment of additional muscle motor units and/or the progressive recruitment of less efficient fast-twitch muscle fibres was the predominant contributor to the additional oxygen uptake (VO2) observed during heavy exercise. Using surface electromyographic (EMG) techniques, we compared the VO2 response with the integrated EMG (iEMG) and mean power frequency (MPF) response of the vastus lateralis with the VO2 response during repeated bouts of moderate (below the lactate threshold, LT) intensity cycle ergometer exercise. 2. Seven male subjects (age 29 +/- 7 years, mean +/- S.D.) performed three transitions to a work rate (WR) corresponding to 90 % LT and two transitions to a work rate that would elicit a VO2 corresponding to 50 % of the difference between peak VO2 and the LT (i.e. Delta50 %, > LT1 and > LT2). 3. The VO2 slow component was significantly reduced by prior heavy intensity exercise (> LT1, 410 +/- 196 ml min(-1); > LT2, 230 +/- 191 ml min-1). The time constant (tau), amplitude (A) and gain (DeltaVO2/DeltaWR) of the primary VO2 response (phase II) were not affected by prior heavy exercise when a three-component, exponential model was used to describe the V2 response. 4. Integrated EMG and MPF remained relatively constant and at the same level throughout both > LT1 and > LT2 exercise and therefore were not associated with the VO2 slow component. 5. These data are consistent with the view that the increased O2 cost (i.e. VO2 slow component) associated with performing heavy exercise is coupled with a progressive increase in ATP requirements of the already recruited motor units rather than to changes in the recruitment pattern of slow versus fast-twitch motor units. Further, the lack of speeding of the kinetics of the primary VO2 component with prior heavy exercise, thought to represent the initial muscle VO2 response, are inconsistent with O2 delivery being the limiting factor in V > O2 kinetics during heavy exercise.

  1. CHARACTERIZATION OF TIGHTLY-ASSOCIATED SMOOTH MUSCLE MYOSIN-MYOSIN LIGHT CHAIN KINASE-CALMODULIN COMPLEXES*

    OpenAIRE

    Hong, Feng; Haldeman, Brian D.; John, Olivia A.; Brewer, Paul D.; Wu, Yi-Ying; Ni, Shaowei; Wilson, David P.; Walsh, Michael P.; Baker, Jonathan E.; Cremo, Christine R.

    2009-01-01

    A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by smooth muscle myosin light chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM (up-SMM) from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ~ 23–37% of that in gizzard tissue. Fifteen t...

  2. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wasik, Anita A.; Dumont, Vincent [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Tienari, Jukka [Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, 05850 Hyvinkää (Finland); Nyman, Tuula A. [Institute of Biotechnology, University of Helsinki, 00014 Helsinki (Finland); Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Lehtonen, Eero [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland); Laboratory Animal Centre, University of Helsinki, 00014 Helsinki (Finland); Groop, Per-Henrik [Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki (Finland); Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 000290 Helsinki (Finland); Diabetes& Obesity Research Program, Research Program´s Unit, 00014 University of Helsinki (Finland); Baker IDI Heart & Diabetes Institute, 3004 Melbourne (Australia); Lehtonen, Sanna, E-mail: sanna.h.lehtonen@helsinki.fi [Department of Pathology, University of Helsinki, 00014 Helsinki (Finland)

    2017-01-15

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  3. Septin 7 reduces nonmuscle myosin IIA activity in the SNAP23 complex and hinders GLUT4 storage vesicle docking and fusion

    International Nuclear Information System (INIS)

    Wasik, Anita A.; Dumont, Vincent; Tienari, Jukka; Nyman, Tuula A.; Fogarty, Christopher L.; Forsblom, Carol; Lehto, Markku; Lehtonen, Eero; Groop, Per-Henrik; Lehtonen, Sanna

    2017-01-01

    Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane. - Highlights: • Septin 7, nonmuscle myosin heavy chain IIA (NMHC-IIA) and SNAP23 form a complex. • Knockdown of septin 7 increases NM-IIA activity in the SNAP23 complex. • Insulin decreases septin 7 level and increases NM-IIA activity in the SNAP23 complex. • Septin 7 hinders GSV docking/fusion by reducing NM-IIA activity in the SNAP23 complex.

  4. Preparation of human cardiac anti-myosin: a review

    International Nuclear Information System (INIS)

    Okada, H.; Souza, I.T.T.

    1990-01-01

    The present communication is a review of the physicochemical characterization and immunological properties of myosin isolated from the cardiac muscle, the production of monoclonal antibody anti-myosin, the radiolabeling of this antibody and its applications as radiopharmaceuticals to imaging myocardial infarcts. The classical example of radioimmunologic diagnosis of non malignant tissues is the detection of myocardial infarction by radiolabeled antibodies to myosin. (author)

  5. Determining the impact of oxidation on the motility of single muscle-fibres expressing different myosin isoforms

    DEFF Research Database (Denmark)

    Spanos, Dimitrios; Li, M.; Baron, Caroline P.

    2013-01-01

    heavy chain (MyHC) isoforms has not been previously investigated. Oxidation of myosin isolated from muscle fibres originating from various porcine muscles with a different metabolic profile was studied using a single muscle fibre in-vitro motility assay, allowing measurements of catalytic properties...... (motility speed) and force-generation capacity of specific MyHC isoforms. In the experimental procedure, single muscle fibres were split in different segments and each segment was exposed to a different concentration of hydrogen peroxide. Speed and force measurements were recorded and compared, to assess...... the effect of myosin oxidation on motility and force. The MyHC isoform expression in the single muscle fibre was subsequently determined on silver-stained gel SDS-PAGE. Preliminary results indicate a decrease of directionality and speed of the in-vitro motility as a result of an oxidative environment...

  6. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  7. Myosin II dynamics are regulated by tension in intercalating cells.

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Simoes, Sérgio de Matos; Röper, Jens-Christian; Eaton, Suzanne; Zallen, Jennifer A

    2009-11-01

    Axis elongation in Drosophila occurs through polarized cell rearrangements driven by actomyosin contractility. Myosin II promotes neighbor exchange through the contraction of single cell boundaries, while the contraction of myosin II structures spanning multiple pairs of cells leads to rosette formation. Here we show that multicellular actomyosin cables form at a higher frequency than expected by chance, indicating that cable assembly is an active process. Multicellular cables are sites of increased mechanical tension as measured by laser ablation. Fluorescence recovery after photobleaching experiments show that myosin II is stabilized at the cortex in regions of increased tension. Myosin II is recruited in response to an ectopic force and relieving tension leads to a rapid loss of myosin, indicating that tension is necessary and sufficient for cortical myosin localization. These results demonstrate that myosin II dynamics are regulated by tension in a positive feedback loop that leads to multicellular actomyosin cable formation and efficient tissue elongation.

  8. Myosin Light Chain Kinase and the Role of Myosin Light Chain Phosphorylation in Skeletal Muscle

    OpenAIRE

    Stull, James T.; Kamm, Kristine E.; Vandenboom, Rene

    2011-01-01

    Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine-threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometic bindin...

  9. Characterization of myosin light chain in shrimp hemocytic phagocytosis.

    Science.gov (United States)

    Han, Fang; Wang, Zhiyong; Wang, Xiaoqing

    2010-11-01

    Myosin light chain, a well-known cytoskeleton gene, regulates multiple processes that are involved in material transport, muscle shrink and cell division. However, its function in phagocytosis against invading pathogens in crustacean remains unknown. In this investigation, a myosin light chain gene was obtained from Marsupenaeus japonicus shrimp. The full-length cDNA of this gene was of 766 bp and an open reading frame (ORF) of 462 bp encoding a polypeptide of 153 amino acids. The myosin light chain protein was expressed in Escherichia coli and purified. Subsequently the specific antibody was raised using the purified GST fusion protein. As revealed by immuno-electron microscopy, the myosin light chain protein was only expressed in the dark bands of muscle. In the present study, the myosin light chain gene was up-regulated in the WSSV-resistant shrimp as revealed by real-time PCR and western blot. And the phagocytic percentage and phagocytic index using FITC-labeled Vibrio parahemolyticus were remarkably increased in the WSSV-resistant shrimp, suggesting that the myosin light chain protein was essential in hemocytic phagocytosis. On the other hand, RNAi assays indicated that the phagocytic percentage and phagocytic index were significantly decreased when the myosin light chain gene was silenced by sequence-specific siRNA. These findings suggested that myosin light chain protein was involved in the regulation of hemocytic phagocytosis of shrimp. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Orientation of spin-labeled light chain 2 of myosin heads in muscle fibers.

    Science.gov (United States)

    Arata, T

    1990-07-20

    Electron paramagnetic resonance (e.p.r.) spectroscopy has been used to monitor the orientation of spin labels attached rigidly to a reactive SH residue on the light chain 2 (LC2) of myosin heads in muscle fibers. e.p.r. spectra from spin-labeled myosin subfragment-1 (S1), allowed to diffuse into unlabeled rigor (ATP-free) fibers, were roughly approximated by a narrow angular distribution of spin labels centered at 66 degrees relative to the fiber axis, indicating a uniform orientation of S1 bound to actin. On the other hand, spectra from spin-labeled heavy meromyosin (HMM) were roughly approximated by two narrow angular distributions centered at 42 degrees and 66 degrees, suggesting that the LC2 domains of the two HMM heads have different orientations. In contrast to S1 or HMM, the spectra from rigor fibers, in which LC2 of endogenous myosin heads was labeled, showed a random orientation which may be due to distortion imposed by the structure of the filament lattice and the mismatch of the helical periodicities of the thick and thin filaments. However, spectra from the fibers in the presence of ATP analog 5'-adenylyl imidodiphosphate (AMPPNP) were approximated by two narrow angular distributions similar to those obtained with HMM. Thus, AMPPNP may cause the LC2 domain to be less flexible and/or the S2 portion to be more flexible, so as to release the distortion of the LC2 domain and make it return to its natural position. At high ionic strength, AMPPNP disoriented the spin labels as ATP did under relaxing conditions, suggesting that the myosin head is detached from and/or weakly (flexibly) attached to a thin filament.

  11. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain.

    Science.gov (United States)

    Wollscheid, Hans-Peter; Biancospino, Matteo; He, Fahu; Magistrati, Elisa; Molteni, Erika; Lupia, Michela; Soffientini, Paolo; Rottner, Klemens; Cavallaro, Ugo; Pozzoli, Uberto; Mapelli, Marina; Walters, Kylie J; Polo, Simona

    2016-04-01

    Myosin VI functions in endocytosis and cell motility. Alternative splicing of myosin VI mRNA generates two distinct isoform types, myosin VI(short) and myosin VI(long), which differ in the C-terminal region. Their physiological and pathological roles remain unknown. Here we identified an isoform-specific regulatory helix, named the α2-linker, that defines specific conformations and hence determines the target selectivity of human myosin VI. The presence of the α2-linker structurally defines a new clathrin-binding domain that is unique to myosin VI(long) and masks the known RRL interaction motif. This finding is relevant to ovarian cancer, in which alternative myosin VI splicing is aberrantly regulated, and exon skipping dictates cell addiction to myosin VI(short) in tumor-cell migration. The RRL interactor optineurin contributes to this process by selectively binding myosin VI(short). Thus, the α2-linker acts like a molecular switch that assigns myosin VI to distinct endocytic (myosin VI(long)) or migratory (myosin VI(short)) functional roles.

  12. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects.

    Science.gov (United States)

    Suggs, Jennifer A; Melkani, Girish C; Glasheen, Bernadette M; Detor, Mia M; Melkani, Anju; Marsan, Nathan P; Swank, Douglas M; Bernstein, Sanford I

    2017-06-01

    Individuals with inclusion body myopathy type 3 (IBM3) display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K) in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in decreased in vitro

  13. A Drosophila model of dominant inclusion body myopathy type 3 shows diminished myosin kinetics that reduce muscle power and yield myofibrillar defects

    Directory of Open Access Journals (Sweden)

    Jennifer A. Suggs

    2017-06-01

    Full Text Available Individuals with inclusion body myopathy type 3 (IBM3 display congenital joint contractures with early-onset muscle weakness that becomes more severe in adulthood. The disease arises from an autosomal dominant point mutation causing an E706K substitution in myosin heavy chain type IIa. We have previously expressed the corresponding myosin mutation (E701K in homozygous Drosophila indirect flight muscles and recapitulated the myofibrillar degeneration and inclusion bodies observed in the human disease. We have also found that purified E701K myosin has dramatically reduced actin-sliding velocity and ATPase levels. Since IBM3 is a dominant condition, we now examine the disease state in heterozygote Drosophila in order to gain a mechanistic understanding of E701K pathogenicity. Myosin ATPase activities in heterozygotes suggest that approximately equimolar levels of myosin accumulate from each allele. In vitro actin sliding velocity rates for myosin isolated from the heterozygotes were lower than the control, but higher than for the pure mutant isoform. Although sarcomeric ultrastructure was nearly wild type in young adults, mechanical analysis of skinned indirect flight muscle fibers revealed a 59% decrease in maximum oscillatory power generation and an approximately 20% reduction in the frequency at which maximum power was produced. Rate constant analyses suggest a decrease in the rate of myosin attachment to actin, with myosin spending decreased time in the strongly bound state. These mechanical alterations result in a one-third decrease in wing beat frequency and marginal flight ability. With aging, muscle ultrastructure and function progressively declined. Aged myofibrils showed Z-line streaming, consistent with the human heterozygote phenotype. Based upon the mechanical studies, we hypothesize that the mutation decreases the probability of the power stroke occurring and/or alters the degree of movement of the myosin lever arm, resulting in

  14. Imaging of myocardial infarction in dogs and humans using monoclonal antibodies specific for human myosin heavy chains

    International Nuclear Information System (INIS)

    Leger, J.; Chevalier, J.; Larue, C.; Gautier, P.; Planchenault, J.; Aumaitre, E.; Messner, P.; Puech, P.; Saccavini, J.C.; Pau, B.

    1991-01-01

    The use of three different monoclonal antibodies specific for human ventricular myosin heavy chains in the visualization of the location and extent of necrosis in dogs with experimental acute myocardial infarction and in humans is described. Using a classic immunohistochemical method or ex vivo analysis of heart slices in dogs with acute myocardial infarction subjected to intravenous injection of unlabeled antimyosin antibodies or antimyosin antibodies labeled with indium-111, it was observed that all antibody fragments specifically reached the targeted necrotic zone less than 2 h after antibody injection and remained bound for up to 24 h. In a limited but significant number of cases (5 of the 12 humans and 11 of 43 dogs), it was possible to image the necrotic zone in vivo as early as 2 to 4 h after antibody injection. In other cases, individual blood clearance variations retarded or even prevented in vivo necrosis detection. Higher antimyosin fixation values were obtained in the necrotic zones in dogs with a rapid blood clearance relative to that of the other dogs. It is concluded that antimyosin antibodies always reached necrotic areas within 2 h. If blood clearance was rapid, in vivo imaging of the necrotic area was possible 2 to 6 h after necrosis, even in humans. In some cases, however, uncontrolled individual variations in the timing required for sufficient blood clearance hampered this rapid in vivo detection of myocardial necrosis

  15. Use it or lose it: tonic activity of slow motoneurons promotes their survival and preferentially increases slow fiber-type groupings in muscles of old lifelong recreational sportsmen

    Directory of Open Access Journals (Sweden)

    Simone Mosole

    2016-11-01

    Full Text Available Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i denervation contributes to muscle atrophy, ii impaired mobility accelerates the process, and iii lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers; 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers; 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always

  16. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-01-01

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  17. Use it or Lose It: Tonic Activity of Slow Motoneurons Promotes Their Survival and Preferentially Increases Slow Fiber-Type Groupings in Muscles of Old Lifelong Recreational Sportsmen.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Zampieri, Sandra

    2016-09-15

    Histochemistry, immuno-histochemistry, gel electrophoresis of single muscle fibers and electromyography of aging muscles and nerves suggest that: i) denervation contributes to muscle atrophy, ii) impaired mobility accelerates the process, and iii) lifelong running protects against loss of motor units. Recent corroborating results on the muscle effects of Functional Electrical Stimulation (FES) of aged muscles will be also mentioned, but we will in particular discuss how and why a lifelong increased physical activity sustains reinnervation of muscle fibers. By analyzing distribution and density of muscle fibers co-expressing fast and slow Myosin Heavy Chains (MHC) we are able to distinguish the transforming muscle fibers due to activity related plasticity, to those that adapt muscle fiber properties to denervation and reinnervation. In muscle biopsies from septuagenarians with a history of lifelong high-level recreational activity we recently observed in comparison to sedentary seniors: 1. decreased proportion of small-size angular myofibers (denervated muscle fibers); 2. considerable increase of fiber-type groupings of the slow type (reinnervated muscle fibers); 3. sparse presence of muscle fibers co-expressing fast and slow MHC. Immuno-histochemical characteristics fluctuate from those with scarce fiber-type modulation and groupings to almost complete transformed muscles, going through a process in which isolated fibers co-expressing fast and slow MHC fill the gaps among fiber groupings. Data suggest that lifelong high-level exercise allows the body to adapt to the consequences of the age-related denervation and that it preserves muscle structure and function by saving otherwise lost muscle fibers through recruitment to different slow motor units. This is an opposite behavior of that described in long term denervated or resting muscles. These effects of lifelong high level activity seems to act primarily on motor neurons, in particular on those always more active

  18. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  19. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  20. N-terminus of Cardiac Myosin Essential Light Chain Modulates Myosin Step-Size

    Science.gov (United States)

    Wang, Yihua; Ajtai, Katalin; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Burghardt, Thomas P.

    2016-01-01

    Muscle myosin cyclically hydrolyzes ATP to translate actin. Ventricular cardiac myosin (βmys) moves actin with three distinct unitary step-sizes resulting from its lever-arm rotation and with step-frequencies that are modulated in a myosin regulation mechanism. The lever-arm associated essential light chain (vELC) binds actin by its 43 residue N-terminal extension. Unitary steps were proposed to involve the vELC N-terminal extension with the 8 nm step engaging the vELC/actin bond facilitating an extra ~19 degrees of lever-arm rotation while the predominant 5 nm step forgoes vELC/actin binding. A minor 3 nm step is the unlikely conversion of the completed 5 to the 8 nm step. This hypothesis was tested using a 17 residue N-terminal truncated vELC in porcine βmys (Δ17βmys) and a 43 residue N-terminal truncated human vELC expressed in transgenic mouse heart (Δ43αmys). Step-size and step-frequency were measured using the Qdot motility assay. Both Δ17βmys and Δ43αmys had significantly increased 5 nm step-frequency and coincident loss in the 8 nm step-frequency compared to native proteins suggesting the vELC/actin interaction drives step-size preference. Step-size and step-frequency probability densities depend on the relative fraction of truncated vELC and relate linearly to pure myosin species concentrations in a mixture containing native vELC homodimer, two truncated vELCs in the modified homodimer, and one native and one truncated vELC in the heterodimer. Step-size and step-frequency, measured for native homodimer and at two or more known relative fractions of truncated vELC, are surmised for each pure species by using a new analytical method. PMID:26671638

  1. Topology of interaction between titin and myosin thick filaments.

    Science.gov (United States)

    Kellermayer, Miklós; Sziklai, Dominik; Papp, Zsombor; Decker, Brennan; Lakatos, Eszter; Mártonfalvi, Zsolt

    2018-05-05

    Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  3. Reciprocal and dynamic polarization of planar cell polarity core components and myosin

    Science.gov (United States)

    Newman-Smith, Erin; Kourakis, Matthew J; Reeves, Wendy; Veeman, Michael; Smith, William C

    2015-01-01

    The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization. DOI: http://dx.doi.org/10.7554/eLife.05361.001 PMID:25866928

  4. Gene transfer, expression, and sarcomeric incorporation of a headless myosin molecule in cardiac myocytes: evidence for a reserve in myofilament motor function

    Science.gov (United States)

    Vandenboom, Rene; Herron, Todd; Favre, Elizabeth; Albayya, Faris P.

    2011-01-01

    The purpose of this study was to implement a living myocyte in vitro model system to test whether a motor domain-deleted headless myosin construct could be incorporated into the sarcomere and affect contractility. To this end we used gene transfer to express a “headless” myosin heavy chain (headless-MHC) in complement with the native full-length myosin motors in the cardiac sarcomere. An NH2-terminal Flag epitope was used for unique detection of the motor domain-deleted headless-MHC. Total MHC content (i.e., headless-MHC + endogenous MHC) remained constant, while expression of the headless-MHC in transduced myocytes increased from 24 to 72 h after gene transfer until values leveled off at 96 h after gene transfer, at which time the headless-MHC comprised ∼20% of total MHC. Moreover, immunofluorescence labeling and confocal imaging confirmed expression and demonstrated incorporation of the headless-MHC in the A band of the cardiac sarcomere. Functional measurements in intact myocytes showed that headless-MHC modestly reduced amplitude of dynamic twitch contractions compared with controls (P < 0.05). In chemically permeabilized myocytes, maximum steady-state isometric force and the tension-pCa relationship were unaltered by the headless-MHC. These data suggest that headless-MHC can express to 20% of total myosin and incorporate into the sarcomere yet have modest to no effects on dynamic and steady-state contractile function. This would indicate a degree of functional tolerance in the sarcomere for nonfunctional myosin molecules. PMID:21112946

  5. Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Directory of Open Access Journals (Sweden)

    Syamaladevi Divya P

    2011-09-01

    Full Text Available Abstract Background Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues. Results To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program. Conclusion Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.

  6. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, V.; Rülicke, T.; Rathkolb, B.; Hans, W.; Bohla, A.; Eickelberg, O.; Stoeger, T.; Wolf, E.; Yildirim, A.Ö.; Gailus-Durner, V.; Fuchs, H.; de Angelis, M.H.; Hozák, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e61406 E-ISSN 1932-6203 R&D Projects: GA ČR GAP305/11/2232; GA TA ČR TE01020022; GA MŠk LH12143; GA ČR(CZ) GD204/09/H084 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : nuclear myosin * myosin isoforms * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  7. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  8. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States); Hofmann, Wilma A., E-mail: whofmann@buffalo.edu [Department of Physiology and Biophysics, University at Buffalo—State University of New York, Buffalo, NY (United States)

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  9. Blebbistain, a myosin II inhibitor, as a novel strategy to regulate detrusor contractility in a rat model of partial bladder outlet obstruction.

    Directory of Open Access Journals (Sweden)

    Xinhua Zhang

    Full Text Available Partial bladder outlet obstruction (PBOO, a common urologic pathology mostly caused by benign prostatic hyperplasia, can coexist in 40-45% of patients with overactive bladder (OAB and is associated with detrusor overactivity (DO. PBOO that induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB is a myosin II inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM and reports suggest varied BLEB efficacy for different SM myosin (SMM isoforms and/or SMM vs nonmuscle myosin (NMM. We hypothesize BLEB inhibition of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ∼50% along with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5' myosin heavy chain (MHC alternatively spliced isoform SM-A (associated with tonic-type SM increased 3-fold while 3' MHC SM1 and essential light chain isoform MLC(17b also exhibited increased relative expression. Total SMMHC expression was decreased by 25% while the expression of NMM IIB (SMemb was greatly increased by 4.5-fold. BLEB was found to completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical field stimulation although sensitivity was slightly decreased (20% only at lower doses for PBOO. Thus we provide the first thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO bladder SM relaxation. Furthermore, the present study provides valuable

  10. Myosin VIIa as a common component of cilia and microvilli.

    Science.gov (United States)

    Wolfrum, U; Liu, X; Schmitt, A; Udovichenko, I P; Williams, D S

    1998-01-01

    The distribution of myosin VIIa, which is defective or absent in Usher syndrome 1B, was studied in a variety of tissues by immunomicroscopy. The primary aim was to determine whether this putative actin-based mechanoenzyme is a common component of cilia. Previously, it has been proposed that defective ciliary function might be the basis of some forms of Usher syndrome. Myosin VIIa was detected in cilia from cochlear hair cells, olfactory neurons, kidney distal tubules, and lung bronchi. It was also found to cofractionate with the axonemal fraction of retinal photoreceptor cells. Immunolabeling appeared most concentrated in the periphery of the transition zone of the cilia. This general presence of a myosin in cilia is surprising, given that cilia are dominated by microtubules, and not actin filaments. In addition to cilia, myosin VIIa was also found in actin-rich microvilli of different types of cell. We conclude that myosin VIIa is a common component of cilia and microvilli.

  11. Pesquisa de marcadores para os genes da cadeia pesada da beta-miosina cardíaca e da proteína C de ligação à miosina em familiares de pacientes com cardiomiopatia hipertrófica Research of markers for the genes of the heavy chain of cardiac beta-myosin and myosin binding protein C in relatives of patients with hypertrophic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Adriana Paula Tirone

    2005-06-01

    Full Text Available OBJETIVO: Estudar os marcadores moleculares para os genes da cadeia pesada da beta-miosina cardíaca e da proteína-C de ligação à miosina em familiares de portadores de cardiomiopatia hipertrófica. MÉTODOS: Foram estudadas 12 famílias que realizaram anamnese, exame físico, eletrocardiograma, ecocardiograma e coleta de sangue para o estudo genético através da reação em cadeia da polimerasse. RESULTADOS: Dos 227 familiares 25% eram acometidos, sendo 51% do sexo masculino com idade média de 35±19 (2 a 95 anos. A análise genética mostrou ligação com o gene da b-miosina cardíaca em uma família e, em outra, ligação com o gene da proteína C de ligação à miosina. Em cinco famílias foram excluídas ligações com os dois genes; em duas, a ligação com o gene da proteína C de ligação à miosina, porém para o gene da b-miosina os resultados foram inconclusivos; em duas famílias os resultados foram inconclusivos para os dois genes e em uma foi excluída ligação para o gene da b-miosina mas ficou inconclusivo para o gene da proteína C de ligação à miosina. CONCLUSÃO: Em nosso meio, talvez predominem outros genes que não aqueles descritos na literatura, ou que existam outras diferenças genéticas relacionadas com a origem de nossa população e/ou fatores ambientais.OBJECTIVE: To study the molecular markers for the genes of the heavy chain of cardiac beta-myosin and the myosin binding protein C in relatives of carriers of hypertrophic cardiomyopathy. METHODS: Twelve families who had anamnesis, physical exam, electrocardiogram, echocardiogram and blood collection for the genetic study through the chain reaction of polymerase. RESULTS: From the 227 relatives, 25% were ill-taken, with 51% men, with an average age of 35±19 (2 to 95 years old. The genetic analysis showed a connection with the gene of the cardiac b-myosin in a family and, in another, a connection with the gene of the myosin-binding protein C. In five

  12. Biased Brownian motion mechanism for processivity and directionality of single-headed myosin-VI.

    Science.gov (United States)

    Iwaki, Mitsuhiro; Iwane, Atsuko Hikikoshi; Ikebe, Mitsuo; Yanagida, Toshio

    2008-01-01

    Conventional form to function as a vesicle transporter is not a 'single molecule' but a coordinated 'two molecules'. The coordinated two molecules make it complicated to reveal its mechanism. To overcome the difficulty, we adopted a single-headed myosin-VI as a model protein. Myosin-VI is an intracellular vesicle and organelle transporter that moves along actin filaments in a direction opposite to most other known myosin classes. The myosin-VI was expected to form a dimer to move processively along actin filaments with a hand-over-hand mechanism like other myosin organelle transporters. However, wild-type myosin-VI was demonstrated to be monomer and single-headed, casting doubt on its processivity. Using single molecule techniques, we show that green fluorescent protein (GFP)-fused single-headed myosin-VI does not move processively. However, when coupled to a 200 nm polystyrene bead (comparable to an intracellular vesicle in size) at a ratio of one head per bead, single-headed myosin-VI moves processively with large (40 nm) steps. Furthermore, we found that a single-headed myosin-VI-bead complex moved more processively in a high-viscous solution (40-fold higher than water) similar to cellular environment. Because diffusion of the bead is 60-fold slower than myosin-VI heads alone in water, we propose a model in which the bead acts as a diffusional anchor for the myosin-VI, enhancing the head's rebinding following detachment and supporting processive movement of the bead-monomer complex. This investigation will help us understand how molecular motors utilize Brownian motion in cells.

  13. THE SLOWING DOWN OF THE CORROSION OF ELEMENTS OF THE EQUIPMENT OF HEAVY MET-ALS AT ELEVATED TEMPERATURES

    OpenAIRE

    Носачова, Юлія Вікторівна; Ярошенко, М. М.; Корзун, А. О.; КОРОВЧЕНКО, К. С.

    2017-01-01

    In this article examined the heavy metals ions and their ability to slow down the corrosion process also the impact of ambient temperature on their effectiveness. Solving the problem of corrosion will reduce the impact of large industrial enterprises on the environment and minimize the economic costs. To do this, plants should create a system without a discharge of waste water that is closed recycling systems, which result is a significant reduction in intake of fresh water from natural sourc...

  14. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    OpenAIRE

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vi...

  15. A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress.

    Science.gov (United States)

    Wilkie, Adrian R; Sharma, Mayuri; Pesola, Jean M; Ericsson, Maria; Fernandez, Rosio; Coen, Donald M

    2018-03-15

    Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress. IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for

  16. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, Mads; Qvortrup, Klaus; Larsen, Jytte Overgaard

    2010-01-01

    BACKGROUND: Patellar tendinopathy is characterized by pathologic abnormalities. Heavy slow resistance training (HSR) is effective in the management of patellar tendinopathy, but the underlying functional mechanisms remain elusive. PURPOSE: To investigate fibril morphology and mechanical properties...... assessed symptoms/function and maximal tendon pain during activity. Tendon biopsy samples were analyzed for fibril density, volume fraction, and mean fibril area. Tendon mechanical properties were assessed using force and ultrasonography samplings. RESULTS: Patients improved in symptoms/function (P = .02...... area decreased (-26% +/- 21%, P = .04) in tendinopathic tendons after HSR. CONCLUSION: Fibril morphology is abnormal in tendinopathy, but tendon mechanical properties are not. Clinical improvements after HSR were associated with changes in fibril morphology toward normal fibril density and mean fibril...

  17. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  18. Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.

    Directory of Open Access Journals (Sweden)

    Francesco Chemello

    Full Text Available BACKGROUND: Skeletal muscle is a complex, versatile tissue composed of a variety of functionally diverse fiber types. Although the biochemical, structural and functional properties of myofibers have been the subject of intense investigation for the last decades, understanding molecular processes regulating fiber type diversity is still complicated by the heterogeneity of cell types present in the whole muscle organ. METHODOLOGY/PRINCIPAL FINDINGS: We have produced a first catalogue of genes expressed in mouse slow-oxidative (type 1 and fast-glycolytic (type 2B fibers through transcriptome analysis at the single fiber level (microgenomics. Individual fibers were obtained from murine soleus and EDL muscles and initially classified by myosin heavy chain isoform content. Gene expression profiling on high density DNA oligonucleotide microarrays showed that both qualitative and quantitative improvements were achieved, compared to results with standard muscle homogenate. First, myofiber profiles were virtually free from non-muscle transcriptional activity. Second, thousands of muscle-specific genes were identified, leading to a better definition of gene signatures in the two fiber types as well as the detection of metabolic and signaling pathways that are differentially activated in specific fiber types. Several regulatory proteins showed preferential expression in slow myofibers. Discriminant analysis revealed novel genes that could be useful for fiber type functional classification. CONCLUSIONS/SIGNIFICANCE: As gene expression analyses at the single fiber level significantly increased the resolution power, this innovative approach would allow a better understanding of the adaptive transcriptomic transitions occurring in myofibers under physiological and pathological conditions.

  19. Myosin heavy chain expression in cranial, pectoral fin, and tail muscle regions of zebrafish embryos.

    Science.gov (United States)

    Peng, Mou-Yun; Wen, Hui-Ju; Shih, Li-Jane; Kuo, Ching-Ming; Hwang, Sheng-Ping L

    2002-12-01

    To investigate whether different myosin heavy chain (MHC) isoforms may constitute myofibrils in the trunk and tail musculature and if their respective expression may be regulated by spadetail (spt) and no tail (brachyury), we identified and characterized mRNA expression patterns of an embryonic- and tail muscle-specific MHC gene (named myhz2) during zebrafish development in wild type, spt, and ntl mutant embryos. The identified myhz2 MHC gene encodes a polypeptide containing 1,935 amino acids. Deduced amino acid comparisons showed that myhz2 MHC shared 92.6% sequence identity with that of carp fast skeletal MHC. Temporal and spatial myhz2 MHC mRNA expression patterns were analyzed by quantitative RT-PCR and whole-mount in situ hybridization using primer pairs and probes designed from the 3'-untranslated region (UTR). Temporally myhz2 MHC mRNA appears in pharyngula embryos and peaks in protruding-mouth larvae. The expression level decreased in 7-day-old hatching larvae, and mRNA expression was not detectable in adult fish. Spatially in pharyngula embryos, mRNA was localized only in the tail somite region, while in long-pec embryos, transcripts were also expressed in the two cranial muscle elements of the adductor mandibulae and medial rectus, as well as in pectoral fin muscles and the tail muscle region. Myhz2 MHC mRNA was expressed in most cranial muscle elements, pectoral fin muscles, and the tail muscle region of 3-day-old hatching larvae. In contrast, no expression of myhz2 MHC mRNA could be observed in spt prim-15 mutant embryos. In spt long-pec mutant embryos, transcripts were expressed in two cranial muscle elements and the tail muscle region, but not in pectoral fin muscles, while only trace amounts of myhz2 MHC mRNA were expressed in the remaining tail muscle region of 38 hpf and long-pec ntl mutant embryos. Copyright 2002 Wiley-Liss, Inc.

  20. Dynamics of myosin II organization into cortical contractile networks and fibers

    Science.gov (United States)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, Daniel; Jedlicka, Sabrina; Vavylonis, Dimitrios

    2014-03-01

    The morphology of adhered cells critically depends on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin which disrupts actomyosin stress fibers. Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared them to studies by other groups. This analysis suggested that the following processes contribute to the assembly of cortical actomyosin into fibers: random myosin mini-filament assembly and disassembly along the cortex; myosin mini-filament aligning and contraction; stabilization of cortical myosin upon increasing contractile tension. We developed simple numerical simulations that include those processes. The results of simulations of cells at steady state and in response to blebbistatin capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness.

  1. Unconstrained steps of myosin VI appear longest among known molecular motors.

    Science.gov (United States)

    Ali, M Yusuf; Homma, Kazuaki; Iwane, Atsuko Hikikoshi; Adachi, Kengo; Itoh, Hiroyasu; Kinosita, Kazuhiko; Yanagida, Toshio; Ikebe, Mitsuo

    2004-06-01

    Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.

  2. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  3. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise.

    Science.gov (United States)

    Pringle, Jamie S M; Doust, Jonathan H; Carter, Helen; Tolfrey, Keith; Jones, Andrew M

    2003-04-01

    We hypothesized that a higher pedal rate (assumed to result in a greater proportional contribution of type II motor units) would be associated with an increased amplitude of the O(2) uptake (Vo(2)) slow component during heavy-cycle exercise. Ten subjects (mean +/- SD, age 26 +/- 4 yr, body mass 71.5 +/- 7.9 kg) completed a series of square-wave transitions to heavy exercise at pedal rates of 35, 75, and 115 rpm. The exercise power output was set at 50% of the difference between the pedal rate-specific ventilatory threshold and peak Vo(2), and the baseline power output was adjusted to account for differences in the O(2) cost of unloaded pedaling. The gain of the Vo(2) primary component was significantly higher at 35 rpm compared with 75 and 115 rpm (mean +/- SE, 10.6 +/- 0.3, 9.5 +/- 0.2, and 8.9 +/- 0.4 ml. min(-1). W(-1), respectively; P exercise at the same relative intensity, presumably by altering motor unit recruitment patterns.

  4. Prolonged Cre expression driven by the α-myosin heavy chain promoter can be cardiotoxic.

    Science.gov (United States)

    Pugach, Emily K; Richmond, Phillip A; Azofeifa, Joseph G; Dowell, Robin D; Leinwand, Leslie A

    2015-09-01

    Studying the importance of genetic factors in a desired cell type or tissue necessitates the use of precise genetic tools. With the introduction of bacteriophage Cre recombinase/loxP mediated DNA editing and promoter-specific Cre expression, it is feasible to generate conditional knockout mice in which particular genes are disrupted in a cell type-specific manner in vivo. In cardiac myocytes, this is often achieved through α-myosin heavy chain promoter (αMyHC)-driven Cre expression in conjunction with a loxP-site flanked gene of interest. Recent studies in other cell types demonstrate toxicity of Cre expression through induction of DNA damage. However, it is unclear to what extent the traditionally used αMyHC-Cre line [1] may exhibit cardiotoxicity. Further, the genotype of αMyHC-Cre(+/-) is not often included as a control group in cardiac myocyte-specific knockout studies. Here we present evidence that these αMyHC-Cre(+/-) mice show molecular signs of cardiac toxicity by 3months of age and exhibit decreased cardiac function by 6months of age compared to wild-type littermates. Hearts from αMyHC-Cre(+/-) mice also display evidence of fibrosis, inflammation, and DNA damage. Interestingly, some of the early functional changes observed in αMyHC-Cre(+/-) mice are sexually dimorphic. Given the high level of Cre recombinase expression resulting from expression from the αMyHC promoter, we asked if degenerate loxP-like sites naturally exist in the mouse genome and if so, whether they are affected by Cre in the absence of canonical loxP-sites. Using a novel bioinformatics search tool, we identified 619 loxP-like sites with 4 or less mismatches to the canonical loxP-site. 227 sites overlapped with annotated genes and 55 of these genes were expressed in cardiac muscle. Expression of ~26% of the 27 genes tested was disrupted in αMyHC-Cre(+/-) mice indicating potential targeting by Cre. Taken together, these results highlight both the importance of using αMyHC-Cre mice

  5. Myosin light chain kinase phosphorylation in tracheal smooth muscle

    International Nuclear Information System (INIS)

    Stull, J.T.; Hsu, L.C.; Tansey, M.G.; Kamm, K.E.

