WorldWideScience

Sample records for sleep deprivation reduces

  1. Acute sleep deprivation reduces energy expenditure in healthy men.

    Science.gov (United States)

    Benedict, Christian; Hallschmid, Manfred; Lassen, Arne; Mahnke, Christin; Schultes, Bernd; Schiöth, Helgi Birgir; Born, Jan; Lange, Tanja

    2011-06-01

    Epidemiologic evidence indicates that chronic sleep curtailment increases risk of developing obesity, but the mechanisms behind this relation are largely unknown. We examined the influence of a single night of total sleep deprivation on morning energy expenditures and food intakes in healthy humans. According to a balanced crossover design, we examined 14 normal-weight male subjects on 2 occasions during a regular 24-h sleep-wake cycle (including 8 h of nocturnal sleep) and a 24-h period of continuous wakefulness. On the morning after regular sleep and total sleep deprivation, resting and postprandial energy expenditures were assessed by indirect calorimetry, and the free-choice food intake from an opulent buffet was tested in the late afternoon at the end of the experiment. Circulating concentrations of ghrelin, leptin, norepinephrine, cortisol, thyreotropin, glucose, and insulin were repeatedly measured over the entire 24-h session. In comparison with normal sleep, resting and postprandial energy expenditures assessed on the subsequent morning were significantly reduced after sleep deprivation by ≈5% and 20%, respectively (P ghrelin concentrations (P sleep conditions were detected. Our findings show that one night of sleep deprivation acutely reduces energy expenditure in healthy men, which suggests that sleep contributes to the acute regulation of daytime energy expenditure in humans.

  2. Sleep deprivation reduces perceived emotional intelligence and constructive thinking skills.

    Science.gov (United States)

    Killgore, William D S; Kahn-Greene, Ellen T; Lipizzi, Erica L; Newman, Rachel A; Kamimori, Gary H; Balkin, Thomas J

    2008-07-01

    Insufficient sleep can adversely affect a variety of cognitive abilities, ranging from simple alertness to higher-order executive functions. Although the effects of sleep loss on mood and cognition are well documented, there have been no controlled studies examining its effects on perceived emotional intelligence (EQ) and constructive thinking, abilities that require the integration of affect and cognition and are central to adaptive functioning. Twenty-six healthy volunteers completed the Bar-On Emotional Quotient Inventory (EQi) and the Constructive Thinking Inventory (CTI) at rested baseline and again after 55.5 and 58 h of continuous wakefulness, respectively. Relative to baseline, sleep deprivation was associated with lower scores on Total EQ (decreased global emotional intelligence), Intrapersonal functioning (reduced self-regard, assertiveness, sense of independence, and self-actualization), Interpersonal functioning (reduced empathy toward others and quality of interpersonal relationships), Stress Management skills (reduced impulse control and difficulty with delay of gratification), and Behavioral Coping (reduced positive thinking and action orientation). Esoteric Thinking (greater reliance on formal superstitions and magical thinking processes) was increased. These findings are consistent with the neurobehavioral model suggesting that sleep loss produces temporary changes in cerebral metabolism, cognition, emotion, and behavior consistent with mild prefrontal lobe dysfunction.

  3. Psychological Effect of an Analogue Traumatic Event Reduced by Sleep Deprivation.

    Science.gov (United States)

    Porcheret, Kate; Holmes, Emily A; Goodwin, Guy M; Foster, Russell G; Wulff, Katharina

    2015-07-01

    To examine the effect of sleep deprivation compared to sleep, immediately after experimental trauma stimuli on the development of intrusive memories to that trauma stimuli. Participants were exposed to a film with traumatic content (trauma film). The immediate response to the trauma film was assessed, followed by either total sleep deprivation (sleep deprived group, N = 20) or sleep as usual (sleep group, N = 22). Twelve hours after the film viewing the initial psychological effect of the trauma film was measured and for the subsequent 6 days intrusive emotional memories related to the trauma film were recorded in daily life. Academic sleep laboratory and participants' home environment. Healthy paid volunteers. On the first day after the trauma film, the psychological effect as assessed by the Impact of Event Scale - Revised was lower in the sleep deprived group compared to the sleep group. In addition, the sleep deprived group reported fewer intrusive emotional memories (mean 2.28, standard deviation [SD] 2.91) compared to the sleep group (mean 3.76, SD 3.35). Because habitual sleep/circadian patterns, psychological health, and immediate effect of the trauma film were similar at baseline for participants of both groups, the results cannot be accounted for by pre-existing inequalities between groups. Our findings suggest that sleep deprivation on one night, rather than sleeping, reduces emotional effect and intrusive memories following exposure to experimental trauma. © 2015 Associated Professional Sleep Societies, LLC.

  4. Psychological Effect of an Analogue Traumatic Event Reduced by Sleep Deprivation

    Science.gov (United States)

    Porcheret, Kate; Holmes, Emily A.; Goodwin, Guy M.; Foster, Russell G.; Wulff, Katharina

    2015-01-01

    Study Objective: To examine the effect of sleep deprivation compared to sleep, immediately after experimental trauma stimuli on the development of intrusive memories to that trauma stimuli. Design: Participants were exposed to a film with traumatic content (trauma film). The immediate response to the trauma film was assessed, followed by either total sleep deprivation (sleep deprived group, N = 20) or sleep as usual (sleep group, N = 22). Twelve hours after the film viewing the initial psychological effect of the trauma film was measured and for the subsequent 6 days intrusive emotional memories related to the trauma film were recorded in daily life. Setting: Academic sleep laboratory and participants' home environment. Participants: Healthy paid volunteers. Measurements and results: On the first day after the trauma film, the psychological effect as assessed by the Impact of Event Scale – Revised was lower in the sleep deprived group compared to the sleep group. In addition, the sleep deprived group reported fewer intrusive emotional memories (mean 2.28, standard deviation [SD] 2.91) compared to the sleep group (mean 3.76, SD 3.35). Because habitual sleep/circadian patterns, psychological health, and immediate effect of the trauma film were similar at baseline for participants of both groups, the results cannot be accounted for by pre-existing inequalities between groups. Conclusions: Our findings suggest that sleep deprivation on one night, rather than sleeping, reduces emotional effect and intrusive memories following exposure to experimental trauma. Citation: Porcheret K, Holmes EA, Goodwin GM, Foster RG, Wulff K. Psychological effect of an analogue traumatic event reduced by sleep deprivation. SLEEP 2015;38(7):1017–1025. PMID:26118556

  5. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure.

