WorldWideScience

Sample records for slow highly charged

  1. Strong charge state dependence of H+ and H2+ sputtering induced by slow highly charged ions

    International Nuclear Information System (INIS)

    Kakutani, N.; Azuma, T.; Yamazaki, Y.; Komaki, K.; Kuroki, K.

    1995-01-01

    Secondary ion emission has been studied for very slow ( similar 0.01ν B ) highly charged Ar and N ions bombarding C 60 containing hydrogen as an impurity. It is found that the fragmentations of C 60 are very rare even for Ar 16+ bombardments. On the other hand, the sputtering of H + and H 2 + has been observed to increase drastically as a function of incident charge q like q γ (e.g., γ similar 4.6 for H + sputtering by 500 eV Ar q+ ). (orig.)

  2. The effect of temperature on guiding of slow highly charged ions through a mesoscopic glass capillary

    International Nuclear Information System (INIS)

    Bereczky, R J; Tökési, K; Kowarik, G; Ladinig, F; Schrempf, D; Aumayr, F

    2012-01-01

    We present first temperature dependent transmission measurements of slow highly charged ions through a single, straight Duran glass capillary with a high aspect ratio. By changing the temperature of the glass capillary the electrical conductivity of the Duran can be varied by several orders of magnitude. This held the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details.

  3. Interaction of slow highly-charged ions with metals and insulators

    International Nuclear Information System (INIS)

    Yamazaki, Y.

    2007-01-01

    Interaction of slow highly charged ions with insulator as well as metallic surfaces is discussed. In addition to the usual flat surface targets, studies with thin foils having a multitude of straight holes of ∼100 nm in diameter (micro-capillary foil) are introduced, which provide various unique information on the above surface interaction. In the case of an insulator micro-capillary foil, a so-called guiding effect was observed, where slow highly charged ions can transmit through the capillary tunnel keeping their initial charge state even when the capillary axis is tilted against the incident beam. A similar guiding effect has recently been found for slow highly-charged ions transmitted through a single tapered glass capillary. In both cases, the guiding effects are expected to be governed by a self-organized charging and discharging of the inner-wall of the insulator capillary. One of the prominent features of this guiding effect with the tapered capillary is the formation of a nano-size beam, which can be applied in various fields of science including surface nano-modification/analysis, nano-surgery of living cells, etc

  4. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  5. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  6. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  7. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    International Nuclear Information System (INIS)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume

  8. Electrom emission from slow highly charged ions interacting with a metal surface

    International Nuclear Information System (INIS)

    Aumayr, F.; Kurz, H.; Toeglhofer, K.; Winter, H.

    1992-01-01

    Recent progress in investigating electron emission from slow highly charged ions approaching a metal surface is discussed. In particular, new informations on generation and decay of transient multiply excited ''hollow atoms'' developing during these processes have been gained from measurement of the statistics of emitted electrons (ES). ES and precise total electron yields derived from the former have been measured for normal incidence of slow (impact velocity 1/15.10 4 ms -1 ) multicharged ions N q+ (q≤6), Ne q+ (q≤10), Ar q+ (q≤16), Kr q+ (q≤10), Xe q+ (q≤10) and I q+ (q≤25) on clean polycrystalline gold. A classical over-barrier approach as recently introduced by Burgdoerfer et al. 1991 has been extended and successfully applied to model the measured impact-velocity dependences of total electron yields. In this way contributions from different electron emission mechanisms could be identified. (orig.)

  9. Nanoscale transformation of sp2 to sp3 of graphite by slow highly charged ion irradiation

    International Nuclear Information System (INIS)

    Meguro, T.; Hida, A.; Koguchi, Y.; Miyamoto, S.; Yamamoto, Y.; Takai, H.; Maeda, K.; Aoyagi, Y.

    2003-01-01

    Nanoscale transformation of electronic states by highly charged ion (HCI) impact on graphite surfaces is described. The high potential energy of slow HCI, which induces multiple emission of electrons from the surface, provides a strong modification of the electronic states of the local area upon graphite surfaces. The HCI impact and the subsequent surface treatment either by electron injection from a scanning tunneling microscopy tip or by He-Cd laser irradiation induce a localized transition from sp 2 to sp 3 hybridization in graphite, resulting in the formation of nanoscale diamond-like structures (nanodiamond) at the impact region. From Raman spectroscopic measurements on sp 2 related peaks, it is found that the HCI irradiation creates vacancy complexes in contrast to ions having a lower charge state, which generate single vacancies. It is of interest that a single impact of HCI creates one nanodiamond structure, suggesting potential applications of HCI in nanoscale material processing

  10. Correlated double electron capture in slow, highly charged ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L/sub 1/L/sub 23/X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs.

  11. Correlated double electron capture in slow, highly charged ion-atom collisions

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Havener, C.C.; Phaneuf, R.A.; Swenson, J.K.; Shafroth, S.M.; Meyer, F.W.

    1986-01-01

    Recent measurements of autoionization electrons produced in slow, highly charged ion-atom collisions are reviewed. Mechanisms for double electron capture into equivalent and nonequivalent configurations are analyzed by comparing the probabilities for the creation of L 1 L 23 X Coster Kronig electrons and L-Auger electrons. It is shown that the production of the Coster-Kronig electrons is due to electron correlation effects whose analysis leads beyond the independent-particle model. The importance of correlation effects on different capture mechanisms is discussed. 28 refs., 6 figs

  12. Electron stereodynamics in coulomb explosion of molecules by slow highly charged ions

    International Nuclear Information System (INIS)

    Ichimura, Atsushi; Ohyama-Yamaguchi, Tomoko

    2008-01-01

    The three-center Coulombic over-the-barrier model is developed for Coulomb explosion of a homonuclear diatomic molecule in collisions with a slow (∼10 eV/amu) highly charged ion. A conventional two-step picture of multiple electron transfer followed by Coulomb explosion is far from appropriate because the molecule sets out to dissociate before the incident ion approaches the closest distance. We treat the formation of a quasi-molecule and its decay into the three moving atomic ions. Charge-asymmetric population between fragment ions observed in a triple-coincidence measurement is suggested to reflect the bond elongation during a collision. Collisions of Kr 8+ + N 2 are analyzed. (author)

  13. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  14. One- and two-electron processes in collisions between hydrogen molecules and slow highly charged ions

    International Nuclear Information System (INIS)

    Wells, E.; Carnes, K.D.; Tawara, H.; Ali, R.; Sidky, Emil Y.; Illescas, Clara; Ben-Itzhak, I.

    2005-01-01

    A coincidence time-of-flight technique coupled with projectile charge state analysis was used to study electron capture in collisions between slow highly charged ions and hydrogen molecules. We found single electron capture with no target excitation to be the dominant process for both C 6+ projectiles at a velocity of 0.8 atomic units and Ar 11+ projectiles at v 0.63 a.u. Double electron capture and transfer excitation, however, were found to be comparable and occur about 30% of the time relative to single capture. Most projectiles (96%) auto-ionize quickly following double capture into doubly excited states. The data are compared to classical and quantum mechanical model calculations

  15. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A.S., E-mail: elsaid@kfupm.edu.sa [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Wilhelm, R.A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Sorokin, M. [National Research Centre ’Kurchatov Institute’, Kurchatov Square 1, 123182 Moscow (Russian Federation); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64289 Darmstadt (Germany)

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV {sup 129}Xe{sup (33–40)+} and with various swift heavy ions (SHI) of 30 MeV I{sup 9+} and 374 MeV–2.2 GeV {sup 197}Au{sup 25+}. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  16. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  17. Interaction of slow, highly charged ions with the surface of ionic crystals

    International Nuclear Information System (INIS)

    Heller, Rene

    2009-01-01

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v≤5 x 10 5 m/s) highly charged (q≤40) ions on the ionic crystal surfaces of CaF 2 and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E grenz pot (E kin ) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF 2 (111) surfaces could be verified for lowest kinetic energies (E kin ≤150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by complementary investigations of the secondary

  18. Nano-sized surface modifications induced by the impact of slow highly charged ions - A first review

    International Nuclear Information System (INIS)

    Aumayr, F.; El-Said, A.S.; Meissl, W.

    2008-01-01

    Irradiation of crystalline solid targets with swift heavy ions can lead to the formation of latent tracks in the solid and the creation of (mostly-hillock type) nanostructures on the surface. Recently similar surface modifications with nanometer dimensions have been demonstrated for the impact of individual, very slow but highly charged ions on various surfaces. We will review the current state of this new field of research. In particular we will discuss the circumstances and conditions under which nano-sized features (hillocks or craters) on different surfaces due to impact of slow highly charged ions can be produced. The use of slow highly charged ions instead of swift heavy ions might be of considerable interest for some practical applications

  19. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  20. Nano-scale surface modification of materials with slow, highly charged ion beams

    International Nuclear Information System (INIS)

    Sakurai, M.; Tona, M.; Takahashi, S.; Watanabe, H.; Nakamura, N.; Yoshiyasu, N.; Yamada, C.; Ohtani, S.; Sakaue, H.A.; Kawase, Y.; Mitsumori, K.; Terui, T.; Mashiko, S.

    2007-01-01

    Some results on surface modification of Si and graphite with highly charged ions (HCIs) are presented. Modified surfaces were observed using scanning tunneling microscopy. Crater-like structure with a diameter in nm region is formed on a Si(1 1 1)-(7 x 7) surface by the incidence of a single HCI. The protrusion structure is formed on a highly oriented pyrolytic graphite surface on the other hand, and the structure becomes an active site for molecular adsorption. A new, intense HCI source and an experimental apparatus are under development in order to process and observe aligned nanostructures created by the impact of collimated HCI beam

  1. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N; Grether, M; Spieler, A; Niemann, D [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  2. Nanofabrication on a Si surface by slow highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Terui, Toshifumi; Mashiko, Shinro; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed surface chemical reactions which occur at the impact sites on a Si(1 1 1)-(7 x 7) surface and a highly oriented pyrolytic graphite (HOPG) surface bombarded by highly charged ions (HCIs) by using a scanning tunneling microscope (STM). Crater structures are formed on the Si(1 1 1)-(7 x 7) surface by single I 50+ -impacts. STM-observation for the early step of oxidation on the surface suggests that the impact site is so active that dangling bonds created by HCI impacts are immediately quenched by reaction with residual gas molecules. We show also the selective adsorption of organic molecules at a HCI-induced impact site on the HOPG surface

  3. Electron transfer and multi-ionization in slow collisions of C60 with highly charged ions

    International Nuclear Information System (INIS)

    Wei, B.; Ma, X.; Zhu, X.L.; Liu, H.P.; Wang, Z.L.; Sha, S.; Feng, W.T.; Cao, S.P.; Qian, D.B.; Li, B.; Chen, L.F.

    2005-01-01

    In the collisions of 20qkeV Ar q+ with C 60 , the relative cross-section for the production of higher charge of C 60 r+ increases with the initial charge state of the projectiles increasing. By comparing the TOF spectra produced by 56keV and 160keV Ar 8+ ion impact, respectively, we found that the intensity of the fragments C (60-2n) r+ via evaporation at higher energy was much less

  4. Dissociation of Methanol and Acetylene by slow Highly Charged Ion Collision

    International Nuclear Information System (INIS)

    De, Sankar; Rajput, Jyoti; Roy, A; Ahuja, R; Ghosh, P N; Safvan, C P

    2007-01-01

    We report here the results of dissociation of multiple charged methanol and acetylene molecules in collision with 1.2 MeV Ar 8+ projectiles. We observed a wide range of dissociation products from the TOF spectrum starting from undissociated molecular ions, fragments losing an hydrogen atom due to breakage of C-H and/or O-H bonds, to complete rupture of C-C and C-O skeletons for the respective molecules. From the coincidence map of the fragments, we could separate out the different dissociation channels between carbon and oxygen ionic fragments as well as complete two-body dissociation events. The most striking feature in the breakup of CH 3 OH is the formation of H 2 + and H 3 + due to intramolecular rearrangement of the C-H bonds within the methyl group. In dissociative ionization studies of C 2 H 2 , we observed a diatom-like behaviour of the C-C charged complex as evidenced from the measured slopes of the coincidence islands for carbon atomic charged fragments and theoretical values determined from the charge and momentum distribution of the correlated particles. The shape and orientation of the islands give further information about the momentum balance in the fragmentation process in two-body dissociation

  5. Simulation of transmission of slow highly charged ions through insulating tapered macro-capillaries

    International Nuclear Information System (INIS)

    Schweigler, T.; Lemell, C.; Burgdoerfer, J.

    2011-01-01

    The field of charged-particle transmission through insulating nanocapillaries has expanded its scope within the last few years. Originally motivated by research on elementary ion-insulator interactions recent work has shifted the focus on the development of tools for ion-beam shaping and guiding. The design of tapered macrocapillaries has attracted growing interest and has found first applications in directing ions to targeted regions of biological cells for microsurgery. Due to the large dimensions of these capillaries, simulation of such systems faces considerable difficulties which we address in this paper. A first proof-of-principle simulation is presented.

  6. Secondary electron/reflected particle coincidence studies during slow highly charged ion-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, C.T.; Szilagyi, Z.; Shah, M.B.; McCullough, R.W. [Queen' s Univ., Belfast, Northern Ireland (United Kingdom); Woolsey, J.M. [Stirling Univ. (United Kingdom). DBMS; Trassl, R.; Salzborn, E. [Giessen Univ. (Germany). Inst. fuer Kernphysik

    2001-07-01

    We have measured the secondary electron emission statistics (ES) for 5 keV N{sup q+} (q = 1-4) ions incident at 10 on polycrystalline aluminium, in coincidence with specularly reflected N{sup 0}. In this arrangement the kinetic contribution to secondary electron emission is minimised. The experimental data shows that the coincident electron yield, {gamma}, increases linearly with incident ion charge state. The kinetic emission contribution has also been determined from this data. The ES due to 2 and 4 keV He{sup 2+} impact on polycrystalline aluminium in coincidence with specularly reflected He{sup +} and He{sup 0} have also been determined. The process He{sup 2+} {yields} He{sup 0} yields a larger {gamma} value than the process He{sup 2+} {yields} He{sup +}. (orig.)

  7. Particle emission induced by the interaction of highly charged slow Xe-ions with a SiO2 surface

    International Nuclear Information System (INIS)

    Schiwietz, G.; Skogvall, B.; Schneider, D.; Clark, M.; DeWitt, D.; McDonald, J.

    1991-01-01

    Sputtering of surface atoms by low energy (a few keV) heavy ions is a commonly used technique in material science and applied physics. In general, sputtering occurs via nuclear energy transfer processes and is determined mainly by the atom-atom interaction potentials. In the energy range of interest these potentials depend only slightly on the charge state of one collision partner if the other is neutral. The development of new ion-sources, however, allows for the use of ions with charged states of q > 50. For these highly charged ions it is conceivable that electronic processes come into play as well. If, for example, the density of charged surface atoms exceeds a certain limit, then particle emission can occur via the electrostatic repulsion of target atoms, the so-called Coulomb explosion. Indications for such electronic effects have been found in a few investigations of ion-induced sputtering Si (q q+ ). However, the order of magnitude of this effect is not clear until now. In this work we present preliminary data on sputtering, ion backscattering, electron and photon emission from SiO 2 surface induced by incident Xe ions of very high charge states (q=30--50). The experiment was performed at the electron beam ion trap (EBIT) of the Lawrence Livermore National Laboratory using a time-of-flight (TOF) ion analyzer-system from the Hahn-Meitner-Institute, Berlin

  8. Interaction of slow highly charged ions with hard dental tissue: studies of fluoride uptake and reminalization efficacy

    International Nuclear Information System (INIS)

    Daskalova, A; Kasperski, G; Rousseau, P; Domaracka, A; Lawicki, A

    2014-01-01

    TOF-SIMS mass spectroscopy data are presented on ion irradiation of hard dental tissue using a beam of 129 Xe 20+ (15 kV) ions delivered in the ARIBE facility by an ECR source. The investigation was focused on the mass distribution of the fragment ions. A comparison is made between the mass spectra from hard dental tissue treated by olaflur-(C 27 H 60 F 2 N 2 O 3 ) and untreated hard dental tissue obtained under irradiation by low-energy highly-charged ions (HCIs). We found significant differences between the mass spectra of enamel after introducing amine fluoride (olaflur) and the mass spectra of pure untreated enamel. Further, we separated out the effects caused by radiation induced in the tooth enamel from those induced in dentin, which has not been performed before. In order to conduct a further detailed analysis, it is necessary to extend the research scope to include the influence of fluorine compounds on enamel and dentin.

  9. Interaction of slow, highly charged ions with the surface of ionic crystals; Wechselwirkung langsamer hochgeladener Ionen mit der Oberflaeche von Ionenkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Rene

    2009-08-15

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v{<=}5 x 10{sup 5} m/s) highly charged (q{<=}40) ions on the ionic crystal surfaces of CaF{sub 2} and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E{sup grenz}{sub pot}(E{sub kin}) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF{sub 2}(111) surfaces could be verified for lowest kinetic energies (E{sub kin}{<=}150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by

  10. Slowing of charged particles by particle methods

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-03-01

    We review some facts about particle methods for solving linear hyperbolic equations. We show how one gets an evaluation of integral quantities like: ∫ u(x,t) zeta(x,t) dxdt where u denotes the solution and zeta an arbitrary weight function. Then, we apply the method to the equation describing charged particle transport in a plasma with emphasis on the evaluation of energy deposition on ions and electrons [fr

  11. The space charge effects on the slow extraction process

    International Nuclear Information System (INIS)

    Ohmori, Chihiro.

    1992-06-01

    The calculation of the slow extraction which includes the space charge effects has been performed for the Compressor/Stretcher Ring (CSR) of the proposed Japanese Hadron Project. We have investigated the slow extraction of 1 GeV proton beam with an average current of 100μA. Calculation shows not only the emittance growth of the extracted beam but also decrease of the extraction efficiency and discontinuity of beam spill. (author)

  12. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  13. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  14. Charge state and slowing of fast ions in a plasma

    International Nuclear Information System (INIS)

    Nardi, E.; Zinamon, Z.

    1982-01-01

    The charge state of a projectile ion traveling through a plasma target under conditions relevant to ion-beam fusion is calculated. It is found that, at the projectile energies and target parameters considered, the projectile ionization is significantly higher than that of the same projectile species in a cold target. The resulting strong effects on the range and on the shape of the energy deposition profile are shown in several examples of full dynamic calculations

  15. Charge exchange in slow collisions of Si3+ with H

    Science.gov (United States)

    Joseph, D. C.; Saha, B. C.

    2010-10-01

    Low energy electron capture from atomic hydrogen by multi-charged ions continues to be of interest and has wide applications including both magnetically confined^ fusion and astrophysical plasmas. The charge exchange process reported here, Si^3+ + H -- Si^2+ + H^+ is an important destruction mechanism of Si^3+ in photo-ionized gas. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si^3+, with neutrals in the cometary gas vapor. The state selective cross sections are evaluated using the semi-classical molecular orbital close coupling (MOCC) [1] methods. Adiabatic potentials and wave functions for a number of low-lying singlet and triplet states are calculated using the MRD-CI package [2]. Details will be presented at the conference. [1] M. Kimura and N. F. Lane, At. Mol. Opt. Phys 26, 79 (1990). [3] R. J. Buenker, ``Current Aspects of Quantum Chemistry'' 1981, Vol 21, edited by R. Carbo (Elsevier, Amsterdam) p 17.

  16. Slow sedimentation and deformability of charged lipid vesicles.

    Directory of Open Access Journals (Sweden)

    Iván Rey Suárez

    Full Text Available The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.

  17. Resonance charge exchange between excited states in slow proton-hydrogen collisions

    International Nuclear Information System (INIS)

    Tolstikhina, Inga Yu.; Kato, Daiji

    2010-01-01

    The theory of resonance charge exchange in slow collisions of a proton with a hydrogen atom in the excited state is developed. It extends the Firsov-Demkov theory of resonance charge exchange to the case of degenerate initial and final states. The theory is illustrated by semiclassical and quantum calculations of charge exchange cross sections between states with n=2 in parabolic and spherical coordinates. The results are compared with existing close-coupling calculations.

  18. Charge Exchange in Slow Collisions of O+ with He

    Science.gov (United States)

    Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.

    2009-03-01

    A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).

  19. Studies of collision mechanisms in electron capture by slow multiply charged ions

    International Nuclear Information System (INIS)

    Gilbody, H B; McCullough, R W

    2004-01-01

    We review measurements based on translational energy spectroscopy which are being used to identify and assess the relative importance of the various collision mechanisms involved in one-electron capture by slow multiply charged ions in collisions with simple atoms and molecules

  20. Charge exchange in slow collisions of multiply charged ions with atoms

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.; Janev, R.K.

    1982-01-01

    Single-electron charge exchange between ions having a charge Z>6 and atoms is considered at relative velocities v< Z/sup 1/2/. An analytic method is developed for the solution of a multilevel problem that is a generalization of the decay model and of the approximation of nonadiabatic coupling between two states. Expressions are obtained for the reaction-product distributions in the principal and angular quantum numbers. The calculated total cross sections agree well with the experimental data on charge exchange of hydrogen atoms and molecules with nuclei. The theory describes the oscillations of the total cross section against the background of a monotonic growth as the charge is increased

  1. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  2. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  3. Na(3p left-arrow 3s) excitation by impact of slow multiply charged ions

    International Nuclear Information System (INIS)

    Horvath, G.; Schweinzer, J.; Winter, H.; Aumayr, F.

    1996-01-01

    We present a systematic experimental and theoretical study of Na(3p left-arrow 3s) excitation by slow (v NaI with projectile ion charge state q is investigated. Due to the dominance of the competing electron capture channels at low collision energies E, the excitation cross sections deviate significantly from a commonly applied σ/q=f(E/q) cross-section scaling relation. copyright 1996 The American Physical Society

  4. Evidence for charge exchange effects in electronic excitations in Al by slow singly charged He ions

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, P., E-mail: Pierfrancesco.riccardi@fis.unical.it [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Sindona, A. [Dipartimento di Fisica, Università della Calabria and INFN Gruppo collegato di Cosenza, Via P. Bucci cubo 31C, 87036 – Arcavacata di Rende, Cosenza (Italy); Dukes, C.A. [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2016-09-01

    We report on experiments of secondary electron emission in the interaction of helium ions with aluminum surfaces. Comparison between the electron emission induced by the impact of {sup 3}He{sup +} and {sup 4}He{sup +} on Al illustrates similarities and differences between the two projectiles. The intensity of emission shows the same dependence on velocity for the two isotopes, showing that KEE yields for helium ions impact on Al are dominated by direct excitation of valence electrons and not by electron promotion. Electron promotion and charge transfer processes are unambiguously identified by the observation of Auger electron emission from Al, at energies below the excitation threshold of Al–Al collisions, indicating energy losses for the projectiles higher than those commonly considered.

  5. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  6. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  7. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  8. Resonant charging and stopping power of slow channelling atoms in a crystalline metal

    International Nuclear Information System (INIS)

    Mason, D R; Race, C P; Foo, M H F; Horsfield, A P; Foulkes, W M C; Sutton, A P

    2012-01-01

    Fast moving ions travel great distances along channels between low-index crystallographic planes, slowing through collisions with electrons, until finally they hit a host atom initiating a cascade of atomic displacements. Statistical penetration ranges of incident particles are reliably used in ion-implantation technologies, but a full, necessarily quantum-mechanical, description of the stopping of slow, heavy ions is challenging and the results of experimental investigations are not fully understood. Using a self-consistent model of the electronic structure of a metal, and explicit treatment of atomic structure, we find by direct simulation a resonant accumulation of charge on a channelling ion analogous to the Okorokov effect but originating in electronic excitation between delocalized and localized valence states on the channelling ion and its transient host neighbours, stimulated by the time-periodic potential experienced by the channelling ion. The charge resonance reduces the electronic stopping power on the channelling ion. These are surprising and interesting new chemical aspects of channelling, which cannot be predicted within the standard framework of ions travelling through homogeneous electron gases or by considering either ion or target in isolation. (paper)

  9. Azimuthal asymmetry of slow particles in high energy nuclear interaction

    International Nuclear Information System (INIS)

    Sarkar, Subir; Goswami, T.D.

    2002-01-01

    An asymmetry in the angular distribution of slow particles in the azimuthal plane has been observed during high energy nuclear disintegration of photo emulsion nuclei exposed to 1.8 GeV/c k - and 20 GeV/c protons. The mechanism of disintegration is not in accordance with the cascade-evaporation model, which is based on isotropic emission of slow particles. Deviation from isotropy indicates that some of the slow particles might be emitted well before the thermal equilibrium is reached in the disintegrating system. (author)

  10. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    International Nuclear Information System (INIS)

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V fd ), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V fd *, which is the full depletion voltage traditionally determined by the extrapolation of the fast component amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V fd ) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V fd for highly irradiated detectors

  11. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  12. Electromagnetic radiation damping of charges in external gravitational fields (weak field, slow motion approximation). [Harmonic coordinates, weak field slow-motion approximation, Green function

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, E [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    As a model for gravitational radiation damping of a planet the electromagnetic radiation damping of an extended charged body moving in an external gravitational field is calculated in harmonic coordinates using a weak field, slowing-motion approximation. Special attention is paid to the case where this gravitational field is a weak Schwarzschild field. Using Green's function methods for this purpose it is shown that in a slow-motion approximation there is a strange connection between the tail part and the sharp part: radiation reaction terms of the tail part can cancel corresponding terms of the sharp part. Due to this cancelling mechanism the lowest order electromagnetic radiation damping force in an external gravitational field in harmonic coordinates remains the flat space Abraham Lorentz force. It is demonstrated in this simplified model that a naive slow-motion approximation may easily lead to divergent higher order terms. It is shown that this difficulty does not arise up to the considered order.

  13. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  14. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  15. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  16. ECRIS sources for highly charged ions

    International Nuclear Information System (INIS)

    Geller, R.

    1991-01-01

    The so-called Philips ionization gauge ion sources (PIGIS) were used until quite recently in heavy ion accelerators so multiply charged ions could only be obtained by incorporating a stripper to remove electrons. Electron cyclotron resonance ion sources (ECRIS) now dominate as they produce more highly charged ions. (orig.)

  17. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  18. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  19. Highly charged ion trapping and cooling

    International Nuclear Information System (INIS)

    Beck, B. R.; Church, D. A.; Gruber, L.; Holder, J. P.; Schneider, D.; Steiger, J.

    1998-01-01

    In the past few years a cryogenic Penning trap (RETRAP) has been operational at the Electron Beam Ion Trap (EBIT) facility at Lawrence Livermore National Laboratory. The combination of RETRAP and EBIT provides a unique possibility of producing and re-trapping highly charged ions and cooling them to very low temperatures. Due to the high Coulomb potentials in such an ensemble of cold highly charged ions the Coulomb coupling parameter (the ratio of Coulomb potential to the thermal energy) can easily reach values of 172 and more. To study such systems is not only of interest in astrophysics to simulate White Dwarf star interiors but opens up new possibilities in a variety of areas (e.g. laser spectroscopy), cold highly charged ion beams

  20. Highly charged ion impact induced nanodefects in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Makgato, T.N., E-mail: thuto.makgato@wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Microscopy and Microanalysis Unit, University of the Witwatersrand, Johannesburg 2050 (South Africa); Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Centre of Excellence in Strong Materials, Physics Building, University of the Witwatersrand, Johannesburg 2050 (South Africa); Shrivastava, S. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Schenkel, T. [E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ritter, R.; Kowarik, G.; Aumayr, F. [Institute of Applied Physics, TU Wien-Vienna University of Technology, 1040 Vienna (Austria); Crespo Lopez-Urrutia, J.; Bernitt, S.; Beilmann, C.; Ginzel, R. [Max-Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2013-11-01

    We investigate the interaction of slow highly charged ion (SHCI) beams with insulating type Ib diamond (1 1 1) surfaces. Bismuth and Xenon SHCI beams produced using an Electron Beam Ion Trap (EBIT) and an Electron Cyclotron Resonance source (ECR) respectively, are accelerated onto type Ib diamond (1 1 1) surfaces with impact velocities up to ≈0.4 υ{sub Bohr}. SHCIs with charge states corresponding to potential energies between 4.5 keV and 110 keV are produced for this purpose. Atomic Force Microscopy analysis (AFM) of the diamond surfaces following SHCI impact reveals surface morphological modifications characterized as nanoscale craters (nano-craters). To interpret the results from Tapping Mode AFM analysis of the irradiated diamond surfaces we discuss the interplay between kinetic and potential energy in nano-crater formation using empirical data together with Stopping and Range of Ions in Matter (SRIM) Monte Carlo Simulations.

  1. Charged vortices in high-Tc superconductors

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kumagai, K.

    2002-01-01

    It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadrupole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC. (orig.)

  2. Beta decay of highly charged ions

    International Nuclear Information System (INIS)

    Litvinov, Yuri A; Bosch, Fritz

    2011-01-01

    Beta decay of highly charged ions has attracted much attention in recent years. An obvious motivation for this research is that stellar nucleosynthesis proceeds at high temperatures where the involved atoms are highly ionized. Another important reason is addressing decays of well-defined quantum-mechanical systems, such as one-electron ions where all interactions with other electrons are excluded. The largest modifications of nuclear half-lives with respect to neutral atoms have been observed in beta decay of highly charged ions. These studies can be performed solely at ion storage rings and ion traps, because there high atomic charge states can be preserved for extended periods of time (up to several hours). Currently, all experimental results available in this field originate from experiments at the heavy-ion complex GSI in Darmstadt. There, the fragment separator facility FRS allows the production and separation of exotic, highly charged nuclides, which can then be stored and investigated in the storage ring facility ESR. In this review, we present and discuss in particular two-body beta decays, namely bound-state beta decay and orbital electron capture. Although we focus on experiments conducted at GSI, we will also attempt to provide general requirements common to any other experiment in this context. Finally, we address challenging but not yet performed experiments and we give prospects for the new radioactive beam facilities, such as FAIR in Darmstadt, IMP in Lanzhou and RIKEN in Wako.

  3. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    Science.gov (United States)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  4. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    Ginzel, Rainer

    2010-01-01

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  5. Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom

    Science.gov (United States)

    Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan

    2011-05-01

    In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).

  6. Spin flip due to the spin–orbit interaction of colliding slow charged particles

    International Nuclear Information System (INIS)

    Sasorov, P. V.; Fomin, I. V.

    2017-01-01

    The scattering amplitudes of point charged particles is calculated analytically taking into account the spin–orbit interaction. We have considered two cases typical of a hydrogen-like plasma: scattering of an electron by a heavy ion and scattering of an electron by a free electron. The results have been obtained taking into account the ranges of low collision energies smaller than α"2m_ec"2, where α is the fine structure constant.

  7. Very low velocity ion slowing down in binary ionic mixtures: Charge- and mass-asymmetry effects

    Directory of Open Access Journals (Sweden)

    Patrice Fromy

    2010-10-01

    Full Text Available A binary ionic mixture (BIM in dense and hot plasmas of specific concern for inertial confinement fusion and white dwarf crust is considered as a target for incoming light ions with a velocity smaller than the thermal electron one. The given target stopping power, mostly BIM monitored, is specifically studied in terms of charge and mass asymmetry in its ionic component. The classical plasma target is worked out within a dielectric framework, and scanned with respect to density, temperature, and BIM composition.

  8. Theory of nuclear reactions with participation of slow charged particles in solids

    International Nuclear Information System (INIS)

    Barts, B.I.; Barts, D.B.; Grinenko, A.A.

