WorldWideScience

Sample records for slope stability

  1. Investigations of slope stability

    Energy Technology Data Exchange (ETDEWEB)

    Nonveiller, E.

    1979-01-01

    The dynamics of slope slides and parameters for calculating slope stability is discussed. Two types of slides are outlined: rotation slide and translation slide. Slide dynamics are analyzed according to A. Heim. A calculation example of a slide which occurred at Vajont, Yugoslavia is presented. Calculation results differ from those presented by Ciabatti. For investigation of slope stability the calculation methods of A.W. Bishop (1955), N. Morgenstern and M. Maksimovic are discussed. 12 references

  2. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    Science.gov (United States)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  3. Preliminary Slope Stability Study Using Slope/ W

    International Nuclear Information System (INIS)

    Nazran Harun; Mohd Abd Wahab Yusof; Kamarudin Samuding; Mohd Muzamil Mohd Hashim; Nurul Fairuz Diyana Bahrudin

    2014-01-01

    Analyzing the stability of earth structures is the oldest type of numerical analysis in geotechnical engineering. Limit equilibrium types of analyses for assessing the stability of earth slopes have been in use in geotechnical engineering for many decades. Modern limit equilibrium software is making it possible to handle ever-increasing complexity within an analysis. It is being considered as the potential method in dealing with complex stratigraphy, highly irregular pore-water pressure conditions, various linear and nonlinear shear strength models and almost any kind of slip surface shape. It allows rapid decision making by providing an early indication of the potential suitability of sites based on slope stability analysis. Hence, a preliminary slope stability study has been developed to improve the capacity of Malaysian Nuclear Agency (Nuclear Malaysia) in assessing potential sites for Borehole Disposal for Disused Sealed Radioactive Sources. The results showed that geometry of cross section A-A ' , B-B ' , C-C ' and D-D ' achieved the factor of safety not less than 1.4 and these are deemed acceptable. (author)

  4. The Hydromechanics of Vegetation for Slope Stabilization

    Science.gov (United States)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  5. Stability of Slopes Reinforced with Truncated Piles

    Directory of Open Access Journals (Sweden)

    Shu-Wei Sun

    2016-01-01

    Full Text Available Piles are extensively used as a means of slope stabilization. A novel engineering technique of truncated piles that are unlike traditional piles is introduced in this paper. A simplified numerical method is proposed to analyze the stability of slopes stabilized with truncated piles based on the shear strength reduction method. The influential factors, which include pile diameter, pile spacing, depth of truncation, and existence of a weak layer, are systematically investigated from a practical point of view. The results show that an optimum ratio exists between the depth of truncation and the pile length above a slip surface, below which truncating behavior has no influence on the piled slope stability. This optimum ratio is bigger for slopes stabilized with more flexible piles and piles with larger spacing. Besides, truncated piles are more suitable for slopes with a thin weak layer than homogenous slopes. In practical engineering, the piles could be truncated reasonably while ensuring the reinforcement effect. The truncated part of piles can be filled with the surrounding soil and compacted to reduce costs by using fewer materials.

  6. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  7. Slope stability radar for monitoring mine walls

    Science.gov (United States)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  8. Assessment and mapping of slope stability based on slope units: A ...

    Indian Academy of Sciences (India)

    Shallow landslide; infinite slope stability equation; return period precipitation; assessment; slope unit. ... 2010), logistic regression ... model to assess the hazard of shallow landslides ..... grating a fuzzy k-means classification and a Bayesian.

  9. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their assigned...

  10. Slope stabilization guide for Minnesota local government engineers.

    Science.gov (United States)

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  11. Slope Stability. CEGS Programs Publication Number 15.

    Science.gov (United States)

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  12. An alternative soil nailing system for slope stabilization: Akarpiles

    Science.gov (United States)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  13. Stability of the slopes around nuclear power plants in earthquake

    International Nuclear Information System (INIS)

    Ito, Hiroshi

    1983-01-01

    The evaluation of the stability of the slopes around the buildings of nuclear power plants is important especially with respect to earthquakes. In this connection, the behavior of a slope up to its destruction and the phenomena of the destruction have been examined in the case of an earthquake by both experiment and numerical analysis. The purpose is to obtain the data for the establishment of a method for evaluating the seismic stability of a slope and of the slope design standards. The following results are described: the behavior of a slope and its destruction characteristics in the slope destruction experiment simulating the seismic coefficient method; the vibration of a slope and its destruction characteristics in vibration destruction experiment; the validity of the method of numerical simulation analysis and of stability evaluation for the slope destruction and the vibration destruction experiments, and quantitative destruction mechanism; the comparison of the various stability evaluation methods and the evaluation of seismic forces. (Mori, K.)

  14. New possibilities for slope stability assessment of spoil banks

    Energy Technology Data Exchange (ETDEWEB)

    Radl, A [Palivovy Kombinat, Vresova (Czechoslovakia)

    1991-03-01

    Discusses problems associated with slope stability of spoil banks consisting of sedimentary rocks from brown coal surface mining. Effects of rock physical properties on slope stability are analyzed: grain size distribution, compression strength, moisture content, angle of internal friction, etc. Mechanism of plastic slope deformation which occurs during a landslide is evaluated. Formulae for calculating slope stability considering stress distribution in a spoil bank (including all the main factors that influence stresses) are derived. Practical use of the gamma-gamma logging and logging schemes used in geodetic surveys of unstable spoil banks in Czechoslovakia (the Vintirov spoil bank in the Sokolov brown coal district) are discussed. 5 refs.

  15. Infiltration on sloping terrain and its role on runoff generation and slope stability

    Science.gov (United States)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  16. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  17. Robustness for slope stability modelling under deep uncertainty

    Science.gov (United States)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  18. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    Science.gov (United States)

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  19. Coupling a 1D Dual-permeability Model with an Infinite Slope Stability Approach to Quantify the Influence of Preferential Flow on Slope Stability

    NARCIS (Netherlands)

    Shao, W.; Bogaard, T.A.; Su, Y.; Bakker, M.

    2016-01-01

    In this study, a 1D hydro-mechanical model was developed by coupling a dual-permeability model with an infinite slope stability approach to investigate the influence of preferential flow on pressure propagation and slope stability. The dual-permeability model used two modified Darcy-Richards

  20. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    Directory of Open Access Journals (Sweden)

    Gofar Nurly

    2017-01-01

    Full Text Available This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–pore-water pressure analysis to evaluate the effect of rainfall infiltration on the deformation and transient pore-water pressure on slope stability. Slope stability analyses were performed at some times during and after rainfall infiltration. Results show that the critical condition for slope made by sandy material was at the end of rainfall while for clayey material was at some specified times after the rainfall ceased. Unsaturated stability analysis on sandy soil gives higher factor of safety because the soil never reached saturation. Transient analysis using unsaturated soil concept could predict more critical condition of delayed failure of slopes made up of clayey soil.

  1. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Gillard, G.R.; Moore, T.A. [CRL Energy, PO Box 29-415, Christchurch (New Zealand); Campbell, R.N.; Fergusson, D.A. [Solid Energy North, Private Bag 502, Huntly (New Zealand)

    2001-01-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically by mechanical tests and discontinuity measurements. Using these measurements slope stability probability classifications (SSPC) have been quantified based on an adaptation of Hack's [Slope Stability Probability Classification, ITC Delft Publication, Enschede, Netherlands, vol. 43, 1998, 273 pp.] SSPC system, which places less influence on rock quality designation and unconfined compressive strength than previous slope/rock mass rating systems. The Hack weathering susceptibility rating has been modified by using chemical index of alteration values determined from XRF major element analyses. Slaking is an important parameter in slope stability in the Waikato Coal Measures lithologies and hence, a non-subjective method of assessing slaking in relation to the chemical index of alteration has been introduced. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The main modifications of Hack's SSPC system are the introduction of rock intact strength derived from the modified Mohr-Coulomb failure criterion, which has been adapted for varying moisture content, weathering state and confining pressure. It is suggested that the subjectivity in assessing intact rock strength within broad bands in the initial SSPC system is a major weakness of the initial system. Initial results indicate a close relationship between rock mass strength values, calculated from rock mass friction angles and rock mass cohesion values derived from two established rock mass classification methods (modified Hoek-Brown failure criteria and MRMR) and the adapted SSPC system. The advantage of the modified SSPC system is that slope stability probabilities based on discontinuity-independent and discontinuity-dependent data and a

  2. Assessing slope stability in unplanned settlements in developing countries.

    Science.gov (United States)

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments.

  3. Dynamic stability and failure modes of slopes in discontinuous rock mass

    International Nuclear Information System (INIS)

    Shimizu, Yasuhiro; Aydan, O.; Ichikawa, Yasuaki; Kawamoto, Toshikazu.

    1988-01-01

    The stability of rock slopes during earthquakes are of great concern in rock engineering works such as highway, dam, and nuclear power station constructions. As rock mass in nature is usually discontinuous, the stability of rock slopes will be geverned by the spatial distribution of discontinuities in relation with the geometry of slope and their mechanical properties rather than the rock element. The authors have carried out some model tests on discontinuous rock slopes using three different model tests techniques in order to investigate the dynamic behaviour and failure modes of the slopes in discontinuous rock mass. This paper describes the findings and observations made on model rock slopes with various discontinuity patterns and slope geometry. In addition some stability criterions are developed and the calculated results are compared with those of experiments. (author)

  4. On Front Slope Stability of Berm Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    2013-01-01

    The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison...... with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model...... test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height...

  5. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    Science.gov (United States)

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  6. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Science.gov (United States)

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  7. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    Directory of Open Access Journals (Sweden)

    Roohollah Kalatehjari

    2014-01-01

    Full Text Available Over the last few years, particle swarm optimization (PSO has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D slope stability analysis. This paper applied PSO in three-dimensional (3D slope stability problem to determine the critical slip surface (CSS of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  8. Numerical computation of homogeneous slope stability.

    Science.gov (United States)

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  9. A more general model for the analysis of the rock slope stability

    Indian Academy of Sciences (India)

    slope stability analysis, the joint surfaces are assumed to be continuous along the potential ... of rock slope stability has many applications in the design of rock slopes, roofs and walls of .... cases the wedge failure analysis can be applied.

  10. Numerical Computation of Homogeneous Slope Stability

    Directory of Open Access Journals (Sweden)

    Shuangshuang Xiao

    2015-01-01

    Full Text Available To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM and particle swarm optimization algorithm (PSO to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759 were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS.

  11. Slope Stability of Geosynthetic Clay Liner Test Plots

    Science.gov (United States)

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  12. A new design equation for drained stability of conical slopes in cohesive-frictional soils

    Directory of Open Access Journals (Sweden)

    Boonchai Ukritchon

    2018-04-01

    Full Text Available New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied, i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules. Keywords: Limit analysis, Slope stability, Conical slope, Unsupported excavation, Cohesive-frictional soils

  13. Infinite slope stability under steady unsaturated seepage conditions

    Science.gov (United States)

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  14. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    Science.gov (United States)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  15. Research on the stability evaluation of slope

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    In order to create the guideline corresponding to a new regulatory standard, such as criteria in the ground-slope stability evaluation method, we have conducted an analysis and discussion of the shaking table test results using a large slope model. As a result, it was found that in that phase of the vertical motion and the horizontal motion affects the amplification characteristics of the ground motion, need to be considered in assessing the safety of the slope and the influence of the phase difference amplification or local. We also conduct a study on countermeasure construction slope by shaking table test, the effect of the countermeasure construction of pile and anchors deterrence could be confirmed. Focusing on the new method can reproduce the behavior of large deformation and discontinuity, with respect to the advancement of slope analysis, we identify issues on the maintenance and code applicability of each analysis method. (author)

  16. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    Science.gov (United States)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  17. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  18. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    Science.gov (United States)

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  19. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    Science.gov (United States)

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  20. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    Science.gov (United States)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  1. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    Science.gov (United States)

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  2. Probabilistic approaches for geotechnical site characterization and slope stability analysis

    CERN Document Server

    Cao, Zijun; Li, Dianqing

    2017-01-01

    This is the first book to revisit geotechnical site characterization from a probabilistic point of view and provide rational tools to probabilistically characterize geotechnical properties and underground stratigraphy using limited information obtained from a specific site. This book not only provides new probabilistic approaches for geotechnical site characterization and slope stability analysis, but also tackles the difficulties in practical implementation of these approaches. In addition, this book also develops efficient Monte Carlo simulation approaches for slope stability analysis and implements these approaches in a commonly available spreadsheet environment. These approaches and the software package are readily available to geotechnical practitioners and alleviate them from reliability computational algorithms. The readers will find useful information for a non-specialist to determine project-specific statistics of geotechnical properties and to perform probabilistic analysis of slope stability.

  3. Saturated and unsaturated stability analysis of slope subjected to rainfall infiltration

    OpenAIRE

    Gofar Nurly; Rahardjo Harianto

    2017-01-01

    This paper presents results of saturated and unsaturated stability analysis of typical residual slopes subjected to rainfall infiltration corresponds to 50 years rainfall return period. The slope angles considered were 45° and 70°. The saturated stability analyses were carried out for original and critical ground water level commonly considered by practicing engineer. The analyses were conducted using limit equilibrium method. Unsaturated stability analyses used combination of coupled stress–...

  4. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    Science.gov (United States)

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  5. Postural Stability Margins as a Function of Support Surface Slopes.

    Science.gov (United States)

    Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  6. Delay-slope-dependent stability results of recurrent neural networks.

    Science.gov (United States)

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  7. Using three-dimensional plant root architecture in models of shallow-slope stability.

    Science.gov (United States)

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  8. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-01-01

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysis (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area

  9. Slope stability probability classification, Waikato Coal Measures, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, P.; Campbell, R.; Fergusson, D.A.; Ferm, J.C.; Gillard, G.R.; Moore, T.A. [CRL Energy Ltd., Christchurch (New Zealand)

    1999-07-01

    Ferm classified lithological units have been identified and described in the Waikato Coal Measures in open pits in the Waikato coal region. These lithological units have been classified geotechnically with mechanical tests and discontinuity measurements. Using these measurements, slope stability probability classification (SSPC) have been quantified based on an adaption of Hack's SSPC system which places less influence on rock quality designation and unconfined compressive strength than previous rock mass rating systems. An attempt has been made to modify the Hack weathering susceptibility rating by using chemical index of alteration values from XRF major element analysis. Another major component of this adapted SSPC system is the inclusion of rock moisture content effects on slope stability. The paper explains the systematic initial approach of using the adapted SSPC system to classify slope stability in the Waikato open pit coal mines. The XRF major element results obtained for lithologies in the Waikato coal region may be a useful mine management tool to quantify stratigraphic thickness and palaeoweathering from wash drill cuttings. 14 refs., 7 figs., 3 tabs.

  10. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  11. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    Science.gov (United States)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  12. Postural Stability Margins as a Function of Support Surface Slopes.

    Directory of Open Access Journals (Sweden)

    Aviroop Dutt-Mazumder

    Full Text Available This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe Down, 0° Flat and 10°, 20°, 25° Facing (Toe Up and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length had least motion at the baseline (0° Flat platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  13. Slope Stability Estimation of the Kościuszko Mound in Cracow

    Science.gov (United States)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  14. Quantification of Urban Environment's Role in Slope Stability for Landslide Events.

    Science.gov (United States)

    Bozzolan, E.; Holcombe, E.; Wagener, T.; Pianosi, F.

    2017-12-01

    The combination of a rapid and unplanned urban development with a likely future climate change could significantly affect landslide occurrences in the humid tropics, where rainfall events of high intensity and duration are the dominant trigger for landslide risk. The attention of current landslide hazard studies is largely focussed on natural slope processes based on combinations of environmental factors, excluding the role of urbanisation on slope stability. This project aims to understand the relative influence of urbanisation features on local slope stability and to translate the findings to a wider region. Individual slopes are firstly analysed with the software CHASM, a physically based model which combines soil hydrology and slope stability assessment. Instead of relying on existing records, generally lacking for landslides, ranges of plausible preparatory (such as slope, cohesion, friction angles), triggering (rainfall) and aggravating factors (deforestation, house density and water network) are defined and possible combinations of these factors are created by sampling from those ranges. The influence of urban features on site hydrology and stability mechanisms are evaluated and then implemented in denser urban contexts, characteristic of unplanned settlements. The results of CHASMS can be transferred to regional maps in order to identify the areas belonging to the triggering combinations of factors previously found. In this way, areas susceptible to landslides can be detected not only in terms of natural factors but also in relation to the degree of urbanisation. Realistic scenarios can be extrapolated from the areas considered and then analysed again with CHASM. This permits to adapt (and improve) the initial variability ranges of the factors, creating a general-specific cycle able to identify the landslide susceptibility regions and outline a hazard map. Once the triggers are understood, possible consequences can be assessed and mitigation strategies can

  15. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Watanabe, Hiroyuki

    1982-01-01

    As a series of the research on the seismic stabilities of a large scale slope surrounding the Nuclear Power Plant, the numerical simulation and analytical stability calculation are conducted in order to clarify the applicability of static stability evaluation method (conventional circular arc slip method, static non-linear F.E. analysis) and dynamic one (2-dimensional dynamic F.E. analysis). The discussions on these slope stability methods are done and the followings are clarified, i) The results of numerical simulation by dynamic F.E. analysis concerning the response property and the failure mode are qualitatively corresponded with the behaviour of dynamic failure test. ii) From the results of static and dynamic stability analysis, it is concluded that the conventional circular arc slip method gives the severest evaluation for slope stability. iii) It is proposed that the seismic coefficient for static slope stability analysis should be used the value of the equivalent instant acceleration. (author)

  16. Rainfall Reliability Evaluation for Stability of Municipal Solid Waste Landfills on Slope

    Directory of Open Access Journals (Sweden)

    Fu-Kuo Huang

    2013-01-01

    Full Text Available A method to assess the reliability for the stability of municipal solid waste (MSW landfills on slope due to rainfall infiltration is proposed. Parameter studies are first done to explore the influence of factors on the stability of MSW. These factors include rainfall intensity, duration, pattern, and the engineering properties of MSW. Then 100 different combinations of parameters are generated and associated stability analyses of MSW on slope are performed assuming that each parameter is uniform distributed around its reason ranges. In the following, the performance of the stability of MSW is interpreted by the artificial neural network (ANN trained and verified based on the aforementioned 100 analysis results. The reliability for the stability of MSW landfills on slope is then evaluated and explored for different rainfall parameters by the ANN model with first-order reliability method (FORM and Monte Carlo simulation (MCS.

  17. Title Qualitative stability assessment of cut slopes along the national ...

    Indian Academy of Sciences (India)

    64

    Qualitative stability assessment of cut slopes along the national highway- 05 around Jhakri area, .... The rock types in the area are augen migmatite, biotite gneiss, quartz ..... slopes using quantified method (Sonmez and Ulusay 1999, 2002). Finally a .... through numerical simulation is suggested by many researchers. 1. 2. 3.

  18. Impact of Crack on Stability of Slope with Linearly Increasing Undrained Strength

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available This paper presents a procedure for assessment of the impact of tension crack on stability of slope in clays with linearly increasing undrained strength. The procedure is based on the limit equilibrium method with variational extremization. The distribution of the normal stress over slip surface is mathematically obtained for slopes in clays with the linearly increasing undrained strength and then used to determine the tension crack for clays with zero tensile strength. The seismic effect is also included using the pseudostatic approach. Closed-form solutions to the minimum safety factor and the maximum crack depth can be derived and given in the form of chart for convenient use. The results demonstrate a significant effect of the tension crack on the stability of steep slopes, especially for strong seismic conditions. In this situation, neglecting the impact of tension crack in traditional ϕ=0 analyses may overestimate the slope safety. The most adverse location of the tension crack can be also determined and presented in the charts, which may be useful in designing reinforcements and remedial measures for slope stabilization.

  19. Geological hazards investigation - relative slope stability map

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dae Suk; Kim, Won Young; Yu, Il Hyon; Kim, Kyeong Su; Lee, Sa Ro; Choi, Young Sup [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    The Republic of Korea is a mountainous country; the mountains occupy about three quarters of her land area, an increasing urban development being taken place along the mountainside. For the reason, planners as well as developers and others must realize that some of the urban areas may be threaten by geologic hazards such as landslides and accelerated soil and rock creeps. For the purpose of environmental land-use planning, a mapping project on relative slope-stability was established in 1996. The selected area encompasses about 5,900 km{sup 2} including the topographic maps of Ulsan, Yongchon, Kyongju, Pulguksa, and Kampo, all at a scale of 1:50,000. Many disturbed and undisturbed soil samples, which were collected from the ares of the landslides and unstable slopes, were tested for their physical properties and shear strength. They were classified as GC, SP, SC, SM, SP-SM, SC-SM, CL, ML, and MH according to the Unified Soil Classification System, their liquid limit and plasticity index ranging from 25.3% to as high as 81.3% and from 4.1% to 41.5%, respectively. X-ray analysis revealed that many of the soils contained a certain amount of montmorillonite. Based on the available information as well as both field and laboratory investigation, it was found out that the most common types of slope failures in the study area were both debris and mud flows induced by the heavy rainfalls during the period of rainy season; the flows mostly occurred in the colluvial deposits at the middle and foot of mountains. Thus the deposits generally appear to be the most unstable slope forming materials in the study area. Produced for the study area were six different maps consisting of slope classification map, soil classification map, lineament density map, landslide distribution map, zonal map of rainfall, and geology map, most of them being stored as data base. Using the first four maps and GIS, two sheets of relative slope-stability maps were constructed, each at a scale of 1

  20. Dynamic and Static Combination Analysis Method of Slope Stability Analysis during Earthquake

    OpenAIRE

    Liang Lu; Zongjian Wang; Xiaoyuan Huang; Bin Zheng; Katsuhiko Arai

    2014-01-01

    The results of laboratory model tests for simulating the slope failure due to vibration, including unreinforced slope and the slope reinforced by using geotextile, show that the slope failure occurs when a cumulative plastic displacement exceeds a certain critical value. To overcome the defects of conventional stability analysis, which evaluates the slope characteristics only by its strength parameters, a numerical procedure considering the stiffness and deformation of materials and geosynthe...

  1. Seismic slope stability of embankments: a comparative study on EC8 provisions

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Y.; Psarropoulos, P.N.

    2011-01-01

    According to EC8 provisions, seismic stability assessment of natural slopes is currently performed based on simplified methods i.e. the pseudostatic and the Newmark’s sliding block method. The application of these methods requires the beforehand consideration of major assumptions necessary...... for the selection of either the seismic coefficient or the acceleration time history of the rigid block. Although both ULS and SLS are defined according to acceptable level of deformations at the slope, the assigned level of displacements is not clarified. In the current study the seismic slope stability...

  2. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    Science.gov (United States)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  3. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    Science.gov (United States)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  4. "A Comparison of Several Methods in a Rock Slope Stability ...

    African Journals Online (AJOL)

    This researchuses the mentioned methods and principles in the stability analysis of some rock slopes in an open pit mine in Syria, that is Khneifees phosphate mine. The importance of this researchis that it shows the role of kinematical analysis in minimizing efforts when verifying the safety of rock slopes in site, and when ...

  5. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    Science.gov (United States)

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  6. Bioengineering case studies sustainable stream bank and slope stabilization

    CERN Document Server

    Goldsmith, Wendi; McCullah, John

    2014-01-01

    This unique volume describes and evaluates 30 projects from across the United States where bio-stabilization was employed to address a detrimental naturally occurring process or byproduct of the built environment. Bio-stabilization (or soil bioengineering) refers to the use of plant materials, primarily live cuttings, arranged in the ground in different arrays to reinforce soils and protect upland slopes and/or stream banks against surficial erosion and shallow slope failures. Examples included in the collection represent different regions of the country and their specific conditions and challenges. Each project is illustrated with a number of distinctive photographs to support the reader's understanding and showcase the wide scope of projects and techniques presented. This book also: ·         Presents a range of well-documented case studies on key techniques and best practices for bio-stabilization projects ·         Emphasizes evaluation and comparison of different techniques and challeng...

  7. The long-term hydrological effect of forest stands on the stability of slopes

    Science.gov (United States)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  8. Overtopping And Rear Slope Stabillity Of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk; Lykke Andersen, Thomas

    2003-01-01

    An experimental study of overtopping and rear slope stability of reshaping breakwaters has been carried out. The variation of those two parameters with crest width, crest freeboard and sea state was investigated. The tests showed that the variation in overtopping discharge with crest freeboard...

  9. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    OpenAIRE

    Rahardjo Harianto; Satyanaga Alfrendo; Leong Eng Choon

    2016-01-01

    Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in d...

  10. Stability Analysis Method for Rock Slope with an Irregular Shear Plane Based on Interface Model

    Directory of Open Access Journals (Sweden)

    Changqing Qi

    2018-01-01

    Full Text Available Landslide developed in rock mass usually has irregular shear plane. An approach for calculating distributed factor of safety of the irregular shear plane was put forward in this paper. The presented method can obtain not only the detailed stability status at any grid node of a complex shear plane but also the global safety of the slope. Thus, it is helpful to thoroughly understand the mechanism of slope failure. Comparing with the result obtained through the limit equilibrium method, the presented method was proved to be more accurate and suitable for stability analysis of rock slope with a thin shear plane. The stability of a potentially unstable rock slope was analyzed based on the presented method at the end of this paper. The detailed local stability, global stability, and the potential failure mechanism were provided.

  11. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  12. Stability of nuclear crater slopes in rock

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  13. Qualitative stability assessment of cut slopes along the National ...

    Indian Academy of Sciences (India)

    Jagadish Kundu

    2017-11-23

    Nov 23, 2017 ... Landslide is the most common hazard in the state. Every year ... table 2. 3. Stability evaluation (qualitative) ..... the slopes using quantified method (Sonmez and ..... Research to Engineering, Proceedings of the 2nd Interna-.

  14. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)

    International Nuclear Information System (INIS)

    Choobbasti, A J; Farrokhzad, F; Barari, A

    2009-01-01

    Investigations of failures of soil masses are subjects touching both geology and engineering. These investigations call the joint efforts of engineering geologists and geotechnical engineers. Geotechnical engineers have to pay particular attention to geology, ground water, and shear strength of soils in assessing slope stability. Artificial neural networks (ANNs) are very sophisticated modeling techniques, capable of modeling extremely complex functions. In particular, neural networks are nonlinear. In this research, with respect to the above advantages, ANN systems consisting of multilayer perceptron networks are developed to predict slope stability in a specified location, based on the available site investigation data from Noabad, Mazandaran, Iran. Several important parameters, including total stress, effective stress, angle of slope, coefficient of cohesion, internal friction angle, and horizontal coefficient of earthquake, were used as the input parameters, while the slope stability was the output parameter. The results are compared with the classical methods of limit equilibrium to check the ANN model's validity. (author)

  15. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Science.gov (United States)

    2010-10-22

    ...] Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal... the final Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities, which... facilities threatened by landslides or slope failures; as well as the eligibility of permanent repairs to...

  16. Impact of weathering on slope stability in soft rock mass

    Directory of Open Access Journals (Sweden)

    Predrag Miščević

    2014-06-01

    Full Text Available Weathering of soft rocks is usually considered as an important factor in various fields such as geology, engineering geology, mineralogy, soil and rock mechanics, and geomorphology. The problem of stability over time should be considered for slopes excavated in soft rocks, in case they are not protected against weathering processes. In addition to disintegration of material on slope surface, the weathering also results in shear strength reduction in the interior of the slope. Principal processes in association with weathering are discussed with the examples of marl hosted on flysch formations near Split, Croatia.

  17. Bioengineering Techniques for Soil Erosion Protection and Slope Stabilization

    OpenAIRE

    Julia Georgi; Ioannis Stathakopoulos

    2006-01-01

    The use of bio-engineering methods for soil erosion protection and slope stabilization has a long tradition. Old methods with rocks and plants, structures of timber have been used over the past centuries. Recently these old soil conservation and stabilization techniques have been rediscovered and improved. Biotechnical engineering methods have become part of geotechnical and hydraulic engineering and have helped bridge the gap between classical engineering disciplines, land use management, la...

  18. Experimental research on stability of covering blocks for sloping banks

    International Nuclear Information System (INIS)

    Okuno, Toshihiko

    1988-01-01

    In the case of constructing thermal and nuclear power stations facing open seas, usually the harbors for unloading fuel and others are constructed. In Japan, breakwaters are installed in the places of relatively shallow depth less than 20 m, and in such case, the sloping banks having the covering material of wave-controlling blocks made of concrete are mostly adopted as those are excellent in their function and economical efficiency, and are advantageous in the maintenance and management. Sloping banks are of such type that wave-controlling blocks cover the vertical front face of nonpermeating caissons, and the same type was adopted for breakwaters and others in Onagawa Nuclear Power Station, Tohoku Electric Power Co., Inc. As for the wave-controlling blocks, tetrapods and shake blocks were used. One of the most important problems in the design of sloping banks is how to estimate the stability of wave controlling blocks. In this paper, the results of the examination by hydraulic model experiment on the stability of covering blocks are reported, which are useful as the basic data for the rational and economical design of sloping banks. The experimental setup and a model bank, the generation of experimental waves and their characteristics, the experimental conditions and experimental method, and the results are reported. (Kako, I.)

  19. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    Science.gov (United States)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil properties indicate that the primary method of downslope transport is largely due to tree throw and faunal burrowing. Onset of slope instability at 40-30 ka appears to

  20. Analysis of the parameters involved in the design of slope stabilizing dowels

    International Nuclear Information System (INIS)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-01-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  1. Seismic Stability of Reinforced Soil Slopes

    DEFF Research Database (Denmark)

    Tzavara, I.; Zania, Varvara; Tsompanakis, Y.

    2012-01-01

    Over recent decades increased research interest has been observed on the dynamic response and stability issues of earth walls and reinforced soil structures. The current study aims to provide an insight into the dynamic response of reinforced soil structures and the potential of the geosynthetics...... to prevent the development of slope instability taking advantage of their reinforcing effect. For this purpose, a onedimensional (SDOF) model, based on Newmark’s sliding block model as well as a two-dimensional (plane-strain) dynamic finite-element analyses are conducted in order to investigate the impact...

  2. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    Directory of Open Access Journals (Sweden)

    Yanlong Chen

    2017-01-01

    Full Text Available To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mechanical parameters of soft rock significantly. With the increase of moisture content, cohesion of frozen soft rock specimens presents a quadratic function decrease and the internal friction angle shows a negative exponential decrease. The stability coefficient of soft rock material slope in seasonal freeze soil area declines continuously. With the increase of freezing and thawing cycle, both cohesion and internal friction angle of soft rock decrease exponentially. The higher the moisture content, the quicker the reduction. Such stability coefficient presents a negative exponential reduction. After three freezing and thawing cycles, the slope stability coefficient only changes slightly. Findings were finally verified by the filed database.

  3. Comparison of slope stability in two Brazilian municipal landfills.

    Science.gov (United States)

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  4. Parametric study on the effect of rainfall pattern to slope stability

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2017-01-01

    Full Text Available Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also observed. The analyses were conducted with SEEP/W for the seepage and SLOPE/W for the slope stability. It is found that the lowest FS for gentle slope is reached under the application of advanced rainfall pattern and the lowest FS for steep slope is reached under the application of delayed rainfall pattern. Reduction of FS is known to be the largest for gentle slope rather than steep slope due to negative pore water pressure reduction and the rising of ground water level. The largest FS reduction caused by rainfall was achieved for gentle slope under advanced rainfall pattern.

  5. Preliminary Analysis of Slope Stability in Kuok and Surrounding Areas

    Directory of Open Access Journals (Sweden)

    Dewandra Bagus Eka Putra

    2016-12-01

    Full Text Available The level of slope influenced by the condition of the rocks beneath the surface. On high level of slopes, amount of surface runoff and water transport energy is also enlarged. This caused by greater gravity, in line with the surface tilt from the horizontal plane. In other words, topsoil eroded more and more. When the slope becomes twice as steep, then the amount of erosion per unit area be 2.0 - 2.5 times more. Kuok and surrounding area is the road access between the West Sumatra and Riau which plays an important role economies of both provinces. The purpose of this study is to map the locations that have fairly steep slopes and potential mode of landslides. Based on SRTM data obtained,  the roads in Kuok area has a minimum elevation of + 33 m and a maximum  + 217.329 m. Rugged road conditions with slope ranging from 24.08 ° to 44.68 ° causing this area having frequent landslides. The result of slope stability analysis in a slope near the Water Power Plant Koto Panjang, indicated that mode of active failure is toppling failure or rock fall and the potential zone of failure is in the center part of the slope.

  6. Influence of slope and gradation on rip rap stability and degradation mechanisms

    International Nuclear Information System (INIS)

    Lefebvre, G.; Rohan, K.; Belfahdel, M. B.