    Science.gov (United States)

    DePorter, Danielle P; Coborn, Jamie E; Teske, Jennifer A

    2017-10-01

    Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain. © 2017 The Obesity Society.

  6. Effects of sleep deprivation on prospective memory.

    Science.gov (United States)

    Grundgeiger, Tobias; Bayen, Ute J; Horn, Sebastian S

    2014-01-01

    Sleep deprivation reduces cognitive performance; however, its effects on prospective memory (remembering to perform intended actions) are unknown. One view suggests that effects of sleep deprivation are limited to tasks associated with prefrontal functioning. An alternative view suggests a global, unspecific effect on human cognition, which should affect a variety of cognitive tasks. We investigated the impact of sleep deprivation (25 hours of sleep deprivation vs. no sleep deprivation) on prospective-memory performance in more resource-demanding and less resource-demanding prospective-memory tasks. Performance was lower after sleep deprivation and with a more resource-demanding prospective-memory task, but these factors did not interact. These results support the view that sleep deprivation affects cognition more globally and demonstrate that sleep deprivation increases failures to carry out intended actions, which may have severe consequences in safety-critical situations.

  7. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  8. Sleep deprivation and depression

    NARCIS (Netherlands)

    Elsenga, Simon

    1992-01-01

    The association between depression and sleep disturbances is perhaps as old as makind. In view of the longstanding experience with this association it is amazing that only some 20 years ago, a few depressed patients attracted attention to the fact that Total Sleep Deprivation (TSD) had

  9. Sleep deprivation suppresses aggression in Drosophila

    Science.gov (United States)

    Kayser, Matthew S; Mainwaring, Benjamin; Yue, Zhifeng; Sehgal, Amita

    2015-01-01

    Sleep disturbances negatively impact numerous functions and have been linked to aggression and violence. However, a clear effect of sleep deprivation on aggressive behaviors remains unclear. We find that acute sleep deprivation profoundly suppresses aggressive behaviors in the fruit fly, while other social behaviors are unaffected. This suppression is recovered following post-deprivation sleep rebound, and occurs regardless of the approach to achieve sleep loss. Genetic and pharmacologic approaches suggest octopamine signaling transmits changes in aggression upon sleep deprivation, and reduced aggression places sleep-deprived flies at a competitive disadvantage for obtaining a reproductive partner. These findings demonstrate an interaction between two phylogenetically conserved behaviors, and suggest that previous sleep experiences strongly modulate aggression with consequences for reproductive fitness. DOI: http://dx.doi.org/10.7554/eLife.07643.001 PMID:26216041

  10. Sleep deprivation and false memories.

    Science.gov (United States)

    Frenda, Steven J; Patihis, Lawrence; Loftus, Elizabeth F; Lewis, Holly C; Fenn, Kimberly M

    2014-09-01

    Many studies have investigated factors that affect susceptibility to false memories. However, few have investigated the role of sleep deprivation in the formation of false memories, despite overwhelming evidence that sleep deprivation impairs cognitive function. We examined the relationship between self-reported sleep duration and false memories and the effect of 24 hr of total sleep deprivation on susceptibility to false memories. We found that under certain conditions, sleep deprivation can increase the risk of developing false memories. Specifically, sleep deprivation increased false memories in a misinformation task when participants were sleep deprived during event encoding, but did not have a significant effect when the deprivation occurred after event encoding. These experiments are the first to investigate the effect of sleep deprivation on susceptibility to false memories, which can have dire consequences. © The Author(s) 2014.

  11. Sleep Deprivation and Advice Taking

    OpenAIRE

    Jan Alexander Häusser; Johannes Leder; Charlene Ketturat; Martin Dresler; Nadira Sophie Faber

    2016-01-01

    Judgements and decisions in many political, economic or medical contexts are often made while sleep deprived. Furthermore, in such contexts individuals are required to integrate information provided by - more or less qualified - advisors. We asked if sleep deprivation affects advice taking. We conducted a 2 (sleep deprivation: yes vs. no) x 2 (competency of advisor: medium vs. high) experimental study to examine the effects of sleep deprivation on advice taking in an estimation task. We compa...

  12. Consequences of sleep deprivation.

    Science.gov (United States)

    Orzeł-Gryglewska, Jolanta

    2010-01-01

    This paper presents the history of research and the results of recent studies on the effects of sleep deprivation in animals and humans. Humans can bear several days of continuous sleeplessness, experiencing deterioration in wellbeing and effectiveness; however, also a shorter reduction in the sleep time may lead to deteriorated functioning. Sleeplessness accounts for impaired perception, difficulties in keeping concentration, vision disturbances, slower reactions, as well as the appearance of microepisodes of sleep during wakefulness which lead to lower capabilities and efficiency of task performance and to increased number of errors. Sleep deprivation results in poor memorizing, schematic thinking, which yields wrong decisions, and emotional disturbances such as deteriorated interpersonal responses and increased aggressiveness. The symptoms are accompanied by brain tissue hypometabolism, particularly in the thalamus, prefrontal, frontal and occipital cortex and motor speech centres. Sleep deficiency intensifies muscle tonus and coexisting tremor, speech performance becomes monotonous and unclear, and sensitivity to pain is higher. Sleeplessness also relates to the changes in the immune response and the pattern of hormonal secretion, of the growth hormone in particular. The risk of obesity, diabetes and cardiovascular disease increases. The impairment of performance which is caused by 20-25 hours of sleeplessness is comparable to that after ethanol intoxication at the level of 0.10% blood alcohol concentration. The consequences of chronic sleep reduction or a shallow sleep repeated for several days tend to accumulate and resemble the effects of acute sleep deprivation lasting several dozen hours. At work, such effects hinder proper performance of many essential tasks and in extreme situations (machine operation or vehicle driving), sleep loss may be hazardous to the worker and his/her environment.