    1992-01-01

    In the last two years, there has been a sharp increase of interest in various aspects of the interaction of nuclear particles in solids. This is due, above all, to the sensational reports of the possibility that deuteron fusion reactions take place at normal temperatures. At the present time, it is clear that, among the various factors, an important role for the understanding of this remarkable phenomenon is played by crystal fields that significantly change the tail of the Coulomb barrier and, thus, its penetrability. Here, in connection with the problem of the cold fusion of deuterons, an analysis is made of the influence of screening of the deuteron charges by electrons of the crystal on the penetrability of the Coulomb barrier. A study is made of the reaction-enhancement method in the case when the deuterons move in the general crystal potential well near one of the minima of the crystal potential

  9. Precision laser spectroscopy of highly charged ions

    International Nuclear Information System (INIS)

    Kuehl, T.; Borneis, S.; Becker, S.; Dax, A.; Engel, T.; Grieser, R.; Huber, G.; Klaft, I.; Klepper, O.; Kohl, A.; Marx, D.; Meier, K.; Neumann, R.; Schmitt, F.; Seelig, P.; Voelker, L.

    1996-01-01

    Recently, intense beams of highly charged ions have become available at heavy ion cooler rings. The obstacle for producing these highly interesting candidates is the large binding energy of K-shell electrons in heavy systems in excess of 100 keV. One way to remove these electrons is to strip them off by passing the ion through material. In the cooler ring, the ions are cooled to a well defined velocity. At the SIS/ESR complex it is possible to produce, store, and cool highly charged ions up to bare uranium with intensities exceeding 10 8 atoms in the ring. This opens the door for precision laser spectroscopy of hydrogenlike-heavy ions, e.g. 209 Bi 82+ , and allows to examine the interaction of the single electron with the large fields of the heavy nucleus, exceeding any artificially produced electric and magnetic fields by orders of magnitude. In the electron cooler the interaction of electrons and highly charged ions otherwise only present in the hottest plasmas can be studied. (orig.)

  10. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    Castro, J.R.; California Univ., San Francisco, CA

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  11. Mechanisms for production of highly charged ions

    International Nuclear Information System (INIS)

    McGuire, J.H.

    1987-01-01

    Various experimental data at high collision velocity are interpreted in terms of direct (D) and rearrangement (R) mechanisms for production of multiply charged ions. We consider double ionization in helium by protons, electrons, heavy ions, antiprotons, positrons and photons. Qualitative differences are discussed in the context of the R and D mechanisms. Multiple ionization in many electron atoms is considered as is simultaneous capture and ionization and fragmentation of methane molecules. Some other theoretical methods are briefly discussed. (orig.)

  12. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  13. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  14. Topology and slowing down of high energy ion orbits

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, L G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Porcelli, F [Politecnico di Torino, Turin (Italy); Berk, H L [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1994-07-01

    An analysis of nonstandard guiding centre orbits is presented, which is relevant to MeV ions in a Tokamak. The orbit equation has been simplified from the start, allowing to present an analytic classification of the possible orbits. The topological transitions of the orbits during collisional slowing down are described. In particular, the characteristic equations reveal the existence of a single fixed point in the relevant phase plane, and the presence of a bifurcation curve corresponding to the locus of the pinch orbits. A significant particle inward pinch has been discovered. (authors). 7 figs.

  15. Nonlinear energy loss of highly charged heavy ions

    International Nuclear Information System (INIS)

    Zwicknagel, G.Guenter.

    2000-01-01

    For slow, highly charged heavy ions strong coupling effects in the energy transfer from the projectile-ion to an electron target plasma become important. A theoretical description of this nonlinear ion stopping has to go beyond the standard approaches like the dielectric linear response or the binary collision model which are strictly valid only at weak ion-target coupling. Here we outline an improved treatment which is based on a suitable combination of binary collision and linear response contributions. As has been verified for isotropic, nonmagnetized electron plasmas by comparison with simulations, this approach well reproduces the essential features of nonlinear stopping up to moderate coupling strength. Its extension to anisotropic, magnetized electron plasmas basically involves the fully numerical determination of the momentum and energy transfer in binary ion-electron collisions in the presence of a magnetic field. First results of such calculations are presented and discussed

  16. X-ray radiography with highly charged ions

    Science.gov (United States)

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  17. Irradiation of graphene field effect transistors with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm{sup 2}, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  18. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  19. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  20. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S.

    2013-12-16

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  1. Charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Andriamonje, S.; Dural, J.; Toulemonde, M.; Groeneveld, K.O.; Maier, R.; Quere, Y.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. The experiments show that high energy heavy ion channeling deeply modifies the slowing down and charge exchange processes. In this review, we describe the opportunity offered by channeling conditions to study the charge exchange processes. Some aspects of the charge exchange processes with high energy channeled heavy ions are selected from the extensive literature published over the past few years on this subject. Special attention is given to the work performed at the GANIL facility on the study of Radiative Electron Capture (REG), Electron Impact Ionisation (EII), and convoy electron emission. Finally we emphasize the interest of studying resonant charge exchange processes such as Resonant Coherent Excitation (RCE), Resonant Transfer and Excitation (RTE) or Dielectronic Recombination (DR) and the recently proposed Nuclear Excitation by Electron Capture (NEEC)

  2. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...

  3. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    – an apparent change in the stiffness associated with an equilibrium; Biasing – a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening – a tendency for discontinuities to be apparently smeared out by HFE. The effects and a method for analyzing...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...

  4. High charge state heavy ion production from a PIG source

    International Nuclear Information System (INIS)

    Bex, L.; Clark, D.J.; Ellsworth, C.E.; Flood, W.S.; Gough, R.A.; Holley, W.R.; Meriwether, J.R.; Morris, D.

    1975-03-01

    The comparison of pulsed vs. dc arc operation for nitrogen and argon shows a shift in charge distribution toward the higher charge states for the pulsed case. Tests with various magnetic field shapes along the arc column show a significant increase in high charge state output for a uniform field compared to the case with a field low at the cathodes. (U.S.)

  5. Highly-correlated charges in polyelectrolyte gels

    Science.gov (United States)

    Sing, Charles; Zwanikken, Johannes; Olvera de La Cruz, Monica

    2013-03-01

    Polyelectrolyte gels are ubiquitous in polymer physics due to their attractive combination of structural and chemical features that permit the realization of ``environmentally responsive'' systems. The conventional conceptual picture of the volume response of these systems is based on a competition between osmotic and elastic effects. We elaborate on this fundamental understanding by including ion correlations through the use of liquid-state integral equation theory. This allows for a statistical mechanical representation of the state of the system that not only surpasses traditional Poisson-Boltzmann theories but also renders structural features in a highly accurate fashion. In particular, the local ion structure is elucidated, allowing for detailed articulation of charge inversion and condensation effects in the context of gel swelling. The inclusion of correlations has a number of ramifications that become apparent, with enhanced gel collapse and excluded volume competitions that give rise to novel and ion-dependent reentrant swelling effects. We expect this rigorous theory to prove instructive in understanding any number of gelated structures, such as chromosomes or designed synthetic materials for drug delivery.

  6. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  7. Plan charge exchange scattering at high energies

    International Nuclear Information System (INIS)

    Saleem, M.; Bhatti, S.; Fazal-e-Aleem; Rafique, M.

    1980-01-01

    By a phenomenological choice of the residue functions, a very good fit with experiment for the pion-nucleon charge exchange reaction at Fermilab energies is obtained on a simple Regge-pole model using a quadratic rho trajectory and energy-independent parameters

  8. Super TOF secondary ion mass spectroscopy using very highly charged primary ions up to Th70+

    International Nuclear Information System (INIS)

    Briere, M.A.; Schenkel, T.; Schneider, D.

    1995-01-01

    The LLNL Electron Beam Ion Trap (EBIT) has made low emittance beams of slow highly charged ions available for ion-solid interaction studies. Such interactions feature the dominance of electronic over collisional effects, and the shock waves generated by the ionized target atoms can desorb large numbers of large molecular species from the surface. This paper presents the first systematic study of the sputtering process due to the incidence of slow very highly charged ions; Th 70+ ions are extracted from EBIT at 7 keV * q and directed onto thin SiO 2 films on Si. Results suggest secondary ion yields of up to 25 per incident ion for Th 70+ (secondary ion yield is increased over that for singly or moderately charged ions). Correlations of the negative, positive, and negative cluster ion yields show promise for application of highly charged ion induced sputtering for enhanced sensitivity and quantitative (absolute) SIMS analysis of deep submicron scale surface layers and polymeric and biomolecular material analysis

  9. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  10. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    Science.gov (United States)

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  11. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  12. Slow Learner Errors Analysis in Solving Fractions Problems in Inclusive Junior High School Class

    Science.gov (United States)

    Novitasari, N.; Lukito, A.; Ekawati, R.

    2018-01-01

    A slow learner whose IQ is between 71 and 89 will have difficulties in solving mathematics problems that often lead to errors. The errors could be analyzed to where the errors may occur and its type. This research is qualitative descriptive which aims to describe the locations, types, and causes of slow learner errors in the inclusive junior high school class in solving the fraction problem. The subject of this research is one slow learner of seventh-grade student which was selected through direct observation by the researcher and through discussion with mathematics teacher and special tutor which handles the slow learner students. Data collection methods used in this study are written tasks and semistructured interviews. The collected data was analyzed by Newman’s Error Analysis (NEA). Results show that there are four locations of errors, namely comprehension, transformation, process skills, and encoding errors. There are four types of errors, such as concept, principle, algorithm, and counting errors. The results of this error analysis will help teachers to identify the causes of the errors made by the slow learner.

  13. Mobilities of slow electrons in low- and high-pressure gases and liquids

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1975-01-01

    Mobilities of slow (thermal and epithermal) electrons in low- (less than or approximately 500 Torr) and high- (approximately 500 to approximately 34,111 Torr) pressure gases are discussed and are related to the molecular structure and to the mobilities of thermal electrons in liquid media

  14. Concept for high-charge-state ion induction accelerators

    International Nuclear Information System (INIS)

    Logan, B.G.; Perry, M.D.; Caporaso, G.J.

    1996-01-01

    This work describes a particular concept for ion induction linac accelerators using high-charge-state ions produced by an intense, short pulse laser, and compares the costs of a modular driver system producing 6.5 MJ for a variety of ion masses and charge states using a simple but consistent cost model

  15. A high charge state heavy ion beam source for HIF

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1995-04-01

    A high current low emittance high charge state heavy ion beam source is being developed. This is designed to deliver HIF (heavy ion fusion) driver accelerator scale beam. Using high-charge-state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system which consists of the gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 2D beam envelope simulations and experimental feasibility studies' results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector

  16. Charge ordering phenomena in high temperature superconductors

    International Nuclear Information System (INIS)

    Tassini, Leonardo; Prestel, Wolfgang; Hackl, Rudi; Erb, Andreas; Lambacher, Michael

    2007-01-01

    The electronic Raman effect has been studied in single crystals of Y 1-x Ca x Ba 2 Cu 3 O 6 (Y-123) and La 2-x Sr x CuO 4 (LSCO) at different doping. The experimental results provide evidences of an anomalous contribution to the response at low energies and temperatures. In LSCO the additional excitation is in B 2g symmetry for x = 0.02 and in B 1g symmetry for x = 0.10. In Y-123, we observed the additional feature in B 2g symmetry at 1.5% doping. Mainly on the basis of the selection rules we conclude that the additional peaks are the response of a dynamical charge modulation (stripes) in the two-dimensional CuO 2 planes. The selection rules allow us to determine the orientation of the stripes to be along the diagonal of the CuO 2 planes in Y-123 and LSCO at x = 0.02, and along the principal axes in LSCO at x = 0.10

  17. Strong isotope effects on the charge transfer in slow collisions of He2+ with atomic hydrogen, deuterium, and tritium

    NARCIS (Netherlands)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Oehrn, Y.; Deumens, E.; Hoekstra, R.; Sabin, J. R.

    2007-01-01

    Probabilities and cross sections for charge transfer by He2+ impact on atomic hydrogen (H), deuterium (D), and tritium (T) at low collision energies are calculated. The results are obtained using an ab initio theory, which solves the time-dependent Schrodinger equation. For the H target, excellent

  18. Methods for slow axis beam quality improvement of high power broad area diode lasers

    Science.gov (United States)

    An, Haiyan; Xiong, Yihan; Jiang, Ching-Long J.; Schmidt, Berthold; Treusch, Georg

    2014-03-01

    For high brightness direct diode laser systems, it is of fundamental importance to improve the slow axis beam quality of the incorporated laser diodes regardless what beam combining technology is applied. To further advance our products in terms of increased brightness at a high power level, we must optimize the slow axis beam quality despite the far field blooming at high current levels. The later is caused predominantly by the built-in index step in combination with the thermal lens effect. Most of the methods for beam quality improvements reported in publications sacrifice the device efficiency and reliable output power. In order to improve the beam quality as well as maintain the efficiency and reliable output power, we investigated methods of influencing local heat generation to reduce the thermal gradient across the slow axis direction, optimizing the built-in index step and discriminating high order modes. Based on our findings, we have combined different methods in our new device design. Subsequently, the beam parameter product (BPP) of a 10% fill factor bar has improved by approximately 30% at 7 W/emitter without efficiency penalty. This technology has enabled fiber coupled high brightness multi-kilowatt direct diode laser systems. In this paper, we will elaborate on the methods used as well as the results achieved.

  19. Novel charge sensitive preamplifier without high-value feedback resistor

    International Nuclear Information System (INIS)

    Xi Deming

    1992-01-01

    A novel charge sensitive preamplifier is introduced. The method of removing the high value feedback resistor, the circuit design and analysis are described. A practical circuit and its measured performances are provided

  20. Improvement of highly charged ion output from an ECR source

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1995-01-01

    The physical limitations of the highly charged ion production in the ECR source is analyzed in this report. General methods to increase the output ion current and the attainable charged states of heavy ions are discussed. Some new ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the mathematical simulation of heavy ion production in the ECR ion source is used for numerical experiments to test these ways for improving the operation of the ECR source. (orig.)

  1. Probing the vacuum with highly charged ions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1987-01-01

    The physics of the Fermion vacuum is briefly described, and applied to pair production in heavy ion collisions. We consider in turn low energies (<50 MeV/nucleon), intermediate energies (<5 GeV/nucleon), and ultrahigh energies such as would be produced in a ring collider. At high energies, interesting questions of Lorentz and gauge invariance arise. Finally, some applications to the structure of high Z atoms are examined. 14 refs., 11 figs

  2. Slow Antihydrogen

    International Nuclear Information System (INIS)

    Gabrielse, G.; Speck, A.; Storry, C.H.; Le Sage, D.; Guise, N.; Larochelle, P.C.; Grzonka, D.; Oelert, W.; Schepers, G.; Sefzick, T.; Pittner, H.; Herrmann, M.; Walz, J.; Haensch, T.W.; Comeau, D.; Hessels, E.A.

    2004-01-01

    Slow antihydrogen is now produced by two different production methods. In Method I, large numbers of H atoms are produced during positron-cooling of antiprotons within a nested Penning trap. In a just-demonstrated Method II, lasers control the production of antihydrogen atoms via charge exchange collisions. Field ionization detection makes it possible to probe the internal structure of the antihydrogen atoms being produced - most recently revealing atoms that are too tightly bound to be well described by the guiding center atom approximation. The speed of antihydrogen atoms has recently been measured for the first time. After the requested overview, the recent developments are surveyed

  3. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  4. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  5. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  6. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  7. Slow crack growth in post-consumer recycled high-density polyethylene

    OpenAIRE

    Sciammarella, Cesar A.; Yang, Y.

    2015-01-01

    An experimental study of slow crack growth behavior of post-consumer recycled high-density polyethylene blended with virgin high-density polyethylene copolymer has been done. The study has been performed under constant load and in baths of distilled water at 40, 60, 80°C. The specimen used is notched with side grooves. The test results of crack growth have been analyzed using linear fracture mechanics and the rate process theory. The results show that the resistance to crack growth increases ...

  8. A system and method for online high-resolution mapping of gastric slow-wave activity.

    Science.gov (United States)

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  9. Energy loss and charge exchange processes of high energy heavy ions channeled in crystals

    International Nuclear Information System (INIS)

    Poizat, J.C.; Andriamonje, S.; Anne, R.; Faria, N.V.d.C.; Chevallier, M.; Cohen, C.; Dural, J.; Farizon-Mazuy, B.; Gaillard, M.J.; Genre, R.; Hage-Ali, M.; Kirsch, R.; L'hoir, A.; Mory, J.; Moulin, J.; Quere, Y.; Remillieux, J.; Schmaus, D.; Toulemonde, M.

    1990-01-01

    The interaction of moving ions with single crystals is very sensitive to the orientation of the incident beam with respect to the crystalline directions of the target. Our experiments show that high energy heavy ion channeling deeply modifies their slowing down and charge exchange processes. This is due to the fact that channeled ions interact only with outershell target electrons, which means that the electron density they experience is very low and that the binding energy, and then the momentum distribution of these electrons, are quite different from the corresponding average values associated to random incidence. The two experimental studies presented here show the reduction of the energy loss rate for fast channeled heavy ions and illustrate the two aspects of channeling effects on charge exchange, the reduction of electron loss on one hand, and of electron capture on the other hand

  10. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  11. Charged particle beam scanning using deformed high gradient insulator

    Science.gov (United States)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  12. Multistage charged particle accelerator, with high-vacuum insulation

    International Nuclear Information System (INIS)

    Holl, P.

    1976-01-01

    A multistage charged-particle accelerator for operating with accelerating voltages higher than 150 kV is described. The device consists essentially of a high-voltage insulator, a source for producing charged particles, a Wehnelt cylinder, an anode, and a post-accelerating tube containing stack-wise positioned post-accelerating electrodes. A high vacuum is used for insulating the parts carrying the high voltages, and at least one cylindrical screen surrounding these parts is interposed between them and the vacuum vessel, which can itself also function as a cylindrical screen

  13. Highly charged atomic physics at HIRFL-CSR

    International Nuclear Information System (INIS)

    Ma Xinwen; Wang Youde; Hou Mingdong; Jin Gengmin

    1996-01-01

    HIRFL-CSR is a proposed electron cooling storage ring optimized to accelerate and store beams of highly charged heavy ions. Several possibilities for advanced atomic physics studies are discussed, such as studies of electron-ion, ion-atoms, photon-ion-electron interactions and high resolution spectroscopy

  14. Highly charged ions: a miniature laboratory for new fundamental science

    International Nuclear Information System (INIS)

    Gillaspy, J.D.

    2002-01-01

    Full text: Highly charged ions are 10-100 times smaller than ordinary atoms, yet they present within themselves a remarkably rich arena for testing fundamental aspects of physics. These tests are based on a precise analysis of the energy distribution of the photons that are emitted as electrons hop between energy levels within the highly charged ions. With sufficiently precise analysis, it may be possible to obtain new information about the structure of the vacuum, the effect of special relativity on many-body correlation, physics beyond the Standard Model, and the fundamental nature of quantum measurements. This talk will review the current state-of-the-art in the spectroscopy of highly charged ions, and give a look towards the future

  15. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  16. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    Science.gov (United States)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  17. Photoproduction of charged particle with high transverse momentum

    International Nuclear Information System (INIS)

    Campos Costa Ramos, S.E. de.

    1986-09-01

    Inclusive cross sections of high transverse moment charged pions induced by a high energy photon beam have been measured. These results do not account, neither in slope nor in normalisation, for the VDM component of the photon, evaluated with pion induced data taken in the same experimental conditions after VDM subtraction, excellent agreement is found with QCD calculations up to second order in α s , in an extended cinematic region, different choices of the gluon fragmentation function do not alter this conclusion. Our measures of the inclusive final state charge asymmetries also confirm QCD expectations. 42 refs [fr

  18. HITRAP: A Facility for Experiments with Trapped Highly Charged Ions

    International Nuclear Information System (INIS)

    Quint, W.; Dilling, J.; Djekic, S.; Haeffner, H.; Hermanspahn, N.; Kluge, H.-J.; Marx, G.; Moore, R.; Rodriguez, D.; Schoenfelder, J.; Sikler, G.; Valenzuela, T.; Verdu, J.; Weber, C.; Werth, G.

    2001-01-01

    HITRAP is a planned ion trap facility for capturing and cooling of highly charged ions produced at GSI in the heavy-ion complex of the UNILAC-SIS accelerators and the ESR storage ring. In this facility heavy highly charged ions up to uranium will be available as bare nuclei, hydrogen-like ions or few-electron systems at low temperatures. The trap for receiving and studying these ions is designed for operation at extremely high vacuum by cooling to cryogenic temperatures. The stored highly charged ions can be investigated in the trap itself or can be extracted from the trap at energies up to about 10 keV/q. The proposed physics experiments are collision studies with highly charged ions at well-defined low energies (eV/u), high-accuracy measurements to determine the g-factor of the electron bound in a hydrogen-like heavy ion and the atomic binding energies of few-electron systems, laser spectroscopy of HFS transitions and X-ray spectroscopy

  19. High density thermite mixture for shaped charge ordnance disposal

    Directory of Open Access Journals (Sweden)

    Tamer Elshenawy

    2017-10-01

    Full Text Available The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using cold iso-static pressing technique, which exhibited relatively high density and high burning rate thermite mixture. The produced green product compacted powder mixture was tested against small caliber shaped charge bomblet for neutralization. Theoretical and experimental results showed that the prepared thermite mixture containing 33% of aluminum as a fuel with ferric oxide can be successfully used for shaped charge ordnance disposal.

  20. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    International Nuclear Information System (INIS)

    French, David M.; Shiffler, Don

    2016-01-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  1. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    Energy Technology Data Exchange (ETDEWEB)

    French, David M.; Shiffler, Don [Air Force Research Laboratory, Directed Energy Directorate, Albuquerque, New Mexico 871117 (United States)

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  2. Production of highly charged ion beams from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ and U 34+ have been produced from ECR ion sources. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I ≥ 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams

  3. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  4. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  5. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  6. Electron capture by highly charged ions from surfaces and gases

    International Nuclear Information System (INIS)

    Allen, F.

    2008-01-01

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar 17+ and Ar 18+ ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu -1 , charge-selected and then decelerated down to 5 eVu -1 for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar 17+ and Ar 18+ ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu -1 , charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar 16+ and Xe 44+ and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  7. Mean charged hadron multiplicities in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albini, E [Istituto di Matematica dell' Universita Cattolica di Brescia (Italy); Capiluppi, P; Giacomelli, G; Rossi, A M [Bologna Univ. (Italy). Istituto di Fisica

    1976-03-01

    A collection of mean charged hadron multiplicities per inelastic collision in various high-energy processes is presented. An extensive list of fits of as a function of energy is presented and discussed. As the energy increases the multiplicities for different collisions tend to a unique curve, independent of the type of colliding particles.

  8. Thermal spike analysis of highly charged ion tracks

    International Nuclear Information System (INIS)

    Karlušić, M.; Jakšić, M.

    2012-01-01

    The irradiation of material using swift heavy ion or highly charged ion causes excitation of the electron subsystem at nanometer scale along the ion trajectory. According to the thermal spike model, energy deposited into the electron subsystem leads to temperature increase due to electron–phonon coupling. If ion-induced excitation is sufficiently intensive, then melting of the material can occur, and permanent damage (i.e., ion track) can be formed upon rapid cooling. We present an extension of the analytical thermal spike model of Szenes for the analysis of surface ion track produced after the impact of highly charged ion. By applying the model to existing experimental data, more than 60% of the potential energy of the highly charged ion was shown to be retained in the material during the impact and transformed into the energy of the thermal spike. This value is much higher than 20–40% of the transferred energy into the thermal spike by swift heavy ion. Thresholds for formation of highly charged ion track in different materials show uniform behavior depending only on few material parameters.

  9. Production of highly charged ion beams with SECRAL

    International Nuclear Information System (INIS)

    Sun, L. T.; Zhao, H. W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.; Lu, W.; Cao, Y.; Shang, Y.

    2010-01-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe 37+ , 1 e μA of Xe 43+ , and 0.16 e μA of Ne-like Xe 44+ . To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi 31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi 31+ , 22 e μA of Bi 41+ , and 1.5 e μA of Bi 50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  10. Production of microbunched beams of very highly charged ions with an electron beam ion source

    International Nuclear Information System (INIS)

    Stoeckli, M.P.

    1998-01-01

    Electron beam ion sources produce very highly charged ions most efficiently in a batch mode as the confinement time can be directly optimized for the production of the desired charge state. If, after confinement, the voltage of the ion-confining downstream dam is lowered rapidly, all ions escape and form an ion beam pulse with a length of a few tens of μs. Raising the main trap voltage while maintaining a constant dam voltage in a open-quotes spill-over expulsionclose quotes reduces the energy spread of the expelled ions. The longer time periods of open-quotes slow-,close quotes open-quotes leaky batch mode-,close quotes and open-quotes direct current (dc) batch mode-close quotes expulsions allow for increasing the ion beam duty cycle. Combining the rapid expulsion with one of the latter methods allows for the expulsion of the ions of a single batch in many small microbunches with variable intervals, maintaining the low energy spread and the increased duty cycle of slow expulsions. Combining the open-quotes microbunchingclose quotes with open-quotes dc batch mode productionclose quotes and a multitrap operation will eventually allow for the production of equally intense ion bunches over a wide range of frequencies without any deadtime, and with minimal compromise on the most efficient production parameters. copyright 1998 American Institute of Physics

  11. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  12. ERC sources for the production of highly charged ions (invited)

    International Nuclear Information System (INIS)

    Lyneis, C.M.; Antaya, T.A.

    1990-01-01

    Electron cyclotron resonance ion sources (ECRIS) using rf between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this article we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz

  13. Measurements with the high flux lead slowing-down spectrometer at LANL

    International Nuclear Information System (INIS)

    Danon, Y.; Romano, C.; Thompson, J.; Watson, T.; Haight, R.C.; Wender, S.A.; Vieira, D.J.; Bond, E.; Wilhelmy, J.B.; O'Donnell, J.M.; Michaudon, A.; Bredeweg, T.A.; Schurman, T.; Rochman, D.; Granier, T.; Ethvignot, T.; Taieb, J.; Becker, J.A.

    2007-01-01

    A Lead Slowing-Down Spectrometer (LSDS) was recently installed at LANL [D. Rochman, R.C. Haight, J.M. O'Donnell, A. Michaudon, S.A. Wender, D.J. Vieira, E.M. Bond, T.A. Bredeweg, A. Kronenberg, J.B. Wilhelmy, T. Ethvignot, T. Granier, M. Petit, Y. Danon, Characteristics of a lead slowing-down spectrometer coupled to the LANSCE accelerator, Nucl. Instr. and Meth. A 550 (2005) 397]. The LSDS is comprised of a cube of pure lead 1.2 m on the side, with a spallation pulsed neutron source in its center. The LSDS is driven by 800 MeV protons with a time-averaged current of up to 1 μA, pulse widths of 0.05-0.25 μs and a repetition rate of 20-40 Hz. Spallation neutrons are created by directing the proton beam into an air-cooled tungsten target in the center of the lead cube. The neutrons slow down by scattering interactions with the lead and thus enable measurements of neutron-induced reaction rates as a function of the slowing-down time, which correlates to neutron energy. The advantage of an LSDS as a neutron spectrometer is that the neutron flux is 3-4 orders of magnitude higher than a standard time-of-flight experiment at the equivalent flight path, 5.6 m. The effective energy range is 0.1 eV to 100 keV with a typical energy resolution of 30% from 1 eV to 10 keV. The average neutron flux between 1 and 10 keV is about 1.7 x 10 9 n/cm 2 /s/μA. This high flux makes the LSDS an important tool for neutron-induced cross section measurements of ultra-small samples (nanograms) or of samples with very low cross sections. The LSDS at LANL was initially built in order to measure the fission cross section of the short-lived metastable isotope of U-235, however it can also be used to measure (n, α) and (n, p) reactions. Fission cross section measurements were made with samples of 235 U, 236 U, 238 U and 239 Pu. The smallest sample measured was 10 ng of 239 Pu. Measurement of (n, α) cross section with 760 ng of Li-6 was also demonstrated. Possible future cross section

  14. Reinforcement learning on slow features of high-dimensional input streams.

    Directory of Open Access Journals (Sweden)

    Robert Legenstein

    Full Text Available Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.

  15. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A

    1998-06-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1,115 MeV. At about 5 NeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted ut of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models

  16. Vacuum improvements for ultra high charge state ion acceleration

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Lyneis, C.M.; Clark, D.J.; Guy, A.; Lundgren, S.A.

    1999-01-01

    The installation of a second cryo panel has significantly improved the vacuum in the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. The neutral pressure in the extraction region decreased from 1.2 x 10 -6 down to about 7 x 10 -7 Torr. The vacuum improvement reduces beam loss from charge changing collisions and enhances the cyclotron beam transmission, especially for the high charge state heavy ions. Tests with improved vacuum show the cyclotron transmission increased more than 50% (from 5.7% to 9.0%) for a Xe 27+ at 603 MeV, more than doubled for a Bi 41+ beam (from 1.9% % to 4.6%) at 904 MeV and tripled for a U 47+ beam (from 1.2% to 3.6%) at 1115 MeV. At about 5 MeV/nucleon 92 enA (2.2 pnA) for Bi 41+ and 14 enA (0.3 pnA) for U 47+ were extracted out of the 88-Inch Cyclotron Ion beams with charge states as high as U 64+ have been produced by the LBNL AECR-U ion source and accelerated through the cyclotron for the first time. The beam losses for a variety of ultra high charge state ions were measured as a function of cyclotron pressure and compared with the calculations from the existing models. (authors)

  17. High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse

    Directory of Open Access Journals (Sweden)

    H. Y. Wang

    2015-02-01

    Full Text Available We present a new regime to generate high-energy quasimonoenergetic proton beams in a “slow-pulse” regime, where the laser group velocity v_{g}high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10^{21}  W/cm^{2}.

  18. Can slow-diffusing solute atoms reduce vacancy diffusion in advanced high-temperature alloys?

    International Nuclear Information System (INIS)

    Goswami, Kamal Nayan; Mottura, Alessandro

    2014-01-01

    The high-temperature mechanical properties of precipitate-strengthened advanced alloys can be heavily influenced by adjusting chemical composition. The widely-accepted argument within the community is that, under certain temperature and loading conditions, plasticity occurs only in the matrix, and dislocations have to rely on thermally-activated climb mechanisms to overcome the barriers to glide posed by the hard precipitates. This is the case for γ′-strengthened Ni-based superalloys. The presence of dilute amounts of slow-diffusing solute atoms, such as Re and W, in the softer matrix phase is thought to reduce plasticity by retarding the climb of dislocations at the interface with the hard precipitate phase. One hypothesis is that the presence of these solutes must hinder the flow of vacancies, which are essential to the climb process. In this work, density functional theory calculations are used to inform two analytical models to describe the effect of solute atoms on the diffusion of vacancies. Results suggest that slow-diffusing solute atoms are not effective at reducing the diffusion of vacancies in these systems

  19. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    Channell, P.J.

    1986-01-01

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  20. Electron impact ionization of highly charged lithiumlike ions

    International Nuclear Information System (INIS)

    Wong, K.L.

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti 19+ ) and Z=26 (iron, Fe 23+ ) and to Z=56 (barium, Ba 53+ ). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented

  1. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    Science.gov (United States)

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Pyramidal pits created by single highly charged ions in BaF2 single crystals

    International Nuclear Information System (INIS)

    El-Said, A. S.; Heller, R.; Facsko, S.; Aumayr, F.

    2010-01-01

    In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF 2 (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF 2 surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as can be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10 8 ions/cm 2 ). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF 2 .

  3. Charge transport in highly efficient iridium cored electrophosphorescent dendrimers

    Science.gov (United States)

    Markham, Jonathan P. J.; Samuel, Ifor D. W.; Lo, Shih-Chun; Burn, Paul L.; Weiter, Martin; Bässler, Heinz

    2004-01-01

    Electrophosphorescent dendrimers are promising materials for highly efficient light-emitting diodes. They consist of a phosphorescent core onto which dendritic groups are attached. Here, we present an investigation into the optical and electronic properties of highly efficient phosphorescent dendrimers. The effect of dendrimer structure on charge transport and optical properties is studied using temperature-dependent charge-generation-layer time-of-flight measurements and current voltage (I-V) analysis. A model is used to explain trends seen in the I-V characteristics. We demonstrate that fine tuning the mobility by chemical structure is possible in these dendrimers and show that this can lead to highly efficient bilayer dendrimer light-emitting diodes with neat emissive layers. Power efficiencies of 20 lm/W were measured for devices containing a second-generation (G2) Ir(ppy)3 dendrimer with a 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene electron transport layer.