    1990-01-01

    Purified myosin light chain kinase from smooth muscle is phosphorylated by cyclic AMP-dependent protein kinase, protein kinase C, and the multifunctional calmodulin-dependent protein kinase II. Because phosphorylation in a specific site (site A) by any one of these kinases desensitizes myosin light chain kinase to activation by Ca2+/calmodulin, kinase phosphorylation could play an important role in regulating smooth muscle contractility. This possibility was investigated in 32 P-labeled bovine tracheal smooth muscle. Treatment of tissues with carbachol, KCl, isoproterenol, or phorbol 12,13-dibutyrate increased the extent of kinase phosphorylation. Six primary phosphopeptides (A-F) of myosin light chain kinase were identified. Site A was phosphorylated to an appreciable extent only with carbachol or KCl, agents which contract tracheal smooth muscle. The extent of site A phosphorylation correlated to increases in the concentration of Ca2+/calmodulin required for activation. These results show that cyclic AMP-dependent protein kinase and protein kinase C do not affect smooth muscle contractility by phosphorylating site A in myosin light chain kinase. It is proposed that phosphorylation of myosin light chain kinase in site A in contracting tracheal smooth muscle may play a role in the reported desensitization of contractile elements to activation by Ca2+

  6. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  7. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Kumakura, Michiko; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-01-01

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  8. Effects of resistance training on fast- and slow-twitch muscles in rats

    Directory of Open Access Journals (Sweden)

    M Umnova

    2010-09-01

    Full Text Available The purpose of this study was to investigate the effect of resistance training (RT on muscle strength, the dependence of that on the fast-twitch (FT and slow-twitch (ST fibers hypertrophy, nuclear domain size, synthesis and degradation rate of contractile proteins and on the expression of myosin isoforms’. 16 weeks old Wistar rats were trained on a vertical treadmill for six days a week during six weeks. The power of exercise increased 4.9% per session. In RT group the mass of studied muscles increased about 10%, hindlimb grip strength increased from 5.20±0.27 N/100g bw to the 6.05±0.29 N/100g bw (p<0.05. Cross-sectional area and number of myonuclei of FT and ST fibers in plantaris (Pla and soleus (Sol muscles increased, myonuclear domain size did not change significantly. RT increased the MyHC IId isoforms relative content and decreased that of IIb and IIa isoforms in Pla muscle, in Sol muscle increased only IIa isoform. In Pla muscle the relative content of myosin light chain (MyLC 1slow and 2slow isoforms decreased and that of MyLC 2fast isoforms increased during RT. MyLC 3 and MyLC 2 ratio did not change significantly in Pla but increased in Sol muscle by 14.3±3.4�0(p<0.01. The rat RT programme caused hypertrophy of FT and ST muscle fibers, increase of myonuclear number via fusion of satellite cells with damaged fibers or formation of new muscle fibers as a result of myoblast fusion and myotubes formation, maintaining myonuclear domain size.

  9. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    2016-11-01

    Full Text Available During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator.

  10. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    Energy Technology Data Exchange (ETDEWEB)

    Fiks, E.I.; Pivovarov, Yu.L.

    2015-07-15

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  11. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  12. Myosin VIII regulates protonemal patterning and developmental timing in the moss Physcomitrella patens.

    Science.gov (United States)

    Wu, Shu-Zon; Ritchie, Julie A; Pan, Ai-Hong; Quatrano, Ralph S; Bezanilla, Magdalena

    2011-09-01

    Plants have two classes of myosins. While recent work has focused on class XI myosins showing that myosin XI is responsible for organelle motility and cytoplasmic streaming, much less is known about the role of myosin VIII in plant growth and development. We have used a combination of RNAi and insertional knockouts to probe myosin VIII function in the moss Physcomitrella patens. We isolated Δmyo8ABCDE plants demonstrating that myosin VIII is not required for plant viability. However, myosin VIII mutants are smaller than wild-type plants in part due to a defect in cell size. Additionally, Δmyo8ABCDE plants produce more side branches and form gametophores much earlier than wild-type plants. In the absence of nutrient media, Δmyo8ABCDE plants exhibit significant protonemal patterning defects, including highly curved protonemal filaments, morphologically defective side branches, as well as an increase in the number of branches. Exogenous auxin partially rescues protonemal defects in Δmyo8ABCDE plants grown in the absence of nutrients. This result, together with defects in protonemal branching, smaller caulonemal cells, and accelerated development in the Δmyo8ABCDE plants, suggests that myosin VIII is involved in hormone homeostasis in P. patens.

  13. Structural insight into the UNC-45–myosin complex

    DEFF Research Database (Denmark)

    Fratev, Filip; Jonsdottir, Svava Osk; Pajeva, Ilza

    2013-01-01

    The UNC-45 chaperone protein interacts with and affects the folding, stability, and the ATPase activity of myosins. It plays a critical role in the cardiomyopathy development and in the breast cancer tumor growth. Here we propose the first structural model of the UNC-45–myosin complex using various...... is mainly stabilized by electrostatic interactions. Remarkably, the contact surface area is similar to that of the myosinactin complex. A significant interspecies difference in the myosin binding epitope is observed. Our results reveal the structural basis of MYH7 exons 15–16 hypertrophic cardiomyopathy...... mutations and provide directions for drug targeting. © 2013 Wiley Periodicals, Inc....

  14. Three-dimensional stochastic model of actin–myosin binding in the sarcomere lattice

    Energy Technology Data Exchange (ETDEWEB)

    Mijailovich, Srboljub M.; Kayser-Herold, Oliver; Stojanovic, Boban; Nedic, Djordje; Irving, Thomas C.; Geeves, MA (Harvard); (IIT); (U. Kent); (Kragujevac)

    2016-11-18

    The effect of molecule tethering in three-dimensional (3-D) space on bimolecular binding kinetics is rarely addressed and only occasionally incorporated into models of cell motility. The simplest system that can quantitatively determine this effect is the 3-D sarcomere lattice of the striated muscle, where tethered myosin in thick filaments can only bind to a relatively small number of available sites on the actin filament, positioned within a limited range of thermal movement of the myosin head. Here we implement spatially explicit actomyosin interactions into the multiscale Monte Carlo platform MUSICO, specifically defining how geometrical constraints on tethered myosins can modulate state transition rates in the actomyosin cycle. The simulations provide the distribution of myosin bound to sites on actin, ensure conservation of the number of interacting myosins and actin monomers, and most importantly, the departure in behavior of tethered myosin molecules from unconstrained myosin interactions with actin. In addition, MUSICO determines the number of cross-bridges in each actomyosin cycle state, the force and number of attached cross-bridges per myosin filament, the range of cross-bridge forces and accounts for energy consumption. At the macroscopic scale, MUSICO simulations show large differences in predicted force-velocity curves and in the response during early force recovery phase after a step change in length comparing to the two simplest mass action kinetic models. The origin of these differences is rooted in the different fluxes of myosin binding and corresponding instantaneous cross-bridge distributions and quantitatively reflects a major flaw of the mathematical description in all mass action kinetic models. Consequently, this new approach shows that accurate recapitulation of experimental data requires significantly different binding rates, number of actomyosin states, and cross-bridge elasticity than typically used in mass action kinetic models to

  15. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats. The 2nd report

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Xiao Dong Wang; Nagaoka, Shunji; Nojima, Kumie

    2004-01-01

    We examined the effects of acute exposure of heavy ion on the properties of motoneurons and their innervating muscle fibers. A 40 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in five 8-week-old male rats. Five male rats served as controls. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of motoneurons innervating the soleus and plantaris muscles were analyzed. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no changes in the number of motoneurons between the control and heavy-ion-exposed rats. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in motoneurons of the heavy-ion-exposed rats. There were no changes in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the muscles between the control and heavy-ion-exposed rats. It is concluded that a 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there were no influences on the properties of muscle fibers which they innervate. (author)

  16. Inner-shell ionization of heavy atoms by slow ions. A study of electronic relativistic effects and projectile Coulomb deflection in the Semiclassical Approximation

    International Nuclear Information System (INIS)

    Amundsen, P.A.

    1978-08-01

    Several investigations have been made on K and L shell ionization of the heavy collision partner in slow asymmetric collisions based on the SCA. The use of the SCA can only be defended for slow collisions if the projectile has a charge much less than the target. Thus this approximation should first be tested for proton impact on very heavy target elements. For these elements the inner shell electrons move sufficiently fast for a relativistic description to be mandatory. These relativistic effects are in themselves of some interest, as they can be quite large. After discussion of the formulation of the SCA used throughout this work, a further introduction is given on relativistic effects in Coulomb ionisation. Two papers on electronic relativistic effects in K and L shell ionization follow. The next two papers discuss calculations with an exact Coulomb projectile path. The latter of these also touches upon the inclusion of corrections to the SCA from terms beyond first order perturbation theory. In the last paper of this thesis it is shown how the theoretical apparatus developed for the SCA- calculations can immediately be used also for making calculations of more symmetric systems with the Briggs model. Thus, at least for direct ionization in very slow collisions a unification of the SA and MO approaches has apparently been reached. (JIW)

  17. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  18. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  19. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  20. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  1. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state.

    Science.gov (United States)

    Banerjee, Chaity; Hu, Zhongjun; Huang, Zhong; Warrington, J Anthony; Taylor, Dianne W; Trybus, Kathleen M; Lowey, Susan; Taylor, Kenneth A

    2017-12-01

    Myosin-based motility utilizes catalysis of ATP to drive the relative sliding of F-actin and myosin. The earliest detailed model based on cryo-electron microscopy (cryoEM) and X-ray crystallography postulated that higher actin affinity and lever arm movement were coupled to closure of a feature of the myosin head dubbed the actin-binding cleft. Several studies since then using crystallography of myosin-V and cryoEM structures of F-actin bound myosin-I, -II and -V have provided details of this model. The smooth muscle myosin II interaction with F-actin may differ from those for striated and non-muscle myosin II due in part to different lengths of important surface loops. Here we report a ∼6 Å resolution reconstruction of F-actin decorated with the nucleotide-free recombinant smooth muscle myosin-II motor domain (MD) from images recorded using a direct electron detector. Resolution is highest for F-actin and the actin-myosin interface (3.5-4 Å) and lowest (∼6-7 Å) for those parts of the MD at the highest radius. Atomic models built into the F-actin density are quite comparable to those previously reported for rabbit muscle actin and show density from the bound ADP. The atomic model of the MD, is quite similar to a recently published structure of vertebrate non-muscle myosin II bound to F-actin and a crystal structure of nucleotide free myosin-V. Larger differences are observed when compared to the cryoEM structure of F-actin decorated with rabbit skeletal muscle myosin subfragment 1. The differences suggest less closure of the 50 kDa domain in the actin bound skeletal muscle myosin structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Oxidation of myosin by haem proteins generates myosin radicals and protein cross-links

    DEFF Research Database (Denmark)

    Lametsch, Marianne Lund; Luxford, Catherine; Skibsted, Leif Horsfelt

    2008-01-01

    of thiyl and tyrosyl radicals is consistent with the observed consumption of cysteine and tyrosine residues, the detection of di-tyrosine by HPLC and the detection of both reducible (disulfide bond) and non-reducible cross-links between myosin molecules by SDS/PAGE. The time course of radical formation...

  3. Altered fast- and slow-twitch muscle fibre characteristics in female mice with a (S248F) knock-in mutation of the brain neuronal nicotinic acetylcholine receptor.

    Science.gov (United States)

    Cannata, David J; Finkelstein, David I; Gantois, Ilse; Teper, Yaroslav; Drago, John; West, Jan M

    2009-01-01

    We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the alpha4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca(2+) and Sr(2+) force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa(50) - pSr(50)) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

  4. Slit and Netrin-1 guide cranial motor axon pathfinding via Rho-kinase, myosin light chain kinase and myosin II

    Directory of Open Access Journals (Sweden)

    Drescher Uwe

    2010-06-01

    Full Text Available Abstract Background In the developing hindbrain, cranial motor axon guidance depends on diffusible repellent factors produced by the floor plate. Our previous studies have suggested that candidate molecules for mediating this effect are Slits, Netrin-1 and Semaphorin3A (Sema3A. It is unknown to what extent these factors contribute to floor plate-derived chemorepulsion of motor axons, and the downstream signalling pathways are largely unclear. Results In this study, we have used a combination of in vitro and in vivo approaches to identify the components of floor plate chemorepulsion and their downstream signalling pathways. Using in vitro motor axon deflection assays, we demonstrate that Slits and Netrin-1, but not Sema3A, contribute to floor plate repulsion. We also find that the axon pathways of dorsally projecting branchiomotor neurons are disrupted in Netrin-1 mutant mice and in chick embryos expressing dominant-negative Unc5a receptors, indicating an in vivo role for Netrin-1. We further demonstrate that Slit and Netrin-1 signalling are mediated by Rho-kinase (ROCK and myosin light chain kinase (MLCK, which regulate myosin II activity, controlling actin retrograde flow in the growth cone. We show that MLCK, ROCK and myosin II are required for Slit and Netrin-1-mediated growth cone collapse of cranial motor axons. Inhibition of these molecules in explant cultures, or genetic manipulation of RhoA or myosin II function in vivo causes characteristic cranial motor axon pathfinding errors, including the inability to exit the midline, and loss of turning towards exit points. Conclusions Our findings suggest that both Slits and Netrin-1 contribute to floor plate-derived chemorepulsion of cranial motor axons. They further indicate that RhoA/ROCK, MLCK and myosin II are components of Slit and Netrin-1 signalling pathways, and suggest that these pathways are of key importance in cranial motor axon navigation.

  5. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use

    Science.gov (United States)

    Young, Erica J.; Blouin, Ashley M.; Briggs, Sherri B.; Sillivan, Stephanie E.; Lin, Li; Cameron, Michael D.; Rumbaugh, Gavin; Miller, Courtney A.

    2015-01-01

    Memories associated with drug use increase vulnerability to relapse in substance use disorder (SUD) and there are no pharmacotherapies for the prevention of relapse. Previously, we reported a promising finding that storage of memories associated with methamphetamine (METH), but not memories for fear or food reward, is vulnerable to disruption by actin depolymerization in the basolateral amygdala complex (BLC). However, actin is not a viable therapeutic target because of its numerous functions throughout the body. Here we report the discovery of a viable therapeutic target, nonmuscle myosin II (NMIIB), a molecular motor that supports memory by directly driving synaptic actin polymerization. A single intra-BLC treatment with Blebbistatin, a small molecule inhibitor of class II myosin isoforms, including NMIIB, produced a long-lasting disruption of context-induced drug seeking (at least 30 days). Further, post-consolidation genetic knockdown of Myh10, the heavy chain of the most highly expressed NMII in the BLC, was sufficient to produce METH-associated memory loss. Blebbistatin was found to be highly brain penetrant. A single systemic injection of the compound selectively disrupted the storage of METH-associated memory and reversed the accompanying increase in BLC spine density. This effect was specific to METH-associated memory, as it had no effect on an auditory fear memory. The effect was also independent of retrieval, as METH-associated memory was disrupted twenty-four hours after a single systemic injection of Blebbistatin delivered in the home cage. Together, these results argue for the further development of small molecule inhibitors of nonmuscle myosin II as potential therapeutics for the prevention of SUD relapse triggered by drug associations. PMID:26239291

  6. Catalytic strategy used by the myosin motor to hydrolyze ATP.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2014-07-22

    Myosin is a molecular motor responsible for biological motions such as muscle contraction and intracellular cargo transport, for which it hydrolyzes adenosine 5'-triphosphate (ATP). Early steps of the mechanism by which myosin catalyzes ATP hydrolysis have been investigated, but still missing are the structure of the final ADP·inorganic phosphate (Pi) product and the complete pathway leading to it. Here, a comprehensive description of the catalytic strategy of myosin is formulated, based on combined quantum-classical molecular mechanics calculations. A full exploration of catalytic pathways was performed and a final product structure was found that is consistent with all experiments. Molecular movies of the relevant pathways show the different reorganizations of the H-bond network that lead to the final product, whose γ-phosphate is not in the previously reported HPγO4(2-) state, but in the H2PγO4(-) state. The simulations reveal that the catalytic strategy of myosin employs a three-pronged tactic: (i) Stabilization of the γ-phosphate of ATP in a dissociated metaphosphate (PγO3(-)) state. (ii) Polarization of the attacking water molecule, to abstract a proton from that water. (iii) Formation of multiple proton wires in the active site, for efficient transfer of the abstracted proton to various product precursors. The specific role played in this strategy by each of the three loops enclosing ATP is identified unambiguously. It explains how the precise timing of the ATPase activation during the force generating cycle is achieved in myosin. The catalytic strategy described here for myosin is likely to be very similar in most nucleotide hydrolyzing enzymes.

  7. Caractérisation des différents types de fibres musculaires dans plusieurs espèces : production et utilisation d'anticorps monoclonaux dirigés contre les chaînes lourdes de myosine rapide IIa et IIb

    OpenAIRE

    Société Biocytex; Picard, Brigitte; Lefaucheur, Louis; Fauconneau, Benoit; Rémignon, Hervé; Cherel, Yan; Barrey, Eric; Nédelec, J.

    1998-01-01

    Des anticorps monoclonaux dirigés contre les chaînes lourdes de myosine (MHC : myosin heavy chain) de différentes espèces d’animaux : bovin, porc, poisson, poulet, dinde, cheval ont été produits. Ils ont été testés par immunohistologie sur des coupes de muscle squelettique chez le bovin, le porc, le poisson, le poulet et la dinde et par ELISA chez le cheval. Les différents anticorps retenus dans ce projet permettent de nouvelles applications pour l’étude du muscle squelettique. En particulier...

  8. Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration

    Science.gov (United States)

    Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Hallissy, Jim B.; Harris, Jerome; Noonan, Kevin W.; Wong, Oliver D.; Jones, Henry E.; Malovrh, Brendon D.; hide

    2009-01-01

    Time accurate numerical simulations were performed using the Reynolds-averaged Navier-Stokes (RANS) flow solver OVERFLOW for a heavy lift, slowed-rotor, compound helicopter configuration, tested at the NASA Langley 14- by 22-Foot Subsonic Tunnel. The primary purpose of these simulations is to provide support for the development of a large field of view Particle Imaging Velocimetry (PIV) flow measurement technique supported by the Subsonic Rotary Wing (SRW) project under the NASA Fundamental Aeronautics program. These simulations provide a better understanding of the rotor and body wake flows and helped to define PIV measurement locations as well as requirements for validation of flow solver codes. The large field PIV system can measure the three-dimensional velocity flow field in a 0.914m by 1.83m plane. PIV measurements were performed upstream and downstream of the vertical tail section and are compared to simulation results. The simulations are also used to better understand the tunnel wall and body/rotor support effects by comparing simulations with and without tunnel floor/ceiling walls and supports. Comparisons are also made to the experimental force and moment data for the body and rotor.

  9. Skeletal muscle myosin heavy chain isoform content in relation to gonadal hormones and anabolic-catabolic balance in trained and untrained men.

    Science.gov (United States)

    Grandys, Marcin; Majerczak, Joanna; Karasinski, Janusz; Kulpa, Jan; Zoladz, Jerzy A

    2012-12-01

    Gonadal hormones and anabolic-catabolic hormone balance have potent influence on skeletal muscle tissue, but little is known about their action with regard to myosin heavy chain (MHC) transformation in humans. We investigated the relationship between skeletal muscle MHC isoform content in the vastus lateralis muscle and basal testosterone (T) concentration in 3 groups of subjects: endurance trained (E), sprint/strength trained (S), and untrained (U) young men. We have also determined basal sex hormone-binding globulin and cortisol (C) concentrations in untrained subjects to examine the relationship between MHC composition and the anabolic-catabolic hormone balance. Moreover, basal free testosterone (fT) and bioavailable testosterone (bio-T) concentrations were calculated for this subgroup. Despite significant differences in MHC isoform content (69.4 ± 2.39%, 61.4 ± 8.04%, and 37.5 ± 13.80% of MHC-2 for groups S, U, and E, respectively, Kruskal-Wallis: H = 18.58, p 0.5). We have also found that in the U group, type 2 MHC in the vastus lateralis muscle is positively correlated with basal fT:C ratio (r = 0.63, p = 0.01). It is concluded that the differences in the training history and training specificity can be distinguished with regard to the MHC composition but not with regard to the basal T concentration. Simultaneously, it has been shown that MHC isoform content in human vastus lateralis muscle may be related to basal anabolic-catabolic hormone balance, and this hypothesis needs further investigation.

  10. Extracellular matrix-dependent myosin dynamics during G1-S phase cell cycle progression in hepatocytes

    International Nuclear Information System (INIS)

    Bhadriraju, Kiran; Hansen, Linda K.

    2004-01-01

    Cell spreading and proliferation are tightly coupled in anchorage-dependent cells. While adhesion-dependent proliferation signals require an intact actin cytoskeleton, and some of these signals such as ERK activation have been characterized, the role of myosin in spreading and cell cycle progression under different extracellular matrix (ECM) conditions is not known. Studies presented here examine changes in myosin activity in freshly isolated hepatocytes under ECM conditions that promote either proliferation (high fibronectin density) or growth arrest (low fibronectin density). Three different measures were obtained and related to both spreading and cell cycle progression: myosin protein levels and association with cytoskeleton, myosin light chain phosphorylation, and its ATPase activity. During the first 48 h in culture, corresponding with transit through G1 phase, there was a six-fold increase in both myosin protein levels and myosin association with actin cytoskeleton. There was also a steady increase in myosin light chain phosphorylation and ATPase activity with spreading, which did not occur in non-spread, growth-arrested cells on low density of fibronectin. Myosin-inhibiting drugs blocked ERK activation, cyclin D1 expression, and S phase entry. Overexpression of the cell cycle protein cyclin D1 overcame both ECM-dependent and actomyosin-dependent inhibition of DNA synthesis, suggesting that cyclin D1 is a key event downstream of myosin-dependent cell cycle regulation

  11. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  12. Passive Repetitive Stretching for a Short Duration within a Week Increases Myogenic Regulatory Factors and Myosin Heavy Chain mRNA in Rats' Skeletal Muscles

    Directory of Open Access Journals (Sweden)

    Yurie Kamikawa

    2013-01-01

    Full Text Available Stretching is a stimulation of muscle growth. Stretching for hours or days has an effect on muscle hypertrophy. However, differences of continuous stretching and repetitive stretching to affect muscle growth are not well known. To clarify the difference of continuous and repetitive stretching within a short duration, we investigated the gene expression of muscle-related genes on stretched skeletal muscles. We used 8-week-old male Wistar rats ( for this study. Animals medial gastrocnemius muscle was stretched continuously or repetitively for 15 min daily and 4 times/week under anesthesia. After stretching, muscles were removed and total RNA was extracted. Then, reverse transcriptional quantitative real-time PCR was done to evaluate the mRNA expression of MyoD, myogenin, and embryonic myosin heavy chain (MyHC. Muscles, either stretched continuously or repetitively, increased mRNA expression of MyoD, myogenin, and embryonic MyHC more than unstretched muscles. Notably, repetitive stretching resulted in more substantial effects on embryonic MyHC gene expression than continuous stretching. In conclusion, passive stretching for a short duration within a week is effective in increasing myogenic factor expression, and repetitive stretching had more effects than continuous stretching for skeletal muscle on muscle growth. These findings are applicable in clinical muscle-strengthening therapy.

  13. A Novel Alpha Cardiac Actin (ACTC1 Mutation Mapping to a Domain in Close Contact with Myosin Heavy Chain Leads to a Variety of Congenital Heart Defects, Arrhythmia and Possibly Midline Defects.

    Directory of Open Access Journals (Sweden)

    Céline Augière

    Full Text Available A Lebanese Maronite family presented with 13 relatives affected by various congenital heart defects (mainly atrial septal defects, conduction tissue anomalies and midline defects. No mutations were found in GATA4 and NKX2-5.A set of 399 poly(AC markers was used to perform a linkage analysis which peaked at a 2.98 lod score on the long arm of chromosome 15. The haplotype analysis delineated a 7.7 meganucleotides genomic interval which included the alpha-cardiac actin gene (ACTC1 among 36 other protein coding genes. A heterozygous missense mutation was found (c.251T>C, p.(Met84Thr in the ACTC1 gene which changed a methionine residue conserved up to yeast. This mutation was absent from 1000 genomes and exome variant server database but segregated perfectly in this family with the affection status. This mutation and 2 other ACTC1 mutations (p.(Glu101Lys and p.(Met125Val which result also in congenital heart defects are located in a region in close apposition to a myosin heavy chain head region by contrast to 3 other alpha-cardiac actin mutations (p.(Ala297Ser,p.(Asp313His and p.(Arg314His which result in diverse cardiomyopathies and are located in a totally different interaction surface.Alpha-cardiac actin mutations lead to congenital heart defects, cardiomyopathies and eventually midline defects. The consequence of an ACTC1 mutation may in part be dependent on the interaction surface between actin and myosin.

  14. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    Science.gov (United States)

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), Pexercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (Pmotor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  15. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  16. The effects of space flight on the contractile apparatus of antigravity muscles: implications for aging and deconditioning

    Science.gov (United States)

    Baldwin, K. M.; Caiozzo, V. J.; Haddad, F.; Baker, M. J.; Herrick, R. E.

    1994-01-01

    Previous studies have shown that the unloading of skeletal muscle, as occurring during exposure to space flight, exerts a profound effect on both the mass (cross sectional area) of skeletal muscle fibers and the relative expression of protein isoforms comprising the contractile system. Available information suggests that slow (type I) fibers, comprising chiefly the antigravity muscles of experimental animals, in addition to atrophying, undergo alterations in the type of myosin heavy chain (MHC) expressed such that faster isoforms become concomitantly expressed in a sub-population of slow fibers when insufficient force-bearing activity is maintained on the muscle. Consequently, these transformations in both mass and myosin heavy chain phenotype could exert a significant impact on the functional properties of skeletal muscle as manifest in the strength, contractile speed, and endurance scope of the muscle. To further explore these issues, a study was performed in which young adult male rats were exposed to zero gravity for six days, following which, the antigravity soleus muscle was examined for a) contractile properties, determined in situ and b) isomyosin expression, as studied using biochemical, molecular biology, and histochemical/immunohistochemical techniques.

  17. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    International Nuclear Information System (INIS)

    Morioka, Kiyokazu; Matsuzaki, Toshiyuki; Takata, Kuniaki

    2006-01-01

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  18. PLASTICITY OF SKELETAL MUSCLE STUDIED BY STEREOLOGY

    Directory of Open Access Journals (Sweden)

    Ida Eržen

    2011-05-01

    Full Text Available The present contribution provides an overview of stereological methods applied in the skeletal muscle research at the Institute of Anatomy of the Medical Faculty in Ljubljana. Interested in skeletal muscle plasticity we studied three different topics: (i expression of myosin heavy chain isoforms in slow and fast muscles under experimental conditions, (ii frequency of satellite cells in young and old human and rat muscles and (iii capillary supply of rat fast and slow muscles. We analysed the expression of myosin heavy chain isoforms within slow rat soleus and fast extensor digitorum longus muscles after (i homotopic and heterotopic transplantation of both muscles, (ii low frequency electrical stimulation of the fast muscle and (iii transposition of the fast nerve to the slow muscle. The models applied were able to turn the fast muscle into a completely slow muscle, but not vice versa. One of the indicators for the regenerative potential of skeletal muscles is its satellite cell pool. The estimated parameters, number of satellite cells per unit fibre length, corrected to the reference sarcomere length (Nsc/Lfib and number of satellite cells per number of nuclei (myonuclei and satellite cell nuclei (Nsc/Nnucl indicated that the frequency of M-cadherin stained satellite cells declines in healthy old human and rat muscles compared to young muscles. To access differences in capillary densities among slow and fast muscles and slow and fast muscle fibres, we have introduced Slicer and Fakir methods, and tested them on predominantly slow and fast rat muscles. Discussing three different topics that require different approach, the present paper reflects the three decades of the development of stereological methods: 2D analysis by simple point counting in the 70's, the disector in the 80's and virtual spatial probes in the 90's. In all methods the interactive computer assisted approach was utilised.

  19. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes.

    Science.gov (United States)

    Dewerchin, Hannah L; Desmarets, Lowiese M; Noppe, Ytse; Nauwynck, Hans J

    2014-02-12

    Monocytes infected with feline infectious peritonitis virus, a coronavirus, express viral proteins in their plasma membranes. Upon binding of antibodies, these proteins are quickly internalised through a new clathrin- and caveolae-independent internalisation pathway. By doing so, the infected monocytes can escape antibody-dependent cell lysis. In the present study, we investigated which kinases and cytoskeletal proteins are of importance during internalisation and subsequent intracellular transport. The experiments showed that myosin light chain kinase (MLCK) and myosin 1 are crucial for the initiation of the internalisation. With co-localisation stainings, it was found that MLCK and myosin 1 co-localise with antigens even before internalisation started. Myosin 6 co-localised with the internalising complexes during passage through the cortical actin, were it might play a role in moving or disintegrating actin filaments, to overcome the actin barrier. One minute after internalisation started, vesicles had passed the cortical actin, co-localised with microtubules and association with myosin 6 was lost. The vesicles were further transported over the microtubules and accumulated at the microtubule organising centre after 10 to 30 min. Intracellular trafficking over microtubules was mediated by MLCK, myosin 1 and a small actin tail. Since inhibiting MLCK with ML-7 was so efficient in blocking the internalisation pathway, this target can be used for the development of a new treatment for FIPV.

  20. Myosin heavy chain composition in the vastus lateralis muscle in relation to oxygen uptake and heart rate during cycling in humans.

    Science.gov (United States)

    Majerczak, J; Nieckarz, Z; Karasinski, J; Zoladz, J A

    2014-04-01

    In this study we examined the relationship between fast myosin heavy chain (MyHC2) content in the vastus lateralis and the rate of oxygen uptake (VO2) and heart rate (HR) increase during an incremental exercise in 38, young, healthy men. Prior to the exercise test, muscle biopsies were taken in order to evaluate the MyHC composition. It was found that during cycling performed below the lactate threshold (LT), a positive relationship between MyHC2 and the intercept of the oxygen uptake and power output (VO2-PO) relationship existed (r=0.49, P=0.002), despite no correlation between MyHC2 and the slope value of the VO2-PO relationship (r= -0.18, P=0.29). During cycling performed above the LT, MyHC2 correlated positively with the magnitude of the nonlinearity in the VO2-PO relationship; i.e. with the accumulated VO2'excess' (r=0.44, P=0.006) and peak VO2'excess' (r=0.44, P=0.006), as well as with the slope of the HR-PO relationship (r=0.49, P=0.002). We have concluded that a greater MyHC2 content in the vastus lateralis is accompanied by a higher oxygen cost of cycling during exercise performed below the LT. This seems to be related to the higher energy cost of the non-cross-bridge activities in the muscles possessing a greater proportion of MyHC2 content. In the case of heavy-intensity exercise, a higher MyHC2 content in the vastus lateralis is accompanied by greater non-linearity in the VO2-PO relationship, as well as a steeper increase in HR in the function of an increase of PO. This relationship can be explained by greater disturbances in metabolic stability in type II muscle fibres during exercise, resulting in a decrease of muscle mechanical efficiency and greater increase of heart rate at a given power output. Therefore, MyHC composition has an impact on the oxygen cost of cycling both below and above the LT.

  1. Exploration of flexible phenylpropylurea scaffold as novel cardiac myosin activators for the treatment of systolic heart failure.

    Science.gov (United States)

    Manickam, Manoj; Jalani, Hitesh B; Pillaiyar, Thanigaimalai; Sharma, Niti; Boggu, Pulla Reddy; Venkateswararao, Eeda; Lee, You-Jung; Jeon, Eun-Seok; Jung, Sang-Hun

    2017-07-07

    A series of flexible urea derivatives have been synthesized and demonstrated as selective cardiac myosin ATPase activator. Among them 1-phenethyl-3-(3-phenylpropyl)urea (1, cardiac myosin ATPase activation at 10 μM = 51.1%; FS = 18.90; EF = 12.15) and 1-benzyl-3-(3-phenylpropyl)urea (9, cardiac myosin ATPase activation = 53.3%; FS = 30.04; EF = 18.27) showed significant activity in vitro and in vivo. The change of phenyl ring with tetrahydropyran-4-yl moiety viz., 1-(3-phenylpropyl)-3-((tetrahydro-2H-pyran-4-yl)methyl)urea (14, cardiac myosin ATPase activation = 81.4%; FS = 20.50; EF = 13.10), and morpholine moiety viz., 1-(2-morpholinoethyl)-3-(3-phenylpropyl)urea (21, cardiac myosin ATPase activation = 44.0%; FS = 24.79; EF = 15.65), proved to be efficient to activate the cardiac myosin. The potent compounds 1, 9, 14 and 21 were found to be selective for cardiac myosin over skeletal and smooth myosins. Thus, these urea derivatives are potent scaffold to develop as a newer cardiac myosin activator for the treatment of systolic heart failure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Dynamics of myosin II organization into contractile networks and fibers at the medial cell cortex

    Science.gov (United States)

    Nie, Wei

    The cellular morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked stress fibers along the contacting surface. The motor activity and mini-filament assembly of non-muscle myosin II is an important component of cell-level cytoskeletal remodeling during mechanosensing. To monitor the dynamics of non-muscle myosin II, we used confocal microscopy to image cultured HeLa cells that stably express myosin regulatory light chain tagged with GFP (MRLC-GFP). MRLC-GFP was monitored in time-lapse movies at steady state and during the response of cells to varying concentrations of blebbistatin (which disrupts actomyosin stress fibers). Using image correlation spectroscopy analysis, we quantified the kinetics of disassembly and reassembly of actomyosin networks and compared to studies by other groups. This analysis suggested the following processes: myosin minifilament assembly and disassembly; aligning and contraction; myosin filament stabilization upon increasing contractile tension. Numerical simulations that include those processes capture some of the main features observed in the experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. We discuss methods to monitor myosin reorganization using non-linear imaging methods.

  3. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Trinh, Huong H; Lamb, Graham D

    2006-07-01

    1. The twitch characteristics (fast-twitch or slow-twitch) of skeletal muscle fibres are determined not only by the contractile apparatus properties of the fibre, but also by the time-course of Ca2+ release and re-uptake by the sarcoplasmic reticulum (SR). The present study examined, in individual fibres from non-transforming muscle of the rat, whether particular SR properties are matched to the contractile apparatus properties of the fibre, in particular in the case of fibres with fast-twitch contractile apparatus located in a slow-twitch muscle, namely the soleus. 2. Force was recorded in single, mechanically skinned fibres from extensor digitorum longus (EDL), gastrocnemius, peroneus longus and soleus muscles. Using repeated cycles in which the SR was emptied of all releasable Ca2+ and then reloaded, it was possible to determine the relative amount of Ca2+ present in the SR endogenously, the maximum SR capacity and the rate of Ca2+ loading. The sensitivity of the contractile apparatus to Ca2+ and Sr2+ was used to classify the fibres as fast-twitch (FT), slow-twitch (ST) or mixed (fibres examined) and thereby identify the likely troponin C and myosin heavy chain types present. 3. There was no significant difference in SR properties between the groups of FT fibres obtained from the four different muscles, including soleus. Despite some overlap in the SR properties of individual fibres between the FT and ST groups, the properties of the FT fibres in all four muscles studied were significantly different from those of the ST and mixed fibres. 4. In general, in FT fibres the SR had a larger capacity and the endogenous Ca2+ content was a relatively lower percentage of maximum compared with ST fibres. Importantly, in terms of their SR properties, FT fibres from soleus muscle more closely resembled FT fibres from other muscles than they did ST fibres from soleus muscle.

  4. Excessive Myosin Activity in Mbs Mutants Causes Photoreceptor Movement Out of the Drosophila Eye Disc Epithelium

    OpenAIRE

    Lee, Arnold; Treisman, Jessica E.

    2004-01-01

    Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding the myosin binding subunit of this enzyme cause photoreceptors to drop out of the eye disc e...

  5. A new slow positron beam facility using a compact cyclotron

    International Nuclear Information System (INIS)

    Hirose, Masafumi

    1998-01-01

    In 1993, Sumitomo Heavy Industries became the first in the world to successfully produce a slow positron beam using a compact cyclotron. Slow positron beam production using an accelerator had mainly consisted of using an electron linear accelerator (LINAC). However, the newly developed system that uses a compact cyclotron enabled cost reduction, downsizing of equipment, production of a DC slow positron beam, a polarized slow positron beam, and other benefits. After that, a genuine slow positron beam facility was developed with the construction of compact cyclotron No.2, and beam production in the new facility has already been started. The features of this new slow positron beam facility are explained below. 1) It is the world's first compact slow positron beam facility using a compact cyclotron. 2) It is the only genuine slow positron beam facility in the world which incorporates the production and use of a slow positron beam in the design stage of the cyclotron. To use a slow positron beam for non-destructive detection of lattice defects in semiconductor material, it is necessary to convert the beam into ultra-short pulses of several hundreds of pico-seconds. Sumitomo Heavy Industries has devised a new short-pulsing method (i.e. an induction bunching method) that enables the conversion of a slow positron beam into short pulses with an optimum pulsing electric field change, and succeeded in converting a slow positron beam into short pulses using this method for the first time in the world. Non-destructive detection of lattice defects in semiconductor material using this equipment has already been started, and some information about the depth distribution, size, density, etc. of lattice defects has already been obtained. (J.P.N.)