    1997-01-01

    A major investigation was undertaken at the La Grande hydroelectric complex with some 220 dikes and dams to study rip rap stability and repair. Degradation mechanisms were also studied under laboratory conditions to verify the main field study conclusions and to test different repair techniques. The result of both laboratory and field observation was that rip rap gradation has only marginal effect on slope stability and degradation mechanisms. On the other hand, the inclusion of even a small fraction of fine blocks (as little as 10 per cent) into the rip rap was shown to be very detrimental to the stability of steep rip rap but only marginally effective on flat slopes. 15 refs., 8 figs

  7. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    Science.gov (United States)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  8. Impact of Rain Water Infiltration on the Stability of Earth Slopes

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq Ahmed

    2016-12-01

    Full Text Available Slope failure occurs very often in natural and man-made slopes which are subjected to frequent changes in ground water level, rapid drawdown, rainfall and earthquakes. The current study discusses the significance of water infiltration, pore water pressure and degree of saturation that affect the stability of earth slopes. Rainwater infiltration not only mechanically reduces the shear strength of a slope material, but also chemically alters the mineral composition of the soil matrix. It results in the alteration of macro structures which in turn decreases the factor of safety. A few case studies are discussed in this paper to quantitatively observe the variation in factor of safety (FOS of various earth slopes by changing the degree of saturation. The results showed that most of the earth slopes get failed or become critical when the degree of saturation approaches to 50 % or more.

  9. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    Science.gov (United States)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  10. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    Science.gov (United States)

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  11. Stability of infinite slopes under transient partially saturated seepage conditions

    Science.gov (United States)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  12. Grouting design for slope stability of kedung uling earthfill dam

    Directory of Open Access Journals (Sweden)

    Najib

    2018-01-01

    Full Text Available Kedung Uling earthfill dam locates at Wonogiri Regency, Central Java, Indonesia. The dam encountered sliding and settlement at the embankment wall. To minimize sliding and settlement and to optimize the dam, both field investigation and laboratory tests have been proceeded for slope stability analysis and remedial embankment wall. Soil and rock investigation around the dam, which is followed by 10 core drillings, have been conducted. Laboratory tests such as direct shear and index properties have also been carried on. The results were further used for dam slope stability model using slide 6.0 and were used to analyzed factor of safety (FS of Kedunguling dam. 10 conditions of dam were simulated and strengthening body of dam with grouting was designed. The results showed two conditions, which are condition of maximum water level with and without earthquake at downstream, were unsatisfy Indonesia National Standard (SNI for building and infrastructure. These conditions can be managed by using grouting for increasing stabilization of embankment wall. By setting up grouting, factor of safety increases and meet the SNI standard requirement.

  13. Overtopping and Rear Slope Stability of Reshaping & Non-reshaping Berm Breakwaters

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, H. F.

    2004-01-01

    Overtopping and rear slope stability of reshaping and non-reshaping berm breakwaters have been studied in a wave flume. A total of 695 tests have been performed to cover the influence of crest freeboard, crest width, berm width, berm elevation, stone size and sea state. Formula for average...... overtopping discharge that includes these parameters has been derived. The measurements show good correlation between average overtopping discharge and rear slope damage....

  14. Pore water pressures and slope stability: a joint geophysical and geotechnical analysis

    International Nuclear Information System (INIS)

    Perrone, Angela; Lapenna, Vincenzo; Vassallo, Roberto; Maio, Caterina Di

    2008-01-01

    Slope stability is influenced by many factors, among which are subsoil structure and pore water pressure distribution. This paper presents a multi-disciplinary approach for the determination of these two factors and for the construction of a reliable model of the subsoil for the slope stability analysis. The case of a clay slope located in the Southern Apennines (Italy) is presented and discussed. Geophysical imaging (2D electrical resistivity tomography—ERT), in situ geotechnical monitoring (measurements of pore pressures and horizontal displacements) and laboratory geotechnical tests (for the determination of index, hydraulic and mechanical properties of soils) have been carried out. The comparison and the integration between ERT images and direct observations of the material extracted from boreholes have allowed us to reconstruct the subsoil stratigraphy with continuity. Thus, a reliable 2D model of the subsoil has been obtained, with well-defined boundaries on which it has been possible to apply appropriate hydraulic conditions. This geotechnical model has been used for studying the pore water pressure distribution and for analysing how the hydraulic boundary conditions—among which rain events—influence the slope stability. Our findings demonstrate the powerful skill of the ERT, if integrated with borehole data, to generate an accurate subsoil model. It is also evident that geophysical imaging can be a source of ambiguity and misjudgement if interpreted without a comparison with geotechnical data

  15. Case studies of slope stability radar used in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Noon, D. [GroundProbe Pty Ltd., South Brisbane, Qld. (Australia)

    2005-07-01

    This paper presents case studies about how the Slope Stability Radar (SSR) system provided adequate warning to safeguard people and equipment prior to highwall and low wall failure at two Australian coal mines. At Drayton mine, the SSR was able to provide the mine with sufficient warning to move the shovel and trucks away from the highwall, while personnel safely watched 50,000 tonnes of bulk material coming down from the wall. At Mt Owen mine, the SSR alarm allowed the mine to evacuate equipment and personnel four hours prior to a 30,000,000 tonne low wall failure. These two case studies demonstrate how the SSR system was able to continuously monitor the stability of these critical slopes, enabling greater mine productivity whilst maintaining the highest quality of safety. 2 refs., 7 figs., 1 tab.

  16. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    Science.gov (United States)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  17. Seismic stability analysis of rock slopes by yield design theory using the generalized Hoek-Brown criterion

    Directory of Open Access Journals (Sweden)

    Belghali Mounir

    2018-01-01

    Full Text Available The stability of rock slope is studied using the kinematic approach of yield design theory, under the condition of plane strain and by considering the last version of the Hoek-Brown failure criterion. This criterion, which is suitable to intact rock or rock mass highly fractured regarded as isotropic and homogeneous, is widely accepted by the rock mechanics community and has been applied in numerous projects around the world. The failure mechanism used to implement the kinematic approach is a log-spiral rotational mechanism. The stability analysis is carried out under the effects of gravity forces and a surcharge applied along the upper plateau of the slope. To take account of the effects of forces developed in the rock mass during the passage of a seismic wave, the conventional pseudo-static method is adopted. This method is often used in slope stability study for its simplicity and efficiency to simulate the seismic forces. The results found are compared with published numerical solutions obtained from other approaches. The comparison showed that the results are almost equal. The maximum error found is less than 1%, indicating that this approach is effective for analyzing the stability of rock slopes. The relevance of the approach demonstrated, investigations are undertaken to study the influence of some parameters on the stability of the slope. These parameters relate to the mechanical strength of the rock, slope geometry and loading.

  18. Effect of variations in rainfall intensity on slope stability in Singapore

    OpenAIRE

    Christofer Kristo; Harianto Rahardjo; Alfrendo Satyanaga

    2017-01-01

    Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall d...

  19. Determination of stability of epimetamorphic rock slope using Minimax Probability Machine

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2016-01-01

    Full Text Available The article employs Minimax Probability Machine (MPM for the prediction of the stability status of epimetamorphic rock slope. The MPM gives a worst-case bound on the probability of misclassification of future data points. Bulk density (d, height (H, inclination (β, cohesion (c and internal friction angle (φ have been used as input of the MPM. This study uses the MPM as a classification technique. Two models {Linear Minimax Probability Machine (LMPM and Kernelized Minimax Probability Machine (KMPM} have been developed. The generalization capability of the developed models has been checked by a case study. The experimental results demonstrate that MPM-based approaches are promising tools for the prediction of the stability status of epimetamorphic rock slope.

  20. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  1. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    Science.gov (United States)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  2. SOSlope: a new slope stability model for vegetated hillslopes

    Science.gov (United States)

    Cohen, D.; Schwarz, M.

    2016-12-01

    Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of

  3. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    Science.gov (United States)

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  4. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  5. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  6. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    Science.gov (United States)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  7. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    Science.gov (United States)

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  8. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.

    Directory of Open Access Journals (Sweden)

    F. Giadrossich

    2009-09-01

    Full Text Available The present paper deals with the root system's characteristics of Spanish Broom (Spartium junceum L., a species whose capacity for adaptating and resisting to drought is worth investigating. In particular, the aims of the study were 1 to investigate the plant's bio-mechanical aspects and 2 to verify whether root reinforcement and the field rooting ability of stem cuttings enhance its potential for use in slope stabilization and soil bio-engineering techniques, particularly in the Mediterranean areas. Single root specimens were sampled and tested for tensile strength, obtaining classic tensile strength-diameter relationships. Analysis were performed on the root systems in order to assess root density distribution. The Root Area Ratio (RAR was analyzed by taking both direct and indirect measurements, the latter relying on image processing. The data obtained were used to analyze the stability of an artificial slope (landfill and the root reinforcement. The measurement and calculation of mean root number, mean root diameter, RAR, root cohesion and Factor of safety are presented in order to distinguish the effect of plant origin and propagation. Furthermore, tests were performed to assess the possibility of agamic propagation (survival rate of root-ball endowed plants, rooting from stem cuttings. These tests confirmed that agamic propagation is difficult, even though roots were produced from some buried stems, and for practical purposes it has been ruled out. Our results show that Spanish Broom has good bio-mechanical characteristics with regard to slope stabilization, even in critical pedoclimatic conditions and where inclinations are quite steep, and it is effective on soil depths up to about 50 cm, in agreement with other studies on Mediterranean species. It is effective in slope stabilization, but less suitable for soil bio-engineering or for triggering natural plant succession.

  9. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    Science.gov (United States)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  10. Evaluating the Effect of Rainfall Infiltration on the Slope Stability of T16 tower of Taipei Mao-kong Gondola by Numerical Methods

    Science.gov (United States)

    RUNG, J.

    2013-12-01

    In this study, a series of rainfall-stability analyses were performed to simulate the failure mechanism and the function of remediation works of the down slope of T-16 tower pier, Mao-Kong gondola (or T-16 Slope) at the hillside of Taipei City using two-dimensional finite element method. The failure mechanism of T-16 Slope was simulated using the rainfall hyetograph of Jang-Mi typhoon in 2008 based on the field investigation data, monitoring data, soil/rock mechanical testing data and detail design plots of remediation works. Eventually, the numerical procedures and various input parameters in the analysis were verified by comparing the numerical results with the field observations. In addition, 48 hrs design rainfalls corresponding to 5, 10, 25 and 50 years return periods were prepared using the 20 years rainfall data of Mu-Zha rainfall observation station, Central Weather Bureau for the rainfall-stability analyses of T-16 Slope to inspect the effect of the compound stabilization works on the overall stability of the slope. At T-16 Slope, without considering the longitudinal and transverse drainages on the ground surface, there totally 4 types of stabilization works were installed to stabilize the slope. From the slope top to the slope toe, the stabilization works of T-16 Slope consists of RC-retaining wall with micro-pile foundation at the up-segment, earth anchor at the up-middle-segment, soil nailing at the middle-segment and retaining pile at the down-segment of the slope. The effect of each individual stabilization work on the slope stability under rainfall condition was examined and evaluated by raising field groundwater level.

  11. Assessment of Slope Stability and Interference of Structures Considering Seismity in Complex Engineering-Geological Conditions Using the Method of Finite Elements

    International Nuclear Information System (INIS)

    Menabdishvili, Papuna; Eremadze, Nelly

    2008-01-01

    There is elaborated the calculation model of slope deformation mode stability and the methodic of calculation considering the interference of structures to be built on it using the method of finite elements. There is examined the task of slope stability using the soil physically nonlinear finite element considering the seismicity 8. The deformation mode and field of coefficients of stability are obtained and slope supposed sliding curve is determined. The elaborated calculation methodic allows to determine the slope deformation mode, stability and select the optimum version of structure foundation at any slant and composition of slope layers

  12. Stability analysis and hazard assessment of the northern slopes of San Vicente Volcano in central El Salvador

    Science.gov (United States)

    Smith, Daniel M.

    Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.

  13. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Yeh

    2018-04-01

    Full Text Available In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the Mann–Kendall test and the Theil–Sen estimator were used to analyze the rainfall records of rainfall stations at Da-Dong-Shan, Ma-To-Shan, and San-Jiao-Nan-Shan. The rainfall intensity of the Zengwen reservoir catchment area showed an increasing trend from 1990–2016. In addition, the analysis results of rainfall intensity trends were used for qualitative analysis of seepage and slope stability. The trend analysis result showed that in the future, from 2017–2100, if the amount of rainfall per hour continues to rise at about 0.1 mm per year, the amount of seepage will increase at the slope surface boundary and significantly change pore water pressure in the soil. As a result, the time of the occurrence of slope instability after the start of rainfall will decrease from 20 to 13 h, and the reduction in the safety coefficient will increase from 32 to 41%. Therefore, to decrease the effects of slope disasters on the safety of the Zengwen reservoir and its surrounding areas, changes in rainfall intensity trends should be considered for slope safety in this region. However, the results of trend analyses were weak and future research is needed using a wider range of precipitation data and detailed hydrological analysis to better predict rainfall pattern variations.

  14. Aspect-Driven Changes in Slope Stability Due to Ecohydrologic Feedbacks

    Science.gov (United States)

    Poulos, M. J.; Pierce, J. L.; Flores, A. N.; Benner, S. G.; Smith, T. J.; McNamara, J. P.

    2009-12-01

    southwestern batholith, are most sensitive to aspect, with average northern slope angles of 29°, and southern slope angles of 21°. Initial assessment of ecohydrologic factors in Dry Creek finds that annual precipitation for the watershed ranges from 20-35 inches, forestation ranges from ~15% forested on south-facing slopes, to ~80% forested on north-facing slopes, and annual insolation on north-facing slopes is roughly three-fifths that for south-facing slopes. Furthermore, preliminary analysis of soil textures finds soils to contain 29-41% silt on north-facing slopes, and ~12% silt on south-facing slopes. Slope distributions from the Lochsa River basin in the northern Idaho Batholith had little contrast between slope angles; this basin, however, receives 30-70 inches of precipitation and has nearly-homogenous forest cover for all aspects. Ongoing study seeks to 1) use large-scale spatial analysis to correlate the influence of aspect on slope angles to changes in ecohydrologic conditions and 2) understand the spatial distribution and relative influence of processes that affect the weathering of slope materials, erosive processes that reduce slope angles, and cohesive forces that stabilize slopes (e.g. root strength, soil texture, and soil moisture).

  15. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  16. Effects of Freezing and Thawing Cycle on Mechanical Properties and Stability of Soft Rock Slope

    OpenAIRE

    Chen, Yanlong; Wu, Peng; Yu, Qing; Xu, Guang

    2017-01-01

    To explore the variation laws of mechanical parameters of soft rock and the formed slope stability, an experiment was carried out with collected soft rock material specimens and freezing and thawing cycle was designed. Meanwhile, a computational simulation analysis of the freezing-thawing slope stability was implemented. Key factors that influence the strength of frozen rock specimens were analyzed. Results showed that moisture content and the number of freezing-thawing cycles influenced mech...

  17. Stability charts for uniform slopes in soils with nonlinear failure envelopes

    OpenAIRE

    Eid, Hisham T.

    2014-01-01

    Based on the results of an extensive parametric study, charts were developed for assessment of the stability of uniform slopes in soils with nonlinear shear strength failure envelopes. The study was conducted using envelopes formed to represent the realistic shapes of soil nonlinear drained strength envelopes and the associated different degrees of nonlinearity. The introduction of a simple methodology to describe the nonlinear envelopes and a stability parameter, the value of which depends o...

  18. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    International Nuclear Information System (INIS)

    Yu, L.; Batlle, F.

    2011-01-01

    Highlights: → A quasi-three-dimensional slope stability analysis method was proposed. → The proposed method is a good engineering tool for 3D slope stability analysis. → Factor of safety from 3D analysis is higher than from 2D analysis. → 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that

  19. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  20. Effect of Variations in Long-Duration Rainfall Intensity on Unsaturated Slope Stability

    OpenAIRE

    Hsin-Fu Yeh; Yi-Jin Tsai

    2018-01-01

    In recent years, many scientific methods have been used to prove that the Earth’s climate is changing. Climate change can affect rainfall patterns, which can in turn affect slope safety. Therefore, this study analyzed the effects of climate change on rainfall patterns from the perspective of rainfall intensity. This analysis was combined with numerical model analysis to examine the rainfall patterns of the Zengwen reservoir catchment area and its effects on slope stability. In this study, the...

  1. Including the influence of waves in the overall slope stability analysis of rubble mound breakwaters

    OpenAIRE

    Mollaert, J.; Tavallali, A.

    2016-01-01

    An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of...

  2. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  3. Slope Stability Evaluation And Equipment Setback Distances For Burial Ground Excavations

    International Nuclear Information System (INIS)

    Mcshane, D.S.

    2010-01-01

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examines the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38 o or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.

  4. Stability of submarine slopes in the northern South China Sea: a numerical approach

    Science.gov (United States)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is 13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  5. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  6. Nonlinear modeling and stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel under load disturbance

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong; Wang, Mingjiang; Lai, Xu

    2015-01-01

    Highlights: • Novel nonlinear mathematical model of hydro-turbine governing system is proposed. • Hopf bifurcation analysis on the governing system is conducted. • Stability of the system under load disturbance is studied. • Influence of four factors on stability is analyzed. • Optimization methods of improving system stability are put forward. - Abstract: In order to overcome the problem of nonlinear dynamics of hydro-turbine governing system with sloping ceiling tailrace tunnel, which is caused by the interface movement of the free surface-pressurized flow in the tailrace tunnel, and the difficulty of analyzing the stability of system, this paper uses the Hopf bifurcation theory to study the stability of hydro-turbine governing system of hydropower station with sloping ceiling tailrace tunnel. Firstly, a novel and rational nonlinear mathematical model of the hydro-turbine governing system is proposed. This model contains the dynamic equation of pipeline system which can accurately describe the motion characteristics of the interface of free surface-pressurized flow in sloping ceiling tailrace tunnel. According to the nonlinear mathematical model, the existence and direction of Hopf bifurcation of the nonlinear dynamic system are analyzed. Furthermore, the algebraic criterion of the occurrence of Hopf bifurcation is derived. Then the stability domain and bifurcation diagram of hydro-turbine governing system are drawn by the algebraic criterion, and the characteristics of stability under different state parameters are investigated. Finally, the influence of step load value, ceiling slope angle and section form of tailrace tunnel and water depth at the interface in tailrace tunnel on stability are analyzed based on stable domain. The results indicate that: The Hopf bifurcation of hydro-turbine governing system with sloping ceiling tailrace tunnel is supercritical. The phase space trajectories of characteristic variables stabilize at the equilibrium points

  7. Slope stability and bearing capacity of landfills and simple on-site test methods.

    Science.gov (United States)

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  8. Dip-slope and Dip-slope Failures in Taiwan - a Review

    Science.gov (United States)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  9. Slope Stability Analysis Based on Type, Physical And Mechanical Properties Rock in Teluk Pandan District, East Kutai Regency, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Sujiman Kusnadi

    2017-12-01

    Full Text Available Research was located In Teluk Pandan District, East Kutai Regency, East Kalimantan Province.  It’s aimed to determine the lithology in the  research area and to find out how the amount of slope that will be a landslide at that location. The research conducted with the analysis of coring drilling results and then analyzed in the laboratory of rock mechanics to get the characteristic of physical and mechanical properties of the rocks. The data analysis using Hoek and Bray Method. The results showed that in the area study has a sedimentary rock lithology fine to medium detritus, such as claystone, siltstone and sandstone, as well as inserts are coal and shale. Based on the results of laboratory analysis of rock mechanics obtained density between 2,648 to 2,770. While the test results obtained value triaxial cohesion between (6.66 - 9:05 Kg / cm2, friction angle in between (37.19 - 44.08o, cohesion residual (2.72 - 3.10 Kg / cm2, residual friction angle (27.22 - 32.44o. While the direct shear test the cohesion of the summit between (6.66 - 9:05 Kg / cm2, friction angle in the cohesion peak (36.15 - 43.00o, cohesion residual (2:22 to 3:10 Kg / cm2, friction angle in the cohesion residual (37.22 - 33.85o. The simulation results stability of the slope stability Hoek and Bray using rockslide software, the result is that if the slope with a single slope stability, the stability of the slope is 60o, and if the slope with the stability of the slope overall stability of the slope is 48o.

  10. Slope Stability Analysis of Mountainous/Hilly regions of Nepal: A case study of Bhotekoshi Hydropower site

    Science.gov (United States)

    Acharya, A.; Gautam, S.; Kafle, K. R.

    2017-12-01

    Nepal is a mountainous, developing country that straddles the boundary between the Indian and Himalayan tectonic plates. In Nepal, landslides represent a major constraint on development, causing high levels of economic loss and substantial number of fatalities each year. There is a general consensus that the impacts of landslides in mountainous countries such as Nepal are increasing with time due to unstable slopes. The present study deals with the field investigation of slope stability in mountainous/hilly region of Nepal. Among the natural hazards that occur in regularly in Nepal, flood and landslides due to unstable slopes are by far the serious ones. They claim many human lives every year and cause other damages such as destruction and blockage of highway, destruction of hydropower, losses of livestock, crops and agricultural land. Slope Mass Rating system and stereographic projection has been carried out for analysis of slope stability using standard formats and parameters. It has been found that there are few major discontinuities that play the role for the rock/soil slides around the area. The major discontinuities are 235°/67°. These joint sets play the main role to the plane as well as wedge failures around the area. The rock mass rating of the slope has been found to be 27 and the slope mass rating has been found to be 37.8. The obtained slope mass rating value lies on IV class (Bad) that represents unstable slope having planner or big wedge failure and needs to be corrective measures in the slope. From stereographic projection, wedge failure of the slope has been seen according to the conditions of slope failure.

  11. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.

    Science.gov (United States)

    Chen, Jin-Ling; Gu, Dong-Yun

    2013-01-01

    Lower limb amputees have a higher fall risk during slope walking compared with non-amputees. However, studies on amputees' slope walking were not well addressed. The aim of this study was to identify the difference of slope walking between amputees and non-amputees. Lyapunov exponents λS was used to estimate the local dynamic stability of 7 transtibial amputees' and 7 controls' lower extremity joint kinematics during uphill and downhill walking. Compared with the controls, amputees exhibited significantly lower λS in hip (P=0.04) and ankle (P=0.01) joints of the sound limb, and hip joints (P=0.01) of the prosthetic limb during uphill walking, while they exhibited significantly lower λS in knee (P=0.02) and ankle (P=0.03) joints of the sound limb, and hip joints (P=0.03) of the prosthetic limb during downhill walking. Compared with amputees level walking, they exhibited significantly lower λS in ankle joints of the sound limb during both uphill (P=0.01) and downhill walking (P=0.01). We hypothesized that the better local dynamic stability of amputees was caused by compensation strategy during slope walking.

  12. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    Science.gov (United States)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  13. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations

    Directory of Open Access Journals (Sweden)

    Mahdi Motagh

    2013-07-01

    Full Text Available The detection and monitoring of mass movement of susceptible slopes plays a key role in mitigating hazards and potential damage associated with creeping slopes and landslides. In this paper, we use observations from both Interferometric Synthetic Aperture Radar (InSAR and Global Positioning System (GPS to assess the slope stability of the Sarcheshmeh ancient landslide in the North Khorasan province of northeast Iran. InSAR observations were obtained by the time-series analysis of Envisat SAR images covering 2004–2006, whereas repeated GPS observations were conducted by campaign measurements during 2010–2012. Surface displacement maps of the Sarcheshmeh landslide obtained from InSAR and GPS are both indicative of slope stability. Hydrogeological analysis suggests that the multi-year drought and lower than average precipitation levels over the last decade might have contributed to the current dormancy of the Sarcheshmeh landslide.

  14. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  15. The design on high slope stabilization in waste rock sites of uranium mines

    International Nuclear Information System (INIS)

    Liu Taoan; Zhou Xinghuo; Liu Jia

    2005-01-01

    Design methods, reinforcement measures, and flood control measures concerning high slope stabilization in harnessing waste rock site are described in brief according to some examples of two uranium mines in Hunan province. (authors)

  16. EFFECT OF GROUND VIBRATION TO SLOPE STABILITY, CASE STUDY LANDSLIDE ON THE MOUTH OF RAILWAY TUNNEL, GUNUNG GAJAH VILLAGE, LAHAT DISTRICT

    Directory of Open Access Journals (Sweden)

    Moamar Aprilian Ghadafi

    2017-12-01

    Full Text Available Slope stability around railway tunnel in Gunung Gajah Village, Lahat District needs to be analysed due to landslide which occurred on January, 23th 2016. That analysis needs to be done so that the railway transportation system can run safely. The purposes of this research are: to find out the factors that cause slope instability, to find out peak acceleration caused by railway traffic and earthquakes and its effects to the safety factor of slope, and determine stabilization method in order to prevent the occurrence of further landslide. The research activities include surveying, sampling, laboratory testing and analyzing slope stability using pseudo-static approach. Based on research result, the main factors that cause slope instability are morphology, structural geology, and ground vibration caused by earthquakes. Ground vibration are correlated to the slope instability. It shows that the higher of peak acceleration the lower of safety factor of slope. To prevent the occurrence of further landslide around research area, stabilization method should be applied in accordance with the conditions in that area such as building a retaining wall to increase safety factor of slope, building draining channels to reduce run off and performing shotcrete in the wall of landslide in order to avoid weathering.

  17. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    Science.gov (United States)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  18. Logisnet: A tool for multimethod, multiple soil layers slope stability analysis

    Science.gov (United States)

    Legorreta Paulin, G.; Bursik, M.

    2009-05-01

    Shallow landslides and slope failures have been studied from several points of view (inventory, heuristic, statistic, and deterministic). In particular, numerous methods embedded in Geographic Information Systems (GIS) applications have been developed to assess slope stability. However, little work has been done on the systematic comparison of different techniques and the incorporation of vertical contrasts of geotechnical properties in multiple soil layers. In this research, stability is modeled by using LOGISNET, an acronym for Multiple Logistic Regression, Geographic Information System, and Neural Network. The main purpose of LOGISNET is to provide government planners and decision makers a tool to assess landslide susceptibility. The system is fully operational for models handling an enhanced cartographic-hydrologic model (SINMAP) and multiple logistic regression. The enhanced implementation of SINMAP was tested at regional scale in the Highway 101 corridor in Del Norte County, California, and its susceptibility map was found to have improved factor of safety estimates based on comparison with landslide inventory maps. The enhanced SINMAP and multiple logistic regression subsystems have functions that allow the user to include vertical variation in geotechnical properties through summation of forces in specific soil layers acting on failure planes for a local or regional-scale mapping. The working group of LOGISNET foresees the development of an integrated tool system to handle and support the prognostic studies of slope instability, and communicate the results to the public through maps.

  19. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    Science.gov (United States)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that

  20. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    Science.gov (United States)

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the posterior drawer test but had little effect on rotational or dynamic multiplanar stability as assessed by the dial and RPS tests, respectively. Conversely, decreasing posterior slope resulted in increased posterior instability and a significant increase in the magnitude of the RPS. These results suggest that increasing posterior tibial slope may improve

  1. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    Science.gov (United States)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  2. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Science.gov (United States)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  3. A development of an evaluation flow chart for seismic stability of rock slopes based on relations between safety factor and sliding failure

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2010-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake- induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is needed to evaluate the seismic stability of surrounding slopes against extremely strong ground motions. In order to evaluate the seismic stability of surrounding slopes, the most conventional method is to compare safety factors on an expected sliding surface, which is calculated from the stability analysis based on the limit equilibrium concept, to a critical value which judges stability or instability. The method is very effective to examine whether or not the sliding surface is safe. However, it does not mean that the sliding surface falls whenever the safety factor becomes smaller than the critical value during an earthquake. Therefore the authors develop a new evaluation flow chart for the seismic stability of rock slopes based on relations between safety factor and sliding failure. Furthermore, the developed flow chart was validated by comparing two kinds of safety factors calculated from a centrifuge test result concerned with a rock slope. (author)

  4. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    Science.gov (United States)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  5. Investigations of slope stability, Savannah River Plant, Aiken, South Carolina. Draft report

    International Nuclear Information System (INIS)

    1985-01-01

    Our analysis of slope stability indicates acceptable factors of safety for trenches excavated at a slope inclination of one (horizontal) to one (vertical). Further, without the addition of externally applied loads, such as construction trafficking and the gantry crane, a slope inclination of 0.75 horizontal to 1.0 vertical was found to have an acceptable factor of safety of 1.5. Setback distances were calculated for a slope inclination of one to one, and it was found that the gantry crane loading could safely be applied at a setback distance of approximately 7.5 feet while maintaining a factor of safety of approximately 1.2. Similarly, setback distances required for dump trucks and scrapers would be expected to be approximately 6 feet and 10 feet, respectively, to maintain a factor of safety of 1.2. In order to allow flexibility with construction loadings, parametric studies were utilized for construction trafficking to enable setback distances to be selected consistent with actual equipment to be utilized during construction. The effect of removal of surficial soils was investigated, and it is concluded that a minimum of 4-1/2 feet should be removed from all areas prior to the excavation of slopes

  6. Methods for assessing the stability of slopes during earthquakes-A retrospective

    Science.gov (United States)

    Jibson, R.W.

    2011-01-01

    During the twentieth century, several methods to assess the stability of slopes during earthquakes were developed. Pseudostatic analysis was the earliest method; it involved simply adding a permanent body force representing the earthquake shaking to a static limit-equilibrium analysis. Stress-deformation analysis, a later development, involved much more complex modeling of slopes using a mesh in which the internal stresses and strains within elements are computed based on the applied external loads, including gravity and seismic loads. Stress-deformation analysis provided the most realistic model of slope behavior, but it is very complex and requires a high density of high-quality soil-property data as well as an accurate model of soil behavior. In 1965, Newmark developed a method that effectively bridges the gap between these two types of analysis. His sliding-block model is easy to apply and provides a useful index of co-seismic slope performance. Subsequent modifications to sliding-block analysis have made it applicable to a wider range of landslide types. Sliding-block analysis provides perhaps the greatest utility of all the types of analysis. It is far easier to apply than stress-deformation analysis, and it yields much more useful information than does pseudostatic analysis. ?? 2010.

  7. Monitoring System for Slope Stability under Rainfall by using MEMS Acceleration Sensor IC tags

    International Nuclear Information System (INIS)

    Murakami, S; Dairaku, A; Komine, H; Saito, O; Sakai, N; Isizawa, T; Maruyama, I

    2013-01-01

    Real-time warning system for slope failure under rainfall is available to disaster prevention and mitigation. Monitoring of multi-point and wireless measurements is effective because it is difficult to conclude the most dangerous part in a slope. The purpose of this study is to propose a method of monitoring system with multi-point and wireless measurements for a slope stability using MEMS acceleration sensor IC tags. MEMS acceleration sensor IC tag is an acceleration sensor microminiaturized by a technology of Micro Electro Mechanical Systems on board IC tag. Especially, low cost of the sensor will yield to the realization of the system. In order to investigate the applicability of the proposed system, a large-scale model test of artificial slope subjected to rainfall has been performed. MEMS acceleration sensor IC tags has been located on the slope and ground acceleration caused by forced vibration has been measured until the model slope collapses. The experimental results show that the MEMS acceleration sensor IC tag is comfortably available under rainfall, the characteristics of ground accelerations varies with changing the condition of the slope subjected to rainfall, and the proposed method can be applied to a real-time monitoring system for slope failure under rainfall.

  8. Recent and future warm extreme events and high-mountain slope stability.

    Science.gov (United States)

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  9. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    Science.gov (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  10. Development of kenaf mat for slope stabilization

    Science.gov (United States)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  11. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    Science.gov (United States)

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  12. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    Directory of Open Access Journals (Sweden)

    Á. Török

    2018-02-01

    Full Text Available Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System was used to collect images which were processed by Pix4D mapper (structure from motion technology to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS with the use of seven ground control points. The obtained digital surface model (DSM was processed (vegetation removal and the derived digital terrain model (DTM allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method. Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE–WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS.

  13. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach

    Directory of Open Access Journals (Sweden)

    Alireza Baghbanan

    2017-06-01

    Full Text Available Due to existence of uncertainties in input geometrical properties of fractures, there is not any unique solution for assessing the stability of slopes in jointed rock masses. Therefore, the necessity of applying probabilistic analysis in these cases is inevitable. In this study a probabilistic analysis procedure together with relevant algorithms are developed using Discrete Fracture Network-Distinct Element Method (DFN-DEM approach. In the right abutment of Karun 4 dam and downstream of the dam body, five joint sets and one major joint have been identified. According to the geometrical properties of fractures in Karun river valley, instability situations are probable in this abutment. In order to evaluate the stability of the rock slope, different combinations of joint set geometrical parameters are selected, and a series of numerical DEM simulations are performed on generated and validated DFN models in DFN-DEM approach to measure minimum required support patterns in dry and saturated conditions. Results indicate that the distribution of required bolt length is well fitted with a lognormal distribution in both circumstances. In dry conditions, the calculated mean value is 1125.3 m, and more than 80 percent of models need only 1614.99 m of bolts which is a bolt pattern with 2 m spacing and 12 m length. However, as for the slopes with saturated condition, the calculated mean value is 1821.8 m, and more than 80 percent of models need only 2653.49 m of bolts which is equivalent to a bolt pattern with 15 m length and 1.5 m spacing. Comparison between obtained results with numerical and empirical method show that investigation of a slope stability with different DFN realizations which conducted in different block patterns is more efficient than the empirical methods.