  4. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  5. Mobility Performance in Slow- and High-Speed LTE Real Scenarios

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Cascino, Maria Carmela; Stefan, Maria

    2016-01-01

    Mobility performance and handover data interruption times in real scenarios are studied by means of field measurements in an operational LTE network. Both slow- and high-speed scenarios are analyzed by collecting results from two different areas: Aalborg downtown and the highway which encircles...... in the city center as cells on the same site often cover different non-crossing street canyons. Moreover, no handover failures are experienced in the measurements which confirms robust LTE mobility performance. The average interruption time, which is at least equal to the handover execution time, lays within...... the same city. Measurements reveal that the terminal is configured by the network with different handover parametrization depending on the serving cell, which indicates the use of mobility robustness optimization. Although the network is dominated by three sector sites, no intra-site handovers are observed...

  6. Extraction of highly charged ions from the Berlin Electron Beam Ion Trap for interactions with a gas target

    International Nuclear Information System (INIS)

    Allen, F.I.; Biedermann, C.; Radtke, R.; Fussmann, G.

    2006-01-01

    Highly charged ions are extracted from the Berlin Electron Beam Ion Trap for investigations of charge exchange with a gas target. The classical over-the-barrier model for slow highly charged ions describes this process, whereby one or more electrons are captured from the target into Rydberg states of the ion. The excited state relaxes via a radiative cascade of the electron to ground energy. The cascade spectra are characteristic of the capture state. We investigate x-ray photons emitted as a result of interactions between Ar 17+ ions at energies ≤5q keV with Ar atoms. Of particular interest is the velocity dependence of the angular momentum capture state l c

  7. Design of a charge sensitive preamplifier on high resistivity silicon

    International Nuclear Information System (INIS)

    Radeka, V.; Rehak, P.; Rescia, S.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Strueder, L.; Kemmer, J.

    1987-01-01

    A low noise, fast charge sensitive preamplifier was designed on high resistivity, detector grade silicon. It is built at the surface of a fully depleted region of n-type silicon. This allows the preamplifier to be placed very close to a detector anode. The preamplifier uses the classical input cascode configuration with a capacitor and a high value resistor in the feedback loop. The output stage of the preamplifier can drive a load up to 20pF. The power dissipation of the preamplifier is 13mW. The amplifying elements are ''Single Sided Gate JFETs'' developed especially for this application. Preamplifiers connected to a low capacitance anode of a drift type detector should achieve a rise time of 20ns and have an equivalent noise charge (ENC), after a suitable shaping, of less than 50 electrons. This performance translates to a position resolution better than 3μm for silicon drift detectors. 6 refs., 9 figs

  8. Nonvolcanic Tremor Activity is Highly Correlated With Slow Slip Events, Mexico

    Science.gov (United States)

    Kostoglodov, V.; Shapiro, N.; Larson, K. M.; Payero, J. S.; Husker, A.; Santiago, L. A.; Clayton, R. W.

    2008-12-01

    Significant activity of nonvolcanic tremor (NVT) has been observed in the central Mexico (Guerrero) subduction zone since 2001 when continuous seismic records became available. Although the quality of these records is poor, it is possible to estimate a temporal variation of energy in the range of 1-2Hz (best signal/noise ratio for the NVT). These clearly indicate a maximum of NVT energy release (En) during the 2001-2002 and 2006 large aseismic slow slip events (SSE) registered by the Guerrero GPS network. In particular En is higher for the 2001-2002 SSE which had larger surface displacements and extension than the 2006 SSE. A more detailed and accurate study of NVT activity was carried out using the data collected during the MASE experiment in Mexico. MASE consisted of 100 broad band seismometers in operation for ~2.5 years (2005-2007) along the profile oriented SSW-NNE from Acapulco, and crossing over the subduction zone for a distance of ~500 km. Epicenters and depths of individual tremor events determined using the envelope cross-correlation technique have rather large uncertainties, partly originated from the essentially 2D geometry of the network. The 'energy' approach is more efficient in this case because it provides an average NVT activity evolution in time and space. The data processing consists of a band pass (1-2Hz) filter of the raw 100 Hz sampled N-S component records, application a 10 min-width median filter to eliminate the effect of local seismic events and noise, and integration of the energy and normalization of daily En using an average coda amplitude from several regional earthquakes of M~5. A time-space distribution of En reveals a strong correlation between NVT energy release and the 2006 SSE, which also replicates the two-phase character of this slow event and a migration of the slow slip maximum from North to South. There are also a few clear episodes of relatively high NVT energy release that do not correspond to any significant geodetic

  9. Quantum electrodynamical effects in heavy highly-charged ions

    International Nuclear Information System (INIS)

    Yerokhin, V.A.; Artemyev, A.N.; Indelicato, P.; Shabaev, V.M.

    2003-01-01

    The present status of theoretical calculations of QED effects in highly charged ions is reviewed for several important cases: the Lamb shift in heavy H-like ions, the 2p 1/2 -2s transition energy in heavy Li-like ions, and the bound-electron g factor in H-like ions. Theoretical predictions are compared with experimental results. Special attention is paid to the discussion of uncertainties of theoretical predictions

  10. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  11. Penetration of Hydrogen clusters from 10 to 120 kev/u in carbon foils. Study of their slowing-down and charge distribution of emerging fragments

    International Nuclear Information System (INIS)

    Ray, E.M.

    1991-06-01

    This work is devoted to the experimental study of the interaction between fast (10 to 120 keV/p) hydrogen clusters with thin solid targets. First, we have studied the slowing-down of H n + (2≤n≤21) clusters through carbon foils. Up to date this had been made only with molecular ions. We obtain evidence for vicinage effects on the energy loss of proton-clusters. We show that for projectile energies larger than 50 keV/p, the energy loss of a proton in a cluster is enhanced when compared to that of an isolated proton of the same velocity. At lower incident energies, it is a decrease of the energy loss which is observed. The same effect is also observed in the energy lost in the entrance window of a surface barrier detector bombarded by clusters. This phenomenon is interpreted in terms of interferences between individual polarisation wakes induced by each proton of the cluster. In the second part, we propose an accurate method to study the charge state of the atomic fragments resulting from the dissociation of fast H n + (2≤n≤15) clusters through a carbon foil. This method gives also the distribution of the neutral atoms among the emerging fragments. These distributions are finally compared with binomial laws expected from independent particles

  12. Electron capture by highly charged low-velocity ions

    International Nuclear Information System (INIS)

    Cocke, C.L.; Dubois, R.; Justiniano, E.; Gray, T.J.; Can, C.

    1982-01-01

    This paper describes the use of a fast heavy ion beam to produce, by bombardment of gaseous targets, highly-charged low-velocity recoil ions, and the use of these secondary ions in turn as projectiles in studies of electron capture and ionization in low-energy collision systems. The interest in collisions involving low-energy highly-charged projectiles comes both from the somewhat simplifying aspects of the physics which attend the long-range capture and from applications to fusion plasmas, astrophysics and more speculative technology such as the production of X-ray lasers. The ions of interest in such applications should have both electronic excitation and center-of-mass energies in the keV range and cannot be produced by simply stripping fast heavy ion beams. Several novel types of ion source have been developed to produce low-energy highly-charged ions, of which the secondary ion recoil source discussed in this paper is one. (Auth.)

  13. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    Science.gov (United States)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  14. The Slow Learner in Homemaking Classes in Junior and Senior High Schools.

    Science.gov (United States)

    McKay, Shirley E.

    This thesis is the result of efforts made to gain an understanding of the slow learner in order to obtain background material for the future writing of a homemaking textbook, which will be geared to the needs and objectives of below average individuals. Included are discussions of such topics as: (1) What Is the Slow Learner Like, (2) Identifying…

  15. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model

  16. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-01-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  17. Charge redistribution and properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Khomskii, D.I.; Kusmartsev, F.V.

    1992-01-01

    We show that in high-T c superconductors (HTSC) with two groups of electrons (e.g., holes in CuO 2 planes and in a ''reservoir'') there should exist a charge redistribution with the temperature: the hole concentration N h in ''active'' superconducting CuO 2 planes increases below T c . This effect may explain structural changes such as the shift of the apical oxygen atom, anomalous thermal expansion, the shift of nuclear quadrupole resonance lines, the change of the positron lifetime, and the modification of the ion channeling below T c . Some other possible consequences of the charge redistribution (the modification of the temperature dependence of a gap Δ and of the ratio 2Δ 0 /T c , the phenomena at a contact of HTSC with normal metals and semiconductors) are discussed

  18. AFM studies of a new type of radiation defect on mica surfaces caused by highly charged ion impact

    International Nuclear Information System (INIS)

    Ruehlicke, C.; Briere, M.A.; Schneider, D.

    1994-01-01

    Radiation induced defects on mica caused by the impact of slow very highly charged ions (SVHCI) have been investigated with an atomic force microscope (AFM). Freshly cleaved surfaces of different types of muscovite were irradiated with SVHCI extracted from the LLNL electron beam ion trap (EBIT) at velocities of ca. 2 keV/amu. Atomic force microscopy of the surface reveals the formation of blisterlike defects associated with single ion impact. The determined defect volume which appears to increase linearly with the incident charge state and exhibits a threshold incident charge state has been determined using the AFM. These results indicate that target atoms are subjected to mutual electrostatic repulsion due to ionization through potential electron emission upon approach of the ion. If the repulsion leads to permanent atomic displacement, surface defects are formed

  19. Search for highly interacting fractionally charged particles at PEP

    International Nuclear Information System (INIS)

    Wlodzimierz, G.

    1982-01-01

    Fractionally charged, highly interacting particles produced in e + e - annihilation at 20 GeV c.m. energy have been search for. The experiment was performed at the positron electron storage ring (PEP) at the Stanford Linear Accelerator Center (SLAC). The search used in the innermost part of the two-arm Free Quark Search (FQS) detector. This part was called the Thin Front End (TFE) and it covered 1/3 of the full solid angle. Each of its arms consisted of five multiwire proportional chambers (MWPC's), used for tracking and dE/dx measurement, and three hodoscopes of 0.16 cm thick Pilot F scintillator. The total thickness of the five MWPC's and the beam pipe was 0.007 hadronic collision lengths (lambda/sub c/). No candidates for fractionally charged particles were found. Upper limits on R/sub q anti q/ = sigma(e + e - →q anti q)/sigma(e + e - →μμ) are between: (1) 0.7% to 7% for quark interaction lengths (lambda/sub q/) equal to lambda/sub c/ and between 3% and 33% for lambda/sub q/ = 100lambda/sub c/ for Q = 1/3e quark charge and for quark masses up to 13 GeV/c 2 ; (2) 2% to 38% for lambda/sub q/ - lambda/sub c/ and from 7% to 160% for lambda/sub q/ = 100lambda/sub c/ for Q = 2/3e quark charge and for masses up to 8 GeV/c 2 . In the inclusive production channel the upper limits on R/sub q/ = sigma(e + e - →qqX)/sigma(e + e - →μμ) are for charge 1/3e only. R/sub q/ varies from 2% to 11% for lambda/sub q/ = lambda/sub c/ and from 3% to 16% for lambda/sub q/ = 100lambda/sub c/ and for quark masses up to 6.5 GeV/c 2 . These are the first limits on the production of fractionally charged particles with lambda/sub q/ = 100lambda/sub c/

  20. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  1. Electronic excitation effects on secondary ion emission in highly charged ion-solid interaction

    International Nuclear Information System (INIS)

    Sekioka, T.; Terasawa, M.; Mitamura, T.; Stoeckli, M.P.; Lehnert, U.; Fehrenbach, C.

    2001-01-01

    In order to investigate the secondary ion emission from the surface of conductive materials bombarded by highly charged heavy ions, we have done two types of experiments. First, we have measured the yield of the sputtered ions from the surface of solid targets of conductive materials (Al, Si, Ni, Cu) bombarded by Xe q+ (q=15-44) at 300 keV (v p =0.30 a.u) and at 1.0 MeV (v p =0.54 a.u). In view of the secondary ion yields as a function of the potential energy of the projectile, the increase rates below q=35, where the potential energy amounts to 25.5 keV, were rather moderate and showed a prominent increase above q=35. These phenomena were rather strong in the case of the metal targets. Second, we have measured the energy dependence of the yield of the sputtered ions from the surface of solid targets of conductive materials (C, Al) bombarded by Xe q+ (q=30,36,44) between 76 keV (v p =0.15 a.u) and 6.0 MeV (v p =1.3 a.u). A broad enhancement of the secondary ion yield has been found for Al target bombarded by Xe 44+ . From these experimental results, the electronic excitation effects in conductive materials for impact of slow highly charged heavy ions bearing high potential energy is discussed

  2. Anisotropy in highly charged ion induced molecule fragmentation

    International Nuclear Information System (INIS)

    Juhasz, Z.; Sulik, B.; Fremont, F.; Chesnel, J.Y.; Hajaji, A.

    2006-01-01

    Complete text of publication follows. Studying fragmentation processes of biologically relevant molecules due to highly charged ion impact is important to understand radiation damage in biological tissues. Energy spectra of the charged molecule fragments may reveal the different fragmentation patterns meanwhile the angular distributions of the fragments characterize the dependence of fragmentation probability on the initial orientation of the molecule. The research to explore the angular distribution of the molecule fragments has only recently been started[1]. In 2006 we performed measurements at ARIBE facility at GANIL, Caen (France), in order to investigate orientation effects in molecule fragmentation. Fragmentation of H 2 O, C 6 H 6 and CH 4 , which represent different level of symmetry, have been studied by 60 keV N 6+ ion impact. Energy spectra of the charged fragments at different observation angles have been taken. As our example spectra show the different protonic peaks can be attributed to different fragmentation processes. Significant anisotropy can be seen in the different processes. The strongest evidence for the anisotropy can be seen in the spectra of C 6 H 6 , where the spectra appear isotropic in almost the whole observed energy range except one peak, which has a strong angular dependence and is maximal around 90 deg. (author)

  3. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  4. Small electrostatic storage rings; also for highly charged ions?

    International Nuclear Information System (INIS)

    Moeller, S.P.; Pedersen, U.V.

    2001-01-01

    Two years ago, a small electrostatic storage ring ELISA (electrostatic ion storage ring, Aarhus) was put into operation. The design of this small 7 m circumference ring was based on electrostatic deflection plates and quadrupoles. This is in contrast to the larger ion storage rings, which are based on magnetic focusing and deflection. The result is a small, relatively inexpensive, storage ring being able to store ions of any mass and any charge at low energy ( -11 mbar resulting in storage times of several tens of seconds for singly charged ions. The maximum number of singly charged ions that can be stored is a few 10 7 . Several experiments have already been performed in ELISA. These include lifetime studies of metastable ions and studies of fullerenes and metal-cluster ions. Lasers are also used for excitation of the circulating ions. Heating/cooling of the ring is possible. Cooling of the ring leads to significantly lower pressures, and correspondingly longer lifetimes. A change of the temperature of the vacuum chambers surrounding the ion beam also leads to a change of the spectrum of the black-body radiation, which has a significant influence on weakly bound negative ions. At the time of writing, at least two other electrostatic storage rings are being built, and more are planned. In the following, the electrostatic storage ring ELISA will be described, and results from some of the initial experiments demonstrating the performance will be shown. The relative merits of such a ring, as opposed to the larger magnetic rings and the smaller ion traps will be discussed. The potential for highly charged ions will be briefly mentioned. (orig.)

  5. Guided transmission of highly charged ions through nanocapillaries in PET. Study of the energy dependencies

    International Nuclear Information System (INIS)

    Helhammer, R.; Pesic, Z.D.; Sobocinski, P.; Bundesmann, J.; Fink, D.; Stolterfoht, N.; Sulik, B.

    2004-01-01

    Full text: Recently we reported experiments in which slow highly charged ions are transmitted through nanocapillaries of 100nm diameter in an insulating PET foil of 10μm thickness [1]. The results of this work differ significantly from previous studies, which have been focused on capillaries in metals [2]. We measured the transmission of 3 keV Ne 7+ ions through the capillaries and focused the attention on ions whose charge has not changed during the passage through the capillary. The observation that the angular distribution for PET has a peak maximum whose position is equal to the tilt angle indicates a guiding of the Ne 7+ ion within the capillary. This guiding shows that the inner walls of the capillaries are charged up in a self-organizing process and collisions with the surface are finally prevented. We studied the time evolution of the capillary guiding as well as dependencies on the tilt angle [3]. Our most recent measurements were focussed on the investigation of the energy dependency for the guiding of Ne 7+ through capillaries. The measurements were done in an energy range from 2 keV up to 10 keV.We measured higher guiding efficiency for lower energies consistent with a previously developed model, which predicted an increase of the guiding efficiency with decreasing projectile energy [3]. In addition we found the effect of a narrower width of the angular distribution of transmitted ions. This effect is also well described by the model. However, further work is needed to explain the amount of charges to build up the deflection field at the end of the capillaries

  6. Structural Arrangement of Water Molecules around Highly Charged Nanoparticles: Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Kim, Eunae; Yeom, Min Sun

    2014-01-01

    Molecular dynamics simulations were performed to understand the structural arrangement of water molecules around highly charged nanoparticles under aqueous conditions. The effect of two highly charged nanoparticles on the solvation charge asymmetry has been examined. We calculated the radial distribution functions of the components of water molecules around nanoparticles which have four charge types at two different salt concentrations. Even though the distributions of water molecules surrounding a sodium ion and a chloride ion are hardly affected by the charges of nanoparticles and the salt concentrations, those around highly charged nanoparticles are strongly influenced by the charges of nanoparticles, but hardly by the charges of nanoparticles and salt concentrations. We find that the distributions of hydrogen atoms in water molecules around one highly charged nanoparticle are dependent on the magnitude of the nanoparticle charge

  7. Highly charged ions generated with intense laser beams

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Jungwirth, Karel; Králiková, Božena; Láska, Leoš; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Hnatowicz, Vladimír; Peřina, Vratislav; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Szydlowski, A.

    2003-01-01

    Roč. 205, - (2003), s. 355-359 ISSN 0168-583X. [International Symposium on Swift Heavy Ions in Matter /5./. Taormina-Giardini Naxos, 22.05.2002-25.05.2002] R&D Projects: GA MŠk LN00A100 Grant - others:HPRI(XE) CT-1999-00053; IAEA(XE) 11535/RO Institutional research plan: CEZ:AV0Z2043910; CEZ:AV0Z1010921 Keywords : laser-produced plasma * highly charged ions * ion implantation * windowless electron multiplier Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.041, year: 2003

  8. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  9. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  10. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  11. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  12. Slowing-down calculation for charged particles, application to the calculation of the (alpha, neutron) reaction yield in UO2 - PuO2 fuel

    International Nuclear Information System (INIS)

    Dulieu, P.

    1967-11-01

    There are no complete theory nor experimental data sufficient to predict exactly, in a systemic way, the slowing down power of any medium for any ion with any energy. However, in each case, the energy range can be divided in three areas, the low energiy range where the de/dx is an ascending energy function, the intermediate energy region where de/dx has a maximum, the high energy region where de/dx is a descending energy function. In practice, the code Irma 3 allows to obtain with a good precision de/dx for the protons, neutrons, tritons, alphas in any medium. For particles heavier than alpha it is better to use specific methods. In the case of calculating the yield of the (alpha, neutron) reaction in a UO 2 -PuO 2 fuel cell, the divergences of experimental origin, between the existing data lead to adopt a range a factor 1.7 on the yields [fr

  13. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen

    International Nuclear Information System (INIS)

    Can, C.; Gray, T.J.; Varghese, S.L.; Hall, J.M.; Tunnell, L.N.

    1985-01-01

    Electron-capture cross sections for low-velocity (10 6 --10 7 cm/s) highly charged Ne/sup q/+ (2< or =q< or =7) and Ar/sup q/+ (2< or =q< or =10)= projectiles incident on molecular- and atomic-hydrogen targets have been measured. A recoil-ion source that used the collisions of fast heavy ions (1 MeV/amu) with target gas atoms was utilized to produce slow highly charged ions. Atomic hydrogen was produced by dissociating hydrogen molecules in a high-temperature oven. Measurements and analysis of the data for molecular- and atomic-hydrogen targets are discussed in detail. The measured absolute cross sections are compared with published data and predictions of theoretical models

  14. Electromagnetic Charge Radius of the Pion at High Precision

    Science.gov (United States)

    Ananthanarayan, B.; Caprini, Irinel; Das, Diganta

    2017-09-01

    We present a determination of the pion charge radius from high precision data on the pion vector form factor from both timelike and spacelike regions, using a novel formalism based on analyticity and unitarity. At low energies, instead of the poorly known modulus of the form factor, we use its phase, known with high accuracy from Roy equations for π π elastic scattering via the Fermi-Watson theorem. We use also the values of the modulus at several higher timelike energies, where the data from e+e- annihilation and τ decay are mutually consistent, as well as the most recent measurements at spacelike momenta. The experimental uncertainties are implemented by Monte Carlo simulations. The results, which do not rely on a specific parametrization, are optimal for the given input information and do not depend on the unknown phase of the form factor above the first inelastic threshold. Our prediction for the charge radius of the pion is rπ=(0.657 ±0.003 ) fm , which amounts to an increase in precision by a factor of about 2.7 compared to the Particle Data Group average.

  15. Performance of the PHIN High Charge Photo Injector

    CERN Document Server

    Petrarca, M; Doebert, S; Dabrowski, A; Divall, M; Fedoseev, V; Lebas, N; Lefevre, T; Losito, R; Egger, D; Mete, O

    2010-01-01

    The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908 micro bunches with 2.33nC per micro bunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In this paper we report and discuss the time resolved transverse and longitudinal beam parameters measurements. The performance of the photo cathodes made at CERN with a peak quantum efficiency of 18 % is shown as well. Laser pointing and amplitude stability results are discussed taking into account correla...

  16. Slow light effect with high group index and wideband by saddle-like mode in PC-CROW

    Science.gov (United States)

    Wan, Yong; Jiang, Li-Jun; Xu, Sheng; Li, Meng-Xue; Liu, Meng-Nan; Jiang, Cheng-Yi; Yuan, Feng

    2018-04-01

    Slow light with high group index and wideband is achieved in photonic crystal coupled-resonator optical waveguides (PC-CROWs). According to the eye-shaped scatterers and various microcavities, saddle-like curves between the normalized frequency f and wave number k can be obtained by adjusting the parameters of the scatterers, parameters of the coupling microcavities, and positions of the scatterers. Slow light with decent flat band and group index can then be achieved by optimizing the parameters. Simulations prove that the maximal value of the group index is > 104, and the normalized delay bandwidth product within a new varying range of n g > 102 or n g > 103 can be a new and effective criterion of evaluation for the slow light in PC-CROWs.

  17. A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors

    DEFF Research Database (Denmark)

    Jin, Hong; wang, Xiaomin; Shen, Yanbin

    2014-01-01

    Microwave and slow pyrolysis were conducted for converting corn stover to biochar. Chemical agents of sodium hydroxide and potassium hydroxide were used to progressively produce activated carbon. The pore structures and surface area of the samples were characterized by nitrogen adsorption....../desorption at 77 K. The results demonstrated that higher specific surface areas of activated carbons were obtained by microwave pyrolysis combined with potassium hydroxide activation. However, electrochemical measurements showed that the slow pyrolysis biochar treated with 0.05 mol g−1 (potassium hydroxide...

  18. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  19. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  20. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Observation of strong azimuthal asymmetry between slow and fast particles from high energy nuclear collisions

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.; Loehner, H.; Ludewigt, B.; Poskanzer, A.M.; Renner, T.; Riedesel, H.; Ritter, H.G.; Siemiarczuk, T.; Stepaniak, J.; Warwick, A.; Wieman, H.

    1984-10-01

    Evidence is presented for the strong azimuthal asymmetry between slow and fast fragments in nuclear collisions in the energy interval of 0.4 to 1 GeV per nucleon. The asymmetry gets stronger when incident energy and impact parameter decrease. The results on the A dependence of the azimuthal asymmetry are also presented. (orig.)

  2. Study on spontaneous bursts of high voltage slow wave activities in electroencephalograms of the aged

    International Nuclear Information System (INIS)

    Yoshida, Ryoichi; Otomo, Eiichi

    1985-01-01

    100 EEGs with bursts of high voltage slow wave activities (bursts) were found in 1150 of aged subjects sixty years and over. In these cases computerized cranial tomography (CT) examinations were carried out within 60 days of EEG recordings and CT findings (bursts CTs) were compared with those of 100 cases without bursts (control CTs). Another 100 consecutive CTs of cases with matched the age and the disease were used as the control. The results were as follows: 1) In bursts CTs, the incidence of normal findings was only 7%, while it was 18% in control CTs. The difference was statistically significant (p<0.001). 2) Brain atrophy was remarkable in bursts CTs. In bursts CT, the incidence of brain atrophy showed more than minor degree was 89%, while it was 64% in control CTs. The difference was statistically significant (p<0.001). 3) The incidences of periventricular lucency (PVL), enlargement of the inferior and posterior horn of the lateral ventricle, basal ganglia calcification observed on CT were significantly higher (55%, 39%, 12%) in bursts CTs than in control CTs (p<0.01, p<0.01, p<0.05). 4) The incidence of focal lesions was lower in bursts CTs than in control CTs. In paticular, large lesions were recognized in only 3% of bursts CTs, whereas those were noted in 15% of control CTs. The difference was statistically significant (p<0.01). 5) Small lesions were recognized in 21% of neurological normal patients with bursts, while they were found in 5% of these of control CTs. 6) Frontal and thalamic lesions were found more frequently in bursts CTs (26%, 13%) than in control CTs (21%, 8%), but the difference was not statistically significant. 7) The correlation between the side showing high voltage of bursts and the side with lesions observed on CT was good. In this way, it may be conceivable that appearance of bursts is not due to only focal lesions but results from generalized brain disfunction, such as aging and others. (author)

  3. Highly charged ion based time-of-flight emission microscope

    International Nuclear Information System (INIS)

    Hamza, Alex V.; Barnes, Alan V.; Magee, Ed; Newman, Mike; Schenkel, Thomas; McDonald, Joseph W.; Schneider, Dieter H.

    2000-01-01

    An emission microscope using highly charged ions as the excitation source has been designed, constructed, and operated. A novel ''acorn'' objective lens has been used to simultaneously image electron and secondary ion emission. A resistive anode-position sensitive detector is used to determine the x-y position and time of arrival of the secondary events at the microscope image plane. Contrast in the image can be based on the intensity of the electron emission and/or the presence of particular secondary ions. Spatial resolution of better than 1 μm and mass resolution m/Δm of better than 400 were demonstrated. Background rejection from uncorrelated events of greater than an order of magnitude is also achieved. (c) 2000 American Institute of Physics

  4. Highly charged ions at rest: The HITRAP project at GSI

    International Nuclear Information System (INIS)

    Herfurth, F.; Beier, T.; Dahl, L.; Eliseev, S.; Heinz, S.; Kester, O.; Kluge, H.-J.; Kozhuharov, C.; Maero, G.; Quint, W.

    2005-01-01

    A decelerator will be installed at GSI in order to provide and study bare heavy nuclei or heavy nuclei with only few electrons at very low energies or even at rest. Highly-charged ions will be produced by stripping at relativistic energies. After electron cooling and deceleration in the Experimental Storage Ring the ions are ejected out of the storage ring at 4 MeV/u and further decelerated in a combination of an IH and RFQ structure. Finally, they are injected into a Penning trap where the ions are cooled to 4 K. From here, the ions can be transferred in a quasi dc or in a pulsed mode to different experimental setups. This article describes the technical concepts of this project as well as planned key experiments

  5. High cumulants of conserved charges and their statistical uncertainties

    Science.gov (United States)

    Li-Zhu, Chen; Ye-Yin, Zhao; Xue, Pan; Zhi-Ming, Li; Yuan-Fang, Wu

    2017-10-01

    We study the influence of measured high cumulants of conserved charges on their associated statistical uncertainties in relativistic heavy-ion collisions. With a given number of events, the measured cumulants randomly fluctuate with an approximately normal distribution, while the estimated statistical uncertainties are found to be correlated with corresponding values of the obtained cumulants. Generally, with a given number of events, the larger the cumulants we measure, the larger the statistical uncertainties that are estimated. The error-weighted averaged cumulants are dependent on statistics. Despite this effect, however, it is found that the three sigma rule of thumb is still applicable when the statistics are above one million. Supported by NSFC (11405088, 11521064, 11647093), Major State Basic Research Development Program of China (2014CB845402) and Ministry of Science and Technology (MoST) (2016YFE0104800)

  6. Charge Exchange of Highly Charged Ne and Mg Ions with H and He

    Science.gov (United States)

    Lyons, D.; Cumbee, R. S.; Stancil, P. C.

    2017-10-01

    Cross sections for single electron capture (SEC), or charge exchange (CX), in collisions of Ne(8-10)+ and Mg(8-12)+ with H and He, are computed using an approximate multichannel Landau-Zener (MCLZ) formalism. Final-state-resolved cross sections for the principal (n), orbital angular momentum (ℓ), and where appropriate, total spin angular momentum (S) quantum numbers are explicitly computed, except for the incident bare ions Ne10+ and Mg12+. In the latter two cases, n{\\ell }-resolution is obtained from analytical ℓ-distribution functions applied to n-resolved MCLZ cross sections. In all cases, the cross sections are computed over the collision energy range 1 meV/u to 50 keV/u with LZ parameters estimated from atomic energies obtained from experiment, theory, or, in the case of high-lying Rydberg levels, estimated with a quantum defect approach. Errors in the energy differences in the adiabatic potentials at the avoided crossing distances give the largest contribution to the uncertainties in the cross sections, which are expected to increase with decreasing cross section magnitude. The energy differences are deduced here with the Olson-Salop-Tauljberg radial coupling model. Proper selection of an ℓ-distribution function for bare ion collisions introduces another level of uncertainty into the results. Comparison is made to existing experimental or theoretical results when available, but such data are absent for most considered collision systems. The n{\\ell }S-resolved SEC cross sections are used in an optically thin cascade simulation to predict X-ray spectra and line ratios that will aid in modeling the X-ray emission in environments where CX is an important mechanism. Details on a MCLZ computational package, Stueckelberg, are also provided.

  7. On adiabatic pair potentials of highly charged colloid particles

    Science.gov (United States)

    Sogami, Ikuo S.

    2018-03-01

    Generalizing the Debye-Hückel formalism, we develop a new mean field theory for adiabatic pair potentials of highly charged particles in colloid dispersions. The unoccupied volume and the osmotic pressure are the key concepts to describe the chemical and thermodynamical equilibrium of the gas of small ions in the outside region of all of the colloid particles. To define the proper thermodynamic quantities, it is postulated to take an ensemble averaging with respect to the particle configurations in the integrals for their densities consisting of the electric potential satisfying a set of equations that are derived by linearizing the Poisson-Boltzmann equation. With the Fourier integral representation of the electric potential, we calculate first the internal electric energy of the system from which the Helmholtz free energy is obtained through the Legendre transformation. Then, the Gibbs free energy is calculated using both ways of the Legendre transformation with respect to the unoccupied volume and the summation of chemical potentials. The thermodynamic functions provide three types of pair potentials, all of which are inversely proportional to the fraction of the unoccupied volume. At the limit when the fraction factor reduces to unity, the Helmholtz pair potential turns exactly into the well known Derjaguin-Landau-Verwey-Overbeek repulsive potential. The Gibbs pair potential possessing a medium-range strong repulsive part and a long-range weak attractive tail can explain the Schulze-Hardy rule for coagulation in combination with the van der Waals-London potential and describes a rich variety of phenomena of phase transitions observed in the dilute dispersions of highly charged particles.