  6. Semiclassical approach to trajectory effects on the anisotropy coefficient of L3-subshell X-rays induced by slow heavy particles collisions

    International Nuclear Information System (INIS)

    Montenegro, E.C.; Pinho, A.G. de

    1982-01-01

    The deflection and the retardation of a slow bare heavy particle by the repulsive Coulomb field of the target nucleus are known to modify the ionization cross sections of inner shells. It is shown how to calculate these effects in the magnetic substates of the 2p-subshell in the frame of the impact parameter picture. These corrections are essential to understand the energy dependence of the anisotropy coefficient of X-ray emitted in transitions filling an L 3 -subshell vacancy produced by massive particle bombardment. (Author) [pt

  7. Myosin light chain kinase regulates synaptic plasticity and fear learning in the lateral amygdala.

    Science.gov (United States)

    Lamprecht, R; Margulies, D S; Farb, C R; Hou, M; Johnson, L R; LeDoux, J E

    2006-01-01

    Learning and memory depend on signaling molecules that affect synaptic efficacy. The cytoskeleton has been implicated in regulating synaptic transmission but its role in learning and memory is poorly understood. Fear learning depends on plasticity in the lateral nucleus of the amygdala. We therefore examined whether the cytoskeletal-regulatory protein, myosin light chain kinase, might contribute to fear learning in the rat lateral amygdala. Microinjection of ML-7, a specific inhibitor of myosin light chain kinase, into the lateral nucleus of the amygdala before fear conditioning, but not immediately afterward, enhanced both short-term memory and long-term memory, suggesting that myosin light chain kinase is involved specifically in memory acquisition rather than in posttraining consolidation of memory. Myosin light chain kinase inhibitor had no effect on memory retrieval. Furthermore, ML-7 had no effect on behavior when the training stimuli were presented in a non-associative manner. Anatomical studies showed that myosin light chain kinase is present in cells throughout lateral nucleus of the amygdala and is localized to dendritic shafts and spines that are postsynaptic to the projections from the auditory thalamus to lateral nucleus of the amygdala, a pathway specifically implicated in fear learning. Inhibition of myosin light chain kinase enhanced long-term potentiation, a physiological model of learning, in the auditory thalamic pathway to the lateral nucleus of the amygdala. When ML-7 was applied without associative tetanic stimulation it had no effect on synaptic responses in lateral nucleus of the amygdala. Thus, myosin light chain kinase activity in lateral nucleus of the amygdala appears to normally suppress synaptic plasticity in the circuits underlying fear learning, suggesting that myosin light chain kinase may help prevent the acquisition of irrelevant fears. Impairment of this mechanism could contribute to pathological fear learning.

  8. Calcium and cargoes as regulators of myosin 5a activity

    International Nuclear Information System (INIS)

    Sellers, James R.; Thirumurugan, Kavitha; Sakamoto, Takeshi; Hammer, John A.; Knight, Peter J.

    2008-01-01

    Myosin 5a is a two-headed actin-dependent motor that transports various cargoes in cells. Its enzymology and mechanochemistry have been extensively studied in vitro. It is a processive motor that takes multiple 36 nm steps on actin. The enzymatic activity of myosin 5 is regulated by an intramolecular folding mechanism whereby its lever arms fold back against the coiled-coil tail such that the motor domains directly bind the globular tail domains. We show that the structure seen in individual folded molecules is consistent with electron density map of two-dimensional crystals of the molecule. In this compact state, the actin-activated MgATPase activity of the molecule is markedly inhibited and the molecule cannot move processively on surface bound actin filaments. The actin-activated MgATPase activity of myosin 5a is activated by increasing the calcium concentration or by binding of a cargo-receptor molecule, melanophilin, in vitro. However, calcium binding to the calmodulin light chains results in dissociation of some of the calmodulin which disrupts the ability of myosin 5a to move on actin filaments in vitro. Thus we propose that the physiologically relevant activation pathway in vivo involves binding of cargo-receptor proteins

  9. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro.

    Science.gov (United States)

    Kim, Kyoungtae; Keller, Thomas C S

    2002-01-07

    Smooth muscle cells use an actin-myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

  10. Interaction of Myosin Phosphatase Target Subunit (MYPT1) with Myosin Phosphatase-RhoA Interacting Protein (MRIP): A Role of Glutamic Acids in the Interaction.

    Science.gov (United States)

    Lee, Eunhee; Stafford, Walter F

    2015-01-01

    Scaffold proteins bind to and functionally link protein members of signaling pathways. Interaction of the scaffold proteins, myosin phosphatase target subunit (MYPT1) and myosin phosphatase-RhoA interacting protein (MRIP), causes co-localization of myosin phosphatase and RhoA to actomyosin. To examine biophysical properties of interaction of MYPT1 with MRIP, we employed analytical ultracentrifugation and surface plasmon resonance. In regard to MRIP, its residues 724-837 are sufficient for the MYPT1/MRIP interaction. Moreover, MRIP binds to MYPT1 as either a monomer or a dimer. With respect to MYPT1, its leucine repeat region, LR (residues 991-1030) is sufficient to account for the MYPT1/MRIP interaction. Furthermore, point mutations that replace glutamic acids 998-1000 within LR reduced the binding affinity toward MRIP. This suggests that the glutamic acids of MYPT1 play an important role in the interaction.

  11. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats (the 3rd report)

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Wang, Xiao Dong; Nagaoka, Shunji; Nojima, Kumie

    2005-01-01

    The effects of acute exposure of heavy ion on the properties of spinal motoneurons and their innervating muscle fibers were investigated. A 15, 20, 40, 50, or 70 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in 8-week-old male rats. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of spinal motoneurons innervating the soleus and plantaris muscles were analyzed by a computer-assisted image processing system. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no differences in the number of spinal motoneurons innervating the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in spinal motoneurons of the heavy-ion-exposed rats at the dose levels of 40, 50, and 70 Gy. There were no differences in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. It is concluded that more than 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there are no influences on the properties of muscle fibers which they innervate. (author)

  12. Myosin-Powered Membrane Compartment Drives Cytoplasmic Streaming, Cell Expansion and Plant Development.

    Science.gov (United States)

    Peremyslov, Valera V; Cole, Rex A; Fowler, John E; Dolja, Valerian V

    2015-01-01

    Using genetic approaches, particle image velocimetry and an inert tracer of cytoplasmic streaming, we have made a mechanistic connection between the motor proteins (myosins XI), cargo transported by these motors (distinct endomembrane compartment defined by membrane-anchored MyoB receptors) and the process of cytoplasmic streaming in plant cells. It is shown that the MyoB compartment in Nicotiana benthamiana is highly dynamic moving with the mean velocity of ~3 μm/sec. In contrast, Golgi, mitochondria, peroxisomes, carrier vesicles and a cytosol flow tracer share distinct velocity profile with mean velocities of 0.6-1.5 μm/sec. Dominant negative inhibition of the myosins XI or MyoB receptors using overexpression of the N. benthamiana myosin cargo-binding domain or MyoB myosin-binding domain, respectively, resulted in velocity reduction for not only the MyoB compartment, but also each of the tested organelles, vesicles and cytoplasmic streaming. Furthermore, the extents of this reduction were similar for each of these compartments suggesting that MyoB compartment plays primary role in cytosol dynamics. Using gene knockout analysis in Arabidopsis thaliana, it is demonstrated that inactivation of MyoB1-4 results in reduced velocity of mitochondria implying slower cytoplasmic streaming. It is also shown that myosins XI and MyoB receptors genetically interact to contribute to cell expansion, plant growth, morphogenesis and proper onset of flowering. These results support a model according to which myosin-dependent, MyoB receptor-mediated transport of a specialized membrane compartment that is conserved in all land plants drives cytoplasmic streaming that carries organelles and vesicles and facilitates cell growth and plant development.

  13. Electron Microscopic Recording of the Power and Recovery Strokes of Individual Myosin Heads Coupled with ATP Hydrolysis: Facts and Implications

    Directory of Open Access Journals (Sweden)

    Haruo Sugi

    2018-05-01

    Full Text Available The most straightforward way to get information on the performance of individual myosin heads producing muscle contraction may be to record their movement, coupled with ATP hydrolysis, electron-microscopically using the gas environmental chamber (EC. The EC enables us to visualize and record ATP-induced myosin head movement in hydrated skeletal muscle myosin filaments. When actin filaments are absent, myosin heads fluctuate around a definite neutral position, so that their time-averaged mean position remains unchanged. On application of ATP, myosin heads are found to move away from, but not towards, the bare region, indicating that myosin heads perform a recovery stroke (average amplitude, 6 nm. After exhaustion of ATP, myosin heads return to their neutral position. In the actin–myosin filament mixture, myosin heads form rigor actin myosin linkages, and on application of ATP, they perform a power stroke by stretching adjacent elastic structures because of a limited amount of applied ATP ≤ 10 µM. The average amplitude of the power stroke is 3.3 nm and 2.5 nm at the distal and the proximal regions of the myosin head catalytic domain (CAD, respectively. The power stroke amplitude increases appreciably at low ionic strength, which is known to enhance Ca2+-activated force in muscle. In both the power and recovery strokes, myosin heads return to their neutral position after exhaustion of ATP.

  14. [Myosin B ATPase activity of the intestinal smooth muscle in intestinal obstruction].

    Science.gov (United States)

    Takamatsu, H

    1983-06-01

    Intestinal smooth myosin B was prepared from muscle layers around the lesion in dogs with experimental colonic stenosis and in patients with congenital intestinal obstruction. Mg2+-ATPase activity of the myosin B was compared between the proximal dilated segment and distal segment to obstruction. Experimental colonic stenosis: In early period after surgery, proximal colons showed higher activity of myosin B ATPase than distal colons, decreasing to less than distal colon as time passed. Congenital intestinal obstruction: In three cases, whose atresia might have occurred at earlier period of gestation, proximal bowels showed less activity of myosin B ATPase than distal bowels. However, in two cases, whose atresia might have occurred at later period of gestation, and two cases with intestinal stenosis, proximal bowels indicated higher activity of myosin B ATPase than distal bowels. These data suggested that the contractibility of the proximal intestine was depending on the duration of obstruction, and it was depressed in the former patients and was accelerated in the latter patients. These results suggested that the extensive resection of dilated proximal bowel in the congenital atresia is not always necessary to obtain good postoperative intestinal dynamics at the operation of the atresial lesions which may be induced at later period of gestation. They also suggested that surgery for intestinal obstruction should be performed before the depression of intestinal contractibility to get good bowel function.

  15. Differential muscular myosin heavy chain expression of the pectoral and pelvic girdles during early growth in the king penguin (Aptenodytes patagonicus) chick.

    Science.gov (United States)

    Erbrech, Aude; Robin, Jean-Patrice; Guérin, Nathalie; Groscolas, René; Gilbert, Caroline; Martrette, Jean-Marc

    2011-06-01

    Continuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when energy is limited. To address this trade-off we investigated muscle maturation in both the pectoral and pelvic girdles of king penguin chicks. This species has an exceptionally long rearing period (1 year), which is prolonged when parental food provisioning is drastically reduced during the sub-Antarctic winter. Approximately 1 month post hatching, chicks acquire a functional pedestrian locomotion, which uses pelvic muscles, whereas swimming, which uses the pectoral muscles, only occurs 1 year later. We therefore tested the hypothesis that the MyHC content of the leg muscles reaches a mature state before those of the pectoral muscles. We found that leg muscle MyHC composition changed with the progressive acquisition of pedestrian locomotion, whereas pectoral muscle fibres reached their mature MyHC profile as early as hatching. Contrary to our predictions, the acquisition of the adult profile in pectoral muscles could be related to an early maturation of the contractile muscular proteins, presumably associated with early thermoregulatory capacities of chicks, necessary for survival in their cold environment. This differential maturation appears to reconcile both the locomotor and environmental constraints of king penguin chicks during growth.

  16. Preparation and Characterization of Myosin Proteins.

    Science.gov (United States)

    Caldwell, Elizabeth; Eftink, Maurice R.

    1985-01-01

    Students complete five experimental projects at the end of a senior-level biochemistry course which involves the isolation and characterization of myosin and its water-soluble subfragments. Procedures used and results obtained are provided for such projects as viscosity and ATPase measurements and gel electrophoresis experiments. (JN)

  17. The Role of a Novel Myosin Isoform in Prostate Cancer Metastasis

    Science.gov (United States)

    2013-10-01

    2013 Accepted 14 February 2013 Available online 21 February 2013 Keywords: Myosin IC Isoforms Nucleolar localization signal Nucleolus Nucleus RNA...polymerase I Fibrillarinnt matter & 2013 Elsevier 1016/j.yexcr.2013.02.008 S, nucleolar localization ; No, nucleolus ; N, nucle bovine serum albumin; S...the nucleus, and the nucleolus . In the cytoplasm, myosin IC associ- ates with membranes and is involved in vesicle transport of membrane proteins [2

  18. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.

    Directory of Open Access Journals (Sweden)

    Thomas P Burghardt

    Full Text Available Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N

  19. Preparation of monoclonal antibodies against cardiac myosin and some radiolabelling studies

    International Nuclear Information System (INIS)

    Bapat, K.; Venkatesh, M.; Pillai, M.R.A.; Sarma, H.D.; Sainis, K.B.

    1998-01-01

    Monoclonal antibodies were raised against myosin, a specific indicator of myocardial infarction and labelled with 125 I and 99m Tc. Human cardiac myosin was isolated from normal human heart and was used for raising the monoclonal antibodies by the hybridoma technique. Antibody producing clones were identified by ELISA and cloning was done by the limiting dilution technique. Of the 13 clones obtained, 4 were deemed suitable for further studies. The antibodies were grown in ascites, purified, isotyped and their cross reactions with other forms of myosin were estimated. All the clones showed negligible cross reaction with rabbit myosin, but reacted to different extents with bovine skeletal myosin. The most avid antibody Mab-4G4 was chosen for further labelling studies. Mab-4G4 was labelled with 125 I using different oxidising agents such as iodogen, chloramine-T and lactoperoxidase. Purified radioiodinated antibody with radiochemical purity >95% could be obtained by gel filtration. Immunoreactivity was retained as tested by binding to myosin immobilised on a solid support. Mab-4G4 was also labelled with 99m Tc using stannous tartrate as the reducing agent. Radiolabelling yield was ∼60%, the purity was >95% and the immunoreactivity was retained. Both the labelled preparations were tested for bio-distribution in normal and infarcted rats. The activity accumulation in the infarcted region was ∼ 1.5 and 3.5 times as that in normal heart muscle for 125 I and 99m Tc labelled Mab-4G4 respectively. The major problem with the iodinated antibody was the in vivo deiodination resulting in very high percentage of activity in the thyroid. Although the fraction of the total activity associated with the infarcted heart is not very impressive, the fact that the activities with the infarcted and normal hearths are significantly different is heartening. With further optimisation of labelling and use of F(ab)'2 fragments, better delineation of the infarct sites is aspired. (author)

  20. K-252a, a novel microbial product, inhibits smooth muscle myosin light chain kinase

    International Nuclear Information System (INIS)

    Nakanishi, S.; Yamada, K.; Kase, H.; Nakamura, S.; Nonomura, Y.

    1988-01-01

    Effects of K-252a, purified from the culture broth of Nocardiopsis sp., on the activity of myosin (light chain kinase were investigated. 1) K-252a affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca 2+ -dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca 2+ -independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10 -6 M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10 -4 M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lowere in the presence of 100 μM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [γ- 32 P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP. These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase

  1. The Effects of Hsp90α1 Mutations on Myosin Thick Filament Organization.

    Science.gov (United States)

    He, Qiuxia; Liu, Kechun; Tian, Zhenjun; Du, Shao Jun

    2015-01-01

    Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.

  2. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  3. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction.

    Directory of Open Access Journals (Sweden)

    Kanji Oshima

    Full Text Available The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation

  4. Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Fulcher, F. Kent; Smith, Bethany T.; Russ, Misty; Patel, Yashomati M.

    2008-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity

  5. Myosin X is recruited to nascent focal adhesions at the leading edge and induces multi-cycle filopodial elongation.

    Science.gov (United States)

    He, Kangmin; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Watanabe, Tomonobu M; Ikebe, Mitsuo

    2017-10-20

    Filopodia protrude from the leading edge of cells and play important roles in cell motility. Here we report the mechanism of myosin X (encoded by Myo10)-induced multi-cycle filopodia extension. We found that actin, Arp2/3, vinculin and integrin-β first accumulated at the cell's leading edge. Myosin X was then gathered at these sites, gradually clustered by lateral movement, and subsequently initiated filopodia formation. During filopodia extension, we found the translocation of Arp2/3 and integrin-β along filopodia. Arp2/3 and integrin-β then became localized at the tip of filopodia, from where myosin X initiated the second extension of filopodia with a change in extension direction, thus producing long filopodia. Elimination of integrin-β, Arp2/3 and vinculin by siRNA significantly attenuated the myosin-X-induced long filopodia formation. We propose the following mechanism. Myosin X accumulates at nascent focal adhesions at the cell's leading edge, where myosin X promotes actin convergence to create the base of filopodia. Then myosin X moves to the filopodia tip and attracts integrin-β and Arp2/3 for further actin nucleation. The tip-located myosin X then initiates the second cycle of filopodia elongation to produce the long filopodia.

  6. Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain.

    Science.gov (United States)

    Calábria, Luciana Karen; Peixoto, Pablo Marco Veras; Passos Lima, Andreia Barcelos; Peixoto, Leonardo Gomes; de Moraes, Viviane Rodrigues Alves; Teixeira, Renata Roland; Dos Santos, Claudia Tavares; E Silva, Letícia Oliveira; da Silva, Maria de Fátima Rodrigues; dos Santos, Ana Alice Diniz; Garcia-Cairasco, Norberto; Martins, Antônio Roberto; Espreafico, Enilza Maria; Espindola, Foued Salmen

    2011-09-01

    Honey bees have brain structures with specialized and developed systems of communication that account for memory, learning capacity and behavioral organization with a set of genes homologous to vertebrate genes. Many microtubule- and actin-based molecular motors are involved in axonal/dendritic transport. Myosin-Va is present in the honey bee Apis mellifera nervous system of the larvae and adult castes and subcastes. DYNLL1/LC8 and myosin-IIb, -VI and -IXb have also been detected in the adult brain. SNARE proteins, such as CaMKII, clathrin, syntaxin, SNAP25, munc18, synaptophysin and synaptotagmin, are also expressed in the honey bee brain. Honey bee myosin-Va displayed ATP-dependent solubility and was associated with DYNLL1/LC8 and SNARE proteins in the membrane vesicle-enriched fraction. Myosin-Va expression was also decreased after the intracerebral injection of melittin and NMDA. The immunolocalization of myosin-Va and -IV, DYNLL1/LC8, and synaptophysin in mushroom bodies, and optical and antennal lobes was compared with the brain morphology based on Neo-Timm histochemistry and revealed a distinct and punctate distribution. This result suggested that the pattern of localization is associated with neuron function. Therefore, our data indicated that the roles of myosins, DYNLL1/LC8, and SNARE proteins in the nervous and visual systems of honey bees should be further studied under different developmental, caste and behavioral conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Molecular cloning and complete nucleotide sequence of a human ventricular myosin light chain 1

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E; Shi, Q W; Floroff, M; Mickle, D A.G.; Wu, T W; Olley, P M; Jackowski, G

    1988-03-25

    Human ventricular plasmid library was constructed. The library was screened with the oligonucleotide probe (17-mer) corresponding to a conserve region of myosin light chain 1 near the carboxy terminal. Full length cDNA recombinant plasmid containing 1100 bp insert was isolated. RNA blot hybridization with this insert detected a message of approximately 1500 bp corresponding to the size of VLCl and mRNA. Complete nucleotide sequence of the coding region was determined in M13 subclones using dideoxy chain termination method. With the isolation of this clone (pCD HLVCl), the publication of the complete nucleotide sequence of HVLCl and the predicted secondary structure of this protein will aid in understanding of the biochemistry of myosin and its function in contraction, the evolution of myosin light genes and the genetic, developmental and physiological regulation of myosin genes.

  8. The fungal myosin I is essential for Fusarium toxisome formation.

    Directory of Open Access Journals (Sweden)

    Guangfei Tang

    2018-01-01

    Full Text Available Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1, the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  9. The fungal myosin I is essential for Fusarium toxisome formation.

    Science.gov (United States)

    Tang, Guangfei; Chen, Yun; Xu, Jin-Rong; Kistler, H Corby; Ma, Zhonghua

    2018-01-01

    Myosin-I molecular motors are proposed to function as linkers between membranes and the actin cytoskeleton in several cellular processes, but their role in the biosynthesis of fungal secondary metabolites remain elusive. Here, we found that the myosin I of Fusarium graminearum (FgMyo1), the causal agent of Fusarium head blight, plays critical roles in mycotoxin biosynthesis. Inhibition of myosin I by the small molecule phenamacril leads to marked reduction in deoxynivalenol (DON) biosynthesis. FgMyo1 also governs translation of the DON biosynthetic enzyme Tri1 by interacting with the ribosome-associated protein FgAsc1. Disruption of the ATPase activity of FgMyo1 either by the mutation E420K, down-regulation of FgMyo1 expression or deletion of FgAsc1 results in reduced Tri1 translation. The DON biosynthetic enzymes Tri1 and Tri4 are mainly localized to subcellular structures known as toxisomes in response to mycotoxin induction and the FgMyo1-interacting protein, actin, participates in toxisome formation. The actin polymerization disruptor latrunculin A inhibits toxisome assembly. Consistent with this observation, deletion of the actin-associated proteins FgPrk1 and FgEnd3 also results in reduced toxisome formation. Unexpectedly, the FgMyo1-actin cytoskeleton is not involved in biosynthesis of another secondary metabolite tested. Taken together, this study uncovers a novel function of myosin I in regulating mycotoxin biosynthesis in filamentous fungi.

  10. Supplementation with 0.1% and 2% vitamin e in diabetic rats: analysis of myenteric neurons immunostained for myosin-V and nNOS in the jejunum

    Directory of Open Access Journals (Sweden)

    Eleandro Aparecido Tronchini

    2012-12-01

    Full Text Available CONTEXT: Diabetes mellitus is a disease characterized by hyperglycemia that, when allowed to progress long-term untreated, develops vascular and neurological complications, which are responsible for the development of alterations in the enteric nervous system in diabetic patients. In the gastrointestinal tract, diabetes mellitus promotes motor and sensory changes, and in the reflex function of this system, causing gastroparesis, diarrhea, constipation, megacolon, slow gastrointestinal transit, gastric stasis and dilation with decreased or increased peristaltic contractions. Several studies have shown that oxidative stress is the main responsible for the vascular and neurological complications affecting the enteric nervous system of diabetics. OBJECTIVE: The effects of 0.1% and 2% vitamin E on myosin-V- and nNOS-immunoreactive neurons in the jejunum of diabetic rats were investigated. METHODS: Thirty rats were divided into the groups: normoglycemic, normoglycemic treated with 0.1% vitamin E, normoglycemic treated with 2% vitamin E, diabetic, diabetic treated with 0.1% vitamin E, and diabetic treated with 2% vitamin E. The neuronal density and areas of neuron cell bodies were determined. RESULTS: Diabetes (diabetic group significantly reduced the number of myosin-V-immunoreactive neurons compared with the normoglycemic group. The diabetic treated with 0.1% vitamin E and diabetic treated with 2% vitamin E groups did not exhibit a greater density than the D group (P>0.05. Nitrergic density did not change with diabetes (P>0.05. The areas of myosin-V- and nNOS-immunoreactive neurons significantly increased in the normoglycemic treated with 2% vitamin E and diabetic groups compared with the normoglycemic group. CONCLUSION: Supplementation with 2% vitamin E had a neurotrophic effect only in the area of myosin-V-immunoreactive neurons compared with the diabetic group.

  11. The Ku Protein Complex Interacts with YY1, Is Up-Regulated in Human Heart Failure, and Represses α Myosin Heavy-Chain Gene Expression

    Science.gov (United States)

    Sucharov, Carmen C.; Helmke, Steve M.; Langer, Stephen J.; Perryman, M. Benjamin; Bristow, Michael; Leinwand, Leslie

    2004-01-01

    Human heart failure is accompanied by repression of genes such as α myosin heavy chain (αMyHC) and SERCA2A and the induction of fetal genes such as βMyHC and atrial natriuretic factor. It seems likely that changes in MyHC isoforms contribute to the poor contractility seen in heart failure, because small changes in isoform composition can have a major effect on the contractility of cardiac myocytes and the heart. Our laboratory has recently shown that YY1 protein levels are increased in human heart failure and that YY1 represses the activity of the human αMyHC promoter. We have now identified a region of the αMyHC promoter that binds a factor whose expression is increased sixfold in failing human hearts. Through peptide mass spectrometry, we identified this binding activity to be a heterodimer of Ku70 and Ku80. Expression of Ku represses the human αMyHC promoter in neonatal rat ventricular myocytes. Moreover, overexpression of Ku70/80 decreases αMyHC mRNA expression and increases skeletal α-actin. Interestingly, YY1 interacts with Ku70 and Ku80 in HeLa cells. Together, YY1, Ku70, and Ku80 repress the αMyHC promoter to an extent that is greater than that with YY1 or Ku70/80 alone. Our results suggest that Ku is an important factor in the repression of the human αMyHC promoter during heart failure. PMID:15367688

  12. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus.

    Science.gov (United States)

    Sun, Yinyan; Qi, Yonghe; Liu, Chenxuan; Gao, Wenqing; Chen, Pan; Fu, Liran; Peng, Bo; Wang, Haimin; Jing, Zhiyi; Zhong, Guocai; Li, Wenhui

    2014-01-01

    Severe fever with thrombocytopenia syndrome virus (SFTSV) is a novel phlebovirus in the Bunyaviridae family. Most patients infected by SFTSV present with fever and thrombocytopenia, and up to 30% die due to multiple-organ dysfunction. The mechanisms by which SFTSV enters multiple cell types are unknown. SFTSV contains two species of envelope glycoproteins, Gn (44.2 kDa) and Gc (56 kDa), both of which are encoded by the M segment and are cleaved from a precursor polypeptide (about 116 kDa) in the endoplasmic reticulum (ER). Gn fused with an immunoglobulin Fc tag at its C terminus (Gn-Fc) bound to multiple cells susceptible to the infection of SFTSV and blocked viral infection of human umbilical vein endothelial cells (HUVECs). Immunoprecipitation assays following mass spectrometry analysis showed that Gn binds to nonmuscle myosin heavy chain IIA (NMMHC-IIA), a cellular protein with surface expression in multiple cell types. Small interfering RNA (siRNA) knockdown of NMMHC-IIA, but not the closely related NMMHC-IIB or NMMHC-IIC, reduced SFTSV infection, and NMMHC-IIA specific antibody blocked infection by SFTSV but not other control viruses. Overexpression of NMMHC-IIA in HeLa cells, which show limited susceptivity to SFTSV, markedly enhanced SFTSV infection of the cells. These results show that NMMHC-IIA is critical for the cellular entry of SFTSV. As NMMHC-IIA is essential for the normal functions of platelets and human vascular endothelial cells, it is conceivable that NMMHC-IIA directly contributes to the pathogenesis of SFTSV and may be a useful target for antiviral interventions against the viral infection.

  13. Myosin-1A Targets to Microvilli Using Multiple Membrane Binding Motifs in the Tail Homology 1 (TH1) Domain*

    Science.gov (United States)

    Mazerik, Jessica N.; Tyska, Matthew J.

    2012-01-01

    One of the most abundant components of the enterocyte brush border is the actin-based monomeric motor, myosin-1a (Myo1a). Within brush border microvilli, Myo1a carries out a number of critical functions at the interface between membrane and actin cytoskeleton. Proper physiological function of Myo1a depends on its ability to bind to microvillar membrane, an interaction mediated by a C-terminal tail homology 1 (TH1) domain. However, little is known about the mechanistic details of the Myo1a-TH1/membrane interaction. Structure-function analysis of Myo1a-TH1 targeting in epithelial cells revealed that an N-terminal motif conserved among class I myosins and a C-terminal motif unique to Myo1a-TH1 are both required for steady state microvillar enrichment. Purified Myo1a bound to liposomes composed of phosphatidylserine and phosphoinositol 4,5-bisphosphate, with moderate affinity in a charge-dependent manner. Additionally, peptides of the N- and C-terminal regions required for targeting were able to compete with Myo1a for binding to highly charged liposomes in vitro. Single molecule total internal reflection fluorescence microscopy showed that these motifs are also necessary for slowing the membrane detachment rate in cells. Finally, Myo1a-TH1 co-localized with both lactadherin-C2 (a phosphatidylserine-binding protein) and PLCδ1-PH (a phosphoinositol 4,5-bisphosphate-binding protein) in microvilli, but only lactaderin-C2 expression reduced brush border targeting of Myo1a-TH1. Together, our results suggest that Myo1a targeting to microvilli is driven by membrane binding potential that is distributed throughout TH1 rather than localized to a single motif. These data highlight the diversity of mechanisms that enable different class I myosins to target membranes in distinct biological contexts. PMID:22367206

  14. Nuclear lifetimes and the slowing down of heavy ions in solids

    International Nuclear Information System (INIS)

    Scherpenzeel, D.E.C.

    1981-01-01

    Nuclear lifetime measurements by means of the Doppler Shift Attenuation (DSA) method at low recoil velocities (β approximately less than 0.01) are notoriously difficult due to the observed strong dependence of the extracted lifetimes on the slowing-down material at low initial velocities. This is mainly caused by the lack of reliable stopping power data for these velocities and the absence of an adequate theory to compensate for that. This problem of the determination of the correct mean life for the lowest Jsup(π) = 4 + state of 22 Ne is solved by measurements with the coincident high-velocity DSA method. Excited nuclei of high initial velocity [β(0) approximately 0.05] are generated by the bombardment of light targets, such as 1 H, 2 H, 3 H and 4 He, with beams of heavy ions. The combination of high initial velocity and coincidence restriction offers many advantages over the conventional techniques. The coincident high-velocity DSA method is also used to determine mean lives of low-lying excited states of the silicon isotopes 28 29 30 Si. The observed Doppler patterns are analyzed with experimental stopping powers and the resulting mean lives range from about 25 fs to 4 ps. The mean lives of the first excited state of 18 O and some low-lying levels of 35 S are determined from Doppler patterns analyzed with experimental stopping powers. The present stopping results for O, Si and S ions in Mg are also analyzed in terms of the effective charge concept. It is concluded that at the present level of accuracy of about 5 % the obtained results are consistent with this concept. (Auth.)

  15. Influence of injection of Chinese botulinum toxin type A on the histomorphology and myosin heavy chain composition of rat gastrocnemius muscles.

    Science.gov (United States)

    Hong, Bin; Chen, Min; Hu, Xing-yue

    2013-11-01

    Botulinum toxin type A (BoNT/A) is a metalloprotease that blocks synaptic transmission via the cleavage of a synaptosomal-associated protein of 25 kDa (SNAP-25). It has gained widespread use as a treatment for cerebral palsy and skeletal muscle hypertrophy. In China, Chinese botulinum toxin type A (CBTX-A), a type of BoNT/A, is in widespread clinical use. However, the changes in the morphological and biochemical properties of treated muscles and in remote muscles from the CBTX-A injection site are relatively unknown. Therefore, we investigated the changes in histomorphology and myosin heavy chain (MyHC) isoform composition and distribution in rat gastrocnemius muscles after intramuscular injection of CBTX-A. The weakness of the injected muscles was assessed periodically to identify their functional deficiency. Muscle slices were stained with hematoxylin-eosin (HE) and adenosine triphosphatase (ATPase). MyHC isoform composition was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to uncover changes in morphological and biochemical properties. Our findings demonstrate that following injection of CBTX-A 5 U into rat gastrocnemius muscles, shifts in MyHC isoform composition emerged on the third day after injection and peaked in the fourth week. The composition remained distinctly different from that of the control group after the twelfth week. More specifically, there was a decrease in the proportion of the type IIb isoform and an increase in the proportions of type IIx, type IIa, and type I isoforms. Data revealed that CBTX-A led to a shift in MyHC composition towards slower isoforms and that the MyHC composition remained far from normal six months after a single injection. However, no noticeable remote muscle weakness was induced.

  16. Myosin isoform determines the conformational dynamics and cooperativity of actin filaments in the strongly bound actomyosin complex

    Science.gov (United States)

    Prochniewicz, Ewa; Chin, Harvey F.; Henn, Arnon; Hannemann, Diane E.; Olivares, Adrian O.; Thomas, David D.; De La Cruz, Enrique M.

    2010-01-01

    SUMMARY We have used transient phosphorescence anisotropy (TPA) to detect the microsecond rotational dynamics of erythrosin iodoacetamide (ErIA)-labeled actin strongly bound to single-headed fragments of muscle myosin (muscle S1) and non-muscle myosin V (MV). The conformational dynamics of actin filaments in solution are markedly influenced by the isoform of bound myosin. Both myosins increase the final anisotropy of actin at sub-stoichiometric binding densities, indicating long-range, non-nearest neighbor cooperative restriction of filament rotational dynamics amplitude, but the cooperative unit is larger with MV than muscle S1. Both myosin isoforms also cooperatively affect the actin filament rotational correlation time, but with opposite effects; muscle S1 decreases rates of intrafilament torsional motion, while binding of MV increases the rates of motion. The cooperative effects on the rates of intrafilament motions correlate with the kinetics of myosin binding to actin filaments such that MV binds more rapidly, and muscle myosin more slowly, to partially decorated filaments than to bare filaments. The two isoforms also differ in their effects on the phosphorescence lifetime of the actin-bound ErIA; while muscle S1 increases the lifetime, suggesting decreased aqueous exposure of the probe, MV does not induce a significant change. We conclude that the dynamics and structure of actin in the strongly bound actomyosin complex is determined by the isoform of the bound myosin, in a manner likely to accommodate the diverse functional roles of actomyosin in muscle and non-muscle cells. PMID:19962990

  17. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Science.gov (United States)

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  18. Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells.

    Directory of Open Access Journals (Sweden)

    Bridget Hindman

    Full Text Available The role of a stiffening extra-cellular matrix (ECM in cancer progression is documented but poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While there are several methods available to measure changes in the biophysical characteristics of the ECM, we wanted to use a method which allows for the measurement of global stiffness changes as well as a dynamic response from the sample over time. The conditioning protocol used allows the direct measurement of ECM stiffness. Using various treatments, it is possible to determine the contribution of various construct and cellular components to the overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of either isoform changes the stiffness of the collagen constructs as measured using our conditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pascals (Pa, parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-altered collagen matrices. While the total construct modulus for the IIB KD cells was lower than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa. These results indicate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix remodeling.

  19. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Steimle, Paul A.; Kent Fulcher, F.; Patel, Yashomati M.

    2005-01-01

    Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis

  20. Myosin-II sets the optimal response time scale of chemotactic amoeba

    Science.gov (United States)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Bodenschatz, Eberhard; Beta, Carsten

    2014-03-01

    The response dynamics of the actin cytoskeleton to external chemical stimuli plays a fundamental role in numerous cellular functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin-II. Here we investigate the role of myosin-II in the response of the actin system to external stimuli. We used a microfluidic device in combination with a photoactivatable chemoattractant to apply stimuli to individual cells with high temporal resolution. We directly compare the actin dynamics in Dictyostelium discodelium wild type (WT) cells to a knockout mutant that is deficient in myosin-II (MNL). Similar to the WT a small population of MNL cells showed self-sustained oscillations even in absence of external stimuli. The actin response of MNL cells to a short pulse of chemoattractant resembles WT during the first 15 sec but is significantly delayed afterward. The amplitude of the dominant peak in the power spectrum from the response time series of MNL cells to periodic stimuli with varying period showed a clear resonance peak at a forcing period of 36 sec, which is significantly delayed as compared to the resonance at 20 sec found for the WT. This shift indicates an important role of myosin-II in setting the response time scale of motile amoeba. Institute of Physics und Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.

  1. Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin-Myosin Behaviors.

    Science.gov (United States)

    Hariadi, Rizal F; Appukutty, Abhinav J; Sivaramakrishnan, Sivaraj

    2016-09-27

    Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 μm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.

  2. Tetranectin in slow intra- and extrafusal chicken muscle fibers

    DEFF Research Database (Denmark)

    Xu, X; Gilpin, B; Iba, K

    2001-01-01

    Tetranectin is a C-type lectin that occurs in the mammalian musculoskeletal system. In the present report we describe the first studies on an avian tetranectin. A full-length chicken tetranectin cDNA was isolated. Comparison of the deduced amino acid sequence of chicken tetranectin with mouse...... and human tetranectin showed an identity of 67 and 68%, respectively. Northern blot analysis demonstrated broad expression of chicken tetranectin mRNA, which was first detected on embryonic day 4. Tetranectin protein was detected in chicken serum and egg yolk. Since muscle is one of few tissues in which...... tetranectin protein is retained, we examined the distribution of tetranectin in various muscle types in chicken. Myofibers strongly positive for tetranectin were observed in several muscles including m. tibialis ant. and m. sartorius (from embryonic day 10 to adult). Using antibodies to fast and slow myosin...