  13. Neurobiological Consequences of Sleep Deprivation

    OpenAIRE

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-01-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us...

  14. Neurobiological Consequences of Sleep Deprivation

    Science.gov (United States)

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-01-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed. PMID:24179461

  15. Neurobiological consequences of sleep deprivation.

    Science.gov (United States)

    Alkadhi, Karim; Zagaar, Munder; Alhaider, Ibrahim; Salim, Samina; Aleisa, Abdulaziz

    2013-05-01

    Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.

  16. Genetic Dissociation of Daily Sleep and Sleep Following Thermogenetic Sleep Deprivation in Drosophila.

    Science.gov (United States)

    Dubowy, Christine; Moravcevic, Katarina; Yue, Zhifeng; Wan, Joy Y; Van Dongen, Hans P A; Sehgal, Amita

    2016-05-01

    Sleep rebound-the increase in sleep that follows sleep deprivation-is a hallmark of homeostatic sleep regulation that is conserved across the animal kingdom. However, both the mechanisms that underlie sleep rebound and its relationship to habitual daily sleep remain unclear. To address this, we developed an efficient thermogenetic method of inducing sleep deprivation in Drosophila that produces a substantial rebound, and applied the newly developed method to assess sleep rebound in a screen of 1,741 mutated lines. We used data generated by this screen to identify lines with reduced sleep rebound following thermogenetic sleep deprivation, and to probe the relationship between habitual sleep amount and sleep following thermogenetic sleep deprivation in Drosophila. To develop a thermogenetic method of sleep deprivation suitable for screening, we thermogenetically stimulated different populations of wake-promoting neurons labeled by Gal4 drivers. Sleep rebound following thermogenetically-induced wakefulness varies across the different sets of wake-promoting neurons that were stimulated, from very little to quite substantial. Thermogenetic activation of neurons marked by the c584-Gal4 driver produces both strong sleep loss and a substantial rebound that is more consistent within genotypes than rebound following mechanical or caffeine-induced sleep deprivation. We therefore used this driver to induce sleep deprivation in a screen of 1,741 mutagenized lines generated by the Drosophila Gene Disruption Project. Flies were subjected to 9 h of sleep deprivation during the dark period and released from sleep deprivation 3 h before lights-on. Recovery was measured over the 15 h following sleep deprivation. Following identification of lines with reduced sleep rebound, we characterized baseline sleep and sleep depth before and after sleep deprivation for these hits. We identified two lines that consistently exhibit a blunted increase in the duration and depth of sleep after

  17. Effects of sleep deprivation on neural functioning: an integrative review

    OpenAIRE

    Boonstra, T.W.; Stins, J. F.; Daffertshofer, A; Beek, P. J.

    2007-01-01

    Abstract. Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with in...

  18. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Science.gov (United States)

    Machado, Ricardo Borges; Tufik, Sergio; Suchecki, Deborah

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis) administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz) during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  19. Sleep deprivation impairs recognition of specific emotions

    Directory of Open Access Journals (Sweden)

    William D.S. Killgore

    2017-06-01

    Full Text Available Emotional processing is particularly sensitive to sleep deprivation, but research on the topic has been limited and prior studies have generally evaluated only a circumscribed subset of emotion categories. Here, we evaluated the effects of one night of sleep deprivation and a night of subsequent recovery sleep on the ability to identify the six most widely agreed upon basic emotion categories (happiness, surprise, fear, sadness, disgust, anger. Healthy adults (29 males; 25 females classified a series of 120 standard facial expressions that were computer morphed with their most highly confusable expression counterparts to create continua of expressions that differed in discriminability between emotion categories (e.g., combining 70% happiness+30% surprise; 90% surprise+10% fear. Accuracy at identifying the dominant emotion for each morph was assessed after a normal night of sleep, again following a night of total sleep deprivation, and finally after a night of recovery sleep. Sleep deprivation was associated with significantly reduced accuracy for identifying the expressions of happiness and sadness in the morphed faces. Gender differences in accuracy were not observed and none of the other emotions showed significant changes as a function of sleep loss. Accuracy returned to baseline after recovery sleep. Findings suggest that sleep deprivation adversely affects the recognition of subtle facial cues of happiness and sadness, the two emotions that are most relevant to highly evolved prosocial interpersonal interactions involving affiliation and empathy, while the recognition of other more primitive survival-oriented emotional face cues may be relatively robust against sleep loss.

  20. Immediate error correction process following sleep deprivation.

    Science.gov (United States)

    Hsieh, Shulan; Cheng, I-Chen; Tsai, Ling-Ling

    2007-06-01

    Previous studies have suggested that one night of sleep deprivation decreases frontal lobe metabolic activity, particularly in the anterior cingulated cortex (ACC), resulting in decreased performance in various executive function tasks. This study thus attempted to address whether sleep deprivation impaired the executive function of error detection and error correction. Sixteen young healthy college students (seven women, nine men, with ages ranging from 18 to 23 years) participated in this study. Participants performed a modified letter flanker task and were instructed to make immediate error corrections on detecting performance errors. Event-related potentials (ERPs) during the flanker task were obtained using a within-subject, repeated-measure design. The error negativity or error-related negativity (Ne/ERN) and the error positivity (Pe) seen immediately after errors were analyzed. The results show that the amplitude of the Ne/ERN was reduced significantly following sleep deprivation. Reduction also occurred for error trials with subsequent correction, indicating that sleep deprivation influenced error correction ability. This study further demonstrated that the impairment in immediate error correction following sleep deprivation was confined to specific stimulus types, with both Ne/ERN and behavioral correction rates being reduced only for trials in which flanker stimuli were incongruent with the target stimulus, while the response to the target was compatible with that of the flanker stimuli following sleep deprivation. The results thus warrant future systematic investigation of the interaction between stimulus type and error correction following sleep deprivation.