  8. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  9. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  10. High-resolution x-ray scattering studies of charge ordering in highly correlated electron systems

    International Nuclear Information System (INIS)

    Ghazi, M.E.

    2002-01-01

    Many important properties of transition metal oxides such as, copper oxide high-temperature superconductivity and colossal magnetoresistance (CMR) in manganites are due to strong electron-electron interactions, and hence these systems are called highly correlated systems. These materials are characterised by the coexistence of different kinds of order, including charge, orbital, and magnetic moment. This thesis contains high-resolution X-ray scattering studies of charge ordering in such systems namely the high-T C copper oxides isostructural system, La 2-x Sr x NiO 4 with various Sr concentrations (x = 0.33 - 0.2), and the CMR manganite system, Nd 1/2 Sr 1/2 MnO 3 . It also includes a review of charge ordering in a large variety of transition metal oxides, such as ferrates, vanadates, cobaltates, nickelates, manganites, and cuprates systems, which have been reported to date in the scientific literature. Using high-resolution synchrotron X-ray scattering, it has been demonstrated that the charge stripes exist in a series of single crystals of La 2-x Sr x NiO 4 with Sr concentrations (x = 0.33 - 0.2) at low temperatures. Satellite reflections due to the charge ordering were found with the wavevector (2ε, 0, 1) below the charge ordering transition temperature, T CO , where 2ε is the amount of separation from the corresponding Bragg peak. The charge stripes are shown to be two-dimensional in nature both by measurements of their correlation lengths and by measurement of the critical exponents of the charge stripe melting transition with an anomaly at x = 0.25. The results show by decreasing the hole concentration from the x = 0.33 to 0.2, the well-correlated charge stripes change to a glassy state at x = 0.25. The electronic transition into the charge stripe phase is second-order without any corresponding structural transition. Above the second-order transition critical scattering was observed due to fluctuations into the charge stripe phase. In a single-crystal of Nd

  11. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.

    1994-01-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  12. Liouville master equation for multielectron dynamics: Neutralization of highly charged ions near a LiF surface

    International Nuclear Information System (INIS)

    Wirtz, Ludger; Reinhold, Carlos O.; Lemell, Christoph; Burgdoerfer, Joachim

    2003-01-01

    We present a simulation of the neutralization of highly charged ions in front of a lithium fluoride surface including the close-collision regime above the surface. The present approach employs a Monte Carlo solution of the Liouville master equation for the joint probability density of the ionic motion and the electronic population of the projectile and the target surface. It includes single as well as double particle-hole (de)excitation processes and incorporates electron correlation effects through the conditional dynamics of population strings. The input in terms of elementary one- and two-electron transfer rates is determined from classical trajectory Monte Carlo calculations as well as quantum-mechanical Auger calculations. For slow projectiles and normal incidence, the ionic motion depends sensitively on the interplay between image acceleration towards the surface and repulsion by an ensemble of positive hole charges in the surface ('trampoline effect'). For Ne 10+ we find that image acceleration is dominant and no collective backscattering high above the surface takes place. For grazing incidence, our simulation delineates the pathways to complete neutralization. In accordance with recent experimental observations, most ions are reflected as neutral or even as singly charged negative particles, irrespective of the charge state of the incoming ions

  13. STM and transport measurements of highly charged ion modified materials

    International Nuclear Information System (INIS)

    Pomeroy, J.M.; Grube, H.; Perrella, A.C.; Gillaspy, J.D.

    2007-01-01

    Careful measurements of highly charged ions (HCIs) colliding with gases and surfaces have provided glimpses of intense electronic interactions, but a comprehensive model for the interaction mechanisms, time scales, and resultant nano-features that bridges materials systems is yet to be realized. At the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) facility, new apparatus is now connected to the HCI beamline to allow preparation of clean, atomically flat surfaces of single crystals, e.g. gold, tungsten and silicon, and deposition and patterning of thin films, e.g. high resistivity oxides, ferromagnetic metals, normal metals and superconductors. Experiments reported here focus on the electronic and morphological structure of HCI induced nano-features. Current activities are focused on using in situ scanning tunneling microscope (STM) on Au(1 1 1) and (separately) ex situ transport measurements to study electronic properties within HCI modified magnetic multilayer systems. Specifically, we are fabricating magnetic multilayers similar to magnetic tunnel junctions (MTJs) (important in advanced magnetic field sensors and superconducting Josephson junction devices) and using HCIs to adjust critical electronic properties. The electrical response of the tunnel junction to HCIs provides a novel approach to performing HCI-induced nanostructure ensemble measurements

  14. Cold highly charged ions in a cryogenic Paul trap

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, O. O., E-mail: oscar.versolato@mpi-hd.mpg.de; Schwarz, M.; Windberger, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik (Germany); Schmidt, P. O. [Physikalisch-Technische Bundesanstalt (Germany); Drewsen, M. [University of Aarhus, Department of Physics and Astronomy (Denmark); Crespo Lopez-Urrutia, J. R. [Max-Planck-Institut fuer Kernphysik (Germany)

    2013-03-15

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir{sup 17 + }. However, laser spectroscopy of HCIs is hindered by the large ({approx} 10{sup 6} K) temperatures at which they are produced and trapped. An unprecedented improvement in such laser spectroscopy can be obtained when HCIs are cooled down to the mK range in a linear Paul trap. We have developed a cryogenic linear Paul trap in which HCIs will be sympathetically cooled by {sup 9}Be{sup + } ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will also provide the first experimental input needed for the determination of the transition energies in Ir{sup 17 + }, enabling further laser-spectroscopic investigations of this promising HCI.

  15. Excitation and ionization of highly charged ions by electron impact

    International Nuclear Information System (INIS)

    Sampson, D.H.

    1989-01-01

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 ≤ Z ≤ 92; all transitions among the 2s 1/2 , 2p 1/2 and 2p 3/2 levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 ≤ Z ≤ 92; all transitions among the 3s 1/2 , 3p 3/2 , 3d 3/2 and 3d 5/2 levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 ≤ Z ≤ 92; and all transitions among 4s 1/2 , 4p 1/2 , 4p 3/2 , 4d 3/2 , 4d 5/2 , 4f 5/2 and 4f 7/2 levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 ≤ Z ≤ 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact

  16. Equilibrium charge state distributions of high energy heavy ions

    International Nuclear Information System (INIS)

    Clark, R.B.; Grant, I.S.; King, R.; Eastham, D.A.; Joy, T.

    1976-01-01

    Equilibrium charge state fractions have been measured for N, O, Ne, S, Ar and Kr ions at 1.04 MeV/nucleon after passing through various stripping materials. Further data were obtained at higher energy for S ions (4.12 MeV/nucleon) and Ar ions (4.12 and 9.6 MeV/nucleon). The mean charge fractions can be fitted to universal curves for both solid and gaseous strippers. Measurements of the equilibrium fraction of krypton ions at 1.04 MeV/nucleon passing through heavy vapours have shown that a higher average charge state is obtained than for lighter gaseous strippers. (Auth.)

  17. Two-photon processes in highly charged ions

    International Nuclear Information System (INIS)

    Jahrsetz, Thorsten

    2015-01-01

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  18. Quantum interference in laser spectroscopy of highly charged lithiumlike ions

    Science.gov (United States)

    Amaro, Pedro; Loureiro, Ulisses; Safari, Laleh; Fratini, Filippo; Indelicato, Paul; Stöhlker, Thomas; Santos, José Paulo

    2018-02-01

    We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2 s →2 p →2 s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 79+207Pb and 80+209Bi due to experimental interest, as well as other examples of isotopes with lower Z , namely 56+141Pr and 64+165Ho. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.

  19. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  20. On the slow dynamics of near-field acoustically levitated objects under High excitation frequencies

    Science.gov (United States)

    Ilssar, Dotan; Bucher, Izhak

    2015-10-01

    This paper introduces a simplified analytical model describing the governing dynamics of near-field acoustically levitated objects. The simplification converts the equation of motion coupled with the partial differential equation of a compressible fluid, into a compact, second order ordinary differential equation, where the local stiffness and damping are transparent. The simplified model allows one to more easily analyse and design near-field acoustic levitation based systems, and it also helps to devise closed-loop controller algorithms for such systems. Near-field acoustic levitation employs fast ultrasonic vibrations of a driving surface and exploits the viscosity and the compressibility of a gaseous medium to achieve average, load carrying pressure. It is demonstrated that the slow dynamics dominates the transient behaviour, while the time-scale associated with the fast, ultrasonic excitation has a small presence in the oscillations of the levitated object. Indeed, the present paper formulates the slow dynamics under an ultrasonic excitation without the need to explicitly consider the latter. The simplified model is compared with a numerical scheme based on Reynolds equation and with experiments, both showing reasonably good results.

  1. High energy particle detectors utilizing cryogenic charge storage

    Energy Technology Data Exchange (ETDEWEB)

    Coon, D; Engels, E Jr; Plants, D; Shepard, P F; Yang, Y [Pittsburgh Univ., PA (USA); Sopira, M; Papania, R [Westinghouse Research and Development Labs., Monroeville, PA (USA)

    1984-09-15

    The mechanism of cryogenic charge storage as a method of particle detection is reviewed. A description of a simple multielement strip detector operated in this mode is given, and partial results on its operating characteristics presented.

  2. Slow briefs: slow food....slow architecture

    OpenAIRE

    Crotch, Joanna

    2012-01-01

    We are moving too fast…fast lives, fast cars, fast food…..and fast architecture. We are caught up in a world that allows no time to stop and think; to appreciate and enjoy all the really important things in our lives. Recent responses to this seemingly unstoppable trend are the growing movements of Slow Food and Cittaslow. Both initiatives are, within their own realms, attempting to reverse speed, homogeny, expediency and globalisation, considering the values of regionality, patience, craft, ...

  3. The interactions of high-energy, highly charged Xe ions with buckyballs

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1994-01-01

    Ionization and fragmentation have been measured for C 60 molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented

  4. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    International Nuclear Information System (INIS)

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-01-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized

  5. Site-resolved neutralization of slow singly and multiply charged ions during large-angle backscattering collisions with RbI(1 0 0)

    CERN Document Server

    Meyer, F W; Vane, C R

    2003-01-01

    Preliminary results are reported of projectile neutralization during 120 deg. backscattering from RbI[1 0 0] of singly and multiply charged incident ions in the keV energy range. Scattered charge fractions are reported for 4.4 keV Ne sup 8 sup + and 4.2 keV F sup + normally incident on the ionic crystal. Collisions associated with scattering from a Rb or I site can be clearly distinguished for each scattered final charge state. Significant differences are observed in the intensities of the higher scattered charge states resulting from collisions with Rb and I sites. In contrast, at the target azimuth orientation of the present measurement, only minor differences in F sup - yield are observed for hard scattering from the two lattice sites.

  6. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment

    International Nuclear Information System (INIS)

    Joseph, Dwayne C; Saha, Bidhan C

    2012-01-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ε(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  7. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment*)

    Science.gov (United States)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2012-11-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  8. Calculations of charged-particle recoils, slowing-down spectra, LET and event-size distributions for fast neutrons and comparisons with measurements

    International Nuclear Information System (INIS)

    Borak, T.B.; Stinchcomb, T.G.

    1979-01-01

    A rapid system has been developed for computing charged-particle distributions generated in tissue by any neutron spectra less than 4 MeV. Oxygen and carbon recoils were derived from R-matrix theory, and hydrogen recoils were obtained from cross-section evaluation. Application to two quite different fission-neutron spectra demonstrates the flexibility of this method for providing spectral details of the different types of charged-particle recoils. Comparisons have been made between calculations and measurements of event-size distributions for a sphere of tissue 1 μm in diameter irradiated by these two neutron spectra. LET distributions have been calculated from computed charged-particle recoils and also derived from measurements using the conventional approximation that all charged particles traverse the chamber. The limitations of the approximation for these neutron spectra are discussed. (author)

  9. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  10. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge

    International Nuclear Information System (INIS)

    Ridout, Angelo J.; Carrier, Marion; Collard, François-Xavier; Görgens, Johann

    2016-01-01

    Highlights: • Vacuum, slow and fast pyrolysis of low and high ash paper waste sludge (PWS) is compared. • Reactor temperature and pellet size optimised to maximise liquid and solid product yields. • Gross energy recovery from solid and liquid was assessed. • Fast pyrolysis of low and high ash PWS offers higher energy conversions. - Abstract: The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (EC_s_u_m), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18–23 MJ kg"−"1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4–7 MJ kg"−"1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

  11. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Zuogui; Akiyama, Eiji; Tsuzaki, Kaneaki; Zhang Boping

    2010-01-01

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  12. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Zuogui [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Akiyama, Eiji [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: AKIYAMA.Eiji@nims.go.jp; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China)

    2010-05-15

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  13. The character of resonant charge exchange involving highly excited atoms

    International Nuclear Information System (INIS)

    Kosarim, A. V.; Smirnov, B. M.; Capitelli, M.; Laricchiuta, A.

    2012-01-01

    We study the process of resonant charge exchange involving excited helium atoms with the principal quantum number n = 5 colliding with the helium ion in the ground state in the collision energy range from thermal up to 10 eV. This information may be important for the analysis of planet atmospheres containing helium, in particular, for Jupiter’s atmosphere, but our basic interest is the transition from the quantum to classical description of this process, where, due to large cross sections, evaluations of the cross sections are possible. For the chosen process, quantum theory allows determining the cross section as a result of a tunnel electron transition, while classical theory accounts for over-barrier electron transitions. The classical theory additionally requires effective transitions between states with close energies. The analysis of these transitions for helium with n = 5 shows that electron momenta and their projections are mixed for a part of the states, while for other states, the mixing is absent. A simple criterion to separate such states is given. In addition, the main contribution to the cross section of resonant charge exchange follows from tunnel electron transitions. As a result, the quantum theory is better for calculating the cross sections of resonant charge exchange than the classical one and also allows finding the partial cross sections of resonant charge exchange, while the classical approach gives the cross section of resonant charge exchange in a simple manner with the accuracy of 20%.

  14. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Valero, S.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    A new routine and a computer code (DYNAC) for the calculation of space charge densities in a new generation of linear accelerators for various industrial applications is presented. The new beam dynamics method used in this code, employs a set of quasi-Liouvillian equations, allowing beam dynamics computations in long and complex structures for electrons, as well as protons and ions. With this new beam dynamics method, the coordinates of particles are known at any position in the accelerating elements, allowing multistep space charge calculations. (K.A.)

  15. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    Andelkovic, Z.; Herfurth, F.; Kotovskiy, N.; König, K.; Maaß, B.; Murböck, T.; Neidherr, D.; Schmidt, S.; Steinmann, J.; Vogel, M.; Vorobjev, G.

    2015-01-01

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  16. Reaction-rate coefficients, high-energy ions slowing-down, and power balance in a tokamak fusion reactor plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo

    1978-07-01

    Described are the reactivity coefficient of D-T fusion reaction, slowing-down processes of deuterons injected with high energy and 3.52 MeV alpha particles generated in D-T reaction, and the power balance in a Tokamak reactor plasma. Most of the results were obtained in the first preliminary design of JAERI Experimental Fusion Reactor (JXFR) driven with stationary neutral beam injection. A manual of numerical computation program ''BALTOK'' developed for the calculations is given in the appendix. (auth.)

  17. High-precision hyperfine structure measurement in slow atomic ion beams by collinear laser-rf double resonance

    International Nuclear Information System (INIS)

    Amarjit Sen; Childs, W.J.; Goodman, L.S.

    1987-01-01

    A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of ∼60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f 7 ( 8 S 0 )5d 9 D/sub J/ 0 metastable levels of /sup 151,153/Eu + has been measured with high precision. 10 refs., 8 figs

  18. Charging of Dust Grains in a Nuclear-Induced Plasma at High Pressures

    International Nuclear Information System (INIS)

    Pal’, A. F.; Starostin, A. N.; Filippov, A. V.

    2001-01-01

    The process of dust-grain charging in plasmas produced by radioactive decay products or spontaneous fission fragments in air and xenon at high pressures is studied numerically in the hydrodynamic approximation. It is shown that, at sufficiently high rates of gas ionization, the dust grains in air are charged by electrons rather than ions, so that the grain charge in air is comparable to that in electropositive gases. The results of numerical calculations based on a complete model agree well with the experimental data. The time evolution of the grain charge is investigated, and the characteristic time scales on which the grains acquire an electric charge are established. The validity of approximate theories of dust-grain charging in electropositive and electronegative gases at high pressures is examined

  19. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  20. Measurements of the Properties of Highly-charged high-Z ions

    International Nuclear Information System (INIS)

    Augustine J. Smith, Ph.D.

    2007-01-01

    We had proposed carrying out a systematic experimental investigation of the atomic physics of highly charged, high-Z ions, produced in the Lawrence Livermore National Laboratory LLNL electron beam ion trap (EBIT-I) in its high energy mode, superEBIT. In particular we were going to accurately measure line positions for Δn=0 transitions in few electron high-Z ions; this was meant to enable us to investigate relativistic and quantum electrodynamics QED contributions to the energy levels as well as the nuclear properties of heavy ions. We were also going to measure cross sections for various electron-ion interactions, the degree of polarization of emitted x-rays, and radiation cooling rates of various ionization stages of highly charged, high-Z ions. This would enable us to study fundamental atomic physics of high-Z ions at relativistic electron impact energies and in the intense nuclear fields of highly ionized, high-Z ions. This would extend previous measurements we have carried out to a regime where there is a paucity of good data. These measurements were expected to generate increased theoretical interest and activity in this area. The project will extend a very successful collaboration between Morehouse College (MC) and a national laboratory LLNL, Minority student training and development are major components of the proposal

  1. QED in highly-charged high Z ions - experiments at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1996-01-01

    A survey on the fundamental structure aspects of very heavy few -electron ions, in particular H-like systems, is presented. Special emphasis is given to contribution from quantum-electro-dynamics at strong central potentials. The technical possibilities to produce highly-charged heavy ions are reviewed and the ground-state Lamb-shift experiments performed at the heavy ion storage ring ESR are summarized. A short outlook on further developments in this field is added. (author). 23 refs, 9 figs

  2. Rendering high charge density of states in ionic liquid-gated MoS 2 transistors

    NARCIS (Netherlands)

    Lee, Y.; Lee, J.; Kim, S.; Park, H.S.

    2014-01-01

    We investigated high charge density of states (DOS) in the bandgap of MoS2 nanosheets with variable temperature measurements on ionic liquid-gated MoS2 transistors. The thermally activated charge transport indicates that the electrical current in the two-dimensional MoS 2 nanosheets under high

  3. Ionization of highly charged iodine ions near the Bohr velocity

    International Nuclear Information System (INIS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV I q+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ 1,3,4 and Lβ 2,15 to Lα 1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons

  4. Peltier effect in multilayered nanopillars under high density charge current

    International Nuclear Information System (INIS)

    Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S

    2006-01-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements

  5. Superconductivity and charge transfer excitations in high Tc superconductors

    International Nuclear Information System (INIS)

    Balseiro, C.A.; Alascio, B.; Gagliano, E.; Rojo, A.

    1988-01-01

    We present some numerical results to show that in a simple model which includes Cu 3d and O 2p orbitals together with inter and intra atomic correlations pairing between holes can occur due to charge transfer excitations. We present also a simple approximation to derive an effective Hamiltonian containing an interaction between particles which is attractive for some values of the different microscopic parameters

  6. High density thermite mixture for shaped charge ordnance disposal

    OpenAIRE

    Tamer Elshenawy; Salah Soliman; Ahmed Hawass

    2017-01-01

    The effect of thermite mixture based on aluminum and ferric oxides for ammunition neutralization has been studied and tested. Thermochemical calculations have been carried out for different percentage of Al using Chemical Equilibrium Code to expect the highest performance thermite mixture used for shaped charge ordnance disposal. Densities and enthalpy of different formulations have been calculated and demonstrated. The optimized thermite formulation has been prepared experimentally using col...

  7. Charge identification of highly ionizing particles in desensitized nuclear emulsion using high speed read-out system

    International Nuclear Information System (INIS)

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; Koi, T.; Fukushima, C.; Ogawa, S.; Shibasaki, M.; Shibuya, H.

    2006-01-01

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles

  8. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  9. Preliminary considerations of an intense slow positron facility based on a 78Kr loop in the high flux isotopes reactor

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Donohue, D.L.; Peretz, F.J.; Montgomery, B.H.; Hayter, J.B.

    1990-01-01

    Suggestions have been made to the National Steering Committee for the Advanced Neutron Source (ANS) by Mills that provisions be made to install a high intensity slow positron facility, based on a 78 Kr loop, that would be available to the general community of scientists interested in this field. The flux of thermal neutrons calculated for the ANS is E + 15 sec -1 m -2 , which Mills has estimated will produce 5 mm beam of slow positrons having a current of about 1 E + 12 sec -1 . The intensity of such a beam will be a least 3 orders of magnitude greater than those presently available. The construction of the ANS is not anticipated to be complete until the year 2000. In order to properly plan the design of the ANS, strong considerations are being given to a proof-of-principle experiment, using the presently available High Flux Isotopes Reactor, to test the 78 Kr loop technique. The positron current from the HFIR facility is expected to be about 1 E + 10 sec -1 , which is 2 orders of magnitude greater than any other available. If the experiment succeeds, a very valuable facility will be established, and important formation will be generated on how the ANS should be designed. 3 refs., 1 fig

  10. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    Science.gov (United States)

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  11. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  12. Pricing Strategy in Online Retailing Marketplaces of Homogeneous Goods: Should High Reputation Seller Charge More?

    Science.gov (United States)

    Liu, Yuewen; Wei, Kwok Kee; Chen, Huaping

    There are two conflicting streams of research findings on pricing strategy: one is high reputation sellers should charge price premium, while the other is high reputation sellers should charge relatively low price. Motivated by this confliction, this study examines pricing strategy in online retailing marketplace of homogeneous goods. We conduct an empirical study using data collected from a dominant online retailing marketplace in China. Our research results indicate that, in online retailing marketplace of homogeneous goods, high reputation sellers should charge relatively low price, because the consumers of high reputation sellers are more price sensitive than the consumers of low reputation sellers.

  13. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  14. Path dependence, fragmented property rights and the slow diffusion of high throughput technologies in inter-war British coal mining

    Energy Technology Data Exchange (ETDEWEB)

    Peter Scott

    2006-01-15

    This article examines the importance of path dependence effects in impeding the diffusion of high throughput mechanized mining systems in the British coal industry. It demonstrates that the industry had become 'locked in' to low throughput underground haulage technology, on account of institutional interrelatedness between Britain's traditional practice of extensive in-seam mining and its unique system of fragmented, privately owned mineral royalties. Fragmented royalties prevented the concentration of workings and introduction of high throughput main haulage systems that underpinned the rapid productivity growth of European producers. Meanwhile, technical interrelatedness between the haulage systems taking coal to the pit shaft and operations further 'upstream' created bottlenecks which both slowed the overall rate of mechanization and limited the productivity gains from the mechanization that did occur.

  15. High quality broadband spatial reflections of slow Rayleigh surface acoustic waves modulated by a graded grooved surface

    KAUST Repository

    Xu, Yanlong

    2015-01-21

    We report high quality broadband spatial reflections of Rayleigh surface acoustic waves (SAWs) through a graded grooved surface. High quality means that no wave is allowed to transmit and the incident wave is nearly all reflected to the input side. The graded grooved surface is structured by drilling one dimensional array of graded grooves with increased depths on a flat surface. We investigate SAW dispersion relations, wave field distribution at several typical SAW wavelengths, and time evolution of a Gaussian pulse through the graded grooved surface. Results show that the input broadband Rayleigh SAWs can be slowed, spatially enhanced and stopped, and finally reflected to the input side. The study suggests that engraving the flat surface can be used as an efficient and economical way to manipulate Rayleigh SAWs, which has potential application in novel SAW devices such as filters, reflectors, sensors, energy harvesters, and diodes.

  16. Development of Charge Sensitive Preamplifier and Readout Integrate Circuit Board for High Resolution Detector using ASIC Process

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J. Y.; Kim, J. H.; Park, J. M.; Yang, J. Y.; Kim, K. Y.; Kim, Y. S. [RadTek Co., Daejeon (Korea, Republic of)

    2010-06-15

    - Design of discrete type charge sensitive amplifier for high resolution semi-conductor sensor - Design and develop the test board for the performance of charge sensitive amplifier with sensor - Performance of electrical test for the sensor and charge sensitive amplifier - Development of prototype 8 x 8 array type detector module - Noise equivalent charge test for the charge sensitive amplifier - Design and development of Micro SMD discrete type amplifier applying ASIC procedure - Development of Hybrid type charge sensitive amplifier including shape

  17. Ion desorption from solid surfaces under slow (KeV) and fast (MeV) ion sputtering. Influence of the charge state and of the incidence angle on the input channel

    International Nuclear Information System (INIS)

    Joret, H.

    1990-06-01

    Solid surfaces of organic and inorganic materials have been bombarded by fast heavy ions (several MeV). It is shown that the charge state of the projectile has a strong influence on the atomic and molecular ion desorption yield. Experimental studies proved that molecular ions can be emitted intact from deep layers underneath the surface (volume emission) with the existence of a crater emission. On the other hand light ions like H(+), H(+)-2, H(+)-3 are emitted from the surface of the solid in a time around 10 -16 second. The H(+) depends on the incident charge state g-i. When using slow ions (keV) the same dependence was observed for the first time and compared to the fast ion results. The equilibrum charge state of fast ions passing through solids was measured. The influence of the angle of incidence was investigated. Langmuir-Blodgett films of fatty acid were used. A geometrical model is developed for the 50 angstroms layer [fr

  18. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  19. Correlation effects on double electron capture in highly-charged, low-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Meyer, F.W.; Griffin, D.C.; Havener, C.C.; Huq, M.S.; Phaneuf, R.A.; Swenson, J.K.; Stolterfoht, N.

    1987-01-01

    The method of zero-degree Auger electron spectroscopy has been used to study two-electron excited states populated in slow double capture collisions of highly charged ions with He and H 2 . The focus of this study is on production of autoionization electrons originating from the non-equivalent 1s 2 2pnl electron configurations in comparison with electron production resulting from the Auger decay of (near) equivalent 1s 2 nln'l' (with n∼n') configurations. It is shown that production of non-equivalent electron configurations is significant and involves electron-electron correlation effects whose analysis leads beyond the independent-particle model. Recent results that include a measurement at non-zero angles are presented to illustrate the angular dependence of electron emission from non-equivalent electron configurations, as well as the dependence on projectile charge state and target species. Comparison of high resolution scans over two lines of the 1s 2 2pnl sequence for the O 6+ + He system with accurate transition energy calculations shows preferential population of high angular momentum substation

  20. Charge transport in poly(p-phenylene vinylene) at low temperature and high electric field

    NARCIS (Netherlands)

    Katsouras, I.; Najafi, A.; Asadi, K.; Kronemeijer, A. J.; Oostra, A. J.; Koster, L. J. A.; de Leeuw, D. M.; Blom, P. W. M.

    Charge transport in poly(2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV)-based hole-only diodes is investigated at high electric fields and low temperatures using a novel diode architecture. Charge carrier densities that are in the range of those in a field-effect transistor are

  1. Ion sources development at GANIL for radioactive beams and high charge state ions

    International Nuclear Information System (INIS)

    Leroy, R.; Barue, C.; Canet, C.; Dupuis, M.; Flambard, J.L.; Gaubert, G.; Gibouin, S.; Huguet, Y.; Jardin, P.; Lecesne, N.; Leherissier, P.; Lemagnen, F.; Pacquet, J.Y.; Pellemoine-Landre, F.; Rataud, J.P.; Saint-Laurent, M.G.; Villari, A.C.C.; Maunoury, L.

    2001-01-01

    The GANIL laboratory has in charge the production of ion beams for nuclear and non nuclear physics. This article reviews the last developments that are underway in the fields of radioactive ion beam production, increase of the metallic ion intensities and production of highly charges ion beams. (authors)

  2. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  3. High-frequency acoustic charge transport in GaAs nanowires

    NARCIS (Netherlands)

    Büyükköse, S.; Hernandez-Minguez, A.; Vratzov, B.; Somaschini, C.; Geelhaar, L.; Riechert, H.; van der Wiel, Wilfred Gerard; Santos, P.V.

    2014-01-01

    The oscillating piezoelectric fields accompanying surface acoustic waves are able to transport charge carriers in semiconductor heterostructures. Here, we demonstrate high-frequency (above 1 GHz) acoustic charge transport in GaAs-based nanowires deposited on a piezoelectric substrate. The short

  4. A slow atomic diffusion process in high-entropy glass-forming metallic melts

    Science.gov (United States)

    Chen, Changjiu; Wong, Kaikin; Krishnan, Rithin P.; Embs, Jan P.; Chathoth, Suresh M.

    2018-04-01

    Quasi-elastic neutron scattering has been used to study atomic relaxation processes in high-entropy glass-forming metallic melts with different glass-forming ability (GFA). The momentum transfer dependence of mean relaxation time shows a highly collective atomic transport process in the alloy melts with the highest and lowest GFA. However, a jump diffusion process is the long-range atomic transport process in the intermediate GFA alloy melt. Nevertheless, atomic mobility close to the melting temperature of these alloy melts is quite similar, and the temperature dependence of the diffusion coefficient exhibits a non-Arrhenius behavior. The atomic mobility in these high-entropy melts is much slower than that of the best glass-forming melts at their respective melting temperatures.

  5. The World in Slow Motion: Using a High-Speed Camera in a Physics Workshop

    Science.gov (United States)

    Dewanto, Andreas; Lim, Geok Quee; Kuang, Jianhong; Zhang, Jinfeng; Yeo, Ye

    2012-01-01

    We present a physics workshop for college students to investigate various physical phenomena using high-speed cameras. The technical specifications required, the step-by-step instructions, as well as the practical limitations of the workshop, are discussed. This workshop is also intended to be a novel way to promote physics to Generation-Y…

  6. Highly confined ions store charge more efficiently in supercapacitors

    Science.gov (United States)

    Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Daffos, B.; Taberna, P.-L.; Simon, P.; Salanne, M.

    2013-10-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  7. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  8. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  9. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Loveland, W.; Jakobsson, B.; Whitlow, H.J.; Bouanani, M. El; Univ. of North Texas, Denton, TX

    2000-01-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼ 35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  10. A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Uppsala Univ. (Sweden). The Svedberg Lab.; Veldhuizen, E.J. van; Aleklett, K. [Uppsala Univ., (Sweden). Dept. of Radiation Sciences; Westerberg, L. [Uppsala University (Sweden). The Svedberg Lab.; Lyapin, V.G. [V.G.Khlopin Radium Institute, St. Petersburg (Russian Federation); Loveland, W. [Oregon State Univ., Corvallis, OR (United States). Dept. of Chemistry; Bondorf, J. [Niels Bohr Inst., Copenhagen (Denmark); Jakobsson, B. [Lund Univ. (Sweden). Dept. of Physics; Whitlow, H.J. [Lund Univ. (Sweden). Dept. of Nuclear Physics; Bouanani, M. El [Lund Univ. (Sweden). Dept. of Nuclear Physics; Univ. of North Texas, Denton, TX (United States). Dept. of Physics

    2000-07-01

    A compact Ultra High Vacuum (UHV) compatible instrument for time of flight energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx} 35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat} Xe gas targets.