  3. Selective expression of the type 3 isoform of ryanodine receptor Ca2+ release channel (RyR3) in a subset of slow fibers in diaphragm and cephalic muscles of adult rabbits

    International Nuclear Information System (INIS)

    Conti, Antonio; Reggiani, Carlo; Sorrentino, Vincenzo

    2005-01-01

    The expression pattern of the RyR3 isoform of Ca 2+ release channels was analysed by Western blot in neonatal and adult rabbit skeletal muscles. The results obtained show that the expression of the RyR3 isoform is developmentally regulated. In fact, RyR3 expression was detected in all muscles analysed at 2 and 15 days after birth while, in adult animals, it was restricted to a subset of muscles that includes diaphragm, masseter, pterygoideus, digastricus, and tongue. Interestingly, all of these muscles share a common embryonic origin being derived from the somitomeres or from the cephalic region of the embryo. Immunofluorescence analysis of rabbit skeletal muscle cross-sections showed that RyR3 staining was detected in all fibers of neonatal muscles. In contrast, in those adult muscles expressing RyR3 only a fraction of fibers was labelled. Staining of these muscles with antibodies against fast and slow myosins revealed a close correlation between expression of RyR3 and fibers expressing slow myosin isoform

  4. Regulation of an antisense RNA with the transition of neonatal to IIb myosin heavy chain during postnatal development and hypothyroidism in rat skeletal muscle.

    Science.gov (United States)

    Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia

    2012-04-01

    Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.

  5. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    Directory of Open Access Journals (Sweden)

    Ivanna Ihnatovych

    Full Text Available Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C. Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate- cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  6. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomibuchi, Yuki [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Uyeda, Taro Q.P. [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp [Graduate School of Science and Engineering, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan); Department of Judo Therapy, Faculty of Medical Technology, Teikyo University, Toyosatodai 1-1, Utsunomiya 320-8551 (Japan)

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143 flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas (ASA

  7. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    International Nuclear Information System (INIS)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.; Tregear, Richard T.; Winkler, Hanspeter; Franzini-Armstrong, Clara; Sasaki, Hiroyuki; Lucaveche, Carmen; Goldman, Yale E.; Reedy, Michael K.; Taylor, Kenneth A.

    2010-01-01

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77 o /12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127 o range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from

  8. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.

    Directory of Open Access Journals (Sweden)

    Shenping Wu

    2010-09-01

    Full Text Available Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  9. Role of cyclic AMP sensor Epac1 in masseter muscle hypertrophy and myosin heavy chain transition induced by β2-adrenoceptor stimulation.

    Science.gov (United States)

    Ohnuki, Yoshiki; Umeki, Daisuke; Mototani, Yasumasa; Jin, Huiling; Cai, Wenqian; Shiozawa, Kouichi; Suita, Kenji; Saeki, Yasutake; Fujita, Takayuki; Ishikawa, Yoshihiro; Okumura, Satoshi

    2014-12-15

    The predominant isoform of β-adrenoceptor (β-AR) in skeletal muscle is β2-AR and that in the cardiac muscle is β1-AR. We have reported that Epac1 (exchange protein directly activated by cAMP 1), a new protein kinase A-independent cAMP sensor, does not affect cardiac hypertrophy in response to pressure overload or chronic isoproterenol (isoprenaline) infusion. However, the role of Epac1 in skeletal muscle hypertrophy remains poorly understood. We thus examined the effect of disruption of Epac1, the major Epac isoform in skeletal muscle, on masseter muscle hypertrophy induced by chronic β2-AR stimulation with clenbuterol (CB) in Epac1-null mice (Epac1KO). The masseter muscle weight/tibial length ratio was similar in wild-type (WT) and Epac1KO at baseline and was significantly increased in WT after CB infusion, but this increase was suppressed in Epac1KO. CB treatment significantly increased the proportion of myosin heavy chain (MHC) IIb at the expense of that of MHC IId/x in both WT and Epac1KO, indicating that Epac1 did not mediate the CB-induced MHC isoform transition towards the faster isoform. The mechanism of suppression of CB-mediated hypertrophy in Epac1KO is considered to involve decreased activation of Akt signalling. In addition, CB-induced histone deacetylase 4 (HDAC4) phosphorylation on serine 246 mediated by calmodulin kinase II (CaMKII), which plays a role in skeletal muscle hypertrophy, was suppressed in Epac1KO. Our findings suggest that Epac1 plays a role in β2-AR-mediated masseter muscle hypertrophy, probably through activation of both Akt signalling and CaMKII/HDAC4 signalling. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  10. Formation of contractile networks and fibers in the medial cell cortex through myosin-II turnover, contraction, and stress-stabilization.

    Science.gov (United States)

    Nie, Wei; Wei, Ming-Tzo; Ou-Yang, H Daniel; Jedlicka, Sabrina S; Vavylonis, Dimitrios

    2015-01-01

    The morphology of adhered cells depends crucially on the formation of a contractile meshwork of parallel and cross-linked fibers along the contacting surface. The motor activity and minifilament assembly of non-muscle myosin-II is an important component of cortical cytoskeletal remodeling during mechanosensing. We used experiments and computational modeling to study cortical myosin-II dynamics in adhered cells. Confocal microscopy was used to image the medial cell cortex of HeLa cells stably expressing myosin regulatory light chain tagged with GFP (MRLC-GFP). The distribution of MRLC-GFP fibers and focal adhesions was classified into three types of network morphologies. Time-lapse movies show: myosin foci appearance and disappearance; aligning and contraction; stabilization upon alignment. Addition of blebbistatin, which perturbs myosin motor activity, leads to a reorganization of the cortical networks and to a reduction of contractile motions. We quantified the kinetics of contraction, disassembly and reassembly of myosin networks using spatio-temporal image correlation spectroscopy (STICS). Coarse-grained numerical simulations include bipolar minifilaments that contract and align through specified interactions as basic elements. After assuming that minifilament turnover decreases with increasing contractile stress, the simulations reproduce stress-dependent fiber formation in between focal adhesions above a threshold myosin concentration. The STICS correlation function in simulations matches the function measured in experiments. This study provides a framework to help interpret how different cortical myosin remodeling kinetics may contribute to different cell shape and rigidity depending on substrate stiffness. © 2015 Wiley Periodicals, Inc.

  11. Nano-sized surface modifications induced by the impact of slow highly charged ions - A first review

    International Nuclear Information System (INIS)

    Aumayr, F.; El-Said, A.S.; Meissl, W.

    2008-01-01

    Irradiation of crystalline solid targets with swift heavy ions can lead to the formation of latent tracks in the solid and the creation of (mostly-hillock type) nanostructures on the surface. Recently similar surface modifications with nanometer dimensions have been demonstrated for the impact of individual, very slow but highly charged ions on various surfaces. We will review the current state of this new field of research. In particular we will discuss the circumstances and conditions under which nano-sized features (hillocks or craters) on different surfaces due to impact of slow highly charged ions can be produced. The use of slow highly charged ions instead of swift heavy ions might be of considerable interest for some practical applications

  12. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  13. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Shiroguchi

    2011-04-01

    Full Text Available Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(BT of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery

  14. Stress generation by myosin minifilaments in actin bundles

    International Nuclear Information System (INIS)

    Dasanayake, Nilushi L; Carlsson, Anders E

    2013-01-01

    Forces and stresses generated by the action of myosin minifilaments are analyzed in idealized computer-generated actin bundles, and compared to results for isotropic actin networks. The bundles are generated as random collections of actin filaments in two dimensions with constrained orientations, crosslinked and attached to two fixed walls. Myosin minifilaments are placed on actin filament pairs and allowed to move and deform the network so that it exerts forces on the walls. The vast majority of simulation runs end with contractile minifilament stress, because minifilaments rotate into energetically stable contractile configurations. This process is aided by the bending and stretching of actin filaments, which accomodate minifilament rotation. Stresses for bundles are greater than those for isotropic networks, and antiparallel filaments generate more tension than parallel filaments. The forces transmitted by the actin network to the walls of the simulation cell often exceed the tension in the minifilament itself. (paper)

  15. Phosphorylation of Tropomyosin Extends Cooperative Binding of Myosin Beyond a Single Regulatory Unit

    OpenAIRE

    Rao, Vijay S.; Marongelli, Ellisha N.; Guilford, William H.

    2009-01-01

    Tropomyosin (Tm) is one of the major phosphoproteins comprising the thin filament of muscle. However, the specific role of Tm phosphorylation in modulating the mechanics of actomyosin interaction has not been determined. Here we show that Tm phosphorylation is necessary for long-range cooperative activation of myosin binding. We used a novel optical trapping assay to measure the isometric stall force of an ensemble of myosin molecules moving actin filaments reconstituted with either natively ...

  16. COMMISSIONING RESULTS OF SLOW EXTRACTION OF HEAVY IONS from THE AGS BOOSTER

    International Nuclear Information System (INIS)

    BROWN, K.A.; AHRENS, L.; BELLAVIA, S.; BINELLO, S.; BRELSFORD, B.; DUMONT, D.; ENG, W.; GARDNER, C.; GASSNER, D.; GLENN, J.W.; HAMMONS, L.; HOCK, J.; HOFF, L.; HUTCHINSON, E.; JAMILKOWSKI, J.; KLING, N.; KOTLYAR, Y.; KRISHOCK, A.; LOCKEY, R.; MAPES, M.; MARNERIS, I.; MARR, G.; MCNERNEY, A.; MEYER, A.; MORRIS, J.; NAYLOR, C.; NEMESURE, S.; PHILLIPS, D.; RUSEK, A.; RYAN, J.; SHREY, T.; SNYDSTRUP, L.; TSOUPAS, N.; VANKUIK, B.; ZAHARIOU-COHEN, K.; ZENO, K.

    2003-01-01

    Brookhaven's AGS Booster has been modified to deliver slow extracted beam to a new beam line, the NASA Space Radiation Laboratory (NSRL). This facility was constructed in collaboration with NASA for the purpose of performing radiation effect studies for the NASA space program. The design of the resonant extraction system has been described in [1]. A more detailed description, which includes predictions of the slow extracted beam time structure has been described in [2]. In this report we will present results of the system commissioning and performance

  17. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  18. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    Science.gov (United States)

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  19. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells.

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-05-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.

  20. Myosin IIA participates in docking of Glut4 storage vesicles with the plasma membrane in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Chung, Le Thi Kim; Hosaka, Toshio; Harada, Nagakatsu; Jambaldorj, Bayasgalan; Fukunaga, Keiko; Nishiwaki, Yuka; Teshigawara, Kiyoshi; Sakai, Tohru; Nakaya, Yutaka; Funaki, Makoto

    2010-01-01

    In adipocytes and myocytes, insulin stimulation translocates glucose transporter 4 (Glut4) storage vesicles (GSVs) from their intracellular storage sites to the plasma membrane (PM) where they dock with the PM. Then, Glut4 is inserted into the PM and initiates glucose uptake into these cells. Previous studies using chemical inhibitors demonstrated that myosin II participates in fusion of GSVs and the PM and increase in the intrinsic activity of Glut4. In this study, the effect of myosin IIA on GSV trafficking was examined by knocking down myosin IIA expression. Myosin IIA knockdown decreased both glucose uptake and exposures of myc-tagged Glut4 to the cell surface in insulin-stimulated cells, but did not affect insulin signal transduction. Interestingly, myosin IIA knockdown failed to decrease insulin-dependent trafficking of Glut4 to the PM. Moreover, in myosin IIA knockdown cells, insulin-stimulated binding of GSV SNARE protein, vesicle-associated membrane protein 2 (VAMP2) to PM SNARE protein, syntaxin 4 was inhibited. These data suggest that myosin IIA plays a role in insulin-stimulated docking of GSVs to the PM in 3T3-L1 adipocytes through SNARE complex formation.

  1. CALIX[4]ARENE C-99 INHIBITS MYOSIN ATPase ACTIVITY AND CHANGES THE ORGANIZATION OF CONTRACTILE FILAMENTS OF MYOMETRIUM.

    Science.gov (United States)

    Labyntseva, R D; Bevza, A A; Lul'ko, A O; Cherenok, S O; Kalchenko, V I; Kosterin, S O

    2015-01-01

    Calix[4]arenes are cup-like macrocyclic (polyphenolic) compounds, they are regarded as promising molecular "platforms" for the design of new physiologically active compounds. We have earlier found that calix[4]arene C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus in vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  2. Calix[4]arene C-99 inhibits myosin ATPase activity and changes the organization of contractile filaments of myometrium

    Directory of Open Access Journals (Sweden)

    R. D. Labyntseva,

    2015-12-01

    Full Text Available Calix[4]arenes are cup-like macrocyclic (polyphenolic compounds, they are regarded as promising molecular “platforms” for the design of new physiologically active compounds. We have earlier found that сalix[4]arenе C-99 inhibits the ATPase activity of actomyosin and myosin subfragment-1 of pig uterus іn vitro. The aim of this study was to investigate the interaction of calix[4]arene C-99 with myosin from rat uterine myocytes. It was found that the ATPase activity of myosin prepared from pre-incubated with 100 mM of calix[4]arene C-99 myocytes was almost 50% lower than in control. Additionally, we have revealed the effect of calix[4]arene C-99 on the subcellular distribution of actin and myosin in uterus myocytes by the method of confocal microscopy. This effect can be caused by reorganization of the structure of the contractile smooth muscle cell proteins due to their interaction with calix[4]arene. The obtained results demonstrate the ability of calix[4]arene C-99 to penetrate into the uterus muscle cells and affect not only the myosin ATPase activity, but also the structure of the actin and myosin filaments in the myometrial cells. Demonstrated ability of calix[4]arene C-99 can be used for development of new pharmacological agents for efficient normalization of myometrial contractile hyperfunction.

  3. AFRRI Reports, April-June 1990

    Science.gov (United States)

    1990-07-01

    removed by cardiac puncture and centrifuged at 2,500 x g for 20 minutes. The serum was stored at -80°C until T4, 64 Metabolism , Vol 39, No 1 (January...amounts of |8-myosin heavy chain protein and mRNA level are high, while a-myosin heavy chain are very low or nondetectable. During the hyperthyroid ...hormone administration on myosin ATPase activity and myosin isoenzyme distribution in the heart of diabetic rats. Metabolism 31:199-204, 1982 16. Rupp H

  4. Clinical study on the time courses of serum myosin light chain I levels in patients with acute myocardial infarction

    International Nuclear Information System (INIS)

    Nakanishi, Masako; Saiki, Yasuhiko; Ui, Kazuyo

    1992-01-01

    Changes of serum myosin light chain I (Myosin LCI) concentrations and creatine kinase (CK) activities were serially measured in 23 patients with acute myocardial infarction. Intracoronary thrombolysis was performed in 14 patients (ICT group) while the remaining 9 patients were treated in the conventional manner (non ICT group). The relationships between the maximum levels of serum Myosin LCI or CK and a myocardial infarct size index or left ventricular function were evaluated in 18 patients. The myocardial infarct size index was determined by 201 Tl myocardial scintigrams performed in the chronic phase. Multiple peaks of Myosin LCI were observed in 64% (9/14) of the ICT group and the first peak in 6 of these patients appeared much earlier in the same time as CK peak than in the non-ICT group, while multiple peaks were seen only in one case in the non-ICT group. The infarct size index by 201 Tl myocardial SPECT correlated with maximum Myosin LCI levels (r=0.88, p<0.001, n=10) and CK activities (r=0.67, p<0.05, n=10). These results indicate that the measurement of serum Myosin LCI is very useful for estimating the extent of myocardial damage and suggest that myocardial degeneration occurs at a very early phase of myocardial infarction. (author)

  5. Ginger extract mitigates ethanol-induced changes of alpha and beta - myosin heavy chain isoforms gene expression and oxidative stress in the heart of male wistar rats.

    Science.gov (United States)

    Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef

    2017-09-01

    The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Neuromuscular partitioning, architectural design, and myosin fiber types of the M. vastus lateralis of the llama (Lama glama).

    Science.gov (United States)

    Graziotti, Guillermo H; Palencia, Pablo; Delhon, Gustavo; Rivero, José-Luis L

    2004-11-01

    The llama (Lama glama) is one of the few mammals of relatively large body size in which three fast myosin heavy chain isoforms (i.e., IIA, IIX, IIB) are extensively expressed in their locomotory muscles. This study was designed to gain insight into the morphological and functional organization of skeletal musculature in this peculiar animal model. The neuromuscular partitioning, architectural design, and myosin fiber types were systematically studied in the M. vastus lateralis of adult llamas (n = 15). Four nonoverlapping neuromuscular partitions or compartments were identified macroscopically (using a modified Sihler's technique for muscle depigmentation), although they did not conform strictly to the definitions of "neuromuscular compartments." Each neuromuscular partition was innervated by primary branches of the femoral nerve and was arranged within the muscle as paired partitions, two in parallel (deep-superficial compartmentalization) and the other two in-series (proximo-distal compartmentalization). These neuromuscular partitions of the muscle varied in their respective architectural designs (studied after partial digestion with diluted nitric acid) and myosin fiber type characteristics (identified immunohistochemically with specific anti-myosin monoclonal antibodies, then examined by quantitative histochemistry and image analysis). The deep partitions of the muscle had longer fibers, with lower angles of pinnation, and higher percentages of fast-glycolytic fibers than the superficial partitions of the muscle. These differences clearly suggest a division of labor in the whole M. vastus lateralis of llamas, with deep partitions exhibiting features well adapted for dynamic activities in the extension of stifle, whereas superficial portions seem to be related to the antigravitational role of the muscle in preserving the extension of the stifle during standing and stance phase of the stride. This peculiar structural and functional organization of the llama M

  7. Slowing down and straggling of protons and heavy ions in matter

    International Nuclear Information System (INIS)

    Aernsbergen, L.M. van.

    1986-01-01

    The Doppler Shift Attenuation (DSA) method is widely used to measure lifetimes of nuclear states. However, many of the lifetimes resulting from DSA measurements display large variations which are caused by an insufficient knowledge of slowing down processes of nucleus recoils. The measurement of 'ranges' is an often used method to study these slowing down processes. In this kind of measurement the distributions of implanted ions are determined for example by the method of Rutherford backscattering or from the yield curve of a resonant nuclear reaction. In this thesis, research on energy-loss processes of protons and Si ions in aluminium is presented. The so-called Resonance Shift method has been improved for the measurements on the protons themselves. This method has only been used occasionally before. A new method has been developed, which is called the Transmission Doppler Shift Attenuation (TDSA) method, for the measurement on Si ions. (Auth.)

  8. Blebbistatin, a myosin II inhibitor, suppresses Ca(2+)-induced and "sensitized"-contraction of skinned tracheal muscles from guinea pig.

    Science.gov (United States)

    Yumoto, Masatoshi; Watanabe, Masaru

    2013-01-01

    Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.

  9. The Rho kinases I and II regulate different aspects of myosin II activity

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Multhaupt, Hinke A B; Couchman, John R

    2005-01-01

    The homologous mammalian rho kinases (ROCK I and II) are assumed to be functionally redundant, based largely on kinase construct overexpression. As downstream effectors of Rho GTPases, their major substrates are myosin light chain and myosin phosphatase. Both kinases are implicated in microfilament...... bundle assembly and smooth muscle contractility. Here, analysis of fibroblast adhesion to fibronectin revealed that although ROCK II was more abundant, its activity was always lower than ROCK I. Specific reduction of ROCK I by siRNA resulted in loss of stress fibers and focal adhesions, despite...

  10. Distribution of fast myosin heavy chain-based muscle fibres in the gluteus medius of untrained horses: mismatch between antigenic and ATPase determinants

    Science.gov (United States)

    LINNANE, LINDA; SERRANO, A. L.; RIVERO, J. L. L.

    1999-01-01

    The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in muscle biopsies from the gluteus medius of adult untrained horses by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies and standard myofibrillar ATPase (mATPase) histochemistry. Percutaneous needle biopsies were taken at 3 depths (20, 40 and 60 mm) from 4 4-y-old Andalusian stallions. The percentage of ‘pure’ I MHC fibres increased whereas that for pure IIX MHC fibres decreased from the most superficial to the deepest sampling site. Within the fast fibres, types IIA and IIAX MHC-classified fibres were proportionately more abundant in the deepest sampling site than in the superficial region of the muscle. The immunohistochemical and histochemical characterisation of a large number of single fibres (n=1375) was compared and correlated on a fibre-to-fibre basis. The results showed that 40% of the fibres analysed were pure type I (expressing only MHC-I); they showed correct matching between their antigenic and mATPase determinants. In contrast, within the fast fibres, a considerable proportion of fibres were found showing a mismatch between their immunohistochemical and mATPase profiles. The most common mismatched fibre phenotypes comprised fibres displaying coexpression of both fast MHCs when analysed by immunocytochemistry, but showing an mATPase profile similar to typical IIX fibres (moderate mATPase reaction after preincubation at pH 4.4). Considered altogether, the total mismatched fibres represented only 4.2% of the whole fast fibre population in the superficial region of the muscle, but their proportion increased to 15.6% and 38.4% in the middle and deep regions, respectively, of gluteus medius. It is concluded that a considerable number of hybrid fast MHC IIAX fibres are present in the gluteus medius of untrained horses, suggesting that equine type II fibres have probably been misclassified in

  11. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  12. Discoidin Domain Receptor 1 Mediates Myosin-Dependent Collagen Contraction

    Directory of Open Access Journals (Sweden)

    Nuno M. Coelho

    2017-02-01

    Full Text Available Discoidin domain receptor 1 (DDR1 is a tyrosine kinase collagen adhesion receptor that mediates cell migration through association with non-muscle myosin IIA (NMIIA. Because DDR1 is implicated in cancer fibrosis, we hypothesized that DDR1 interacts with NMIIA to enable collagen compaction by traction forces. Mechanical splinting of rat dermal wounds increased DDR1 expression and collagen alignment. In periodontal ligament of DDR1 knockout mice, collagen mechanical reorganization was reduced >30%. Similarly, cultured cells with DDR1 knockdown or expressing kinase-deficient DDR1d showed 50% reduction of aligned collagen. Tractional remodeling of collagen was dependent on DDR1 clustering, activation, and interaction of the DDR1 C-terminal kinase domain with NMIIA filaments. Collagen remodeling by traction forces, DDR1 tyrosine phosphorylation, and myosin light chain phosphorylation were increased on stiff versus soft substrates. Thus, DDR1 clustering, activation, and interaction with NMIIA filaments enhance the collagen tractional remodeling that is important for collagen compaction in fibrosis.

  13. Imaging of tissue sections with very slow electrons

    Energy Technology Data Exchange (ETDEWEB)

    Frank, L., E-mail: ludek@isibrno.cz [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic); Nebesářová, J.; Vancová, M. [Biology Centre AS CR, v.v.i., Branišovská 31, 37005 České Budějovice (Czech Republic); Paták, A.; Müllerová, I. [Institute of Scientific Instruments AS CR, v.v.i., Královopolská 147, 61264 Brno (Czech Republic)

    2015-01-15

    The examination of thin sections of tissues with electron microscopes is an indispensable tool. Being composed of light elements, samples of living matter illuminated with electrons at the usual high energies of tens or even hundreds of kiloelectronvolts provide very low image contrasts in transmission or scanning transmission electron microscopes. Therefore, heavy metal salts are added to the specimen during preparation procedures (post-fixation with osmium tetroxide or staining). However, these procedures can modify or obscure the ultrastructural details of cells. Here we show that the energy of electrons used for the scanned transmission imaging of tissue sections can be reduced to mere hundreds or even tens of electronvolts and can produce extremely high contrast even for samples free of any metal salts. We found that when biasing a sufficiently thin tissue section sample to a high negative potential in a scanning transmission electron microscope, thereby reducing the energy of the electrons landing on the sample, and collecting the transmitted electrons with a grounded detector, we obtain a high contrast revealing structure details not enhanced by heavy atoms. Moreover, bombardment with slow electrons sensitively depolymerises the resin in which the tissue is embedded, thereby enhancing the transmitted signal with no observable loss of structure details. The use of low-energy electrons requires ultrathin sections of a thickness of less than 10 nm, but their preparation is now possible. Ultralow energy STEM provides a tool enabling the observation of very thin biological samples without any staining. This method should also be advantageous for examination of 2D crystals, thin films of polymers, polymer blends, etc. - Highlights: • Sections of a thickness below 10 nm were imaged in STEM at hundreds and tens of eV. • Image contrast grows steeply with decreasing electron energy in the STEM. • Very slow electrons provide high contrast for samples free of

  14. Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement.

    Science.gov (United States)

    Knupp, Carlo; Offer, Gerald; Ranatunga, K W; Squire, John M

    2009-07-10

    The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.

  15. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  16. The naked mole-rat exhibits an unusual cardiac myofilament protein profile providing new insights into heart function of this naturally subterranean rodent.

    Science.gov (United States)

    Grimes, Kelly M; Barefield, David Y; Kumar, Mohit; McNamara, James W; Weintraub, Susan T; de Tombe, Pieter P; Sadayappan, Sakthivel; Buffenstein, Rochelle

    2017-12-01

    The long-lived, hypoxic-tolerant naked mole-rat well-maintains cardiac function over its three-decade-long lifespan and exhibits many cardiac features atypical of similar-sized laboratory rodents. For example, they exhibit low heart rates and resting cardiac contractility, yet have a large cardiac reserve. These traits are considered ecophysiological adaptations to their dank subterranean atmosphere of low oxygen and high carbon dioxide levels and may also contribute to negligible declines in cardiac function during aging. We asked if naked mole-rats had a different myofilament protein signature to that of similar-sized mice that commonly show both high heart rates and high basal cardiac contractility. Adult mouse ventricles predominantly expressed α-myosin heavy chain (97.9 ± 0.4%). In contrast, and more in keeping with humans, β myosin heavy chain was the dominant isoform (79.0 ± 2.0%) in naked mole-rat ventricles. Naked mole-rat ventricles diverged from those of both humans and mice, as they expressed both cardiac and slow skeletal isoforms of troponin I. This myofilament protein profile is more commonly observed in mice in utero and during cardiomyopathies. There were no species differences in phosphorylation of cardiac myosin binding protein-C or troponin I. Phosphorylation of both ventricular myosin light chain 2 and cardiac troponin T in naked mole-rats was approximately half that observed in mice. Myofilament function was also compared between the two species using permeabilized cardiomyocytes. Together, these data suggest a cardiac myofilament protein signature that may contribute to the naked mole-rat's suite of adaptations to its natural subterranean habitat.

  17. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity

    DEFF Research Database (Denmark)

    Holm, L.; Reitelseder, S.; Pedersen, T.G.

    2008-01-01

    resonance imaging, muscle biopsies were obtained bilaterally from vastus lateralis for determination of myosin heavy chain (MHC) composition, and maximal muscle strength was assessed by 1RM testing and in an isokinetic dynamometer at 60 degrees /s. Quadriceps muscle cross-sectional area increased (P ...Muscle mass accretion is accomplished by heavy-load resistance training. The effect of light-load resistance exercise has been far more sparsely investigated with regard to potential effect on muscle size and contractile strength. We applied a resistance exercise protocol in which the same...... individual trained one leg at 70% of one-repetition maximum (1RM) (heavy load, HL) while training the other leg at 15.5% 1RM (light load, LL). Eleven sedentary men (age 25 +/- 1 yr) trained for 12 wk at three times/week. Before and after the intervention muscle hypertrophy was determined by magnetic...

  18. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  19. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  20. Coupling between myosin head conformation and the thick filament backbone structure.

    Science.gov (United States)

    Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A

    2017-12-01

    The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle

    Science.gov (United States)

    Boëda, Batiste; El-Amraoui, Aziz; Bahloul, Amel; Goodyear, Richard; Daviet, Laurent; Blanchard, Stéphane; Perfettini, Isabelle; Fath, Karl R.; Shorte, Spencer; Reiners, Jan; Houdusse, Anne; Legrain, Pierre; Wolfrum, Uwe; Richardson, Guy; Petit, Christine

    2002-01-01

    Deaf-blindness in three distinct genetic forms of Usher type I syndrome (USH1) is caused by defects in myosin VIIa, harmonin and cadherin 23. Despite being critical for hearing, the functions of these proteins in the inner ear remain elusive. Here we show that harmonin, a PDZ domain-containing protein, and cadherin 23 are both present in the growing stereocilia and that they bind to each other. Moreover, we demonstrate that harmonin b is an F-actin-bundling protein, which is thus likely to anchor cadherin 23 to the stereocilia microfilaments, thereby identifying a novel anchorage mode of the cadherins to the actin cytoskeleton. Moreover, harmonin b interacts directly with myosin VIIa, and is absent from the disorganized hair bundles of myosin VIIa mutant mice, suggesting that myosin VIIa conveys harmonin b along the actin core of the developing stereocilia. We propose that the shaping of the hair bundle relies on a functional unit composed of myosin VIIa, harmonin b and cadherin 23 that is essential to ensure the cohesion of the stereocilia. PMID:12485990

  2. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Young Woo [Cell Therapy and Tissue Engineering Center, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin [Biomedical Research Institute, Lifeliver Co., Ltd., Suwon (Korea, Republic of); Park, Won Jin [Dr. Park' s Aesthetic Clinic, Seoul (Korea, Republic of); Kong, Jee Hyun; Shim, Kwang Yong [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Lee, Jong In, E-mail: oncochem@yonsei.ac.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of); Kim, Hyun Soo, E-mail: khsmd@unitel.co.kr [Department of Hematology-Oncology, Wonju College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  3. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    International Nuclear Information System (INIS)

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-01-01

    Highlights: → hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. → Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. → hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  4. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  5. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    OpenAIRE

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed ...

  6. A comparative study of myosin and its subunits in adult and neonatal-rat hearts and in rat heart cells from young and old cultures.

    OpenAIRE

    Ghanbari, H A; McCarl, R L

    1980-01-01

    A possible explanation for the decrease in myosin Ca2+-dependent ATPase activity as rat heart cells age in culture is presented. The subunit structure and enzyme kinetics of myosin from adult and neonatal rat hearts and from rat heart cells of young and old cultures are compared. These studies indicate that the loss in Ca-ATPase activity of myosin from older cultures was an intrinsic property of the myosin itself. Myofibrillar fractions from the indicated four sources showed no qualitative or...

  7. The fungal myosin I is essential for Fusarium toxisome formation

    Science.gov (United States)

    The mycotoxin deoxynivalenol (DON) is the most frequently detected secondary metabolite produced by Fusarium graminearum and other Fusarium spp. To date, relatively few studies have addressed how mycotoxin biosynthesis occurs in fungal cells. Here we found that myosin I governs translation of DON bi...

  8. High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Directory of Open Access Journals (Sweden)

    Julian Eigendorf

    2018-05-01

    Full Text Available We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END and between the two training sets (intermediate, INT. The mRNA expression levels of myosin heavy chain (MHC isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α, a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance.

  9. Myosin XI-Dependent Formation of Tubular Structures from Endoplasmic Reticulum Isolated from Tobacco Cultured BY-2 Cells1[W][OA

    Science.gov (United States)

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-01-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER. PMID:21427277

  10. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.

  11. Proposal for a new LEIR slow extraction scheme dedicated to biomedical research

    CERN Document Server

    Garonna, A; Abler, D

    2014-01-01

    A proposal is here presented for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a future biomedical research facility at CERN. The new slow extraction system is based on the third-integer resonance. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible with the tight constraints imposed by parallel operation of LEIR as heavy ion accumulator and care was taken to maximize the use of the available hardware.

  12. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation

    Science.gov (United States)

    Foe, Victoria E.; von Dassow, George

    2008-01-01

    The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis. PMID:18955555

  13. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  14. The Potential of/for 'Slow': Slow Tourists and Slow Destinations

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available Slow tourism practices are nothing new; in fact, they were once the norm and still are for millions of people whose annual holiday is spent camping, staying in caravans, rented accommodation, with friends and relations or perhaps in a second home, who immerse themselves in their holiday environment, eat local food, drink local wine and walk or cycle around the area. So why a special edition about slow tourism? Like many aspects of life once considered normal (such as organic farming or free-range eggs, the emergence of new practices has highlighted differences and prompted a re-evaluation of once accepted practices and values. In this way, the concept of ‘slow tourism’ has recently appeared as a type of tourism that contrasts with many contemporary mainstream tourism practices. It has also been associated with similar trends already ‘branded’ slow: slow food and cittaslow (slow towns and concepts such as mindfulness, savouring and well-being.

  15. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene.

    Science.gov (United States)

    Charron, P; Dubourg, O; Desnos, M; Bennaceur, M; Carrier, L; Camproux, A C; Isnard, R; Hagege, A; Langlard, J M; Bonne, G; Richard, P; Hainque, B; Bouhour, J B; Schwartz, K; Komajda, M

    1998-06-09

    Little information is available on phenotype-genotype correlations in familial hypertrophic cardiomyopathy that are related to the cardiac myosin binding protein C (MYBPC3) gene. The aim of this study was to perform this type of analysis. We studied 76 genetically affected subjects from nine families with seven recently identified mutations (SASint20, SDSint7, SDSint23, branch point int23, Glu542Gln, a deletion in exon 25, and a duplication/deletion in exon 33) in the MYBPC3 gene. Detailed clinical, ECG, and echocardiographic parameters were analyzed. An intergene analysis was performed by comparing the MYBPC3 group to seven mutations in the beta-myosin heavy-chain gene (beta-MHC) group (n=52). There was no significant phenotypic difference among the different mutations in the MYBPC3 gene. However, in the MYBPC3 group compared with the beta-MHC group, (1) prognosis was significantly better (P<0.0001), and no deaths occurred before the age of 40 years; (2) the age at onset of symptoms was delayed (41+/-19 versus 35+/-17 years, P<0.002); and (3) before 30 years of age, the phenotype was particularly mild because penetrance was low (41% versus 62%), maximal wall thicknesses lower (12+/-4 versus 16+/-7 mm, P<0.03), and abnormal T waves less frequent (9% versus 45%, P<0.02). These results are consistent with specific clinical features related to the MYBPC3 gene: onset of the disease appears delayed and the prognosis is better than that associated with the beta-MHC gene. These findings could be particularly important for the purpose of clinical management and genetic counseling in familial hypertrophic cardiomyopathy.

  16. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  17. Heavy Particle Beams in Tumor Radiotherapy

    International Nuclear Information System (INIS)

    Ayad, M.

    1999-01-01

    Using heavy particles beam in the tumor radiotherapy is advantageous to the conventional radiation with photons and electrons. One of the advantages of the heavy charged particle is the energy deposition processes which give a well defined range in tissue, a Bragg peak of ionization in the depth-dose distribution and slow scattering, while the dose to the surrounding healthy tissue in the vicinity is minimized. These processes can show the relation between the heavy particle and the conventional radiation is illustrated with respect to the depth dose and the relative dose. The usage of neutrons (Thermal or epithermal) in therapy necessitates implementation of capture material leading to the production of heavy charged particles (a-particles) as a result of the nuclear interaction in between. Experimentally it is found that 80% of the absorbed dose is mainly due to the presence of capture material

  18. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    Science.gov (United States)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  19. Myosin content of single muscle fibers following short-term disuse and active recovery in young and old healthy men

    DEFF Research Database (Denmark)

    Hvid, Lars G; Brocca, Lorenza; Ørtenblad, Niels

    2017-01-01

    healthy men. Following disuse, myosin content decreased (p... young and old in both fiber types, with MHC 2a fibers demonstrating an overshooting in young (+31%, pStrong correlations were observed between myosin content and single fiber SF in both young and old, with greater slope steepness in MHC 2a vs 1 fibers indicating an enhanced intrinsic...

  20. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  1. Identification and biochemical analysis of Slac2-c/MyRIP as a Rab27A-, myosin Va/VIIa-, and actin-binding protein.

    Science.gov (United States)

    Kuroda, Taruho S; Fukuda, Mitsunori

    2005-01-01

    Slac2-c/MyRIP is a specific Rab27A-binding protein that contains an N-terminal synaptotagmin-like protein (Slp) homology domain (SHD, a newly identified GTP-Rab27A-binding motif), but in contrast to the Slp family proteins, it lacks C-terminal tandem C2 domains. In vitro Slac2-c simultaneously directly interacts with both Rab27A and an actin-based motor protein, myosin Va, via its N-terminal SHD and middle region, respectively, consistent with the fact that the overall structure of Slac2-c is similar to that of Slac2-a/melanophilin, a linker protein between Rab27A and myosin Va in the melanosome transport in melanocytes. Unlike Slac2-a, however, the middle region of Slac2-c interacts with two types of myosins, myosin Va and myosin VIIa. In addition, the most C-terminal part of both Slac2-a and Slac2-c functions as an actin-binding domain: it directly interacts with globular and fibrous actin in vitro, and the actin-binding domain of Slac2-a and Slac2-c colocalizes with actin filaments when it is expressed in living cells (i.e., PC12 cells and mouse melanocytes). In this chapter we describe the methods that have been used to analyze the protein-protein interactions of Slac2-c, specifically with Rab27A, myosin Va/VIIa, and actin.

  2. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    Science.gov (United States)

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  3. Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells.

    Science.gov (United States)

    el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C

    1996-08-01

    Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.

  4. Confinement Sensing and Signal Optimization via Piezo1/PKA and Myosin II Pathways

    Directory of Open Access Journals (Sweden)

    Wei-Chien Hung

    2016-05-01

    Full Text Available Summary: Cells adopt distinct signaling pathways to optimize cell locomotion in different physical microenvironments. However, the underlying mechanism that enables cells to sense and respond to physical confinement is unknown. Using microfabricated devices and substrate-printing methods along with FRET-based biosensors, we report that, as cells transition from unconfined to confined spaces, intracellular Ca2+ level is increased, leading to phosphodiesterase 1 (PDE1-dependent suppression of PKA activity. This Ca2+ elevation requires Piezo1, a stretch-activated cation channel. Moreover, differential regulation of PKA and cell stiffness in unconfined versus confined cells is abrogated by dual, but not individual, inhibition of Piezo1 and myosin II, indicating that these proteins can independently mediate confinement sensing. Signals activated by Piezo1 and myosin II in response to confinement both feed into a signaling circuit that optimizes cell motility. This study provides a mechanism by which confinement-induced signaling enables cells to sense and adapt to different physical microenvironments. : Hung et al. demonstrate that a Piezo1-dependent intracellular calcium increase negatively regulates protein kinase A (PKA as cells transit from unconfined to confined spaces. The Piezo1/PKA and myosin II signaling modules constitute two confinement-sensing mechanisms. This study provides a paradigm by which signaling enables cells to sense and adapt to different microenvironments.