  14. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    Science.gov (United States)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static

  15. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    Science.gov (United States)

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  16. Some considerations on the seismic stability of large slopes surrounding the nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Watanabe, Hiroyuki; Imaide, Hiroshi

    1982-01-01

    As a part of the researches with regard to the seismic stability of large scale slope, the authors have carried out the model test, in which the static failure has been generated by inclining the slope model. In this report, the results of static inclination tests of slope model are described and discussions are done from viewpoints of, 1. the mechanical behaviours and failure state of slope during the inclination test, 2. comparison between the results obtained by the static failure test (that is, inclination test) and those of another report with regard to the dynamic failure test which had been performed using the shaking table, and the relationship between an equivalent seismic coefficient obtained by static failure test and acceleration by dynamic failure test, 3. relationship between the failure state of inclination test and the factor of convensional circular arc slip method. (author)

  17. Best practices of using shotcrete for wall fascia and slope stabilization (phase 1 study)

    Science.gov (United States)

    2017-06-01

    Shotcrete has become attractive and holds potential to replace cast-in-place (CIP) concrete for elements like retaining walls and slope stabilization. However, this practice is still limited due to concerns of drying shrinkage cracking, long-term dur...

  18. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    Science.gov (United States)

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  19. Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2008-01-01

    In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.

  20. Stability analysis of jointed rock slope by the block theory

    International Nuclear Information System (INIS)

    Yoshinaka, Ryunoshin; Yamabe, Tadashi; Fujita, Tomoo.

    1990-01-01

    The block theory to analyze three dimensional stability problems of discontinuous rock masses is applied to the actual discontinuous rock slope. Taking into consideration that the geometrical information about discontinuities generally increases according to progressive steps of rock investigation in field, the method adopted for analysis is divided into following two steps; 1) the statistical/probabilitical analysis using information from the primary investigation stage which mainly consists of that of natural rock outcrops, and 2) the deterministic analysis correspond to the secondary stage using exploration adits. (author)

  1. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    Science.gov (United States)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more

  2. Slope earthquake stability

    CERN Document Server

    Changwei, Yang; Jing, Lian; Wenying, Yu; Jianjing, Zhang

    2017-01-01

    This book begins with the dynamic characteristics of the covering layerbedrock type slope, containing monitoring data of the seismic array, shaking table tests, numerical analysis and theoretical derivation. Then it focuses on the landslide mechanism and assessment method. It also proposes a model that assessing the hazard area based on the field investigations. Many questions, exercises and solutions are given. Researchers and engineers in the field of Geotechnical Engineering and Anti-seismic Engineering can benefit from it.

  3. Numerical Analysis of Slopes Stability and Shallow Foundations Behavior at Crest under Real Seismic Loading - Reinforcement Effect

    International Nuclear Information System (INIS)

    Mekdash, H.; Hage Chehade, F.; Sadek, M.; Abdel Massih, D.; El Hachem, E.; Youssef, E.

    2011-01-01

    The aim of this paper is to analyze the slopes stability under seismic loading using a global numerical dynamic approach. This approach allows important parameters that are generally ignored by traditional engineering methods such as the soil deformability, the dynamic amplification, non linear soil behavior, the spatial and temporal variability of the seismic loading and the reinforcement element. The present study is conducted by using measures recorded during real earthquakes (Turkey, 1999) and (Lebanon, 2008). Elastoplastic soil behavior analysis leads to monitor the evolution of the slope state after an earthquake and to clarify the most probable failure circles. A parametric study according to the reinforcement length, position, inclination and the number of elements has been studied in order to define the optimal reinforcement scheme for slopes under seismic loading. This study contains also the stability analysis of an existing foundation near the slope's crest. It will focus on the reinforcement in order to give recommendation for the most appropriate scheme that minimize the settlement of the foundation due to earthquake effect. (author)

  4. Rock slopes and reservoirs - lessons learned

    International Nuclear Information System (INIS)

    Moore, D.P.

    1999-01-01

    Lessons learned about slope stability in the course of four decades of monitoring, and in some cases stabilizing, slopes along British Columbia's hydroelectric reservoirs are discussed. The lessons are illustrated by short case histories of some of the more important slopes such as Little Chief Slide, Dutchman's Ridge, Downie Slide, Checkerboard Creek and Wahleach. Information derived from the monitoring and other investigations are compared with early interpretations of geology and slope performance. The comparison serves as an indicator of progress in slope stability determination and as a measure of the value of accumulated experience in terms of the potential consequences to safety and cost savings over the long life-span of hydroelectric projects.14 refs., 2 tabs., 15 figs

  5. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    Science.gov (United States)

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  6. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    Science.gov (United States)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  7. [Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee].

    Science.gov (United States)

    Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong

    2013-05-07

    To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.

  8. Experimental test of theory for the stability of partially saturated vertical cut slopes

    Science.gov (United States)

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  9. Environmental Assessment for Slope Stabilization Projects at Fort MacArthur, San Pedro, California

    Science.gov (United States)

    2012-01-01

    effective in stabilizing slopes. The USAF and its consultants identified the most effective remedial measures that can be economically constructed within...consultants identified the most effective remedial measures that can be economically constructed with the physical and property boundary constraints...carbon tetrachloride, ammonia, hydrogen sulfide, hydrogen cyanide , and methane. The SCAB is not classified under CAAQS for any TACs (CARB 2011). EA

  10. Slope Stability Analysis and Mitigation Measures in the Area of the Sighişoara Medieval Citadel

    Directory of Open Access Journals (Sweden)

    George-Cătălin Silvaş

    2014-07-01

    Full Text Available The Sighişoara Medieval Citadel has a very big importance to the cultural, architectural and historical heritage of Romania. The citadel is situated on the Fortress Hill and it is the only inhabited fortress in Romania. But underneath the beauty of the Citadel lies some problems that only the inhabitants and the authorities know. These problems consist in the presence of the slope instability phenomenon. Throughout the years the slopes of the Fortress Hill, because of a series of factors, became instable. Thus landslides occurred that affected the Citadel fortress walls. There are still some areas of the walls that have never been reconstructed yet. So a slope stability analysis shall show if the slope instability phenomenon is still active and the mitigation measures recommended will stop the activity of this phenomenon.

  11. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-06-01

    Full Text Available The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep deformations of the left bank abutment slope are obtained, and the changes of principal stresses and deformations of the dam body are analyzed. The long-term stability of the left bank abutment slope is evaluated according to the integral curves of energy dissipation rate in domain and its derivative with respect to time, and the non-equilibrium evolution rules and the characteristic time can also be determined using these curves. Numerical results show that the left bank abutment slope tends to be stable in a global sense, and the stress concentration is released. It is also indicated that more attention should be paid to some weak regions within the slope in the long-term deformation process.

  12. Stability of sulfur slopes on Io

    Science.gov (United States)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  13. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    Science.gov (United States)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  14. Uncertainty of the Soil–Water Characteristic Curve and Its Effects on Slope Seepage and Stability Analysis under Conditions of Rainfall Using the Markov Chain Monte Carlo Method

    Directory of Open Access Journals (Sweden)

    Weiping Liu

    2017-10-01

    Full Text Available It is important to determine the soil–water characteristic curve (SWCC for analyzing slope seepage and stability under the conditions of rainfall. However, SWCCs exhibit high uncertainty because of complex influencing factors, which has not been previously considered in slope seepage and stability analysis under conditions of rainfall. This study aimed to evaluate the uncertainty of the SWCC and its effects on the seepage and stability analysis of an unsaturated soil slope under conditions of rainfall. The SWCC model parameters were treated as random variables. An uncertainty evaluation of the parameters was conducted based on the Bayesian approach and the Markov chain Monte Carlo (MCMC method. Observed data from granite residual soil were used to test the uncertainty of the SWCC. Then, different confidence intervals for the model parameters of the SWCC were constructed. The slope seepage and stability analysis under conditions of rainfall with the SWCC of different confidence intervals was investigated using finite element software (SEEP/W and SLOPE/W. The results demonstrated that SWCC uncertainty had significant effects on slope seepage and stability. In general, the larger the percentile value, the greater the reduction of negative pore-water pressure in the soil layer and the lower the safety factor of the slope. Uncertainties in the model parameters of the SWCC can lead to obvious errors in predicted pore-water pressure profiles and the estimated safety factor of the slope under conditions of rainfall.

  15. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    Science.gov (United States)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  16. Hydrologically complemented deterministic slope stability analysis in part of Indian Lesser Himalaya

    Directory of Open Access Journals (Sweden)

    John Mathew

    2016-09-01

    Full Text Available This study uses a deterministic approach to evaluate the factor of safety (FS of the terrain for different hydrological conditions, in part of Indian Lesser Himalaya. The results indicate sudden increase in the percentage unstable area from 7.5% to 13.8% for rainfall intensity variation from 50 to 100 mm/day. For the rainfall intensity of 15 August 2007 which caused many landslides in the study area, 18.5% of the total area was unstable and it increases to 21.7%, 23.5% and 24.7%, respectively, for rainfall intensities corresponding to 10, 25 and 50 year return periods. This increment stagnates at about 260 mm/day, making about 25% of the area unstable. Higher rainfall intensities make progressively gentler slopes unstable, but limited to 25 degrees of slope in this area. The area underlain by granitic gneiss showed 23.1% of area as unstable for 135 mm/day of rainfall intensity, and was followed by those areas underlain by amphibolite (16%, limestone (13.7% and quartzite (10.4%. Receiver operating characteristic (ROC curve analysis has given 84.2% accuracy for the model. Conversion of FS to failure probability through Z scores enables identification unstable or marginally unstable areas, for planning selective slope stabilization measures.

  17. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    Science.gov (United States)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  18. The Q-Slope Method for Rock Slope Engineering

    Science.gov (United States)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  19. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    Science.gov (United States)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  20. assessment of slope stability around gilgel gibe-ii hydroelectric

    African Journals Online (AJOL)

    preferred customer

    1 Gilgel-Gibe II Hydroelectric Project, Fofa Town, Ethiopia ... Key words/phrases: Factor of safety, plane failure, slope design, slope .... condition of potential unstable slopes along the road between Fofa town and Gilgel-Gibe Hydro- power II.

  1. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  2. Stability of Dolos Slopes

    DEFF Research Database (Denmark)

    Brorsen, Michael; Burcharth, Hans F.; Larsen, Torben

    The stability of dolos armour blocks against wave attack has been investigated in wave model studies.......The stability of dolos armour blocks against wave attack has been investigated in wave model studies....

  3. Simulated stability tests of a small articulated tractor designed for extreme-sloped vineyards

    Directory of Open Access Journals (Sweden)

    F. Mazzetto

    2013-09-01

    Full Text Available A new reversible wheeled articulated tractor, designed to work in terraced vineyards trained with “pergola” system, common in mountain areas, is here described in its latest version and analysed through numerical simulations. This tractor has small dimensions, necessary to operate in that environment, and its central articulation has two rotational degrees-offreedom. The described features are surely strong design points but could be critical for vehicle’s stability, as affecting the supporting base’s dimensions and shape. Therefore, the tractor was equipped with a new automatic safety system: a self-locking articulation activated by contact sensors on the wheels. This device makes the vehicle partially-rigid in case of lateral unbalancing, so that rollover can happen only by overcoming the whole vehicle mass. A mathematical description of vehicle-ground interactions was implemented to deeply inquiry the tractor behaviour in different configurations (straight, angled at increasing values of ground slope; roll and pitch stability indexes were then computed and used for comparisons with conventional tractors. Thanks to the low centre-of-gravity, the resulting rollover angle with the vehicle in straight configuration is promising (43.8°→96%: it is greater than the maximum lateral (20°→36% and frontal (38°→78% slope angle ever recorded on terraced vineyards. The same rollover angle is lower when the tractor turns.

  4. STABILIZATION OF A FAILED SLOPE WITH PILED STRUCTURES

    Directory of Open Access Journals (Sweden)

    M. Rifat KAHYAOĞLU

    2008-01-01

    Full Text Available Neogene aged units of a densely populated region of Western Turkey along the Aegean Sea coastline is susceptible to landslides causing frequent economic loss especially following raining seasons. Several landslides took place in the area covering a narrow band of the coastline between Izmir and Söke (Aydın. Countermeasures against these relatively small-scale slope failures in the region often involve construction of either reinforced concrete retaining walls or stabilizing piles, which can be easily constructed by local contractors. In this study borings, in-situ and laboratory soil mechanics tests, geophysical and geological investigations have been performed in order to investigate the landslide occurred in the yard of an elementary school in Söke township. The analysis of two rows of piled retaining system constructed to reuse the school building against a potential slides are presented. Three inclinometer measurements have been performed after completion of the bored pile system. It has been concluded that the measured and the calculated displacement values are both small. There is no problem of the built project by means of moments and displacements.

  5. Numerical analysis of the stability of inhomogeneous slopes considering partially saturated conditions

    Directory of Open Access Journals (Sweden)

    Pichler Patrick P.

    2016-01-01

    Full Text Available It is well accepted that rainfall could play a significant role in instability of slopes. The main objective of the presented study is to quantify the influence of varying characteristics of water flow, its associated changes of pore-water pressures and shear strength on the stability of simplified, but inhomogeneous, slope geometries. The commonly used van Genuchten model was used to describe the Soil Water Characteristic Curve (SWCC mathematically. In the context of this study, the influence of different hydraulic behaviour of soil layers, i.e. different SWCC, on the factor of safety (FoS is evaluated by means of fully coupled flow-deformation analyses employing the finite element method. To quantify the slopes’ factor of safety during rainfall events after specified times of infiltration or evaporation, the strength reduction method was applied. In addition to various combinations of soil layers, the influence of a water bearing high permeable soil layer between two less permeable soil layers, a situation which is often encountered in practice, on the factor of safety has been investigated.

  6. Geosynthetic clay liners - slope stability field study

    International Nuclear Information System (INIS)

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-01-01

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project

  7. Probabilistic Analysis of Cut-Slope Stability for Tropical Red Clay of Depok, West Java as an Effect of Rainfall Duration and Intensity

    Directory of Open Access Journals (Sweden)

    Hakim Sagitaningrum Fathiyah

    2018-01-01

    Full Text Available Landslide in Indonesia, specifically in Java island, occurs during rainy seasons. In Java island, it is known that the tropical red clay has the ability to stand at steep angles, while in stability analysis due to rainfall, practitioners only consider the rise of groundwater table. Previous studies states that one of the factor affecting factor of safety (FS for tropical red clay slopes is the formation of saturated zones due to matric suction. This research studies the effect of rainfall intensity and duration to FS of cut-slopes as parametric study with probabilistic analysis for different height of 10m, 20m, and 30m also slope angles of 27°, 45°, 55°, and 70°. Rainfall parameter are taken from FTUI rainfall station for advanced pattern and three-days duration of rain. Analysis of seepage uses SEEP/W and slope stability uses SLOPE/W. It is known that the significant increase of probability of failure due to the three-days rainfall is achieved at the 10m height and 70°-angled slope. Increase of the probability of failure is mainly due to rainfall infiltration which saturates the surface and pore water pressure increase until certain time where infiltration stops and turn into surface run-off.

  8. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    Science.gov (United States)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that

  9. Planning criteria for open pit mines under special consideration of slope stability and controlled blasting

    Energy Technology Data Exchange (ETDEWEB)

    Weise, H

    1986-04-01

    The criteria which influence the economics of a future surface mining operation are discussed; these include the size of the mine and the depth of the deposit. The methods of working are outlined - single bench, multiple bench - and choices of haulage equipment (trucks vs. conveyors) are discussed. For a mine using conveyors, the slope of the open pit will affect the operating cost. Pumps will be required to dewater the strata; it will be necessary to take steps to ensure slope stability. Bucket wheel excavators will be impeded by the presence of consolidated material, which may be best removed by shatter blasting. An example is given of the use of shatter blasting at the Neyveli lignite mine in Tamil Nadu, India. 5 references.

  10. Simulating the seismic behaviour of soil slopes and embankments

    DEFF Research Database (Denmark)

    Zania, Varvara; Tsompanakis, Yiannis; Psarropoulos, Prodromos

    2010-01-01

    In the current study the clarification of the main assumptions, related to the two most commonly used methods of seismic slope stability analysis (pseudostatic and permanent deformation) is attempted. The seismic permanent displacements and the corresponding seismic coefficients were determined via...... parametric dynamic numerical analyses taking into account not only the main parameters dominating the seismic slope stability, but also the inherent assumptions of the applied approaches that affect the obtained results. The investigation conclude to a realistic procedure for seismic slope stability...

  11. Numerical Modelling of Seismic Slope Stability

    Science.gov (United States)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  12. A preliminary pit slope stability study Kvanefjeld, South Greenland

    International Nuclear Information System (INIS)

    Kalvig, P.

    1983-11-01

    On the basis of 1300 field measurements of joint planes, four individual structural regions have been outlined in the Kvanefjeld area. Potential failure planes and planes which are unlikely to be involved in slope failures are identified. Failures seem, not likely to occur on walls dipping SW or NE respectively, but may occur on walls dipping NM. The factors of safety for each region are calculated in order to determine the sensibility of the overall slope to different overall slope angles. The factors of safety does only exceed the required factor of safety of 1.5 in one of the structural regions. Changing the overall pit slope inclination from 55deg to 45deg improves the security, but even still not satisfactorily for two of the regions. At 45deg overall pit slope in parts of the pit implies additional 14.3 x 10 6 tonnes of non-mineralized material to be mined, thus resulting in a total mineralized- to non-mineralized material ratio about 1.0: 1.7. (author)

  13. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  14. Ecological and Bioengineering Studies for Stabilizing the Wad Medani-Sennar Roadside Slope Linking the Gezira and Sennar States

    Directory of Open Access Journals (Sweden)

    Altaeb Mohammed

    2018-01-01

    Full Text Available The erosion of the highway embankment slope's soil along the Wad Medani-Sennar road is a significant issue, as there are many traffic accidents on this road, with an average of 15 to 25 fatalities per annum. It was thus decided to investigate this issue to find a method to protect slope from erosion on this road and to provide new approaches to slope erosion knowledge gap in Sudan. An engineering survey was carried out, followed by geotechnical studies, experimental work and interviews with academic experts regarding native vegetation in the survey area. These include measuring the eroded parts of the road; studying cross- sections of the road; soil experiments to check the strength, compaction and particle size distribution; and a native vegetation survey to check for suitable plants that could be used to control the slope erosion. It was found that an appropriate bio-engineering method to stabilize the slope soil against erosion due to rainfall was to cultivate the grasses Cynodon Dactylon and Vetiver on the slopes. In conclusion, that using native vegetation for eco -protection, was an excellent solution to the problem based on the climate, native vegetation, and type of soil in Sudan and it reduces the accidents.

  15. Comparison of Homogenous and Multi-layered Berm Breakwaters with Respect to Overtopping and Front Slope Stability

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Skals, K. T.; Burcharth, Hans F.

    2009-01-01

    A model test study was conducted to study overtopping and front slope stability of homogenous and multi-layered berm breakwaters. The two breakwater types are compared and cons and pros are listed. The study shows that the optimum number of stone classes might be significantly lower than what has...... previously been used in the Icelandic type of berm breakwater because it seems that the number of stone classes in the berm can be reduced from five to two without significantly influencing overtopping and stability performance. Moreover, the new results are compared to the design formulae established...

  16. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    Science.gov (United States)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  17. Design of Rock Slope Reinforcement: An Himalayan Case Study

    Science.gov (United States)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  18. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    Science.gov (United States)

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  19. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    Science.gov (United States)

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  20. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    Science.gov (United States)

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  1. Guide for calculating the stability of mine berms and spoil bank slopes in the Maritsa-Iztok coal basin

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, G; Todorova, M; Doneva, V; Novachkov, N; Nedyalkov, N; Mitev, A; Rachev, R

    1984-08-01

    Major landslides are described which occurred in the basin between 1963 and 1970 during overburden removal and formation of spoil banks. Guidelines for the prevention of landslides were developed on the basis of large scale studies of geomechanics, geostatic calculations and geodetic observations of slope behavior; no further landslide has occurred since 1970. Cohesion coefficients, angle of internal friction and shear properties were determined for each material occurring in the clayey and sandy overburden and for the coal (ash content 15-55%). Slope stability of working benches and spoil banks at the Troyanovo mines was then calculated. 8 references.

  2. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    Science.gov (United States)

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  3. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    Science.gov (United States)

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  4. Submarine slope failures due to pipe structure formation.

    Science.gov (United States)

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  5. Assessment of slope stability and remedial measures around Gilgel ...

    African Journals Online (AJOL)

    A road constructed from Fofa town to Gilgel Gibe-II powerhouse in south-western Ethiopia passes through an extremely rugged terrain characterized by steep hill slopes and deep valleys. The present study has been carried out to identify potentially unstable slope sections and to work out proper remedial measures. In order ...

  6. Centrifuge model test of rock slope failure caused by seismic excitation. Plane failure of dip slope

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    Recently, it is necessary to assess quantitatively seismic safety of critical facilities against the earthquake induced rock slope failure from the viewpoint of seismic PSA. Under these circumstances, it is essential to evaluate more accurately the possibilities of rock slope failure and the potential failure boundary, which are triggered by earthquake ground motions. The purpose of this study is to analyze dynamic failure characteristics of rock slopes by centrifuge model tests for verification and improvement of the analytical methods. We conducted a centrifuge model test using a dip slope model with discontinuities limitated by Teflon sheets. The centrifugal acceleration was 50G, and the acceleration amplitude of input sin waves increased gradually at every step. The test results were compared with safety factors of the stability analysis based on the limit equilibrium concept. Resultant conclusions are mainly as follows: (1) The slope model collapsed when it was excited by the sine wave of 400gal, which was converted to real field scale, (2) Artificial discontinuities were considerably concerned in the collapse, and the type of collapse was plane failure, (3) From response acceleration records observed at the slope model, we can say that tension cracks were generated near the top of the slope model during excitation, and that might be cause of the collapse, (4) By considering generation of the tension cracks in the stability analysis, correspondence of the analytical results and the experimental results improved. From the obtained results, we need to consider progressive failure in evaluating earthquake induced rock slope failure. (author)

  7. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    Science.gov (United States)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  8. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    Science.gov (United States)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and

  9. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  10. Slope stability and erosion control: Ecotechnological solutions

    NARCIS (Netherlands)

    Norris, J.E.; Stokes, A.; Mickovski, S.B.; Cammeraat, E.; van Beek, R.; Nicoll, B.C.; Achim, A.

    2008-01-01

    This book is designed to assist the civil and geotechnical engineer, geomorphologist, forester, landscape architect or ecologist in choosing ecotechnological solutions for slopes that are prone to a variety of mass movements e.g. shallow failure or erosion. Within this book, the 'engineer' is used

  11. Displacement of Pile-Reinforced Slopes with a Weak Layer Subjected to Seismic Loads

    Directory of Open Access Journals (Sweden)

    Haizuo Zhou

    2016-01-01

    Full Text Available The presence of a weak layer in a slope requires special attention because it has a negative impact on slope stability. However, limited insight into the seismic stability of slopes with a weak layer exists. In this study, the seismic stability of a pile-reinforced slope with a weak thin layer is investigated. Based on the limit analysis theory, a translational failure mechanism for an earth slope is developed. The rotational rigid blocks in the previous rotational-translational failure mechanism are replaced by continuous deformation regions, which consist of a sequence of n rigid triangles. The predicted static factor of safety and collapse mechanism in two typical examples of slopes with a weak layer compare well with the results obtained from the available literature and by using the Discontinuity Layout Optimization (DLO technique. The lateral forces provided by the stabilizing piles are evaluated using the theory of plastic deformation. An analytical solution for estimating the critical yield acceleration coefficient for the pile-reinforced slopes is derived. Based on the proposed translational failure mechanism and the corresponding critical yield acceleration coefficient, Newmark’s analytical procedure is employed to evaluate the cumulative displacement. Considering different real earthquake acceleration records as input motion, the effect of stabilizing piles and varying the spacing of piles on the cumulative displacement of slopes with a weak layer is investigated.

  12. Reducing the risk of the collapse of the soil by macro system modeling the slopes stability of the quarries

    Science.gov (United States)

    Klimova, E. V.; Semeykin, A. Yu

    2018-01-01

    The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.

  13. Rock Slope Design Criteria

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  14. A Simplified Solution for Calculating the Phreatic Line and Slope Stability during a Sudden Drawdown of the Reservoir Water Level

    Directory of Open Access Journals (Sweden)

    Guanhua Sun

    2018-01-01

    Full Text Available On the basis of the Boussinesq unsteady seepage differential equation, a new simplified formula for the phreatic line of slopes under the condition of decreasing reservoir water level is derived by means of the Laplacian matrix and its inverse transform. In this context, the expression of normal stress on the slip surface under seepage forces is deduced, and a procedure for obtaining the safety factors under hydrodynamic forces is proposed. A case study of the Three Gorges Reservoir is used to analyze the influences of the water level, decreasing velocity and the permeability coefficient on slope stability.

  15. Integrated satellite InSAR and slope stability modeling to support hazard assessment at the Safuna Alta glacial lake, Peru

    Science.gov (United States)

    Cochachin, Alejo; Frey, Holger; Huggel, Christian; Strozzi, Tazio; Büechi, Emanuel; Cui, Fanpeng; Flores, Andrés; Saito, Carlos

    2017-04-01

    The Safuna glacial lakes (77˚ 37' W, 08˚ 50' S) are located in the headwater of the Tayapampa catchment, in the northernmost part of the Cordillera Blanca, Peru. The upper lake, Laguna Safuna Alta at 4354 m asl has formed in the 1960s behind a terminal moraine of the retreating Pucajirca Glacier, named after the peak south of the lakes. Safuna Alta currently has a volume of 15 x 106 m3. In 2002 a rock fall of several million m3 from the proximal left lateral moraine hit the Safuna Alta lake and triggered an impact wave which overtopped the moraine dam and passed into the lower lake, Laguna Safuna Baja, which absorbed most of the outburst flood from the upper lake, but nevertheless causing loss in cattle, degradation of agricultural land downstream and damages to a hydroelectric power station in Quitaracsa gorge. Event reconstructions showed that the impact wave in the Safuna Alta lake had a runup height of 100 m or more, and weakened the moraine dam of Safuna Alta. This fact, in combination with the large lake volumes and the continued possibility for landslides from the left proximal moraine pose a considerable risk for the downstream settlements as well as the recently completed Quitaracsa hydroelectric power plant. In the framework of a project funded by the European Space Agency (ESA), the hazard situation at the Safuna Alta lake is assessed by a combination of satellite radar data analysis, field investigations, and slope stability modeling. Interferometric analyses of the Synthetic Aperture Radar (InSAR) of ALOS-1 Palsar-1, ALOS-2 Palsar-2 and Sentinel-1 data from 2016 reveal terrain displacements of 2 cm y-1 in the detachment zone of the 2002 rock avalanche. More detailed insights into the characteristics of these terrain deformations are gained by repeat surveys with differential GPS (DGPS) and tachymetric measurements. A drone flight provides the information for the generation of a high-resolution digital elevation model (DEM), which is used for the

  16. Qualitative stability assessment of cut slopes along the National Highway-05 around Jhakri area, Himachal Pradesh, India

    Science.gov (United States)

    Kundu, Jagadish; Sarkar, Kripamoy; Tripathy, Ashutosh; Singh, T. N.

    2017-12-01

    Several deformation phases in tectonically active Himalayas have rendered the rock masses very complex in terms of structure, lithology and degree of metamorphism. Again, anthropogenic activities such as roads, tunnels and other civil engineering constructions have led to a state of disequilibrium which in many cases, results in failure of rock masses. National Highway-05 around Jhakri area in India is a major connecting route to the China border in the hilly terrains of the state Himachal Pradesh. It cuts through the Himalayan rocks and has a hazardous history of landslides destroying human lives and interrupting communication very frequently. As a contribution towards the mitigation process, a study has been carried out along the highway to analyse kinematic stability and qualitative estimation of rock mass condition through rock mass classification systems. The kinematic analysis shows that the rock slopes are prone to planar and wedge failure. Rock mass rating for most of the locations lies between 7 and 34, representing a poor rock mass quality (Class IV), whereas slope mass rating is more disperse and ranges from 11 to 52 for most of the slopes (Class III, IV and V).

  17. Species type controls root strength and influences slope stability in coastal Ecuador

    Science.gov (United States)

    Anttila, E.; Wray, M. E.; Knappe, E.; Ogasawara, T.; Tholt, A.; Cliffe, B.; Oshun, J.

    2014-12-01

    Tree roots, particular those of old growth trees, provide significant cohesive strength that can prevent shallow landslides. Little is known about the root strength of trees growing in dry tropical forests. In 1997, Bahía de Caráquez, Ecuador experienced a large landslide, which may have been precipitated by massive deforestation along the Ecuadorian coast. We used a tensile spring apparatus combined with root maps to caclulate the cohesive strength of different native species of trees. Whereas the results show the previously reported power law relationship between root diameter and tensile strength, our data also reveals new contributions. First, we find that trees have far stronger and more abundant roots than neighboring bushes, and thus add far more cohesive strength to the hillslope. Furthermore, there is a wide range of tensile strength among the native trees measured, with algarrobo having the strongest roots, and ceibo gernally being weak rooted. Finally, we use a slope stability model to predict failure conditions considering the strength added to a hillslope if vegetation is predominantly composed of bushes, algarrobo, or ceibo. Our results, which are the first of their kind for the Ecuadorian dry tropical forest, will be used to guide the ongoing native reforestation efforts of Global Student Embassy. Our unique partnership with Global Student Embassy connects our field study to practical land use decisions that will lead to increased slope and decreased human danger along coastal Ecuador's dry tropical forest.

  18. Slope and bank erosional stability of the Canonsburg, Pennsylvania, UMTRA disposal site

    International Nuclear Information System (INIS)

    1994-12-01

    This report was prepared in response to US Nuclear Regulatory Commission (NRC) comments received in a letter of 8 March 1994. This letter included discussions of the US Department of Energy (DOE) 21 May 1993 geomorphic report for the Canonsburg, Pennsylvania, site. To clarify the NRC's position, a DOE/NRC conference call was held on 12 April 1994. The NRC clarified that it did not require a preliminary erosion protection design for the Canonsburg site, but directed the DOE to address a ''one-bad-year'' scenario. The NRC wants confirmation that one bad year of stream flooding and landsliding will not release residual radioactive material (RRM) from the Canonsburg site into the creek. The NRC is concerned that a bad year theoretically could occur between postcell-closure inspections. These annual inspections are conducted in September or October. The NRC suggested that the following procedures should be conducted in this analysis: a flooding analysis, including the maximum saturation levels (flood water elevations) anticipated during a 100-year flood; a stream bank erosion analysis to determine how much of the bank adjacent to the site may be removed in a bad year; a slope stability analysis to determine how far back the site would be disturbed by slope instability that could be triggered by a bad year of stream bank erosion; and a ''critical cross section'' study to show the relationship of the RRM located outside the disposal cell to the maximum computer estimated erosion/landslide activity

  19. GEOSPATIAL DATA INTEGRATION FOR ASSESSING LANDSLIDE HAZARD ON ENGINEERED SLOPES

    Directory of Open Access Journals (Sweden)

    P. E. Miller

    2012-07-01

    Full Text Available Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator’s hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator’s existing field-based approaches.

  20. Application of distinct element method of toppling failure of slope

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Ito, Hiroshi

    1984-01-01

    The authors have pointed out, in the latest report, that DEM (Distinct Element Method) seems to be a very helpful numerical method to examine the stability of fissured rock slopes, in which toppling failure would occur during earthquakes. In this report, the applicability of DEM for such rock slopes is examined through the following comparisons between theoretical results and DEM results, referring Voegele's works (1982): (1) Stability of one block on a slope. (2) Failure of a rock block column composed of 10 same size rectangular blocks. (3) Cable force required to make a slope stable. Through above 3 comparisons, it seems that DEM give the reasonable results. Considering that these problems may not be treated by the other numerical methods such as FEM and so on, so DEM seems to be a very useful method for fissured rock slope analysis. (author)

  1. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    Science.gov (United States)

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  2. Combined rock slope stability and shallow landslide susceptibility assessment of the Jasmund cliff area (Rügen Island, Germany

    Directory of Open Access Journals (Sweden)

    A. Günther

    2009-05-01

    Full Text Available In this contribution we evaluated both the structurally-controlled failure susceptibility of the fractured Cretaceous chalk rocks and the topographically-controlled shallow landslide susceptibility of the overlying glacial sediments for the Jasmund cliff area on Rügen Island, Germany. We employed a combined methodology involving spatially distributed kinematical rock slope failure testing with tectonic fabric data, and both physically- and inventory-based shallow landslide susceptibility analysis. The rock slope failure susceptibility model identifies areas of recent cliff collapses, confirming its value in predicting the locations of future failures. The model reveals that toppling is the most important failure type in the Cretaceous chalk rocks of the area. The shallow landslide susceptibility analysis involves a physically-based slope stability evaluation which utilizes material strength and hydraulic conductivity data, and a bivariate landslide susceptibility analysis exploiting landslide inventory data and thematic information on ground conditioning factors. Both models show reasonable success rates when evaluated with the available inventory data, and an attempt was made to combine the individual models to prepare a map displaying both terrain instability and landslide susceptibility. This combination highlights unstable cliff portions lacking discrete landslide areas as well as cliff sections highly affected by past landslide events. Through a spatial integration of the rock slope failure susceptibility model with the combined shallow landslide assessment we produced a comprehensive landslide susceptibility map for the Jasmund cliff area.