  11. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. High Returns, Low Attention, Slow Implementation: The Policy Paradoxes of India's Clean Energy Development

    International Nuclear Information System (INIS)

    Charnoz, Olivier; Swain, Ashwini

    2012-07-01

    India claims to be undertaking a thorough transition to low-carbon electricity, stepping up renewable energy and energy efficiency efforts. Yet, two puzzling paradoxes weigh upon this dynamic. First, although energy efficiency measures offer high collective returns, at least as high as those for renewable energy, the energy efficiency agenda is receiving a lot less attention and priority, even though it would require significantly less investment. Second, within the energy efficiency domain, implementation is lower and slower in sectors where the savings potential is the highest, notably among agricultural and domestic (household) consumers. Drawing on a range of interviews, documentary analysis and policy observations, this paper helps to shed light on this conundrum. In particular, it points out the discrepancy between individual and collective incentives in promoting energy efficiency, the biases and weaknesses of Indian governance at both the central and state levels, the influence of lobbies, the weight of parallel governmental agendas, and the built-in preference of the government, as well as international donors, for a technological rather than a governance focus. Nonetheless, striking a new balance between energy efficiency and renewable energy as complementary agendas is of crucial importance if India is to achieve its developmental, social, environmental and energy security goals. (authors)

  13. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  14. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    Science.gov (United States)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  15. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  16. High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay

    Science.gov (United States)

    Campbell, Sandi; Liang, Margaret I.

    2005-01-01

    The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.

  17. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    Current, M.I.; Lukaszek, W.; Dixon, W.; Vella, M.C.; Messick, C.; Shideler, J.; Reno, S.

    1994-02-01

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  18. A new method of removing the high value feedback resistor in the charge sensitive preamplifier

    International Nuclear Information System (INIS)

    Xi Deming

    1993-01-01

    A new method of removing the high value feedback resistor in the charge sensitive preamplifier is introduced. The circuit analysis of this novel design is described and the measured performances of a practical circuit are provided

  19. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  20. Atomic physics of highly charged ions in an electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.

    1990-07-01

    Two electron beam ion traps are in use at LLNL for the purpose of studying the properties of very highly charged ions and their interactions with electrons. This paper reviews the operation of the traps and discusses recent experiments in three areas: precision transition energy measurements in the limit of very high ion charge, dielectronic recombination measurements for the He-like isoelectronic sequence, and measurements of x-ray polarization. 22 refs., 11 figs., 1 tab

  1. Acceleration of high charge density electron beams in the SLAC linac

    International Nuclear Information System (INIS)

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures

  2. Charged particle tracking in high multiplicity events at RHIC

    International Nuclear Information System (INIS)

    Foley, K.J.; Love, W.A.

    1985-01-01

    It is generally accepted that the ability to track some fraction of the charged particles produced in heavy ion collisions is very desirable. At a very minimum, one must detect the occurance of multiple interactions in a single crossing. The very tight beam structure at RHIC does not favor time separation, so the location of separate vertices seems the best solution. The limits of tracking large numbers of tracks in a solid angle approaching 4π have been explored. A model detector considered is a 2.5 m radius TPC, a true 3D tracking device. In order to estimate the particle density of a function of production angle, five Hijet Au-Au central events were used to deduce the particle density distribution as a function of polar angle. An important feature of a tracking detector is the effective ''pixel'' size - the area within which two tracks cannot be resolved. In a TPC with multistep avalanche chamber readout this is approximately 3 mm x 3 mm or approx.0.1 cm 2 . Using this pixel size we have calculated the radius at which the number of particles/pixel is 0.01 and 0.1. With the exception of the region very near the beam expect these distributions aren't expected to change very much with the application of a low (approx. 0.5 tesla) magnetic field. While the actual reconstruction efficiency will depend on the fine details of the apparatus and reconstruction program, the 1% fill fraction is safe for efficiencies in the 80 to 90% region. Tracking is found to be feasible at pseudorapidities up to 3

  3. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  4. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, H., E-mail: nishino@post.kek.j [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A. [Institute for Cosmic Ray Research, University of Tokyo, Chiba 277-8582 (Japan); Ishikawa, K.; Minegishi, A. [Iwatsu Test Instruments Corporation, Tokyo 168-8511 (Japan); Arai, Y. [The Institute of Particle and Nuclear Studies, KEK, Ibaraki 305-0801 (Japan)

    2009-11-11

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mVapprox3V; 0.2approx2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  5. High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Nishino, H.; Awai, K.; Hayato, Y.; Nakayama, S.; Okumura, K.; Shiozawa, M.; Takeda, A.; Ishikawa, K.; Minegishi, A.; Arai, Y.

    2009-01-01

    A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detector's PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0.3mV∼3V; 0.2∼2500pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.

  6. Overview on collision processes of highly charged ions with atoms present status and problems

    International Nuclear Information System (INIS)

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms

  7. Interaction of slow electrons with high-pressure gases ('Quasi-liquids'): synthesis of our knowledge on slow electron-molecule interactions. Progress report

    International Nuclear Information System (INIS)

    McCorkle, D.L.; Christophorou, L.G.

    1985-01-01

    A crucial step in our efforts to develop not only a coherent picture of radiation interaction with matter, but also to understand radiation effects and mechanisms, as well as the effects of chemical pollutants and toxic compounds, is to relate the often abundant knowledge on isolated molecules (low pressure gases) to that on liquids or solids. To understand the roles of the physical and chemical properties of molecules in biological reactions, we must know how these isolated-molecule properties change as molecules are embedded in gradually thicker and thicker (denser and denser) gaseous and, finally, liquid environments. The work initiated by us both at the Physics Department of The University of Tennessee and at the Oak Ridge National Laboratory addresses itself to this question. At both places, high pressure (40 to approx.8000 kPa) electron swarm experiments are currently in operation yielding information as to the effects of the density and nature of the environment on fundamental electron-molecule interaction processes at densities intermediate to those corresponding to low pressure gases and liquids, and the gradual transition from isolated molecule to condensed phase behavior

  8. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    Science.gov (United States)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-10-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  9. Architecture of a general purpose embedded Slow-Control Adapter ASIC for future high-energy physics experiments

    International Nuclear Information System (INIS)

    Gabrielli, Alessandro; Loddo, Flavio; Ranieri, Antonio; De Robertis, Giuseppe

    2008-01-01

    This work is aimed at defining the architecture of a new digital ASIC, namely Slow-Control Adapter (SCA), which will be designed in a commercial 130-nm CMOS technology. This chip will be embedded within a high-speed data acquisition optical link (GBT) to control and monitor the front-end electronics in future high-energy physics experiments. The GBT link provides a transparent transport layer between the SCA and control electronics in the counting room. The proposed SCA supports a variety of common bus protocols to interface with end-user general-purpose electronics. Between the GBT and the SCA a standard 100 Mb/s IEEE-802.3 compatible protocol will be implemented. This standard protocol allows off-line tests of the prototypes using commercial components that support the same standard. The project is justified because embedded applications in modern large HEP experiments require particular care to assure the lowest possible power consumption, still offering the highest reliability demanded by very large particle detectors.

  10. When high-capacity readers slow down and low-capacity readers speed up: Working memory and locality effects

    Directory of Open Access Journals (Sweden)

    Bruno eNicenboim

    2016-03-01

    Full Text Available We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German, while taking into account readers’ working memory capacity and controlling for expectation (Levy, 2008 and other factors. We predicted only locality effects, that is, a slow-down produced by increased dependency distance (Gibson, 2000; Lewis & Vasishth, 2005. Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  11. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  12. Moment-Preserving Computational Approach for High Energy Charged Particle Transport

    Science.gov (United States)

    2016-05-16

    posed, but with modified cross sections such that the resulting single-event Monte Carlo simulation is computationally efficient (minutes vs . days...configurations, which are all characteristics of real world applications. In other words , it is possible to simulate real, physical phenomena using charged...0 < 0.95) ~ 1 2() ≫ 1, (3) Demonstrating that scattering is highly forward peaked. Thus, the picture of charged particle interactions

  13. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  14. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q 0 )/(q/q 0 ), where (q/q 0 ) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  15. Evaporative cooling of highly charged ions in EBIT [Electron Beam Ion Trap]: An experimental realization

    International Nuclear Information System (INIS)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-01-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs

  16. Charge fluctuations in high-electron-mobility transistors: a review

    International Nuclear Information System (INIS)

    Green, F.

    1993-01-01

    The quasi-two-dimensional carrier population, free to move within a near-perfect crystalline matrix, is the key to remarkable improvements in signal gain, current density and quiet operation. Current-fluctuation effects are central to all of these properties. Some of these are easily understood within linear-response theory, but other fluctuation phenomena are less tractable. In particular, nonequilibrium noise poses significant theoretical challenges, both descriptive and predictive. This paper examines a few of the basic physical issues which motivate device-noise theory. The structure and operation of high-electron-mobility transistor are first reviewed. The recent nonlinear fluctuation theory of Stanton and Wilkins (1987) help to identify at least some of the complicated noise physics which can arise when carriers in GaAs-like conduction bands are subjected to high fields. Simple examples of fluctuation-dominated behaviour are discussed, with numerical illustrations. 20 refs., 9 figs

  17. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  18. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  19. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  20. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K., E-mail: paul.hurley@tyndall.ie [Tyndall National Institute, University College Cork, Dyke Parade, Cork (Ireland)

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  1. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  2. X-ray transitions in highly charged neonlike ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Gjoeler, S.; Bitter, M.

    1987-11-01

    Wavelength measurements of n=3 to n=2 transitions in neonlike Xe 44+ , La 47+ , Nd 50+ , and Eu 53+ have been made using a high-resolution Bragg-crystal spectrometer on the Princeton Large Torus tokamak. The measurements cover the wavelength regions 2.00 to 3.00 (angstrom) and include the electric dipole, and the electric and magnetic quadrupole transitions. The measured wavelengths are compared to energy levels obtained from a multiconfigurational Dirac-Fock calculation. Systematic differences between the experimental and theoretical values are found, which vary smoothly with atomic number. The magnitude of the differences depends on the particular type of transition and ranges from -2.8 eV to +2.2 eV. Inclusion of electron correlation corrections due to ground state correlations and (super) Coster-Kronig type fluctuations in the theoretical energies is shown to reduce the differences for some but not all types of transitions

  3. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    CERN Document Server

    Beiersdorfer, P; Crespo, J; Kim, S H; Neill, P; Utter, S; Widmann, K

    2000-01-01

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic cry...

  4. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  5. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  6. High pressure study of high temperatures superconductors: Material base, universal Tc-behavior, and charge transfer

    International Nuclear Information System (INIS)

    Chu, C.W.; Hor, P.H.; Lin, J.G.; Xiong, Q.; Huang, Z.J.; Meng, R.L.; Xue, Y.Y.; Jean, Y.C.

    1991-01-01

    The superconducting transition temperature (T c ) has been measured in YBa 2 Cu 3 O 6.7 , YBa 2 Cu 3 O 7 , Y 2 Ba 4 Cu 7 O 15 , YBa 2 Cu 4 O 8 , Tl 2 Ba 2 Ca n-1 Cu n O n+4-δ , La 2-x Sr x CuO 4 , and La 2-x Ba x CuO 4 under high pressures. The pressure effect on the positron lifetime (τ) has also been determined in the first four compounds. Based on these and other high pressure data, the authors suggest that (1) all known cuprate high temperature superconductors (HTS's) may be no more than mere modifications of either 214-T, 214-T', 123, or a combination of 214-T' and 123, (2) a nonmonotonic T c -behavior may govern the T c -variation of all hole cuprate HTS's and (3) pressure can induce charge transfer leading to a T c -change. The implications of these suggestions will also be discussed

  7. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  8. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    International Nuclear Information System (INIS)

    Nakagawa, T.

    2014-01-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams

  9. A High-Level Functional Architecture for GNSS-Based Road Charging Systems

    DEFF Research Database (Denmark)

    Zabic, Martina

    2011-01-01

    , a short introduction is provided followed by a presentation of the system engineering methodology to illustrate how and why system architectures can be beneficial for GNSS-based road charging systems. Hereafter, a basic set of system functions is determined based on functional system requirements, which...... charging systems, it is important to highlight the overall system architecture which is the framework that defines the basic functions and important concepts of the system. This paper presents a functional architecture for GNSS-based road charging systems based on the concepts of system engineering. First...... defines the necessary tasks that these systems must accomplish. Finally, this paper defines the system functionalities; and provides a generic high-level functional architecture for GNSS-based road charging systems....

  10. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  11. Techniques for enhancing the performance of high charge state ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1999-01-01

    Electron Cyclotron Resonance ion source (ECRIS), which produces singly to highly charged ions, is widely used in heavy ion accelerators and is finding applications in industry. It has progressed significantly in recent years thanks to a few techniques, such as multiple-frequency plasma heating, higher mirror magnetic fields and a better cold electron donor. These techniques greatly enhance the production of highly charged ions. More than 1 emA of He 2+ and O 6+ , hundreds of eμA of O 7+ , Ne 8+ , Ar 12+ , more than 100 eμA of intermediate heavy ions with charge states up to Ne 9+ , Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ and Kr 18+ , tens of eμA of heavy ions with charge states up to Xe 28+ , Au 35+ , Bi 34+ and U 34+ were produced at cw mode operation. At an intensity of about 1 eμA, the charge states for the heavy ions increased up to Xe 36+ , Au 46+ , Bi 47+ and U 48+ . More than an order of magnitude enhancement of fully stripped argon ions was achieved (I≥0.1 and h;eμA). Higher charge state ions up to Kr 35+ , Xe 46+ and U 64+ at low intensities were produced for the first time from an ECRIS. copyright 1999 American Institute of Physics

  12. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  13. New experimental initiatives using very highly charged ions from an 'electron beam ion trap'

    International Nuclear Information System (INIS)

    Schneider, D.

    1996-01-01

    A short review of the experimental program in highly-charged heavy ion physics conducted at the Lawrence Livermore National Laboratory Electron Beam Ion Trap (EBIT) facility is presented. The heavy-ion research, involving ions up to fully stripped U 92+ , includes precision x-ray spectroscopy and lifetime studies, electron impact ionization and excitation cross section measurements. The investigations of ion-surface interactions following the impact of high-Z highly charged ions on surfaces are aimed to study the neutralization dynamics effecting the ion and the response of the surface as well. (author)

  14. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  15. Charge-sign-clustering observed in high-multiplicity, high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Takahashi, Y.; Gregory, J.C.; Hayashi, T.

    1989-01-01

    Charge-sign distribution in 200 GeV/amu heavy-ion collisions is studied with the Magnetic-Interferometric-Emulsion-Chamber (MAGIC) for central collision events in 16 O + Pb and 32 S + Pb interactions. Charge-sign clustering is observed in most of the fully-analyzed events. A statistical 'run-test' is performed for each measured event, which shows significant deviation from a Gaussian distribution (0,1) expected for random-charge distribution. Candidates of charge clusters have 5 - 10 multiplicity of like-sign particles, and are often accompanied by opposite-sign clusters. Observed clustering of identical charges is more significant in the fragmentation region than in the central region. Two-particle Bose-Einstein interference and other effects are discussed for the run-test examination. (author)

  16. PF slow positron source

    International Nuclear Information System (INIS)

    Shirakawa, A.; Enomoto, A.; Kurihara, T.

    1993-01-01

    A new slow-positron source is under construction at the Photon Factory. Positrons are produced by bombarding a tantalum rod with high-energy electrons; they are moderated in multiple tungsten vanes. We report here the present status of this project. (author)

  17. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    Science.gov (United States)

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  18. High-k shallow traps observed by charge pumping with varying discharging times

    International Nuclear Information System (INIS)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-01-01

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO 2 /metal gate stacks. N T -V high level characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N T for extra contribution of I cp traps. N T is the number of traps, and I cp is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I cp traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti x N 1−x metal gate concentrations. Next, N T -V high level characteristic curves with different falling times (t falling time ) and base level times (t base level ) show that extra contribution of I cp traps decrease with an increase in t falling time . By fitting discharge formula for different t falling time , the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t falling time . This current cannot be measured by the charge pumping technique. Subsequent measurements of N T by charge pumping technique at t base level reveal a remainder of electrons trapped in high-k bulk shallow traps

  19. Observation of visible and uv magnetic dipole transitions in highly charged xenon and barium

    International Nuclear Information System (INIS)

    Morgan, C.A.; Serpa, F.G.; Takacs, E.; Meyer, E.S.; Gillaspy, J.D.; Sugar, J.; Roberts, J.R.; Brown, C.M.; Feldman, U.

    1995-01-01

    We have observed an unusual transition which is predicted to result in visible and near-uv emission from very highly charged titaniumlike ions spanning the entire upper half of the periodic table. Measurements of the wavelengths of the 3d 4 D 2 - 5 D 3 transitions in Ba +34 and Xe +32 are in surprisingly poor agreement with ab initio calculations. This work was carried out in an electron beam ion trap and demonstrates that such a device can be an important tool for visible spectroscopy of highly charged ions

  20. Modelling of prompt losses of high energy charged particles in Tokamaks

    International Nuclear Information System (INIS)

    Dillner, Oe.; Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    A simple analytical expression for the total prompt loss fraction of high energy charged particles in an axisymmetric Tokamak is derived. The results are compared with predictions obtained from numerical simulations and show good agreement. An application is made to sawtooth induced changes in the losses of fusion generated high energy charged particles. Particular emphasis is given to the importance of sawtooth induced profile changes of the background ion densities and temperature as well as to redistribution of particles which have accumulated during the sawtooth rise but are being lost by redistribution at the sawtooth crash. (au)

  1. Improvement of highly charged ion production in the ECR source of heavy ions

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1996-01-01

    Some physical limitations of the highly charged ion production in the ECR source are analyzed in this report. A few possible ways to improve the output of highly charged ions from the ECR source for heavy ions are proposed. A new library of computer codes for the numerical simulation of heavy ion production in the ECR ion source is used to examine these ways to improve the ECR source operation according to the CERN program of heavy ion acceleration. copyright 1996 American Institute of Physics

  2. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  3. Possibility of resonant capture of antiprotons by highly charged hydrogenlike ions

    International Nuclear Information System (INIS)

    Genkin, M.; Lindroth, E.

    2009-01-01

    Recently, an experimental setup was proposed by Lapierre et al. which would allow antiprotons and highly charged ions to collide repeatedly in an electron beam ion trap (EBIT) due to a nested trap configuration. As mentioned by the authors, such a setup may open the possibility to study antiproton capture into well-defined states through a resonant process which involves simultaneous electron excitation. In the present work, we give some theoretical estimations of the feasibility of that process. It appears that the exotic dielectronic-like process of resonant anti-proton capture in highly charged ions does not seem to be completely out of reach

  4. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    Science.gov (United States)

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  5. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2012-12-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  6. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Riedner, Brady A; Wanger, Timothy; Guokas, Jeffrey J; Tononi, Giulio; Benca, Ruth M

    2012-09-18

    Sleep disturbance plays an important role in major depressive disorder (MDD). Prior investigations have demonstrated that slow wave activity (SWA) during sleep is altered in MDD; however, results have not been consistent across studies, which may be due in part to sex-related differences in SWA and/or limited spatial resolution of spectral analyses. This study sought to characterize SWA in MDD utilizing high-density electroencephalography (hdEEG) to examine the topography of SWA across the cortex in MDD, as well as sex-related variation in SWA topography in the disorder. All-night recordings with 256 channel hdEEG were collected in 30 unipolar MDD subjects (19 women) and 30 age and sex-matched control subjects. Spectral analyses of SWA were performed to determine group differences. SWA was compared between MDD and controls, including analyses stratified by sex, using statistical non-parametric mapping to correct for multiple comparisons of topographic data. As a group, MDD subjects demonstrated significant increases in all-night SWA primarily in bilateral prefrontal channels. When stratified by sex, MDD women demonstrated global increases in SWA relative to age-matched controls that were most consistent in bilateral prefrontal regions; however, MDD men showed no significant differences relative to age-matched controls. Further analyses demonstrated increased SWA in MDD women was most prominent in the first portion of the night. Women, but not men with MDD demonstrate significant increases in SWA in multiple cortical areas relative to control subjects. Further research is warranted to investigate the role of SWA in MDD, and to clarify how increased SWA in women with MDD is related to the pathophysiology of the disorder.

  7. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    Science.gov (United States)

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  8. Design for a high intensity slow positron facility using forward scattered radiation from an electron linear accelerator

    International Nuclear Information System (INIS)

    Hulett, L.D. Jr.; Lewis, T.A.; Alsmiller, R.G. Jr.; Peelle, R.; Pendyale, S.; Dale, J.M.; Rosseel, T.M.

    1986-01-01

    A tungsten moderator will be placed behind the target of the Oak Ridge Electron Linear Accelerator (ORELA) to convert gamma radiation to slow positrons. These will be extracted and led through evacuated solenoids to an experiment room. A Penning trap will be used to extend the slow positron pulses to achieve duty factors of 10% or greater. The facility will be used for atomic and molecular physics studies, positron microscopy, and materials research. Operations will be inexpensive and will not interfere with the normal function of ORELA, the measurement of neutron cross sections by flight-time spectrometry

  9. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    International Nuclear Information System (INIS)

    Haseroth, Helmut; Hora, Heinrich; Regensburg Inst. of Tech.

    1996-01-01

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10 11 C 4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ''hot'' electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author)

  10. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  11. Penning traps with unitary architecture for storage of highly charged ions

    International Nuclear Information System (INIS)

    Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  12. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  13. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  14. The longitudinal space charge problem in the high current linear proton accelerators

    International Nuclear Information System (INIS)

    Lustfeld, H.

    1984-01-01

    In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)

  15. Phase shift PWM with double two-switch bridge for high power capacitor charging

    International Nuclear Information System (INIS)

    Karandikar, U.S.; Singh, Yashpal; Thakurta, A.C.

    2013-01-01

    Pulse power supply systems working at higher voltage and high repetition rate demands for higher power from capacitor chargers. Capacitor charging requirement become more challenging in such cases. In pulse power circuits, energy storage capacitor should be charged to its desired voltage before the next switching occurs. It is discharged within a small time, delivering large pulse power. A capacitor charger has to work with wide load variation repeatedly. Many schemes are used for this purpose. The proposed scheme aims at reducing stresses on switches by reducing peak current and their evils. A high voltage power supply is designed for capacitor charging. The proposed scheme is based on a Phase-Shifted PWM without using any extra component to achieve soft switching. Indirect constant average current capacitor charging is achieved with a simple control scheme. A double two-switch bridge is proposed to enhance reliability. Power supply has been developed to charge a capacitor of 50 μF to 2.5 kV at 25 Hz. (author)

  16. High-frequency asymptotics of the emission spectrum of moving charged particles in classical electrodynamics

    International Nuclear Information System (INIS)

    Abbasov, I.I.; Bolotovskij, B.M.; Davydov, V.A.

    1986-01-01

    Electromagnetic radiation appears as a result of a charged particle movement in free space and also in heterogeneous and non-stationary medium. The radiation spectrum depends on the charged particle motion law, as well as on the law of the medium property chage in space and time. The asymptotics of radiation spectrum, i.e. behaviour of spectral intensity at high frequencies, is studied. It is shown that if a charged particle moves along smooth trajectory or if the change in the medium properties takes place accordng to the law described by a smooth function, the radiation spectrum at high frequencies decreases according to exponential law. Thus, radiation spectrum of a charged particle moving along a smooth trajectory in the medium with gradual heterogeneity and (or) instability is rapidly cut, starting from a certain frequency value. The smooth trajectory means that the charge moves according to the law r = r(t), where vector-function r(t) is continuous with all its derivatives. In much the same way the medium with gradual heterogeneities (or with gradual instability) is described by the functions which are continuous with all their derivatives of any order. The method permitting to determine the upper boundary of radiation spectra is presented

  17. Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System

    Directory of Open Access Journals (Sweden)

    Kristian Ismail

    2012-07-01

    Full Text Available Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on and the specific lag time (when off. This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.

  18. Production of highly charged ion beams from electron cyclotron resonance ion sources (invited)

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1998-01-01

    Electron cyclotron resonance ion source (ECRIS) development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields, and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECRISs. So far at continuous wave (CW) mode operation, up to 300 eμA of O 7+ and 1.15 emA of O 6+ , more than 100 eμA of intermediate heavy ions for charge states up to Ar 13+ , Ca 13+ , Fe 13+ , Co 14+ , and Kr 18+ , and tens of eμA of heavy ions with charge states to Kr 26+ , Xe 28+ , Au 35+ , Bi 34+ , and U 34+ were produced from ECRISs. At an intensity of at least 1 eμA, the maximum charge state available for the heavy ions are Xe 36+ , Au 46+ , Bi 47+ , and U 48+ . An order of magnitude enhancement for fully stripped argon ions (I≥60enA) were also achieved. This article will review the ECR ion source progress and discuss key requirement for ECRISs to produce the highly charged ion beams. copyright 1998 American Institute of Physics

  19. EBIT spectroscopy of highly charged heavy ions relevant to hot plasmas

    Science.gov (United States)

    Nakamura, Nobuyuki

    2013-05-01

    An electron beam ion trap (EBIT) is a versatile device for studying highly charged ions. We have been using two types of EBITs for the spectroscopic studies of highly charged ions. One is a high-energy device called the Tokyo-EBIT, and another is a compact low-energy device called CoBIT. Complementary use of them enables us to obtain spectroscopic data for ions over a wide charge-state range interacting with electrons over a wide energy range. In this talk, we present EBIT spectra of highly charged ions for tungsten, iron, bismuth, etc., which are relevant to hot plasmas. Tungsten is considered to be the main impurity in the ITER (the next generation nuclear fusion reactor) plasma, and thus its emission lines are important for diagnosing and controlling the ITER plasma. We have observed many previously unreported lines to supply the lack of spectroscopic data of tungsten ions. Iron is one of the main components of the solar corona, and its spectra are used to diagnose temperature, density, etc. The diagnostics is usually done by comparing observed spectra with model calculations. An EBIT can provide spectra under a well-defined condition; they are thus useful to test the model calculations. Laser-produced bismuth plasma is one of the candidates for a soft x-ray source in the water window region. An EBIT has a narrow charge state distribution; it is thus useful to disentangle the spectra of laser-produced plasma containing ions with a wide charge-state range. Performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS09KOAJ003) and JSPS KAKENHI Number 23246165, and partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics.

  20. Production of highly charged ion beams Kr32+, Xe44+, Au54+ with Electron String Ion Source (ESIS) Krion-2 and corresponding basic and applied studies

    Science.gov (United States)

    Donets, D. E.; Donets, E. D.; Donets, E. E.; Salnikov, V. V.; Shutov, V. B.

    2010-09-01

    Electron String Ion Source (ESIS) Krion-2 (JINR, Dubna) was used for basic and applied research in various aspects of multiply charged heavy ions production. Energy recuperation mode in ESIS has been proofed first and used for production of highly charged ions 84Kr28+÷84Kr32+, 124Xe40÷124Xe44 and Au51+÷ Au54+. Krion-2 ESIS was mounted on high voltage (HV) platform of LU-20 Linac and used as an injector of highly charged ions during Nuclotron run N° 41. Krion-2 ESIS has produced 3.0.107 124Xe42+ ions per pulse of 7 μs duration. This ion beam was injected into LU-20 and Nuclotron, accelerated up to energy of 186 GeV and the extracted Xe beam was used for physics experiments. Electron String Ion Source Krion-2 demonstrated the high reliability and stability running during 30 days on HV platform. We believe that it is due to an extremely low electron beam power, provided by using the electron string mode of operation: 50 W pulse power and about 10 W average power. Other possible application of ESIS could be its use in injection complexes of synchrotrons and cyclotrons for cancer therapy. Slow and fast extraction of C4+ and C6+ beams from Krion-2 ESIS were preliminary studied towards ESIS optimization for medical accelerators requirements.

  1. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Science.gov (United States)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  2. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    International Nuclear Information System (INIS)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D.; Laskowitz, D.T.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  3. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Yoshinori; Nelson, G.A.; Slater, J.M.; Pearlstein, R.D. [Loma Linda Univ., CA (United States). Medical Center; Vazquez, M. [Brookhaven National Lab., Upton, NY (United States); Laskowitz, D.T. [Duke Univ., Durham, NC (United States). Medical Center

    2002-12-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. Rotarod test: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. Open field test: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. Morris water maze: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the central nervous system (CNS). ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process. (author)

  4. Classical/quantum correspondence in state selective charge transfer and excitation reactions involving highly charged ions and hydrogen

    International Nuclear Information System (INIS)

    Purkait, M

    2009-01-01

    State selective charge transfer and excitation cross sections for collisions of Ne q+ (q = 1-10) with atomic hydrogen are calculated within the framework of Classical Trajectory Monte Carlo (CTMC) method and Boundary Corrected Continuum Intermediate State (BCCIS) approximation.

  5. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  6. High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Directory of Open Access Journals (Sweden)

    Julian Eigendorf

    2018-05-01

    Full Text Available We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END and between the two training sets (intermediate, INT. The mRNA expression levels of myosin heavy chain (MHC isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α, a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance.

  7. Secondary-electron yield from Au induced by highly charged Ta ions

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Láska, Leoš; Stöckli, M. P.; Fry, D.

    2001-01-01

    Roč. 173, - (2001), s. 281-286 ISSN 0168-583X R&D Projects: GA AV ČR IAA1010819 Institutional research plan: CEZ:AV0Z1010914 Keywords : highly charged ion-surface interaction * ion-induced electron emission * angle impact effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2001

  8. Simple heuristic derivation of some charge-transfer probabilities at asymptotically high incident velocities

    International Nuclear Information System (INIS)

    Spruch, L.; Shakeshaft, R.

    1984-01-01

    For asymptotically high incident velocities we provide simple, heuristic, almost classical, derivations of the cross section for forward charge transfer, and of the ratio of the cross section for capture to the elastic-scattering cross section for the projectile scattered through an angle close to π/3

  9. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    van Steenwijk, Gijs; van Steenwijk, Gijs; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  10. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  11. EUV spectrum of highly charged tungsten ions in electron beam ion trap

    International Nuclear Information System (INIS)

    Sakaue, H.A.; Kato, D.; Murakami, I.; Nakamura, N.

    2016-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra was investigated for electron energy from 540 to 1370 eV. Previously unreported lines were presented in the EUV range, and comparing the wavelengths with theoretical calculations identified them. (author)

  12. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  13. Fundamental processes determining the highly charged ion production in ECR ion sources

    International Nuclear Information System (INIS)

    Shirkov, G.D.

    1992-01-01

    The ion confinement and loss conditions in the open magnetic traps have been analyzed in this article. In EGRIS the the ions are confined in the negative potential well. The simultaneous application of ion cooling and pulse regime is proposed for pulse injection of highly charged ions in heavy ion accelerators and storage rings. 14 refs.; 3 figs

  14. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; Schäfer, A.; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  15. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  16. Monolithic junction field-effect transistor charge preamplifier for calorimetry at high luminosity hadron colliders

    International Nuclear Information System (INIS)

    Radeka, V.; Rescia, S.; Rehn, L.A.; Manfredi, P.F.; Speziali, V.

    1991-11-01

    The outstanding noise and radiation hardness characteristics of epitaxial-channel junction field-effect transistors (JFET) suggest that a monolithic preamplifier based upon them may be able to meet the strict specifications for calorimetry at high luminosity colliders. Results obtained so far with a buried layer planar technology, among them an entire monolithic charge-sensitive preamplifier, are described

  17. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  18. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad

    NARCIS (Netherlands)

    Veldman, D.; Chopin-Cado, S.M.A; Meskers, S.C.J.; Janssen, R.A.J.

    2008-01-01

    The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI--PMI + charge transfer (CT)

  19. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  20. Charge transfer and excitation in high-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Schlachter, A.S.; Berkner, K.H.; McDonald, R.J.