  5. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  6. Lack of replication for the myosin-18B association with mathematical ability in independent cohorts

    Science.gov (United States)

    Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S

    2015-01-01

    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. PMID:25778778

  7. The effect of the substitution of D{sub 2}O for H{sub 2}O on the degradation of myosin {beta} in solution by heat and by {sup 60}Co {gamma} radiation (1962); Effet de la substitution de D{sub 2}O a H{sub 2}O sur l'alteration de la Myosine B en solution par la chaleur et par les rayons {gamma} du {sup 60}CO (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pinset-Harstrom, I.; Fritsch, A. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    (1) Alterations of myosin B produced by heat or irradiation are shown to be qualitatively identical as demonstrated by analytical centrifugation. (2) A considerable isotope effect was demonstrated using 75 per cent D{sub 2}O in the solvent. The sensitivity of myosin B to heat and irradiation is discussed in the light of this isotope effect. (3) Polymers appearing upon heat treatment of myosin B seem to be of a very different nature than the polymers occurring alter a similar treatment upon myosin A. Polymers obtained from myosin B can be depolymerized by ATP and they appear in a much narrower temperature range than myosin A polymers. This fact indicates a considerable difference in the activation enthalpies in the two reactions. (authors) [French] (1) Cette etude montre que les alterations de la myosine B provoquees par la chaleur et par l'irradiation aux rayons {gamma} sont - telles qu'elles apparaissent a l'ultracentrifugation analytique - qualitativement semblables. (2) Nous avons observe un effet isotopique considerable de la presence de 75 pour cent de D{sub 2}O dans le solvant sur la sensibilite de la myosine B envers ces deux agents, et nous avons presente une tentative d'explication de ce fait. (3) Les polymeres qui apparaissent apres un traitement par la chaleur de la myosine semblent etre d'une nature tres differente des polymeres que l'on voit apparaitre apres un traitement identique de la myosine A. Ceux obtenus a partir de le myosine B sont depolymerisables par l'intermediaire de l'ATP et apparaissent dans une zone de temperature beaucoup plus etroite que celles de la myosine A. Ce dernier fait indique une difference considerable de l'enthalpie d'activation des deux reactions. (auteurs)

  8. The effect of the substitution of D{sub 2}O for H{sub 2}O on the degradation of myosin {beta} in solution by heat and by {sup 60}Co {gamma} radiation (1962); Effet de la substitution de D{sub 2}O a H{sub 2}O sur l'alteration de la Myosine B en solution par la chaleur et par les rayons {gamma} du {sup 60}CO (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Pinset-Harstrom, I; Fritsch, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    (1) Alterations of myosin B produced by heat or irradiation are shown to be qualitatively identical as demonstrated by analytical centrifugation. (2) A considerable isotope effect was demonstrated using 75 per cent D{sub 2}O in the solvent. The sensitivity of myosin B to heat and irradiation is discussed in the light of this isotope effect. (3) Polymers appearing upon heat treatment of myosin B seem to be of a very different nature than the polymers occurring alter a similar treatment upon myosin A. Polymers obtained from myosin B can be depolymerized by ATP and they appear in a much narrower temperature range than myosin A polymers. This fact indicates a considerable difference in the activation enthalpies in the two reactions. (authors) [French] (1) Cette etude montre que les alterations de la myosine B provoquees par la chaleur et par l'irradiation aux rayons {gamma} sont - telles qu'elles apparaissent a l'ultracentrifugation analytique - qualitativement semblables. (2) Nous avons observe un effet isotopique considerable de la presence de 75 pour cent de D{sub 2}O dans le solvant sur la sensibilite de la myosine B envers ces deux agents, et nous avons presente une tentative d'explication de ce fait. (3) Les polymeres qui apparaissent apres un traitement par la chaleur de la myosine semblent etre d'une nature tres differente des polymeres que l'on voit apparaitre apres un traitement identique de la myosine A. Ceux obtenus a partir de le myosine B sont depolymerisables par l'intermediaire de l'ATP et apparaissent dans une zone de temperature beaucoup plus etroite que celles de la myosine A. Ce dernier fait indique une difference considerable de l'enthalpie d'activation des deux reactions. (auteurs)

  9. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.

    Science.gov (United States)

    Gittings, William; Aggarwal, Harish; Stull, James T; Vandenboom, Rene

    2015-01-01

    The isometric potentiation associated with myosin phosphorylation is force dependent. The purpose of this study was to assess the influence of a pre-existing period of isometric force on the concentric force potentiation displayed by mouse muscles with and without the ability to phosphorylate myosin. We tested isometric (ISO) and concentric (CON) potentiation, as well as concentric potentiation after isometric force (ISO-CON), in muscles from wild-type (WT) and skeletal myosin light chain kinase-deficient (skMLCK(-/-)) mice. A conditioning stimulus increased (i.e., potentiated) mean concentric force in the ISO-CON and CON conditions to 1.31 ± 0.02 and 1.35 ± 0.02 (WT) and to 1.19 ± 0.02 and 1.21 ± 0.01 (skMLCK(-/-)) of prestimulus levels, respectively (data n = 6-8, p muscles.

  10. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  11. Muscle plasticity related to changes in tubulin and αB-crystallin levels induced by eccentric contraction in rat skeletal muscles.

    Science.gov (United States)

    Jee, H; Ochi, E; Sakurai, T; Lim, J-Y; Nakazato, K; Hatta, H

    2016-09-01

    We used the model of eccentric contraction of the hindlimb muscle by Ochi et al. to examine the role of eccentric contraction in muscle plasticity. This model aims to focus on stimulated skeletal muscle responses by measuring tissue weights and tracing the quantities of αB-crystallin and tubulin. The medial gastrocnemius muscle (GCM) responded to electrically induced eccentric contraction (EIEC) with significant increases in tissue weight (p muscle weight after EIEC. EIEC in the GCM caused contractile-induced sustenance of the traced proteins, but the soleus muscle exhibited a remarkable decrease in α-tubulin and a 19% decrease in αB-crystallin. EIEC caused fast-to-slow myosin heavy chain (MHC) isoform type-oriented shift within both the GCM and soleus muscle. These results have shown that different MHC isoform type-expressing slow and fast muscles commonly undergo fast-to-slow type MHC isoform transformation. This suggests that different levels of EIEC affected each of the slow and fast muscles to induce different quantitative changes in the expression of αB-crystallin and α-tubulin.

  12. Parathyroid hormone promotes the disassembly of cytoskeletal actin and myosin in cultured osteoblastic cells: Mediation by cyclic AMP

    International Nuclear Information System (INIS)

    Egan, J.J.; Gronowicz, G.; Rodan, G.A.

    1991-01-01

    Parathyroid hormone (PTH) alters the shape of osteoblastic cells both in vivo and in vitro. In this study, we examined the effect of PTH on cytoskeletal actin and myosin, estimated by polyacrylamide gel electrophoresis of Triton X-100 (1%) nonextractable proteins. After 2-5 minutes, PTH caused a rapid and transient decrease of 50-60% in polymerized actin and myosin associated with the Triton X-100 nonextractable cytoskeleton. Polymerized actin returned to control levels by 30 min. The PTH effect was dose-dependent with an IC50 of about 1 nM, and was partially inhibited by the (3-34) PTH antagonist. PTH caused a rapid transient rise in cyclic AMP (cAMP) in these cells that peaked at 4 min, while the nadir in cytoskeletal actin and myosin was recorded around 5 min. The intracellular calcium chelator Quin-2/AM (10 microM) also decreased cytoskeletal actin and myosin, to the same extent as did PTH (100 nM). To distinguish between cAMP elevation and Ca++ reduction as mediators of PTH action, we measured the phosphorylation of the 20 kD (PI 4.9) myosin light chain in cells preincubated with [32P]-orthophosphate. The phosphorylation of this protein decreased within 2-3 min after PTH addition and returned to control levels after 5 min. The calcium ionophore A-23187 did not antagonize this PTH effect. Visualization of microfilaments with rhodamine-conjugated phalloidin showed that PTH altered the cytoskeleton by decreasing the number of stress fibers. These changes in the cytoskeleton paralleled changes in the shape of the cells from a spread configuration to a stellate form with retracting processes. The above findings indicate that the alteration in osteoblast shape produced by PTH involve relatively rapid and transient changes in cytoskeletal organization that appear to be mediated by cAMP

  13. Myocardial gene expression of microRNA-133a and myosin heavy and light chains, in conjunction with clinical parameters, predict regression of left ventricular hypertrophy after valve replacement in patients with aortic stenosis.

    Science.gov (United States)

    Villar, Ana V; Merino, David; Wenner, Mareike; Llano, Miguel; Cobo, Manuel; Montalvo, Cecilia; García, Raquel; Martín-Durán, Rafael; Hurlé, Juan M; Hurlé, María A; Nistal, J Francisco

    2011-07-01

    Left ventricular (LV) reverse remodelling after valve replacement in aortic stenosis (AS) has been classically linked to the hydraulic performance of the replacement device, but myocardial status at the time of surgery has received little attention. To establish predictors of LV mass (LVM) regression 1 year after valve replacement in a surgical cohort of patients with AS based on preoperative clinical and echocardiographic parameters and the myocardial gene expression profile at surgery. Transcript levels of remodelling-related proteins and regulators were determined in LV intraoperative biopsies from 46 patients with AS by RT-PCR. Using multiple linear regression analysis, an equation was developed (adjusted R²=0.73; pregression analysis identified microRNA-133a as a significant positive predictor of LVM normalisation, whereas β-myosin heavy chain and BMI constituted negative predictors. Hypertrophy regression 1 year after pressure overload release is related to the preoperative myocardial expression of remodelling-related genes, in conjunction with the patient's clinical background. In this scenario, miR-133 emerges as a key element of the reverse remodelling process. Postoperative improvement of valve haemodynamics does not predict the degree of hypertrophy regression or LVM normalisation. These results led us to reconsider the current reverse remodelling paradigm and (1) to include criteria of hypertrophy reversibility in the decision algorithm used to decide timing for the operation; and (2) to modify other prevailing factors (overweight, diabetes, etc) known to maintain LV hypertrophy.

  14. ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space and Planetary Physics, 2435 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H. [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T., E-mail: mjweberg@umich.edu, E-mail: thomasz@umich.edu, E-mail: slepri@umich.edu [Associate Research Scientist, 2417 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2012-11-20

    We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to {approx}25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997 (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.

  15. ACE/SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Weberg, Micah J.; Zurbuchen, Thomas H.; Lepri, Susan T.

    2012-01-01

    We present the first in situ observations of heavy ion dropouts within the slow solar wind, observed for select elements ranging from helium to iron. For iron, these dropouts manifest themselves as depletions of the Fe/H ratio by factors up to ∼25. The events often exhibit mass-dependent fractionation and are contained in slow, unsteady wind found within a few days from known stream interfaces. We propose that such dropouts are evidence of gravitational settling within large coronal loops, which later undergo interchange reconnection and become source regions of slow, unsteady wind. Previously, spectroscopic studies by Raymond et al. in 1997 (and later Feldman et al. in 1999) have yielded strong evidence for gravitational settling within these loops. However, their expected in situ signature plasma with heavy elements fractionated by mass was not observed prior to this study. Using data from the SWICS instrument on board the Advanced Composition Explorer (ACE), we investigate the composition of the solar wind within these dropouts and explore long term trends over most of a solar cycle.

  16. Slow neutron scattering by water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Stancic, V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1970-07-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  17. Slow neutron scattering by water molecules

    International Nuclear Information System (INIS)

    Stancic, V.

    1970-01-01

    In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)

  18. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium

    Directory of Open Access Journals (Sweden)

    D.V. Vassallo

    2008-09-01

    Full Text Available Lead (Pb2+ poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM to the bath. Changes in rate of stimulation (0.1-1.5 Hz, relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM, and the effect of isoproterenol (20 ng/mL were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.

  19. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    Science.gov (United States)

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  20. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  1. Immunogenicity and Protective Efficacy of Brugia malayi Heavy Chain Myosin as Homologous DNA, Protein and Heterologous DNA/Protein Prime Boost Vaccine in Rodent Model.

    Directory of Open Access Journals (Sweden)

    Jyoti Gupta

    Full Text Available We earlier demonstrated the immunoprophylactic efficacy of recombinant heavy chain myosin (Bm-Myo of Brugia malayi (B. malayi in rodent models. In the current study, further attempts have been made to improve this efficacy by employing alternate approaches such as homologous DNA (pcD-Myo and heterologous DNA/protein prime boost (pcD-Myo+Bm-Myo in BALB/c mouse model. The gene bm-myo was cloned in a mammalian expression vector pcDNA 3.1(+ and protein expression was confirmed in mammalian Vero cell line. A significant degree of protection (79.2%±2.32 against L3 challenge in pcD-Myo+Bm-Myo immunized group was observed which was much higher than that exerted by Bm-Myo (66.6%±2.23 and pcD-Myo (41.6%±2.45. In the heterologous immunized group, the percentage of peritoneal leukocytes such as macrophages, neutrophils, B cells and T cells marginally increased and their population augmented further significantly following L3 challenge. pcD-Myo+Bm-Myo immunization elicited robust cellular and humoral immune responses as compared to pcD-Myo and Bm-Myo groups as evidenced by an increased accumulation of CD4+, CD8+ T cells and CD19+ B cells in the mouse spleen and activation of peritoneal macrophages. Though immunized animals produced antigen-specific IgG antibodies and isotypes, sera of mice receiving pcD-Myo+Bm-Myo or Bm-Myo developed much higher antibody levels than other groups and there was profound antibody-dependent cellular adhesion and cytotoxicity (ADCC to B. malayi infective larvae (L3. pcD-Myo+Bm-Myo as well as Bm-Myo mice generated a mixed T helper cell phenotype as evidenced by the production of both pro-inflammatory (IL-2, IFN-γ and anti-inflammatory (IL-4, IL-10 cytokines. Mice receiving pcD-Myo on contrary displayed a polarized pro-inflammatory immune response. The findings suggest that the priming of animals with DNA followed by protein booster generates heightened and mixed pro- and anti-inflammatory immune responses that are capable of

  2. Lack of replication for the myosin-18B association with mathematical ability in independent cohorts.

    Science.gov (United States)

    Pettigrew, K A; Fajutrao Valles, S F; Moll, K; Northstone, K; Ring, S; Pennell, C; Wang, C; Leavett, R; Hayiou-Thomas, M E; Thompson, P; Simpson, N H; Fisher, S E; Whitehouse, A J O; Snowling, M J; Newbury, D F; Paracchini, S

    2015-04-01

    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N = 3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  3. Double phosphorylation of the myosin regulatory light chain during rigor mortis of bovine Longissimus muscle.

    Science.gov (United States)

    Muroya, Susumu; Ohnishi-Kameyama, Mayumi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Chikuni, Koichi

    2007-05-16

    To investigate changes in myosin light chains (MyLCs) during postmortem aging of the bovine longissimus muscle, we performed two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The results of fluorescent differential gel electrophoresis showed that two spots of the myosin regulatory light chain (MyLC2) at pI values of 4.6 and 4.7 shifted toward those at pI values of 4.5 and 4.6, respectively, by 24 h postmortem when rigor mortis was completed. Meanwhile, the MyLC1 and MyLC3 spots did not change during the 14 days postmortem. Phosphoprotein-specific staining of the gels demonstrated that the MyLC2 proteins at pI values of 4.5 and 4.6 were phosphorylated. Furthermore, possible N-terminal region peptides containing one and two phosphoserine residues were detected in each mass spectrum of the MyLC2 spots at pI values of 4.5 and 4.6, respectively. These results demonstrated that MyLC2 became doubly phosphorylated during rigor formation of the bovine longissimus, suggesting involvement of the MyLC2 phosphorylation in the progress of beef rigor mortis. Bovine; myosin regulatory light chain (RLC, MyLC2); phosphorylation; rigor mortis; skeletal muscle.

  4. Slow Light Using Electromagnetically Induced Transparency from Spin Coherence in [110] Strained Quantum Wells

    Science.gov (United States)

    Chang, Shu-Wei; Chang-Hasnain, Connie J.; Wang, Hailin

    2005-03-01

    The electromagnetically induced transparency from spin coherence has been proposed in [001] quantum wells recently. [1] The spin coherence is a potential candidate to demonstrate semiconductor-based slow light at room temperature. However, the spin coherence time is not long enough to demonstrate a significant slowdown factor in [001] quantum wells. Further, the required transition of light-hole excitons lies in the absorption of heavy-hole continuum states. The extra dephasing and absorption from these continuum states are drawbacks for slow light. Here, we propose to use [110] strained quantum wells instead of [001] quantum wells. The long spin relaxation time in [110] quantum wells at room temperature, and thus more robust spin coherence, [2] as well as the strain-induced separation [3, 4] of the light-hole exciton transition from the heavy-hole continuum absorption can help to slow down light in quantum wells. [1] T. Li, H. Wang, N. H. Kwong, and R. Binder, Opt. Express 11, 3298 (2003). [2] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). [3] C. Y. P. Chao and S. L. Chuang, Phys. Rev. B 46, 4110 (1992). [4] C. Jagannath, E. S. Koteles, J. Lee, Y. J. Chen, B. S. Elman, and J. Y. Chi, Phys. Rev. B 34, 7027 (1986).

  5. Disintegration of photoemulsion nuclei in 32 GeV/c muon inelastic scattering at small angles. Slow particle emission

    International Nuclear Information System (INIS)

    Rabin, N.V.

    1988-01-01

    Energy, angular and correlation characteristics of slow particles, ≤30 MeV/nucleon emitted in the reaction of 32 GeV/c muon inelastic scattering by photoemulsion heavy nuclei, A≅100, at small values of transfered four momentum square, Q 2 ≅0.1 (GeV/c) 2 , are analyzed. Arguments for formation of multiparticle moving excited cluster in muon events are presented: explanation of observed characteristics of slow particles in the framework of statistic theory is possible if it is assumed that cluster forms initially in the reaction, and then formation of moving excited nucleus - the main source of slow particles - takes place during cluster interaction with nucleus-target. Possibility of formation of other preequilibrium sources of slow particles is mentioned

  6. Allosteric communication in myosin V: from small conformational changes to large directed movements.

    Directory of Open Access Journals (Sweden)

    M Cecchini

    Full Text Available The rigor to post-rigor transition in myosin, a consequence of ATP binding, plays an essential role in the Lymn-Taylor functional cycle because it results in the dissociation of the actomyosin complex after the powerstroke. On the basis of the X-ray structures of myosin V, we have developed a new normal mode superposition model for the transition path between the two states. Rigid-body motions of the various subdomains and specific residues at the subdomain interfaces are key elements in the transition. The allosteric communication between the nucleotide binding site and the U50/L50 cleft is shown to result from local changes due to ATP binding, which induce large amplitude motions that are encoded in the structure of the protein. The triggering event is the change in the interaction of switch I and the P-loop, which is stabilized by ATP binding. The motion of switch I, which is a relatively rigid element of the U50 subdomain, leads directly to a partial opening of the U50/L50 cleft; the latter is expected to weaken the binding of myosin to actin. The calculated transition path demonstrates the nature of the subdomain coupling and offers an explanation for the mutual exclusion of ATP and actin binding. The mechanism of the uncoupling of the converter from the motor head, an essential part of the transition, is elucidated. The origin of the partial untwisting of the central beta-sheet in the rigor to post-rigor transition is described.

  7. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.

    Science.gov (United States)

    Bunda, Jordan; Gittings, William; Vandenboom, Rene

    2018-01-30

    Phosphorylation of the myosin regulatory light chain (RLC) by skeletal myosin light chain kinase (skMLCK) potentiates rodent fast twitch muscle but is an ATP-requiring process. Our objective was to investigate the effect of skMLCK-catalyzed RLC phosphorylation on the energetic cost of contraction and the contractile economy (ratio of mechanical output to metabolic input) of mouse fast twitch muscle in vitro (25°C). To this end, extensor digitorum longus (EDL) muscles from wild-type (WT) and from skMLCK-devoid (skMLCK -/- ) mice were subjected to repetitive low-frequency stimulation (10 Hz for 15 s) to produce staircase potentiation of isometric twitch force, after which muscles were quick frozen for determination of high-energy phosphate consumption (HEPC). During stimulation, WT muscles displayed significant potentiation of isometric twitch force while skMLCK -/- muscles did not (i.e. 23% versus 5% change, respectively). Consistent with this, RLC phosphorylation was increased ∼3.5-fold from the unstimulated control value in WT but not in skMLCK -/- muscles. Despite these differences, the HEPC of WT muscles was not greater than that of skMLCK -/- muscles. As a result of the increased contractile output relative to HEPC, the calculated contractile economy of WT muscles was greater than that of skMLCK -/- muscles. Thus, our results suggest that skMLCK-catalyzed phosphorylation of the myosin RLC increases the contractile economy of WT mouse EDL muscle compared with skMLCK -/- muscles without RLC phosphorylation. © 2018. Published by The Company of Biologists Ltd.

  8. Clinical assessment of serum myosin light chain I in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Tsuda, Takashi; Izumi, Tohru; Shibata, Akira (Niigata Univ. (Japan). School of Medicine)

    1992-08-01

    Serum cardiac myosin light chain I (LCI) levels were quantitated using a radioimmunoassay kit in patients suspected of dilated cardiomyopathy (DCM). In this study, 55 patients were evaluated between 1986 and 1991. They were composed of 40 males and 15 females, and their age was 27-75 years (51[+-]11 years). The patients with renal dysfunction were excluded due to their serum creatinine levels (>2.0 mg/dl). After cardiac catheterization, endomyocardial biopsy and echocardiography, 44 patients were diagnosed as DCM, 2 as ischemic heart disease, 2 as chronic myocarditis, 1 as restrictive cardiomyopathy, 1 as dilated hypertrophic cardiomyopathy, 1 as cardiac amyloidosis, 2 as myopathy, 1 as polymyositis and 1 as hypothyroidism. Only two patients with DCM had elevated LCI. Besides, two patients with myopathy or hypothyroidism had elevated LCI. In the follow-up, one patient died suddenly 6 months later and another showed normal value of LCI four years later. LCI elevation in DCM was not related to either the severity of heart failure or cardiac function and it showed no finding of [sup 201]Tl myocardial defect or elevated CPK. The mechanism for elevated LCI in myopathy is related to a crossreaction with myosin light chain in the skeletal muscle. In hypothyroidism, it may be related to decreased clearance of normal LCI concentration or increased myosin light chain from damaged skeletal muscle. In conclusion, it is evident that the measurement of LCI is not helpful in clinical assessment of patients with DCM, but may be useful in detection of secondary cardiomyopathy. (author).

  9. Clinical assessment of serum myosin light chain I in patients with dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Tsuda, Takashi; Izumi, Tohru; Shibata, Akira

    1992-01-01

    Serum cardiac myosin light chain I (LCI) levels were quantitated using a radioimmunoassay kit in patients suspected of dilated cardiomyopathy (DCM). In this study, 55 patients were evaluated between 1986 and 1991. They were composed of 40 males and 15 females, and their age was 27-75 years (51±11 years). The patients with renal dysfunction were excluded due to their serum creatinine levels (>2.0 mg/dl). After cardiac catheterization, endomyocardial biopsy and echocardiography, 44 patients were diagnosed as DCM, 2 as ischemic heart disease, 2 as chronic myocarditis, 1 as restrictive cardiomyopathy, 1 as dilated hypertrophic cardiomyopathy, 1 as cardiac amyloidosis, 2 as myopathy, 1 as polymyositis and 1 as hypothyroidism. Only two patients with DCM had elevated LCI. Besides, two patients with myopathy or hypothyroidism had elevated LCI. In the follow-up, one patient died suddenly 6 months later and another showed normal value of LCI four years later. LCI elevation in DCM was not related to either the severity of heart failure or cardiac function and it showed no finding of 201 Tl myocardial defect or elevated CPK. The mechanism for elevated LCI in myopathy is related to a crossreaction with myosin light chain in the skeletal muscle. In hypothyroidism, it may be related to decreased clearance of normal LCI concentration or increased myosin light chain from damaged skeletal muscle. In conclusion, it is evident that the measurement of LCI is not helpful in clinical assessment of patients with DCM, but may be useful in detection of secondary cardiomyopathy. (author)

  10. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  11. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  12. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O.; Van Beuzekom, Martin; Bien, A.; Bifani, S.; Bird, T.D.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. H. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph; Chefdeville, M.; Chen, S.; Cheung, S-F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Counts, I.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; CruzTorres, M.; Cunliffe, S.; Currie, C.R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; de Miranda, J. M.; Paula, L.E.; da-Silva, W.S.; De Simone, P.; Dean, C-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; ElRifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T. M.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, Mark; Fontanelli, F.; Forty, R.; De Aguiar Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Torreira, A. Gallas; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garofoli, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Carvalho-Gaspar, M.; Gauld, Rhorry; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T. J.; Ghez, Ph; Gianelle, A.; Giani, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.Q.; Gotti, C.; Gandara, M. Grabalosa; Diaz, R. Graciani; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, H.M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D. E.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M. H.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.M.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G. D.; Lai, A.; Lambert, D.M.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T. E.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, S.C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Maerki, R.; Marks, J.; Martellotti, G.; Martinelli-Boneschi, F.; Santos, D. Martinez; Martinez-Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; McSkelly, B.; Meadows, B. T.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M. N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, Karl; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, E.A.; Owen, R.P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L.L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, D.A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Olloqui, E. Picatoste; Pietrzyk, B.; Pilar, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, M. E.; Price, J.D.; Prisciandaro, J.; Pritchard, C.A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, Y.W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M.; dos Reis, A. C.; Ricciardi, S.; Richards, Jennifer S; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, L.E.T.; Perez, P. Rodriguez; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, van Hapere; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, R. H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M. H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Coutinho, R. Silva; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; de Souza, D.K.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson-Moore, P.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M. N.; Todd, Jim; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, N.T.M.T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Garcia, M. Ubeda; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, M.J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, John; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M.P.; Williams, M.; Wilson, James F; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.J.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-01-01

    A search is performed for heavy long-lived charged particles using 3.0 fb(-1) of proton-proton collisions collected at √s = 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from

  13. Vascular O-GlcNAcylation augments reactivity to constrictor stimuli by prolonging phosphorylated levels of the myosin light chain

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V.V. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil); Lobato, N.S.; Filgueira, F.P. [Curso de Medicina, Setor de Fisiologia Humana, Universidade Federal de Goiás, Jataí, GO (Brazil); Webb, R.C. [Department of Physiology, Georgia Regents University, Augusta, GA (United States); Tostes, R.C. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Giachini, F.R. [Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Barra do Garças, MT (Brazil)

    2014-08-15

    O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca{sup 2+}/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.

  14. Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates

    Czech Academy of Sciences Publication Activity Database

    Kahle, Michal; Přidalová, Jarmila; Špaček, M.; Dzijak, Rastislav; Hozák, Pavel

    2007-01-01

    Roč. 127, č. 2 (2007), s. 139-184 ISSN 0948-6143 R&D Projects: GA ČR GA204/04/0108; GA AV ČR IAA5039202; GA MŠk LC545; GA ČR GD204/05/H023 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50520514 Keywords : Nuclear myosin I * Transcription * Chromatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.893, year: 2007

  15. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    Science.gov (United States)

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  16. Identification of novel mutations including a double mutation in patients with inherited cardiomyopathy by a targeted sequencing approach using the Ion Torrent PGM system.

    Science.gov (United States)

    Zhao, Yue; Cao, Hong; Song, Yindi; Feng, Yue; Ding, Xiaoxue; Pang, Mingjie; Zhang, Yunmei; Zhang, Hong; Ding, Jiahuan; Xia, Xueshan

    2016-06-01

    Inherited cardiomyopathy is the major cause of sudden cardiac death (SCD) and heart failure (HF). The disease is associated with extensive genetic heterogeneity; pathogenic mutations in cardiac sarcomere protein genes, cytoskeletal protein genes and nuclear envelope protein genes have been linked to its etiology. Early diagnosis is conducive to clinical monitoring and allows for presymptomatic interventions as needed. In the present study, the entire coding sequences and flanking regions of 12 major disease (cardiomyopathy)-related genes [namely myosin, heavy chain 7, cardiac muscle, β (MYH7); myosin binding protein C, cardiac (MYBPC3); lamin A/C (LMNA); troponin I type 3 (cardiac) (TNNI3); troponin T type 2 (cardiac) (TNNT2); actin, α, cardiac muscle 1 (ACTC1); tropomyosin 1 (α) (TPM1); sodium channel, voltage gated, type V alpha subunit (SCN5A); myosin, light chain 2, regulatory, cardiac, slow (MYL2); myosin, heavy chain 6, cardiac muscle, α (MYH6); myosin, light chain 3, alkali, ventricular, skeletal, slow (MYL3); and protein kinase, AMP-activated, gamma 2 non-catalytic subunit  (PRKAG2)] in 8 patients with dilated cardiomyopathy (DCM) and in 8 patients with hypertrophic cardiomyopathy (HCM) were amplified and then sequenced using the Ion Torrent Personal Genome Machine (PGM) system. As a result, a novel heterozygous mutation (MYH7, p.Asn885Thr) and a variant of uncertain significance (TNNT2, p.Arg296His) were identified in 2 patients with HCM. These 2 missense mutations, which were absent in the samples obtained from the 200 healthy control subjects, altered the amino acid that was evolutionarily conserved among a number of vertebrate species; this illustrates that these 2 non-synonymous mutations play a role in the pathogenesis of HCM. Moreover, a double heterozygous mutation (PRKAG2, p.Gly100Ser plus MYH7, p.Arg719Trp) was identified in a patient with severe familial HCM, for the first time to the best of our

  17. Sarcomere lattice geometry influences cooperative myosin binding in muscle.

    Directory of Open Access Journals (Sweden)

    Bertrand C W Tanner

    2007-07-01

    Full Text Available In muscle, force emerges from myosin binding with actin (forming a cross-bridge. This actomyosin binding depends upon myofilament geometry, kinetics of thin-filament Ca(2+ activation, and kinetics of cross-bridge cycling. Binding occurs within a compliant network of protein filaments where there is mechanical coupling between myosins along the thick-filament backbone and between actin monomers along the thin filament. Such mechanical coupling precludes using ordinary differential equation models when examining the effects of lattice geometry, kinetics, or compliance on force production. This study uses two stochastically driven, spatially explicit models to predict levels of cross-bridge binding, force, thin-filament Ca(2+ activation, and ATP utilization. One model incorporates the 2-to-1 ratio of thin to thick filaments of vertebrate striated muscle (multi-filament model, while the other comprises only one thick and one thin filament (two-filament model. Simulations comparing these models show that the multi-filament predictions of force, fractional cross-bridge binding, and cross-bridge turnover are more consistent with published experimental values. Furthermore, the values predicted by the multi-filament model are greater than those values predicted by the two-filament model. These increases are larger than the relative increase of potential inter-filament interactions in the multi-filament model versus the two-filament model. This amplification of coordinated cross-bridge binding and cycling indicates a mechanism of cooperativity that depends on sarcomere lattice geometry, specifically the ratio and arrangement of myofilaments.

  18. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11)

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  19. Identification and molecular modelling of a mutation in the motor head domain of myosin VIIA in a family with autosomal dominant hearing impairment (DFNA11).

    NARCIS (Netherlands)

    Luijendijk, M.W.J.; Wijk, E. van; Bischoff, A.M.L.C.; Krieger, E.; Huygen, P.L.M.; Pennings, R.J.E.; Brunner, H.G.; Cremers, C.W.R.J.; Cremers, F.P.M.; Kremer, J.M.J.

    2004-01-01

    Myosin VIIA is an unconventional myosin that has been implicated in Usher syndrome type 1B, atypical Usher syndrome, non-syndromic autosomal recessive hearing impairment (DFNB2) and autosomal dominant hearing impairment (DFNA11). Here, we present a family with non-syndromic autosomal dominant

  20. Maintenance of muscle myosin levels in adult C. elegans requires both the double bromodomain protein BET-1 and sumoylation

    Directory of Open Access Journals (Sweden)

    Kate Fisher

    2013-10-01

    Attenuation of RAS-mediated signalling is a conserved process essential to control cell proliferation, differentiation, and apoptosis. Cooperative interactions between histone modifications such as acetylation, methylation and sumoylation are crucial for proper attenuation in C. elegans, implying that the proteins recognising these histone modifications could also play an important role in attenuation of RAS-mediated signalling. We sought to systematically identify these proteins and found BET-1. BET-1 is a conserved double bromodomain protein that recognises acetyl-lysines on histone tails and maintains the stable fate of various lineages. Unexpectedly, adults lacking both BET-1 and SUMO-1 are depleted of muscle myosin, an essential component of myofibrils. We also show that this muscle myosin depletion does not occur in all animals at a specific time, but rather that the penetrance of the phenotype increases with age. To gain mechanistic insights into this process, we sought to delay the occurrence of the muscle myosin depletion phenotype and found that it requires caspase activity and MEK-dependent signalling. We also performed transcription profiling on these mutants and found an up-regulation of the FGF receptor, egl-15, a tyrosine kinase receptor acting upstream of MEK. Consistent with a MEK requirement, we could delay the muscle phenotype by systemic or hypodermal knock down of egl-15. Thus, this work uncovered a caspase- and MEK-dependent mechanism that acts specifically on ageing adults to maintain the appropriate net level of muscle myosin.

  1. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.; Rayment, Ivan (UW)

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.

  2. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael

    2009-01-01

    years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles......The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  3. Features of hydrotreating catalytic cracking feed and heavy slow coking gas oils

    Energy Technology Data Exchange (ETDEWEB)

    Yefremov, N.I.; Kushnarev, D.F.; Frolov, P.A.; Chagovets, A.N.; Kalabin, G.A.

    1993-12-31

    A possible means of more extensive processing of crude oil is the use, in catalytic cracking, of heavy coking gas oils (HCGOs), a feature of which is a higher content of polycyclic aromatic compounds and resins by comparison with straight-run vacuum distillates. The presence of these compounds in catalytic cracking feed causes a reduction in the product yield and increased coke formation. Therefore, one of the problems of hydrotreating feedstock of this kind is the hydrogenation of polycyclic arenes. Processes of extensive desulphurization and denitration occur in parallel, since the sulphur and nitrogen compounds of HCGO are chiefly condensed benzoderivatives of thiophene, pyridine and carbazole, and largely concentrated in heavy aromatic and resinous fractions. The composition of the saturated part of the cracking feed plays a large role in achieving the optimum yields of gaseous and gasoline fractions. Thus an increase in the proportion of cyclanes in the feed raises the gasoline yield. In this way, an investigation of the hydrocarbon conversions during the hydrotreatment of cracking feed is of great importance. The present paper sets out the results for studying the change in the group-structural characteristics of the hydrogenation products of a mixture containing 30% HCGOs according to data of {sup 1}H and {sup 13}C NMR spectroscopy. 7 refs., 7 figs., 1 tab.

  4. The local expression of adult chicken heart myosins during development. II. Ventricular conducting tissue

    NARCIS (Netherlands)

    Sanders, E.; de Groot, I. J.; Geerts, W. J.; de Jong, F.; van Horssen, A. A.; Los, J. A.; Moorman, A. F.

    1986-01-01

    The development of the ventricular conducting tissue of the embryonic chicken heart has been studied using a previous finding that morphologically recognizable atrial conducting tissue coexpresses the atrial and the ventricular myosin isoforms. It is found that, by these criteria, at 9 days part of

  5. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. All-trans retinoic acid increases the expression of oxidative myosin heavy chain through the PPARδ pathway in bovine muscle cells derived from satellite cells.

    Science.gov (United States)

    Kim, Jongkyoo; Wellmann, Kimberly B; Smith, Zachary K; Johnson, Bradley J

    2018-04-24

    All-trans retinoic acid (ATRA) has been associated with various physiological phenomenon in mammalian adipose tissue and skeletal muscle. We hypothesized that ATRA may affect skeletal muscle fiber type in bovine satellite cell culture through various transcriptional processes. Bovine primary satellite cell (BSC) culture experiments were conducted to determine dose effects of ATRA on expression of genes and protein levels related to skeletal muscle fiber type and metabolism. The semimembranosus from crossbred steers (n = 2 steers), aged approximately 24 months, were used to isolate BSC for 3 separate assays. Myogenic differentiation was induced using 3% horse serum upon cultured BSC with increasing doses (0, 1, 10, 100, 1000 nM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of protein kinase B (Akt), AMP-activated protein kinase alpha (AMPK), glucose transporter 4 (GLUT4), myogenin, lipoprotein lipase (LPL), myosin heavy chain (MHC) I, MHC IIA,MHC IIX, insulin like growth factor -1 (IGF-1), Peroxisome proliferator activated receptor gamma (PPARγ), PPARδ, and Smad transcription factor 3 (SMAD3) mRNA relative to ribosomal protein subunit 9 (RPS9). The mRNA expression of LPL was increased (P < 0.05) with 100 and 1000nM of ATRA. Expression of GLUT4 was altered (P < 0.05) by ATRA. The treatment of ATRA (1000nM) also increased (P < 0.05) mRNA gene expression of SMAD3. The gene expression of both PPARδ and PPARγ were increased (P < 0.05) with 1000nM of ATRA. Protein level of PPARδ was also affected (P < 0.05) by 1000nM of ATRA and resulted in a greater (P < 0.05) protein level of PPARδ compared to CON. All-trans retinoic acid (10nM) increased gene expression of MHC I (P < 0.05) compared to CON. Expression of MHC IIA was also influenced (P < 0.05) by ATRA. The mRNA expression of MHC IIX was decreased (P < 0.05) with 100 and 1000nM of ATRA.In muscle cells, ATRA may cause muscle fibers to transition towards the MHC

  7. Effect of pedaling rates and myosin heavy chain composition in the vastus lateralis muscle on the power generating capability during incremental cycling in humans.