  1. Progesterone reduces erectile dysfunction in sleep-deprived spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Tufik Sergio

    2007-03-01

    Full Text Available Abstract Background Paradoxical sleep deprivation (PSD associated with cocaine has been shown to enhance genital reflexes (penile erection-PE and ejaculation-EJ in Wistar rats. Since hypertension predisposes males to erectile dysfunction, the aim of the present study was to investigate the effects of PSD on genital reflexes in the spontaneously hypertensive rat (SHR compared to the Wistar strain. We also extended our study to examine how PSD affect steroid hormone concentrations involved in genital events in both experimental models. Methods The first experiment investigated the effects of PSD on genital reflexes of Wistar and SHR rats challenged by saline and cocaine (n = 10/group. To further examine the impact of the PSD on concentrations of sexual hormones, we performed a hormonal analysis of testosterone and progesterone in the Wistar and in SHR strains. Since after PSD progesterone concentrations decreased in the SHR compared to the Wistar PSD group we extended our study by investigating whether progesterone (25 mg/kg or 50 mg/kg or testosterone (0.5 mg/kg or 1.0 mg/kg administration during PSD would have a facilitator effect on the occurrence of genital reflexes in this hypertensive strain. Results A 4-day period of PSD induced PE in 50% of the Wistar rats against 10% for the SHR. These genital reflexes was potentiated by cocaine in Wistar rats whereas this scenario did not promote significant enhancement in PE and EJ in hypertensive rats, and the percentage of SHR displaying genital reflexes still figured significantly lower than that of the Wistar strain. As for hormone concentrations, both sleep-deprived Wistar and SHR showed lower testosterone concentrations than their respective controls. Sleep deprivation promoted an increase in concentrations of progesterone in Wistar rats, whereas no significant alterations were found after PSD in the SHR strain, which did not present enhancement in erectile responses. In order to explore the role

  2. Sleep Deprivation and Advice Taking

    NARCIS (Netherlands)

    Hausser, J.A.; Leder, J.; Ketturat, C.; Dresler, M.; Faber, N.S.

    2016-01-01

    Judgements and decisions in many political, economic or medical contexts are often made while sleep deprived. Furthermore, in such contexts individuals are required to integrate information provided by - more or less qualified - advisors. We asked if sleep deprivation affects advice taking. We

  3. Prevention and treatment of sleep deprivation among emergency physicians.

    Science.gov (United States)

    Nelson, Douglas

    2007-07-01

    Emergency physicians commonly experience sleep deprivation because of the need to work shifts during evening and late night hours. The negative effects of this problem are compounded by job stress and traditional methods of scheduling work shifts. Sleep deprivation may be reduced by schedules designed to lessen interference with normal sleep patterns and circadian rhythms. Pharmacological treatments for sleep deprivation exist in the form of alertness-enhancing agents, caffeine and modafinil. Sleep-promoting agents may also help treat the problem by helping physicians to sleep during daytime hours. Minimizing sleep deprivation may help prevent job burnout and prolong the length of an emergency physician's career.

  4. Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat.

    Science.gov (United States)

    Prévot, E; Maudhuit, C; Le Poul, E; Hamon, M; Adrien, J

    1996-12-01

    Sleep deprivation (SD) for one night induces mood improvement in depressed patients. However, relapse often occurs on the day after deprivation subsequently to a sleep episode. In light of the possible involvement of central serotonin (5-hydroxytryptamine, 5-HT) neurotransmission in both depression and sleep mechanisms, we presently investigated, in the rat, the effects of SD and recovery sleep on the electrophysiological response of 5-HT neurons in the nucleus raphe dorsalis (NRD) to an acute challenge with the 5-HT reuptake blocker citalopram. In all rats, citalopram induced a dose-dependent inhibition of the firing of NRD neurons recorded under chloral hydrate anaesthesia. After SD, achieved by placing rats in a slowly rotating cylinder for 24 h, the inhibitory action of citalopram was significantly reduced (with a concomitant 53% increase in its ED50 value). After a recovery period of 4 h, a normal susceptibility of the firing to citalopram was restored. The decreased sensitivity of 5-HT neuronal firing to the inhibitory effect of citalopram after SD probably results in an enhancement of 5-HT neurotransmission. Such an adaptive phenomenon (similar to that reported after chronic antidepressant treatment), and its normalization after recovery sleep, parallel the mood improvement effect of SD and the subsequent relapse observed in depressed patients. These data suggest that the associated changes in 5-HT autocontrol of the firing of NRD serotoninergic neurons are relevant to the antidepressant action of SD.

  5. Acute partial sleep deprivation due to environmental noise increases weight gain by reducing energy expenditure in rodents.

    Science.gov (United States)

    Parrish, Jennifer B; Teske, Jennifer A

    2017-01-01

    Chronic partial sleep deprivation (SD) by environmental noise exposure increases weight gain and feeding in rodents, which contrasts weight loss after acute SD by physical methods. This study tested whether acute environmental noise exposure reduced sleep and its effect on weight gain, food intake, physical activity, and energy expenditure (EE). It was hypothesized that acute exposure would (1) increase weight gain and feeding and (2) reduce sleep, physical activity, and EE (total and individual components); and (3) behavioral changes would persist throughout recovery from SD. Three-month old male Sprague-Dawley rats slept ad libitum, were noise exposed (12-h light cycle), and allowed to recover (36 h). Weight gain, food intake, sleep/wake, physical activity, and EE were measured. Acute environmental noise exposure had no effect on feeding, increased weight gain (P sleep (P sleep, rest, and physical activity reduce total EE and contribute to weight gain during acute SD and recovery from SD. These data emphasize the importance of increasing physical activity after SD to prevent obesity. © 2016 The Obesity Society.