    1986-11-01

    Coincidence measurements of charge transfer and simultaneous projectile electron excitation provide insight into correlated two-electron processes in energetic ion-atom collisions. Projectile excitation and electron capture can occur simultaneously in a collision of a highly charged ion with a target atom; this process is called resonant transfer and excitation (RTE). The intermediate excited state which is thus formed can subsequently decay by photon emission or by Auger-electron emission. Results are shown for RTE in both the K shell of Ca ions and the L shell of Nb ions, for simultaneous projectile electron loss and excitation, and for the effect of RTE on electron capture

  1. Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, $\\xp$, of charged final state hadrons are measured in deep-inelastic $\\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 < Q^2 < 20 000 \\GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

  2. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  3. Charged particle production in high Q deep-inelastic scattering at HERA

    Science.gov (United States)

    H1 Collaboration; Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, x, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  4. Charged particle production in high Q2 deep-inelastic scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, xp, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q2 in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  5. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    International Nuclear Information System (INIS)

    Cao Zhongxiang; Li Quanliang; Han Ye; Qin Qi; Feng Peng; Liu Liyuan; Wu Nanjian

    2014-01-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques. (semiconductor devices)

  6. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  7. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Gulliford, Colwyn, E-mail: cg248@cornell.edu; Bartnik, Adam, E-mail: acb20@cornell.edu; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca [CLASSE, Cornell University, 161 Synchrotron Drive Ithaca, New York 14853-8001 (United States)

    2015-03-02

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers.

  8. Charge- and transverse momentum dependence of correlations in proton-proton interactions at very high energies

    International Nuclear Information System (INIS)

    Hofmann, W.

    1977-07-01

    The charge- and momentum dependence of correlations between secondaries emitted in pp-collisions at √s = 52 GeV was investigated using the Split-Field-Magnet spectrometer at the CERN Intersecting Storage Rings (ISR). For nondiffractive inelastic events the central particle production is characterized by local conservation of charge and global compensation of transverse momenta. Strong short range correlations due to cluster decay and Bose-Einstein effects are observed. A consistent description of the correlations is given in the framework of cluster models. Local conservation of charge is also detected in events, where a particle of high transverse momentum is produced. The observations are in good agreement with the predictions of a simple quark parton model. (orig.) [de

  9. High-energy behavior of the charge-transfer cross section in the eikonal approximation

    International Nuclear Information System (INIS)

    Dewangan, D.P.

    1982-01-01

    In the now popular version of the eikonal theory of charge transfer, the eikonal wave function does not satisfy the proper boundary conditions and the charge-transfer amplitude is uncertain by an undefined phase factor. The inclusion of the internuclear potential in a consistent way, in the eikonal theory overcomes theses difficulties. However, it also changes the high-energy asymptotic form of proton-hydrogen charge-transfer cross section from sigma/sub eik/ approx.(23/48) sigma/sub BK/ by a small amount to sigma/sub G/approx.(20.109/48)sigma/sub BK/ where sigma/sub BK/ is the Brinkman-Kramers cross section

  10. Task-dependent inhibition of slow-twitch soleus and excitation of fast-twitch gastrocnemius do not require high movement speed and velocity-dependent sensory feedback

    Directory of Open Access Journals (Sweden)

    Ricky eMehta

    2014-10-01

    Full Text Available Although individual heads of triceps surae, soleus (SO and medial gastrocnemius (MG muscles, are often considered close functional synergists, previous studies have shown distinct activity patterns between them in some motor behaviors. The goal of this study was to test two hypotheses explaining inhibition of slow SO with respect to fast MG: (1 inhibition occurs at high movement velocities and mediated by velocity-dependent sensory feedback and (2 inhibition depends on the ankle-knee joint moment combination and does not require high movement velocities. The hypotheses were tested by comparing the SO EMG/MG EMG ratio during fast and slow motor behaviors (cat paw shake responses vs. back, straight leg load lifting in humans, which had the same ankle extension-knee flexion moment combination; and during fast and slow behaviors with the ankle extension-knee extension moment combination (human vertical jumping and stance phase of walking in cats and leg load lifting in humans. In addition, SO EMG/MG EMG ratio was determined during cat paw shake responses and walking before and after removal of stretch velocity-dependent sensory feedback by self-reinnervating SO and/or gastrocnemius. We found the ratio SO EMG/MG EMG below 1 (p<0.05 during fast paw shake responses and slow back load lifting, requiring the ankle extension-knee flexion moment combination; whereas the ratio SO EMG/MG EMG was above 1 (p<0.05 during fast vertical jumping and slow tasks of walking and leg load lifting, requiring ankle extension-knee extension moments. Removal of velocity-dependent sensory feedback did not affect the SO EMG/MG EMG ratio in cats. We concluded that the relative inhibition of SO does not require high muscle velocities, depends on ankle-knee moment combinations, and is mechanically advantageous for allowing a greater MG contribution to ankle extension and knee flexion moments.

  11. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  12. Radiative recombination of highly charged ions: Enhanced rates at low energies

    International Nuclear Information System (INIS)

    Frank, A.; Mueller, A.; Haselbauer, J.; Schennach, S.; Spies, W.; Uwira, O.; Wagner, M.

    1992-01-01

    In a single-pass merged-beams experiment employing a dense cold electron target recombination of highly charged ions is studied. Unexpected high recombination rates are observed at low energies E cm in the electron-ion center-of-mass frame. In particular, theoretical estimates for radiative recombination are dramatically exceeded by the experimental recombination rates at E cm =0 eV for U 28+ and for Au 25+ ions. Considerable rate enhancement is also observed for Ar 15+ . This points to a general phenomenon which has to be interpreted as a consequence of high electron densities, low electron beam temperatures, high ion charge states and presence of strong magnetic fields. (orig.)

  13. The electrical charging of inactive aerosols in high ionised atmosphere, the electrical charging of artificial beta radioactive aerosols; Le processus de charge electrique: des aerosols non radioactifs en milieu fortement ionise, des aerosols radioactifs artificiels emetteurs beta

    Energy Technology Data Exchange (ETDEWEB)

    Gensdarmes, F

    2000-07-01

    The electrical properties of aerosols greatly influence their transport and deposition in a containment. In a bipolar ionic atmosphere, a neutral electric charge on aerosols is commonly assumed. However, many studies report a different charge distribution in some situations, like highly ionised atmosphere or in the case of radioactive aerosols. Such situations could arise from a hypothetical accident in a nuclear power plant. Within the framework of safety studies which are carried out at IPSN, our aims were the study of electrical properties of aerosols in highly ionised atmosphere, and the study of artificial radioactive aerosols, in order to suggest experimental validation of available theories. For this purpose, we designed an experimental device that allows us to measure non-radioactive aerosol charge distribution under high gamma irradiation, up to 10{sup 4} Gy/h. With our experimental device we also studied the properties of small ions in the medium. Our results show a variation of the charge distribution in highly ionised atmosphere. The charge increases with the dose of gamma ray. We have related this variation with the one of the small ions in the gases, according to theoretical prediction. However, the model overestimates slightly our experimental results. In the case of the radioactive aerosols, we have designed an original experimental device, which allows us to study the charge distribution of a {sup 137}Cs aerosol. Our results show that the electric charging of such aerosols is strongly dependent on evolution parameters in a containment. So, our results underline a great enhancement of self-charging of particles which are sampled in a confined medium. Our results are qualitatively in agreement with the theoretical model; nevertheless the latter underestimates appreciably the self-charging, owing to the fact that wall effects are not taken into account. (author)

  14. 2KJ/S 1KV, 25HZ PRR capacitor charging power supply with twin phase shifted primary windings to achieve high charge transfer rate and stability

    International Nuclear Information System (INIS)

    Kelkar, Y.; Singh, Y.P.; Thakurta, A.C.

    2013-01-01

    The capacitor charging power supply (CCPS) was developed to charge bank of 150uF energy storage capacitor (15uf , 10 nos in parallel) upto 1kV in 35 ms exhibiting a peak charging power of 2 kJ/s at a repetition rate of 25 pps. A CCPS observes a large change in load variations at the output. Initially the capacitor will act as a short circuit so the topology must be such that it should withstand short circuit condition repetitively. The High Voltage capacitor charging power supply consist of two identical full bridge resonant converters feeding to two primary windings of a transformer with rectified secondary connected to capacitor load. Topology selection is based on the fact that the series resonant converter with switching frequency f s , below 50% of the resonant frequency f r (f s ≤ 0.5 f r ) act as a current source. (author)

  15. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  16. FROM SLOW FOOD TO SLOW TOURISM

    Directory of Open Access Journals (Sweden)

    Bac Dorin Paul

    2014-12-01

    Full Text Available One of the effects of globalization is the faster pace of our lives. This rhythm can be noticed in all aspects of life: travel, work, shopping, etc. and it has serious negative effects. It has become common knowledge that stress and speed generate serious medical issues. Food and eating habits in the modern world have taken their toll on our health. However, some people took a stand and argued for a new kind of lifestyle. It all started in the field of gastronomy, where a new movement emerged – Slow Food, based on the ideas and philosophy of Carlo Petrini. Slow Food represents an important adversary to the concept of fast food, and is promoting local products, enjoyable meals and healthy food. The philosophy of the Slow Food movement developed in several directions: Cittaslow, slow travel and tourism, slow religion and slow money etc. The present paper will account the evolution of the concept and its development during the most recent years. We will present how the philosophy of slow food was applied in all the other fields it reached and some critical points of view. Also we will focus on the presence of the slow movement in Romania, although it is in a very early stage of development. The main objectives of the present paper are: to present the chronological and ideological evolution of the slow movement; to establish a clear separation of slow travel and slow tourism, as many mistake on for the other; to review the presence of the slow movement in Romania. Regarding the research methodology, information was gathered from relevant academic papers and books and also from interviews and discussions with local entrepreneurs. The research is mostly theoretical and empirical, as slow food and slow tourism are emerging research themes in academic circles.

  17. Movement - uncontrolled or slow

    Science.gov (United States)

    Dystonia; Involuntary slow and twisting movements; Choreoathetosis; Leg and arm movements - uncontrollable; Arm and leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements

  18. Pyroelectric Charge Release in Rhombohedral PZT

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    A new experimental set-up controlled by computer has been made to measure the pyroelectric charge of ferroelectric materials with a relatively high conductivity at slow rates of temperature variation. It allowed us to obtain the polarisation vs. temperature behaviour of PZT with various compositions

  19. High-k shallow traps observed by charge pumping with varying discharging times

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan, Taiwan (China); Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wang, Bin-Wei; Cao, Xi-Xin [Department of Embedded System Engineering, Peking University, Beijing, P.R.China (China); Chen, Hua-Mao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu [Device Department, United Microelectronics Corporation, Tainan Science Park, Taiwan (China)

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  20. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  1. Highly efficient tandem organic light-emitting devices employing an easily fabricated charge generation unit

    Science.gov (United States)

    Yang, Huishan; Yu, Yaoyao; Wu, Lishuang; Qu, Biao; Lin, Wenyan; Yu, Ye; Wu, Zhijun; Xie, Wenfa

    2018-02-01

    We have realized highly efficient tandem organic light-emitting devices (OLEDs) employing an easily fabricated charge generation unit (CGU) combining 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile with ultrathin bilayers of CsN3 and Al. The charge generation and separation processes of the CGU have been demonstrated by studying the differences in the current density-voltage characteristics of external-carrier-excluding devices. At high luminances of 1000 and 10000 cd/m2, the current efficiencies of the phosphorescent tandem device are about 2.2- and 2.3-fold those of the corresponding single-unit device, respectively. Simultaneously, an efficient tandem white OLED exhibiting high color stability and warm white emission has also been fabricated.

  2. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    Science.gov (United States)

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  3. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  4. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Directory of Open Access Journals (Sweden)

    H. W. Zhao

    2017-09-01

    Full Text Available The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24–28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of ^{40}Ar^{12+} and ^{129}Xe^{26+} have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL, China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24+18  GHz heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  5. Intense highly charged ion beam production and operation with a superconducting electron cyclotron resonance ion source

    Science.gov (United States)

    Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.

    2017-09-01

    The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.

  6. Van-de-Graaf accelerator operation with laser source of highly-charged heavy ions

    International Nuclear Information System (INIS)

    Barabash, L.S.; Golubev, A.A.; Koshkarev, S.G.; Krechet, K.I.; Sharkov, B.Y.; Shumshurov, A.V.

    1988-01-01

    Multicharged ions (Z = +1 divided-by +10) of practically any elements of the periodical table have been generated by the laser source based on a simple in operation and fabrication laser. One of the features of the laser source is that the energy needed for plasma heating is transported to the target from a great distance. In this case the target can be placed under high voltage or in a magnetic field. These advantages of the laser source are particularly important for its application in the Van-de-Graaf accelerator, where absence of resonance units allows to accelerate ions with any charge-to-mass ratio. The goal of this paper consists in designing a laser source of highly- charged heavy ions in the Van-de-Graaf accelerator and in measuring charge spectra of the accelerated ion beam. The peculiarities of this accelerator are taken into account in the discussion of the source scheme. Such peculiarities include potential up to 5 MV on the high-voltage conductor, where the ion source is placed, and high up to 15 atm gas environment pressure

  7. Charge injection engineering of ambipolar field-effect transistors for high-performance organic complementary circuits.

    Science.gov (United States)

    Baeg, Kang-Jun; Kim, Juhwan; Khim, Dongyoon; Caironi, Mario; Kim, Dong-Yu; You, In-Kyu; Quinn, Jordan R; Facchetti, Antonio; Noh, Yong-Young

    2011-08-01

    Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.

  8. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  9. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Science.gov (United States)

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-04

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

  10. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    Science.gov (United States)

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  11. Near UV-visible line emission from tungsten highly-charged ions in Large Helical Device

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Oishi, T.; Morita, S.; Fujii, K.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2015-01-01

    Wavelengths of emission lines from tungsten highly-charged ions have been precisely measured in near UV-visible range (320 - 356 nm and 382 - 402 nm) at Large Helical Device (LHD) by tungsten pellet injection. The tungsten emission lines were assigned based on its line-integrated intensity profiles on a poloidal cross section. The ground-term magnetic-dipole (M1) lines of W 26+,27+ and an M1 line of a metastable excited state of W 28+ , whose wavelengths have been determined by measurements using electron-beam-ion-traps (EBITs), are identified in the LHD spectra. The present results partially compliment wavelength data of tungsten highly-charged ions in the near UV-visible range. (author)

  12. The Frankfurt ECRIS-RFQ facility for materials research with highly charged ions

    International Nuclear Information System (INIS)

    Stiebing, K.; Streitz, H.; Schmidt, L.; Schremmer, A.; Bethge, K.; Schmidt-Boecking, H.; Schempp, A.; Bessler, U.; Beller, P.; Madlung, J.

    1996-01-01

    The new accelerator for the production of highly charged heavy ions, presently installed at the Institut fuer Kernphysik consists of a 14 GHz ECR source in combination with an variable-energy RFQ post-accelerator. It is designed to deliver highly charged ions in the energy range between 1 keV/u (the ECRIS beam) and 100-200 keV/u with the (variable-energy radio frequency quadrupole) VE-RFQ. Investigations of transient processes with ns time constants will be possible by a single bunch system. Another attractive feature for materials research is the combination with ion beams from the 7 MV Van de Graaff. The status of the project and first results of beam measurements will be pre sented. (orig.)

  13. High-speed scattering of charged and uncharged particles in general relativity

    International Nuclear Information System (INIS)

    Westphal, K.

    1985-01-01

    After a brief consideration of the high-speed scattering of two point charges high-speed scattering is thoroughly discussed for a charged particle by a fixed mass and of two uncharged particles of comparable masses. Perturbation technique is used over Minkowski spacetime in the de Donder gauge and the field equations and the resulting equations of motion (which take the reaction of the particles' quasistatic self-field into account) are solved by iteration. The obtained energy-momentum conservation laws allow the computation of second-order corrections for the scattering angle and the cross section. The asymptotic structure of the far-field indicates synchrotron radiation (electromagnetic and gravitational, respectively) which causes an energy loss whose reaction on the motion is briefly considered in the low-velocity limit including bound motion. (For neutral particles this is a third-order effect.) (author)

  14. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  15. On-chip high-voltage generator design design methodology for charge pumps

    CERN Document Server

    Tanzawa, Toru

    2016-01-01

    This book provides various design techniques for switched-capacitor on-chip high-voltage generators, including charge pump circuits, regulators, level shifters, references, and oscillators.  Readers will see these techniques applied to system design in order to address the challenge of how the on-chip high-voltage generator is designed for Flash memories, LCD drivers, and other semiconductor devices to optimize the entire circuit area and power efficiency with a low voltage supply, while minimizing the cost.  This new edition includes a variety of useful updates, including coverage of power efficiency and comprehensive optimization methodologies for DC-DC voltage multipliers, modeling of extremely low voltage Dickson charge pumps, and modeling and optimum design of AC-DC switched-capacitor multipliers for energy harvesting and power transfer for RFID.

  16. Charge exchange as a recombination mechanism in high-temperature plasmas

    International Nuclear Information System (INIS)

    Hulse, R.A.; Post, D.E.; Mikkelsen, D.R.

    1980-03-01

    Charge exchange with neutral hydrogen is examined as a recombination mechanism for multi-charged impurity ions present in high-temperature fusion plasmas. At sufficiently low electron densities, fluxes of atomic hydrogen produced by either the injection of neutral heating beams or the background of thermal neutrals can yield an important or even dominant recombination process for such ions. Equilibrium results are given for selected impurity elements showing the altered ionization balance and radiative cooling rate produced by the presence of various neutral populations. A notable result is that the stripping of impurities to relatively non-radiative ionization states with increasing electron temperature can be postponed or entirely prevented by the application of intense neutral beam heating power. A time dependent calculation modelling the behavior of iron in recent PLT tokamak high power neutral beam heating experiments is also presented

  17. Electron yield from Be-Cu induced by highly charged Xe q+ ions

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Láska, Leoš; Stöckli, M. P.; Fehrenbach, C. W.

    2002-01-01

    Roč. 196, - (2002), s. 61-67 ISSN 0168-583X R&D Projects: GA AV ČR IAA1010105; GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : highly charged ion-induced electron emission * angle impact effect * Be-Cu Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.158, year: 2002

  18. Two and three electron Auger transitions in collisions of highly-charged ions with surfaces

    International Nuclear Information System (INIS)

    Moretto-Capelle, P.; Bordenave-Montesquieu, A.; Benoit-Cattin, P.; Andriamonje, S.; Andrae, H.J.

    1991-01-01

    The Auger electron spectra from Ar 9+ approaching at 265 eV a Si or metal surface in vacua of 10 -5 Pa or UHV are identical. Experiments on atomic physics in front of surfaces are thus possible in standard vacuum. N 7+ approaching a surface at 1000 eV penetrates with great probability into the bulk and gives rise to K 2 L 2 L double Auger lines, observed for the first time with low energy highly charged ions. (orig.)

  19. The charge deposition in the numerical simulation of high-current beam

    International Nuclear Information System (INIS)

    Wang Shijun

    1987-01-01

    A new method of charge deposition of high-current beam, conservation-map method, is given. THe advantages of Neil's and other various methods are adopted. The mistake of Neil's method and the limitation of other various methods is discarded. So the method is accurate without additional assumption. The method not only applies to the case of steady laminar flow but also applies to the case of steady non-laminar flow

  20. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  1. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  2. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    International Nuclear Information System (INIS)

    Sun, L.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.; Guo, J. W.; Yang, Y.; Fang, X.

    2016-01-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω 2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE 01 and HE 11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar 12+ , 0.92 emA Xe 27+ , and so on, will be presented

  3. Space charge and wake field analysis for a high brightness electron source

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    We present a brief overview of the formalism used, and some simulation results for transverse and longitudinal motion of a bunch of particles moving through a cavity (e.g., the Brookhaven National Laboratory high brightness photocathode gun), including effects of the accelerating field, space charge forces (e.g., arising from the interaction of the cavity surface and the self field of the bunch). 3 refs., 12 figs

  4. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    International Nuclear Information System (INIS)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I

    2007-01-01

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar 12+ to Li-like Ar 15+ ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas

  5. High-energy charged particles in space at one astronomical unit

    International Nuclear Information System (INIS)

    Feynman, J.; Gabriel, S.B.

    1996-01-01

    Single-event effects and many other spacecraft anomalies are caused by positively charged high-energy particles impinging on the vehicle and its component parts. Here, the authors review the current knowledge of the interplanetary particle environment in the energy ranges that are most important for these effects. State-of-the-art engineering models are described briefly along with comments on the future work required in this field

  6. Improved charge-coupled device detectors for high-speed, charge exchange spectroscopy studies on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Burrell, K.H.; Gohil, P.; Groebner, R.J.; Kaplan, D.H.; Robinson, J.I.; Solomon, W.M.

    2004-01-01

    Charge exchange spectroscopy is one of the key ion diagnostics on the DIII-D tokamak. It allows determination of ion temperature, poloidal and toroidal velocity, impurity density, and radial electric field E r throughout the plasma. For the 2003 experimental campaign, we replaced the intensified photodiode array detectors on the central portion of the DIII-D charge exchange spectroscopy system with advanced charge-coupled device (CCD) detectors mounted on faster (f/4.7) Czerny-Turner spectrometers equipped with toroidal mirrors. The CCD detectors are improved versions of the ones installed on our edge system in 1999. The combination improved the photoelectron signal level by about a factor of 20 and the signal to noise by a factor of 2-8, depending on the absolute signal level. The new cameras also allow shorter minimum integration times while archiving to PC memory: 0.552 ms for the slower, lower-read noise (15 e) readout mode and 0.274 ms in the faster, higher-read noise (30 e) mode

  7. Channel mobility degradation and charge trapping in high-k/metal gate NMOSFETs

    International Nuclear Information System (INIS)

    Mathew, Shajan; Bera, L.K.; Balasubramanian, N.; Joo, M.S.; Cho, B.J.

    2004-01-01

    NMOSFETs with Metalo-Organic Chemical Vapor Deposited (MOCVD) HfAlO gate dielectric and TiN metal gate have been fabricated. Channel electron mobility was measured using the split-CV method and compared with SiO 2 devices. All high-k devices showed lower mobility compared with SiO 2 reference devices. High-k MOSFETs exhibited significant charge trapping and threshold instability. Threshold voltage recovery with time was studied on devices with oxide/nitride interfacial layer between high-k film and silicon substrate

  8. Experiments with highly-charged heavy-ions performed at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1992-01-01

    The new heavy ion accelerator facility SIS/ESR was inaugurated in April 1990. During 1991 the experimental storage ring, ESR, has been commissioned. Highly-charged heavy ions from O 8+ up to Bi 82+ were successfully accumulated, cooled, and stored in the ring. Now all highly-charged, heavy ions can be provided for experiments at comfortable storage times and at energies roughly between 100 and 500 MeV/u. A report on the achievements and on the first experimental results will be given. For the experiments, special emphasis is put on capture processes in the electron cooler, i.e. on radiative and dielectronic recombination processes as well as on capture events of bound target electrons from a gas jet. In this case, the capture leads either directly (REC) or by cascading to X-ray emission, which is also exploited for a precision spectroscopy of the structure of the heaviest ions. Another exciting topic is the radioactive decay of highly charged ions: For instance the β-decay into bound atomic states, which is not possible for neutral atoms, was studied for stored naked Dy ions. (orig.)

  9. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    Science.gov (United States)

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  11. High charge state metal ion production in vacuum arc ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.; Anders, A.; Anders, S.

    1994-01-01

    The vacuum arc is a rich source of highly ionized metal plasma that can be used to make a high current metal ion source. Vacuum arc ion sources have been developed for a range of applications including ion implantation for materials surface modification, particle accelerator injection for fundamental nuclear physics research, and other fundamental and applied purposes. Typically the source is repetitively pulsed with pulse length of order a millisecond and duty cycle or order 1% and operation of a dc embodiment has been demonstrated also. Beams have been produced from over 50 of the solid metals of the periodic table, with mean ion energy up to several hundred keV and with peak (pulsed) beam current up to several amperes. The ion charge state distribution has been extensively studied. Ion spectra have been measured for a wide range of metallic cathode materials, including Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U, as well as compound and alloy cathode materials such as TiC, SiC, UC, PbS, brass, and stainless steel. The ions generated are in general multiply-stripped with a mean charge state of from 1 to 3, depending on the particular metal species, and the charge state distribution can have components from Q = 1+ to 6+. Here the authors review the characteristics of vacuum arc ion sources from the perspective of their high charge state metal ion production

  12. Study of the multiple ionization in the ion-atom collisions with highly charged sulfur as well as with neutral and lowly charged fluorine projectiles

    International Nuclear Information System (INIS)

    Konrad, J.

    1986-01-01

    With the collisional systems 115 MeV S +Q (Q=+13, +15, +16) on He, Ne, Ar, and Kr as well as 4 MeV F +Q (Q=-1, 0, +1) on Ne the multiple ionization in the ion-atom collision was studied. With the collisional system 4 MeV F +Q on Ne the multiple ionization of target and projectile was studied by coincidence measurement between the recoil ions and projectiles with the charge state Q' after the collision (Q'=-1 to +3). In the pure ionization (no change of the projectile charge) the measured ionization cross sections for the single positive and negative charged projectile are equally large, those of the neutral F projectiles are lower. The comparison with the point particles protons and electrons resulted that the ionization cross sections of the F projectiles are larger and more strongly higher charged recoil ions are produced. The measured ionization cross sections of the F projectile are larger than those of the Ne target atom which is to be reduced to the lower ionization energies of the F projectile. With the highly charged S projectiles the multiple ionization with capture into the projectile was studied. By the measurement of triple coincidcences between recoil ions, projectiles, and SKX-radiation the cases with and without capture into the K shell can be discriminated. The charge distribution with is shifted against that without capture into the K shell to higher charges. This shift is to be reduced to the decay of autoionization states which arise by the capture into the K shell. (orig./HSI) [de

  13. Streak electronic camera with slow-scanning storage tube used in the field of high-speed cineradiography

    International Nuclear Information System (INIS)

    Marilleau, J.; Bonnet, L.; Garcin, G.; Guix, R.; Loichot, R.

    The cineradiographic machine designed for measurements in the field of detonics consists of a linear accelerator associated with a braking target, a scintillator and a remote controlled electronic camera. The quantum factor of X-ray detection and the energetic efficiency of the scintillator are given. The electronic camera is built upon a deflection-converter tube (RCA C. 73 435 AJ) coupled by optical fibres to a photosensitive storage tube (TH-CSF Esicon) used in a slow-scanning process with electronic recording of the information. The different parts of the device are described. Some capabilities such as data processing numerical outputs, measurements and display are outlined. A streak cineradiogram of a typical implosion experiment is given [fr

  14. Kinetics of charged particles in a high-voltage gas discharge in a nonuniform electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Kolpakov, V. A., E-mail: kolpakov683@gmail.com; Krichevskii, S. V.; Markushin, M. A. [Korolev Samara National Research University (Russian Federation)

    2017-01-15

    A high-voltage gas discharge is of interest as a possible means of generating directed flows of low-temperature plasma in the off-electrode space distinguished by its original features [1–4]. We propose a model for calculating the trajectories of charges particles in a high-voltage gas discharge in nitrogen at a pressure of 0.15 Torr existing in a nonuniform electrostatic field and the strength of this field. Based on the results of our calculations, we supplement and refine the extensive experimental data concerning the investigation of such a discharge published in [1, 2, 5–8]; good agreement between the theory and experiment has been achieved. The discharge burning is initiated and maintained through bulk electron-impact ionization and ion–electron emission. We have determined the sizes of the cathode surface regions responsible for these processes, including the sizes of the axial zone involved in the discharge generation. The main effect determining the kinetics of charged particles consists in a sharp decrease in the strength of the field under consideration outside the interelectrode space, which allows a free motion of charges with specific energies and trajectories to be generated in it. The simulation results confirm that complex electrode systems that allow directed plasma flows to be generated at a discharge current of hundreds or thousands of milliamperes and a voltage on the electrodes of 0.3–1 kV can be implemented in practice [3, 9, 10].

  15. On measurement of charge behavior with super high velocity formed in semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Sakai, Takuro; Hamano, Tsuyoshi; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Nemoto, Norio; Matsuda, Sumio

    1996-12-01

    The basic process of single event phenomenon of the semiconductor element consists of formation of electron and positive hole pair due to penetration of incident particle and collection of small number of carrier into pn-junction added with inverse bias. This collecting process has a rapid process of about 200 ps and a late process reaching to some nanoseconds. And, it is an important problem to develop radiation resistant element of superconducting element usable for the space environment to acquire single event parameter by directly observing charge collection using pn-junction diode constructing basic structure of the semiconductor element. At present, an experiment on the single event phenomenon in actual device is executed by using cyclotron of TIARA irradiation facility in Takasaki Radiation Chemistry Research Establishment, JAERI. On the other hand, the experiments on mechanism elucidation of the single event phenomenon and so on are conducting by using heavy ion microbeam installed at tandem accelerator. As an experiment result measured high speed charge collection on irradiating the heavy ion microbeam into the semiconductor element, following items were found: (1) The single event transient current waveform becomes high in its peak and many in collected charge with magnitude of LET, (2) rise of the transient current waveform formed in each ion specie shows a shift to long time side with increase of LET, and so forth. (G.K.)

  16. Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging

    Directory of Open Access Journals (Sweden)

    Kafeel Ahmed Kalwar

    2016-11-01

    Full Text Available The inductive power transfer (IPT system for electric vehicle (EV charging has acquired more research interest in its different facets. However, the misalignment tolerance between the charging coil (installed in the ground and pick-up coil (mounted on the car chassis, has been a challenge and fundamental interest in the future market of EVs. This paper proposes a new coil design QDQ (Quad D Quadrature that maintains the high coupling coefficient and efficient power transfer during reasonable misalignment. The QDQ design makes the use of four adjacent circular coils and one square coil, for both charging and pick-up side, to capture the maximum flux at any position. The coil design has been modeled in JMAG software for calculation of inductive parameters using the finite element method (FEM, and its hardware has been tested experimentally at various misaligned positions. The QDQ coils are shown to be capable of achieving good coupling coefficient and high efficiency of the system until the misalignment displacement reaches 50% of the employed coil size.

  17. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  18. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Thorn, D. B.

    2008-01-01

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  19. Study of a charge-coupled device for high-energy-particle detection

    International Nuclear Information System (INIS)

    Bhuiya, A.H.

    1983-05-01

    This presentation is based on measurements made to evaluate the application of charge-coupled devices as detectors of high-energy particles. The experiment was performed with a Fairchild Linear 256-Cell CCD111 array (size 8μm x 17 μm/cell), utilizing a light source instead of a particle beam. It was observed that the minimum detectable signal was limited to approx. 488 electrons at -50 0 C, where the readout and exposure times were about 260 ms and 400 ms respectively. The transfer inefficiency of the CCD111 was determined to be approx. 10 -4 . It has been concluded that at a lower temperature (approx. -100 0 C) or with faster readout (approx. 10 ms), the CCD111 would be able to detect the total deposited energy of minimum-ionizing charged particles

  20. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    Science.gov (United States)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  1. Charging and coagulation of water aerosols with negligible addition of high-radioactive droplets

    International Nuclear Information System (INIS)

    Vasil'eva, N.L.; Sedova, G.L.; Chernyj, L.T.

    1994-01-01

    The mechanics of electrocoagulation of water aerosols with negligible admixture of high-radioactive droplets is considered. A corresponding mathematical model has been worked out which describes the processes of ionization, electrification and coagulation of radioactive aerosols. Numerical studies are carried out for a series of typical aerosols on the time dependence of ion concentrations, charge and pure droplet concentrations, as well as the charge and radius of radioactive droplets. It is shown that coagulation can give rise to the growth of droplet radius from 5-10 μm up to 30-40 μm for a 10 4 s period f time, and therefore it can play a considerable role in the development of aerosols with droplet radius up to 20 μm when gravitational coagulation is insignificant

  2. DYNECHARM++: a toolkit to simulate coherent interactions of high-energy charged particles in complex structures

    Science.gov (United States)

    Bagli, Enrico; Guidi, Vincenzo

    2013-08-01

    A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.