    Science.gov (United States)

    Majerczak, J; Szkutnik, Z; Duda, K; Komorowska, M; Kolodziejski, L; Karasinski, J; Zoladz, J A

    2008-01-01

    In this study, we have determined power output reached at maximal oxygen uptake during incremental cycling exercise (P(I, max)) performed at low and at high pedaling rates in nineteen untrained men with various myosin heavy chain composition (MyHC) in the vastus lateralis muscle. On separate days, subjects performed two incremental exercise tests until exhaustion at 60 rev min(-1) and at 120 rev min(-1). In the studied group of subjects P(I, max) reached during cycling at 60 rev min(-1) was significantly higher (p=0.0001) than that at 120 rev min(-1) (287+/-29 vs. 215+/-42 W, respectively for 60 and 120 rev min(-1)). For further comparisons, two groups of subjects (n=6, each) were selected according to MyHC composition in the vastus lateralis muscle: group H with higher MyHC II content (56.8+/-2.79 %) and group L with lower MyHC II content in this muscle (28.6+/-5.8 %). P(I, max) reached during cycling performed at 60 rev min(-1) in group H was significantly lower than in group L (p=0.03). However, during cycling at 120 rev min(-1), there was no significant difference in P(I, max) reached by both groups of subjects (p=0.38). Moreover, oxygen uptake (VO(2)), blood hydrogen ion [H(+)], plasma lactate [La(-)] and ammonia [NH(3)] concentrations determined at the four highest power outputs completed during the incremental cycling performed at 60 as well as 120 rev min(-1), in the group H were significantly higher than in group L. We have concluded that during an incremental exercise performed at low pedaling rates the subjects with lower content of MyHC II in the vastus lateralis muscle possess greater power generating capabilities than the subjects with higher content of MyHC II. Surprisingly, at high pedaling rate, power generating capabilities in the subjects with higher MyHC II content in the vastus lateralis muscle did not differ from those found in the subjects with lower content of MyHC II in this muscle, despite higher blood [H(+)], [La(-)] and [NH(3

  8. The 133-kDa N-terminal domain enables myosin 15 to maintain mechanotransducing stereocilia and is essential for hearing

    Science.gov (United States)

    Fang, Qing; Indzhykulian, Artur A; Mustapha, Mirna; Riordan, Gavin P; Dolan, David F; Friedman, Thomas B; Belyantseva, Inna A; Frolenkov, Gregory I; Camper, Sally A; Bird, Jonathan E

    2015-01-01

    The precise assembly of inner ear hair cell stereocilia into rows of increasing height is critical for mechanotransduction and the sense of hearing. Yet, how the lengths of actin-based stereocilia are regulated remains poorly understood. Mutations of the molecular motor myosin 15 stunt stereocilia growth and cause deafness. We found that hair cells express two isoforms of myosin 15 that differ by inclusion of an 133-kDa N-terminal domain, and that these isoforms can selectively traffic to different stereocilia rows. Using an isoform-specific knockout mouse, we show that hair cells expressing only the small isoform remarkably develop normal stereocilia bundles. However, a critical subset of stereocilia with active mechanotransducer channels subsequently retracts. The larger isoform with the 133-kDa N-terminal domain traffics to these specialized stereocilia and prevents disassembly of their actin core. Our results show that myosin 15 isoforms can navigate between functionally distinct classes of stereocilia, and are independently required to assemble and then maintain the intricate hair bundle architecture. DOI: http://dx.doi.org/10.7554/eLife.08627.001 PMID:26302205

  9. A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads.

    Science.gov (United States)

    Iwaki, M; Wickham, S F; Ikezaki, K; Yanagida, T; Shih, W M

    2016-12-12

    Mechanosensitive biological nanomachines such as motor proteins and ion channels regulate diverse cellular behaviour. Combined optical trapping with single-molecule fluorescence imaging provides a powerful methodology to clearly characterize the mechanoresponse, structural dynamics and stability of such nanomachines. However, this system requires complicated experimental geometry, preparation and optics, and is limited by low data-acquisition efficiency. Here we develop a programmable DNA origami nanospring that overcomes these issues. We apply our nanospring to human myosin VI, a mechanosensory motor protein, and demonstrate nanometre-precision single-molecule fluorescence imaging of the individual motor domains (heads) under force. We observe force-induced transitions of myosin VI heads from non-adjacent to adjacent binding, which correspond to adapted roles for low-load and high-load transport, respectively. Our technique extends single-molecule studies under force and clarifies the effect of force on biological processes.

  10. Potential surfaces in symmetric heavy-ion reactions

    International Nuclear Information System (INIS)

    Royer, G.; Piller, C.; Mignen, J.; Raffray, Y.

    1989-01-01

    The entrance channel in symmetric heavy-ion reactions is studied in the liquid-drop model approach including the nuclear proximity energy and allowing ellipsoidal deformations of the colliding nuclei. In the whole mass range a sudden transition occurs from oblate to prolate shapes when the proximity forces become important. This strongly affects the effective moment of inertia. The ellipsoidal deformations reduce the fusion barrier width for light systems and lower the potential barrier height for medium and heavy nuclei. The results are in agreement with the empirical effective barrier shift determined by Aguiar et al for the 58 Ni + 58 Ni, 74 Ge + 74 Ge and 80 Se + 80 Se systems. The sub-barrier fusion enhancement in heavy-ion reactions might be explained by the slowness of the process. Below the static fusion barrier, the reaction time is long; allowing some adiabaticity and deformations of the colliding ions. Above the barrier, the reaction is more sudden and the deformation degree of freedom is frozen

  11. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  12. The IQ motif drives the nuclear translocation of nuclear myosin I

    Czech Academy of Sciences Publication Activity Database

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Hozák, Pavel

    2008-01-01

    Roč. 275, č. 1 (2008), s. 67-67 E-ISSN 1742-4658. [FEBS Congress /33rd/, IUBMB conference /11th/. 28.06.2008-03.07.2008, Athens] R&D Projects: GA MŠk LC545; GA ČR(CZ) GA204/07/1592 Grant - others:GAČR(CZ) GD204/05/H023 Program:GD Institutional research plan: CEZ:AV0Z50520514 Keywords : nuclear myosin * nuclear transport Subject RIV: EB - Genetics ; Molecular Biology

  13. Technetium-99m labeling of antibodies to cardiac myosin Fab and to human fibrinogen

    International Nuclear Information System (INIS)

    Khaw, B.A.; Strauss, H.W.; Carvalho, A.; Locke, E.; Gold, H.K.; Haber, E.

    1982-01-01

    A method of labeling biologically active labile macromolecules, such as human fibrinogen (HF) and anticardiac-myosin Fab (AM-Fab), with Tc-99m at neutral pH was developed. This method uses dithionite reduction of pertechnetate and subsequent labeling to test the method with acid-labile macromolecules. Complexes of diethylene triamine pentaacetic acid with macromolecules such as human fibrinogen (D-HF) and anticardiac-myosin Fab (D-AM-Fab) were labeled and utilized in in vitro and in vivo studies. In biodistribution studies, the Tc-99m D-HF had a two-component blood clearance (half-times 1 hr and 15 hr) and was 80-88% coagulable. The Tc-99m AM-Fab retained its immunoreactivity as tested by affinity chromatography; also during in vivo localization in experimental myocardial infarction. This labeling technique provides an easy and efficient approach to the Tc-99m labeling of other biologically active and acid-labile macromolecules

  14. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  15. Amorphisation of boron carbide under slow heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: Dominique.gosset@cea.fr [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Miro, S. [CEA Saclay, DEN, DANS, DMN, SRMP, Laboratoire JANNUS, Université Paris-Saclay, 91191, Gif/Yvette (France); Doriot, S. [CEA Saclay, DEN, DANS, DMN, SRMA, LA2M, Université Paris-Saclay, 91191, Gif/Yvette (France); Moncoffre, N. [CNRS/IN2P3/IPNL, 69622, Villeurbanne (France)

    2016-08-01

    Boron carbide B{sub 4}C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B{sub 4}C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10{sup −2} displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  16. Slow Movement/Slow University: Critical Engagements. Introduction to the Thematic Section

    Directory of Open Access Journals (Sweden)

    Maggie O'Neill

    2014-09-01

    Full Text Available This thematic section emerged from two seminars that took place at Durham University in England in November 2013 and March 2014 on the possibilities for thinking through what a change movement towards slow might mean for the University. Slow movements have emerged in relation to a number of topics: Slow food, Citta slow and more recently, slow science. What motivated us in the seminars was to explore how far these movements could help us address the acceleration and intensification of work within our own and other universities, and indeed, what new learning, research, philosophies, practices, structures and governance might emerge. This editorial introduction presents the concept of the "slow university" and introduces our critical engagements with slow. The articles presented here interrogate the potentialities, challenges, problems and pitfalls of the slow university in an era of corporate culture and management rationality. URN: http://nbn-resolving.de/urn:nbn:de:0114-fqs1403166

  17. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner.

    Science.gov (United States)

    Dzijak, Rastislav; Yildirim, Sukriye; Kahle, Michal; Novák, Petr; Hnilicová, Jarmila; Venit, Tomáš; Hozák, Pavel

    2012-01-01

    Nuclear myosin I (NM1) was the first molecular motor identified in the cell nucleus. Together with nuclear actin, they participate in crucial nuclear events such as transcription, chromatin movements, and chromatin remodeling. NM1 is an isoform of myosin 1c (Myo1c) that was identified earlier and is known to act in the cytoplasm. NM1 differs from the "cytoplasmic" myosin 1c only by additional 16 amino acids at the N-terminus of the molecule. This amino acid stretch was therefore suggested to direct NM1 into the nucleus. We investigated the mechanism of nuclear import of NM1 in detail. Using over-expressed GFP chimeras encoding for truncated NM1 mutants, we identified a specific sequence that is necessary for its import to the nucleus. This novel nuclear localization sequence is placed within calmodulin-binding motif of NM1, thus it is present also in the Myo1c. We confirmed the presence of both isoforms in the nucleus by transfection of tagged NM1 and Myo1c constructs into cultured cells, and also by showing the presence of the endogenous Myo1c in purified nuclei of cells derived from knock-out mice lacking NM1. Using pull-down and co-immunoprecipitation assays we identified importin beta, importin 5 and importin 7 as nuclear transport receptors that bind NM1. Since the NLS sequence of NM1 lies within the region that also binds calmodulin we tested the influence of calmodulin on the localization of NM1. The presence of elevated levels of calmodulin interfered with nuclear localization of tagged NM1. We have shown that the novel specific NLS brings to the cell nucleus not only the "nuclear" isoform of myosin I (NM1 protein) but also its "cytoplasmic" isoform (Myo1c protein). This opens a new field for exploring functions of this molecular motor in nuclear processes, and for exploring the signals between cytoplasm and the nucleus.

  18. Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation

    Science.gov (United States)

    Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin

    2012-01-01

    Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…

  19. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    Science.gov (United States)

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Connective tissue fibroblasts and Tcf4 regulate myogenesis

    Science.gov (United States)

    Mathew, Sam J.; Hansen, Jody M.; Merrell, Allyson J.; Murphy, Malea M.; Lawson, Jennifer A.; Hutcheson, David A.; Hansen, Mark S.; Angus-Hill, Melinda; Kardon, Gabrielle

    2011-01-01

    Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4GFPCre mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis. PMID:21177349

  1. Alfvénic turbulence in solar wind originating near coronal hole boundaries: heavy-ion effects?

    Directory of Open Access Journals (Sweden)

    B. Bavassano

    2006-03-01

    Full Text Available The mid-latitude phases of the Ulysses mission offer an excellent opportunity to investigate the solar wind originating near the coronal hole boundaries. Here we report on Alfvénic turbulence features, revealing a relevant presence of in-situ generated fluctuations, observed during the wind rarefaction phase that charaterizes the transition from fast to slow wind. Heavy-ion composition and magnetic field measurements indicate a strict time correspondence of the locally generated fluctuations with 1 the crossing of the interface between fast and slow wind and 2 the presence of strongly underwound magnetic field lines (with respect to the Parker spiral. Recent studies suggest that such underwound magnetic configurations correspond to fast wind magnetic lines that, due to footpoint motions at the Sun, have their inner leg transferred to slow wind and are stretched out by the velocity gradient. If this is a valid scenario, the existence of a magnetic connection across the fast-slow wind interface is a condition that, given the different state of the two kinds of wind, may favour the development of processes acting as local sources of turbulence. We suggest that heavy-ion effects could be responsible of the observed turbulence features.

  2. Novel angiotensin-converting enzyme (ACE) inhibitory peptides derived from boneless chicken leg meat.

    Science.gov (United States)

    Terashima, Masaaki; Baba, Takako; Ikemoto, Narumi; Katayama, Midori; Morimoto, Tomoko; Matsumura, Saki

    2010-06-23

    Four peptides that inhibit angiotensin-converting enzyme (ACE) were separated from the hydorlysate of boneless chicken leg meat digested with artificial gastric juice (pepsin). Two peptides were identified as the peptides encrypted in myosin heavy chain. The peptide P1 (MNVKHWPWMK) corresponds to the amino acid sequence from amino acids 825 to 834 of myosin heavy chain, and the peptide P4 (VTVNPYKWLP) corresponds to the amino acid sequence from amino acids 125 to 135 of myosin heavy chain. They are novel ACE inhibitory peptides derived from chicken, and IC(50) values of P1 and P4 were determined as 228 and 5.5 microM, respectively. Although these values were much larger than 0.022 microM for captopril, a typical synthetic ACE inhibitor, they are comparable to IC(50) values reported for various ACE inhibitory peptides derived from foods. Because the peptide P4 has a relatively low IC(50) value, it is a good starting substance for designing food supplements for hypertensive patients.

  3. Finding the Cell Center by a Balance of Dynein and Myosin Pulling and Microtubule Pushing: A Computational Study

    Science.gov (United States)

    Zhu, Jie; Burakov, Anton; Rodionov, Vladimir

    2010-01-01

    The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces—dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles—is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility. PMID:20980619

  4. Myosin light chain kinase knockout improves gut barrier function and confers a survival advantage in polymicrobial sepsis.

    Science.gov (United States)

    Lorentz, C Adam; Liang, Zhe; Meng, Mei; Chen, Ching-Wen; Yoseph, Benyam P; Breed, Elise R; Mittal, Rohit; Klingensmith, Nathan J; Farris, Alton B; Burd, Eileen M; Koval, Michael; Ford, Mandy L; Coopersmith, Craig M

    2017-06-07

    Sepsis-induced intestinal hyperpermeability is mediated by disruption of the epithelial tight junction, which is closely associated with the peri-junctional actin-myosin ring. Myosin light chain kinase (MLCK) phosphorylates the myosin regulatory light chain, resulting in increased permeability. The purpose of this study was to determine whether genetic deletion of MLCK would alter gut barrier function and survival from sepsis. MLCK -/- and wild type (WT) mice were subjected to cecal ligation and puncture and assayed for both survival and mechanistic studies. Survival was significantly increased in MLCK -/- mice (95% vs. 24%, p<0.0001). Intestinal permeability increased in septic WT mice compared to unmanipulated mice. In contrast, permeability in septic MLCK -/- mice was similar to that seen in unmanipulated animals. Improved gut barrier function in MLCK -/- mice was associated with increases in the tight junction mediators ZO-1 and claudin 15 without alterations in claudin 1, 2, 3, 4, 5, 7, 8, 13, occludin or JAM-A. Other components of intestinal integrity (apoptosis, proliferation and villus length) were unaffected by MLCK deletion as were local peritoneal inflammation and distant lung injury. Systemic IL-10 was decreased greater than 10-fold in MLCK -/- mice; however, survival was similar between septic MLCK -/- mice given exogenous IL-10 or vehicle. These data demonstrate that deletion of MLCK improves survival following sepsis, associated with normalization of intestinal permeability and selected tight junction proteins.

  5. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. /sup 99m/Tc labeling of antibodies to cardiac myosin Fab and to human fibrinogen

    International Nuclear Information System (INIS)

    Khaw, B.A.; Strauss, H.W.; Carvalho, A.; Locke, E.; Gold, H.K.; Haber, E.

    1982-01-01

    We have developed a method of labeling biologically active labile macromolecules, such as human fibrinogen (HF) and anticardiac-myosin Fab (AM-Fab), with /sup 99m/Tc at neutral pH. This method uses dithionite reduction of pertechnetate and subsequent labeling, to test the method with acid-labile macromolecules. Complexes of diethylene triamine pentaacetic acid with macromolecules such as human fibrinogen (D-HF) and anticardiac-myosin Fab (D-AM-Fab) were labeled and utilized in in vitro and in vivo studies. In biodistribution studies, the /sup 99m/Tc D-HF had a two-component blood clearance (half-times 1 hr and 15 hr) and was 80--88% coagulable. The /sup 99m/Tc AM-Fab retained its immunoreactivity as tested by affinity chromatography; also during in vivo localization in experimental myocardial infarction. This labeling technique provides an easy and efficient approach to the /sup 99m/Tc labeling of other biologically active and acid-labile macromolecules

  7. One-nucleon absorption of slow pions by atomic nuclei and π condensation

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Koldaev, M.V.; Chekunaev, N.I.

    1977-01-01

    Solved is a problem of one-nucleon absorption of slow pions by real nuclei. Without ion condensate one-nucleon absorption forbiddenness decreases due to nucleus finiteness, as nucleus finiteness results in nucleon momentum nonconservation. As a result one-nucleon absorption probability differs from a zero and equals the order of 10 -3 . Calculated is one-nucleon absorption probability in nuclear matter as well as in atomic nuclei due to π condensate existence. The condensate part is shown to be considerable in a finite system as well. For heavy nuclei the condensate presence results in this probability increase about 100 times. Experiments on one-nucleon absorption of slow pions may be critical to elucidate a question of π condensate presence in nuclear systems. In conclusion experimental data available on pion absorption are discussed and it is paid attention to the necessity of carrying out further experiments

  8. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia.

    Science.gov (United States)

    Weil, D; Levy, G; Sahly, I; Levi-Acobas, F; Blanchard, S; El-Amraoui, A; Crozet, F; Philippe, H; Abitbol, M; Petit, C

    1996-04-16

    The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.

  9. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  10. Momentum and mass relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gregoire, C.; Scheuter, F.; Remaud, B.; Sebille, F.

    1984-01-01

    The momentum and mass relaxation are shown to be described by transport equations. The momentum relaxation, which can be studied in the intermediate energy regime by the particle emissions, refers to a microscopic slowing down and diffusion process in the momentum space. The mass relaxation refers to the coupling of the collective mass asymmetry degree of freedom and the intrinsic system. It can be illustrated by the fast fission of light and very heavy systems

  11. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    Science.gov (United States)

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  12. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  13. Economic aspects of heavy ion fusion

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1984-01-01

    The usual parameter space for examining scenarios for heavy ion fusion power plants has generally been based on large, slow cycling, reactor chambers which are only marginally different from chambers proposed for laser drivers. This paper will examine the economic implications of assuming that an inexpensive, low gain pellet is available and that a suitable high-repetition rate reactor has been devised. Interesting scenarios are found that generate economically feasible power from a system with a minimum net capacity of approx. 1 GWe compared to the larger approx. 4 GWe required in previous studies

  14. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  15. Revealing the cluster of slow transients behind a large slow slip event.

    Science.gov (United States)

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  16. Age- and Activity-Related Differences in the Abundance of Myosin Essential and Regulatory Light Chains in Human Muscle

    Directory of Open Access Journals (Sweden)

    James N. Cobley

    2016-04-01

    Full Text Available Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM. We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.

  17. Cell differentiation through tissue elasticity-coupled, myosin-driven remodeling.

    Science.gov (United States)

    Zajac, Allison L; Discher, Dennis E

    2008-12-01

    Cells may lack eyes to see and ears to hear, but cells do seem to have a sense of 'touch' that allows them to feel their microenvironment. This is achieved in part through contractility coupled adhesion to physically flexible 'soft' tissue. Here we summarize some of the known variations in elasticity of solid tissue and review some of the long-term effects of cells 'feeling' this elasticity, focusing on differentiation processes of both committed cell types and stem cells. We then highlight what is known of molecular remodeling in cells under stress on short time scales. Key roles for forces generated by ubiquitous and essential myosin-II motors in feedback remodeling are emphasized throughout.

  18. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  19. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    Science.gov (United States)

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  20. Slow and fast fatigable frog muscle fibres: electrophysiological and histochemical characteristics.

    Science.gov (United States)

    Vydevska-Chichova, M; Mileva, K; Todorova, R; Dimitrova, M; Radicheva, N

    2005-12-01

    Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.

  1. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.

    2014-01-01

    human beta cardiac myosin S1. We also compare load-velocity curves for wild-type motors with load-velocity curves of mutant forms that cause hypertrophic or dilated-cardiomyopathy (HCM or DCM), in order to understand the effects of mutations on the contractile cycle at the single molecule level....

  2. A Collapsin Response Mediator Protein 2 Isoform Controls Myosin II-Mediated Cell Migration and Matrix Assembly by Trapping ROCK II

    Science.gov (United States)

    Morgan-Fisher, Marie; Wait, Robin; Couchman, John R.; Wewer, Ulla M.

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two binding domains but also trapped and inhibited the kinase. CRMP-2L protein levels profoundly affected haptotactic migration and the actin-myosin cytoskeleton of carcinoma cells as well as nontransformed epithelial cell migration in a ROCK activity-dependent manner. Moreover, the ectopic expression of CRMP-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions through the inhibition of ROCK II in nonneuronal cells. PMID:22431514

  3. Mathematical modeling of Myosin induced bistability of Lamellipodial fragments.

    Science.gov (United States)

    Hirsch, S; Manhart, A; Schmeiser, C

    2017-01-01

    For various cell types and for lamellipodial fragments on flat surfaces, externally induced and spontaneous transitions between symmetric nonmoving states and polarized migration have been observed. This behavior is indicative of bistability of the cytoskeleton dynamics. In this work, the Filament Based Lamellipodium Model (FBLM), a two-dimensional, anisotropic, two-phase continuum model for the dynamics of the actin filament network in lamellipodia, is extended by a new description of actin-myosin interaction. For appropriately chosen parameter values, the resulting model has bistable dynamics with stable states showing the qualitative features observed in experiments. This is demonstrated by numerical simulations and by an analysis of a strongly simplified version of the FBLM with rigid filaments and planar lamellipodia at the cell front and rear.

  4. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function.

    Science.gov (United States)

    Alamo, Lorenzo; Koubassova, Natalia; Pinto, Antonio; Gillilan, Richard; Tsaturyan, Andrey; Padrón, Raúl

    2017-10-01

    The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, "free" and "blocked", formed an asymmetric structure named the "interacting-heads motif" (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca 2+ -activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.

  5. Experimental study of the slowing down of heavy ions at 20 to 100 MeV per nucleon in matter

    International Nuclear Information System (INIS)

    Herault, J.

    1988-01-01

    The measurements of typical parameters on heavy ions penetration through matter presented in this work have been performed at the GANIL accelerator facility, using the LISE magnetic spectrometer from 20 to 100 MeV per nucleon. Two magnetic optical configurations of the spectrometer LISE corresponding respectively to energy and angle analysis, have been used. In the first configuration, the analysis of the energy loss distribution, caused by the interaction of the heavy ions beam with the target material, permit to determine the stopping power and the energy straggling. The stopping power is defined experimentally by the ratio of the average energy loss in the target to the thickness of this one. This quantity has been measured for a set of heavy ions ( 17 O, 40 Ar, 86 Kr and 132 Xe) in gaseous media (H 2 , He, N 2 , Ne, Ar, Kr, Xe, CH 4 , C 4 H 10 , CO 2 and CF 4 ) and compared to semi-empirical tabulations. These determinations are compared to those obtained in solid media to study the evolution of the solid-gas difference. This effect vanishes progressively when the projectile tends to be totally stripped (the charge state becomes identical to the atomic number). The heavy ion energy distributions at the exit of degraders and particularly their full width at half maximum have been measured for various projectiles ( 16 O, 40 Ar, 84 Kr, 86 Kr, 100 Mo and 132 Xe) in solid (Be, C, Al, Si, Ti, Ni, Cu, Ag, Ta, Au and Mylar) and gaseous media (the same as for stopping power determinations). A significant contribution of charge exchange straggling to the energy loss straggling is observed for partially stripped ions. A second optical configuration of the beam line LISE has been used, to obtain an image of heavy ions beams passing through targets for various heavy ions ( 16 O, 17 O, 40 Ar, 86 Kr and 100 Mo) in gaseous and solid media. The scaling law for angular straggling is confirmed and extended over five orders of magnitude [fr

  6. Slow briefs: slow food....slow architecture

    OpenAIRE

    Crotch, Joanna

    2012-01-01

    We are moving too fast…fast lives, fast cars, fast food…..and fast architecture. We are caught up in a world that allows no time to stop and think; to appreciate and enjoy all the really important things in our lives. Recent responses to this seemingly unstoppable trend are the growing movements of Slow Food and Cittaslow. Both initiatives are, within their own realms, attempting to reverse speed, homogeny, expediency and globalisation, considering the values of regionality, patience, craft, ...

  7. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition

    Directory of Open Access Journals (Sweden)

    Antonio Paoli

    2016-06-01

    Full Text Available The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM has never been investigated. We investigated the effects of resistance training (RT and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP or high protein diet (HP (NP 0.85 vs. HP 1.8 g of protein·kg−1·day−1. One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA, body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001, whole muscle CSA (p = 0.024, and single muscle fibers CSA (p < 0.05 of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005 and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  8. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs

    Science.gov (United States)

    Mackenzie, Amelia C.L.; Kyle, Diane D.; McGinnis, Lauren A.; Lee, Hyo J.; Aldana, Nathalia; Robinson, Douglas N.; Evans, Janice P.

    2016-01-01

    STUDY HYPOTHESIS Cellular aging of the egg following ovulation, also known as post-ovulatory aging, is associated with aberrant cortical mechanics and actomyosin cytoskeleton functions. STUDY FINDING Post-ovulatory aging is associated with dysfunction of non-muscle myosin-II, and pharmacologically induced myosin-II dysfunction produces some of the same deficiencies observed in aged eggs. WHAT IS KNOWN ALREADY Reproductive success is reduced with delayed fertilization and when copulation or insemination occurs at increased times after ovulation. Post-ovulatory aged eggs have several abnormalities in the plasma membrane and cortex, including reduced egg membrane receptivity to sperm, aberrant sperm-induced cortical remodeling and formation of fertilization cones at the site of sperm entry, and reduced ability to establish a membrane block to prevent polyspermic fertilization. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovulated mouse eggs were collected at 21–22 h post-human chorionic gonadotrophin (hCG) (aged eggs) or at 13–14 h post-hCG (young eggs), or young eggs were treated with the myosin light chain kinase (MLCK) inhibitor ML-7, to test the hypothesis that disruption of myosin-II function could mimic some of the effects of post-ovulatory aging. Eggs were subjected to various analyses. Cytoskeletal proteins in eggs and parthenogenesis were assessed using fluorescence microscopy, with further analysis of cytoskeletal proteins in immunoblotting experiments. Cortical tension was measured through micropipette aspiration assays. Egg membrane receptivity to sperm was assessed in in vitro fertilization (IVF) assays. Membrane topography was examined by low-vacuum scanning electron microscopy (SEM). MAIN RESULTS AND THE ROLE OF CHANCE Aged eggs have decreased levels and abnormal localizations of phosphorylated myosin-II regulatory light chain (pMRLC; P = 0.0062). Cortical tension, which is mediated in part by myosin-II, is reduced in aged mouse eggs when compared with

  9. Response of the GLAST LAT calorimeter to relativistic heavy ions

    International Nuclear Information System (INIS)

    Lott, B.; Piron, F.; Blank, B.; Bogaert, G.; Bregeon, J.; Canchel, G.; Chekhtman, A.; D'Avezac, P.; Dumora, D.; Giovinazzo, J.; Grove, J.E.; Hellstroem, M.; Jacholkowska, A.; Johnson, W.N.; Nuss, E.; Reposeur, Th.; Smith, D.A.; Suemmerer, K.

    2006-01-01

    The CsI calorimeter of the Gamma-Ray Large-Area Space Telescope (GLAST) will be calibrated in flight with cosmic-ray heavy ions. In order to determine the response of the calorimeter to relativistic heavy ions lighter than Fe, an experiment was carried out at the GSI heavy ion facility using the Fragment Separator (FRS). The measured response exhibits an unexpected feature for light ions, opposite to that observed at low incident energy: for a given deposited energy, the observed signal is greater for these ions than for protons (or more generally Z=1 minimum ionizing particles). Pulse shapes are found to be almost identical for carbon ions and Z=1 particles, with a significant slow scintillation component, which constitutes another departure from the low-energy behavior. Data on the energy resolution for the individual CsI crystals and on the loss of ions due to nuclear reactions in the calorimeter are also presented

  10. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation.

    Science.gov (United States)

    Harris, Samantha P; Belknap, Betty; Van Sciver, Robert E; White, Howard D; Galkin, Vitold E

    2016-02-09

    Mutations in genes encoding myosin, the molecular motor that powers cardiac muscle contraction, and its accessory protein, cardiac myosin binding protein C (cMyBP-C), are the two most common causes of hypertrophic cardiomyopathy (HCM). Recent studies established that the N-terminal domains (NTDs) of cMyBP-C (e.g., C0, C1, M, and C2) can bind to and activate or inhibit the thin filament (TF). However, the molecular mechanism(s) by which NTDs modulate interaction of myosin with the TF remains unknown and the contribution of each individual NTD to TF activation/inhibition is unclear. Here we used an integrated structure-function approach using cryoelectron microscopy, biochemical kinetics, and force measurements to reveal how the first two Ig-like domains of cMyPB-C (C0 and C1) interact with the TF. Results demonstrate that despite being structural homologs, C0 and C1 exhibit different patterns of binding on the surface of F-actin. Importantly, C1 but not C0 binds in a position to activate the TF by shifting tropomyosin (Tm) to the "open" structural state. We further show that C1 directly interacts with Tm and traps Tm in the open position on the surface of F-actin. Both C0 and C1 compete with myosin subfragment 1 for binding to F-actin and effectively inhibit actomyosin interactions when present at high ratios of NTDs to F-actin. Finally, we show that in contracting sarcomeres, the activating effect of C1 is apparent only once low levels of Ca(2+) have been achieved. We suggest that Ca(2+) modulates the interaction of cMyBP-C with the TF in the sarcomere.

  11. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Norifumi; Nagaoka, Shunji; Nojima, Kumie

    2003-01-01

    We investigate effects of localized exposure of heavy ion to the lumbar 4th to 6th segments of the rat spinal cord on the properties of motoneurons and the innervated muscle fibers without surgical treatments. Twenty 7-week-old male Wistar rats were exposed to 5 mm spread-out Bragg peak (SOBP) carbon beam (290 MeV, linear energy transfer (LET)=130 keV/μm): Two doses (15 Gy or 20 Gy) were applied to each group of rats (n=5) in two different depths; one group was exposed only for ventral horn of the spinal cord while other for whole spinal cord. Five rats served as controls. The rats were exposed to carbon irons on October 26, 2002. We will sacrifice the rats soon after they show an abnormal behavior including posture and walking. Cell body size and oxidative enzyme activity of spinal motoneurons of the control and heavy-ion-exposed rats will be analyzed. In addition, cell size, oxidative enzyme activity, and expressions of myosin heavy chain isoforms of the gastrocnemius, soleus, plantaris, extensor digitorum longus, and tibialis anterior muscle fibers will be also determined. This study is performed to test our hypothesis that atrophy and a decrease in cross-sectional area of motoneurons and muscle fibers which they innervate, as well as a decrease in oxidative activity of motoneurons and muscle fibers, will be induced due to exposure to heavy ion. (author)

  12. A map for heavy inertial particles in fluid flows

    Science.gov (United States)

    Vilela, Rafael D.; de Oliveira, Vitor M.

    2017-06-01

    We introduce a map which reproduces qualitatively many fundamental properties of the dynamics of heavy particles in fluid flows. These include a uniform rate of decrease of volume in phase space, a slow-manifold effective dynamics when the single parameter s (analogous of the Stokes number) approaches zero, the possibility of fold caustics in the "velocity field", and a minimum, as a function of s, of the Lyapunov (Kaplan-Yorke) dimension of the attractor where particles accumulate.

  13. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  14. An adhesome comprising laminin, dystroglycan and myosin IIA is required during notochord development in Xenopus laevis.

    Science.gov (United States)

    Buisson, Nicolas; Sirour, Cathy; Moreau, Nicole; Denker, Elsa; Le Bouffant, Ronan; Goullancourt, Aline; Darribère, Thierry; Bello, Valérie

    2014-12-01

    Dystroglycan (Dg) is a transmembrane receptor for laminin that must be expressed at the right time and place in order to be involved in notochord morphogenesis. The function of Dg was examined in Xenopus laevis embryos by knockdown of Dg and overexpression and replacement of the endogenous Dg with a mutated form of the protein. This analysis revealed that Dg is required for correct laminin assembly, for cell polarization during mediolateral intercalation and for proper differentiation of vacuoles. Using mutations in the cytoplasmic domain, we identified two sites that are involved in cell polarization and are required for mediolateral cell intercalation, and a site that is required for vacuolation. Furthermore, using a proteomic analysis, the cytoskeletal non-muscle myosin IIA has been identified for the first time as a molecular link between the Dg-cytoplasmic domain and cortical actin. The data allowed us to identify the adhesome laminin-Dg-myosin IIA as being required to maintain the cortical actin cytoskeleton network during vacuolation, which is crucial to maintain the shape of notochordal cells. © 2014. Published by The Company of Biologists Ltd.

  15. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Directory of Open Access Journals (Sweden)

    Ana E. González Wusener

    2016-01-01

    Full Text Available Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO cells and PTP1B reconstituted (WT cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration.

  16. PTP1B triggers integrin-mediated repression of myosin activity and modulates cell contractility

    Science.gov (United States)

    González Wusener, Ana E.; González, Ángela; Nakamura, Fumihiko; Arregui, Carlos O.

    2016-01-01

    ABSTRACT Cell contractility and migration by integrins depends on precise regulation of protein tyrosine kinase and Rho-family GTPase activities in specific spatiotemporal patterns. Here we show that protein tyrosine phosphatase PTP1B cooperates with β3 integrin to activate the Src/FAK signalling pathway which represses RhoA-myosin-dependent contractility. Using PTP1B null (KO) cells and PTP1B reconstituted (WT) cells, we determined that some early steps following cell adhesion to fibronectin and vitronectin occurred robustly in WT cells, including aggregation of β3 integrins and adaptor proteins, and activation of Src/FAK-dependent signalling at small puncta in a lamellipodium. However, these events were significantly impaired in KO cells. We established that cytoskeletal strain and cell contractility was highly enhanced at the periphery of KO cells compared to WT cells. Inhibition of the Src/FAK signalling pathway or expression of constitutive active RhoA in WT cells induced a KO cell phenotype. Conversely, expression of constitutive active Src or myosin inhibition in KO cells restored the WT phenotype. We propose that this novel function of PTP1B stimulates permissive conditions for adhesion and lamellipodium assembly at the protruding edge during cell spreading and migration. PMID:26700725

  17. Structural insights into the globular tails of the human type v myosins Myo5a, Myo5b, And Myo5c.

    Directory of Open Access Journals (Sweden)

    Hana Velvarska

    Full Text Available Vertebrate type V myosins (MyoV Myo5a, Myo5b, and Myo5c mediate transport of several different cargoes. All MyoV paralogs bind to cargo complexes mainly by their C-terminal globular domains. In absence of cargo, the globular domain of Myo5a inhibits its motor domain. Here, we report low-resolution SAXS models for the globular domains from human Myo5a, Myo5b, and Myo5c, which suggest very similar overall shapes of all three paralogs. We determined the crystal structures of globular domains from Myo5a and Myo5b, and provide a homology model for human Myo5c. When we docked the Myo5a crystal structure into a previously published electron microscopy density of the autoinhibited full-length Myo5a, only one domain orientation resulted in a good fit. This structural arrangement suggests the participation of additional region of the globular domain in autoinhibition. Quantification of the interaction of the Myo5a globular domain with its motor complex revealed a tight binding with dissociation half-life in the order of minutes, suggesting a rather slow transition between the active and inactive states.

  18. Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle.