  6. Health Effects of Sleep Deprivation,

    Science.gov (United States)

    1990-06-01

    glucocorticoids , mineralocor- ticoids, and androgenic steroids. The main glucocorticoid is cortisol. Production of cortisol increases in response to many...L, Lidberg L: Circadian variations in performance, psychological ratings, catecholamine excretion, and diuresis during prolonged sleep deprivation

  7. SLEEP DEPRIVATION AND CARDIOVASCULAR RISK

    Directory of Open Access Journals (Sweden)

    V. А. Vizir

    2013-06-01

    Full Text Available In a review article extensively discusses the relationship between sleep duration and cardiovascular diseases. Sleep loss is a common condition in developed countries, with evidence showing that people in Western countries are sleeping on average only 6.8 hour per night, 1.5 hour less than a century ago. Although the effect of sleep deprivation on the human body is not completely unexplained, recent epidemiological studies have revealed relationships between sleep deprivation and arterial hypertension, coronary heart disease and diabetes mellitus. Increased sympathetic nervous system activity and changes in melatonin secretion are considered as the main pathophysiological mechanisms involved in the development and progression of cardiovascular disease in patients with insufficient duration of nighttime sleep. Adequate sleep duration may be important for preventing cardiovascular diseases in modern society.

  8. Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance.

    Science.gov (United States)

    De Havas, Jack A; Parimal, Sarayu; Soon, Chun Siong; Chee, Michael W L

    2012-01-16

    Sleep deprivation (SD) can alter extrinsic, task-related fMRI signal involved in attention, memory and executive function. However, its effects on intrinsic low-frequency connectivity within the Default Mode Network (DMN) and its related anti-correlated network (ACN) have not been well characterized. We investigated the effect of SD on functional connectivity within the DMN, and on DMN-ACN anti-correlation, both during the resting state and during performance of a visual attention task (VAT). 26 healthy participants underwent fMRI twice: once after a normal night of sleep in rested wakefulness (RW) and once following approximately 24h of total SD. A seed-based approach was used to examine pairwise correlations of low-frequency fMRI signal across different nodes in each state. SD was associated with significant selective reductions in DMN functional connectivity and DMN-ACN anti-correlation. This was congruent across resting state and VAT analyses, suggesting that SD induces a robust alteration in the intrinsic connectivity within and between these networks. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Neurocognitive consequences of sleep deprivation.

    Science.gov (United States)

    Goel, Namni; Rao, Hengyi; Durmer, Jeffrey S; Dinges, David F

    2009-09-01

    Sleep deprivation is associated with considerable social, financial, and health-related costs, in large measure because it produces impaired cognitive performance due to increasing sleep propensity and instability of waking neurobehavioral functions. Cognitive functions particularly affected by sleep loss include psychomotor and cognitive speed, vigilant and executive attention, working memory, and higher cognitive abilities. Chronic sleep-restriction experiments--which model the kind of sleep loss experienced by many individuals with sleep fragmentation and premature sleep curtailment due to disorders and lifestyle--demonstrate that cognitive deficits accumulate to severe levels over time without full awareness by the affected individual. Functional neuroimaging has revealed that frequent and progressively longer cognitive lapses, which are a hallmark of sleep deprivation, involve distributed changes in brain regions including frontal and parietal control areas, secondary sensory processing areas, and thalamic areas. There are robust differences among individuals in the degree of their cognitive vulnerability to sleep loss that may involve differences in prefrontal and parietal cortices, and that may have a basis in genes regulating sleep homeostasis and circadian rhythms. Thus, cognitive deficits believed to be a function of the severity of clinical sleep disturbance may be a product of genetic alleles associated with differential cognitive vulnerability to sleep loss. Thieme Medical Publishers.

  10. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    Science.gov (United States)

    Qureshi, Munazah F.; Jha, Sushil K.

    2017-01-01

    The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i) sleep deprivation on contextual fear conditioned memory, and also (ii) contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a) non-sleep deprived (NSD); (b) stress control (SC); and (c) sleep-deprived (SD) groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation. PMID:29238297

  11. Effects of sleep deprivation on neural functioning: an integrative review.

    Science.gov (United States)

    Boonstra, T W; Stins, J F; Daffertshofer, A; Beek, P J

    2007-04-01

    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research.

  12. The Effects of Sleep Deprivation on Pain

    OpenAIRE

    Bernd Kundermann; Jürgen-Christian Krieg; Wolfgang Schreiber; Stefan Lautenbacher

    2004-01-01

    Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can c...

  13. Sleep deprivation and gene expression.

    Science.gov (United States)

    da Costa Souza, Annie; Ribeiro, Sidarta

    2015-01-01

    Sleep occurs in a wide range of animal species as a vital process for the maintenance of homeostasis, metabolic restoration, physiological regulation, and adaptive cognitive functions in the central nervous system. Long-term perturbations induced by the lack of sleep are mostly mediated by changes at the level of transcription and translation. This chapter reviews studies in humans, rodents, and flies to address the various ways by which sleep deprivation affects gene expression in the nervous system, with a focus on genes related to neuronal plasticity, brain function, and cognition. However, the effects of sleep deprivation on gene expression and the functional consequences of sleep loss are clearly not restricted to the cognitive domain but may include increased inflammation, expression of stress-related genes, general impairment of protein translation, metabolic imbalance, and thermal deregulation.

  14. The prospective association between sleep deprivation and depression among adolescents.

    Science.gov (United States)

    Roberts, Robert E; Duong, Hao T

    2014-02-01

    To examine the prospective, reciprocal association between sleep deprivation and depression among adolescents. A community-based two-wave cohort study. A metropolitan area with a population of over 4 million. 4,175 youths 11-17 at baseline, and 3,134 of these followed up a year later. Depression is measured using both symptoms of depression and DSM-IV major depression. Sleep deprivation is defined as ≤ 6 h of sleep per night. Sleep deprivation at baseline predicted both measures of depression at follow-up, controlling for depression at baseline. Examining the reciprocal association, major depression at baseline, but not symptoms predicted sleep deprivation at follow-up. These results are the first to document reciprocal effects for major depression and sleep deprivation among adolescents using prospective data. The data suggest reduced quantity of sleep increases risk for major depression, which in turn increases risk for decreased sleep.