  3. Parametric study on the effect of rainfall pattern to slope stability

    OpenAIRE

    Hakim Sagitaningrum Fathiyah; Bahsan Erly

    2017-01-01

    Landslide in Indonesia usually occurs during the rainy seasons. Previous studies showed that rainfall infiltration has a great effect on the factor of safety (FS) of slopes. This research focused on the effect of rainfall pattern on the FS of unsaturated slope with different slope angle i.e.: 30°, 45°, and 60°. Three different rainfall patterns, which are normal, advanced, and delayed were considered in the analysis. The effects of low or high hydraulic conductivity of the soil are also obser...

  4. Simplified Model for the Hybrid Method to Design Stabilising Piles Placed at the Toe of Slopes

    Directory of Open Access Journals (Sweden)

    Dib M.

    2018-01-01

    Full Text Available Stabilizing precarious slopes by installing piles has become a widespread technique for landslides prevention. The design of slope-stabilizing piles by the finite element method is more accurate comparing to the conventional methods. This accuracy is because of the ability of this method to simulate complex configurations, and to analyze the soil-pile interaction effect. However, engineers prefer to use the simplified analytical techniques to design slope stabilizing piles, this is due to the high computational resources required by the finite element method. Aiming to combine the accuracy of the finite element method with simplicity of the analytical approaches, a hybrid methodology to design slope stabilizing piles was proposed in 2012. It consists of two steps; (1: an analytical estimation of the resisting force needed to stabilize the precarious slope, and (2: a numerical analysis to define the adequate pile configuration that offers the required resisting force. The hybrid method is applicable only for the analysis and the design of stabilizing piles placed in the middle of the slope, however, in certain cases like road constructions, piles are needed to be placed at the toe of the slope. Therefore, in this paper a simplified model for the hybrid method is dimensioned to analyze and design stabilizing piles placed at the toe of a precarious slope. The validation of the simplified model is presented by a comparative analysis with the full coupled finite element model.

  5. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  6. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    Science.gov (United States)

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  7. Analysis of the parameters involved in the design of slope stabilizing dowels; Analisis de las variables que intervienen en el dimensionamiento de pantalla de pasadores para contencion de deslizamientos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Dominguez, J. J.; Estaire Gepp, J.

    2014-07-01

    The use of dowels to stabilize landslides is a common practice nowadays. There are many theories, even contradictory, to design such dowels. This paper describes the methods proposed by Estaire and Sopena (2001), based on the fact that the earth pressures on the dowels, produced by the movement of the sliding ground, are equivalent to the stabilizing forces exerted by such dowels to improve the safety level of the slope. The method consists on the following steps: definition of the hydrogeological model, quantification of the initial safety level, determination of stabilization force, position of dowels in the slope, calculation of the dowel embedment and the acting load laws, election of the dowel separation and typology, and the structural design. The paper performs a critical review of some of the main design parameters: influence of the position of the dowels in the slope, the distribution of the earth pressure on the dowels and the restrains in the head of the dowels. (Author)

  8. Discussion on the Safety Factors of Slopes Recommended for Small Dams

    Directory of Open Access Journals (Sweden)

    Jan Vrubel

    2017-01-01

    Full Text Available The design and assessment of the slope stability of small embankment dams is usually not carried out using slope stability calculations but rather by the comparison of proposed or existing dam slopes with those recommended by technical standards or guidelines. Practical experience shows that in many cases the slopes of small dams are steeper than those recommended. However, most of such steeper slopes at existing dams do not exhibit any visible signs of instability, defects or sliding. For the dam owner and also for dam stability engineers, the safety of the slope, expressed e.g. via a factor of safety, is crucial. The aim of this study is to evaluate the safety margin provided by recommended slopes. The factor of safety was evaluated for several dam shape and layout variants via the shear strength reduction method using PLAXIS software. The study covers various dam geometries, dam core and shoulder positions and parameter values of utilised soils. Three load cases were considered: one with a steady state seepage condition and two with different reservoir water level drawdown velocities – standard and critical. As numerous older small dams lack a drainage system, variants with and without a toe drain were assessed. Calculated factors of safety were compared with required values specified by national standards and guidelines.

  9. Study of root tensile strength of softwood and hardwood tree species: Implications for slope stability

    Science.gov (United States)

    Esmaiili, Marzieh; Abdi, Ehsan; Jafary, Mohammad; Majnounian, Baris

    2017-04-01

    Landslides are known as one of the major natural hazards and often incurring economics and human life losses. The role of tree roots in slope stability is very important, especially when human lives and infrastructure are at risk. The anchorage of roots and improvement of slope stability mainly depend on specific properties of root network systems, such as tensile strength. These properties of the roots which govern the degree of reinforcement are different among tree species. Although, many studies have been conducted about plant biotechnical properties of species, yet there is lack of knowledge on comparing root systems of softwood and hardwood tree species for similar site conditions. Therefore this study was conducted to assess the tensile strength of the root system of Picea abies (softwood species) and Fraxinus excelsior (hardwood species) planted on two forested hillslopes. To this aim, single root specimens were sampled for each species and their tensile strength were then measured in laboratory using a computer controlled Instron Universal Testing Machine. According to the results root tensile strength tends to decrease with diameter according to a power law for both species. Based on analysis of covariance (ANCOVA), a significant difference has been observed in the tensile strength between the two studied species. Also the results showed that the value of mean root tensile strength for Picea abies (19.31 ± 2.64 MPa) was much more than that of Fraxinus excelsior (16.98 ± 1.01 MPa) within all root diameter classes. The data presented in this study may expand the knowledge of biotechnical properties of Picea abies and Fraxinus excelsior, as biomaterial for soil bioengineering.

  10. Design of anti-slide piles for slope stabilization in Wanzhou city, Three Gorges Area, China

    Science.gov (United States)

    Zhou, Chunmei; van Westen, Cees

    2013-04-01

    This study is related to the design of anti-slide piles for several landslides in Wanzhou city located in the Three Gorges area. Due to the construction of the Three Gorges Reservoir the hydro-geological conditions in this area have deteriorated significantly, leading to larger instability problems. China has invested a lot of money in slope stabilization measures for the treatment of landslides in the Three Gorges area. One of the methods for the stabilization of large landslides is the design of anti-sliding piles. This paper focuses on extensive slope stability analysis and modeling of the mechanical behavior of the landslide masses, and the parameters required for designing the number, size and dimensions of reinforced concrete stabilization piles. The study focuses on determining the rock parameters, anchor depth, and the pile and soil interaction coefficient. The study aims to provide guidelines for anti-slide pile stabilization works for landslides in the Wanzhou area. The research work contains a number of aspects. First a study is carried out on the distribution of pressures expected on the piles, using two different methods that take into account the expected pore water pressure and seismic acceleration. For the Ercengyan landslide , the Limit Equilibrium Method and Strength Reduction Method of FEM are compared through the results of the landslide pressure distributions on the piles and stress fields in the piles. The second component is the study of the required anchor depth of antislide piles, which is carried out using a statistical analysis with data from 20 landslides that have been controlled with anti-sliding piles. The rock characteristics of the anchor locations were obtained using laboratory tests, and a classification of rock mass quality is made for the anchors of antislide piles. The relationship between the critical anchor height and the angle of the landslide slip surface is determined. Two different methods are presented for the length

  11. Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model

    Directory of Open Access Journals (Sweden)

    Dong-mei Sun

    2016-07-01

    Full Text Available Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase, and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes, TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC3D, which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.

  12. A modified risk evaluation method of slope failure in a heavy rain. For application to slopes in widespread area

    International Nuclear Information System (INIS)

    Suenaga, Hiroshi; Tanaka, Shiro; Kobayakawa, Hiroaki

    2015-01-01

    A risk evaluation method of slope failure has developed to combine gas-liquid two phase flow analysis as a rainfall infiltration analysis and elastic-plastic finite element analysis as a slope stability analysis and has applied to a slope field. This method, however, had a difficulty to apply to many slopes since it needed many parameters to calculate the risk of the slope failure. The method was simplified to lessen input parameters which included an inclination and length of a slope, a depth of bedrock and a rainfall pattern assuming that hydraulic properties and mechanical properties were similar for the same geological unit. The method was also modified to represent a water collection structure, a surface runoff, an existence of a forest road and a water level variation of a downward river / pond which could affect infiltration phenomena. Results of the simplification and the modification made it possible to enhance a prediction precision of the method and create a hazard map of slopes in widespread area. (author)

  13. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  14. The stability of locus equation slopes across stop consonant voicing/aspiration

    Science.gov (United States)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  15. Geology and Slope Stability Analysis using Markland Method on Road Segment of Piyungan – Patuk, Sleman and Gunungkidul Regencies, Yogyakarta Special Region, Indonesia

    Directory of Open Access Journals (Sweden)

    B. N. Kresna Citrabhuwana

    2016-06-01

    Full Text Available Road segment of Piyungan - Patuk is a part of Yogyakarta - Wonosari highway, fairly dense traversed by vehicles, from bicycles to buses and trucks. This road crosses hilly topography, causing its sides bounded by quite steep slopes or cliffs. Steep slopes and cliffs are potential to create mass movement. Geologic condition of the surrounding area is built of various volcanic lithology such as breccia, siltstone, sandstone and tuff. There are also geologic structures of joints and faults that affect the stability of the slopes around this road. Slope stability analysis for road segment of Piyungan – Patuk was conducted by applying Markland method. Laboratory testings were done to determine the mechanical and physical properties of rocks that influence the slope strength. Results of the testings show that cohesion and friction angle of volcanic breccia are c = 20.0441 kg/cm2 and  = 56.38˚; cohesion and friction angle of sandstone are cr = 0.6862 kg/cm2, cp = 4.6037 kg/cm2, r = 26.37˚, and p = 32.79˚; cohesion and friction angle of tuff is cr = 1.677 kg/cm2, cp = 7.5553 kg/cm2, r = 17.85˚, and p = 24.19˚. Based on the analysis, some slopes in the study area are potential to move. The movements can be classified into rock fall, debris fall, and rock slides with the sliding plane categorized as planar and wedge. On the other hand, landslide prone zones in the study area can be divided into: Areas with high vulnerability, Areas with moderate vulnerability, and Areas with low vulnerability. Areas prone to landslide should be managed by a series of measures, among others understand natural phenomena, recognizing symptoms of avalanche, attempting to reduce the risk, and land use regulation. The management activities should involve all stakeholders in an integrated manner of implementation.

  16. How hydrological factors initiate instability in a model sandy slope

    OpenAIRE

    Terajima, Tomomi; Miyahira, Ei-ichiro; Miyajima, Hiroyuki; Ochiai, Hirotaka; Hattori, Katsumi

    2013-01-01

    Knowledge of the mechanisms of rain-induced shallow landslides can improve the prediction of their occurrence and mitigate subsequent sediment disasters. Here, we examine an artificial slope's subsurface hydrology and propose a new slope stability analysis that includes seepage force and the down-slope transfer of excess shear forces. We measured pore water pressure and volumetric water content immediately prior to a shallow landslide on an artificial sandy slope of 32°: The direction of the ...

  17. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  18. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    Science.gov (United States)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2017-12-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  19. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability

    Science.gov (United States)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano

    2017-04-01

    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one

  20. Purpose-driven public sector reform: the need for within-government capacity build for the management of slope stability in communities in the Caribbean.

    Science.gov (United States)

    Anderson, Malcolm; Holcombe, Liz

    2006-01-01

    This article stresses the importance of within-government capacity build as the optimal approach to minimizing landslide risk to the most vulnerable communities in the developing world. Landslide risk is an integrated issue that demands strong managerial leadership and multidisciplinary inclusion to develop structures that deliver sustainable improvements in the reduction of risk. The tension between projects demanding international technical and financial intervention and those capable of "within-country" solutions are examined. More particularly, the challenges of developing a management methodology capable of energizing inter-ministry collaboration to achieve community-level action is examined in the context of a recently established program of slope stability management in St. Lucia. The program, Management of Slope Stability in Communities (MoSSaiC), is shown to have successfully fostered not only extensive technical collaboration within government but also to have energized local communities in the shared mission of capacity build through their direct involvement in the management process.

  1. Conceptualization of preferential flow for hillslope stability assessment

    Science.gov (United States)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  2. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    Science.gov (United States)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  3. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    Science.gov (United States)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  4. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  5. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    Science.gov (United States)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  6. Slope Monitoring using Total Station: What are the Challenges and ...

    African Journals Online (AJOL)

    Afeni

    implications of incorrect use or negligence during slope monitoring surveys ... Data collection, processing and the presentation of results in a concise format ..... There are several software packages on the market for total station error propagation, ..... Thomas, H.G., 2011, Slope stability prism monitoring: A guide for practising ...

  7. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  8. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    Science.gov (United States)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  9. Sliding surface searching method for slopes containing a potential weak structural surface

    Directory of Open Access Journals (Sweden)

    Aijun Yao

    2014-06-01

    Full Text Available Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is polyline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simulated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.

  10. Comparing Potential Unstable Sites and Stable Sites on Revegetated Cut-Slopes of Mountainous Terrain in Korea

    Directory of Open Access Journals (Sweden)

    Sung-Ho Kil

    2015-11-01

    Full Text Available This study employs a diverse set of variables to explain slope stabilization on stable versus failure-prone revegetated cut-slopes in Korea. A field survey was conducted at potential unstable sites and stable sites using 23 variables. Through a non-parametric test of the field survey results, 15 variables were identified as primary determinants of slope failure. Of these variables, one described physical characteristics (elapsed year; four variables described vegetation properties (plant community, vegetation coverage rate, number of trees, and number of herbs; and 10 variables represented soil properties (porosity, soil hardness, water content, sand ratio and silt ratio of soil texture, tensile strength, permeability coefficient, soil depth, soil acidity, salt concentration, and organic matter. Slope angle, which was mainly considered in previous studies, of variables in physical characteristics was not statistically selected as one of the 15 variables because most of sites were located on steep slopes. The vegetation community, vegetation coverage, and number of trees influence slope stabilization. Vegetation coverage is highly correlated with other soil and vegetation variables, making it a major indicator of slope stabilization. All soil variables were related to slope failure such that subsequent slope failure was related to the method of slope revegetation rather than the environmental condition of the slope. Slope failure did not occur in revegetated slopes that matched the characteristics of the surrounding landscape and contained a large number of native trees. Most soil and vegetation variables showed differing values for whether a revegetated slope is potentially unstable or stable.

  11. Soil moisture storage and hillslope stability

    Directory of Open Access Journals (Sweden)

    A. Talebi

    2007-09-01

    Full Text Available Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of neglecting the unsaturated storage on the assessment of slope stability in the steady-state hydrology. For that purpose we extend the hydrological model to compute the soil pore pressure distribution over the entire flow domain. We also apply this model for hillslopes with non-constant soil depth to compare the stability of different hillslopes and to find the critical slip surface in hillslopes with different geometric characteristics. In order to do this, we incorporate more complex approaches to compute slope stability (Janbu's non-circular method and Bishop's simplified method in the steady-state analytical hillslope stability model. We compare the safety factor (FS derived from the infinite slope stability method and the more complex approach for two cases: with and without the soil moisture profile in the unsaturated zone. We apply this extended hillslope stability model to nine characteristic hillslope types with three different profile curvatures (concave, straight, convex and three different plan shapes (convergent, parallel, divergent. Overall, we find that unsaturated zone storage does not play a critical role in determining the factor of safety for shallow and deep landslides. As a result, the effect of the unsaturated zone storage on slope stability can be neglected in the steady-state hydrology and one can assume the same bulk specific weight below and above the water table. We find that steep slopes with concave profile and convergent plan shape have the least stability. We also demonstrate that in hillslopes with non-constant soil depth (possible deep landslides, the ones with convex profiles and convergent plan shapes have

  12. THE IMPACT OF STRUCTURAL, PETROGRAPHIC AND CLIMATIC FACTORS ON THE SLOPE STABILITY IN THE OPEN CAST MINE OF GRADNA

    Directory of Open Access Journals (Sweden)

    Ivan Tomašić

    1992-12-01

    Full Text Available This paper presents an analysis of a complexity of interrelated structural, petrologic and climatic factors that considerably affect the instabilities in the open cast mine of Gradna, near Samobor. The instabilities provoke the slope failures such as slides and slumps of rock material. During the protracted periodical investigations, the relationship among the factors of regional geology, tectonics, structural geology, petrography, engineering geology, rock mechanics and the rock mining technology was observed in the area. The local control of hydrogeologic properties, as well as climatic fluctuations of temperature and precipitation on the slope stability, was also recognized. It turned out that the structural relationships, characteristic of the manifold cataclased dolomite, stimulated the development of local instabilities, particularly during the period of low temperatures affecting the process of ground-water accumulation. When the temperatures are worm, the ground-water circulation is slow, exerting only the small-scale influence on the local instabilities (the paper is published in Croatian.

  13. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  14. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    Science.gov (United States)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  15. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    Science.gov (United States)

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    Previous studies have shown that increasing tibial slope can shift the resting position of the tibia anteriorly. As a result, sagittal osteotomies that alter slope have recently been proposed for treatment of posterior cruciate ligament (PCL) injuries. Increasing tibial slope with an osteotomy shifts the resting position anteriorly in a PCL-deficient knee, thereby partially reducing the posterior tibial "sag" associated with PCL injury. This shift in resting position from the increased slope causes a decrease in posterior tibial translation compared with the PCL-deficient knee in response to posterior tibial and axial compressive loads. Controlled laboratory study. Three knee conditions were tested with a robotic universal force-moment sensor testing system: intact, PCL-deficient, and PCL-deficient with increased tibial slope. Tibial slope was increased via a 5-mm anterior opening wedge osteotomy. Three external loading conditions were applied to each knee condition at 0 degrees, 30 degrees, 60 degrees, 90 degrees, and 120 degrees of knee flexion: (1) 134-N anterior-posterior (A-P) tibial load, (2) 200-N axial compressive load, and (3) combined 134-N A-P and 200-N axial loads. For each loading condition, kinematics of the intact knee were recorded for the remaining 5 degrees of freedom (ie, A-P, medial-lateral, and proximal-distal translations, internal-external and varus-valgus rotations). Posterior cruciate ligament deficiency resulted in a posterior shift of the tibial resting position to 8.4 +/- 2.6 mm at 90 degrees compared with the intact knee. After osteotomy, tibial slope increased from 9.2 degrees +/- 1.0 degrees in the intact knee to 13.8 degrees +/- 0.9 degrees. This increase in slope reduced the posterior sag of the PCL-deficient knee, shifting the resting position anteriorly to 4.0 +/- 2.0 mm at 90 degrees. Under a 200-N axial compressive load with the osteotomy, an additional increase in anterior tibial translation to 2.7 +/- 1.7 mm at 30 degrees was

  16. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    Science.gov (United States)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    density and root strength have been combined in a physical model (Fiber Bundle Model), for the assessment of the trends of the root reinforcement in soil. The results of this study have contributed to identify root distribution behaviours, in different agricultural and environmental conditions, that have not been enough to guarantee slope stability or that can promote an increase of it. This can furnish important indications for a better identification of slopes more susceptible to slope instabilities and for improving land planning.

  17. Rock Slope Design Criteria : Executive Summary Report

    Science.gov (United States)

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  18. Effect of rainfall on the reliability of an infinite slope

    OpenAIRE

    Yuan, J.; Papaioannou, I.; Mok, C. M.; Straub, D.

    2014-01-01

    Rainfall is one of the most common factors triggering landslides, since infiltration of water into the soil has a significant impact on pore water pressure buildup that affects slope stability. In this study, the influence of the wetting front development on the reliability of an infinite slope is analyzed. The failure condition of the slope is expressed in terms of the factor of safety. Rainfall infiltration is simulated by a time-dependent model, based on the Green and Ampt assumptions. The...

  19. Performance of the APS optical slope measuring system

    International Nuclear Information System (INIS)

    Qian, Jun; Sullivan, Joe; Erdmann, Mark; Khounsary, Ali; Assoufid, Lahsen

    2013-01-01

    An optical slope measuring system (OSMS) was recently brought into operation at the Advanced Photon Source of the Argonne National Laboratory. This system is equipped with a precision autocollimator and a very accurate mirror-based pentaprism on a scanning stage and kept in an environment-controlled enclosure. This system has the capability to measure precision optics with sub-microradian rms slope errors as documented with a series of tests demonstrating accuracy, stability, reliability and repeatability. Measurements of a flat mirror with 0.2 μrad rms slope error are presented which show that the variation of the slope profile measurements with the mirror setting at different locations along the scanning direction is only 60 nrad and the corresponding height error profile has 2 nm rms. -- Highlights: ► This is the first time to present the APS OSMS in publication. ► The APS OSMS is capable to measure flat and near flat mirrors with slope error <100 nrad rms. ► The accuracy of the slope error measurements of a 350 mm long mirror is less than 60 nrad rms

  20. Reclamation of slopes left after surface mining

    Energy Technology Data Exchange (ETDEWEB)

    Zmitko, J [Banske Projekty, Teplice (Czech Republic)

    1993-03-01

    Discusses land reclamation of abandoned slopes from brown coal surface mining in the North Bohemian brown coal basin in the Czech Republic. Problems associated with reclamation of landslide areas in two former coal mines are evaluated: the Otokar mine in Kostany (mining from 1956 to 1966) and the CSM mine in Pozorka (mining from 1955 to 1967). Land reclamation was introduced 25 years after damage occurred. The following aspects are analyzed: hydrogeologic conditions, range of landslides, types of rocks in landslide areas, water conditions, methods for stabilizing slopes, safety aspects.

  1. The dependence of sea surface slope on atmospheric stability and swell conditions

    Science.gov (United States)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  2. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    Science.gov (United States)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  3. Probabilistic evaluation method of stability of ground and slope considering spatial randomness of soil properties

    International Nuclear Information System (INIS)

    Ohtori, Yasuki

    2004-01-01

    In the JEAG4601-1987 (Japan Electric Association Guide for earthquake resistance design), either the conventional deterministic method or probabilistic method is used for evaluating the stability of ground foundations and surrounding slopes in nuclear power plants. The deterministic method, in which the soil properties of 'mean ± coefficient x standard deviation' is adopted for the calculations, is generally used in the design stage to data. On the other hand, the probabilistic method, in which the soil properties assume to have probabilistic distributions, is stated as a future method. The deterministic method facilitates the evaluation, however, it is necessary to clarify the relation with the probabilistic method. In this paper, the relationship between the deterministic and the probabilistic methods are investigated. To do that, a simple model that can take into account the dynamic effect of structures and a simplified method for accounting the spatial randomness are proposed and used for the studies. As the results of studies, it is found that the strength of soil properties is most importation factor for the stability of ground structures and the probability below the safety factor evaluated with the soil properties of mean -1.0 x standard deviation' by the deterministic method is of much lower. (author)

  4. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    Science.gov (United States)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  5. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    Science.gov (United States)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  6. Small scale tests on the progressive retreat of soil slopes

    Science.gov (United States)

    Voulgari, Chrysoula; Utili, Stefano; Castellanza, Riccardo

    2015-04-01

    In this paper, the influence due to the presence of cracks on the morphologic evolution of natural cliffs subject to progressive retreat induced by weathering is investigated through small scale laboratory tests. Weathering turns hard rocks into soft rocks that maintain the structure of the intact rocks, but are characterised by higher void ratios and reduced bond strengths; soft rocks are transformed into granular soils generally called residual soils. A number of landslides develop in slopes due to weathering which results in the progressive retrogression of the slope face and the further degradation within the weathering zone. Cracks, that are widely present, can be a result of weathering and they can cause a significant decrease in their stability, as they provide preferential flow channels which increase the soil permeability and decrease the soil strength. The geological models employed until now are mainly empirical. Several researchers have tried to study the stability of slopes through experimental procedures. Centrifuge modelling is widely used to investigate the failure of slopes. Small scale tests are also an important approach, in order to study the behaviour of a slope under certain conditions, such as the existence of water, as they allow the observation of the infiltration processes, the movement of the weathering front, deformation and failure. However, the deformation response of a slope subject to weathering is not yet thoroughly clarified. In this work, a set of experiments were conducted to investigate weathering induced successive landslides. Weathering was applied to the slope model by wetting the slope crest through a rainfall simulator device. The moisture content of the soil during the tests was monitored by soil moisture sensors that were buried inside the slope model. High resolution cameras were recording the behaviour of the slope model. GeoPIV was used to analyse the frames and obtain the deformations of the slope model during the

  7. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    Science.gov (United States)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  8. Tibial Slope Strongly Influences Knee Stability After Posterior Cruciate Ligament Reconstruction: A Prospective 5- to 15-Year Follow-up.

    Science.gov (United States)

    Gwinner, Clemens; Weiler, Andreas; Roider, Manoussos; Schaefer, Frederik M; Jung, Tobias M

    2017-02-01

    The reported failure rate after posterior cruciate ligament (PCL) reconstruction remains high. Previous studies have shown that the tibial slope (TS) influences sagittal plane laxity. Consequently, alterations of TS might have an effect on postoperative knee stability after PCL reconstruction. We hypothesized that flattening of TS is associated with increased posterior laxity after PCL reconstruction. Cohort study; Level of evidence 3. This study consisted of 48 patients who underwent PCL reconstruction in a single-surgeon series. Eight patients underwent an isolated PCL reconstruction, 27 patients underwent an additional posterolateral corner reconstruction, and 13 patients underwent a combined reconstruction of the PCL, anterior cruciate ligament, and posterolateral corner. Three blinded observers measured TS and the side-to-side difference (SSD) of posterior tibial translation (PTT) before and after PCL reconstruction using standardized stress radiographs. The minimum follow-up was 5 years. At a mean follow-up of 103 months (range, 65-187), the mean SSD of PTT was significantly reduced (10.9 ± 2.9 vs 4.9 ± 4.3 mm; P slope.

  9. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    Science.gov (United States)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  10. Slope stability improvement using low intensity field electrosmosis

    Science.gov (United States)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  11. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    Science.gov (United States)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both

  12. Physical and theoretical modeling of rock slopes against block-flexure toppling failure

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2015-12-01

    Full Text Available Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.

  13. Determining the Critical Slip Surface of Three-Dimensional Soil Slopes from the Stress Fields Solved Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-chuan Yang

    2016-01-01

    Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.

  14. Application of distinct element method to toppling failure of slopes

    International Nuclear Information System (INIS)

    Ishida, Tsuyoshi; Hibino, Satoshi; Kitahara, Yoshihiro; Asai, Yoshiyuki.

    1985-01-01

    Recently, the stability of slopes during earthquakes has become to be an important engineering problem, especially in case of the earthquake-proof design of nuclear power plants. But, for fissured rock slopes, some problems are remained unresolved, because they can not be treated as continua. The authors have been investigating toppling failure of slopes, from a point of view which regards a fissured rock mass as an assemblage of rigid blocks. DEM (Distinct Element Method) proposed by Cundall (1974) seems to be very helpful to such a investigation. So, in this paper, the applicability of DEM to toppling failure of slopes is examined through the comparison between DEM results and theoretical or experimental results using 3 simple models. (author)

  15. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  16. The Effect of Saturation on the Slope Sliding in the San Juan de Grijalva Comunity, Chiapas

    Directory of Open Access Journals (Sweden)

    Mora-Ortiz R.S.

    2012-01-01

    Full Text Available A number of slopes that have been stable during many years may fail when an extraordinary rain period occurs. This phenomenon involves not only the lithology, the geometric and the mechanical characteristics of the slope but also the rain-evaporation-infiltration regime of the site. In this paper, the stability of a slope in the comunity of San Juan de Grijalva, Ostuacán, Chiapas (Mexico that failed during an intense raining period is analyzed. The volume of this slide was over 5 millions of cubics meters of soil and it produced the obstruction of the Grijalva river. The stratigraphic and geometric properties of the slope were determined and undisturbed samples were obtained in the site to determine the mechanical properties of the material. The stability analysis considered the variation of the cohesion of the soil caused by wetting and it was possible to observe the evolution of the safety factor with the water content of the material. Through the analysis of the rain infiltration and the stability of the slope, it has been possible to reproduce the failure process.

  17. Probabilistic analysis algorithm for UA slope software program.

    Science.gov (United States)

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  18. Wildlife response on the Alaska North Slope

    International Nuclear Information System (INIS)

    Costanzo, D.; McKenzie, B.

    1992-01-01

    Recognizing the need for a comprehensive plan to deal with potentially oiled wildlife on the Alaskan North Slope, a multifaceted wildlife protection strategy was developed and implemented during 1991. The strategy incorporated all aspects of wildlife response including protection of critical habitat, hazing, capture and stabilization, long term rehabilitation, and release. The primary wildlife response strategy emphasizes controlling of the release and spreading of spilled oil at the source to prevent or reduce contamination of potentially affected species and/or their habitat. A secondary response strategy concentrates on keeping potentially affected wildlife away from an oiled area through the use of deterrent techniques. Tertiary response involves the capture and treatment of oiled wildlife. Implementation of the strategy included the development of specialized training, the procurement of equipment, and the construction of a bird stabilization center. The result of this initiative is a comprehensive wildlife response capability on the Alaskan North Slope. 1 ref., 5 figs., 3 tabs

  19. Research on Safety Factor of Dam Slope of High Embankment Dam under Seismic Condition

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available With the constant development of construction technology of embankment dam, the constructed embankment dam becomes higher and higher, and the embankment dam with its height over 200m will always adopt the current design criteria of embankment dam only suitable for the construction of embankment dam lower than 200m in height. So the design criteria of high embankment dam shall be improved. We shall calculate the stability and safety factors of dam slope of high embankment dam under different dam height, slope ratio and different seismic intensity based on ratio of safety margin, and clarify the change rules of stability and safety factors of dam slope of high embankment dam with its height over 200m. We calculate the ratio of safety margin of traditional and reliable method by taking the stable, allowable and reliability index 4.2 of dam slope of high embankment dam with its height over 200m as the standard value, and conduct linear regression for both. As a result, the conditions, where 1.3 is considered as the stability and safety factors of dam slope of high embankment dam with its height over 200m under seismic condition and 4.2 as the allowable and reliability index, are under the same risk control level.

  20. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    Science.gov (United States)

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  1. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake

    Directory of Open Access Journals (Sweden)

    Songfeng Guo

    2017-09-01

    Full Text Available Toppling failure is one of the most common failure types in the field. It always occurs in rock masses containing a group of dominant discontinuities dipping into the slope. Post-earthquake investigation has shown that many toppling rock slope failures have occurred during earthquakes. In this study, an analytical solution is presented on the basis of limit equilibrium analysis. The acceleration of seismic load as well as joint persistence within the block base, were considered in the analysis. The method was then applied into a shake table test of an anti-dip layered slope model. As predicted from the analytical method, blocks topple or slide from slope crest to toe progressively and the factor of safety decreases as the inputting acceleration increases. The results perfectly duplicate the deformation features and stability condition of the physical model under the shake table test. It is shown that the presented method is more universal than the original one and can be adopted to evaluate the stability of the slope with potential toppling failure under seismic loads.

  2. Bio-engineering for land stabilization : executive summary report.

    Science.gov (United States)

    2010-06-30

    Soil-bioengineering, or simply : bioengineering, is the use of vegetation for : slope stabilization. Currently, a large : number of slopes near Ohio highways are : experiencing stability problems. These : failures usually begin as local erosion...

  3. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    Science.gov (United States)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  4. Numerical modeling of the effect of preferential flow on hillslope hydrology and slope stability

    NARCIS (Netherlands)

    Shao, W.

    2017-01-01

    The topic of this thesis is the quantification of the influence of preferential flow on landslide-triggering in potentially unstable slopes. Preferential flow paths (e.g., cracks, macropores, fissures, pipes, etc.) commonly exists in slopes. Flow velocities in preferential flow paths can be

  5. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    Science.gov (United States)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  6. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  7. Application of dynamic programming to evaluate the slope stability of a vertical extension to a balefill.