    Science.gov (United States)

    Driska, S P; Stein, P G; Porter, R

    1989-02-01

    Changes in myosin light chain phosphorylation were measured during histamine-induced rhythmic contractions of hog carotid artery smooth muscle strips. Histamine made the muscle strips contract spontaneously every 1-5 min, and this allowed measurement of the time course of phosphorylation in relation to force development under conditions where diffusion of the agonist through tissue would not complicate the interpretation of the data. In the absence of histamine, phosphorylation was low [0.12 +/- 0.04 mol P/mol of the 20,000-Da light chain (LC 20)]. Phosphorylation was slightly (but not significantly) higher in the presence of 10 microM histamine in the relaxed state between contractions (0.20 +/- 0.03 mol P/mol LC 20). In muscle strips frozen during force development, when force had reached half of its peak value, phosphorylation was 0.38 +/- 0.06 mol P/mol LC 20. The highest levels of phosphorylation (0.49 +/- 0.04 mol P/mol LC 20) were found in strips frozen at the peak of the rhythmic contractions. Strips frozen when force had declined to half of the peak force showed low levels of phosphorylation (0.17 +/- 0.07 mol P/mol LC 20), indicating that the myosin light chain phosphatase activity was quite high. Mathematical modeling of the kinase and phosphatase reactions suggested that the apparent first-order phosphatase rate constant was at least 0.08 s-1 under these conditions. To obtain a better estimate of this rate constant, a second series of phosphorylation measurements were made early in the relaxation phase of the rhythmic contractions. The highest phosphatase rate constant obtained from these measurements was 0.23 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Interaction between cardiac myosin-binding protein C and formin Fhod3.

    Science.gov (United States)

    Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu

    2018-05-08

    Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.

  20. A fast-slow logic system

    International Nuclear Information System (INIS)

    Kawashima, Hideo.

    1977-01-01

    A fast-slow logic system has been made for use in multi-detector experiments in nuclear physics such as particle-gamma and particle-particle coincidence experiments. The system consists of a fast logic system and a slow logic system. The fast logic system has a function of fast coincidences and provides timing signals for the slow logic system. The slow logic system has a function of slow coincidences and a routing control of input analog signals to the ADCs. (auth.)

  1. Proposal for a new LEIR Slow Extraction Scheme dedicated to Biomedical Research

    CERN Document Server

    Garonna, A; Carli, C

    2014-01-01

    This report presents a proposal for a new slow extraction scheme for the Low Energy Ion Ring (LEIR) in the context of the feasibility study for a biomedical research facility at CERN. LEIR has to be maintained as a heavy ion accumulator ring for LHC and for fixed-target experiments with the SPS. In parallel to this on-going operation for physics experiments, an additional secondary use of LEIR for a biomedical research facility was proposed [Dosanjh2013, Holzscheiter2012, PHE2010]. This facility would complement the existing research beam-time available at other laboratories for studies related to ion beam therapy. The new slow extraction [Abler2013] is based on the third-integer resonance. The reference beam is composed of fully stripped carbon ions with extraction energies of 20-440 MeV/u, transverse physical emittances of 5-25 µm and momentum spreads of ±2-9•10-4. Two resonance driving mechanisms have been studied: the quadrupole-driven method and the RF-knockout technique. Both were made compatible...

  2. Human faces are slower than chimpanzee faces.

    Directory of Open Access Journals (Sweden)

    Anne M Burrows

    Full Text Available While humans (like other primates communicate with facial expressions, the evolution of speech added a new function to the facial muscles (facial expression muscles. The evolution of speech required the development of a coordinated action between visual (movement of the lips and auditory signals in a rhythmic fashion to produce "visemes" (visual movements of the lips that correspond to specific sounds. Visemes depend upon facial muscles to regulate shape of the lips, which themselves act as speech articulators. This movement necessitates a more controlled, sustained muscle contraction than that produced during spontaneous facial expressions which occur rapidly and last only a short period of time. Recently, it was found that human tongue musculature contains a higher proportion of slow-twitch myosin fibers than in rhesus macaques, which is related to the slower, more controlled movements of the human tongue in the production of speech. Are there similar unique, evolutionary physiologic biases found in human facial musculature related to the evolution of speech?Using myosin immunohistochemistry, we tested the hypothesis that human facial musculature has a higher percentage of slow-twitch myosin fibers relative to chimpanzees (Pan troglodytes and rhesus macaques (Macaca mulatta. We sampled the orbicularis oris and zygomaticus major muscles from three cadavers of each species and compared proportions of fiber-types. Results confirmed our hypothesis: humans had the highest proportion of slow-twitch myosin fibers while chimpanzees had the highest proportion of fast-twitch fibers.These findings demonstrate that the human face is slower than that of rhesus macaques and our closest living relative, the chimpanzee. They also support the assertion that human facial musculature and speech co-evolved. Further, these results suggest a unique set of evolutionary selective pressures on human facial musculature to slow down while the function of this muscle

  3. The influence of temperature on the distribution and intensity of the reaction product in rat muscle fibers obtained with the histochemical method for myosin ATPase

    DEFF Research Database (Denmark)

    Kirkeby, S; Tuxen, A

    1989-01-01

    The influence of temperature in the incubation medium on the localization and intensity of myosin ATPase was investigated in striated muscles from the rat using a conventional histochemical technique. It was found that the enzyme reaction was temperature-dependent since the activity in some fibers...... was raised and in others was depressed by alteration of the incubation temperature. There was no obvious correlation between the temperature sensitivity of ATPase in the muscle fibers and their activity for succinic dehydrogenase. It is proposed that the histochemical method for myosin ATPase can be used...

  4. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  5. The unappreciated slowness of conventional tourism

    Directory of Open Access Journals (Sweden)

    G.R. Larsen

    2016-05-01

    Full Text Available Most tourists are not consciously engaging in ‘slow travel’, but a number of travel behaviours displayed by conventional tourists can be interpreted as slow travel behaviour. Based on Danish tourists’ engagement with the distances they travel across to reach their holiday destination, this paper explores unintended slow travel behaviours displayed by these tourists. None of the tourists participating in this research were consciously doing ‘slow travel’, and yet some of their most valued holiday memories are linked to slow travel behaviours. Based on the analysis of these unintended slow travel behaviours, this paper will discuss the potential this insight might hold for promotion of slow travel. If unappreciated and unintentional slow travel behaviours could be utilised in the deliberate effort of encouraging more people to travel slow, ‘slow travel’ will be in a better position to become integrated into conventional travel behaviour.

  6. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  7. Planar polarization of Vangl2 in the vertebrate neural plate is controlled by Wnt and Myosin II signaling

    Directory of Open Access Journals (Sweden)

    Olga Ossipova

    2015-07-01

    Full Text Available The vertebrate neural tube forms as a result of complex morphogenetic movements, which require the functions of several core planar cell polarity (PCP proteins, including Vangl2 and Prickle. Despite the importance of these proteins for neurulation, their subcellular localization and the mode of action have remained largely unknown. Here we describe the anteroposterior planar cell polarity (AP-PCP of the cells in the Xenopus neural plate. At the neural midline, the Vangl2 protein is enriched at anterior cell edges and that this localization is directed by Prickle, a Vangl2-interacting protein. Our further analysis is consistent with the model, in which Vangl2 AP-PCP is established in the neural plate as a consequence of Wnt-dependent phosphorylation. Additionally, we uncover feedback regulation of Vangl2 polarity by Myosin II, reiterating a role for mechanical forces in PCP. These observations indicate that both Wnt signaling and Myosin II activity regulate cell polarity and cell behaviors during vertebrate neurulation.

  8. Advanced RF-KO slow-extraction method for the reduction of spill ripple

    CERN Document Server

    Noda, K; Shibuya, S; Uesugi, T; Muramatsu, M; Kanazawa, M; Takada, E; Yamada, S

    2002-01-01

    Two advanced RF-knockout (RF-KO) slow-extraction methods have been developed at HIMAC in order to reduce the spill ripple for accurate heavy-ion cancer therapy: the dual frequency modulation (FM) method and the separated function method. As a result of simulations and experiments, it was verified that the spill ripple could be considerably reduced using these advanced methods, compared with the ordinary RF-KO method. The dual FM method and the separated function method bring about a low spill ripple within standard deviations of around 25% and of 15% during beam extraction within around 2 s, respectively, which are in good agreement with the simulation results.

  9. Direct Observation of Heavy-Tailed Storage Times of Bed Load Tracer Particles Causing Anomalous Superdiffusion

    Science.gov (United States)

    Bradley, D. Nathan

    2017-12-01

    A consensus has formed that the step length distribution of fluvial bed load is thin tailed and that the observed anomalous superdiffusion of bed load tracer particles must arise from heavy-tailed resting times. However, heavy-tailed resting times have never been directly observed in the field over multiple floods. Using 9 years of data from a large bed load tracer experiment, I show that the spatial variance of the tracer plume scales faster than linearly with integrated excess stream power, indicating anomalous superdiffusion. The superdiffusion is caused by a heavy-tailed distribution of observed storage times that is fit with a truncated Pareto distribution with a tail parameter that is predicted by anomalous diffusion theory. The heavy-tailed distribution of storage times causes the tracer virtual velocity to slow over time, indicated by a sublinear increase in the mean displacement that is predicted by the storage time distribution tail parameter.

  10. β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration.

    Directory of Open Access Journals (Sweden)

    Elie Simard

    Full Text Available Over the last decade, it has been established that G-protein-coupled receptors (GPCRs signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC, which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1 as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR, MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM. Furthermore, by employing the β-arrestin biased ligand [Sar(1,Ile(4,Ile(8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.

  11. Movement - uncontrolled or slow

    Science.gov (United States)

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  12. Toenail as a biomarker of heavy metal exposure via drinking water: a systematic review.

    Science.gov (United States)

    Ab Razak, Nurul Hafiza; Praveena, Sarva Mangala; Hashim, Zailina

    2015-01-01

    Toenail is metabolic end product of the skin, which can provide information about heavy metal accumulation in human cells. Slow growth rates of toenail can represent heavy metal exposure from 2 to 12 months before the clipping. The toenail is a non-invasive biomarker that is easy to collect and store and is stable over time. In this systematic review, the suitability of toenail as a long-term biomarker was reviewed, along with the analysis and validation of toenail and confounders to heavy metal. This systematic review has included 30 articles chosen from a total of 132 articles searched from online electronic databases like Pubmed, Proquest, Science Direct, and SCOPUS. Keywords used in the search included "toenail", "biomarker", "heavy metal", and "drinking water". Heavy metal in toenail can be accurately analyzed using an ICP-MS instrument. The validation of toenail heavy metal concentration data is very crucial; however, the Certified Reference Material (CRM) for toenail is still unavailable. Usually, CRM for hair is used in toenail studies. Confounders that have major effects on heavy metal accumulation in toenail are dietary intake of food and supplement, smoking habit, and overall health condition. This review has identified the advantages and limitations of using toenail as a biomarker for long-term exposure, which can help future researchers design a study on heavy metal exposure using toenail.

  13. KEK-IMSS Slow Positron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hyodo, T; Wada, K; Yagishita, A; Kosuge, T; Saito, Y; Kurihara, T; Kikuchi, T; Shirakawa, A; Sanami, T; Ikeda, M; Ohsawa, S; Kakihara, K; Shidara, T, E-mail: toshio.hyodo@kek.jp [High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps{sup -}). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a {sup 22}Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  14. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    Science.gov (United States)

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  15. Conformational distributions and proximity relationships in the rigor complex of actin and myosin subfragment-1.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Lukács, A; Bódis, E; Somogyi, B

    2000-01-28

    Cyclic conformational changes in the myosin head are considered essential for muscle contraction. We hereby show that the extension of the fluorescence resonance energy transfer method described originally by Taylor et al. (Taylor, D. L., Reidler, J., Spudich, J. A., and Stryer, L. (1981) J. Cell Biol. 89, 362-367) allows determination of the position of a labeled point outside the actin filament in supramolecular complexes and also characterization of the conformational heterogeneity of an actin-binding protein while considering donor-acceptor distance distributions. Using this method we analyzed proximity relationships between two labeled points of S1 and the actin filament in the acto-S1 rigor complex. The donor (N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate) was attached to either the catalytic domain (Cys-707) or the essential light chain (Cys-177) of S1, whereas the acceptor (5-(iodoacetamido)fluorescein) was attached to the actin filament (Cys-374). In contrast to the narrow positional distribution (assumed as being Gaussian) of Cys-707 (5 +/- 3 A), the positional distribution of Cys-177 was found to be broad (102 +/- 4 A). Such a broad positional distribution of the label on the essential light chain of S1 may be important in accommodating the helically arranged acto-myosin binding relative to the filament axis.

  16. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy.

    Science.gov (United States)

    Rhee, Hannah S; Steel, Catherine M; Derksen, Frederik J; Robinson, N Edward; Hoh, Joseph F Y

    2009-08-01

    We used immunohistochemistry to examine myosin heavy-chain (MyHC)-based fiber-type profiles of the right and left cricoarytenoideus dorsalis (CAD) and arytenoideus transversus (TrA) muscles of six horses without laryngoscopic evidence of recurrent laryngeal neuropathy (RLN). Results showed that CAD and TrA muscles have the same slow, 2a, and 2x fibers as equine limb muscles, but not the faster contracting fibers expressing extraocular and 2B MyHCs found in laryngeal muscles of small mammals. Muscles from three horses showed fiber-type grouping bilaterally in the TrA muscles, but only in the left CAD. Fiber-type grouping suggests that denervation and reinnervation of fibers had occurred, and that these horses had subclinical RLN. There was a virtual elimination of 2x fibers in these muscles, accompanied by a significant increase in the percentage of 2a and slow fibers, and hypertrophy of these fiber types. The results suggest that multiple pathophysiological mechanisms are at work in early RLN, including selective denervation and reinnervation of 2x muscle fibers, corruption of neural impulse traffic that regulates 2x and slow muscle fiber types, and compensatory hypertrophy of remaining fibers. We conclude that horses afflicted with mild RLN are able to remain subclinical by compensatory hypertrophy of surviving muscle fibers.

  17. Too slow, for Milton

    OpenAIRE

    Armstrong, N.

    2011-01-01

    Too slow, for Milton was written in 2011, as part of a memorial project for Milton Babbitt. The piece borrows harmonies from Babbitt's Composition for 12 Instruments (harmonies which Babbitt had in turn borrowed from Schoenberg's Ode to Napoleon), but unfolds them as part of a musical texture characterised by repetition, resonance, and a slow rate of change. As Babbitt once told me that my music was 'too slow', this seemed an appropriately obstinate form of homage.

  18. Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheide, Lommel, Belgium)

    Science.gov (United States)

    Horckmans, L.; Swennen, R.; Deckers, J.

    2006-07-01

    The former zinc smelter site ‘de Maatheide’ in Lommel (Belgium) was severely polluted with heavy metals and the pollution spread into the surroundings by rain water leaching and wind transportation. This study focuses on the processes of immobilization and natural attenuation that took place on the site. Three important factors were found. Firstly, the high pH values (pH 7-8) in the topsoil influence the mobility of heavy metals. Secondly, the spodic horizons below the polluted top layer seem to accumulate heavy metals, thereby slowing down their release into the environment. Finally, the glassy phases and iron oxi/hydroxides that are present can encapsulate heavy metals during their formation/recrystallization, thereby immobilizing them. An additional shielding effect results from the reaction rims of goethite around the contaminant phases, which partially inhibit the weathering process and release of contaminants. This shielding effect is an important factor to take into account when modelling contaminant release.

  19. Heavy metals in soils: a possible rule of Fungi

    International Nuclear Information System (INIS)

    Bedini, S.; Argese, E.; Giovannetti, M.; Gobbo, L.; Pietrangeli, B.

    2009-01-01

    The development of effective bio technologies is a mail goal in reclaiming polluted soils. Plants may represent a very useful tool, since they are able to reduce pollution by means of the synergic action of rhizospheric microorganisms. Arbuscular mycorrhizal (A M) fungi, root symbionts of most land plants, produce a proteinaceous substance named glomalin-related soil protein (GRSP) that has been demonstrated to interact with metallic ions. In this study we investigated the role of GRSP in the immobilization of potentially toxic heavy metals both in an agricultural and in a highly polluted soil. The results show that in heavy metal contaminated soils, GRSP can ease soil pollution by sequestering toxic metallic ions. On the other hand, in agricultural soils, where metallic elements are present in low concentrations, GRSP may be important also as a nutrient slow-releasing fraction of the soil organic matter.

  20. On the role of memory effects for dissipation and diffusion in slow collective nuclear motion

    International Nuclear Information System (INIS)

    Cassing, W.; Noerenberg, W.

    1983-01-01

    The energy dissipation in slow collective nuclear motion is viewed as a combined effect of a diabatic production of particle-hole excitations, leading to a conservative storage of collective energy, and a subsequent equilibration due to residual two-body collisions. The effective equation of motion for the collective degree of freedom turns out to be nonlocal in time due to the large mean free path of the nucleons and allows for a simultaneous description of two different attitudes of nuclear matter. The elastic response of heavy nuclei for ''fast'' collective motion switches over to pure friction for very slow collective motion. The time development of the fluctuations in the velocities may show oscillations for times comparable to the local equilibration time and hence, is qualitatively different from the classical limit. A first application of the diabatic dynamical approach is made for the quadrupole motion within a diabatic deformed harmonic oscillator basis. (orig.)

  1. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  2. An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking

    NARCIS (Netherlands)

    Schneeberger, Kerstin; Vogel, Georg F; Teunissen, Hans; van Ommen, Domenique D; Begthel, Harry; El Bouazzaoui, Layla; van Vugt, Anke H M; Beekman, Jeffrey M; Klumperman, Judith; Müller, Thomas; Janecke, Andreas; Gerner, Patrick; Huber, Lukas A; Hess, Michael W; Clevers, Hans; van Es, Johan H; Nieuwenhuis, Edward E S; Middendorp, Sabine

    2015-01-01

    Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of

  3. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring.

    Science.gov (United States)

    Price, Kari L; Rose, Lesilee S

    2017-09-01

    The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule-dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells. © 2017 Price and Rose. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Dependence of myosin-ATPase on structure bound creatine kinase in cardiac myfibrils from rainbow trout and freshwater turtle

    DEFF Research Database (Denmark)

    Haagensen, L.; Jensen, D.H.; Gesser, Hans

    2008-01-01

    The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP by the pyr......The influence of myofibrillar creatine kinase on the myosin-ATPase activity was examined in cardiac ventricular myofibrils isolated from rainbow trout (Oncorhynchus mykiss) and freshwater turtle (Trachemys scripta). The ATPase rate was assessed by recording the rephosphorylation of ADP...... by the pyruvate kinase reaction alone or together with the amount of creatine formed, when myofibrillar bound creatine kinase was activated with phosphocreatine. The steady-state concentration of ADP in the solution was varied through the activity of pyruvate kinase added to the solution. For rainbow trout...... myofibrils at a high pyruvate kinase activity, creatine kinase competed for ADP but did not influence the total ATPase activity. When the ADP concentration was elevated within the physiological range by lowering the pyruvate kinase activity, creatine kinase competed efficiently and increased the ATPase...

  5. Slow Tourism: Exploring the discourses

    Directory of Open Access Journals (Sweden)

    J. Guiver

    2016-05-01

    Full Text Available ‘Slow travel’ and ‘slow tourism’ are relatively new, but contested, concepts. This paper examines the meanings ascribed to them in the academic literature and websites targeted at potential tourists. It finds concurrence on aspects of savouring time at the destination and investing time to appreciate the locality, its people, history, culture and products, but detects different emphases. The academic literature stresses the benefits to the destination and global sustainability, while the websites focus on the personal benefits and ways of becoming a ‘slow tourist’. Food and drink epitomise the immersion in and absorption of the destination and the multi-dimensional tourism experience, contrasted with the superficiality of mainstream tourism. The paper discusses whether tourists practising slow tourism without using the label are slow tourists or not.

  6. Changes in myosin S1 orientation and force induced by a temperature increase.

    Science.gov (United States)

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  7. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    Directory of Open Access Journals (Sweden)

    Musakhanov Mirzayusuf

    2017-01-01

    Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.

  8. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway

    NARCIS (Netherlands)

    Wang, Siyuan; Chen, Cheng; Su, Ke; Zha, Dongqing; Liang, Wei; Hillebrands, J L; van Goor, Harry; Ding, Guohua

    2016-01-01

    Aims In the present study, we have evaluated the effect of angiotensin II (Ang II) on actin cytoskeleton reorganization and myosin light-chain (MLC) phosphorylation in podocytes to demonstrate whether the Rho/Rho-associated coiled kinase (ROCK) pathway is involved podocyte injury. Methods Eighteen

  9. Strength Enhancement of Car Front Bumper for Slow Speed Impact by FEA Method as per IIHS Regulation

    Science.gov (United States)

    Sonawane, Chandrakant Rameshchandra; Shelar, Ajit Lavaji

    2017-05-01

    Low speed collisions happen significantly due to on road slow moving heavy traffic as well as during parking of vehicles. The bumpers are provided in front and back side of a vehicle has two main purposes: first is to absorb the energy generated during these kinds of slow speed impacts and secondly to protect the expensive parts like main engine parts, radiators and connected engine cooling mechanism, headlights, taillights, etc, by slowing down the vehicles. The problem often in various cars bumper is that they doesn't line-up vertically during low speed impact and leads to damage of various parts which are costly to repair. Many a times bumper design does not have sufficient capacity to absorb the energy generated during these impact. Guideline by International Institute Highway Safety (IIHS) regulation provides useful insight for such low speed impact study. In this paper, slow speed impact test were conducted as per IIHS regulation in three positions namely central impact, left hand corner impact and right hand corner impact. Parameters including bumper material, shape, thickness and impact condition are analyzed using fine element analysis (FEA) to enhance crashworthiness design in low speed impact. Then the vehicle front structure has been modified suitably. It has been observed that lining up the front metal bumper with suitable stiffness provides the best result which ultimately reduces the damage to the vehicle parts.

  10. Mechanical Defects of Muscle Fibers with Myosin Light Chain Mutants that Cause Cardiomyopathy

    OpenAIRE

    Roopnarine, Osha

    2003-01-01

    Familial hypertrophic cardiomyopathy is a disease caused by single mutations in several sarcomeric proteins, including the human myosin ventricular regulatory light chain (vRLC). The effects of four of these mutations (A13T, F18L, E22K, and P95A) in vRLC on force generation were determined as a function of Ca2+ concentration. The endogenous RLC was removed from skinned rabbit psoas muscle fibers, and replaced with either rat wildtype vRLC or recombinant rat vRLC (G13T, F18L, E22K, and P95A). ...

  11. Slow Earthquake Hunters: A New Citizen Science Project to Identify and Catalog Slow Slip Events in Geodetic Data

    Science.gov (United States)

    Bartlow, N. M.

    2017-12-01

    Slow Earthquake Hunters is a new citizen science project to detect, catalog, and monitor slow slip events. Slow slip events, also called "slow earthquakes", occur when faults slip too slowly to generate significant seismic radiation. They typically take between a few days and over a year to occur, and are most often found on subduction zone plate interfaces. While not dangerous in and of themselves, recent evidence suggests that monitoring slow slip events is important for earthquake hazards, as slow slip events have been known to trigger damaging "regular" earthquakes. Slow slip events, because they do not radiate seismically, are detected with a variety of methods, most commonly continuous geodetic Global Positioning System (GPS) stations. There is now a wealth of GPS data in some regions that experience slow slip events, but a reliable automated method to detect them in GPS data remains elusive. This project aims to recruit human users to view GPS time series data, with some post-processing to highlight slow slip signals, and flag slow slip events for further analysis by the scientific team. Slow Earthquake Hunters will begin with data from the Cascadia subduction zone, where geodetically detectable slow slip events with a duration of at least a few days recur at regular intervals. The project will then expand to other areas with slow slip events or other transient geodetic signals, including other subduction zones, and areas with strike-slip faults. This project has not yet rolled out to the public, and is in a beta testing phase. This presentation will show results from an initial pilot group of student participants at the University of Missouri, and solicit feedback for the future of Slow Earthquake Hunters.

  12. A slowing-down problem

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I; Pershagen, B

    1958-06-15

    An infinitely long circular cylinder of radius a is surrounded by an infinite moderator. Both media are non-capturing. The cylinder emits neutrons of age zero with a constant source density of S. We assume that the ratios of the slowing-down powers and of the diffusion constants are independent of the neutron energy. The slowing-down density is calculated for two cases, a) when the slowing-down power of the cylinder medium is very small, and b) when the cylinder medium is identical with the moderator. The ratios of the slowing-down density at the age {tau} and the source density in the two cases are called {psi}{sub V}, and {psi}{sub M} respectively. {psi}{sub V} and {psi}{sub M} are functions of y=a{sup 2}/4{tau}. These two functions ({psi}{sub V} and {psi}{sub M}) are calculated and tabulated for y = 0-0.25.

  13. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    Science.gov (United States)

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  14. Two novel MYH7 proline substitutions cause Laing Distal Myopathy-like phenotypes with variable expressivity and neck extensor contracture.

    Science.gov (United States)

    Feinstein-Linial, Miora; Buvoli, Massimo; Buvoli, Ada; Sadeh, Menachem; Dabby, Ron; Straussberg, Rachel; Shelef, Ilan; Dayan, Daniel; Leinwand, Leslie Anne; Birk, Ohad S

    2016-08-12

    Human skeletal muscles express three major myosin heavy chain (MyHC) isoforms: MyHCIIx (MYH1) in fast type 2B muscle fibers, MyHCIIa (MYH2) in fast type 2A fibers and MyHCI/β-cardiac MyHC (MYH7) in slow type I skeletal fibers and cardiac ventricles. In line with its expression pattern, MYH7 mutations have been reported in association with hypertrophic or dilated cardiomyopathy, skeletal myopathies or a combination of both. We analyzed the clinical and molecular phenotype of two unrelated families of Jewish Moroccan ancestry that presented with apparently autosomal dominant inheritance of progressive Laing-like distal myopathy with non-specific myopathic changes, but uncommon marked contractures and wasting of the neck extensors. Clinical phenotyping, whole exome sequencing and restriction analysis, generation of mutants followed by cell culture transfection and imaging. Using whole exome sequencing we identified in both families two novel heterozygous proline substitutions located in exon 31 of MYH7 within its rod domain: c.4309G>C (p.Ala1437Pro) and c.4301G>C (p.Arg1434Pro). Here we show that the phenotype caused by these mutations includes marked cervical muscle contracture, and report that the severity of the phenotype varies significantly, to the extent of non-penetrance in one of the families. Finally, we provide evidence that both proline substitutions impair myosin self-assembly in non-muscle cells transfected with β-myosin constructs carrying the mutations, but do not prevent incorporation of the mutant molecules into the sarcomere. This study expands our clinical and molecular knowledge of MYH7 rod mutations causing skeletal myopathies, and underscores the importance of discussing disease penetrance during genetic counseling.

  15. Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California gull, Larus californicus: a paradox of fast fibers and posture.

    Science.gov (United States)

    Meyers, R A; Mathias, E

    1997-09-01

    Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls.

  16. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  17. A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II

    DEFF Research Database (Denmark)

    Yoneda, Atsuko; Morgan-Fisher, Marie; Wait, Robin

    2012-01-01

    Collapsin response mediator protein 2 (CRMP-2) is known as a regulator of neuronal polarity and differentiation through microtubule assembly and trafficking. Here, we show that CRMP-2 is ubiquitously expressed and a splice variant (CRMP-2L), which is expressed mainly in epithelial cells among...... nonneuronal cells, regulates myosin II-mediated cellular functions, including cell migration. While the CRMP-2 short form (CRMP-2S) is recognized as a substrate of the Rho-GTP downstream kinase ROCK in neuronal cells, a CRMP-2 complex containing 2L not only bound the catalytic domain of ROCK II through two......-2L but not -2S inhibited fibronectin matrix assembly in fibroblasts. Underlying these responses, CRMP-2L regulated the kinase activity of ROCK II but not ROCK I, independent of GTP-RhoA levels. This study provides a new insight into CRMP-2 as a controller of myosin II-mediated cellular functions...

  18. Fluorescent modification and orientation of myosin sulfhydryl 2 in skeletal muscle fibers

    International Nuclear Information System (INIS)

    Ajtai, K.; Burghardt, T.P.

    1989-01-01

    The authors describe a protocol for the selective covalent labeling of the sulfhydryl 2 (SH2) on the myosin cross-bridge in glycerinated muscle fibers using the sulfhydryl-selective label 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole (IANBD). The protocol promotes the specificity of IANBD by using the ability to protect sulfhydryl 1 (SH1) from modification by binding the cross-bridge to the actin filament and using cross-bridge-bound MgADP to promote the accessibility of SH2. They determined the specificity of the probe using fluorescence gel scanning of fiber-extracted proteins to isolate the probe on myosin subfragment 1 (S1), limited proteolysis of the purified S1 to isolate the probe on the 20-kilodalton fragment of S1, and titration of the free SH1's on purified S1 using the radiolabeled SH1-specific reagent [ 14 C]iodoacetamide or enzymatic activity measurements. They characterized the angular distribution of the IANBD on cross-bridges in fibers when the fibers are in rigor, in relaxation, in the presence of MgADP, and in isometric contraction using wavelength-dependent fluorescence polarization. They find that the SH2 probe distinguishes the different states of the fiber such that rigor and MgADP are ordered and maintain a similar orientation throughout the excitation wavelength domain. The relaxed cross-bridge is ordered and has an orientation that is distinct from the orientation of the cross-bridge in rigor and MgADP over the entire wavelength domain. The active isometric cross-bridge is also oriented differently from the other states, suggesting the presence of a predominant actin-bound cross-bridge state that precedes the power stroke during muscle contraction

  19. Microbial consortia in mesocosm bioremediation trial using oil sorbents, slow-release fertilizer and bioaugmentation.

    Science.gov (United States)

    Gertler, Christoph; Gerdts, Gunnar; Timmis, Kenneth N; Golyshin, Peter N

    2009-08-01

    An experimental prototype oil boom including oil sorbents, slow-release fertilizers and biomass of the marine oil-degrading bacterium, Alcanivorax borkumensis, was applied for sorption and degradation of heavy fuel oil in a 500-L mesocosm experiment. Fingerprinting of DNA and small subunit rRNA samples for microbial activity conducted to study the changes in microbial communities of both the water body and on the oil sorbent surface showed the prevalence of A. borkumensis on the surface of the oil sorbent. Growth of this obligate oil-degrading bacterium on immobilized oil coincided with a 30-fold increase in total respiration. A number of DNA and RNA signatures of aromatic hydrocarbon-degrading bacteria were detected both in samples of water body and on oil sorbent. Ultimately, the heavy fuel oil in this mesocosm study was effectively removed from the water body. This is the first study to successfully investigate the fate of oil-degrading microbial consortia in an experimental prototype for a bioremediation strategy in offshore, coastal or ship-bound oil spill mitigation using a combination of mechanical and biotechnological techniques.

  20. Connecting slow earthquakes to huge earthquakes

    OpenAIRE

    Obara, Kazushige; Kato, Aitaro

    2016-01-01

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of th...

  1. Integrated Photonics Enabled by Slow Light

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  2. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing.

    Science.gov (United States)

    Mölle, Matthias; Bergmann, Til O; Marshall, Lisa; Born, Jan

    2011-10-01

    Thalamo-cortical spindles driven by the up-state of neocortical slow (memory consolidation during sleep. We examined interactions between SOs and spindles in human slow wave sleep, focusing on the presumed existence of 2 kinds of spindles, i.e., slow frontocortical and fast centro-parietal spindles. Two experiments were performed in healthy humans (24.5 ± 0.9 y) investigating undisturbed sleep (Experiment I) and the effects of prior learning (word paired associates) vs. non-learning (Experiment II) on multichannel EEG recordings during sleep. Only fast spindles (12-15 Hz) were synchronized to the depolarizing SO up-state. Slow spindles (9-12 Hz) occurred preferentially at the transition into the SO down-state, i.e., during waning depolarization. Slow spindles also revealed a higher probability to follow rather than precede fast spindles. For sequences of individual SOs, fast spindle activity was largest for "initial" SOs, whereas SO amplitude and slow spindle activity were largest for succeeding SOs. Prior learning enhanced this pattern. The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.

  3. Light storage via slow-light four-wave mixing

    International Nuclear Information System (INIS)

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  4. Resonant charging and stopping power of slow channelling atoms in a crystalline metal

    International Nuclear Information System (INIS)

    Mason, D R; Race, C P; Foo, M H F; Horsfield, A P; Foulkes, W M C; Sutton, A P

    2012-01-01

    Fast moving ions travel great distances along channels between low-index crystallographic planes, slowing through collisions with electrons, until finally they hit a host atom initiating a cascade of atomic displacements. Statistical penetration ranges of incident particles are reliably used in ion-implantation technologies, but a full, necessarily quantum-mechanical, description of the stopping of slow, heavy ions is challenging and the results of experimental investigations are not fully understood. Using a self-consistent model of the electronic structure of a metal, and explicit treatment of atomic structure, we find by direct simulation a resonant accumulation of charge on a channelling ion analogous to the Okorokov effect but originating in electronic excitation between delocalized and localized valence states on the channelling ion and its transient host neighbours, stimulated by the time-periodic potential experienced by the channelling ion. The charge resonance reduces the electronic stopping power on the channelling ion. These are surprising and interesting new chemical aspects of channelling, which cannot be predicted within the standard framework of ions travelling through homogeneous electron gases or by considering either ion or target in isolation. (paper)

  5. Heritable non-lethal damage to cultured human cells irradiated with heavy ions

    International Nuclear Information System (INIS)

    Walker, J.T.; Walker, O.A.

    2002-01-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (linear energy transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 μm 2 , at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. (author)

  6. Mechanisms of Attenuation of Pulmonary V'O2 Slow Component in Humans after Prolonged Endurance Training.

    Directory of Open Access Journals (Sweden)

    Jerzy A Zoladz

    Full Text Available In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V'O2peak 3198±458 mL ∙ min-1 performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027 in V'O2 during prior low-intensity exercise (20 W and in shortening of τp of the V'O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007 during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001 and a decrease in the end-exercise V'O2 by ~5% (P = 0.005. An increase (P = 0.02 in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06 to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11. No significant effect of training on the V'O2peak was found (P = 0.12. However, the power output reached at the lactate threshold increased by 19% (P = 0.01. The power output obtained at the V'O2peak increased by 14% (P = 0.003 and the time of 1,500-m performance decreased by 5% (P = 0.001. Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA of oxidative phosphorylation (OXPHOS complexes after training and decrease in the ''additional" ATP usage rising gradually during heavy-intensity exercise.

  7. Mechanisms of Attenuation of Pulmonary V'O2 Slow Component in Humans after Prolonged Endurance Training.

    Science.gov (United States)

    Zoladz, Jerzy A; Majerczak, Joanna; Grassi, Bruno; Szkutnik, Zbigniew; Korostyński, Michał; Gołda, Sławomir; Grandys, Marcin; Jarmuszkiewicz, Wiesława; Kilarski, Wincenty; Karasinski, Janusz; Korzeniewski, Bernard

    2016-01-01

    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V'O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V'O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ''additional" ATP usage rising gradually during heavy-intensity exercise.

  8. Mechanisms of Attenuation of Pulmonary V’O2 Slow Component in Humans after Prolonged Endurance Training

    Science.gov (United States)

    Zoladz, Jerzy A.; Majerczak, Joanna; Grassi, Bruno; Szkutnik, Zbigniew; Korostyński, Michał; Gołda, Sławomir; Grandys, Marcin; Jarmuszkiewicz, Wiesława; Kilarski, Wincenty; Karasinski, Janusz; Korzeniewski, Bernard

    2016-01-01

    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V’O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V’O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V’O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V’O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V’O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V’O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V’O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V’O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V’O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ‘‘additional” ATP usage rising gradually during heavy-intensity exercise. PMID:27104346

  9. Advances in quantum simulations of ATPase catalysis in the myosin motor.

    Science.gov (United States)

    Kiani, Farooq Ahmad; Fischer, Stefan

    2015-04-01

    During its contraction cycle, the myosin motor catalyzes the hydrolysis of ATP. Several combined quantum/classical mechanics (QM/MM) studies of this step have been published, which substantially contributed to our thinking about the catalytic mechanism. The methodological difficulties encountered over the years in the simulation of this complex reaction are now understood: (a) Polarization of the protein peptide groups surrounding the highly charged ATP(4-) cannot be neglected. (b) Some unsuspected protein groups need to be treated QM. (c) Interactions with the γ-phosphate versus the β-phosphate favor a concurrent versus a sequential mechanism, respectively. Thus, these practical aspects strongly influence the computed mechanism, and should be considered when studying other catalyzed phosphor-ester hydrolysis reactions, such as in ATPases or GTPases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Dynamics of photoexcited quasiparticles in heavy electron compounds

    International Nuclear Information System (INIS)

    Demsar, Jure; Sarrao, John L; Taylor, Antoinette J

    2006-01-01

    Femtosecond real-time spectroscopy is an emerging new tool for studying low energy electronic structure in correlated electron systems. Motivated by recent advances in understanding the nature of relaxation phenomena in various correlated electron systems (superconductors, density wave systems) the technique has been applied to heavy electron compounds in comparison with their non-magnetic counterparts. While the dynamics in their non-magnetic analogues are similar to the dynamics observed in noble metals (only weak temperature dependences are observed) and can be treated with a simple two-temperature model, the photoexcited carrier dynamics in heavy electron systems show dramatic changes as a function of temperature and excitation level. In particular, below some characteristic temperature the relaxation rate starts to decrease, dropping by more than two orders of magnitude upon cooling down to liquid He temperatures. This behaviour has been consistently observed in various heavy fermion metals as well as Kondo insulators, and is believed to be quite general. In order to account for the experimental observations, two theoretical models have been proposed. The first treats the heavy electron systems as simple metals with very flat electron dispersion near the Fermi level. An electron-phonon thermalization scenario can account for the observed slowing down of the relaxation provided that there exists a mechanism for suppression of electron-phonon scattering when both the initial and final electronic states lie in the region of flat dispersion. An alternative scenario argues that the relaxation dynamics in heavy electron systems are governed by the Rothwarf-Taylor bottleneck, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The so-called hybridization gap results from hybridization between localized moments and the conduction electron background. Remarkable agreement with the model suggests that carrier

  11. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Vazquez, M.D.; Lopez, J.; Carballeira, A.