  15. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  16. Role of corticosterone on sleep homeostasis induced by REM sleep deprivation in rats.

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    Full Text Available Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitoring and submitted to four days of REM sleep deprivation under repeated corticosterone or metyrapone (an inhibitor of corticosterone synthesis administration. Sleep parameters were continuously recorded throughout the sleep deprivation period and during 3 days of sleep recovery. Plasma levels of adrenocorticotropic hormone and corticosterone were also evaluated. Metyrapone treatment prevented the elevation of corticosterone plasma levels induced by REM sleep deprivation, whereas corticosterone administration to REM sleep-deprived rats resulted in lower corticosterone levels than in non-sleep deprived rats. Nonetheless, both corticosterone and metyrapone administration led to several alterations on sleep homeostasis, including reductions in the amount of non-REM and REM sleep during the recovery period, although corticosterone increased delta activity (1.0-4.0 Hz during REM sleep deprivation. Metyrapone treatment of REM sleep-deprived rats reduced the number of REM sleep episodes. In conclusion, reduction of corticosterone levels during REM sleep deprivation resulted in impairment of sleep rebound, suggesting that physiological elevation of corticosterone levels resulting from REM sleep deprivation is necessary for plentiful recovery of sleep after this stressful event.

  17. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans

    OpenAIRE

    Jung, Christopher M.; Melanson, Edward L.; Frydendall, Emily J; Perreault, Leigh; Robert H Eckel; Wright, Kenneth P.

    2010-01-01

    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep s...

  18. Augmented Reality as a Countermeasure for Sleep Deprivation.

    Science.gov (United States)

    Baumeister, James; Dorrlan, Jillian; Banks, Siobhan; Chatburn, Alex; Smith, Ross T; Carskadon, Mary A; Lushington, Kurt; Thomas, Bruce H

    2016-04-01

    Sleep deprivation is known to have serious deleterious effects on executive functioning and job performance. Augmented reality has an ability to place pertinent information at the fore, guiding visual focus and reducing instructional complexity. This paper presents a study to explore how spatial augmented reality instructions impact procedural task performance on sleep deprived users. The user study was conducted to examine performance on a procedural task at six time points over the course of a night of total sleep deprivation. Tasks were provided either by spatial augmented reality-based projections or on an adjacent monitor. The results indicate that participant errors significantly increased with the monitor condition when sleep deprived. The augmented reality condition exhibited a positive influence with participant errors and completion time having no significant increase when sleep deprived. The results of our study show that spatial augmented reality is an effective sleep deprivation countermeasure under laboratory conditions.

  19. The Effects of Sleep Deprivation on Pain

    Directory of Open Access Journals (Sweden)

    Bernd Kundermann

    2004-01-01

    Full Text Available Chronic pain syndromes are associated with alterations in sleep continuity and sleep architecture. One perspective of this relationship, which has not received much attention to date, is that disturbances of sleep affect pain. To fathom this direction of cause, experimental human and animal studies on the effects of sleep deprivation on pain processing were reviewed. According to the majority of the studies, sleep deprivation produces hyperalgesic changes. Furthermore, sleep deprivation can counteract analgesic effects of pharmacological treatments involving opioidergic and serotoninergic mechanisms of action. The heterogeneity of the human data and the exclusive interest in rapid eye movement sleep deprivation in animals so far do not allow us to draw firm conclusions as to whether the hyperalgesic effects are due to the deprivation of specific sleep stages or whether they result from a generalized disruption of sleep continuity. The significance of opioidergic and serotoninergic processes as mediating mechanisms of the hyperalgesic changes produced by sleep deprivation are discussed.

  20. A new model to study sleep deprivation-induced seizure.

    Science.gov (United States)

    Lucey, Brendan P; Leahy, Averi; Rosas, Regine; Shaw, Paul J

    2015-05-01

    A relationship between sleep and seizures is well-described in both humans and rodent animal models; however, the mechanism underlying this relationship is unknown. Using Drosophila melanogaster mutants with seizure phenotypes, we demonstrate that seizure activity can be modified by sleep deprivation. Seizure activity was evaluated in an adult bang-sensitive seizure mutant, stress sensitive B (sesB(9ed4)), and in an adult temperature sensitive seizure mutant seizure (sei(ts1)) under baseline and following 12 h of sleep deprivation. The long-term effect of sleep deprivation on young, immature sesB(9ed4) flies was also assessed. Laboratory. Drosophila melanogaster. Sleep deprivation. Sleep deprivation increased seizure susceptibility in adult sesB(9ed4)/+ and sei(ts1) mutant flies. Sleep deprivation also increased seizure susceptibility when sesB was disrupted using RNAi. The effect of sleep deprivation on seizure activity was reduced when sesB(9ed4)/+ flies were given the anti-seizure drug, valproic acid. In contrast to adult flies, sleep deprivation during early fly development resulted in chronic seizure susceptibility when sesB(9ed4)/+ became adults. These findings show that Drosophila is a model organism for investigating the relationship between sleep and seizure activity. © 2015 Associated Professional Sleep Societies, LLC.

  1. Sleep deprivation: consequences for students.

    Science.gov (United States)

    Marhefka, Julie King

    2011-09-01

    During the adolescent years, a delayed pattern of the sleep-wake cycle occurs. Many parents and health care providers are not aware that once established, these poor sleep habits can continue into adulthood. Early school hours start a pattern of sleep loss that begins a cycle of daytime sleepiness, which may affect mood, behavior, and increase risk for accidents or injury. These sleep-deprived habits established in adolescence can often lead to problems during college years. Sleep hygiene can be initiated to help break the cycle, along with education and implementation of a strict regimen. Monitoring all adolescents and college-aged students for sleep insufficiency is imperative to improve both academic and emotional well-being. Copyright 2011, SLACK Incorporated.