  3. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    Science.gov (United States)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  4. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures

    Science.gov (United States)

    Zhu, Tong; Yuan, Long; Zhao, Yan; Zhou, Mingwei; Wan, Yan; Mei, Jianguo; Huang, Libai

    2018-01-01

    Charge-transfer (CT) excitons at heterointerfaces play a critical role in light to electricity conversion using organic and nanostructured materials. However, how CT excitons migrate at these interfaces is poorly understood. We investigate the formation and transport of CT excitons in two-dimensional WS2/tetracene van der Waals heterostructures. Electron and hole transfer occurs on the time scale of a few picoseconds, and emission of interlayer CT excitons with a binding energy of ~0.3 eV has been observed. Transport of the CT excitons is directly measured by transient absorption microscopy, revealing coexistence of delocalized and localized states. Trapping-detrapping dynamics between the delocalized and localized states leads to stretched-exponential photoluminescence decay with an average lifetime of ~2 ns. The delocalized CT excitons are remarkably mobile with a diffusion constant of ~1 cm2 s−1. These highly mobile CT excitons could have important implications in achieving efficient charge separation. PMID:29340303

  5. High-accuracy numerical integration of charged particle motion – with application to ponderomotive force

    International Nuclear Information System (INIS)

    Furukawa, Masaru; Ohkawa, Yushiro; Matsuyama, Akinobu

    2016-01-01

    A high-accuracy numerical integration algorithm for a charged particle motion is developed. The algorithm is based on the Hamiltonian mechanics and the operator decomposition. The algorithm is made to be time-reversal symmetric, and its order of accuracy can be increased to any order by using a recurrence formula. One of the advantages is that it is an explicit method. An effective way to decompose the time evolution operator is examined; the Poisson tensor is decomposed and non-canonical variables are adopted. The algorithm is extended to a time dependent fields' case by introducing the extended phase space. Numerical tests showing the performance of the algorithm are presented. One is the pure cyclotron motion for a long time period, and the other is a charged particle motion in a rapidly oscillating field. (author)

  6. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  7. Excitation of atoms and molecules in collisions with highly charged ions

    International Nuclear Information System (INIS)

    Watson, R.L.

    1991-01-01

    Much of the work this year has been directed toward studies of charge exchange and ionization in single collisions of heavy ions with gaseous atoms and molecules. A study of the double ionization of He by high energy N 7+ ions, which began last year, was extended up in energy to 40 MeV/amu. These measurements verified the deviations from the predictions of theory observed in our previous work and indicated that the energy required to reach the limiting value of the ratio of double-to-single ionization cross sections may be as high as 70 MeV/amu

  8. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  9. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  10. Effects of magnetic configuration on hot electrons in highly charged ECR plasma

    International Nuclear Information System (INIS)

    Zhao, H Y; Zhao, H W; Sun, L T; Wang, H; Ma, B H; Zhang, X Zh; Li, X X; Ma, X W; Zhu, Y H; Lu, W; Shang, Y; Xie, D Z

    2009-01-01

    To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, T spe , is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.

  11. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what

  12. THE CONTRIBUTION OF 'RESTING' BODY MUSCLES TO THE SLOW COMPONENT OF PULMONARY OXYGEN UPTAKE DURING HIGH-INTENSITY CYCLING

    Directory of Open Access Journals (Sweden)

    Susan A. Ward

    2012-12-01

    Full Text Available Oxygen uptake (VO2 kinetics during moderate constant- workrate (WR exercise (>lactate-threshold (ӨL are well described as exponential. AboveӨL, these kinetics are more complex, consequent to the development of a delayed slow component (VO2sc, whose aetiology remains controversial. To assess the extent of the contribution to the VO2sc from arm muscles involved in postural stability during cycling, six healthy subjects completed an incremental cycle-ergometer test to the tolerable limit for estimation of ӨL and determination of peak VO2. They then completed two constant-WR tests at 90% of ӨL and two at 80% of ∆ (difference between ӨL and VO2peak. Gas exchange variables were derived breath-by-breath. Local oxygenation profiles of the vastus lateralis and biceps brachii muscles were assessed by near-infrared spectroscopy, with maximal voluntary contractions (MVC of the relevant muscles being performed post-exercise to provide a frame of reference for normalising the exercise-related oxygenation responses across subjects. Above supra-ӨL, VO2 rose in an exponential-like fashion ("phase 2, with a delayed VO2sc subsequently developing. This was accompanied by an increase in [reduced haemoglobin] relative to baseline (∆[Hb], which attained 79 ± 13 % (mean, SD of MVC maximum in vastus lateralis at end-exercise and 52 ± 27 % in biceps brachii. Biceps brachii ∆[Hb] was significantly correlated with VO2 throughout the slow phase. In contrast, for sub- L exercise, VO2 rose exponentially to reach a steady state with a more modest increase in vastus lateralis ∆[Hb] (30 ± 11 %; biceps brachii ∆[Hb] was minimally affected (8 ± 2 %. That the intramuscular O2 desaturation profile in biceps brachii was proportional to that for VO2sc during supra-ӨL cycle ergometry is consistent with additional stabilizing arm work contributing to the VO2sc

  13. Development of highly accurate approximate scheme for computing the charge transfer integral

    Energy Technology Data Exchange (ETDEWEB)

    Pershin, Anton; Szalay, Péter G. [Laboratory for Theoretical Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest (Hungary)

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  14. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electronic sputtering by swift highly charged ions of nitrogen on amorphous carbon

    International Nuclear Information System (INIS)

    Caron, M.; Haranger, F.; Rothard, H.; Ban d'Etat, B.; Boduch, P.; Clouvas, A.; Potiriadis, C.; Neugebauer, R.; Jalowy, T.

    2001-01-01

    Electronic sputtering with heavy ions as a function of both electronic energy loss dE/dx and projectile charge state q was studied at the French heavy ion accelerator GANIL. Amorphous carbon (untreated, and sputter-cleaned and subsequently exposed to nitrogen) was irradiated with swift highly charged ions (Z=6-73, q=6-54, energy 6-13 MeV/u) in an ultrahigh vacuum scattering chamber. The fluence dependence of ion-induced electron yields allows to deduce a desorption cross-section σ which varies approximately as σ∼(dE/dx) 1.65 or σ∼q 3.3 for sputter-cleaned amorphous carbon exposed to nitrogen. This q dependence is close to the cubic charge dependence observed for the emission of H + secondary ions which are believed to be emitted from the very surface. However, the power law σ∼(dE/dx) 1.65 , related to the electronic energy loss gives the best empirical description. The dependence on dE/dx is close to a quadratic one thus rather pointing towards a thermal evaporation-like effect

  16. Analysis techniques of charging damage studied on three different high-current ion implanters

    Science.gov (United States)

    Felch, S. B.; Larson, L. A.; Current, M. I.; Lindsey, D. W.

    1989-02-01

    One of the Greater Silicon Valley Implant Users' Group's recent activities has been to sponsor a round-robin on charging damage, where identical wafers were implanted on three different state-of-the-art, high-current ion implanters. The devices studied were thin-dielectric (250 Å SiO2), polysilicon-gate MOS capacitors isolated by thick field oxide. The three implanters involved were the Varian/Extrion 160XP, the Eaton/Nova 10-80, and the Applied Materials PI9000. Each implanter vendor was given 48 wafers to implant with 100 keV As+ ions at a dose of 1 × 1016 cm-2. Parameters that were varied include the beam current, electron flood gun current, and chamber pressure. The charge-to-breakdown, breakdown voltage, and leakage current of several devices before anneal have been measured. The results from these tests were inconclusive as to the physical mechanism of charging and as to the effectiveness of techniques to reduce its impact on devices. However, the methodology of this study is discussed in detail to aid in the planning of future experiments. Authors' industrial affiliations: S.B. Felch, Varian Research Center, 611 Hansen Way, Palo Alto, CA 94303, USA; L.A. Larson, National Semiconductor Corp., P.O. Box 58090, Santa Clara, CA 95052-8090, USA; M.I. Current, Applied Materials, 3050 Bowers Ave., Santa Clara, CA 95054, USA; D.W. Lindsey, Eaton/NOVA, 931 Benicia Ave, Sunnyvale, CA 94086, USA.

  17. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  18. The SSC field bus: A high-performance control system front end concentrator for 'slow' accelerator controls

    International Nuclear Information System (INIS)

    Haenni, D.R.; Saltmarsh, C.G.; Lue, H.C.; Hunt, S.M.

    1991-01-01

    The SSC control system must support a large number of 'slow' or industrial type control points. A front-end system is described which could serve as both a data concentrator and a distributed process controller for these points. Unlike many distributed control systems, this front end is designed to provide strong support for centralized controls. The live parameter data base in the central system can be updated at a rate which is fast compared to that usually needed for process control loops. Portions of this data base can be optionally replicated in regional computers to provide both local control stations and distributed control loops. In addition to the global and regional levels the system also allows the distribution of loops to the local I/O crate level. A possible implementation of this system is under development which is based on industrial standard STD-Bus for accelerator hardware interfacing, time domain multiplexing (TDM) for communications transport, and a form of reflective memory for the back-end interface to the rest of the control system

  19. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  20. Spectroscopic Investigations of Highly Charged Tungsten Ions - Atomic Spectroscopy and Fusion Plasma Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, Joel [Lund Univ. (Sweden)

    2010-05-01

    The spectra of highly charged tungsten ions have been investigated using x-ray and extreme ultraviolet spectroscopy. These heavy ions are of interest in relativistic atomic structure theory, where high-precision wavelength measurements benchmark theoretical approaches, and in magnetic fusion research, where the ions may serve to diagnose high-temperature plasmas. The work details spectroscopic investigations of highly charged tungsten ions measured at the Livermore electron beam ion trap (EBIT) facility. Here, the EBIT-I and SuperEBIT electron beam ion traps have been employed to create, trap, and excite tungsten ions of M- and L-shell charge states. The emitted spectra have been studied in high resolution using crystal, grating, and x-ray calorimeter spectrometers. In particular, wavelengths of n = 0 M-shell transitions in K-like W55+ through Ne-like W64+, and intershell transitions in Zn-like W44+ through Co-like W47+ have been measured. Special attention is given to the Ni-like W46+ ion, which has two strong electric-dipole forbidden transitions that are of interest for plasma diagnostics. The EBIT measurements are complemented by spectral modeling using the Flexible Atomic Code (FAC), and predictions for tokamak spectra are presented. The L-shell tungsten ions have been studied at electron-beam energies of up to 122 keV and transition energies measured in Ne-like W64+ through Li-like W71+. These spectra constitute the physics basis in the design of the ion-temperature crystal spectrometer for the ITER tokamak. Tungsten particles have furthermore been introduced into the Sustained Spheromak Physics Experiment (SSPX) spheromak in Livermore in order to investigate diagnostic possibilities of extreme ultraviolet tungsten spectra for the ITER divertor. The spheromak measurement and spectral modeling using FAC suggest that tungsten ions in charge states around Er-like W6+ could be useful for

  1. An enhanced production of highly charged ions in the ECR ion sources

    International Nuclear Information System (INIS)

    Schaechter, L.; Dobrescu, S.; Badescu- Singureanu, Al.I.; Stiebing, K.E.; Runkel, S.; Hohn, O.; Schmidt, L.; Schempp, A.; Schmidt - Boecking, H.

    2000-01-01

    The electron cyclotron resonance (ECR) ion source (ECRIS) are the ideal sources of highly charged heavy ions. Highly charged heavy ions are widely used in atomic physics research where they constitute a very efficient tool due to their very high electric potential of collision. The highly charged ions are also used in fusion plasma physics studies, in solid state surface physics investigations and are very efficient when injected in particle accelerators. More than 50 ECR ion sources are presently working in the whole world. Stable and intense highly charged heavy ions beams are extracted from ECR ion sources, in a wide range of ion species. RECRIS, the Romanian 14 GHz ECR Ion Source, developed in IFIN-HH, designed as a facility for atomic physics and materials studies, has been recently completed. The research field concerning the development of advanced ECRIS and the study of the physical processes of the ECR plasma are presently very dynamical , a fact well proved by the great number of scientific published works and the numerous dedicated international conferences and workshops. It is well established that the performance of ECRIS can substantially be enhanced if special techniques like a 'biased disk' or a special wall coating of the plasma chamber are employed. In the frame of a cooperation project between IFIN-HH ,Bucharest, Romania and the Institut fuer Kernphysik of the J. W. Goethe University, Frankfurt/Main, Germany we developed, on the basis of previous research carried out in IFIN-HH, a new method to strongly increase the intensity of the ion beams extracted from the 14.4 GHz ECRIS in Frankfurt. In our method a special metal-dielectric structure (MD cylinder) was introduced in the ECRIS plasma chamber. In the experiment analyzed beams of Ar 16+ ions were increased in intensity by a factor of 50 as compared to the standard set up with stainless steel chamber. These results have been communicated at the International Conference on Ion Sources held at

  2. Controlling nonlinear longitudinal space charge oscillations for high peak current bunch train generation

    Directory of Open Access Journals (Sweden)

    P. Musumeci

    2013-10-01

    Full Text Available The evolution of picosecond modulations of the longitudinal profile of an electron beam generated in an rf photoinjector is analyzed and optimized with the goal of obtaining high peak current electron bunch trains at very high frequencies (≥THz. Taking advantage of nonlinear longitudinal space charge forces, it is found that more than 500 A peak current 1 THz bunch trains can be generated using a standard 1.6 cell SLAC/UCLA/BNL rf gun. Postacceleration is used to freeze the longitudinal phase space dynamics after one half plasma oscillation. Applications range from tunable narrow bandwidth THz radiation generation to drivers for high frequency high gradient accelerators.

  3. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  4. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  5. Design of a high-performance rotary stratified-charge research aircraft engine

    Science.gov (United States)

    Jones, C.; Mount, R. E.

    1984-01-01

    The power section for an advanced rotary stratified-charge general aviation engine has been designed under contract to NASA. The single-rotor research engine of 40 cubic-inches displacement (RCI-40), now being procured for test initiation this summer, is targeted for 320 T.O. horse-power in a two-rotor production engine. The research engine is designed for operating on jet-fuel, gasoline or diesel fuel and will be used to explore applicable advanced technologies and to optimize high output performance variables. Design of major components of the engine is described in this paper.

  6. Deflection of high energy channeled charged particles by elastically bent silicon single crystals

    International Nuclear Information System (INIS)

    Gibson, W.M.; Kim, I.J.; Pisharodoy, M.; Salman, S.M.; Sun, C.R.; Wang, G.H.; Wijayawardana, R.; Forster, J.S.; Mitchell, I.V.; Baker, S.I.; Carrigan, R.A. Jr.; Toohig, T.E.; Avdeichikov, V.V.; Ellison, J.A.; Siffert, P.

    1984-01-01

    An experiment has been carried out to observe the deflection of charged particles by planar channeling in bent single crystals of silicon for protons with energy up to 180 GeV. Anomolous loss of particles from the center point of a three point bending apparatus was observed at high incident particle energy. This effect has been exploited to fashion a 'dechanneling spectrometer' to study dechanneling effects due to centripital displacement of channeled particle trajectories in a bent crystal. The bending losses generally conform to the predictions of calculations based on a classical model. (orig.)

  7. High energy charge exchange np and antipp scattering using the dual fermion model

    International Nuclear Information System (INIS)

    Weigt, G.

    1976-01-01

    The five independent helicity amplitudes Phisub(i)(s, t) calculated by Mandelstam from the Neveu-Schwarz-Ramond model for fermion-antifermion scattering are used in the Regge limit for a phenomenological description of high energy np and antipp charge exchange scattering. A forward spike which widens with increasing energy as well as an energy dependence changing from lower to higher energy data are reproduced by these non-evasive dual Born amplitudes using π, A 2 and rho Regge pole t-channel exchanges. (author)

  8. Estimation of Transformer Parameters and Loss Analysis for High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Ouyang, Ziwei

    2013-01-01

    In a bi-directional DC-DC converter for capacitive charging application, the losses associated with the transformer makes it a critical component. In order to calculate the transformer losses, its parameters such as AC resistance, leakage inductance and self capacitance of the high voltage (HV......) winding has to be estimated accurately. This paper analyzes the following losses of bi-directional flyback converter namely switching loss, conduction loss, gate drive loss, transformer core loss, and snubber loss, etc. Iterative analysis of transformer parameters viz., AC resistance, leakage inductance...

  9. Polarization effects in radiative recombination of an electron with a highly charged ion

    International Nuclear Information System (INIS)

    Klasnikov, A.E.; Shabaev, V.M.; Artemyev, A.N.; Kovtun, A.V.; Stoehlker, T.

    2005-01-01

    The radiative recombination of an unpolarized electron with a polarized highly charged H-like ion in its ground state is studied. The absolute and relative values of the electron spin-flip contribution to the cross section of the process for various scattering angles and photon polarizations are calculated. It is shown that, in addition to the forward and backward directions, there are some other scattering angles of the emitted photon, where, at a fixed linear photon polarization, the spin-flip transition gives a dominant contribution to the differential cross section

  10. Magnetic properties changes of MnAs thin films irradiated with highly charged ions

    OpenAIRE

    Trassinelli , Martino; Gafton , V.; Eddrief , Mahmoud; Etgens , Victor H.; Hidki , S.; Lacaze , Emmanuelle; Lamour , Emily; Luo , X.; Marangolo , Massimiliano; Merot , Jacques; Prigent , Christophe; Reuschl , Regina; Rozet , Jean-Pierre; Steydli , S.; Vernhet , Dominique

    2013-01-01

    International audience; We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150~nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6\\times10^{12}$ to $1.6\\times10^{15}$~ions/cm$^2$. The structural and magnetic properties of the film after irradiation are investigated using different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and magnetic force microscope. Prelim...

  11. Mimotopes selected by biopanning with high-titer HIV-neutralizing antibodies in plasma from Chinese slow progressors

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available OBJECTIVE: One approach to identifying HIV-1 vaccine candidates is to dissect the natural antiviral immune response in treatment-naïve individuals infected for over ten years, considered slow progressor patients (SPs. It is suspected that SP plasma has strongly neutralizing antibodies (NAb targeting specific HIV viral epitopes. METHODS: NAbs levels of 11 HIV-1-infected SPs were detected by PBMC-based neutralization assays. To investigate SP NAb epitope, this study used a biopanning approach to obtain mimotopes of HIV-1 that were recognized by SP plasma NAbs. IgG was purified from hightiter NAb SP plasma, and used as the ligand for three rounds of biopanning to select HIV-specific mimotopes from a phage-displayed random peptide library. Double-antibody sandwich ELISA, competitive inhibition assays, and peptide sequence analysis were used to evaluate the characteristics of phage-borne mimotopes. RESULTS: SPs had significantly more plasma neutralizing activity than typical progressors (TPs (p = 0.04. P2 and P9 plasma, which have highest-titer HIV-NAb, were selected as ligands for biopanning. After three rounds of biopanning, 48 phage clones were obtained, of which 22 clones were consistent with requirement, binding with HIV-1 positive plasma and unbinding with HIV-1 negative plasma. Compared with linear HIV-1 protein sequence and HIV-1 protein structure files, only 12 clones were possible linear mimotopes of NAbs. In addition, the C40 clone located in gp41 CHR was found to be a neutralizing epitope, which could inhibit pooled HIV-1 positive plasma reaction. CONCLUSION: Biopanning of serum IgG can yield mimotopes of HIV-1-related antigen epitopes. This methodology provides a basis for exploration into HIV-1-related antigen-antibody interactions and furthers NAb immunotherapy and vaccine design.

  12. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  13. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    International Nuclear Information System (INIS)

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-01-01

    The efficiency and stability of blue organic light emitting devices (OLEDs) continue to be a primary roadblock to developing organic solid state white lighting. For OLEDs to meet the high power conversion efficiency goal, they will require both close to 100% internal quantum efficiency and low operating voltage in a white light emitting device. It is generally accepted that such high quantum efficiency, can only be achieved with the use of organometallic phosphor doped OLEDs. Blue OLEDs are particularly important for solid state lighting. The simplest (and therefore likely the lowest cost) method of generating white light is to down convert part of the emission from a blue light source with a system of external phosphors. A second method of generating white light requires the superposition of the light from red, green and blue OLEDs in the correct ratio. Either of these two methods (and indeed any method of generating white light with a high color rendering index) critically depends on a high efficiency blue light component. A simple OLED generally consists of a hole-injecting anode, a preferentially hole transporting organic layer (HTL), an emissive layer that contains the recombination zone and ideally transports both holes and electrons, a preferentially electron-transporting layer (ETL) and an electron-injecting cathode. Color in state-of-the-art OLEDs is generated by an organometallic phosphor incorporated by co-sublimation into the emissive layer (EML). New materials functioning as hosts, emitters, charge transporting, and charge blocking layers have been developed along with device architectures leading to electrophosphorescent based OLEDs with high quantum efficiencies near the theoretical limit. However, the layers added to the device architecture to enable high quantum efficiencies lead to higher operating voltages and correspondingly lower power efficiencies. Achievement of target luminance power efficiencies will require new strategies for lowering

  14. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Rodríguez, Luis F. [Centro de Radioastronomía y Astrofísica (UNAM), Morelia 58089 (Mexico); Moran, James [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Brooks, Kate J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, 1710 NSW (Australia); Nyman, Lars-Åke [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Sanhueza, Patricio [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States)

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings imply electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.

  15. Cytotoxic and mutagenic effects of high let charged particles on human skin fibroblasts

    International Nuclear Information System (INIS)

    Tsuboi, Koji.; Park, M.S.; Chen, D.J.; Yang, T.C.

    1992-01-01

    Cytotoxic and mutagenic effects of high LET charged particles were quantitatively measured using primary cultures of human skin fibroblasts. The span of LETs selected were from 25 keV/μm(330 MeV/u) to 920 keV/μm (600 MeV/u). Mutations were scored at the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus using 6-thioguanine (6-TG) for selection. Exposure to these high LET charged particles resulted in exponential survival curves whereas mutant induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (σ i ) and the action cross-section for mutant induction (σ m ) ranged from 2.2 to 92.0 μm 2 and 0.09 to 5.56 x 10 -3 μm 2 respectively, the maximum values were obtained by 56 Fe with an LET of 200 keV/μm. The mutagenicity (σ m /σ i ) ranged from 2.05 to 7.99 x 10 -5 with the maximum value at 150 keV/μm. Furthermore, the results of multiplex polymerase chain reaction (PCR) of some of the mutants induced by charged particles indicate that higher LET beams are more likely to cause larger deletions in the hprt locus. (author)

  16. Between atomic and nuclear physics: radioactive decays of highly-charged ions

    International Nuclear Information System (INIS)

    Atanasov, Dinko; Bosch, Fritz; Brandau, Carsten; Chen, Xiangcheng; Dillmann, Iris; Gao, Bingshui; Geissel, Hans; Hagmann, Siegbert; Hillenbrand, Pierre-Michel; Kozhuharov, Christophor; Litvinov, Sergey A; Litvinov, Yuri A; Münzenberg, Gottfried; Blaum, Klaus; Bühler, Paul; Faestermann, Thomas; Gernhäuser, Roman; Izumikawa, Takuji; Kurcewicz, Jan; Ma, Xinwen

    2015-01-01

    Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities. (paper)

  17. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  18. Effect of electrode for producing the highly charged heavy ions from RIKEN 18 GHz electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    Kurita, Tetsuro; Nakagawa, Takahide; Kidera, Masanori

    1999-01-01

    We successfully produced the intense beam of highly charged Kr ions using an electrode. Under the pulsed mode operation, we found that the depth of the plasma potential dip strongly depends on the duration of the microwave and takes about 40 ms to reach the equilibrium state. Taking these results into account, we compared the beam intensities of highly charged Kr ions with and without the use of an electrode under the pulsed mode operation. We observed that the density of highly charged Kr ions and ion confinement time increase with increasing mirror magnetic field strength. The plasma potential dip becomes shallower with insertion of the electrode. Consequently, when we increase the mirror magnetic field strength and insert the electrode into the plasma, the beam intensities of highly charged ions increase. (author)

  19. High-charge s-band photocathode RF-gun and linac system for radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tetsuya; Uesaka, Mitsuru; Katsumura, Yousuke [Univ. of Tokyo, Graduate School of Engineering, Nuclear Engineering Research Laboratory, Tokai, Ibaraki (JP)] (and others)

    2002-01-01

    For sub-picosecond pump-and-prove-type radiation chemistry work, a new synchronized electron linac and laser system was installed in the Nuclear Engineering Research Laboratory (NERL) of University of Tokyo. The new laser system, with a Ti:Sapphire oscillator (795 nm) and amplifiers, generates 300 ps pulses at 10 Hz. The laser is transported through the vacuum chamber and then split into two beams. The first is compressed and converted to the third harmonics (265 nm, <250 {mu}J, 4-11 ps) so as to drive the photocathode RF-gun and generate a pump-electron beam. The second is compressed to 100 fs and used for the probe light. The high-power RF, which is provided by a new 15 MW klystron, is divided into the gun and the accelerating section. Finally, a time jitter of 330 fs (rms) was achieved between the pump-electron beam and the probe laser, which is equivalent to the design value of 320 fs. A charge of 7 nC/bunch was observed at the exit of the gun from this new laser system. Improvement of the vacuum in the gun (<10{sup -9} Torr) is the most effective way to obtain such a high-charge beam. After about three years of operation, the Cu photocathode has shown no degradation of quantum efficiency. (author)

  20. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  1. Modelling and design of high compression electron guns for EBIS/T charge breeders

    CERN Document Server

    AUTHOR|(CDS)2087190; Zschornack, G.; Lettry, J.; Wenander, F.

    In this thesis the optimization of the REXEBIS charge breeder at the ISOLDE facility is presented. REXEBIS in its current state provides a current density of 200A/cm² inside the trapping region at 2 T and will be optimized to the physical limit of its design. To overcome this limit a new electron gun, the HEC² gun, was designed in collaboration with the BNL and is in commission at TestEBIS. This electron gun promises a current density of >10 kA/cm², which decreases the charge breeding time significantly. This thesis presents novel simulation techniques supporting the commissioning phase by explaining the sources of occurring loss current and, in addition, evaluate the currently installed collector for compatibility with the HEC2 gun operating at its design limit. The experience gained from the commission of the HEC² gun and the established numerical techniques lead to the development of a smaller high-compression electron gun for medical purposes, the MEDeGUN. This electron gun should provide a high-quali...

  2. The physics of highly charged heavy ions revealed by storage/cooler rings

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.

    1996-01-01

    With the successful commissioning of storage and cooler rings for bright beams of very heavy ions near the threshold of the last decade of this century, not only did a prosperous development in heavy ion accelerator technology come to its present summit, but also fundamental fields in heavy ion physics were opened widely for exciting explorations. Now, essential aspects in this area are accessible, aspects one only dared to dream of another decade ago. In the meantime, great progress already has been made in the fundamental physics in this field. This is particularly true for achievements in the atomic physics of highly charged heavy ions. In this chapter, we present a review of the current advances in this rapidly developing field. There are two general domains to be considered in the atomic physics of highly charged heavy ions: the fields of collisions and of atomic structure. Both aspects have to be explored equally, as they are strongly interconnected. One has to investigate the interaction processes to know, for instance, the population of excited states to help answer questions on the atomic structure; and conversely, one has to know the structure to understand the interactions. In both the fields, fundamental principles can be studied uniquely. This is in particular true for the heaviest ion species with only a few- or even zero-electrons left. 140 refs., 39 figs

  3. Design and evaluation of a high-performance charge coupled device camera for astronomical imaging

    International Nuclear Information System (INIS)

    Shang, Yuanyuan; Guan, Yong; Zhang, Weigong; Pan, Wei; Liu, Hui; Zhang, Jie

    2009-01-01

    The Space Solar Telescope (SST) is the first Chinese space astronomy mission. This paper introduces the design of a high-performance 2K × 2K charge coupled device (CCD) camera that is an important payload in the Space Solar Telescope. The camera is composed of an analogue system and a digital embedded system. The analogue system is first discussed in detail, including the power and bias voltage supply circuit, power protection unit, CCD clock driver circuit, 16 bit A/D converter and low-noise amplifier circuit. The digital embedded system integrated with an NIOS II soft-core processor serves as the control and data acquisition system of the camera. In addition, research on evaluation methods for CCDs was carried out to evaluate the performance of the TH7899 CCD camera in relation to the requirements of the SST project. We present the evaluation results, including readout noise, linearity, quantum efficiency, dark current, full-well capacity, charge transfer efficiency and gain. The results show that this high-performance CCD camera can satisfy the specifications of the SST project

  4. A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhongyu Dai

    2017-03-01

    Full Text Available In this paper, a Witricity-based high-power device is proposed for wireless charging of electric vehicles. According to the specific requirements of three-stage charging for electric vehicles, four compensation modes of the Witricity system are analyzed by the Loosely Coupled Theory among transformer coils and the Substitution Theorem in circuit theory. In addition, when combining voltage withstand levels, the current withstand capability, the switching frequency of electronic switching tubes, and the features of the resonant circuit, the series-parallel (SP compensation mode is selected as the best compensation mode for matching the capacitor of the system. The performances of coils with different ferrite core arrangements are compared by simulations and models. The feasibility of the system is verified theoretically and the system functions are evaluated by the joint simulation of Simplorer and Maxwell. Finally, a Witricity-based high-power device is proposed as designed, and the correctness of theoretical analyses and simulation results are verified.

  5. High spatial and temporal resolution charge exchange recombination spectroscopy on the HL-2A tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y. L.; Yu, D. L., E-mail: yudl@swip.ac.cn; Liu, L.; Cao, J. Y.; Sun, A. P.; Ma, Q.; Chen, W. J.; Liu, Yi; Yan, L. W.; Yang, Q. W.; Duan, X. R.; Liu, Yong [Southwestern Institute of Physics, Chengdu 610041 (China); Ida, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Hellermann, M. von [ITER Diagnostic Team, IO, Route de Vinon sur Verdon, 13115 St Paul lez Durance (France); FOM-Institute for Plasma physics “Rijnhuizen,” Association EURATOM, Trilateral Euregio Cluster, 3430 BE Nieuwegein (Netherlands)

    2014-10-01

    A 32/64-channel charge exchange recombination spectroscopy (CXRS) diagnostic system is developed on the HL-2A tokamak (R = 1.65 m, a = 0.4 m), monitoring plasma ion temperature and toroidal rotation velocity simultaneously. A high throughput spectrometer (F/2.8) and a pitch-controlled fiber bundle enable the temporal resolution of the system up to 400 Hz. The observation geometry and an optimized optic system enable the highest radial resolution up to ~1 cm at the plasma edge. The CXRS system monitors the carbon line emission (C VI, n = 8–7, 529.06 nm) whose Doppler broadening and Doppler shift provide ion temperature and plasma rotation velocity during the neutral beam injection. The composite CX spectral data are analyzed by the atomic data and analysis structure charge exchange spectroscopy fitting (ADAS CXSFIT) code. First experimental results are shown for the case of HL-2A plasmas with sawtooth oscillations, electron cyclotron resonance heating, and edge transport barrier during the high-confinement mode (H-mode)

  6. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  7. Iodide Ion Pairing with Highly Charged Ruthenium Polypyridyl Cations in CH3CN.