    2006-01-01

    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses

  12. CHICSi - a 3π multi-detector system for studying heavy ion interactions inside a storage ring

    International Nuclear Information System (INIS)

    Avdeichikov, V.; Carlen, L.; Fokin, A.; Jakobsson, J.; Murin, Yu.; Maartensson, J.; Oskarsson, A.; van Veldhuizen, E.J.; Westerberg, L.; Whitlow, H.J.

    1996-01-01

    CHICSi - a 3π multi-detector system is presented. The setup consists of 576 ultra high vacuum compatible telescopes to study intermediate energy heavy ion as well as proton induced collisions at storage rings operating in slow ramping mode. Primary it will be installed at the gas-jet target station of the CELSIUS facility at The Svedberg Laboratory in Uppsala. (orig.)

  13. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  14. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

    International Nuclear Information System (INIS)

    Shi Huisheng; Kan Lili

    2009-01-01

    The characteristics of municipal solid waste incineration (MSWI) fly ash, surface leaching toxicity and successive leaching concentration of heavy metals from MSWI fly ash-cement hardened pastes were studied. And, the relationships between leaching concentrations of heavy metals and leaching time were also discussed. Experimental results showed that immobilization effect of cement on MSWI fly ash is good. Even if MSWI fly ash-cement hardened pastes were damaged, the leaching toxicity is still in a safety range. In early leaching stage, the surface leaching rate is relatively a little high, up to 10 -5 -10 -4 cm d -1 order of magnitude, in the later time of leaching, its rate rapidly declined, down to 10 -7 . Most of leached heavy metals are produced at early ages. The leaching concentration of heavy metals and leaching time has strong positive relationships. In factual utilizing circumstances, heavy metals' leaching from MSWI fly ash-cement hardened pastes is a very slow and gradually diluting process. The leaching toxicity of heavy metals is far lower than that of the National Standard of China, and minimum harmful matters can be contained and released in the environment. Reusing of MSWI fly ash as partial replacement for cement in concrete mixes is potentially feasible.

  15. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  16. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  17. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics.

    Science.gov (United States)

    Zoladz, Jerzy A; Gladden, L Bruce; Hogan, Michael C; Nieckarz, Zenon; Grassi, Bruno

    2008-08-01

    The "slow component" of O2 uptake (VO2) kinetics during constant-load heavy-intensity exercise is traditionally thought to derive from a progressive recruitment of muscle fibers. In this study, which represents a reanalysis of data taken from a previous study by our group (Grassi B, Hogan MC, Greenhaff PL, Hamann JJ, Kelley KM, Aschenbach WG, Constantin-Teodosiu D, Gladden LB. J Physiol 538: 195-207, 2002) we evaluated the presence of a slow component-like response in the isolated dog gastrocnemius in situ (n=6) during 4 min of contractions at approximately 60-70% of peak VO2. In this preparation all muscle fibers are maximally activated by electrical stimulation from the beginning of the contraction period, and no progressive recruitment of fibers is possible. Muscle VO2 was calculated as blood flow multiplied by arteriovenous O2 content difference. The muscle fatigued (force decreased by approximately 20-25%) during contractions. Kinetics of adjustment were evaluated for 1) VO2, uncorrected for force development; 2) VO2 normalized for peak force; 3) VO2 normalized for force-time integral. A slow component-like response, described in only one muscle out of six when uncorrected VO2 was considered, was observed in all muscles when VO2/peak force and VO2/force-time were considered. The amplitude of the slow component-like response, expressed as a fraction of the total response, was higher for VO2/peak force (0.18+/-0.06, means+/-SE) and for VO2/force-time (0.22+/-0.05) compared with uncorrected VO2 (0.04+/-0.04). A progressive recruitment of muscle fibers may not be necessary for the development of the slow component of VO2 kinetics, which may be caused by the metabolic factors that induce muscle fatigue and, as a consequence, reduce the efficiency of muscle contractions.

  18. Mutation profile of all 49 exons of the human myosin VIIA gene, and haplotype analysis, in Usher 1B families from diverse origins.

    Science.gov (United States)

    Adato, A; Weil, D; Kalinski, H; Pel-Or, Y; Ayadi, H; Petit, C; Korostishevsky, M; Bonne-Tamir, B

    1997-10-01

    Usher syndrome types I (USH1A-USH1E) are a group of autosomal recessive diseases characterized by profound congenital hearing loss, vestibular areflexia, and progressive visual loss due to retinitis pigmentosa. The human myosin VIIA gene, located on 11q14, has been shown to be responsible for Usher syndrome type 1B (USH1B). Haplotypes were constructed in 28 USH1 families by use of the following polymorphic markers spanning the USH1B locus: D11S787, D11S527, D11S1789, D11S906, D11S4186, and OMP. Affected individuals and members of their families from 12 different ethnic origins were screened for the presence of mutations in all 49 exons of the myosin VIIA gene. In 15 families myosin VIIA mutations were detected, verifying their classification as USH1B. All these mutations are novel, including three missense mutations, one premature stop codon, two splicing mutations, one frameshift, and one deletion of >2 kb comprising exons 47 and 48, a part of exon 49, and the introns between them. Three mutations were shared by more than one family, consistent with haplotype similarities. Altogether, 16 USH1B haplotypes were observed in the 15 families; most haplotypes were population specific. Several exonic and intronic polymorphisms were also detected. None of the 20 known USH1B mutations reported so far in other world populations were identified in our families.

  19. Cardiac Myosin Binding Protein-C Autoantibodies Are Potential Early Indicators of Cardiac Dysfunction and Patient Outcome in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch, IVPhD

    2017-04-01

    Full Text Available Summary: The degradation and release of cardiac myosin binding protein-C (cMyBP-C upon cardiac damage may stimulate an inflammatory response and autoantibody (AAb production. We determined whether the presence of cMyBP-C-AAbs associated with adverse cardiac function in cardiovascular disease patients. Importantly, cMyBP-C-AAbs were significantly detected in acute coronary syndrome patient sera upon arrival to the emergency department, particularly in ST-segment elevation myocardial infarction patients. Patients positive for cMyBP-C-AAbs had reduced left ventricular ejection fraction and elevated levels of clinical biomarkers of myocardial infarction. We conclude that cMyBP-C-AAbs may serve as early predictive indicators of deteriorating cardiac function and patient outcome in acute coronary syndrome patients prior to the infarction. Key Words: acute myocardial infarction, autoantibodies, cardiac myosin binding protein-c, cardiomyopathy

  20. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    Science.gov (United States)

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P 0.05) with training. Training reduced (P aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  1. An appraisal of mass differences between individual tyres, axles and axle groups of a selection of heavy vehicles in South Africa

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-06-01

    Full Text Available study of 2 666 heavy vehicles (HVs) with Gross Combination Mass, (GCM) > 3 500 kg was conducted, where the mass (or weight) of each tyre (approximately 47 242 tyres (or wheels)) was measured. The measurements were done at slow speed over the SIM device...

  2. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle.

    Science.gov (United States)

    Kampourakis, Thomas; Ponnam, Saraswathi; Irving, Malcolm

    2018-04-01

    Hypertrophic cardiomyopathy (HCM) is frequently linked to mutations in the protein components of the myosin-containing thick filaments leading to contractile dysfunction and ultimately heart failure. However, the molecular structure-function relationships that underlie these pathological effects remain largely obscure. Here we chose an example mutation (R58Q) in the myosin regulatory light chain (RLC) that is associated with a severe HCM phenotype and combined the results from a wide range of in vitro and in situ structural and functional studies on isolated protein components, myofibrils and ventricular trabeculae to create an extensive map of structure-function relationships. The results can be understood in terms of a unifying hypothesis that illuminates both the effects of the mutation and physiological signaling pathways. R58Q promotes an OFF state of the thick filaments that reduces the number of myosin head domains that are available for actin interaction and ATP utilization. Moreover this mutation uncouples two aspects of length-dependent activation (LDA), the cellular basis of the Frank-Starling relation that couples cardiac output to venous return; R58Q reduces maximum calcium-activated force with no significant effect on myofilament calcium sensitivity. Finally, phosphorylation of R58Q-RLC to levels that may be relevant both physiologically and pathologically restores the regulatory state of the thick filament and the effect of sarcomere length on maximum calcium-activated force and thick filament structure, as well as increasing calcium sensitivity. We conclude that perturbation of thick filament-based regulation may be a common mechanism in the etiology of missense mutation-associated HCM, and that this signaling pathway offers a promising target for the development of novel therapeutics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  4. Long-term high-level exercise promotes muscle reinnervation with age.

    Science.gov (United States)

    Mosole, Simone; Carraro, Ugo; Kern, Helmut; Loefler, Stefan; Fruhmann, Hannah; Vogelauer, Michael; Burggraf, Samantha; Mayr, Winfried; Krenn, Matthias; Paternostro-Sluga, Tatjana; Hamar, Dusan; Cvecka, Jan; Sedliak, Milan; Tirpakova, Veronika; Sarabon, Nejc; Musarò, Antonio; Sandri, Marco; Protasi, Feliciano; Nori, Alessandra; Pond, Amber; Zampieri, Sandra

    2014-04-01

    The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.

  5. Connecting slow earthquakes to huge earthquakes.

    Science.gov (United States)

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  6. AN INTEGRATIVE WAY OF TEACHING MOLECULAR CELL BIOLOGY AND PROTEIN CHEMISTRY USING ACTIN IMMOBILIZATION ON CHITIN FOR PURIFYING MYOSIN II.

    Directory of Open Access Journals (Sweden)

    M.G. Souza

    2007-05-01

    Full Text Available Our intent is to present our experience on teaching Molecular Cell Biology andProtein Chemistry at UNIRIO through an innovative approach that includes myosin IIextraction and purification. We took advantage of the properties of muscle contractionand propose a simple method for purifying myosin II by affinity chromatography. Thisoriginal method is based on the preparation of an affinity column containing actinmolecules covalently bound to chitin particles. We propose a three-week syllabus thatincludes lectures and bench experimental work. The syllabus favors the activelearning of protein extraction and purification, as well as, of scientific concepts suchas muscle contraction, cytoskeleton structure and its importance for the living cell. Italso promotes the learning of the biotechnological applications of chitin and theapplications of protein immobilization in different industrial fields. Furthermore, theactivities also target the development of laboratorial technical abilities, thedevelopment of problem solving skills and the ability to write up a scientific reportfollowing the model of a scientific article. It is very important to mention that thissyllabus can be used even in places where a facility such as ultra-centrifugation islacking.

  7. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  8. Tumor necrosis factor-alpha inhibits differentiation of myogenic cells in human urethral rhabdosphincter.

    Science.gov (United States)

    Shinohara, Mayuka; Sumino, Yasuhiro; Sato, Fuminori; Kiyono, Tohru; Hashimoto, Naohiro; Mimata, Hiromitsu

    2017-06-01

    To examine the inhibitory effects of tumor necrosis factor-α on myogenic differentiation of human urethral rhabdosphincter cells. A rhabdosphincter sample was obtained from a patient who underwent total cystectomy. To expand the lifespan of the primary cultured cells, rhabdosphincter myogenic cells were immortalized with mutated cyclin-dependent kinase 4, cyclin D1 and telomerase. The differential potential of the cells was investigated. The transfected human rhabdosphincter cells were induced for myogenic differentiation with recombinant human tumor necrosis factor-α and/or the tumor necrosis factor-α antagonist etanercept at different concentrations, and activation of signaling pathways was monitored. Human rhabdosphincter cells were selectively cultured for at least 40 passages. Molecular analysis confirmed the expression of myosin heavy chain, which is a specific marker of differentiated muscle cells, significantly increased after differentiation induction. Although tumor necrosis factor-α treatment reduced the myosin heavy chain expression in a concentration-dependent manner, etanercept inhibited this suppression. Tumor necrosis factor-α suppressed phosphorylation of protein kinase B and p38, whereas etanercept pretreatment promoted phosphorylation and myosin heavy chain expression in a concentration-dependent manner. Tumor necrosis factor-α inhibits differentiation of urethral rhabdosphincter cells in part through the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase pathways. Inhibition of tumor necrosis factor-α might be a useful strategy to treat stress urinary incontinence. © 2017 The Japanese Urological Association.

  9. Low-Altitude and Slow-Speed Small Target Detection Based on Spectrum Zoom Processing

    Directory of Open Access Journals (Sweden)

    Xuwang Zhang

    2018-01-01

    Full Text Available This paper proposes a spectrum zoom processing based target detection algorithm for detecting the weak echo of low-altitude and slow-speed small (LSS targets in heavy ground clutter environments, which can be used to retrofit the existing radar systems. With the existing range-Doppler frequency images, the proposed method firstly concatenates the data from the same Doppler frequency slot of different images and then applies the spectrum zoom processing. After performing the clutter suppression, the target detection can be finally implemented. Through the theoretical analysis and real data verification, it is shown that the proposed algorithm can obtain a preferable spectrum zoom result and improve the signal-to-clutter ratio (SCR with a very low computational load.

  10. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    International Nuclear Information System (INIS)

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer; Bochsler, Peter; McKeegan, Kevin D.; Neugebauer, Marcia; Reisenfeld, Daniel B.; Wiens, Roger C.

    2012-01-01

    NASA's Genesis space mission returned samples of solar wind collected over ∼2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 ± 2.1 per mille for He, 4.2 ± 0.5 per mille amu –1 for Ne and 2.6 ± 0.5 per mille amu –1 for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  11. ISOTOPIC MASS FRACTIONATION OF SOLAR WIND: EVIDENCE FROM FAST AND SLOW SOLAR WIND COLLECTED BY THE GENESIS MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Heber, Veronika S.; Baur, Heinrich; Wieler, Rainer [Institute for Geochemistry and Petrology, ETH Zurich, Clausiusstrasse 25, CH-8092 Zurich (Switzerland); Bochsler, Peter [Physikalisches Institut, Universitaet Bern, Sidlerstasse 5, CH-3012 Bern (Switzerland); McKeegan, Kevin D. [Department of Earth and Space Sciences, University of California Los Angeles, 595 Charles Young Drive East, Box 951567, Los Angeles, CA 90095-1567 (United States); Neugebauer, Marcia [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092 (United States); Reisenfeld, Daniel B. [Department of Physics and Astronomy, University of Montana, Missoula, MT 59812 (United States); Wiens, Roger C., E-mail: heber@ess.ucla.edu [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2012-11-10

    NASA's Genesis space mission returned samples of solar wind collected over {approx}2.3 years. We present elemental and isotopic compositions of He, Ne, and Ar analyzed in diamond-like carbon targets from the slow and fast solar wind collectors to investigate isotopic fractionation processes during solar wind formation. The solar wind provides information on the isotopic composition for most volatile elements for the solar atmosphere, the bulk Sun and hence, on the solar nebula from which it formed 4.6 Ga ago. Our data reveal a heavy isotope depletion in the slow solar wind compared to the fast wind composition by 63.1 {+-} 2.1 per mille for He, 4.2 {+-} 0.5 per mille amu{sup -1} for Ne and 2.6 {+-} 0.5 per mille amu{sup -1} for Ar. The three Ne isotopes suggest that isotopic fractionation processes between fast and slow solar wind are mass dependent. The He/H ratios of the collected slow and fast solar wind samples are 0.0344 and 0.0406, respectively. The inefficient Coulomb drag model reproduces the measured isotopic fractionation between fast and slow wind. Therefore, we apply this model to infer the photospheric isotopic composition of He, Ne, and Ar from our solar wind data. We also compare the isotopic composition of oxygen and nitrogen measured in the solar wind with values of early solar system condensates, probably representing solar nebula composition. We interpret the differences between these samples as being due to isotopic fractionation during solar wind formation. For both elements, the magnitude and sign of the observed differences are in good agreement with the values predicted by the inefficient Coulomb drag model.

  12. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang

    2015-12-15

    A search is performed for heavy long-lived charged particles using 3.0 fb$^{-1}$ of pp collisions collected at $\\sqrt{s}$= 7 and 8 TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkovdetectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, $1.8 < \\eta < 4.9$. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95\\% CL) for masses between 124 and 309 GeV/c$^2$.

  13. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  14. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  15. Association of cardiac myosin binding protein-C with the ryanodine receptor channel: putative retrograde regulation?

    Science.gov (United States)

    Stanczyk, Paulina J; Seidel, Monika; White, Judith; Viero, Cedric; George, Christopher H; Zissimopoulos, Spyros; Lai, F Anthony

    2018-06-21

    The cardiac muscle ryanodine receptor-Ca 2+ release channel (RyR2) constitutes the sarcoplasmic reticulum (SR) Ca 2+ efflux mechanism that initiates myocyte contraction, while cardiac myosin binding protein-C (cMyBP-C) mediates regulation of acto-myosin cross-bridge cycling. In this report, we provide the first evidence for the presence of direct interaction between these two proteins, forming a RyR2:cMyBP-C complex. The C-terminus of cMyBP-C binds with the RyR2 N-terminus in mammalian cells and is not mediated by a fibronectin-like domain. Notably, we detected complex formation between both recombinant cMyBP-C and RyR2, as well as with the native proteins in cardiac tissue. Cellular Ca 2+ dynamics in HEK293 cells is altered upon co-expression of cMyBP-C and RyR2, with lowered frequency of RyR2-mediated spontaneous Ca 2+ oscillations, suggesting cMyBP-C exerts a potential inhibitory effect on RyR2-dependent Ca 2+ release. Discovery of a functional RyR2 association with cMyBP-C provides direct evidence for a putative mechanistic link between cytosolic soluble cMyBP-C and SR-mediated Ca 2+ release, via RyR2. Importantly, this interaction may have clinical relevance to the observed cMyBP-C and RyR2 dysfunction in cardiac pathologies, such as hypertrophic cardiomyopathy. © 2018. Published by The Company of Biologists Ltd.

  16. Intestinal infection with Giardia spp. reduces epithelial barrier function in a myosin light chain kinase-dependent fashion.

    Science.gov (United States)

    Scott, Kevin G-E; Meddings, Jonathon B; Kirk, David R; Lees-Miller, Susan P; Buret, André G

    2002-10-01

    Giardiasis causes malabsorptive diarrhea, and symptoms can be present in the absence of any significant morphologic injury to the intestinal mucosa. The effects of giardiasis on epithelial permeability in vivo remain unknown, and the role of T cells and myosin light chain kinase (MLCK) in altered intestinal barrier function is unclear. This study was conducted to determine whether Giardia spp. alters intestinal permeability in vivo, to assess whether these abnormalities are dependent on T cells, and to assess the role of MLCK in altered epithelial barrier function. Immunocompetent and isogenic athymic mice were inoculated with axenic Giardia muris trophozoites or sterile vehicle (control), then assessed for trophozoite colonization and gastrointestinal permeability. Mechanistic studies using nontransformed human duodenal epithelial monolayers (SCBN) determined the effects of Giardia on myosin light chain (MLC) phosphorylation, transepithelial fluorescein isothiocyanate-dextran fluxes, cytoskeletal F-actin, tight junctional zonula occludens-1 (ZO-1), and MLCK. Giardia infection caused a significant increase in small intestinal, but not gastric or colonic, permeability that correlated with trophozoite colonization in both immunocompetent and athymic mice. In vitro, Giardia increased permeability and phosphorylation of MLC and reorganized F-actin and ZO-1. These alterations were abolished with an MLCK inhibitor. Disruption of small intestinal barrier function is T cell independent, disappears on parasite clearance, and correlates with reorganization of cytoskeletal F-actin and tight junctional ZO-1 in an MLCK-dependent fashion.

  17. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.

    Science.gov (United States)

    Gittings, William; Bunda, Jordan; Vandenboom, Rene

    2018-01-30

    Skeletal myosin light chain kinase (skMLCK)-catalyzed phosphorylation of the myosin regulatory light chain (RLC) increases (i.e. potentiates) mechanical work output of fast skeletal muscle. The influence of this event on contractile economy (i.e. energy cost/work performed) remains controversial, however. Our purpose was to quantify contractile economy of potentiated extensor digitorum longus (EDL) muscles from mouse skeletal muscles with (wild-type, WT) and without (skMLCK ablated, skMLCK -/- ) the ability to phosphorylate the RLC. Contractile economy was calculated as the ratio of total work performed to high-energy phosphate consumption (HEPC) during a period of repeated isovelocity contractions that followed a potentiating stimulus (PS). Consistent with genotype, the PS increased RLC phosphorylation measured during, before and after isovelocity contractions in WT but not in skMLCK -/- muscles (i.e. 0.65 and 0.05 mol phosphate mol -1 RLC, respectively). In addition, although the PS enhanced work during repeated isovelocity contractions in both genotypes, the increase was significantly greater in WT than in skMLCK -/- muscles (1.51±0.03 versus 1.10±0.05, respectively; all data P economy calculated for WT muscles was similar to that calculated for skMLCK -/- muscles (i.e. 5.74±0.67 and 4.61±0.71 J kg -1  μmol -1 P, respectively ( P economy. © 2018. Published by The Company of Biologists Ltd.

  18. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  19. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    Science.gov (United States)

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  20. Regulation of actomyosin ATPase activity by troponin-tropomyosin: effect of the binding of the myosin subfragment 1 (S-1) ATP complex

    International Nuclear Information System (INIS)

    Greene, L.E.; Williams, D.L. Jr.; Eisenberg, E.

    1987-01-01

    In the authors' model of regulation, the observed lack of cooperativity in the binding of myosin subfragment 1 (S-1) with bound ATP to the troponin-tropomyosin-actin complex (regulated actin) is explained by S-1 ATP having about the same affinity for the conformation of the regulated actin that activates the myosin ATPase activity (turned-on form) and the conformation that does not activate the myosin ATPase activity (turned-off form). This predicts that, in the absence of Ca 2+ , S-1 ATP should not turn on the regulated actin filament. In the present study, they tested this prediction by using either unmodified S-1 or S-1 chemically modified with N,N'-p-phenylenedimaleimide (pPDM S-1) so that functionally it acts like S-1 ATP, although it does not hydrolyze ATP. [ 14 C]pPDM and [ 32 P]ATP were used as tracers. They found that, in the absence of Ca 2+ , neither S-1 ATP nor pPDM S-1 ATP significantly turns on the ATPase activity of the regulated complex of actin and S-1 (acto S-1). In contrast, in the presence of Ca 2+ , pPDM S-1 ATP binding almost completely turns on the regulated acto S-1 ATPase activity. These results can be explained by their original cooperativity model, with pPDM S-1 ATP binding only ≅ 2 fold more strongly to the turned-on form that to the turned-off form of regulated actin. However, the results are not consistent with our alternative model, which predicts that if pPDM S-1 ATP binds to actin in the absence of Ca 2+ but does not turn on the ATPase activity, then it should also turn on the ATPase activity in the presence of Ca 2+

  1. Heavy leptons

    International Nuclear Information System (INIS)

    Smith, C.H.L.

    1977-01-01

    The possibility that a new lepton may exist is discussed under the headings; theoretical reasons for the introduction of heavy leptons, classification of heavy leptons (ortho and paraleptons), discrimination between different types of lepton, decays of charged heavy leptons, production of charged heavy leptons (in e + e - storage rings, neutrino production, photoproduction, and hadroproduction), neutral heavy leptons, and hadroleptons. (U.K.)

  2. STEM Analysis of Caenorhabditis elegans muscle thick filaments: evidence for microdifferentiated substructures

    Science.gov (United States)

    Muller, S. A.; Haner, M.; Ortiz, I.; Aebi, U.; Epstein, H. F.

    2001-01-01

    In the thick filaments of body muscle in Caenorhabditis elegans, myosin A and myosin B isoforms and a subpopulation of paramyosin, a homologue of myosin heavy chain rods, are organized about a tubular core. As determined by scanning transmission electron microscopy, the thick filaments show a continuous decrease in mass-per-length (MPL) from their central zones to their polar regions. This is consistent with previously reported morphological studies and suggests that both their content and structural organization are microdifferentiated as a function of position. The cores are composed of a second distinct subpopulation of paramyosin in association with the alpha, beta, and gamma-filagenins. MPL measurements suggest that cores are formed from seven subfilaments containing four strands of paramyosin molecules, rather than the two originally proposed. The periodic locations of the filagenins within different regions and the presence of a central zone where myosin A is located, implies that the cores are also microdifferentiated with respect to molecular content and structure. This differentiation may result from a novel "induced strain" assembly mechanism based upon the interaction of the filagenins, paramyosin and myosin A. The cores may then serve as "differentiated templates" for the assembly of myosin B and paramyosin in the tapering, microdifferentiated polar regions of the thick filaments.

  3. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  4. Slow movement execution in event-related potentials (P300).

    Science.gov (United States)

    Naruse, Kumi; Sakuma, Haruo; Hirai, Takane

    2002-02-01

    We examined whether slow movement execution has an effect on cognitive and information processing by measuring the P300 component. 8 subjects performed a continuous slow forearm rotational movement using 2 task speeds. Slow (a 30-50% decrease from the subject's Preferred speed) and Very Slow (a 60-80% decrease). The mean coefficient of variation for rotation speed under Very Slow was higher than that under Slow, showing that the subjects found it difficult to perform the Very Slow task smoothly. The EEG score of alpha-1 (8-10 Hz) under Slow Condition was increased significantly more than under the Preferred Condition; however, the increase under Very Slow was small when compared with Preferred. After performing the task. P300 latency under Very Slow increased significantly as compared to that at pretask. Further, P300 amplitude decreased tinder both speed conditions when compared to that at pretask, and a significant decrease was seen under the Slow Condition at Fz, whereas the decrease under the Very Slow Condition was small. These differences indicated that a more complicated neural composition and an increase in subjects' attention might have been involved when the task was performed under the Very Slow Condition. We concluded that slow movement execution may have an influence on cognitive function and may depend on the percentage of decrease from the Preferred speed of the individual.

  5. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  6. Application of Planar Broadband Slow-Wave Systems

    Directory of Open Access Journals (Sweden)

    Edvardas Metlevskis

    2012-04-01

    Full Text Available Different types of planar broadband slow-wave systems are used for designing microwave devices. The papers published by Lithuanian scientists analyze and investigate the models of helical and meander slow-wave systems. The article carefully examines the applications of meander slow-wave systems and presents the areas where similar systems, e.g. mobile devices, RFID, wireless technologies are used and reviewed nowadays. The paper also focuses on the examples of the papers discussing antennas, filters and couplers that contain designed and fabricated meander slow-wave systems.Article in Lithuanian

  7. GenBank blastx search result: AK058591 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK058591 001-017-G08 AY953023.1 Rattus norvegicus smooth muscle myosin heavy chain, alternative... isoform B, S1 region mRNA, partial cds, alternatively spliced.|ROD ROD 4e-66 +2 ...

  8. Search for long-lived heavy charged particles using a ring imaging Cherenkov technique at LHCb.

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Affolder, A; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Anderson, J; Andreotti, M; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; d'Argent, P; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Bel, L J; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bertolin, A; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Birnkraut, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Borsato, M; Bowcock, T J V; Bowen, E; Bozzi, C; Brett, D; Britsch, M; Britton, T; Brodzicka, J; Brook, N H; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Campana, P; Campora Perez, D; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casanova Mohr, R; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cavallero, G; Cenci, R; Charles, M; Charpentier, Ph; Chefdeville, M; Chen, S; Cheung, S F; Chiapolini, N; Chrzaszcz, M; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collazuol, G; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Corvo, M; Counts, I; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Ruscio, F; Dijkstra, H; Donleavy, S; Dordei, F; Dorigo, M; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dreimanis, K; Dujany, G; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Färber, C; Farinelli, C; Farley, N; Farry, S; Fay, R; Ferguson, D; Fernandez Albor, V; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fol, P; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Fu, J; Furfaro, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; García Pardiñas, J; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gavardi, L; Gazzoni, G; Geraci, A; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianelle, A; Gianì, S; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gotti, C; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grillo, L; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Henry, L; Hernando Morata, J A; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hoballah, M; Hombach, C; Hulsbergen, W; Humair, T; Hussain, N; Hutchcroft, D; Hynds, D; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jalocha, J; Jans, E; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Karodia, S; Kelsey, M; Kenyon, I R; Kenzie, M; Ketel, T; Khanji, B; Khurewathanakul, C; Klaver, S; Klimaszewski, K; Kochebina, O; Kolpin, M; Komarov, I; Koopman, R F; Koppenburg, P; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kurek, K; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanfranchi, G; Langenbruch, C; Langhans, B; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Likhomanenko, T; Liles, M; Lindner, R; Linn, C; Lionetto, F; Liu, B; Lohn, S; Longstaff, I; Lopes, J H; Lucchesi, D; Luo, H; Lupato, A; Luppi, E; Lupton, O; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Malinin, A; Manca, G; Mancinelli, G; Manning, P; Mapelli, A; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marino, P; Märki, R; Marks, J; Martellotti, G; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Mauri, A; Maurin, B; Mazurov, A; McCann, M; McCarthy, J; McNab, A; McNulty, R; McSkelly, B; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M N; Mitzel, D S; Molina Rodriguez, J; Monteil, S; Morandin, M; Morawski, P; Mordà, A; Morello, M J; Moron, J; Morris, A B; Mountain, R; Muheim, F; Müller, J; Müller, K; Müller, V; Mussini, M; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Okhrimenko, O; Oldeman, R; Onderwater, C J G; Osorio Rodrigues, B; Otalora Goicochea, J M; Otto, A; Owen, P; Oyanguren, A; Palano, A; Palombo, F; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parkes, C; Passaleva, G; Patel, G D; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Pistone, A; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Price, E; Price, J D; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rakotomiaramanana, B; Rama, M; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redi, F; Reichert, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rotondo, M; Rouvinet, J; Ruf, T; Ruiz, H; Ruiz Valls, P; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schune, M H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Shires, A; Silva Coutinho, R; Simi, G; Sirendi, M; Skidmore, N; Skillicorn, I; Skwarnicki, T; Smith, E; Smith, E; Smith, J; Smith, M; Snoek, H; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Steinkamp, O; Stenyakin, O; Sterpka, F; Stevenson, S; Stoica, S; Stone, S; Storaci, B; Stracka, S; Straticiuc, M; Straumann, U; Stroili, R; Sun, L; Sutcliffe, W; Swientek, K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Tekampe, T; Teklishyn, M; Tellarini, G; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Todd, J; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Trabelsi, K; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valenti, G; Vallier, A; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vieites Diaz, M; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wiedner, D; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wright, S; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L

    A search is performed for heavy long-lived charged particles using 3.0 [Formula: see text] of proton-proton collisions collected at [Formula: see text][Formula: see text] 7 and 8  TeV with the LHCb detector. The search is mainly based on the response of the ring imaging Cherenkov detectors to distinguish the heavy, slow-moving particles from muons. No evidence is found for the production of such long-lived states. The results are expressed as limits on the Drell-Yan production of pairs of long-lived particles, with both particles in the LHCb pseudorapidity acceptance, [Formula: see text]. The mass-dependent cross-section upper limits are in the range 2-4 fb (at 95 % CL) for masses between 14 and 309 [Formula: see text].

  9. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  10. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  11. Slow, stopped and stored light

    International Nuclear Information System (INIS)

    Welch, G.; Scully, M.

    2005-01-01

    Light that can been slowed to walking pace could have applications in telecommunications, optical storage and quantum computing. Whether we use it to estimate how far away a thunderstorm is, or simply take it for granted that we can have a conversation with someone on the other side of the world, we all know that light travels extremely fast. Indeed, special relativity teaches us that nothing in the universe can ever move faster than the speed of light in a vacuum: 299 792 458 ms sup - sup 1. However, there is no such limitation on how slowly light can travel. For the last few years, researchers have been routinely slowing light to just a few metres per second, and have recently even stopped it dead in its tracks so that it can be stored for future use. Slow-light has considerable popular appeal, deriving perhaps from the importance of the speed of light in relativity and cosmology. If everyday objects such as cars or people can travel faster than 'slow' light, for example, then it might appear that relativistic effects could be observed at very low speeds. Although this is not the case, slow light nonetheless promises to play an important role in optical technology because it allows light to be delayed for any period of time desired. This could lead to all-optical routers that would increase the bandwidth of the Internet, and applications in optical data storage, quantum information and even radar. (U.K.)

  12. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells

    Science.gov (United States)

    Lehmann, Maik J.; Sherer, Nathan M.; Marks, Carolyn B.; Pypaert, Marc; Mothes, Walther

    2005-01-01

    Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, “surfing” toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body. PMID:16027225

  13. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells.

    Science.gov (United States)

    Lehmann, Maik J; Sherer, Nathan M; Marks, Carolyn B; Pypaert, Marc; Mothes, Walther

    2005-07-18

    Viruses have often been observed in association with the dense microvilli of polarized epithelia as well as the filopodia of nonpolarized cells, yet whether interactions with these structures contribute to infection has remained unknown. Here we show that virus binding to filopodia induces a rapid and highly ordered lateral movement, "surfing" toward the cell body before cell entry. Virus cell surfing along filopodia is mediated by the underlying actin cytoskeleton and depends on functional myosin II. Any disruption of virus cell surfing significantly reduces viral infection. Our results reveal another example of viruses hijacking host machineries for efficient infection by using the inherent ability of filopodia to transport ligands to the cell body.

  14. The Intriguing Dual Lattices of the Myosin Filaments in Vertebrate Striated Muscles: Evolution and Advantage

    Directory of Open Access Journals (Sweden)

    Pradeep K. Luther

    2014-12-01

    Full Text Available Myosin filaments in vertebrate striated muscle have a long roughly cylindrical backbone with cross-bridge projections on the surfaces of both halves except for a short central bare zone. In the middle of this central region the filaments are cross-linked by the M-band which holds them in a well-defined hexagonal lattice in the muscle A-band. During muscular contraction the M-band-defined rotation of the myosin filaments around their long axes influences the interactions that the cross-bridges can make with the neighbouring actin filaments. We can visualise this filament rotation by electron microscopy of thin cross-sections in the bare-region immediately adjacent to the M-band where the filament profiles are distinctly triangular. In the muscles of teleost fishes, the thick filament triangular profiles have a single orientation giving what we call the simple lattice. In other vertebrates, for example all the tetrapods, the thick filaments have one of two orientations where the triangles point in opposite directions (they are rotated by 60° or 180° according to set rules. Such a distribution cannot be developed in an ordered fashion across a large 2D lattice, but there are small domains of superlattice such that the next-nearest neighbouring thick filaments often have the same orientation. We believe that this difference in the lattice forms can lead to different contractile behaviours. Here we provide a historical review, and when appropriate cite recent work related to the emergence of the simple and superlattice forms by examining the muscles of several species ranging back to primitive vertebrates and we discuss the functional differences that the two lattice forms may have.

  15. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  16. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils.

    Science.gov (United States)

    Sharma, Swati; Tiwari, Sakshi; Hasan, Abshar; Saxena, Varun; Pandey, Lalit M

    2018-04-01

    Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.

  17. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres.

    Science.gov (United States)

    Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W

    2005-01-01

    We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.

  18. The role of Sox6 in zebrafish muscle fiber type specification.

    Science.gov (United States)

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation

  19. Dynamic changes of serum TNF-α and cTnI levels in BALB/c Mouse models of autoimmune myocarditis

    International Nuclear Information System (INIS)

    Han Li'na

    2007-01-01

    Objective: To prepare mouse models of experimental autoimmune myocarditis (EAM) with subcutaneous injection of synthesized peptide (containing heavy chain segment of cardiac myosin) and examine the dynamic changes of cardiac pathology as well as TNF -α, cTnI and autoimmune antibody contents. Methods: BALB/c mice were subcutaneously injected with 0.8 mg of the synthesized peptide to produce the experimental autoimmune myocarditis (EAM) models. The animals were sacrificed 14, 21, 30 and 60d after establishment of the models, heart muscle was examined pathologically to assess the severity of myocarditis and blood were examined for the plasma contents of TNF-α (with RIA) cTnI (with ELISA) and anti-cardiac myosin heavy chain (CMHC) antibody titier (with ELISA). Results: Evidence of myocardial damage appeared on d14 specimens and progressed there after with interstitial infiltration of macrophages and myocardial necrosis. In the 60d specimens, fibrosis was obvious. The plasma TNF-α and cTnI levels were highest in the d30 specimens and declined in the d60 specimens but still remained much higher than normal. Most of the models demonstrated anti-CMHC antibodies in the 21d and 30d specimens. Conclusion: It is feasible to prepare EMC mouse models with subcutaneous injection of synthesized peptide containing heavy chain segment of cardiac myosin and the plasma levels of TNF-α, cTnI in the models are well correlated to the pathologic change of myocarditis. (authors)

  20. Dynamic polarization by coulomb excitation in the closed formalism for heavy ion scattering

    International Nuclear Information System (INIS)

    Frahn, W.E.; Hill, T.F.

    1978-01-01

    We present a closed-form treatment of the effects of dynamic polarization by Coulomb excitation on the elastic scattering of deformed heavy ions. We assume that this interaction can be represented by an absorptive polarization potential. The relatively long range of this potential entails a relatively slow variation of the associated reflection function in l-space. This feature leads to a simple generalization of the closed formula derived previously for the elastic scattering amplitude of spherical heavy nuclei. We use both the polarization potential of Love et al. and the recent improved potential of Baltz et al. to derive explicit expressions for the associated reflection functions in a Coulomb-distorted eikonal approximation. As an example we analyze the elastic scattering of 90-MeV 18 O ions by 184 W and show that both results give a quantitative description of the data. (orig.) [de