  2. Short-Term Total Sleep-Deprivation Impairs Contextual Fear Memory, and Contextual Fear-Conditioning Reduces REM Sleep in Moderately Anxious Swiss Mice

    Directory of Open Access Journals (Sweden)

    Munazah F. Qureshi

    2017-11-01

    Full Text Available The conditioning tasks have been widely used to model fear and anxiety and to study their association with sleep. Many reports suggest that sleep plays a vital role in the consolidation of fear memory. Studies have also demonstrated that fear-conditioning influences sleep differently in mice strains having a low or high anxiety level. It is, therefore, necessary to know, how sleep influences fear-conditioning and how fear-conditioning induces changes in sleep architecture in moderate anxious strains. We have used Swiss mice, a moderate anxious strain, to study the effects of: (i sleep deprivation on contextual fear conditioned memory, and also (ii contextual fear conditioning on sleep architecture. Animals were divided into three groups: (a non-sleep deprived (NSD; (b stress control (SC; and (c sleep-deprived (SD groups. The SD animals were SD for 5 h soon after training. We found that the NSD and SC animals showed 60.57% and 58.12% freezing on the testing day, while SD animals showed significantly less freezing (17.13% only; p < 0.001 on the testing day. Further, we observed that contextual fear-conditioning did not alter the total amount of wakefulness and non-rapid eye movement (NREM sleep. REM sleep, however, significantly decreased in NSD and SC animals on the training and testing days. Interestingly, REM sleep did not decrease in the SD animals on the testing day. Our results suggest that short-term sleep deprivation impairs fear memory in moderate anxious mice. It also suggests that NREM sleep, but not REM sleep, may have an obligatory role in memory consolidation.

  3. Effects of different sleep deprivation protocols on sleep perception in healthy volunteers.

    Science.gov (United States)

    Goulart, Leonardo I; Pinto, Luciano R; Perlis, Michael L; Martins, Raquel; Caboclo, Luis Otavio; Tufik, Sergio; Andersen, Monica L

    2014-10-01

    To investigate whether different protocols of sleep deprivation modify sleep perception. The effects of total sleep deprivation (TD) and selective rapid eye movement (REM) sleep deprivation (RD) on sleep perception were analyzed in normal volunteers. Thirty-one healthy males with normal sleep were randomized to one of three conditions: (i) normal uninterrupted sleep; (ii) four nights of RD; or (iii) two nights of TD. Morning perception of total sleep time was evaluated for each condition. Sleep perception was estimated using total sleep time (in hours) as perceived by the volunteer divided by the total sleep time (in hours) measured by polysomnography (PSG). The final value of this calculation was defined as the perception index (PI). There were no significant differences among the three groups of volunteers in the total sleep time measured by PSG or in the perception of total sleep time at baseline condition. Volunteers submitted to RD exhibited lower sleep PI scores as compared with controls during the sleep deprivation period (P sleep deprivation reduced the ability of healthy young volunteers to perceive their total sleep time when compared with time measured by PSG. The data reinforce the influence of sleep deprivation on sleep perception. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Sleep Deprivation and Deficiency

    Science.gov (United States)

    ... adults report falling asleep during the day without meaning to at least once a month. Also, an ... Sleep deficiency also has been linked to depression, suicide, and risk-taking behavior. Children and teens who ...

  5. BDNF in sleep, insomnia, and sleep deprivation.

    Science.gov (United States)

    Schmitt, Karen; Holsboer-Trachsler, Edith; Eckert, Anne

    2016-01-01

    The protein brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family of growth factors involved in plasticity of neurons in several brain regions. There are numerous evidence that BDNF expression is decreased by experiencing psychological stress and that, accordingly, a lack of neurotrophic support causes major depression. Furthermore, disruption in sleep homeostatic processes results in higher stress vulnerability and is often associated with stress-related mental disorders. Recently, we reported, for the first time, a relationship between BDNF and insomnia and sleep deprivation (SD). Using a biphasic stress model as explanation approach, we discuss here the hypothesis that chronic stress might induce a deregulation of the hypothalamic-pituitary-adrenal system. In the long-term it leads to sleep disturbance and depression as well as decreased BDNF levels, whereas acute stress like SD can be used as therapeutic intervention in some insomniac or depressed patients as compensatory process to normalize BDNF levels. Indeed, partial SD (PSD) induced a fast increase in BDNF serum levels within hours after PSD which is similar to effects seen after ketamine infusion, another fast-acting antidepressant intervention, while traditional antidepressants are characterized by a major delay until treatment response as well as delayed BDNF level increase. Key messages Brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of stress-related mood disorders. The interplay of stress and sleep impacts on BDNF level. Partial sleep deprivation (PSD) shows a fast action on BDNF level increase.

  6. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Yi-Jie [Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Huang, Yung-Kai [School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Mai, Fu-Der [Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Chang, Hung-Ming, E-mail: taiwanzoo@gmail.com [Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan (China)

    2015-08-01

    Highlights: • The growth of teeth is closely regulated by the circadian rhythmicity. • Sleep deprivation significantly disrupts the circadian regulation. • Sleep deprivation reduces the dental calcium level and impairs dental intensity. • This study highlights for the first time that sleep is essential for dental structure. • Establishing satisfactory sleep behavior may be a helpful strategy to prevent dental disability. - Abstract: Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.

  7. Sleep deprivation increases formation of false memory

    OpenAIRE

    Lo, June C.; Chong, Pearlynne L.H.; Ganesan, Shankari; Leong, Ruth L. F.; Chee, Michael W.L.

    2016-01-01

    Summary Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N?=?58, mean age???SD?=?22.10???1.60?years; 29 males), and 7 nights of partial sleep deprivation (5?h sleep opportunity) in these young adults and healthy adolescents (N?=?54, mean age???SD?=?1...