    Science.gov (United States)

    Kremen, Arie; Tsompanakis, Yiannis

    2010-04-01

    The slope-stability of a proposed vertical extension of a balefill was investigated in the present study, in an attempt to determine a geotechnically conservative design, compliant with New Jersey Department of Environmental Protection regulations, to maximize the utilization of unclaimed disposal capacity. Conventional geotechnical analytical methods are generally limited to well-defined failure modes, which may not occur in landfills or balefills due to the presence of preferential slip surfaces. In addition, these models assume an a priori stress distribution to solve essentially indeterminate problems. In this work, a different approach has been applied, which avoids several of the drawbacks of conventional methods. Specifically, the analysis was performed in a two-stage process: (a) calculation of stress distribution, and (b) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by dynamic programming optimization method. A sensitivity analysis was performed to evaluate the effect of the various waste strength parameters of the underlying mathematical model on the results, namely the factor of safety of the landfill. Although this study focuses on the stability investigation of an expanded balefill, the methodology presented can easily be applied to general geotechnical investigations.

  8. Slope Stability Analysis for Shallow Landslides using TRIGRS: A Case Study for Sta. Cruz, Zambales, Philippines

    Science.gov (United States)

    Mendoza, J. P. A.

    2016-12-01

    The Philippines, being located in the circum-Pacific, bounded by multiple subduction zones, open seas and ocean, is one of the most hazard-prone countries in the world (Benson, 1997). This widespread recurrence of natural hazards in the country requires much attention for disaster management (Aurelio, 2006). On the average, 21 typhoons enter the Philippine area of responsibility annually with 6-9 making a landfall. Several rainfall-induced landslide events are reported annually particularly during and after the inundation of major typhoons which imposes hazards to communities and causes destruction of properties due to the moving mass and possible flash floods it may induce. Shallow landslides are the most commonly observed failure involving soil-mantled slopes and are considered major geohazards, often causing property damage and other economic loss. Hence numerous studies on landslide susceptibility including numerical models based on infinite slope equation are used in order to identify slopes prone to occurrences of shallow landslides. The study aims to determine the relationships between the slope and elevation to the factor of safety for laterite-mantled topography by incorporating precipitation values in the determination of landslide susceptibility. Using a DEM, flow direction map and slope map of the Sta Cruz (Zambales, Philippines), the FORTRAN based program TRIGRS, was used to generate the values for the factors of safety in the study area. Overlays with a generated slope map and elevation map were used to determine relationships of the mentioned factors and the factors of safety. A slope in a topography mantled with lateritic soil will fail at a slope angle higher than 20 degrees. Generally, the factor of safety decreases as the slope angle increases; this increases the probability and risk of slope failure. Elevation has no bearing on the computation for the factor of safety. The factor of safety is heavily dependent on the slope angle. The value of

  9. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    Science.gov (United States)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (soils with a liquid limit plasticity index soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  10. TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0

    Science.gov (United States)

    Baum, Rex L.; Savage, William Z.; Godt, Jonathan W.

    2008-01-01

    The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) is a Fortran program designed for modeling the timing and distribution of shallow, rainfall-induced landslides. The program computes transient pore-pressure changes, and attendant changes in the factor of safety, due to rainfall infiltration. The program models rainfall infiltration, resulting from storms that have durations ranging from hours to a few days, using analytical solutions for partial differential equations that represent one-dimensional, vertical flow in isotropic, homogeneous materials for either saturated or unsaturated conditions. Use of step-function series allows the program to represent variable rainfall input, and a simple runoff routing model allows the user to divert excess water from impervious areas onto more permeable downslope areas. The TRIGRS program uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis. An approximate formula for effective stress in unsaturated materials aids computation of the factor of safety in unsaturated soils. Horizontal heterogeneity is accounted for by allowing material properties, rainfall, and other input values to vary from cell to cell. This command-line program is used in conjunction with geographic information system (GIS) software to prepare input grids and visualize model results.

  11. Geological Aspect of Slope Failure and Mitigation Approach in Bireun - Takengon Main Road, Aceh Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Ibnu Rusydy

    2016-04-01

    Full Text Available A soil and rock slope assessment survey was conducted along Bireun – Takengon main road in Aceh Province, Indonesia. The slope assessment survey was carried out to determine the geological condition, verify and identify the potential areas of slope failure and to study what type of slope stability and protection method could be applied to the road. Several research methodologies were conducted in the field such as rock and soil identification, and slope assessment. The survey was conducted in four selected areas along Bireun – Takengon main road. In study area I, soil creep occurred because of a presence of montmorillonite clay. The mitigation methods to reduce soil creeping in this area are building a retaining wall and pile. The shotcrete, wire mesh, net rock bolting, and rock removal method is suitable to apply in study area II. The shotcrete and soil nails were used because the type of rocks in those areas is sedimentary rock such as shale, sandstone, siltstone, and a boulder of a volcanic rock. The same approach shall be applied in study area IV. study area III was the best spot to learn about the mitigation approach for slope stability and provides many lessons learned. Aceh Province experience active tectonic movement, high intensity of rain, geological structures, a high degree of weathering, and high intensity of earthquake,as primary factors which trigger landslides. The techonology of slope stabilizing and protection methods can be applied to mitigate landslides.

  12. Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang

    Science.gov (United States)

    Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy

    2018-04-01

    Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.

  13. Can sea level rise cause large submarine landslides on continental slopes?

    Science.gov (United States)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  14. H∞ control of Lur'e systems with sector and slope restricted nonlinearities

    International Nuclear Information System (INIS)

    Park, Ju H.; Ji, D.H.; Won, S.C.; Lee, S.M.; Choi, S.J.

    2009-01-01

    This Letter considers H ∞ controller design scheme for Lur'e systems with sector/slope restrictions and external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, a state feedback controller is designed to not only guarantee stability of systems but also reduce the effect of external disturbance to an H ∞ norm constraint. The nonlinearities are expressed as convex combinations of sector and slope bounds so that equality constraints are converted into inequality constraints using convex properties of the nonlinear function. Then, the stabilizing feedback gain matrix is derived through LMI formulation. Finally, a numerical example shows the effectiveness of the proposed method.

  15. Development of a GIS-based failure investigation system for highway soil slopes

    Science.gov (United States)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  16. Geotechnical approach for occupational safety risk analysis of critical slope in open pit mining as implication for earthquake hazard

    Science.gov (United States)

    Munirwansyah; Irsyam, Masyhur; Munirwan, Reza P.; Yunita, Halida; Zulfan Usrina, M.

    2018-05-01

    Occupational safety and health (OSH) is a planned effort to prevent accidents and diseases caused by work. In conducting mining activities often occur work accidents caused by unsafe field conditions. In open mine area, there is often a slump due to unstable slopes, which can disrupt the activities and productivity of mining companies. Based on research on stability of open pit slopes conducted by Febrianti [8], the Meureubo coal mine located in Aceh Barat district, on the slope of mine was indicated unsafe slope conditions, it will be continued research on OSH for landslide which is to understand the stability of the excavation slope and the shape of the slope collapse. Plaxis software was used for this research. After analyzing the slope stability and the effect of landslide on OSH with Job Safety Analysis (JSA) method, to identify the hazard to work safety, risk management analysis will be conducted to classified hazard level and its handling technique. This research aim is to know the level of risk of work accident at the company and its prevention effort. The result of risk analysis research is very high-risk value that is > 350 then the activity must be stopped until the risk can be reduced to reach the risk value limit < 20 which is allowed or accepted.

  17. Cost estimation for slope stability improvement in Muara Enim

    Science.gov (United States)

    Juliantina, Ika; Sutejo, Yulindasari; Adhitya, Bimo Brata; Sari, Nurul Permata; Kurniawan, Reffanda

    2017-11-01

    Case study area of SP. Sugihwaras-Baturaja is typologically specified in the C-zone type because the area is included in the foot of the mountain with a slope of 0 % to 20 %. Generally, the factors that cause landslide in Muara Enim Regency due to the influence of soil/rock, water factor, geological factors, and human activities. Slope improvement on KM.273 + 642-KM.273 + 774 along 132 m using soil nailing with 19 mm diameter tendon iron and an angle of 20o and a 75 mm shotcrete thickness, a K-250 concrete grouting material. Cost modeling (y) soil nailing based on 4 variables are X1 = length, X2 = horizontal distance, X3 = safety factor (SF), and X4 = time. Nine variations were used as multiple linear regression equations and analyzed with SPSS.16.0 program. Based on the SPSS output, then attempt the classical assumption and feasibility test model which produced the model that is Cost = (1,512,062 + 194,354 length-1,649,135 distance + 187,831 SF + 54,864 time) million Rupiah. The budget plan includes preparatory work, drainage system, soil nailing, and shotcrete. An efficient cost estimate of 8 m length nail, 1.5 m installation distance, safety factor (SF) = 1.742 and a 30 day processing time resulted in a fee of Rp. 2,566,313,000.00 (Two billion five hundred sixty six million three hundred thirteen thousand rupiah).

  18. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    Science.gov (United States)

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is

  19. Estimation of mountain slope stability depending on ground consistency and slip-slide resistance changes on impact of dynamic forces

    Science.gov (United States)

    Hayroyan, H. S.; Hayroyan, S. H.; Karapetyan, K. A.

    2018-04-01

    In this paper, three types of clayish soils with different consistency and humidity properties and slip-slide resistance indexes are considered on impact of different cyclic shear stresses. The side-surface deformation charts are constructed on the basis of experimental data obtained testing cylindrical soil samples. It is shown that the fluctuation amplitude depends on time and the consistency index depends on the humidity condition in the soil inner contact and the connectivity coefficients. Consequently, each experiment is interpreted. The main result of this research is that it is necessary to make corrections in the currently active schemes of slip-hazardous slopes stability estimation, which is a crucial problem requiring ASAP solution.

  20. Bearing Capacity of Strip Footings near Slopes Using Lower Bound Limit Analysis

    Directory of Open Access Journals (Sweden)

    Javad Mofidi rouchi

    2014-06-01

    Full Text Available Stability of foundations near slopes is one of the important and complicated problems in geotechnical engineering, which has been investigated by various methods such as limit equilibrium, limit analysis, slip-line, finite element and discrete element. The complexity of this problem is resulted from the combination of two probable failures: foundation failure and overall slope failure. The current paper describes a lower bound solution for estimation of bearing capacity of strip footings near slopes. The solution is based on the finite element formulation and linear programming technique, which lead to a collapse load throughout a statically admissible stress field. Three-nodded triangular stress elements are used for meshing the domain of the problem, and stress discontinuities occur at common edges of adjacent elements. The Mohr-Coulomb yield function and an associated flow rule are adopted for the soil behavior. In this paper, the average limit pressure of strip footings, which are adjacent to slopes, is considered as a function of dimensionless parameters affecting the stability of the footing-on-slope system. These parameters, particularly the friction angle of the soil, are investigated separately and relevant charts are presented consequently. The results are compared to some other solutions that are available in the literature in order to verify the suitability of the methodology used in this research.

  1. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  2. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    Science.gov (United States)

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  3. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    Science.gov (United States)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of

  4. Stability Evaluation of Volcanic Slope Subjected to Rainfall and Freeze-Thaw Action Based on Field Monitoring

    Directory of Open Access Journals (Sweden)

    Shima Kawamura

    2011-01-01

    Full Text Available Rainfall-induced failures of natural and artificial slopes such as cut slopes, which are subjected to freezing and thawing, have been frequently reported in Hokkaido, Japan. In particular, many failures occur intensively from spring to summer seasons. Despite numerous field studies, explanation of their mechanical behavior based on in situ data has not yet been completely achieved due to the difficulty in grasping failure conditions. This study aims at clarifying the aspects of in-situ volcanic slopes subjected to rainfall and freeze-thaw action. The changes in soil moisture, pore pressure, deformations, and temperatures in the slope were investigated using soil moisture meters, tensiometers, thermocouple sensors, clinometers, settlement gauges, an anemovane, a snow gauge, and a rainfall gauge. The data generated from these measures indicated deformation in the slope examined mainly proceeded during the drainage process according to changes in soil moisture. Based on this data, a prediction method for failures is discussed in detail.

  5. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    Science.gov (United States)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  6. Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

    Science.gov (United States)

    2018-01-01

    Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...

  7. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  8. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    Science.gov (United States)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  9. Digital peak current mode control with adaptive slope compensation for DC-DC converters

    DEFF Research Database (Denmark)

    Andersen, Karsten Holm; Nymand, Morten

    2017-01-01

    performance and stability of current mode control. The presented method adapt to DC-DC converter operating conditions by estimating the rising and falling inductor current slopes, to apply a current slope compensation value to obtain a constant quality factor. The experimental results verifies the theoretical......This paper presents an adaptive slope compensation method for peak current mode control of digital controlled DC-DC converters, which controls the quality factor of the complex conjugated poles at half the switching frequency. Using quality factor control enables optimization of the dynamic...

  10. The Stability of Metasedimentary Rock in Ranau, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Ismail Abd Rahim

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.23-31The aim of this paper is to determine the stability of slopes and to propose preliminary rock cut slope protection and stabilization measures for Paleocene to Middle Eocene Trusmadi Formation along Marakau-Kigiok in Ranau, Sabah, Malaysia. The rock of Trusmadi Formation is slightly metamorphosed and dominated by interbeds of sandstone with quartz vein (metagreywacke, metamudstone, shale, slate, sheared sandstone, and mudstone. The rock unit can be divided into four geotechnical units namely arenaceous unit, argillaceous unit, interbedded unit, and sheared unit. Twelve slopes were selected for this study. Geological mapping, discontinuity survey, kinematic analysis, and prescriptive measure were used in this study. Results of this study conclude that the potential modes of failures are planar and wedge. Terrace, surface drainage, weep holes, horizontal drain, vegetation cover, wire mesh, slope reprofiling, and retaining structure were proposed protection and stabilization measures for the slopes in the studied area.

  11. Design and stabilization works of the km 767 slope of Bolivia-Brazil gas pipeline; Projeto e obra de estabilizacao do talude do km 767 do gasoduto Bolivia-Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson R.; Vasconcellos, Carlos Renato Aragonez de [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Bolivia-Brazil Natural Gas Pipeline starts at Santa Cruz de La Sierra city, in Bolivia, and goes until Canoas City (RS) in Brazil, with a total extent of 3,150 km. The pipeline crosses in the 2,593 km established in Brazilian soil, the most diverse types of geology and geomorphology. Along the line, the right-of-way (ROW) also crosses a lot of roads, railways, rivers and lakes. During a routine inspection (foot patrol), signs of instability were detected at an embankment slope of a highway of the Santa Catarina state, at the pipeline crossing. An eventual failure of this slope could put the pipeline at risk. The aim of this paper is to present the aspects of the stabilizations phases, since field investigation, design, works, instrumentation, until monitoring. Emphasis is given to the design criteria to pipeline safety. The solution adopted is composite by soil nailing, a changing of slope inclination and superficial drainage system. (author)

  12. Analysis of Dynamic Coupling Characteristics of the Slope Reinforced by Sheet Pile Wall

    Directory of Open Access Journals (Sweden)

    H. L. Qu

    2017-01-01

    Full Text Available Large deformation of slope caused by earthquake can lead to the loss of stability of slope and its retaining structures. At present, there have been some research achievements about the slope reinforcement of stabilizing piles. However, due to the complexity of the structural system, the coupling relationship between soil and pile is still not well understood. Hence it is of great necessity to study its dynamic characteristics further. In view of this, a numerical model was established by FLAC3D in this paper, and the deformation and stress nephogram of sheet pile wall in peak ground motion acceleration (PGA at 0.1 g, 0.2 g, and 0.4 g were obtained. Through the analysis, some conclusions were obtained. Firstly, based on the nephogram of motion characteristics and the positions of the slip surface and the retaining wall, the reinforced slope can be divided into 6 sections approximatively, namely, the sliding body parts of A, B, C, D, and E and the bedrock part F. Secondly, the deformation and stress distributions of slope reinforced by sheet pile wall were carefully studied. Based on the results of deformation calculation from time history analysis, the interaction force between structure and soil can be estimated by the difference of peak horizontal displacements, and the structure-soil coupling law under earthquake can be studied by this approach.

  13. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    Science.gov (United States)

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  14. Synergism Analysis of Bedding Slope with Piles and Anchor Cable Support under Sine Wave Vehicle Load

    Directory of Open Access Journals (Sweden)

    Li Dan-Feng

    2016-01-01

    Full Text Available Slope instability under dynamic load is the technical difficulty in the engineering; the evaluation of slope stability under dynamic load and the control of dynamic load is particularly important. In this paper, taking the right side slope of K27+140 m~380 m typical section (K27 slope for short in Chongqing Fuling-Fengdu-Shizhu expresses highway as an example to calculate and analyze. The K27 slope is under sinusoidal vehicle load and supported by anchor cable and antislide pile to resist downslide strength; at the same time, the combined effect of them is studied. Three-dimensional finite element methodology (FEM is used to simulate the bedding slope with piles and anchor cable support; furthermore, the eigenvalue can be obtained. In order to reduce error of the elastic boundary conditions caused by the reflection effect of wavelengths, the combination of Lysmer surface viscous boundary and traditional ground support boundaries is utilized to analyze and calculate the time-histories during bedding slope under dynamic load. The dynamic response of pile anchor support to resist sliding force is obtained. The concept of the pile anchor supporting coordinate interval is put forward. Furthermore, it is verified that the pile anchor supporting coordinate interval can be used to evaluate the stability of the slope under dynamic load and provide a new method for the control of the dynamic load.

  15. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM

    Science.gov (United States)

    Cai, Fei; Ugai, Keizo

    2003-06-01

    This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.

  16. Slope movements

    International Nuclear Information System (INIS)

    Wagner, P.

    2009-01-01

    On this poster some reasons of slope movements on the territory of the Slovak Republic are presented. Slope movements induced deterioration of land and forests, endangering of towns villages, and communications as well as hydro-engineering structures. Methods of preventing and stabilisation of slope movements are presented.

  17. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    Science.gov (United States)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and ls. FSC showed high r2 (> 0.95) for the number of segments and the total length. RAR values of tree B are distributed rather upslope (76.8 % of RARtot), compared to 44.5 % of RARtot for tree A

  18. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  19. Research of geotechnical properties of slope covers from Jamne and Jaszcze stream valleys in Gorce Mts.

    Directory of Open Access Journals (Sweden)

    Tymoteusz Adam Zydroń

    2018-02-01

    Full Text Available The test results pertaining to geotechnical parameters of slope covers from valleys of two mountainous streams from Gorce Mts. are presented in the paper. The tests were carried out in the context of slope stability estimation of the analyzed watersheds. The field studies included determination of basic physical properties of soil at several sites within the studied area, laboratory tests involved determination of particle size distribution, consistency limits, permeability coefficients and shear strengths, which were carried out at direct shear box and CIU tests in triaxial apparatus. The test results revealed that the tested slope covers can be described as coarse-grained soils with low content of clay fraction, characterized by low plasticity. The values of the internal friction angle of the average bad land were high and ranged from 28 to 38 degrees, whereas cohesion varied from 0 to 7 kPa. Generally, the higher values of angle of internal friction and lower cohesion were obtained from triaxial tests. The values of permeability coefficients determined using the infiltration method allow to characterize tested soils as a semi-permeable medium. The stability calculations using the SINMAP model have shown that a significant part of the analyzed area is prone to mass movements, giving a more conservative assessment of landslide vulnerability than the results of the SOPO report. The probabilistic slope stability calculation results indicate that the likelihood of slope failure increases significantly on the slopes with the inclination exceeding 20 degrees, and the results of the calculations providing a more detailed information of the mass movements susceptibility of the area than were obtained using the SINMAP model.

  20. A New Formula for Front Slope Recession of Berm Breakwaters

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Burcharth, Hans F.

    2010-01-01

    The front slope stability of breakwaters with a homogeneous berm was studied in a large number of two dimensional model tests at Aalborg University, Denmark. The results are presented together with a new formula for prediction of the berm recession which is the most important parameter...

  1. Infiltration on mountain slopes: a comparison of three environments.

    Science.gov (United States)

    Carol P. Harden*; P. Delmas Scruggs

    2003-01-01

    Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at...

  2. Soil-atmosphere interaction in unsaturated cut slopes

    Directory of Open Access Journals (Sweden)

    Tsiampousi Aikaterini

    2016-01-01

    Full Text Available Interaction between atmosphere and soil has only recently attracted significant interest. Soil-atmosphere interaction takes place under dynamic climatic conditions, which vary throughout the year and are expected to suffer considerable alterations due to climate change. However, Geotechnical Analysis has traditionally been limited to simplistic approaches, where winter and summer pore water pressure profiles are prescribed. Geotechnical Structures, such as cut slopes, are known to be prone to large irreversible displacements under the combined effect of water uptake by a complex vegetation root system and precipitation. If such processes take place in an unsaturated material the complexity of the problem renders the use of numerical analysis essential. In this paper soil-atmosphere interaction in cut slopes is studied using advanced, fully coupled partially saturated finite element analyses. The effect of rainfall and evapotranspiration is modelled through sophisticated boundary conditions, applying actual meteorological data on a monthly basis. Stages of low and high water demand vegetation are considered for a period of several years, before simulating the effect of vegetation removal. The analysis results are presented with regard to the serviceability and stability of the cut slope.

  3. Slope instability caused by small variations in hydraulic conductivity

    Science.gov (United States)

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  4. Mixed approach (numerical modeling / equilibrium analysis) for slope stability analysis: development and application to the dams and open pit mining; Une approche mixte (numerique/equilibre limite) pour le calcul de stabilite des ouvrages en terre: developpement et application aux barrages et talus miniers

    Energy Technology Data Exchange (ETDEWEB)

    Kourdey, A.

    2002-09-15

    The determination of the sliding surface of slope (dam, slope natural..) is one of the important and complicated problems in geotechnics. The Analyze of stability by the methods of Limit Equilibrium like the method of slices are the most used methods. They are able to determine a safety factor for a geometrically defined failure surface. These methods well adapted to the homogeneous mediums, have been developed a lot but they do not integrate the basic relations of mechanics (stress-strain). The numerical methods are better adapted to mediums having more complexity (effect of water, seismicity, fracturing,..). But, they are seldom used to determine a sliding surface and a safety factor. Each family offers appreciable advantages in the analysis of slope stability. For that purpose, we have developed a method that combines the advantages of the numerical methods as well as those of Limit Equilibrium allowing obtaining a slip surface determined by the calculated constraints. This slip surface may be imposed or better optimized, thus providing a minimal safety factor. Methods of operation research are used to obtain this surface. They are search methods by level, dynamic research.. or both at the same time. We integrated these developments in an existing computer code based on the method of Finite Differences known as FLAC. The stresses are determined for a linear behavior and for nonlinear. Interfaces and graphic tools are also produced to facilitate the analysis of stability. The validity of this approach was carried out for a standard case of slope, we analyzed and compared the results with the methods of Limit Equilibrium. The parametric study shows that this approach takes account of different parameters, which influences stability. We also kept a particular place for the application on real cases presenting slopes of different nature (dams, mining slops,...). (author)

  5. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    Science.gov (United States)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case

  6. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina

    Science.gov (United States)

    Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R.

    2011-01-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each

  7. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    Science.gov (United States)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  8. A Study on the Allowable Safety Factor of Cut-Slopes for Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Soo; Yee, Eric [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    In this study, the issues of allowable safety factor design criteria for cut-slopes in nuclear facilities is derived through case analysis, a proposed construction work slope design criteria that provides relatively detailed conditions can be applied in case of the dry season and some unclear parts of slope design criteria be modified in case of the rainy season. This safety factor can be further subdivided into two; normal and earthquake factors, a factor of 1.5 is applied for normal conditions and a factor of 1.2 is applied for seismic conditions. This safety factor takes into consideration the effect of ground water and rainfall conditions. However, no criteria for the case of cut-slope in nuclear facilities and its response to seismic conditions is clearly defined, this can cause uncertainty in design. Therefore, this paper investigates the allowable safety factor for cut-slopes in nuclear facilities, reviews conditions of both local and international cut-slope models and finally suggests an alternative method of analysis. It is expected that the new design criteria adequately ensures the stability of the cut-slope to reflect clear conditions for both the supervising and design engineers.

  9. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    Science.gov (United States)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  10. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  11. Pipeline modeling and assessment in unstable slopes

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, Carlos Nieves [Oleoducto Central S.A., Bogota, Cundinamarca (Colombia); Ordonez, Mauricio Pereira [SOLSIN S.A.S, Bogota, Cundinamarca (Colombia)

    2010-07-01

    The OCENSA pipeline system is vulnerable to geotechnical problems such as faults, landslides or creeping slopes, which are well-known in the Andes Mountains and tropical countries like Colombia. This paper proposes a methodology to evaluate the pipe behaviour during the soil displacements of slow landslides. Three different cases of analysis are examined, according to site characteristics. The process starts with a simplified analytical model and develops into 3D finite element numerical simulations applied to the on-site geometry of soil and pipe. Case 1 should be used when the unstable site is subject to landslides impacting significant lengths of pipeline, pipeline is straight, and landslide is simple from the geotechnical perspective. Case 2 should be used when pipeline is straight and landslide is complex (creeping slopes and non-conventional stabilization solutions). Case 3 should be used if the pipeline presents vertical or horizontal bends.

  12. Tsunami-hazard assessment based on subaquatic slope-failure susceptibility and tsunami-inundation modeling

    Science.gov (United States)

    Anselmetti, Flavio; Hilbe, Michael; Strupler, Michael; Baumgartner, Christoph; Bolz, Markus; Braschler, Urs; Eberli, Josef; Liniger, Markus; Scheiwiller, Peter; Strasser, Michael

    2015-04-01

    Due to their smaller dimensions and confined bathymetry, lakes act as model oceans that may be used as analogues for the much larger oceans and their margins. Numerous studies in the perialpine lakes of Central Europe have shown that their shores were repeatedly struck by several-meters-high tsunami waves, which were caused by subaquatic slides usually triggered by earthquake shaking. A profound knowledge of these hazards, their intensities and recurrence rates is needed in order to perform thorough tsunami-hazard assessment for the usually densely populated lake shores. In this context, we present results of a study combining i) basinwide slope-stability analysis of subaquatic sediment-charged slopes with ii) identification of scenarios for subaquatic slides triggered by seismic shaking, iii) forward modeling of resulting tsunami waves and iv) mapping of intensity of onshore inundation in populated areas. Sedimentological, stratigraphical and geotechnical knowledge of the potentially unstable sediment drape on the slopes is required for slope-stability assessment. Together with critical ground accelerations calculated from already failed slopes and paleoseismic recurrence rates, scenarios for subaquatic sediment slides are established. Following a previously used approach, the slides are modeled as a Bingham plastic on a 2D grid. The effect on the water column and wave propagation are simulated using the shallow-water equations (GeoClaw code), which also provide data for tsunami inundation, including flow depth, flow velocity and momentum as key variables. Combining these parameters leads to so called «intensity maps» for flooding that provide a link to the established hazard mapping framework, which so far does not include these phenomena. The current versions of these maps consider a 'worst case' deterministic earthquake scenario, however, similar maps can be calculated using probabilistic earthquake recurrence rates, which are expressed in variable amounts of

  13. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    Science.gov (United States)

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  14. Cap stabilization for reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.; Hawkins, E.F.

    1989-01-01

    The reclamation and stabilization of uranium-mill tailings sites requires engineering designs to protect against the disruption of tailings and the potential release of radioactive materials. The reclamation design is to be effective for 200-1000 years. This paper presents recently developed or refined techniques and methodologies used to evaluate uranium-tailings-reclamation plans designed to provide long-term stability against failure modes. Specific cap-design aspects presented include design flood selection, influence of fluvial geomorphology on site stabilization, stable slope prediction, slope stabilization using riprap, and riprap selection relative to rock quality and durability. Design relationships are presented for estimating flow through riprap, sizing riprap, and estimating riprap flow resistance for overtopping conditions. Guidelines for riprap-layer thickness and gradation are presented. A riprap-rating procedure for estimating rock quality and durability is also presented

  15. Significance analysis of the leachate level in a solid waste landfill in a coastal zone using total water balance and slope stability alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Ja-Kong; Do, Nam-Young [Korea Advanced Institute of Science & Technology, Taejon (Korea, Republic of)

    1996-12-31

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate cover layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.

  16. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.

    Science.gov (United States)

    Dejour, David; Saffarini, Mo; Demey, Guillaume; Baverel, Laurent

    2015-10-01

    Revision ACL reconstruction requires careful analysis of failure causes particularly in cases of two previous graft ruptures. Intrinsic factors as excessive tibial slope or narrow femoral notch increase failure risks but are rarely addressed in revision surgery. The authors report outcomes, at minimum follow-up of 2 years, for second revision ACL reconstructions combined with tibial deflexion osteotomy for correction of excessive slope (>12°). Nine patients that underwent second revision ACL reconstruction combined with tibial deflexion osteotomy were retrospectively studied. The mean age was 30.3 ± 4.4 years (median 28; range 26-37), and mean follow-up was 4.0 ± 2.0 years (median 3.6; range 2.0-7.6). Autografts were harvested from the quadriceps tendon (n = 8) or hamstrings (n = 1), and tibial osteotomy was done by anterior closing wedge, without detachment of the patellar tendon, to obtain a slope of 3° to 5°. All patients had fused osteotomies, stable knees, and there were no intraoperative or postoperative complications. The mean posterior tibial slope decreased from 13.2° ± 2.6° (median 13°; range 12°-18°) preoperatively to 4.4° ± 2.3° (median 4°; range 2°-8°) postoperatively. The mean Lysholm score was 73.8 ± 5.8 (median 74; range 65-82), and the IKDC-SKF was 71.6 ± 6.1 (median 72.8; range 62.2-78.5). The satisfactory results of second revision ACL reconstruction combined with tibial deflexion osteotomy at minimum follow-up of 2 years suggest that tibia slope correction protects reconstructed ACL from fatigue failure in this study. The authors stress the importance of careful analysis failure causes prior to revision ACL reconstruction, and recommend correction of tibial slope if it exceeds 12°, to reduce the risks of graft retear. III.

  17. Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant

    International Nuclear Information System (INIS)

    Guo, Wencheng; Yang, Jiandong

    2017-01-01

    Highlights: • Nonlinear mathematical model and Hopf bifurcation analysis of turbine regulating system are presented. • Dynamic performance of turbine regulating system under 0.5 times Thoma sectional area is analyzed and a novel dynamic performance is revealed. • Relationship between two bifurcation lines and wave superposition is studied. • Combined effect mechanisms of upstream surge chamber and sloping ceiling tailrace tunnel on stability are revealed and optimization methods are proposed. - Abstract: Based on the nonlinear mathematical model of the turbine regulating system of hydroelectric power plant with upstream surge chamber and sloping ceiling tailrace tunnel and the Hopf bifurcation theory, this paper firstly studies the dynamic performance of the turbine regulating system under 0.5 times Thoma sectional area of surge chamber, and reveals a novel dynamic performance. Then, the relationship between the two bifurcation lines and the wave superposition of upstream surge chamber and sloping ceiling tailrace tunnel is analyzed. Finally, the effect mechanisms of the wave superposition on the system stability are investigated, and the methods to improve the system stability are proposed. The results indicate that: Under the combined effect of upstream surge chamber and sloping ceiling tailrace tunnel, the dynamic performance of the turbine regulating system of hydroelectric power plant shows an obvious difference on the two sides of the critical sectional area of surge chamber. There are two bifurcation lines for the condition of 0.5 times Thoma sectional area, i.e. Bifurcation line 1 and Bifurcation line 2, which represent the stability characteristics of the flow oscillation of “penstock-sloping ceiling tailrace tunnel” and the water-level fluctuation in upstream surge chamber, respectively. The stable domain of the system is determined by Bifurcation line 2. The effect of upstream surge chamber mainly depends on its sectional area, while the

  18. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  19. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    Science.gov (United States)

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  20. Modern Instrumentation of a Historical Landslide to Understand Dynamic Processes Governing Slope Movement in a Hostile Environment.

    Science.gov (United States)

    Johnson, K. A.