    Science.gov (United States)

    Swords, Wesley B; Li, Guocan; Meyer, Gerald J

    2015-05-04

    A series of three highly charged cationic ruthenium(II) polypyridyl complexes of the general formula [Ru(deeb)3-x(tmam)x](PF6)2x+2, where deeb is 4,4'-diethyl ester-2,2'-bipyridine and tmam is 4,4'-bis[(trimethylamino)methyl]-2,2'-bipyridine, were synthesized and characterized and are referred to as 1, 2, or 3 based on the number of tmam ligands. Crystals suitable for X-ray crystallography were obtained for the homoleptic complex 3, which was found to possess D3 symmetry over the entire ruthenium complex. The complexes displayed visible absorption spectra typical of metal-to-ligand charge-transfer (MLCT) transitions. In acetonitrile, quasi-reversible waves were assigned to Ru(III/II) electron transfer, with formal reduction potentials that shifted negative as the number of tmam ligands was increased. Room temperature photoluminescence was observed in acetonitrile with quantum yields of ϕ ∼ 0.1 and lifetimes of τ ∼ 2 μs. The spectroscopic and electrochemical data were most consistent with excited-state localization on the deeb ligand for 1 and 2 and on the tmam ligand for 3. The addition of tetrabutylammonium iodide to the complexes dissolved in a CH3CN solution led to changes in the UV-vis absorption spectra consistent with ion pairing. A Benesi-Hildebrand-type analysis of these data revealed equilibrium constants that increased with the cationic charge 1 10(8) s(-1). The possible relevance of this work to solar energy conversion and dye-sensitized solar cells is discussed.

  8. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    Science.gov (United States)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  9. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.

    Science.gov (United States)

    Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali

    2018-03-27

    There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.

  10. Charging system of ECRH high-voltage power supply and its control system

    International Nuclear Information System (INIS)

    Hu Guofu; Ding Tonghai; Liu Baohua; Jiang Shufang

    2003-01-01

    High-voltage power supply (HVPS) of Electron Cyclotron Resonance Heating (ECRH) for HT-7 and HT-7U is presently being constructed. The high voltage (100 kV) energy of HVPS is stored in the capacitor banks, and they can power one or two gyrotrons. All the operation of the charging system will be done by the control system, where the field signals are interfaced to programmable logic controller (PLC). The use of PLC not only simplifies the control system, but also enhances the reliability. The software written by using configuration software installed in the master computer allows for remote and multiple operator control, and the status and data information is also remotely available

  11. Multiple Coulomb scattering of high-energy heavy charged particle beams used in biology and medicine

    International Nuclear Information System (INIS)

    Wong, M.; Schimmerling, W.; Ludewigt, B.; Phillips, M.; Curtis, S.; Tobias, C.A.

    1987-01-01

    The authors measured lateral displacement and angular distributions of high-energy heavy charged particles emerging from a target at the Lawrence Berkeley Laboratory BEVALAC with beams used in radiobiology experiments. Multiple Coulomb scattering occurring in the target material generally spreads the beam laterally and increases its divergence. The apparatus consists of four sets of position-sensitive semiconductor detectors located along the beam line. Each providing two position signals and one energy signal. The difference between the two position signals is used to determine the particle position in one dimension. The two position signals are constrained to add up to the energy deposition signal in order to reject multiple-particle traversals. The vector directions for the incident and emerging particles are reconstructed in three dimensions from their measured coordinated positions. Lateral and angular distributions are reported for beams of high-energy neon, iron and uranium ions incident on targets of aluminum, cooper, lead and water

  12. A low-neutron background slow-positron source

    International Nuclear Information System (INIS)

    White, M. M.

    1998-01-01

    The addition of a thermionic rf gun [1] and a photocathode rf gun will allow the Advanced Photon Source (APS) linear accelerator (linac) [2] [3] to become a free-electron laser (FEL) driver [4]. As the FEL project progresses, the existing high-charge DC thermionic gun will no longer be critical to APS operation and could be used to generate high-energy or low-energy electrons to drive a slow-positron source. We investigated possibilities to create a useful low-energy source that could operate semi-independently and would have a low neutron background

  13. Ultra-thin MoS{sub 2} irradiated with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hopster, J.; Kozubek, R.; Krämer, J.; Sokolovsky, V.; Schleberger, M., E-mail: marika.schleberger@uni-due.de

    2013-12-15

    Single MoS{sub 2} layers exfoliated on KBr have been irradiated with highly charged Xe ions, i.e. with Xe{sup 35+} and Xe{sup 40+}. By atomic force microscopy (AFM) we identified pits and hillocks induced by single ion impacts. The latter ones appear on single layer and bulk-like MoS{sub 2} after both irradiations, whereas their diameter and height apparently depend on the charge state q and layer number. By comparison of contact mode and tapping mode AFM measurements we deduce that these ion induced defects are topographical hillocks accompanied by an enhanced friction. In contrast to this, pit-like structures were only observed on single layer MoS{sub 2} irradiated with q = 40. Taking into account the well known ion induced pit formation on KBr due to defect mediated sputtering, we deduce that pit formation takes place in the substrate and not in the MoS{sub 2} layer.

  14. Electron ejection from solids induced by fast highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Schiwietz, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD; Xiao, G. [Hahn-Meitner-Inst. GmbH, Berlin (Germany). Abt. FD

    1996-02-01

    Total electron-ejection yields and Auger-electron spectra for highly-charged ions interacting with different foil targets have been investigated in this work. New experimental and theoretical data for normal incident 5 MeV/u heavy ions on graphite and polypropylene foils are presented and discussed. These two materials have been selected as model systems representing conductors and insulator targets. Our measured projectile nuclear-charge dependence of the total electron yield from carbon foils clearly deviates from results of some transport models that predict a proportionality with respect to the electronic stopping power of the projectiles. Possible reasons for this deviation are discussed. We have also extended our measurements on cascade-induced C-KLL Auger-electron production. The corresponding results for 5 MeV/u S ions on carbon were obtained with a new method and agree fairly well with previous data. Furthermore, we have performed an experimental and theoretical investigation on the nuclear-track potential in insulators. Comparison of experimental data with theoretical results for N{sup 7+}, Ne{sup 9+}, Ar{sup 16+} and Ni{sup 23+} ions allow for an estimate of the electron/hole pair recombination time at the center of the track in polypropylene. (orig.).

  15. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    International Nuclear Information System (INIS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-01-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  16. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    Science.gov (United States)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  17. Charge reversible gold nanoparticles for high efficient absorption and desorption of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wang Can; Zhuang Jiaqi; Jiang Shan; Li Jun; Yang Wensheng, E-mail: wsyang@jlu.edu.cn [Jilin University, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry (China)

    2012-10-15

    Mercaptoundecylamine and mercaptoundecanoic acid co-modified Au nanoparticles were prepared by two-step ligand exchange of 6-mercaptohexanoic acid modified gold nanoparticles. Such particles terminated by appropriate ratios of the amine and carboxyl groups (R{sub N/C}) were identified to show reversible charge on their surface, which were switchable by pH of the solution. The isoelectric point (IEP) of the particles is tunable by changing the ratios of the amine and carboxyl groups on the particle surfaces. The particles can absorb DNA effectively at pH lower than the IEP driven by the direct electrostatic interactions between DNA and the particle surface. When pH of the solutions was elevated to be higher than the IEP, the absorbed DNA can be released almost completely due to the electrostatic repulsion between the particle surface and DNA. With appropriate R{sub N/C} ratios of 0.8, the absorption and desorption efficiencies of DNA were 97 and 98%, respectively, corresponding an extraction efficiency of 95 %. Such particles with reversible surface charges allow the high efficient extraction of DNA by simply changing pH instead of by changing salt concentration in the conventional salt bridge method.Graphical Abstract.

  18. Coaxial slow source

    International Nuclear Information System (INIS)

    Brooks, R.D.; Jarboe, T.R.

    1990-01-01

    Field reversed configurations (FRCs) are a class of compact toroid with not toroidal field. The field reversed theta pinch technique has been successfully used for formation of FRCs since their inception in 1958. In this method an initial bias field is produced. After ionization of the fill gas, the current in the coil is rapidly reversed producing the radial implosion of a current sheath. At the ends of the coil the reversed field lines rapidly tear and reconnect with the bias field lines until no more bias flux remains. At this point, vacuum reversed field accumulates around the configuration which contracts axially until an equilibrium is reached. When extrapolating the use of such a technique to reactor size plasmas two main shortcomings are found. First, the initial bias field, and hence flux in a given device, which can be reconnected to form the configuration is limited from above by destructive axial dynamics. Second, the voltages required to produce rapid current reversal in the coil are very large. Clearly, a low voltage formation technique without limitations on flux addition is desirable. The Coaxial Slow Source (CSS) device was designed to meet this need. It has two coaxial theta pinch coils. Coaxial coil geometry allows for the addition of as much magnetic flux to the annular plasma between them as can be generated inside the inner coil. Furthermore the device can be operated at charging voltages less than 10 kV and on resistive diffusion, rather than implosive time scales. The inner coil is a novel, concentric, helical design so as to allow it to be cantilevered on one end to permit translation of the plasma. Following translation off the inner coil the Annular Field Reversed Configuration would be re-formed as a true FRC. In this paper we investigate the formation process in the new parallel configuration., CSSP, in which the inner and outer coils are connected in parallel to the main capacitor bank

  19. Preparation of cold Mg+ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    International Nuclear Information System (INIS)

    Cazan, Radu Mircea

    2012-02-01

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a 24 Mg + ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little maintenance

  20. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  1. Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors

    Science.gov (United States)

    Kadashchuk, Andrey; Tong, Fei; Janneck, Robby; Fishchuk, Ivan I.; Mityashin, Alexander; Pavlica, Egon; Köhler, Anna; Heremans, Paul; Rolin, Cedric; Bratina, Gvido; Genoe, Jan

    2017-09-01

    We demonstrate that the degree of charge delocalization has a strong impact on polarization energy and thereby on the position of the transport band edge in organic semiconductors. This gives rise to long-range potential fluctuations, which govern the electronic transport through delocalized states in organic crystalline layers. This concept is employed to formulate an analytic model that explains a negative field dependence coupled with a positive temperature dependence of the charge mobility observed by a lateral time-of-flight technique in a high-mobility crystalline organic layer. This has important implications for the further understanding of the charge transport via delocalized states in organic semiconductors.

  2. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  3. Pair-density waves, charge-density waves, and vortices in high-Tc cuprates

    Science.gov (United States)

    Dai, Zhehao; Zhang, Ya-Hui; Senthil, T.; Lee, Patrick A.

    2018-05-01

    A recent scanning tunneling microscopy (STM) experiment reports the observation of a charge-density wave (CDW) with a period of approximately 8a in the halo region surrounding the vortex core, in striking contrast to the approximately 4a period CDWs that are commonly observed in the cuprates. Inspired by this work, we study a model where a bidirectional pair-density wave (PDW) with period 8 is at play. This further divides into two classes: (1) where the PDW is a competing state of the d -wave superconductor and can exist only near the vortex core where the d -wave order is suppressed and (2) where the PDW is the primary order, the so-called "mother state" that persists with strong phase fluctuations to high temperature and high magnetic field and lies behind the pseudogap phenomenology. We study the charge-density wave structures near the vortex core in these models. We emphasize the importance of the phase winding of the d -wave order parameter. The PDW can be pinned by the vortex core due to this winding and become static. Furthermore, the period-8 CDW inherits the properties of this winding, which gives rise to a special feature of the Fourier transform peak, namely, it is split in certain directions. There is also a line of zeros in the inverse Fourier transform of filtered data. We propose that these are key experimental signatures that can distinguish between the PDW-driven scenario from the more mundane option that the period-8 CDW is primary. We discuss the pro's and con's of the options considered above. Finally, we attempt to place the STM experiment in the broader context of pseudogap physics of underdoped cuprates and relate this observation to the unusual properties of x-ray scattering data on CDW carried out to very high magnetic field.

  4. Too slow, for Milton

    OpenAIRE

    Armstrong, N.

    2011-01-01

    Too slow, for Milton was written in 2011, as part of a memorial project for Milton Babbitt. The piece borrows harmonies from Babbitt's Composition for 12 Instruments (harmonies which Babbitt had in turn borrowed from Schoenberg's Ode to Napoleon), but unfolds them as part of a musical texture characterised by repetition, resonance, and a slow rate of change. As Babbitt once told me that my music was 'too slow', this seemed an appropriately obstinate form of homage.

  5. A salt water battery with high stability and charging rates made from solution processed conjugated polymers with polar side chains

    KAUST Repository

    Moia, Davide; Giovannitti, Alexander; Szumska, Anna A.; Schnurr, Martin; Rezasoltani, Elham; Maria, Iuliana P.; Barnes, Piers R. F.; McCulloch, Iain; Nelson, Jenny

    2017-01-01

    conjugated polymer backbones, allowed the films to maintain constant capacity at high charge and discharge rates (>1000 C-rate). The electrodes also show good stability during electrochemical cycling (less than 30% decrease in capacity over >1000 cycles) and an output voltage up to 1.4 V. The performance of these semiconducting polymers with polar side-chains demonstrates the potential of this material class for fast-charging, water based electrochemical energy storage devices.

  6. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  7. Ionization and single electron capture in collision of highly charged Ar16+ ions with helium

    International Nuclear Information System (INIS)

    Wang Fei; Gou Bingcong

    2008-01-01

    This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar 16+ ions with He atoms in the velocity range of 1.2–1.9 a.u. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u

  8. Influence of Low Speed Rolling Movement on High Electrical Breakdown for Water Dielectric with Microsecond Charging

    International Nuclear Information System (INIS)

    Zhang Zicheng; Zhang Jiande; Yang Jianhua

    2006-01-01

    By means of a coaxial apparatus, high electrical breakdown experiments are carried out in the rest state and the low speed rolling state with microsecond charging and the experimental results are analyzed. The conclusions are: (1) the breakdown stress of water dielectric in the rolling state is in good agreement with that in Martin formula, and so is that in the rest state; (2) the breakdown stress of water dielectric in the rolling state is about 5% higher than that in the rest state; (3) the results simulated with ANSYS demonstrate that the breakdown stress of water dielectric decreases when the bubbles appear near the surface of electrodes; (4) the primary mechanism to increase the breakdown stress of water dielectric in the rolling state is that the bubbles are driven away and the number of bubbles near the surface of electrodes is decreased by rolling movement

  9. Measurements of visible forbidden lines and ion distributions of tungsten highly charged ions at the LHD

    International Nuclear Information System (INIS)

    Kato, D.; Sakaue, H.A.; Murakami, I.; Goto, M.; Morita, S.; Nakamura, N.; Koike, F.; Sasaki, Akira; Ding, X.-B.; Dong, C.-Z.

    2013-01-01

    Visible lines, which are presumably associated with forbidden lines from tungsten highly charged ions, were clearly observed in a spectrum of 370 - 410 nm recorded shortly after a tungsten pellet injection at the LHD. One of the measured lines has been assigned to a magnetic-dipole (M1) line of the ground-term fine-structure transition of W 26+ . Photon emission was observed at 44 lines of sight divided along the vertical direction of a horizontally elongated poloidal cross section of the LHD plasma. The line-integrated intensity of the lines along each line of sight indicates peaked profiles near the plasma center, while visible line emissions of neutral hydrogen and helium recoded in the same sampling time have a maximum located in the peripheral region of the poloidal cross section. (author)

  10. Interplay of charge density wave and spin density wave in high-T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, B. [Government Science College, Malkangiri 764 048 (India)], E-mail: brunda@iopb.res.in; Raj, B.K. [B.J.B. College, Bhubaneswar 751 014 (India); Rout, G.C. [Condensed Matter Physics Group, P.G. Department of Applied Physics and Ballistics, F.M. University, Balasore 756 019 (India)], E-mail: gcr@iopb.res.in

    2008-12-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T{sub c} cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters.

  11. Interplay of charge density wave and spin density wave in high-Tc superconductors

    International Nuclear Information System (INIS)

    Pradhan, B.; Raj, B.K.; Rout, G.C.

    2008-01-01

    We present a mean-field theory theoretical model study for the coexistence of the two strongly interacting charge density wave (CDW) and spin density wave (SDW) for high-T c cuprates in the underdoped region before the onset of the superconductivity in the system. The analytic expressions for the temperature dependence of the CDW and SDW order parameters are derived and solved self-consistently. Their interplay is studied by varying their respective coupling constants. It is observed that in the interplay region both the gap parameters exhibit very strong dependence of their gap values for the coupling constants. Further, the electronic density of states (DOS) for the conduction electrons, which represents the scanning tunneling data, show two gap parameters in the interplay region from these experimental data. Our model can help to determine separately the CDW and SDW parameters

  12. Experiments with highly charged ions up to bare U92+ on the electron beam ion trap

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1994-07-01

    An overview is given of the current experimental effort to investigate the level structure of highly charged ions with the Livermore electron beam ion trap (EBIT) facility. The facility allows the production and study of virtually any ionization state of any element up to bare U 92+ . Precision spectroscopic measurements have been performed for a range of Δn = 0 and Δn = 1 transitions. Examples involving 3-4 and 2-3 as well as 3-3 and 2-2 transitions in uranium ions are discussed that illustrated some of the measurement and analysis techniques employed. The measurements have allowed tests of calculations of the the quantum electrodynamical contributions to the transitions energies at the 0.4% level in a regime where (Zα) ∼ 1

  13. Atomic physics studies of highly charged ions on tokamaks using x-ray spectroscopy

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; von Goeler, S.; Bitter, M.; Hill, K.W.

    1989-07-01

    An overview is given of atomic physics issues which have been studied on tokamaks with the help resolution x-ray spectroscopy. The issues include the testing of model calculations predicting the excitation of line radiation, the determination of rate coefficients, and accurate atomic structure measurements. Recent research has focussed primarily on highly charged heliumlike (22 ≤ Z ≤ 28) and neonlike (34 ≤ Z ≤ 63) ions, and results are presented from measurements on the PLT and TFTR tokamaks. Many of the measurements have been aided by improved instrumental design and new measuring techniques. Remarkable agreement has been found between measurements and theory in most cases. However, in this review those areas are stressed where agreement is worst and where further investigations are needed. 19 refs., 13 figs., 2 tabs

  14. Variation of minority charge carrier lifetime in high-resistance p-type silicon under irradiation

    International Nuclear Information System (INIS)

    Basheleishvili, Z.V.; Garnyk, V.S.; Gorin, S.N.; Pagava, T.A.

    1984-01-01

    The minority carrier lifetime (tau) variation was studied in the process of p-type silicon bombardment with fast 8 MeV electrons. The irradiation and all measurements were carried out at room temperature. The tau quantity was measured by the photoconductivity attenuation method at a low injection level 20% measurement error; the resistivity was measured by the four-probe method (10% error). The resistivity and minority charge carrier lifetime tau are shown to increase with the exposure dose. It is supposed that as radiation dose increases, the rearrangement of the centres responsible for reducing the lifetime occurs and results in a tau increase in the material being irradiated, however the tau value observed in the original samples is not attained. The restoration of the minority carrier lifetime in p-type high-resistance silicon with a growing exposure dose might proceed due to reduction in the free carrier concentration

  15. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    International Nuclear Information System (INIS)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Müller, Carsten; Paulus, Gerhard G

    2014-01-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility. (paper)

  16. Recent developments in high charge state heavy ion beams at the LBL 88-inch Cyclotron

    International Nuclear Information System (INIS)

    Gough, R.A.; Clark, D.J.; Glasgow, L.R.

    1978-01-01

    Recent advances in design and operation of the internal PIG sources at the LBL 88-Inch Cyclotron have led to the development of high charge state (0.4 16 O 8+ . Total external intensities of these beams range from 10 12 particles/s for 6 Li 3+ to 0.1 particles/s for 16 O 8+ . Techniques have been developed for routine tune-out of the low intensity beams. These include use of model beams and reliance on the large systematic data base of cyclotron parameters which has been developed over many years of operation. Techniques for delivery of these weak beams to the experimental target areas are presented. Source design and operation, including special problems associated with Li, Be, and B beams are discussed

  17. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  18. Analysis of heat transfer and erosion effects on ITER divertor plasma facing components induced by slow high-power transients

    International Nuclear Information System (INIS)

    Federici, G.; Raffray, A.R.; Chiocchio, S.; Esser, B.; Dietz, J.; Igitkhanov, Y.; Janeschitz, G.

    1995-01-01

    This paper presents the results of an analysis carried out to investigate the thermal response of ITER divertor plasma facing components (PFC's) clad with Be, W, and CFC, to high-recycling, high-power thermal transients (i.e. 10--30 MW/m 2 ) which are anticipated to last up to a few seconds. The armour erosion and surface melting are estimated for the different plasma facing materials (PFM's) together with the maximum heat flux to the coolant, and armour/heat-sink interface temperature. The analysis assumes that intense target evaporation will lead to high radiative power losses in the plasma in front of the target which self-protects the target. The cases analyzed clarify the influence of several key parameters such as the plasma heat flux to the target, the loss of the melt layer, the duration of the event, the thickness of the armour, and comparison is made with cases without vapor shielding. Finally, some implications for the performance and lifetime of divertor PFC's clad with different PFM's are discussed

  19. Charge initiation schemes for ensuring high-performance operation of cyclic-flow technology cyclic link

    Directory of Open Access Journals (Sweden)

    S. N. Zharikov

    2017-09-01

    Full Text Available The authors consider the issue of ensuring the quality of crushing rock mass by drilling and blasting method for high productivity of a cyclic link of a cyclic-flow technology complex. The article contains recommendations for calculating certain parameters of drilling and blasting operations, such as the width of the retaining wall Bp. s, the collapse with account for the retaining wall Вr, the width of the collapse of the rock mass Bf when blasting onto a free surface (for the first row of vertical wells and for the first series of inclined wells, the width of the collapse from the first series of wells B1, the deceleration time τ, the coefficient kβ that takes into account the incline angle of wells β to the horizon. The authors prove the expediency of using a retaining wall in explosions of technological blocks. The authors raise the question about the management of detonation characteristics of explosives produced in the field of application for the most rational impact of an explosion on a rock massif. Since the technological schemes for preparing the rock mass to the excavation, which ensure the high-performance operation of the cyclic link of the cyclic-flow technology, can be different, then the choice of a specific drilling and blasting circuit is depends on the geological conditions and elements of the development system. As a preliminary method of breaking, one can consider the explosion of charges along the diagonal (diagonal blasting schemes on the retaining wall. This method provides sufficient reliability of technological explosions, and with the development of modern means of blasting with decelerations between charges of more than 67 ms, there are nearly no back emissions.

  20. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  1. High efficiency charge recuperation for electron beams of MeV energies

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1996-05-01

    Electron cooling of ion beams with energies of some GeV per nucleon requires high-quality electron beams of MeV energies and currents as high as several amperes. The enormous beam power dictates that the beam current be returned to the high voltage terminal which provides the accelerating potential. The beam is returned to a carefully designed collector within the terminal and biased a few kV positive with respect to it. Thus the load on the HV supply is only the accelerating potential times the sum of the beam current loss and the current used to maintain a graded potential on the accelerating structure. If one employs an electrostatic HV supply like a Van de Graaff with maximum charging current of a few hundred microA, the permissible fractional loss is ∼ 10 -4 . During the 15 years or so the concept of medium energy electron cooling has been evolving, the need to demonstrate the practicability of such high efficiency beam recovery has been recognized. This paper will review some experimental tests and further experiments which have been proposed. The design and status are presented for a new re-circulation experiment at 2 MV being carried out by Fermilab at National Electrostatics Corp

  2. A novel robust and efficient algorithm for charge particle tracking in high background flux

    International Nuclear Information System (INIS)

    Fanelli, C; Cisbani, E; Dotto, A Del

    2015-01-01

    The high luminosity that will be reached in the new generation of High Energy Particle and Nuclear physics experiments implies large high background rate and large tracker occupancy, representing therefore a new challenge for particle tracking algorithms. For instance, at Jefferson Laboratory (JLab) (VA,USA), one of the most demanding experiment in this respect, performed with a 12 GeV electron beam, is characterized by a luminosity up to 10 39 cm -2 s -1 . To this scope, Gaseous Electron Multiplier (GEM) based trackers are under development for a new spectrometer that will operate at these high rates in the Hall A of JLab. Within this context, we developed a new tracking algorithm, based on a multistep approach: (i) all hardware - time and charge - information are exploited to minimize the number of hits to associate; (ii) a dedicated Neural Network (NN) has been designed for a fast and efficient association of the hits measured by the GEM detector; (iii) the measurements of the associated hits are further improved in resolution through the application of Kalman filter and Rauch- Tung-Striebel smoother. The algorithm is shortly presented along with a discussion of the promising first results. (paper)

  3. High-LET dose-response characteristics by track structure theory of heavy charged particles

    International Nuclear Information System (INIS)

    Hansen, J.W.; Olsen, K.J.

    1981-09-01

    The track structure theory developed by Katz and co-workers ascribes the effect of high-LET radiation to the highly inhomogeneous dose distribution due to low energy Δ-rays ejected from the particle track. The theory predicts the effectiveness of high-LET radiation by using the ion parameters zsub(eff') effective charge of the ion, and β = v/c, the relative ion velocity, together with the characteristic dose D 37 derived from low-LET dose-response characteristic of the detector and the approximate size asub(0) of the sensitive element of the detector. 60 Co gamma-irradiation is used as a reference low-LET radiation, while high-LET radiation ranging from 16 MeV protons to 4 MeV/amu 16 0-ions covering an initial LET range of 30-5500 MeVcm 2 /g is obtained from a tandem Van de Graaff accelerator. A thin film (5mg/cm 2 ) radiochromic dye cyanide plastic dosemeter was used as detector with the characteristic dose of 16.8 Mrad and a sensitive element size of 10 -7 cm. Theoretical and experimental effectiveness, RBE, agreed within 10 to 25% depending on LET. (author)

  4. High-precision x-ray spectroscopy of highly charged ions with microcalorimeters

    International Nuclear Information System (INIS)

    Kraft-Bermuth, S; Andrianov, V; Bleile, A; Echler, A; Egelhof, P; Grabitz, P; Ilieva, S; Kiselev, O; Meier, J; Kilbourne, C; McCammon, D

    2013-01-01

    The precise determination of the energy of the Lyman α1 and α2 lines in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. To improve the experimental precision, the new detector concept of microcalorimeters is now exploited for such measurements. Such detectors consist of compensated-doped silicon thermistors and Pb or Sn absorbers to obtain high quantum efficiency in the energy range of 40–70 keV, where the Doppler-shifted Lyman lines are located. For the first time, a microcalorimeter was applied in an experiment to precisely determine the transition energy of the Lyman lines of lead ions at the experimental storage ring at GSI. The energy of the Ly α1 line E(Ly-α1, 207 Pb 81+ ) = (77937 ± 12 stat ± 25 syst ) eV agrees within error bars with theoretical predictions. To improve the experimental precision, a new detector array with more pixels and better energy resolution was equipped and successfully applied in an experiment to determine the Lyman-α lines of gold ions 197 Au 78+ . (paper)

  5. Frozen-in vacancies in PVD-Cu films with improved high-pressure reflowability studied using a slow positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yabuuchi, A; Kubo, D; Mizuno, M; Araki, H [Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Onishi, T [Materials Research Laboratory, Kobe Steel Ltd., 5-5 Takatsukadai 1-chome, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Shirai, Y [Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: atsushi.yabuuchi@mat.eng.osaka-u.ac.jp

    2009-05-01

    Recently, a new process has been proposed for fabricating a LSI interconnection; filling trenches and via holes with Cu using high-pressure annealing treatment. It is already known that a Cu film produced by physical vapor deposition (PVD) has a lower reflowability compared to a Cu film produced by electrochemical deposition (ECD). Additionally, it has also been recognized that the addition of Sb to the PVD-Cu film improves the reflowability. However, the factors responsible for the reflowability of Cu films have not yet been studied. In this work, we evaluated a PVD pure-Cu film and a PVD Cu-0.5at%Sb film by using a slow positron beam. Addition of Sb led to the introduction of lattice defects in the as-deposited film. These defects that were observed in the PVD-CuSb dilute alloy film were identified as frozen-in vacancies that were produced during deposition.

  6. Frozen-in vacancies in PVD-Cu films with improved high-pressure reflowability studied using a slow positron beam

    International Nuclear Information System (INIS)

    Yabuuchi, A; Kubo, D; Mizuno, M; Araki, H; Onishi, T; Shirai, Y

    2009-01-01

    Recently, a new process has been proposed for fabricating a LSI interconnection; filling trenches and via holes with Cu using high-pressure annealing treatment. It is already known that a Cu film produced by physical vapor deposition (PVD) has a lower reflowability compared to a Cu film produced by electrochemical deposition (ECD). Additionally, it has also been recognized that the addition of Sb to the PVD-Cu film improves the reflowability. However, the factors responsible for the reflowability of Cu films have not yet been studied. In this work, we evaluated a PVD pure-Cu film and a PVD Cu-0.5at%Sb film by using a slow positron beam. Addition of Sb led to the introduction of lattice defects in the as-deposited film. These defects that were observed in the PVD-CuSb dilute alloy film were identified as frozen-in vacancies that were produced during deposition.

  7. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M

    2000-10-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of {approx}35 keV/nucleon from the interactions of 400 MeV/nucleon {sup 16}O with {sup nat}Xe gas targets.

  8. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Veldhuizen, E.J. van; Westerberg, L.; Lyapin, V.G.; Aleklett, K.; Loveland, W.; Bondorf, J.; Jakobsson, B.; Whitlow, H.J.; El Bouanani, M.

    2000-01-01

    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of ∼35 keV/nucleon from the interactions of 400 MeV/nucleon 16 O with nat Xe gas targets

  9. When High-Capacity Readers Slow Down and Low-Capacity Readers Speed Up: Working Memory and Locality Effects.

    Science.gov (United States)

    Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan

    2016-01-01

    We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.

  10. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  11. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  12. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  14. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    International Nuclear Information System (INIS)

    Winterfeldt, M.; Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2014-01-01

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPP lat ) at high power. An experimental study of the factors limiting BPP lat is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPP lat is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPP lat , whose influence on total BPP lat remains small, provided the overall polarization purity is >95%

  15. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    Science.gov (United States)

    Winterfeldt, M.; Crump, P.; Wenzel, H.; Erbert, G.; Tränkle, G.

    2014-08-01

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPPlat) at high power. An experimental study of the factors limiting BPPlat is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910 nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPPlat is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPPlat, whose influence on total BPPlat remains small, provided the overall polarization purity is >95%.

  16. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1983-01-01

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandems in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S 6 - 16 + on He and Ar at 6-20 MeV and P(b) measurements for MO x-rays produced in Cl 16 + + Ar collisions at 20, 10 and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed

  17. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1982-01-01

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandens in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S/sup 6-16+/ on He and Ar at 6 to 20 MeV and P(b) measurements for MO x-rays produced in Cl 16 + + Ar collisions at 20, 10, and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed

  18. Characterization of Cs-Sb cathodes for high charge RF photoinjectors

    CERN Document Server

    AUTHOR|(CDS)2082505; Beghi, Marco

    Future accelerators such as CLIC (Compact LInear Collider), require high brightness electron beams that could be produced with a photoinjector (laser-driven electron source). Cs2Te photocathodes in combination with ultra-violet (UV) laser beams are currently used in many photoinjector facilities, but requirements to the electron sources for future accelerators like CLIC are more demanding. The main challenge for the CLIC drive beam photoinjector is to achieve high bunch charges (8.4 nC), high bunch repetition rates (500 MHz) within long trains (140 s) and with suciently long cathode lifetimes. In particular the laser pulse energy in UV, for such long pulse trains, is currently limited due to a degradation of the beam quality during the 4th harmonic frequency conversion process. Using the 2nd harmonic (green laser beam), provided it is matched with a low photoemission threshold photocathode material, would overcome this limitation. Cesium antimonide (Cs3Sb), being a photoemissive material in the visible range,...

  19. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.

    2013-12-27

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. How High Local Charge Carrier Mobility and an Energy Cascade in a Three-Phase Bulk Heterojunction Enable >90% Quantum Efficiency

    KAUST Repository

    Burke, Timothy M.; McGehee, Michael D.

    2013-01-01

    Charge generation in champion organic solar cells is highly efficient in spite of low bulk charge-carrier mobilities and short geminate-pair lifetimes. In this work, kinetic Monte Carlo simulations are used to understand efficient charge generation in terms of experimentally measured high local charge-carrier mobilities and energy cascades due to molecular mixing. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.