    2017-12-01

    The Milepost 6.2 Landslide on Many Glacier Road in Glacier National Park, Montana, has been moving since construction of the roadway in the early 1900's. Movement of the slide has a direct impact on Park operations and requires regrading and reconstruction of the road on a nearly annual basis. Prior attempts to stabilize the slope were not effective. Despite the history of this slide, very little quality data was available to delineate the depth and shape of the slide or the groundwater pressures that influence slope stability due to only seasonal data collection and a hostile winter environment. Landslide dynamics are further complicated where the toe of the slide becomes submerged seasonally by Lake Sherburne. In addition, due to irrigation use the lake levels fluctuate rapidly with seasonal rise and drops commonly greater than 30 feet in elevation. Five Shape Accelerometer Array inclinometers (SAAs) were installed to depths between 60 and 200 feet, along with 10 vibrating wire piezometers, one tipping bucket rain gauge, and onsite data acquisition system with a real-time satellite communication link enabling year-round data collection. Measurements of groundwater pressures and slide dynamics were used to develop a well constrained 2-D dynamic model of slide movement. Movement is controlled by clayey zones in glacial till deposits that mantle the valley slopes, along with water pressures from groundwater in the slope and fluctuating lake levels at the toe of the slope. The SAAs document slide plane locations and rates of slide movement as it changes through the year in response to the dynamic hydrologic setting. SAAs document sliding of over 3 feet and continue to operate and generate additional data. The data collected enabled the design of an extensive horizontal drain system to lower the groundwater pressures and stabilize the slope. Continuous year-round monitoring allowed comparison of slope movement in response to changes in lake elevation and precipitation

  1. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    Science.gov (United States)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  2. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    Science.gov (United States)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  3. Effects of Soil-Vegetation-Atmosphere Interaction on the Stability of a Clay Slope: A Case Study

    Directory of Open Access Journals (Sweden)

    Pedone Giuseppe

    2016-01-01

    Full Text Available Deep and slow landslide processes are frequently observed in clay slopes located along the Southern Apennines (Italy. A case study representative of these processes, named Pisciolo case study, is discussed in the paper. The geo-hydro-mechanical characteristics of the materials involved in the instability phenomena are initially discussed. Pluviometric, piezometric, inclinometric and GPS monitoring data are subsequently presented, suggesting that rainfall infiltration constitutes the main factor inducing slope movements. The connection between formation of landslide bodies and slope-atmosphere interaction has been demonstrated through a hydro-mechanical finite element analysis, whose results are finally reported in the work. This analysis has been conducted employing a constitutive model that is capable of simulating both saturated and unsaturated soil behaviour, as well as a boundary condition able to simulate the effects of the soil-vegetation-atmosphere interaction.

  4. North Slope (Wahluke Slope) expedited response action cleanup plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  5. North Slope (Wahluke Slope) expedited response action cleanup plan

    International Nuclear Information System (INIS)

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi 2 (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives

  6. Soil moisture storage and hillslope stability

    NARCIS (Netherlands)

    Talebi, A.; Uijlenhoet, R.; Troch, P.A.

    2007-01-01

    Recently, we presented a steady-state analytical hillslope stability model to study rain-induced shallow landslides. This model is based on kinematic wave dynamics of saturated subsurface storage and the infinite slope stability assumption. Here we apply the model to investigate the effect of

  7. Assessment of reinforced slopes instability in view of semi-analytical methods

    DEFF Research Database (Denmark)

    Tzavara, I.; Tsompanakis, Y.; Zania, Varvara

    The stabilization of natural or man-made earth slopes is usually achieved via proper reinforcement, which usually comprises of geosynthetic geogrids. On the other hand, earthquakes impose in such geostructures dynamic stresses, which may be excessive and can lead to accumulation of slip...... structures. Two approaches were adopted for the analysis of the dynamic stability in order to analyze the conservativeness of the employed method. Firstly, the dynamic response of the sliding soil mass and the development of the seismic accumulated slippage are taken into account simultaneously in a so...

  8. Revegetation and management of tailings sand slopes from tar sand extraction: 1978 results

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J

    1979-01-01

    The results are reported of research into the revegetation of two areas on a steeply sloping dike composed of tailings sand from tar sand extraction at the Great Canadian Oil Sand Limited plant at Fort McMurray, Alberta. One area was seeded with three pasture grasses and two legumes in 1971 after the slope surface had been mixed with peat to a depth of 15 cm. A second area had been amended with peat or peat and overburden and differing rates of fertilizer added. A mix containing nine grasses, four legumes, and oats, as a companion crop, was seeded in July 1976. The objectives of the research were to study methods for the establishment of a stable vegetative cover that would prevent erosion of the slope and, in time, might become a self maintaining unit. Tillage of soil amendments to a depth of 15 cm and 30 cm were compared in promoting deeper rooting and stabilizing of the slope.

  9. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    Science.gov (United States)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  10. Cyclic settlement behavior of strip footings resting on reinforced layered sand slope

    Directory of Open Access Journals (Sweden)

    Mostafa A. El Sawwaf

    2012-10-01

    Full Text Available The paper presents a study of the behavior of model strip footings supported on a loose sandy slope and subjected to both monotonic and cyclic loads. The effects of the partial replacement of a compacted sand layer and the inclusion of geosynthetic reinforcement were investigated. Different combinations of the initial monotonic loads and the amplitude of cyclic loads were chosen to simulate structures in which loads change cyclically such as machine foundations. The affecting factors including the location of footing relative to the slope crest, the frequency of the cyclic load and the number of load cycles were studied. The cumulative cyclic settlement of the model footing supported on a loose sandy slope, un-reinforced and reinforced replaced sand deposits overlying the loose slope were obtained and compared. Test results indicate that the inclusion of soil reinforcement in the replaced sand not only significantly increases the stability of the sandy slope itself but also decreases much both the monotonic and cumulative cyclic settlements leading to an economic design of the footings. However, the efficiency of the sand–geogrid systems depends on the properties of the cyclic load and the location of the footing relative to the slope crest. Based on the test results, the variation of cumulative settlements with different parameters is presented and discussed.

  11. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    Science.gov (United States)

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  12. Landslide risk assessment of a slope in Tijuana city, Mexico

    Directory of Open Access Journals (Sweden)

    Aldo Onel Oliva González

    2018-01-01

    Full Text Available Context: Risk reduction and prevention of disasters events produced by landslides on urban slopes, requires an integral assessment considering conditioning and triggering natural and human factors. Such an assessment is a valuable prevention and mitigation tool for communities under risk and also for authorities involved in the process. Method: In this research, a general methodology for the assessment of landslides on an urban slope was studied and applied, considering the relationship between hazard and physical vulnerability in the zone of study. Hazard was determined by probabilistic methods, whereas vulnerability of the exposed elements was obtained taking into account two kinds of buildings and their spatial distribution, their structural integrity state, their foundation depth and the unstable terrain probable mass volume. Results: Safety factors were obtained under allowable levels to warrant stability of the slope under study, and valuation factors of the qualitative analysis indicate that the slope is unstable and that requires urgent maintenance. This confirms and validates the high probability of occurrence in the zone, obtained from historic records. Conclusions: It was found that landslide risk in the slope is high due to the high probability of its occurrence, with three possible movement directions that may impact on several buildings located in the zone. Assessment constitutes a work tool for institutions and authorities related with risk reduction due to landslides, as a way of prevent and mitigate disaster prone events.

  13. NEESROCK: A Physical and Numerical Modeling Investigation of Seismically Induced Rock-Slope Failure

    Science.gov (United States)

    Applegate, K. N.; Wartman, J.; Keefer, D. K.; Maclaughlin, M.; Adams, S.; Arnold, L.; Gibson, M.; Smith, S.

    2013-12-01

    Worldwide, seismically induced rock-slope failures have been responsible for approximately 30% of the most significant landslide catastrophes of the past century. They are among the most common, dangerous, and still today, least understood of all seismic hazards. Seismically Induced Rock-Slope Failure: Mechanisms and Prediction (NEESROCK) is a major research initiative that fully integrates physical modeling (geotechnical centrifuge) and advanced numerical simulations (discrete element modeling) to investigate the fundamental mechanisms governing the stability of rock slopes during earthquakes. The research is part of the National Science Foundation-supported Network for Earthquake Engineering Simulation Research (NEES) program. With its focus on fractures and rock materials, the project represents a significant departure from the traditional use of the geotechnical centrifuge for studying soil, and pushes the boundaries of physical modeling in new directions. In addition to advancing the fundamental understanding of the rock-slope failure process under seismic conditions, the project is developing improved rock-slope failure assessment guidelines, analysis procedures, and predictive tools. Here, we provide an overview of the project, present experimental and numerical modeling results, discuss special considerations for the use of synthetic rock materials in physical modeling, and address the suitability of discrete element modeling for simulating the dynamic rock-slope failure process.

  14. Scale dependence of the diversity-stability relationship in a temperate grassland.

    Science.gov (United States)

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  15. Interesting insights into instability of slopes and rock fall in the morphodynamic Himalayan terrane

    Science.gov (United States)

    Singh, T. N.; Vishal, V.; Pradhan, S. P.

    2015-12-01

    Himalayan mountain ranges are tectonically and seismically very active and experience many disastrous events with time due to slope failure. Frequent failures of rock cut slopes cause obstruction in traffic and often lead to fatalities. In recent years, the number of tragedies has increased when associated with regional phenomena such at the Kedarnath tragedy of 2013 and the Gorkha earthquake of 2015. The influence of such phenomena on the stability of slopes along important national highways and key settlement areas only raise the risk to lives and property. We conducted a multi-approach investigation for some key slopes along the National Highway 58 in Uttarakhand Himalaya, India. A very detailed field work was conducted to identify the unstable slopes and those with some history of failure. The pertinent geomechanical characteristics of the representative rock samples were determined in the laboratory. Based on the structural data, kinematic analysis was carried out. Finally the slopes were simulated using FDM based simulator, Flac/Slope for analysing the health of the slopes and Rockfall 4.0 to investigate the phenomenon of rockfall along the Highway. It was found that few slopes were weak due to the inherent weak rock materials while few slopes made up of high strength rocks were effectively weak due to prone-to-failure orientation of the joints. Quantification of bounce-height of rock blocks during fall, their energy, velocity and displacement along the slope was also done. Using 3-D simulations, few critically-stable slopes that appear to be stable, were identified. Little ground movement could be capable of triggering a large scale failure in the area. Slopes in the studied region are under threat to failure and need immediate proper planning using the suggested remedial measures.

  16. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Science.gov (United States)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  17. Slope movements triggered by heavy rainfall, November 3–5, 1985, in Virginia and West Virginia, U.S.A.

    Science.gov (United States)

    Jacobson, Robert B.; Cron, Elizabeth D.; McGeehin, John P.

    1989-01-01

    Study of slope movements triggered by the storm of November 3–5, 1985, in the central Appalachian Mountains, U.S.A., has helped to define the meteorologic conditions leading to slope movements and the relative importance of land cover, bedrock, surficial geology, and geomorphology in slope movement location. This long-duration rainfall at moderate intensities triggered more than 1,000 slope movements in a 1,040-km2 study area. Most were shallow slips and slip-flows in thin colluvium and residuum on shale slopes. Locations of these failures were sensitive to land cover and slope aspect but were relatively insensitive to topographic setting. A few shallow slope movements were triggered by the same rainfall on interbedded limestone, shale, and sandstone. Several large debris slide-avalanches were triggered in sandstone regolith high on ridges in areas of the highest measured rainfall. Most of these sites were on slopes that dip 30 to 35° and lie parallel to bedding planes, presumably the sites of least stability.

  18. 16 determination of posterior tibia slope and slope deterioration

    African Journals Online (AJOL)

    normal slope and mechanical axis of the knee (7). The slope is reported to deepen in osteoarthritis; meaning increased articular surface contact and increased tibial translation (8). Total knee replacement aims to restore the mechanical axis of the natural knee joint. This axis will be changed by an altered PTS; yet after.

  19. Slope Estimation from ICESat/GLAS

    Directory of Open Access Journals (Sweden)

    Craig Mahoney

    2014-10-01

    Full Text Available We present a novel technique to infer ground slope angle from waveform LiDAR, known as the independent slope method (ISM. The technique is applied to large footprint waveforms (\\(\\sim\\ mean diameter from the Ice, Cloud and Land Elevation Satellite (ICESat Geoscience Laser Altimeter System (GLAS to produce a slope dataset of near-global coverage at \\(0.5^{\\circ} \\times 0.5^{\\circ}\\ resolution. ISM slope estimates are compared against high resolution airborne LiDAR slope measurements for nine sites across three continents. ISM slope estimates compare better with the aircraft data (R\\(^{2}=0.87\\ and RMSE\\(=5.16^{\\circ}\\ than the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM inferred slopes (R\\(^{2}=0.71\\ and RMSE\\(=8.69^{\\circ}\\ ISM slope estimates are concurrent with GLAS waveforms and can be used to correct biophysical parameters, such as tree height and biomass. They can also be fused with other DEMs, such as SRTM, to improve slope estimates.

  20. Scale dependence of the diversity–stability relationship in a temperate grassland

    Science.gov (United States)

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-01-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139

  1. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    Science.gov (United States)

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (Pslope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    CERN Document Server

    Khalvati, Mohammad Reza

    2016-01-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TS 0 n is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN ’ s Linac4 DTL Tank 2 and Tank 3 have been stabilized succ...

  3. Slope failure at Bukit Antarabangsa, Ampang, Selangor and its relationship to physical soil properties

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Sahibin Abd Rahim; Mohd Ekhwan Toriman; Diyana Ishnin

    2011-01-01

    Slope failure which occurred on 6 December 2008 at Bukit Antarabangsa, Ampang Selangor has caused mortalities and loss of properties whereas more than 20 houses were flattened. Prior to slope failure, it was heavily down poured for a few hours that increased the soil saturation and plasticity properties. A total of 10 soil samples were randomly taken from stable and unstable slopes to determine physical soil properties, infiltration rate and their relationship to rainfall pattern. Soils were analyzed in terms of their physical properties; five years (2005-2009) of daily rainfalls were analyzed to determine their relationship to infiltration rate at each sampling station. Infiltration rate is determined by using infiltrometer double ring. Analysis of physical soils properties shows that soil texture was dominated by sandy soil with relatively high percentage of sand. Values of clay dispersion coefficient were relatively stable to very stable from 0.013 % to 11.85 % and organic content from 1.38 % to 2.74 %. Range of porosity was from 50.12 % to 62.31 %, while the average levels of hydraulic conductivity was from level 2 to 5 or relatively slow to fast. Percentage of soil aggregate stability was from 5.12 % to 48.42 % and this value indicates that relative strength of soil mechanical pressure is inversely proportional to the percentage of water content. Soil plasticity value was high to very high but characterized by inactive colloids. Distribution of monthly rainfall was from 38 mm to 427 mm. The infiltration rate during sampling time was from 3.0 cm/ hr to 7.0 cm/ hr; but it was expected from 10.94 cm/ hr to 915.05 cm/ hr during slope failures. Overall, it was interpreted that physical soil properties was closely interrelated with slope stability, structure of sandy soil will enhanced soil porosity stage and enhance the infiltration process during heavy rainfall, and finally triggering of slope failure. (author)

  4. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    Science.gov (United States)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  5. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    Science.gov (United States)

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  6. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    Science.gov (United States)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Jie; Zhang, Cheng-Cheng; Wang, Bao-Jun

    2014-09-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  7. Fiber Bragg grating-based performance monitoring of a slope model subjected to seepage

    International Nuclear Information System (INIS)

    Zhu, Hong-Hu; Shi, Bin; Yan, Jun-Fan; Zhang, Cheng-Cheng; Wang, Bao-Jun; Zhang, Jie

    2014-01-01

    In the past few years, fiber optic sensing technologies have played an increasingly important role in the health monitoring of civil infrastructures. These innovative sensing technologies have recently been successfully applied to the performance monitoring of a series of geotechnical structures. Fiber optic sensors have shown many unique advantages in comparison with conventional sensors, including immunity to electrical noise, higher precision and improved durability and embedding capabilities; fiber optic sensors are also smaller in size and lighter in weight. In order to explore the mechanism of seepage-induced slope instability, a small-scale 1 g model test of the soil slope has been performed in the laboratory. During the model’s construction, specially fabricated sensing fibers containing nine fiber Bragg grating (FBG) strain sensors connected in a series were horizontally and vertically embedded into the soil mass. The surcharge load was applied on the slope crest, and the groundwater level inside of the slope was subsequently varied using two water chambers installed besides the slope model. The fiber optic sensing data of the vertical and horizontal strains within the slope model were automatically recorded by an FBG interrogator and a computer during the test. The test results are presented and interpreted in detail. It is found that the gradually accumulated deformation of the slope model subjected to seepage can be accurately captured by the quasi-distributed FBG strain sensors. The test results also demonstrate that the slope stability is significantly affected by ground water seepage, which fits well with the results that were calculated using finite element and limit equilibrium methods. The relationship between the strain measurements and the safety factors is further analyzed, together with a discussion on the residual strains. The performance evaluation of a soil slope using fiber optic strain sensors is proved to be a potentially effective

  8. Post Earthquack Slope Stability Analysis of Rubble Mound Breakwater

    OpenAIRE

    Amin Moradi; Amir Mahmoudzadeh; Yahya Rahim Safavi

    2017-01-01

    Rubble mound breakwaters are structures built mainly of quarried rock. Generally armourstone or artificial concrete armour units are used for the outer armour layer,which should protect the structure againist wave attack. Armour stones and concrete armoure unites in this outer layer are usually placed with care to obtain effective interlocking and consequently better stability .

  9. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  10. Deformation and failure mechanism of slope in three dimensions

    Directory of Open Access Journals (Sweden)

    Yingfa Lu

    2015-04-01

    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  11. IMPROVED LARGE-SCALE SLOPE ANALYSIS ON MARS BASED ON CORRELATION OF SLOPES DERIVED WITH DIFFERENT BASELINES

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-07-01

    Full Text Available The surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original

  12. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    Science.gov (United States)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR

  13. Probabilistic Approach to Provide Scenarios of Earthquake-Induced Slope Failures (PARSIFAL Applied to the Alcoy Basin (South Spain

    Directory of Open Access Journals (Sweden)

    Salvatore Martino

    2018-02-01

    Full Text Available The PARSIFAL (Probabilistic Approach to pRovide Scenarios of earthquake-Induced slope FAiLures approach was applied in the basin of Alcoy (Alicante, South Spain, to provide a comprehensive scenario of earthquake-induced landslides. The basin of Alcoy is well known for several historical landslides, mainly represented by earth-slides, that involve urban settlement as well as infrastructures (i.e., roads, bridges. The PARSIFAL overcomes several limits existing in other approaches, allowing the concomitant analyses of: (i first-time landslides (due to both rock-slope failures and shallow earth-slides and reactivations of existing landslides; (ii slope stability analyses of different failure mechanisms; (iii comprehensive mapping of earthquake-induced landslide scenarios in terms of exceedance probability of critical threshold values of co-seismic displacements. Geotechnical data were used to constrain the slope stability analysis, while specific field surveys were carried out to measure jointing and strength conditions of rock masses and to inventory already existing landslides. GIS-based susceptibility analyses were performed to assess the proneness to shallow earth-slides as well as to verify kinematic compatibility to planar or wedge rock-slides and to topples. The experienced application of PARSIFAL to the Alcoy basin: (i confirms the suitability of the approach at a municipality scale, (ii outputs the main role of saturation in conditioning slope instabilities in this case study, (iii demonstrates the reliability of the obtained results respect to the historical data.

  14. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    Science.gov (United States)

    Rousseau, Yannick Y.; Van de Wiel, Marco J.; Biron, Pascale M.

    2017-10-01

    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic

  15. Recent slope failures in the Dolomites (Northeastern Italian Alps) in a context of climate change

    Science.gov (United States)

    Chiarle, Marta; Paranunzio, Roberta; Laio, Francesco; Nigrelli, Guido; Guzzetti, Fausto

    2014-05-01

    Climate change in the Greater Alpine Region is seriously affecting permafrost distribution, with relevant consequences on slope stability. In the Italian Alps, the number of failures from rockwalls at high elevation markedly increased in the last 20-30 years: the consistent temperature increase, which warmed twice than the global average, may have seriously influenced slope stability, in terms of glaciers retreat and permafrost degradation. Moreover, the growing number of tourists and activities in alpine regions (in particular in the Dolomites) made these areas particularly critical in relation to natural hazards. In this light, an integrated short-term geomorphological and climatic analysis was performed, in order to better comprehend the impact of main climate elements (especially temperature and precipitation) on slope failures in high mountain areas. In this contribution, we focus on three recent slope failures occurred at high elevation sites in the Dolomites (Northeastern Italian Alps), declared a UNESCO World Heritage Site in August 2009. We describe here three important rock falls occurred in the autumn 2013: 1) the Sorapiss rock fall, on 30 September 2013; 2) the Monte Civetta rock fall, on 16 November 2013; 3) the Monte Antelao rock fall, on 22 November 2013. The Monte Civetta rock fall damaged some climbing routes, while the other two landslides did not cause any damage or injury. Despite the limited volume involved, these three events represent an important warning sign in the context of ongoing climate change. Geomorphological information about the rock fall sites were combined with the climatic data acquired from the meteorological stations surrounding the slope failure areas. A short-term climatic analysis was performed, with the aim of understanding the role of the main climatic elements in the triggering of natural instability events in this area and in the Alps in general.

  16. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.

    Science.gov (United States)

    Spitz, Jonathan; Evstrachin, Alexandrina; Zacksenhouse, Miriam

    2015-08-20

    In recent years there has been a growing interest in the field of dynamic walking and bio-inspired robots. However, while walking and running on a flat surface have been studied extensively, walking dynamically over terrains with varying slope remains a challenge. Previously we developed an open loop controller based on a central pattern generator (CPG). The controller applied predefined torque patterns to a compass-gait biped, and achieved stable gaits over a limited range of slopes. In this work, this range is greatly extended by applying a once per cycle feedback to the CPG controller. The terrain's slope is measured and used to modify both the CPG frequency and the torque amplitude once per step. A multi-objective optimization algorithm was used to tune the controller parameters for a simulated CB model. The resulting controller successfully traverses terrains with slopes ranging from +7° to -8°, comparable to most slopes found in human constructed environments. Gait stability was verified by computing the linearized Poincaré Map both numerically and analytically.

  17. Slippery Slope Arguments

    NARCIS (Netherlands)

    van der Burg, W.; Chadwick, R.F.

    1998-01-01

    Slippery slope arguments hold that one should not take some action (which in itself may be innocuous or even laudable) in order to prevent one from being dragged down a slope towards some clearly undesirable situation. Their typical purpose is to prevent changes in the status quo and, therefore,

  18. Submarine slope failures along the convergent continental margin of the Middle America Trench

    Science.gov (United States)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  19. Centrifuge model test of rock slope failure caused by seismic excitation. Applicability to the stability evaluation method of safety factors against sliding

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2010-01-01

    The purposes of this study are to analyze dynamic failure characteristics of slopes in discontinuous rock mass with brittle fracture by centrifuge model tests and to study applicability to the equivalent linear analysis against dynamic sliding failure of rock slopes. We conducted centrifuge model test using a dip slope model with discontinuities imitated by Teflon sheets. The centrifugal acceleration was 30G, and the acceleration amplitudes of input sin waves were increased gradually at every step. The test results were compared with safety factors of the sliding surface based on the equivalent linear analysis. The following results were obtained: (1) The slope model collapsed when it was excited by the sine wave of 350gal, which was converted to real field scale. (2) Artificial discontinuities considerably affected the collapse, and the type of collapse was plane failure. (3) From response displacement records measured at the slope model, the failure around toe of the slope model probably caused the collapse. (4) The evaluation of safety factors against sliding based on the equivalent linear analysis were conservative compared with the experimental results. (author)

  20. A historical case in the Bolivia-Brazil natural gas pipeline: slope on the Curriola River; Caso historico no Gasoduto Bolivia-Brasil: encosta no Rio Curriola

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Hudson Regis; Vasconcellos, Carlos Renato Aragonez de [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Bolivia-Brazil Natural Gas Pipeline has 2.593 kilometers since Rio Grande City in Bolivia until Canoas City, in south Brazil. The pipeline crosses a lot of types of geological fields and difficult topography. The south spread of the gas pipeline is the most interesting because of its hard topography combined with the variety of geological materials, such as, colluvium deposits and debris flow areas. Curriola River is located at the kilometer 408, north part of Parana State. In this area, the pipeline crosses slopes of 45 degrees of inclination. The down part of Curriola's slope is composed by a non-resistance material (clay and little rock blocks) with a high porosity. Every year, during the rainy seasons, tension cracks are observed evidencing the earth movement. The slope stability is above the minimum expected for pipeline operation. The aim of this paper is to present the site characterization of the Curriola River Slope, together with all the investigation made in order to supply the studies with condensed information for the slope stabilization. (author)

  1. Eddy dynamics over continental slopes under retrograde winds: Insights from a model inter-comparison

    Science.gov (United States)

    Wang, Yan; Stewart, Andrew L.

    2018-01-01

    Mesoscale eddies are ubiquitous in the ocean and play a key role in exchanges across continental slopes. In this study the properties of wind-driven baroclinic turbulence are investigated using eddy-resolving process simulations, focusing on the case of retrograde winds that arises around the margins of the subtropical gyres. In contrast to a flat-bottomed ocean, over steep slopes eddies develop from baroclinic instabilities are confined to the top few hundred meters. Deeper in the water column baroclinic instability and vertical momentum transfer are suppressed, so wind-input momentum is exported toward the open ocean by eddies before traversing down to the ocean bed. Close to the sloping topography, eddy energy sourced from the upper ocean is converted to potential energy, steepening isopycnals and driving bottom-trapped prograde flows. This process is associated with upgradient lateral buoyancy fluxes and downgradient isopycnal potential vorticity fluxes, and cannot be reproduced via linear stability calculations. These properties of wind-driven shelf/slope turbulence are contrasted against simulations with flat bathymetry. The key differences described above hinge on the flow close to the steep topographic slope, which may be sensitive to the model's vertical coordinate system. The simulations are therefore replicated using models that employ geopotential coordinates, terrain-following coordinates, and isopycnal coordinates. Quantitative inter-model discrepancies in the momentum and energy budgets are much more pronounced in the presence of a steep bottom slope. However, the key findings of this study are consistent across the models, suggesting that they are robust and warrant incorporation into parameterizations of eddy transfer across continental slopes.

  2. Stability Analysis of Landslide on the R1 Expressway by Limit Equilibrium and Finite Element Methods

    Science.gov (United States)

    Janták, Viktor

    2017-12-01

    The most difficult problem by designing the superior infrastructure is tracing the expressways and higways in an environment of Quaternary and Neogene complexes of finegrained cohesive and non-cohesive soils. At the last time the typical examples are stability problems on the R1 Nitra - Tekovské Nemce Expressway. The article is focused on the description of reasons of stability loss in the deep earth cut in the 79,000 km of expressway R1, the course of the landslide, slide correction and especially slope-stability assessment before and after the occurrence of slope failures by limit equilibrium and finite elements methods by comparing the behaviour of the slope in the various model situations.

  3. A Passive Dynamic Walking Model Based on Knee-Bend Behaviour: Stability and Adaptability for Walking down Steep Slopes

    Directory of Open Access Journals (Sweden)

    Kang An

    2013-10-01

    Full Text Available This paper presents a passive dynamic walking model based on knee-bend behaviour, which is inspired by the way human beings walk. The length and mass parameters of human beings are used in the walking model. The knee-bend mechanism of the stance leg is designed in the phase between knee-strike and heel-strike. q* which is the angular difference of the stance leg between the two events, knee-strike and knee-bend, is adjusted in order to find a stable walking motion. The results show that the stable periodic walking motion on a slope of r <0.4 can be found by adjusting q*. Furthermore, with a particular q* in the range of 0.12slope. The walking motion is more stable and adaptable than the conventional walking motion, especially for steep slopes.

  4. POTENTIALLY UNSTABLE SLOPE ABOVE ORE PROCESSING PLANT IN THE "OČURA" DOLOMITE QUARRY (LEPOGLAVA, NORTH CROATIA

    Directory of Open Access Journals (Sweden)

    Karlo Braun

    1993-12-01

    Full Text Available The complex engineering investigation, in the nearest surroun-dig of the conditionally stable high slope, close to ore processing facilities in the dolomite quarry »Očura« near Lepoglava (North Croatia, was carried out. Studying the tectonic features of the rock mass, discontinuities referent to the slope stability, was found out. Rock fragment size was measured and data processed using statistical design. According to rock fragment mean values, velocity of the longitudinal seismic waves was predicted. This values was compared with velocities of the longitudinal seismic waves, determined using gcophisical refraction seismic method. Physical and mechanical properties of the dolomite rock mass, considering longitudinal and transversal seismic wave velocities, and »RMR«-classification was assesed. All the results indicate, that the slope above the ore processing facilities should be consider as conditionally stable, with real probability to get unstable under the vibrations caused by blasting, during the exploitation in the field, close behind the investigated slope (the paper is published in Croatian.

  5. Suitability of digital elevation models generated by uav photogrammetry for slope stability assessment (case study of landslide in Svätý Anton, Slovakia

    Directory of Open Access Journals (Sweden)

    Rusnák Miloš

    2016-12-01

    Full Text Available Assessing the accuracy of photogrammetrically-derived digital elevation models (DEMs from UAV is essential in many geoscience disciplines. The suitability of different DEM devised for slope stability assessment was evaluated in the example of the landslide in Svätý Anton village in Slovakia. Aerial data was acquired during a one-day field campaign in autumn 2014. The point cloud from 218 images (54,607,748 points was manually classified into 7 different classes for filtering vegetation cover and buildings. Assessment of vertical differences between the UAV derived elevation model and real terrain surface was based on comparison of control points targeted by GPS (337 points and unclassified and ground classified point cloud for raster elevation models with 1, 5, 10, 20 and 50 cm pixel resolution.

  6. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    Science.gov (United States)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  7. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    Science.gov (United States)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  8. Analysis of slope slip surface case study landslide road segment Purwantoro-Nawangan/Bts Jatim Km 89+400

    International Nuclear Information System (INIS)

    Purnomo, Joko Sidik; Purwana, Yusep Muslih; Surjandari, Niken Silmi

    2017-01-01

    Wonogiri is a region of south eastern part of Central Java province which borders with East Java and Yogyakarta Province. In Physiographic its mostly undulating hills so that the frequent occurrence of landslides, especially during the rainy season. Landslide disaster that just happened that on the road segment Purwantoro-Nawangan / Bts Jatim Km 89 + 400 were included in the authority of the Highways Department of Central Java Province. During this time, Error analysis of slope stability is not caused by a lot of presumption shape of slip surface, but by an error in determining the location of the critical slip surface. This study aims to find the shape and location slip surface landslide on segment Purwantoro - Nawangan Km 89 + 400 with the interpretation of soil test results. This research method is with the interpretation of CPT test and Bore Hole as well as modeling use limit equilibrium method and finite element method. Processing contours of the slopes in the landslide area resulted in three cross section that slopes A-A, B-B and C-C which will be modeling the slopes. Modeling slopes with dry and wet conditions at the third cross section slope. It was found that the form of the slope slip surface are known to be composite depth 1.5-2 m with safety factor values more than 1.2 (stable) when conditions are dry slopes. But its became failure with factor of safety < 0.44 when conditions are wet slopes. (paper)

  9. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  10. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khalvati

    2016-04-01

    Full Text Available The axial electric field of Alvarez drift tube linacs (DTLs is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TS_{n}^{′} is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN’s Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100%/MHz down to ±3%/MHz for Tank 2 and down to ±1%/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  11. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    Science.gov (United States)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  12. Elliptically Bent X-ray Mirrors with Active Temperature Stabilization

    International Nuclear Information System (INIS)

    Yuan, Sheng; Church, Matthew; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; McKinney, Wayne R.; Kirschman, Jonathan; Morrison, Greg; Noll, Tino; Warwick, Tony; Padmore, Howard A.

    2010-01-01

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the Advanced Light Source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3K does not noticeably affect the mirror figure. Without temperature stabilization, the surface slope changes by approximately 1.5 ?mu rad rms (primarily defocus) under the same conditions.

  13. Elliptically Bent X-Ray Mirrors with Active Temperature Stabilization

    International Nuclear Information System (INIS)

    Yuan, S.; Church, M.; Yashchuk, V.V.; Celestre, R.S.; McKinney, W.R.; Morrison, G.; Warwick, T.; Padmore, H.A.; Goldberg, K.A.; Kirschman, J.; Noll, T.

    2010-01-01

    We present details of design of elliptically bent Kirkpatrick-Baez mirrors developed and successfully used at the advanced light source for submicron focusing. A distinctive feature of the mirror design is an active temperature stabilization based on a Peltier element attached directly to the mirror body. The design and materials have been carefully optimized to provide high heat conductance between the mirror body and substrate. We describe the experimental procedures used when assembling and precisely shaping the mirrors, with special attention paid to laboratory testing of the mirror-temperature stabilization. For this purpose, the temperature dependence of the surface slope profile of a specially fabricated test mirror placed inside a temperature-controlled container was measured. We demonstrate that with active mirror-temperature stabilization, a change of the surrounding temperature by more than 3 K does not noticeably affect the mirror figure. Without temperature stabilization, the rms slope error is changed by approximately 1.5 μrad (primarily defocus) under the same conditions

  14. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    Science.gov (United States)

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  15. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: implications for slope stability, Edmonds, Washington, USA

    Directory of Open Access Journals (Sweden)

    G. Biavati

    2006-01-01

    Full Text Available Shallow landslides on steep (>25° hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5 m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope

  16. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    Science.gov (United States)

    Sudan Acharya, Madhu

    2010-05-01

    The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms

  17. Stability Analysis and Stabilization of Miduk Heap Leaching Structure, Iran

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-06-01

    Full Text Available To construct copper heap leaching structures, a stepped heap of ore is placed over an isolated sloping surface and then washed with sulphuric acid. The isolated bed of such a heap consists of some natural and geosynthetic layers. Shear strength parameters between these layers are low, so they form the possible sliding surfaces of the heaps. Economic and environmental considerations call for studying such slides. In this study, firstly, results of the laboratory tests carried on the materials of the heap leaching structures bed are presented. Then, the instability mechanisms of such structures are investigated and proper approaches are summarized for their stabilization. Finally, stability of the Miduk copper heap is evaluated as a case history, and appropriate approaches and their effects are discussed for its stabilization.

  18. Large-scale Mass Transport Deposits in the Valencia Basin (Western Mediterranean): slope instability induced by rapid sea-level drawdown?

    Science.gov (United States)

    Cameselle, Alejandra L.; Urgeles, Roger; Llopart, Jaume

    2014-05-01

    The Messinian Salinity Crisis (MSC) strongly affected the physiography of the Mediterranean margins at the end of the Miocene. The sharp sea-level fall gave a new configuration to the Mediterranean basin and created dramatic morphological and sedimentological changes: margins have been largely eroded whereas the deep basins accumulated thick evaporitic and detrital units. Amongst these detrital units, there are evidences on seismic reflection data for major large-scale slope failure of the Mediterranean continental margins. About 2700 km of seismic reflection profiles in the southwestern part of the Valencia Basin (Western Mediterranean) have enabled us the detailed mapping of distinctive Messinian erosional surfaces, evaporites and deep detrital deposits. The detrital deposits occur in a distinct unit that is made of chaotic, roughly-bedded or transparent seismic bodies, which have been mainly mapped in the basin domain. Locally, the seismic unit shows discontinuous high-amplitude reflections and/or an imbricate internal structure. This unit is interpreted to be formed by a series of Mass Transport Deposits (MTDs). Rapid drawdown has long been recognized as one of the most severe loadings conditions that a slope can be subjected to. Several large historical slope failures have been documented to occur due to rapid drawdown in dams, riverbanks and slopes. During drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore-water pressures within the slope may remain high. The dissipation of these pore pressures in the slope is controlled by the permeability and the storage characteristics of the slope sediments. We hypothesize that the MTDs observed in our data formed under similar conditions and represent a large-scale equivalent of this phenomenon. Therefore, these MTDs can be used to put some constraints on the duration of the drawdown phase of the MSC. We have performed a series of slope stability analysis under rapid Messinian sea

  19. Slope of the Slope Derivative Surface used to characterize the complexity of the seafloor around St. John, USVI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Slope of slope was calculated from the bathymetry surface for each raster cell by applying the ArcGIS Spatial Analyst 'Slope' Tool to a previously created slope...

  20. Stabilization process of human population: a descriptive approach.

    Science.gov (United States)

    Kayani, A K; Krotki, K J

    1981-01-01

    An attempt is made to inquire into the process of stabilization of a human population. The same age distribution distorted by past variations in fertility is subjected to several fixed schedules of fertility. The schedules are different from each other monotonically over a narrow range. The primary concern is with the process, almost year by year, through which the populations become stable. There is particular interest in the differential impact in the same original age distribution of the narrowly different fixed fertility schedules. The exercise is prepared in 3 stages: general background of the process of stabilization; methodology and data used; and analysis and discussion of the stabilization process. Among the several approaches through which the analysis of stable population is possible, 2 are popular: the integral equation and the projection matrix. In this presentation the interest is in evaluating the effects of fertility on the stabilization process of a population. Therefore, only 1 initial age distribution and only 1 life table but a variety of narrowly different schedules of fertility have been used. Specifically, the U.S. 1963 female population is treated as the initial population. The process of stabilization is viewed in the light of the changes in the slopes between 2 successive age groups of an age distribution. A high fertility schedule with the given initial age distribution and mortality level overcomes the oscillations more quickly than the low fertility schedule. Simulation confirms the intuitively expected positive relationship between the mean of the slope and the level of fertility. The variance of the slope distribution is an indicator of the aging of the distribution.

  1. Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska

    Science.gov (United States)

    Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.

    2016-01-01

    Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.

  2. Wave run-up on sandbag slopes

    Directory of Open Access Journals (Sweden)

    Thamnoon Rasmeemasmuang

    2014-03-01

    Full Text Available On occasions, sandbag revetments are temporarily applied to armour sandy beaches from erosion. Nevertheless, an empirical formula to determine the wave run -up height on sandbag slopes has not been available heretofore. In this study a wave run-up formula which considers the roughness of slope surfaces is proposed for the case of sandbag slopes. A series of laboratory experiments on the wave run -up on smooth slopes and sandbag slopes were conducted in a regular-wave flume, leading to the finding of empirical parameters for the formula. The proposed empirical formula is applicable to wave steepness ranging from 0.01 to 0.14 and to the thickness of placed sandbags relative to the wave height ranging from 0.17 to 3.0. The study shows that the wave run-up height computed by the formula for the sandbag slopes is 26-40% lower than that computed by the formula for the smooth slopes.

  3. The texture, structure and nutrient availability of artificial soil on cut slopes restored with OSSS - Influence of restoration time.

    Science.gov (United States)

    Huang, Zhiyu; Chen, Jiao; Ai, Xiaoyan; Li, Ruirui; Ai, Yingwei; Li, Wei

    2017-09-15

    Outside soil spray seeding (OSSS) is widely used to restore cut slopes in southwest of China, and artificial soil is often sprayed onto cut slopes to establish a soil layer for revegetation. The stability of artificial soil layer and its supply of water and nutrients for plants is crucial for successful restoration. To evaluate the long-term effectiveness of OSSS, the texture, structure and nutrient availability of artificial soil were studied, various soil samples were obtained from three cut slopes with different restoration time (restored with OSSS in 1996, 2003 and 2007 respectively) and one natural developed slope (NS). The properties measured including soil particle size distribution (PSD), texture, fractal dimension of PSD (D m ), the bias (C S ) and peak convex (C E ) coefficients of aggregate size distribution, structure failure rate, bulk density, moisture, pH, soil organic carbon (SOC), calcium carbonate content, Available nitrogen (N A ), Available phosphorus (P A ), and Available potassium (K A ). The results showed that different restoration time resulted in significant differences in soil PSD, D m , C S , C E , structure failure rate, bulk density, moisture, pH, N A , and K A . And these properties improved with increasing restoration age. However, there is still a huge disparity in soil texture, structure, and the availability of nutrients and moisture between the cut slopes and NS over a restoration period of up to 17 years, and this is caused by the little fine particles and the lack of slow release fertilizers and organic fertilizers in the artificial soil, resulting in poorer soil structure stability, retention and availability of moisture and nutrients on the cut slopes. Overall, the OSSS technique shows a long-term effectiveness in southwest of China, but there is still room for improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman

    2018-04-01

    Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.

  5. Assessment of slope stability, Kemmerer Coal Company pit 1-U-D, Frontier, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Visca, P J; Call, R D

    1978-01-01

    This paper presents the results of a study to generate probability of failure schedules for use in an economic optimization analysis. The main objectives of the study were assessment of the possible modes of instability, calculation of the attendant degree of instability for each mode, and final compilation of probability of failure schedules for use in the economic optimization programme. The University of Arizona provided the mine plan configurations from which slope geometries for analysis were determined. (Available from Micromedia Ltd., 144 Front Street West, Toronto, Ontario M5J 1G2, Canada. Quote Contract No. OSQ77-00036)

  6. Influence of field slope and coffee plantation age on the physical properties of a red-yellow Latosol

    Directory of Open Access Journals (Sweden)

    Piero Iori

    2014-02-01

    Full Text Available In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years and slope positions (3, 9 and 15 %. Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track and at two depths (surface layer and sub-surface. Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.

  7. Effect of Slope Positions on Physicochemical Properties of Soils Located on a Toposequence in Deilaman Area of Guilan Province

    Directory of Open Access Journals (Sweden)

    P. Mohajeri

    2016-10-01

    Full Text Available Introduction: Topography is one of the most important factors of soil formation and evolution. Soil properties vary spatially and are influenced by some environmental factors such as landscape features, including topography, slope aspect and position, elevation, climate, parent material and vegetation. Variations in landscape features can influence many phenomena and ecological processes including soil nutrients and water interactions. This factor affects soil properties by changing the altitude, steepness and slope direction of lands. In spite of the importance of understanding the variability of soils for better management, few studies have been done to assess the quality of soils located on a toposequence and most of these studies include just pedological properties. The aim of this study was to investigate physical and chemical properties of soils located on different slope positions and different depths of a toposequence in Deilaman area of Gilan province, that located in north of Iran. Materials and Methods: The lands on toposequence that were same in climate, parent material, vegetation and time factors but topographical factor was different, were divided into five sections including steep peak, shoulder slope, back slope, foot slope and toe slope. In order to topsoil sampling, transverse sections of this toposequence were divided into three parts lengthways, each forming one replicate or block. 10*10 square was selected and after removing a layer of undecomposed organic residues such as leaf litter, three depths of 0 to 20, 20 to 40 and 40 to60 cm soil samples were collected. physical and chemical characteristics such as soil texture, bulk density, aggregate stability, percent of organic matter, cation exchange capacity, available phosphorous and total nitrogen were measured. Results and Discussion: The results showed that, because of high organic matter content and fine textured soils on the lower slope positions including foot slope

  8. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    Science.gov (United States)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  9. Wave interaction with large roughness elements on an impermeable sloping bed

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2012-01-01

    The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus is on the......The present paper presents the results of an experimental and numerical investigation of the flow between large roughness elements on a steep sloping impermeable bed during wave action. The setup is designed to resemble a breakwater structure. The work is part of a study where the focus...... is on the details in the porous core flow and the armour layer flow i.e. the interaction between the two flow domains and the effect on the armour layer stability. In order to isolate the processes involved with the flow in the porous core the investigations are first carried out with a completely impermeable bed...... and successively repeated with a porous bed. In this paper the focus is on the impermeable bed. Results are obtained experimentally for flow and turbulence between the roughness elements on the sloping bed. Numerical simulations have reproduced the experimental results with good agreements and can hereby add more...

  10. Cross-slope Movement Patterns in Landslides

    Science.gov (United States)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  11. Long-term stabilization considerations for decommissioned and reclaimed uranium sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.; Johnson, T.L.

    1988-01-01

    The long-term stabilization of decommissioned uranium mill sites and of reclaimed uranium mill tailings sites encompass a broad spectrum of design capabilities. This paper presents a few of the quantitative methodologies recently developed or refined to evaluate physical factors (i.e. precipitation, fluvial geomorphology, stable slope, slope stabilization with riprap and riprap selection) that influence long-term stabilization of uranium mill and mill tailings sites. It is acknowledged that the degree of refinement of these methodologies are in their infancy and that extensive research and development are warranted to increase the level of assurance. However, these methodologies provide an initial guideline for evaluating long-term stabilization that has not been previously existed. The purpose of this paper is to present a review of currently available state-of-the-art engineering techniques and methodologies for the evaluation of reclamation plans designed to provide long-term stability against potential failure modes. In some cases, evaluative techniques have been developed for long-term stabilization where methodologies have not previously existed. Each methodology to be presented represents a starting point upon which additional research and/or development may be warranted

  12. Effect of gas hydrates melting on seafloor slope stability

    Science.gov (United States)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Henriet, J.-P.; Mienert, J. (Ed.): Gas hydrates: relevance to world margin stability and climate change. Geological Society Special Publication, 137. The Geological Society: London, UK, p. 267-274. Handa,Y.P., 1989. Effect of Hydrostatic Pressure and Salinity on the Stability of Gas Hydrates. J.Phys.Chem., Vol.94, p.2652-2657. Henry, P., Thomas, M.; Clennell, M.B., 1999. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments,” J. Geophys. Res., 104, p. 23005. Sloan, E.D. Jr., 1998. Clathrate hydrates of natural gases. Marcel Dekker Inc., 2nd edition, New York, pp. 705. Soave G, 1972. Equilibrium

  13. Consideration on the relation between dynamic seismic motion and static seismic coefficient for the earthquake proof design of slope around nuclear power plant

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Kitahara, Yoshihiro; Hirata, Kazuta

    1986-01-01

    When the large cutting slopes are constructed closed to around nuclear power plants, it is important to evaluate the stability of the slopes during the strong earthquake. In the evaluation, it may be useful to clarify relationship between the static seismic coefficient and dynamic seismic force corresponded to the basic seismic motion which is specified for designing the nuclear power facilities. To investigate this relation some numerical analyses are conducted in this paper. As the results, it is found that dynamic forces considering the amplified responses of the slopes subjected to the basic seismic motion with a peak acceleration of 500 gals at the toe of the slopes, are approximately equal to static seismic force which generates in the slopes when the seismic coefficients of k = 0.3 is applied. (author)

  14. Minimization of gully erosion on reclaimed surface mines using the stable slope and sediment transport computer model

    International Nuclear Information System (INIS)

    McKenney, R.A.; Gardner, T.G.

    1992-01-01

    Disequilibrium between slope form and hydrologic and erosion processes on reclaimed surface coal mines in the humid temperate northeastern US, can result in gully erosion and sediment loads which are elevated above natural, background values. Initial sheetwash erosion is surpassed by gully erosion on reclamation sites which are not in equilibrium with post-mining hydrology. Long-term stability can be attained by designing a channel profile which is in equilibrium with the increased peak discharges found on reclaimed surface mines. The Stable Slope and Sediment transport model (SSAST) was developed to design stable longitudinal channel profiles for post-mining hydrologic and erosional processes. SSAST is an event based computer model that calculates the stable slope for a channel segment based on the post-mine hydrology and median grain size of a reclaimed surface mine. Peak discharge, which drives post-mine erosion, is calculated from a 10-year, 24-hour storm using the Soil Conservation Service curve number method. Curve number calibrated for Pennsylvania surface mines are used. Reclamation sites are represented by the rectangle of triangle which most closely fits the shape of the site while having the same drainage area and length. Sediment transport and slope stability are calculated using a modified Bagnold's equation with a correction factor for the irregular particle shapes formed during the mining process. Data from three reclaimed Pennsylvania surface mines were used to calibrate and verify SSAST. Analysis indicates that SSAST can predict longitudinal channel profiles for stable reclamation of surface mines in the humid, temperate northeastern US

  15. Effects of Goal Line Feedback on Level, Slope, and Stability of Performance within Curriculum-Based Measurement.

    Science.gov (United States)

    Fuchs, Lynn S.; And Others

    1991-01-01

    Nineteen special educators implemented Curriculum-Based Measurement with a total of 36 learning-disabled math pupils in grades 2-8 to examine the effects of goal line feedback. Results indicated comparable levels and slopes of student performance across treatment conditions, although goal line feedback was associated with greater performance…

  16. Slope-scale dynamic states of rockfalls

    Science.gov (United States)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  17. EFFECTS OF SLOPE SHAPES ON SOIL EROSION

    Directory of Open Access Journals (Sweden)

    Hüseyin ŞENSOY, Şahin PALTA

    2009-01-01

    Full Text Available Water is one of the most important erosive forces. A great number of factors also play a role in erosion process and slope characteristic is also one of them. The steepness and length of the slope are important factors for runoff and soil erosion. Another slope factor that has an effect on erosion is the shape of the slope. Generally, different erosion and runoff characteristics exist in different slopes which can be classified as uniform, concave, convex and complex shape. In this study, the effects of slope shape on erosion are stated and emphasized by taking similar researches into consideration.

  18. Reply: Comparison of slope instability screening tools following a large storm event and application to forest management and policy

    Science.gov (United States)

    Whittaker, Kara A.; McShane, Dan

    2013-02-01

    A large storm event in southwest Washington State triggered over 2500 landslides and provided an opportunity to assess two slope stability screening tools. The statistical analysis conducted demonstrated that both screening tools are effective at predicting where landslides were likely to take place (Whittaker and McShane, 2012). Here we reply to two discussions of this article related to the development of the slope stability screening tools and the accuracy and scale of the spatial data used. Neither of the discussions address our statistical analysis or results. We provide greater detail on our sampling criteria and also elaborate on the policy and management implications of our findings and how they complement those of a separate investigation of landslides resulting from the same storm. The conclusions made in Whittaker and McShane (2012) stand as originally published unless future analysis indicates otherwise.

  19. Tiltmeter Indicates Sense of Slope

    Science.gov (United States)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  20. Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India

    Directory of Open Access Journals (Sweden)

    Tariq Siddique

    2015-10-01

    Full Text Available The road network in the Himalayan terrain, connecting remote areas either in the valleys or on the hill slopes, plays a pivotal role in socio-economic development of India. The planning, development and even maintenance of road and rail networks in such precarious terrains are always a challenging task because of complexities posed by topography, geological structures, varied lithology and neotectonics. Increasing population and construction of roads have led to destabilisation of slopes, thus leading to mass wasting and movement, further aggravation due to recent events of cloud bursts and unprecedented flash floods. Vulnerability analysis of slopes is an important component for the “Landslide Hazard Assessment” and “Slope Mass Characterisation” guide planners to predict and choose suitable ways for construction of roads and other engineering structures. The problem of landslides along the national highway-58 (NH-58 from Rishikesh to Devprayag is a common scene. The slopes along the NH-58 between Jonk and Rishikesh were investigated, which experienced very heavy traffic especially from March to August due to pilgrimage to Kedarnath shrine. On the basis of slope mass rating (SMR investigation, the area falls in stable class, and landslide susceptibility score (LSS values also indicate that the slopes under investigation fall in low to moderate vulnerability to landslide. More attentions should be paid to the slopes to achieve greater safe and economic benefits along the highway.

  1. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  2. Slope Stability Assessment Using Trigger Parameters and SINMAP Methods on Tamblingan-Buyan Ancient Mountain Area in Buleleng Regency, Bali

    Directory of Open Access Journals (Sweden)

    I Nengah Sinarta

    2017-10-01

    Full Text Available The mapping of soil movement was examined by comparing an extension of the deterministic Soil Stability Index Mapping (SINMAP method, and an overlay method with trigger parameters of soil movement. The SINMAP model used soil parameters in the form of the cohesion value (c, internal friction angle (φ, and hydraulic conductivity (ks for the prediction of soil movement based on the factor of safety (FS, while the indirect method used a literature review and field observations. The weightings of soil movement trigger parameters in assessments were based on natural physical aspects: (1 slope inclination = 30%; (2 rock weathering = 15%; (3 geological structure = 20%; (4 rainfall = 15%; (5 groundwater potential = 7%; (6 seismicity = 3%; and (7 vegetation = 10%. The research area was located in the Buleleng district, in particular in the ancient mountain area of Buyan-Tamblingan, in the Sukasada sub-district. The hazard mapping gave a high and very high hazard scale. The SINMAP model gave a validation accuracy of 14.29%, while the overlay method with seven trigger parameters produced an accuracy of 71.43%. Based on the analysis of the very high and high hazard class and the validation of the landslide occurrence points, the deterministic method using soil parameters and water absorption gave a much lower accuracy than the overlay method with a study of soil motion trigger parameters.

  3. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    Science.gov (United States)

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  4. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    Science.gov (United States)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  5. Stability Analysis Of Earth Dam Slopes Subjected To Earthquake Using ERT Results Interpretation

    Directory of Open Access Journals (Sweden)

    Eko Andi Suryo

    2018-01-01

    Full Text Available Earth Dam stability can be affected significantly by the existence of excessive leakage. This is due to decreasing of shear strength of the dam material and additional overturning moment. In such scenario, the non-destructive soil investigation method is needed to analyze the stability of earth dam in current condition. This paper examines the use of Electrical Resistivity Tomography (ERT to investigate soil layers and to measure parameters of soil shear strength indirectly. First survey was carried out at dam crest and downstream using Wenner Configuration along profile lines at electrode spacing of 5 m. There were 5 profile lines of 180m long each and 10m distance of spacing. Furthermore, two profiles lines at weak cross-section based on its resistivity soil values were undertaken. Laboratory tests were conducted to determine relationship between resistivity value, moisture content, cohesion and angle of friction for each type of dam materials. From the ERT results and lab testing, a model dam can be obtained using current material parameters to perform stability analysis of dam subjected to earthquake. The lowest FOS was found at the upstream side about 1.15 and at the downstream side about 1.14 after applying seismic load of 100 years return period. Keywords: Stability Analysis, ERT,resistivity, leakage, dam

  6. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    Science.gov (United States)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  7. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    OpenAIRE

    Zhang, Long; Yang, Qiang; Liu, Yaoru

    2016-01-01

    The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep defo...

  8. Numerical Study on Dynamic Response of a Horizontal Layered-Structure Rock Slope under a Normally Incident Sv Wave

    Directory of Open Access Journals (Sweden)

    Zhifa Zhan

    2017-07-01

    Full Text Available Several post-earthquake investigations have indicated that the slope structure plays a leading role in the stability of rock slopes under dynamic loads. In this paper, the dynamic response of a horizontal layered-structure rock slope under harmonic Sv wave is studied by making use of the Fast Lagrangian Analysis of Continua method (FLAC. The suitability of FLAC for studying wave transmission across rock joints is validated through comparison with analytical solutions. After parametric studies on Sv wave transmission across the horizontal layered-structure rock slope, it is found that the acceleration amplification coefficient η, which is defined as the ratio of the acceleration at the monitoring point to the value at the toe, wavily increases with an increase of the height along the slope surface. Meanwhile, the fluctuation weakens with normalized joint stiffness K increasing and enhances with normalized joint spacing ξ increasing. The acceleration amplification coefficient of the slope crest ηcrest does not monotonously increase with the increase of ξ, but decreases with the increase of K. Additionally, ηcrest is more sensitive to ξ compared to K. From the contour figures, it can also be found that the contour figures of η take on rhythm, and the effects of ξ on the acceleration amplification coefficient are more obvious compared to the effects on K.

  9. A conceptual approach to approximate tree root architecture in infinite slope models

    Science.gov (United States)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic

  10. The Impact of The Energy-time Distribution of The Ms 7.0 Lushan Earthquake on Slope Dynamic Reliability

    Science.gov (United States)

    Liu, X.; Griffiths, D.; Tang, H.

    2013-12-01

    fuzzy failure probability, dynamic reliability index, and dynamic FOS, are obtained utilizing the statistical windows of duration that are extracted according to the characteristics of energy distribution of slope dynamic response. Third, the regional impact of the Lushan earthquake on slope stability was evaluated by the above new method. Two soil slope stability standard test problems were selected to represent homogeneous and heterogeneous soil slopes and were analyzed in the conditions of 123 groups of three-component acceleration records of the Lushan Ms 7.0 earthquake. As a result, the reduction percentage of dynamic FOS in the range covered by the 123 observations were obtained and presented as a contour map. This evaluation shows that the impact of the Lushan earthquake on slope stability generally decreased with distance from the epicenter. However, the reduction rates from the core epicenter area to the outside area in different directions varied due to the influences of the geological structures and other factors. Indeed, the contour map depicting the reduction percentage of slope dynamic FOS in the Longmenshan area can be an important tool in the efforts of earthquake disaster mitigation. In sum, this research provides new ideas and available examples for assessing the area-specific potential risk for earthquake induced slope failures.

  11. High slope waste dumps – a proven possibility

    Directory of Open Access Journals (Sweden)

    Igor Svrkota

    2013-11-01

    Full Text Available This paper is an overview of dumping operations on High Slope Waste Dump at Veliki Krivelj open pit copper mine, RTB Bor, Serbia. The High Slope Waste Dump in Bor is the highest single slope waste dump in the world with the slope height of 405 m. The paper gives the basics and limitations of the designed dumping technology, the redesigned technology, gives an overview of the 13 year long operation and gathered experiences and addresses the main issues of dumping operations in high slope conditions as well as the present condition of the High Slope Waste Dump.

  12. Landslide stability analysis on basis of LIDAR data extraction

    Science.gov (United States)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  13. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    Science.gov (United States)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    Unstable rock slopes that can cause large failures of the rock-avalanche type have been mapped in Norway for almost two decades. Four sites have earlier been characterized as high-risk objects based on expertise of few researchers. This resulted in installing continuous monitoring systems and set-up of an early-warning system for those four sites. Other unstable rock slopes have not been ranked related to their hazard or risk. There are ca. 300 other sites known of which 70 sites were installed for periodic deformation measurements using multiple techniques (Global Navigation Satellite Systems, extensometers, measurement bolts, and others). In 2012 a systematic hazard and risk classification system for unstable rock slopes was established in Norway and the mapping approach adapted to that in 2013. Now, the first 22 sites were classified for hazard, consequences and risk using this classification system. The selection of the first group of sites to be classified was based on an assumed high hazard or risk and importance given to the sites by Norwegian media and the public. Nine of the classified 22 unstable rock slopes are large sites that deform inhomogeneously or are strongly broken up in individual blocks. This suggests that different failure scenarios are possible that need to be analyzed individually. A total of 35 failure scenarios for those nine unstable rock slopes were considered. The hazard analyses were based on 9 geological parameters defined in the classification system. The classification system will be presented based on the Gamanjunni unstable rock slope. This slope has a well developed back scarp that exposes 150 m preceding displacement. The lateral limits of the unstable slope are clearly visible in the morphology and InSAR displacement data. There have been no single structures observed that allow sliding kinematically. The lower extend of the displacing rock mass is clearly defined in InSAR data and by a zone of higher rock fall activity. Yearly

  14. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    Science.gov (United States)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  15. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  16. The Unsaturated Hydromechanical Coupling Model of Rock Slope Considering Rainfall Infiltration Using DDA

    Directory of Open Access Journals (Sweden)

    Xianshan Liu

    2017-01-01

    Full Text Available Water flow and hydromechanical coupling process in fractured rocks is more different from that in general porous media because of heterogeneous spatial fractures and possible fracture-dominated flow; a saturated-unsaturated hydromechanical coupling model using a discontinuous deformation analysis (DDA similar to FEM and DEM was employed to analyze water movement in saturated-unsaturated deformed rocks, in which the Van-Genuchten model differently treated the rock and fractures permeable properties to describe the constitutive relationships. The calibrating results for the dam foundation indicated the validation and feasibility of the proposed model and are also in good agreement with the calculations based on DEM still demonstrating its superiority. And then, the rainfall infiltration in a reservoir rock slope was detailedly investigated to describe the water pressure on the fault surface and inside the rocks, displacement, and stress distribution under hydromechanical coupling conditions and uncoupling conditions. It was observed that greater rainfall intensity and longer rainfall time resulted in lower stability of the rock slope, and larger difference was very obvious between the hydromechanical coupling condition and uncoupling condition, demonstrating that rainfall intensity, rainfall time, and hydromechanical coupling effect had great influence on the saturated-unsaturated water flow behavior and mechanical response of the fractured rock slopes.

  17. Internal waves and temperature fronts on slopes

    Directory of Open Access Journals (Sweden)

    S. A. Thorpe

    Full Text Available Time series measurements from an array of temperature miniloggers in a line at constant depth along the sloping boundary of a lake are used to describe the `internal surf zone' where internal waves interact with the sloping boundary. More small positive temperature time derivatives are recorded than negative, but there are more large negative values than positive, giving the overall distribution of temperature time derivatives a small negative skewness. This is consistent with the internal wave dynamics; fronts form during the up-slope phase of the motion, bringing cold water up the slope, and the return flow may become unstable, leading to small advecting billows and weak warm fronts. The data are analysed to detect `events', periods in which the temperature derivatives exceed a set threshold. The speed and distance travelled by `events' are described. The motion along the slope may be a consequence of (a instabilities advected by the flow (b internal waves propagating along-slope or (c internal waves approaching the slope from oblique directions. The propagation of several of the observed 'events' can only be explained by (c, evidence that the internal surf zone has some, but possibly not all, the characteristics of the conventional 'surface wave' surf zone, with waves steepening as they approach the slope at oblique angles.

    Key words. Oceanography: general (benthic boundary layers; limnology, Oceanography: physical (internal and inertial waves

  18. Research on advancement of method for evaluating aseismatic ability of rock discontinuity plane in ground and surrounding slopes of nuclear power facilities

    International Nuclear Information System (INIS)

    Kusunose, Kinichiro; Cho, Akio; Takahashi, Manabu; Kamai, Toshitaka

    1997-01-01

    The purpose of this research is to carry out the technical development required for exploring with high accuracy the distribution and shapes of the discontinuity planes in rocks in the ground and surrounding cut-off slopes of nuclear power facilities, and to advance the techniques of interpreting and evaluating quantitatively the stability against earthquakes of the discontinuity planes. This research consists of two themes: the research on the method of investigating the three-dimensional distribution of the crevices in the ground and the research on the method of evaluating the aseismatic ability in the slopes. As for the first theme, one of the techniques for exploring underground structure with elastic waves, tomography, is explained, and the development of the 12 channel receiver and the program for the multi-channel analysis and processing of waveform are reported. As for the second theme, the stability analysis was carried out on three actual cases of landslide. The equation for stability analysis is shown, and the results are reported. The strength at the time of forming separation plane gives the most proper result. (K.I.)

  19. Runoff from armored slopes

    International Nuclear Information System (INIS)

    Codell, R.B.

    1986-01-01

    Models exist for calculating overland flow on hillsides but no models have been found which explicitly deal with runoff from armored slopes. Flow on armored slopes differs from overland flow, because substantial flow occurs beneath the surface of the rock layer at low runnoff, and both above and below the surface for high runoff. In addition to the lack of a suitable model, no estimates of the PMP exist for such small areas and for very short durations. This paper develops a model for calculating runoff from armored embankments. The model considers the effect of slope, drainage area and ''flow concentration'' caused by irregular grading or slumping. A rainfall-duration curve based on the PMP is presented which is suitable for very small drainage areas. The development of the runoff model and rainfall-duration curve is presented below, along with a demonstration of the model on the design of a hypothetical tailings embankment

  20. Radiological monitoring of northern slopes of Mogoltau

    International Nuclear Information System (INIS)

    Murtazaev, Kh.; Boboev, B.D.; Bolibekov, Sh.; Akhmedov, M.Z.

    2010-01-01

    Present article is devoted to radiological monitoring of northern slopes of Mogoltau. The physicochemical properties of water of northern slopes of Mogoltau were studied. The radiation monitoring of northern slopes of Mogoltau was carried out during several years under various weather conditions. The exposure rate of human settlements of northern part of Mogoltau was defined.

  1. Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring

    Science.gov (United States)

    Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy

    2018-02-01

    Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.

  2. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  3. Decision Guide for Roof Slope Selection

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1988-01-01

    This decision guide has been written for personnel who are responsible for the design, construction, and replacement of Air Force roofs. It provides the necessary information and analytical tools for making prudent and cost-effective decisions regarding the amount of slope to provide in various roofing situations. Because the expertise and experience of the decision makers will vary, the guide contains both basic slope-related concepts as well as more sophisticated technical data. This breadth of information enables the less experienced user to develop an understanding of roof slope issues before applying the more sophisticated analytical tools, while the experienced user can proceed directly to the technical sections. Although much of this guide is devoted to the analysis of costs, it is not a cost-estimating document. It does, however, provide the reader with the relative costs of a variety of roof slope options; and it shows how to determine the relative cost-effectiveness of different options. The selection of the proper roof slope coupled with good roof design, a quality installation, periodic inspection, and appropriate maintenance and repair will achieve the Air Force's objective of obtaining the best possible roofing value for its buildings.

  4. The great slippery-slope argument.

    Science.gov (United States)

    Burgess, J A

    1993-09-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social history and psychology required as a scholarly underpinning. As an antidote, an attempt is made both to identify some of the likely causes of genocide and to isolate some of the more modest but legitimate fears that lie behind slippery-slope arguments of this kind.

  5. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  6. Infiltration, seepage and slope instability mechanisms during the 20–21 November 2000 rainstorm in Tuscany, central Italy

    Directory of Open Access Journals (Sweden)

    V. Tofani

    2006-01-01

    Full Text Available On 20–21 November 2000, a storm of high intensity, with a estimated return period of more than 100 years, triggered over 50 landslides within the province of Pistoia in Tuscany (Italy. These failures can be defined as complex earth slides- earth flows. One of the documented landslides has been investigated by modelling the ground water infiltration process, the positive and negative pore water pressure variations and the effects of these variations on slope stability during the rainfall event. Morphometric and geotechnical analyses were carried out through a series of in-situ and laboratory tests, the results of which were used as input for the modelling process. The surface infiltration rate was initially simulated using the rainfall recorded at the nearest raingauge station. Finite element seepage analysis for transient conditions were then employed to model the changes in pore water pressure during the storm event, using the computed infiltration rate as the ground surface boundary condition. Finally, the limit equilibrium slope stability method was applied to calculate the variations in the factor of safety during the event and thereby determine the critical time of instability. For the investigated site the trend of the factor of safety indicates that the critical time for failure occurs about 18 h after the storm commences, and highlights the key role played by the soil permeability and thickness in controlling the response in terms of slope instability.

  7. Storm-Induced Slope Failure Susceptibility Mapping

    Science.gov (United States)

    2018-01-01

    A pilot study was conducted to characterize and map the areas susceptible to slope failure using state-wide available data. The objective was to determine whether it would be possible to provide slope-failure susceptibility mapping that could be used...

  8. Analysis of rainfall-induced slope instability using a field of local factor of safety

    Science.gov (United States)

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  9. Armor stability of hardly (or partly) reshaping berm breakwaters

    DEFF Research Database (Denmark)

    Moghim, M. N.; Andersen, Thomas Lykke

    2015-01-01

    This paper deals with stability of hardly (or partly) reshaping berm breakwaters. A simple physical argument is used to derive a new stability formula based on the assumption that the maximum wave force causing damage of armor layer is proportional to the maximum wave momentum flux near...... the structure toe. The main goal of the present paper is to provide an estimation technique based on this physical principle to predict the deformation of the front slope in terms of the eroded area. The proposed method is verified by comparison with model test data. It is found that by using the maximum wave...... momentum flux approach the damage to the front slope (eroded area) can be very well predicted. Moreover, a simple method to estimate the eroded area based on measured or calculated berm recession (Rec) and depth of intersection of reshaped and initial profile (hf) is presented. The performance...

  10. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    Science.gov (United States)

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  11. Slope Estimation in Noisy Piecewise Linear Functions.

    Science.gov (United States)

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  12. Hydrology of two slopes in subarctic Yukon, Canada

    Science.gov (United States)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  13. Prediction of Seismic Slope Displacements by Dynamic Stick-Slip Analyses

    International Nuclear Information System (INIS)

    Ausilio, Ernesto; Costanzo, Antonio; Silvestri, Francesco; Tropeano, Giuseppe

    2008-01-01

    A good-working balance between simplicity and reliability in assessing seismic slope stability is represented by displacement-based methods, in which the effects of deformability and ductility can be either decoupled or coupled in the dynamic analyses. In this paper, a 1D lumped mass ''stick-slip'' model is developed, accounting for soil heterogeneity and non-linear behaviour, with a base sliding mechanism at a potential rupture surface. The results of the preliminary calibration show a good agreement with frequency-domain site response analysis in no-slip conditions. The comparison with rigid sliding block analyses and with the decoupled approach proves that the stick-slip procedure can result increasingly unconservative for soft soils and deep sliding depths

  14. Test results of BM109 magnet field stability during ramping

    International Nuclear Information System (INIS)

    Kristalinski, A.

    1992-12-01

    This report presents results of the measured lag between the current ramp and the following magnetic field rise in BM109 magnets. The purpose of these tests is to choose identical ramping programs for PC4AN1, PC4AN2 and PC4AN3 magnets. The lag occurs due to the large eddy currents in the magnets' solid iron cores. The experiment requires a magnetic field stability of 0.1% during beam presence. Using existing equipment and a program slope of 100 Amp/sec starting at Tl yields fields within the 0.05% of set value. Add to this 0.05% for P.S. regulation to meet the required field stability of 0.1%. This program yields annual savings of $200,000 (assuming 100% usage) . Additional savings can be made by using faster slopes, but this requires additional controls

  15. Stability in the metamemory realism of eyewitness confidence judgments.

    Science.gov (United States)

    Buratti, Sandra; Allwood, Carl Martin; Johansson, Marcus

    2014-02-01

    The stability of eyewitness confidence judgments over time in regard to their reported memory and accuracy of these judgments is of interest in forensic contexts because witnesses are often interviewed many times. The present study investigated the stability of the confidence judgments of memory reports of a witnessed event and of the accuracy of these judgments over three occasions, each separated by 1 week. Three age groups were studied: younger children (8-9 years), older children (10-11 years), and adults (19-31 years). A total of 93 participants viewed a short film clip and were asked to answer directed two-alternative forced-choice questions about the film clip and to confidence judge each answer. Different questions about details in the film clip were used on each of the three test occasions. Confidence as such did not exhibit stability over time on an individual basis. However, the difference between confidence and proportion correct did exhibit stability across time, in terms of both over/underconfidence and calibration. With respect to age, the adults and older children exhibited more stability than the younger children for calibration. Furthermore, some support for instability was found with respect to the difference between the average confidence level for correct and incorrect answers (slope). Unexpectedly, however, the younger children's slope was found to be more stable than the adults. Compared to the previous research, the present study's use of more advanced statistical methods provides a more nuanced understanding of the stability of confidence judgments in the eyewitness reports of children and adults.

  16. Factors affecting seismic response of submarine slopes

    Directory of Open Access Journals (Sweden)

    G. Biscontin

    2006-01-01

    Full Text Available The response of submerged slopes on the continental shelf to seismic or storm loading has become an important element in the risk assessment for offshore structures and 'local' tsunami hazards worldwide. The geological profile of these slopes typically includes normally consolidated to lightly overconsolidated soft cohesive soils with layer thickness ranging from a few meters to hundreds of meters. The factor of safety obtained from pseudo-static analyses is not always a useful measure for evaluating the slope response, since values less than one do not necessarily imply slope failure with large movements of the soil mass. This paper addresses the relative importance of different factors affecting the response of submerged slopes during seismic loading. The analyses use a dynamic finite element code which includes a constitutive law describing the anisotropic stress-strain-strength behavior of normally consolidated to lightly overconsolidated clays. The model also incorporates anisotropic hardening to describe the effect of different shear strain and stress histories as well as bounding surface principles to provide realistic descriptions of the accumulation of the plastic strains and excess pore pressure during successive loading cycles. The paper presents results from parametric site response analyses on slope geometry and layering, soil material parameters, and input ground motion characteristics. The predicted maximum shear strains, permanent deformations, displacement time histories and maximum excess pore pressure development provide insight of slope performance during a seismic event.

  17. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    Science.gov (United States)

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  18. Modeling and simulation of driver's anticipation effect in a two lane system on curved road with slope

    Science.gov (United States)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.

  19. Development of evaluation methods for impact of earthquake-induced slope failure on nearby critical structures. Analysis of behavior of collapsed rock masses using 3-D distinct element method

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Tochigi, Hitoshi; Nakajima, Masato; Shirai, Koji

    2012-01-01

    Recently, importance of evaluation for impact of earthquake-induced slope failure on nearby critical structures is increasing in order to evaluate seismic stability of the slope, in addition to evaluating the possibilities of slope failure. In this study, we presented an examination flow chart to evaluate the impact on structures after slope failure. In the examination flow chart, we assumed the following four considerations; (1) evaluation of the collapse region of the slope, (2) evaluation of behavior of the collapsed rock masses, (3) evaluation of the impact on the structures, (4) examination of the countermeasures. And, for the purpose of using three dimensional distinct element method (DEM) for evaluation of behavior of the collapsed rock masses, we firstly confirmed applicability of DEM to behavior of a mass hurtling down the slope by means of comparing with the model test results. Moreover, we clarified influence of initial position or restitution coefficient of rock masses on final traveling distance of collapsed rock masses. (author)

  20. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    Science.gov (United States)

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  1. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  2. Friction of hard surfaces and its application in earthquakes and rock slope stability

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  3. 30 CFR 77.1911 - Ventilation of slopes and shafts.

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1911 Ventilation of slopes and shafts. (a) All slopes and... connected to the slope or shaft opening with fireproof air ducts; (3) Designed to permit the reversal of the...

  4. Intertidal beach slope predictions compared to field data

    NARCIS (Netherlands)

    Madsen, A.J.; Plant, N.G.

    2001-01-01

    This paper presents a test of a very simple model for predicting beach slope changes. The model assumes that these changes are a function of both the incident wave conditions and the beach slope itself. Following other studies, we hypothesized that the beach slope evolves towards an equilibrium

  5. US North Slope gas and Asian LNG markets

    Science.gov (United States)

    Attanasi, E.D.

    1994-01-01

    Prospects for export of liquified natural gas (LNG) from Alaska's North Slope are assessed. Projected market conditions to 2010 show that new LNG capacity beyond announced expansions will be needed to meet regional demand and that supplies will probably come from outside the region. The estimated delivered costs of likely suppliers show that Alaska North Slope gas will not be competitive. The alternative North Slope gas development strategies of transport and sale to the lower 48 states and use on the North Slope for either enhanced oil recovery or conversion to liquids are examined. The alternative options require delaying development until US gas prices increase, exhaustion of certain North Slope oil fields, or advances occur in gas to liquid fuels conversion technology. ?? 1995.

  6. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    Science.gov (United States)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  7. Effects of Ecohydraulic Bank Stabilization Structures on Bank Stability and Macroinvertebrate Community in Surabaya River

    Directory of Open Access Journals (Sweden)

    Daru Setyo Rini

    2018-01-01

    Full Text Available There were 18 accelerated erosion sites identified along 7 km of Surabaya River Fishery Sanctuary Area. A model of ecohydraulic bank stabilization was applied to reduce bank erosion in Surabaya River at Gresik Regency Indonesia. The model is combination of reprofiled and revegetated bank with rock toe reinforcement and  addition of log groynes. Various native plant species were planted and naturally grown to establish multi-strata littoral vegetation structure. This study assessed effects of ecohydraulic bank stabilization on bank morphology, near bank velocity and littoral macroinvertebrate community during September 2014 to August 2016. The study found that rock toe enforcement, log groynes and reprofiled bank slope could stabilized the eroded bank, and littoral vegetation formation reduced near bank velocity at restored sites. There were 31 families of macroinvertebrate found in Surabaya River with high abundance of moderately pollution sensitive taxa Atyidae and pollution tolerant taxa Corixidae, Chironomidae and Tubificidae. The taxa richness, diversity index and abundance of sensitive and moderately sensitive macroinvertebrate group were increased after application of ecohydraulic bank stabilization at restored area. The results shown that ecohydraulic bank stabilization structure provides multi-benefits in improving bank stabilization against erosion and providing new micro-habitats for biotic community. Keywords:  ecohydraulic bank stabilization, macroinvertebrates, riparian restoration

  8. Surface stability analysis of dikes subject to overtopping and infiltration

    NARCIS (Netherlands)

    Karim, U. F.A.; Tran, Q.T.; Meij, R.

    2015-01-01

    The key contribution of this paper is the coupling of hydraulic loading conditions due to wave overtopping with slope stability of the surface layer of earthen flood protection embankments. Overtopping wave conditions impact overtopping discharges and infiltration time, and thereby the infiltration

  9. Stability of Roundheads Armoured with Cubes

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Haagensen, Per; Macineira, Enrique

    2003-01-01

    The paper presents the results of a hydraulic model test study of the influence of concrete mass density and placement method on the stability of cube armour in a 1:2 slope cone shaped roundhead exposed to short ? crested seas. Location and development of armour displacements were studied...... for concrete cubes with mass density of 2.4 t/m 3 and 2.8 t/m 3 in random and regular placement. Significant increase in stability for the higher mass density cubes was found showing that the same dimension cubes can be used in roundhead and trunk, if for the top layer of the most exposed part of the roundhead...

  10. Influence of scale-dependent fracture intensity on block size distribution and rock slope failure mechanisms in a DFN framework

    Science.gov (United States)

    Agliardi, Federico; Galletti, Laura; Riva, Federico; Zanchi, Andrea; Crosta, Giovanni B.

    2017-04-01

    An accurate characterization of the geometry and intensity of discontinuities in a rock mass is key to assess block size distribution and degree of freedom. These are the main controls on the magnitude and mechanisms of rock slope instabilities (structurally-controlled, step-path or mass failures) and rock mass strength and deformability. Nevertheless, the use of over-simplified discontinuity characterization approaches, unable to capture the stochastic nature of discontinuity features, often hampers a correct identification of dominant rock mass behaviour. Discrete Fracture Network (DFN) modelling tools have provided new opportunities to overcome these caveats. Nevertheless, their ability to provide a representative picture of reality strongly depends on the quality and scale of field data collection. Here we used DFN modelling with FracmanTM to investigate the influence of fracture intensity, characterized on different scales and with different techniques, on the geometry and size distribution of generated blocks, in a rock slope stability perspective. We focused on a test site near Lecco (Southern Alps, Italy), where 600 m high cliffs in thickly-bedded limestones folded at the slope scale impend on the Lake Como. We characterized the 3D slope geometry by Structure-from-Motion photogrammetry (range: 150-1500m; point cloud density > 50 pts/m2). Since the nature and attributes of discontinuities are controlled by brittle failure processes associated to large-scale folding, we performed a field characterization of meso-structural features (faults and related kinematics, vein and joint associations) in different fold domains. We characterized the discontinuity populations identified by structural geology on different spatial scales ranging from outcrops (field surveys and photo-mapping) to large slope sectors (point cloud and photo-mapping). For each sampling domain, we characterized discontinuity orientation statistics and performed fracture mapping and circular

  11. The great slippery-slope argument.

    OpenAIRE

    Burgess, J A

    1993-01-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social hi...

  12. DOWNWARD SLOPING DEMAND CURVES FOR STOCK AND LEVERAGE

    Directory of Open Access Journals (Sweden)

    Liem Pei Fun

    2006-01-01

    Full Text Available This research attempts to investigate the effect of downward sloping demand curves for stock on firms' financing decisions. For the same size of equity issuance, firms with steeper slope of demand curves for their stocks experience a larger price drop in their share price compare to their counterparts. As a consequence, firms with a steeper slope of demand curves are less likely to issue equity and hence they have higher leverage ratios. This research finds that the steeper the slope of demand curve for firm's stock, the higher the actual leverage of the firm. Furthermore, firms with a steeper slope of demand curves have higher target leverage ratios, signifying that these firms prefer debt to equity financing in order to avoid the adverse price impact of equity issuance on their share price.

  13. Stability of Armour Units in Oscillatory Flow

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Thompson, A. C.

    1983-01-01

    As part of a program to study the hydraulics of wave attack on rubble mound breakwaters tests were made on model armour units in a steady flow through a layer laid on a slope. The flow angle has little effect on stability for dolosse or rock layers. The head drop at failure across each type...... of layer is similar but the dolosse layer is more permeable and fails as a whole. There was no viscous scale effect. These results and earlier tests in oscillating flow suggest a 'reservoir' effect is important in the stability in steep waves....

  14. Conceptualizations of Slope: A Review of State Standards

    Science.gov (United States)

    Stanton, Michael; Moore-Russo, Deborah

    2012-01-01

    Since slope is a fundamental topic that is embedded throughout the U.S. secondary school curriculum, this study examined standards documents for all 50 states to determine how they address the concept of slope. The study used eleven conceptualizations of slope as categories to classify the material in the documents. The findings indicate that all…

  15. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.

    Science.gov (United States)

    Nistea, Ioana T; Alcock, Simon G; Kristiansen, Paw; Young, Adam

    2017-05-01

    Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of <200 nrad r.m.s. are achieved over the entire elliptical bending range. High levels of bending repeatability (ΔR/R = 0.085% and 0.156% r.m.s. for the two bending directions) and stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

  16. Gait Characteristics Associated with Trip-Induced Falls on Level and Sloped Irregular Surfaces

    Directory of Open Access Journals (Sweden)

    Andrew Merryweather

    2011-11-01

    Full Text Available Same level falls continue to contribute to an alarming number of slip/trip/fall injuries in the mining workforce. The objective of this study was to investigate how walking on different surface types and transverse slopes influences gait parameters that may be associated with a trip event. Gait analysis was performed for ten subjects on two orientations (level and sloped on smooth, hard surface (control and irregular (gravel, larger rocks surfaces. Walking on irregular surfaces significantly increased toe clearance compared to walking on the smooth surface. There was a significant (p < 0.05 decrease in cadence (steps/min, stride length (m, and speed (m/s from control to gravel to larger rocks. Significant changes in external rotation and increased knee flexion while walking on irregular surfaces were observed. Toe and heel clearance requirements increased on irregular surfaces, which may provide an explanation for trip-induced falls; however, the gait alterations observed in the experienced workers used as subjects would likely improve stability and recovery from a trip.

  17. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    Science.gov (United States)

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  18. The logarithmic slope in diffractive DIS

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  19. Integrating concepts and skills: Slope and kinematics graphs

    Science.gov (United States)

    Tonelli, Edward P., Jr.

    The concept of force is a foundational idea in physics. To predict the results of applying forces to objects, a student must be able to interpret data representing changes in distance, time, speed, and acceleration. Comprehension of kinematics concepts requires students to interpret motion graphs, where rates of change are represented as slopes of line segments. Studies have shown that majorities of students who show proficiency with mathematical concepts fail accurately to interpret motion graphs. The primary aim of this study was to examine how students apply their knowledge of slope when interpreting kinematics graphs. To answer the research questions a mixed methods research design, which included a survey and interviews, was adopted. Ninety eight (N=98) high school students completed surveys which were quantitatively analyzed along with qualitative information collected from interviews of students (N=15) and teachers ( N=2). The study showed that students who recalled methods for calculating slopes and speeds calculated slopes accurately, but calculated speeds inaccurately. When comparing the slopes and speeds, most students resorted to calculating instead of visual inspection. Most students recalled and applied memorized rules. Students who calculated slopes and speeds inaccurately failed to recall methods of calculating slopes and speeds, but when comparing speeds, these students connected the concepts of distance and time to the line segments and the rates of change they represented. This study's findings will likely help mathematics and science educators to better assist their students to apply their knowledge of the definition of slope and skills in kinematics concepts.

  20. Slope stability of rectify coal waste embankments on mining areas

    International Nuclear Information System (INIS)

    Klossek, C.

    1999-01-01

    The paper is of a theoretical and experimental character, focusing on the results of field tests on the load-bearing capacity and stability of high (> 20m.) transportation embankments rectified with coal waste. The embankments are located in industrial areas subjected to the intense impact of underground mining. Such phenomena are also accompanied by essential changes in the water conditions of the subsoil. The results of model tests by SIR geo-radar used to non-damaging estimation of the suffusion occurring in the embankment constructed on non-waste materials are discussed. The numerical assessment of the filtration process has been based on the MFE and MBE programs, which are extended calculation procedures enabling the overall estimation of the redistribution of all the stress-strain components in the structure, in consideration of any hypothesis of the boundary state

  1. Human-induced geomorphology: Modeling slope failure in Dominical, Costa Rica using Landsat imagery

    Science.gov (United States)

    Miller, Andrew J.

    Unchecked human development has ravaged the region between Dominical and Uvita, Costa Rica. Much of the development transition has been driven by tourism and further foreign direct investment in residential, service and commercial enterprises. The resulting land-use/land-cover change has removed traditional forest cover in exchange for impervious surfaces, physical structures, and bare ground which is no longer mechanically supported by woody vegetation. Combined with a tropical climate, deeply weathered soils and lithography which are prone to erosion, land cover change has led to an increase in slope failure occurrences. Given the remoteness of the Dominical-Uvita region, its rate of growth and the lack of monitoring, new techniques for monitoring land use and slope failure susceptibility are needed. Two new indices are presented here that employ a Digital Elevation Model (DEM) and widely available Landsat imagery to assist in this endeavor. The first index, or Vegetation Influenced Landslide Index (VILI), incorporates slope derived from a DEM and Lu et al.'s (2007) Surface Cover Index to quantify vegetative cover as a means of mechanical stabilization in landslide prone areas. The second index, or Slope Multiplier Index (SMI), uses individual Landsat data bands and basic Landsat band ratios as environmental proxies to replicate soil, vegetative and hydrologic properties. Both models achieve accuracy over 70% and rival results from more complicated published literature. The accuracy of the indices was assessed with the creation of a landslide inventory developed from field observations occurring in December 2007 and November 2008. The creation of these indices represents an efficient and accurate way of determining landslide susceptibility zonation in data poor areas where environmental protection practitioners may be overextended, under-trained or both.

  2. Slope Failure Prediction and Early Warning Awareness Education for Reducing Landslides Casualty in Malaysia

    Science.gov (United States)

    Koay, S. P.; Tay, L. T.; Fukuoka, H.; Koyama, T.; Sakai, N.; Jamaludin, S. B.; Lateh, H.

    2015-12-01

    Northeast monsoon causes heavy rain in east coast of Peninsular Malaysia from November to March, every year. During this monsoon period, besides the happening of flood along east coast, landslides also causes millions of Malaysian Ringgit economical losses. Hence, it is essential to study the prediction of slope failure to prevent the casualty of landslides happening. In our study, we introduce prediction method of the accumulated rainfall affecting the stability of the slope. If the curve, in the graph, which is presented by rainfall intensity versus accumulated rainfall, crosses over the critical line, the condition of the slope is considered in high risk where the data are calculated and sent from rain gauge in the site via internet. If the possibility of slope failure is going high, the alert message will be sent out to the authorities for decision making on road block or setting the warning light at the road side. Besides road block and warning light, we propose to disseminate short message, to pre-registered mobile phone user, to notify the public for easing the traffic jam and avoiding unnecessary public panic. Prediction is not enough to prevent the casualty. Early warning awareness of the public is very important to reduce the casualty of landslides happening. IT technology does not only play a main role in disseminating information, early warning awareness education, by using IT technology, should be conducted, in schools, to give early warning awareness on natural hazard since childhood. Knowing the pass history on landslides occurrence will gain experience on the landslides happening. Landslides historical events with coordinate information are stored in database. The public can browse these historical events via internet. By referring to such historical landslides events, the public may know where did landslides happen before and the possibility of slope failure occurrence again is considered high. Simulation of rainfall induced slope failure mechanism

  3. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    Science.gov (United States)

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  4. Radiolytic degradation and stability of polycarbonate

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1993-01-01

    The radiolytic stability of polycarbonate was studied using national commercial additives, employed in the photo and thermo-oxidative stabilization of polymers. Among several additives tested only two showed the efficiency to radiolytic protection: one quencher and one radical scavenger. It was derived a linear relation that provides by slope of the straight line the degree of degradation (scissions), G, and the factors of radiolytic protection P (degree of protection) and CE (capture of energy) conferred by radioprotector additive easily. Therefore the method developed in this work (viscosity) to study the molecular degradation and stability of polymers is a simply and precise method. The synergic mixture of two additives (1% of weight total) confers at polycarbonate excellent radiolytic protection of 98% (20 - 40 kGy) reducing the G value of 16.7 to only 0.4. (author). 69 refs, 31 figs, 17 tabs

  5. Model slope infiltration experiments for shallow landslides early warning

    Science.gov (United States)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  6. $\\Upsilon\\overline{B}B$ couplings, slope of the Isgur-Wise function and improved estimate of $V_{cb}$

    CERN Document Server

    Narison, Stéphan

    1994-01-01

    We estimate the sum of the \\Upsilon \\bar BB couplings using QCD Spectral Sum Rules (QSSR). Our result implies the phenomenological bound \\xi'(vv'=1) \\geq -1.04 for the slope of the Isgur-Wise function. An analytic estimate of the (physical) slope to two loops within QSSR leads to the accurate value \\xi'(vv'=1) \\simeq -(1.00 \\pm 0.02) due to the (almost) complete cancellations between the perturbative and non-perturbative corrections at the stability points. Then, we deduce, from the present data, the improved estimate \\vert V_{cb} \\vert \\simeq \\ga 1.48 \\mbox{ps}/\\tau_B \\dr ^{1/2}(37.3 \\pm 1.2 \\pm 1.4)\\times 10^{-3} where the first error comes from the data analysis and the second one from the different model parametrizations of the Isgur-Wise function.

  7. Seabed fluid expulsion along the upper slope and outer shelf of the U.S. Atlantic continental margin

    Science.gov (United States)

    Brothers, D.S.; Ruppel, C.; Kluesner, J.W.; ten Brink, Uri S.; Chaytor, J.D.; Hill, J.C.; Andrews, B.D.; Flores, C.

    2014-01-01

    Identifying the spatial distribution of seabed fluid expulsion features is crucial for understanding the substrate plumbing system of any continental margin. A 1100 km stretch of the U.S. Atlantic margin contains more than 5000 pockmarks at water depths of 120 m (shelf edge) to 700 m (upper slope), mostly updip of the contemporary gas hydrate stability zone (GHSZ). Advanced attribute analyses of high-resolution multichannel seismic reflection data reveal gas-charged sediment and probable fluid chimneys beneath pockmark fields. A series of enhanced reflectors, inferred to represent hydrate-bearing sediments, occur within the GHSZ. Differential sediment loading at the shelf edge and warming-induced gas hydrate dissociation along the upper slope are the proposed mechanisms that led to transient changes in substrate pore fluid overpressure, vertical fluid/gas migration, and pockmark formation.

  8. A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests

    Science.gov (United States)

    Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars

    2015-09-01

    The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate and stable for steep slopes, and also conclude that, for longer time steps, the optimal

  9. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  10. Air pocket removal from downward sloping pipes

    NARCIS (Netherlands)

    Pothof, I.W.M.; Clemens, F.H.L.R.

    2012-01-01

    Air-water flow is an undesired condition in water pipelines and hydropower tunnels. Water pipelines and wastewater pressure mains in particular are subject to air pocket accumulation in downward sloping reaches, such as inverted siphons or terrain slopes. Air pockets cause energy losses and an

  11. GIS/RS-based Rapid Reassessment for Slope Land Capability Classification

    Science.gov (United States)

    Chang, T. Y.; Chompuchan, C.

    2014-12-01

    Farmland resources in Taiwan are limited because about 73% is mountainous and slope land. Moreover, the rapid urbanization and dense population resulted in the highly developed flat area. Therefore, the utilization of slope land for agriculture is more needed. In 1976, "Slope Land Conservation and Utilization Act" was promulgated to regulate the slope land utilization. Consequently, slope land capability was categorized into Class I-IV according to 4 criteria, i.e., average land slope, effective soil depth, degree of soil erosion, and parent rock. The slope land capability Class I-VI are suitable for cultivation and pasture. Whereas, Class V should be used for forestry purpose and Class VI should be the conservation land which requires intensive conservation practices. The field survey was conducted to categorize each land unit as the classification scheme. The landowners may not allow to overuse land capability limitation. In the last decade, typhoons and landslides frequently devastated in Taiwan. The rapid post-disaster reassessment of the slope land capability classification is necessary. However, the large-scale disaster on slope land is the constraint of field investigation. This study focused on using satellite remote sensing and GIS as the rapid re-evaluation method. Chenyulan watershed in Nantou County, Taiwan was selected to be a case study area. Grid-based slope derivation, topographic wetness index (TWI) and USLE soil loss calculation were used to classify slope land capability. The results showed that GIS-based classification give an overall accuracy of 68.32%. In addition, the post-disaster areas of Typhoon Morakot in 2009, which interpreted by SPOT satellite imageries, were suggested to classify as the conservation lands. These tools perform better in the large coverage post-disaster update for slope land capability classification and reduce time-consuming, manpower and material resources to the field investigation.

  12. Discussion: Comparison of slope instability screening tools following a large storm event and application to forest management and policy

    Science.gov (United States)

    Lingley, Leslie; Slaughter, Stephen L.; Sarikhan, Isabelle Y.; Norman, David K.

    2013-02-01

    This discussion is in response to the article entitled "Comparison of slope stability screening tools following a large storm event and application to forest management and policy" by Kara Whittaker and Dan McShane (Geomorphology 145-146 (2012) 115-122). The discussion is coauthored by several geologists at the Washington Department of Natural Resources (WDNR) including those from the research and policy sections of the state agency.

  13. Capturing pre-failure signs of slope instability using multi-temporal interferometry and Sentinel-1 data

    Science.gov (United States)

    Wasowski, Janusz; Bovenga, Fabio; Nitti, Davide Oscar; Tijani, Khalid; Morea, Alberto; Nutricato, Raffaele; Chiaradia, Maria Teresa

    2017-04-01

    The shorter repeat cycle (6 days since October 2016) and regularity of acquisitions of Sentinel-1A/B with respect to earlier European Space Agency (ESA) satellites with C-band sensors (ERS1/2, ENVISAT) represent the key advantages for the research-oriented and practical applications of multi-temporal interferometry (MTI). The applicability of the Interferometric Wide Swath acquisition mode of Sentinel-1 (images covering a 250 km swath on the ground) to regional scale slope instability detection through MTI has already been demonstrated, e.g., via studies of landslide-prone areas in Italy. Here we focus on the potential of Sentinel-1 data for local (site-specific), MTI-based monitoring and capturing pre-failure signs of slope instability, by exploiting the Persistent and Distributed Scatterers processing capability of the SPINUA algorithm. In particular, we present an example of a retrospective study of a large (over 2 km long) landslide, which took place in 2016 in an active open-cast coal mine in central Europe. This seemingly sudden failure caused destruction of the mining equipment, blocked the mining operations thereby resulting in significant economic losses. For the study, we exploited over 60 Sentinel-1A/B images acquired since November 2014. The MTI results furnished a valuable overview of the ground instability/stability conditions within and around the active mine, even though considerable spatial gaps in information were encountered due to surface disturbance by mining operations. Significantly, the ground surface displacement time series revealed that the 2016 slope failure was preceded by very slow (generally 1-3 cm/yr) creep-like deformations, already present in 2014. The MTI results also indicated that the slope experienced a phase of accelerated movement several weeks prior to the landslide event. Furthermore, the spatio-temporal analysis of interferometric coherence changes in the unstable area (mapped on Sentinel-2 Bottom Of Atmosphere reflectance

  14. A Stability Indicating HPLC Method for the Determination of ...

    African Journals Online (AJOL)

    Erah

    stability indicating reverse phase HPLC method for estimating meloxicam (MLX) in bulk ... acetonitrile-water-glacial acetic acid [55:40:5 (% v/v)] at a flow rate of 1ml/min and detection wavelength .... pore and degassed before use. ... determined to assess the effect of small but ... deviation, the standard error of slope, and the.

  15. Effect of slope height and horizontal forces on the bearing capacity of strip footings near slopes in cohesionless soil

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Damkilde, Lars; Krabbenhøft, Kristian

    2016-01-01

    , and in such cases the bearing capacity of the footing cannot be found using the existing methods. The present work comprises finite element based upper- and lower-bound calculations, using the geotechnical software OptumG2 to investigate the effect of the slope height and horizontal forces on the total bearing...... capacity, both without and with using superposition as presupposed in the traditional bearing capacity equation. The results for friction angles 30, 35 and 40 degrees, slope inclinations 1:2, 1:3 and 1:4, for selfweight and surcharge are given as charts showing the slope inclination factors suitable...

  16. Variance-in-Mean Effects of the Long Forward-Rate Slope

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2005-01-01

    This paper contains an empirical analysis of the dependence of the long forward-rate slope on the long-rate variance. The long forward-rate slope and the long rate are described by a bivariate GARCH-in-mean model. In accordance with theory, a negative long-rate variance-in-mean effect for the long...... forward-rate slope is documented. Thus, the greater the long-rate variance, the steeper the long forward-rate curve slopes downward (the long forward-rate slope is negative). The variance-in-mean effect is both statistically and economically significant....

  17. Reorienting with terrain slope and landmarks.

    Science.gov (United States)

    Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F

    2013-02-01

    Orientation (or reorientation) is the first step in navigation, because establishing a spatial frame of reference is essential for a sense of location and heading direction. Recent research on nonhuman animals has revealed that the vertical component of an environment provides an important source of spatial information, in both terrestrial and aquatic settings. Nonetheless, humans show large individual and sex differences in the ability to use terrain slope for reorientation. To understand why some participants--mainly women--exhibit a difficulty with slope, we tested reorientation in a richer environment than had been used previously, including both a tilted floor and a set of distinct objects that could be used as landmarks. This environment allowed for the use of two different strategies for solving the task, one based on directional cues (slope gradient) and one based on positional cues (landmarks). Overall, rather than using both cues, participants tended to focus on just one. Although men and women did not differ significantly in their encoding of or reliance on the two strategies, men showed greater confidence in solving the reorientation task. These facts suggest that one possible cause of the female difficulty with slope might be a generally lower spatial confidence during reorientation.

  18. Determination Of Slope Instability Using Spatially Integrated Mapping Framework

    Science.gov (United States)

    Baharuddin, I. N. Z.; Omar, R. C.; Roslan, R.; Khalid, N. H. N.; Hanifah, M. I. M.

    2016-11-01

    The determination and identification of slope instability are often rely on data obtained from in-situ soil investigation work where it involves the logistic of machineries and manpower, thus these aspects may increase the cost especially for remote locations. Therefore a method, which is able to identify possible slope instability without frequent ground walkabout survey, is needed. This paper presents the method used in prediction of slope instability using spatial integrated mapping framework which applicable for remote areas such as tropical forest and natural hilly terrain. Spatial data such as geology, topography, land use map, slope angle and elevation were used in regional analysis during desktop study. Through this framework, the occurrence of slope instability was able to be identified and was validate using a confirmatory site- specific analysis.

  19. Role of slope on infiltration: A review

    Science.gov (United States)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  20. VT Lidar Slope (2 meter) - 2012 - Bennington County

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This metadata applies to the following collection area(s): Bennington County 2012 2.0m and related SLOPE datasets. Created using ArcGIS "SLOPE"...