  8. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula.

    Science.gov (United States)

    Zhang, Beilin; Gao, Yanxia; Li, Yang; Yang, Jing; Zhao, Hua

    2016-01-01

    Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb) has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1) in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR). We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS) and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  9. Sleep Deprivation Influences Circadian Gene Expression in the Lateral Habenula

    Directory of Open Access Journals (Sweden)

    Beilin Zhang

    2016-01-01

    Full Text Available Sleep is governed by homeostasis and the circadian clock. Clock genes play an important role in the generation and maintenance of circadian rhythms but are also involved in regulating sleep homeostasis. The lateral habenular nucleus (LHb has been implicated in sleep-wake regulation, since LHb gene expression demonstrates circadian oscillation characteristics. This study focuses on the participation of LHb clock genes in regulating sleep homeostasis, as the nature of their involvement is unclear. In this study, we observed changes in sleep pattern following sleep deprivation in LHb-lesioned rats using EEG recording techniques. And then the changes of clock gene expression (Per1, Per2, and Bmal1 in the LHb after 6 hours of sleep deprivation were detected by using real-time quantitative PCR (qPCR. We found that sleep deprivation increased the length of Non-Rapid Eye Movement Sleep (NREMS and decreased wakefulness. LHb-lesioning decreased the amplitude of reduced wake time and increased NREMS following sleep deprivation in rats. qPCR results demonstrated that Per2 expression was elevated after sleep deprivation, while the other two genes were unaffected. Following sleep recovery, Per2 expression was comparable to the control group. This study provides the basis for further research on the role of LHb Per2 gene in the regulation of sleep homeostasis.

  10. SLEEP DEPRIVATION INDUCED ANXIETY AND ANAEROBIC PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Selma Arzu Vardar

    2007-12-01

    Full Text Available The aim of this study was to investigate the effects of sleep deprivation induced anxiety on anaerobic performance. Thirteen volunteer male physical education students completed the Turkish version of State Anxiety Inventory and performed Wingate anaerobic test for three times: (1 following a full-night of habitual sleep (baseline measurements, (2 following 30 hours of sleep deprivation, and (3 following partial-night sleep deprivation. Baseline measurements were performed the day before total sleep deprivation. Measurements following partial sleep deprivation were made 2 weeks later than total sleep deprivation measurements. State anxiety was measured prior to each Wingate test. The mean state anxiety following total sleep deprivation was higher than the baseline measurement (44.9 ± 12.9 vs. 27.6 ± 4.2, respectively, p = 0.02 whereas anaerobic performance parameters remained unchanged. Neither anaerobic parameters nor state anxiety levels were affected by one night partial sleep deprivation. Our results suggest that 30 hours continuous wakefulness may increase anxiety level without impairing anaerobic performance, whereas one night of partial sleep deprivation was ineffective on both state anxiety and anaerobic performance

  11. The effects of total sleep deprivation on Bayesian updating

    Directory of Open Access Journals (Sweden)

    David L. Dickinson

    2008-02-01

    Full Text Available Subjects performed a decision task (Grether, 1980 in both a well-rested and experimentally sleep-deprived state. We found two main results: 1 final choice accuracy was unaffected by sleep deprivation, and yet 2 the estimated decision model differed significantly following sleep-deprivation. Following sleep deprivation, subjects placed significantly less weight on new information in forming their beliefs. Because the altered decision process still maintains decision accuracy, it may suggest that increased accident and error rates attributed to reduced sleep in modern society stem from reduced auxiliary function performance (e.g., slowed reaction time, reduced motor skills or other components of decision making, rather than the inability to integrate multiple pieces of information.

  12. Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice.

    Science.gov (United States)

    Kanazawa, Luiz K S; Vecchia, Débora D; Wendler, Etiéli M; Hocayen, Palloma de A S; Dos Reis Lívero, Francislaine A; Stipp, Maria Carolina; Barcaro, Inara M R; Acco, Alexandra; Andreatini, Roberto

    2016-10-01

    Quercetin is a known antioxidant and protein kinase C (PKC) inhibitor. Previous studies have shown that mania involves oxidative stress and an increase in PKC activity. We hypothesized that quercetin affects manic symptoms. In the present study, manic-like behavior (hyperlocomotion) and oxidative stress were induced by 24h paradoxical sleep deprivation (PSD) in male Swiss mice. Both 10 and 40mg/kg quercetin prevented PSD-induced hyperlocomotion. Quercetin reversed the PSD-induced decrease in glutathione (GSH) levels in the prefrontal cortex (PFC) and striatum. Quercetin also reversed the PSD-induced increase in lipid peroxidation (LPO) in the PFC, hippocampus, and striatum. Pearson's correlation analysis revealed a negative correlation between locomotor activity and GSH in the PFC in sleep-deprived mice and a positive correlation between locomotor activity and LPO in the PFC and striatum in sleep-deprived mice. These results suggest that quercetin exerts an antimanic-like effect at doses that do not impair spontaneous locomotor activity, and the antioxidant action of quercetin might contribute to its antimanic-like effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Impact of partial sleep deprivation on immune markers.

    Science.gov (United States)

    Wilder-Smith, A; Mustafa, F B; Earnest, A; Gen, L; Macary, P A

    2013-10-01

    Sleep quality is considered to be an important predictor of immunity. Lack of sleep therefore may reduce immunity, thereby increasing the susceptibility to respiratory pathogens. A previous study showed that reduced sleep duration was associated with an increased likelihood of the common cold. It is important to understand the role of sleep in altering immune responses to understand how sleep deprivation leads to an increased susceptibility to the common cold or other respiratory infections. We sought to examine the impact of partial sleep deprivation on various immune markers. Fifty-two healthy volunteers were partially sleep deprived for one night. We took blood samples before the sleep deprivation, immediately after, and 4 and 7 days after sleep deprivation. We measured various immune markers and used a generalized estimating equation (GEE) to examine the differences in the repeated measures. CD4, CD8, CD14, and CD16 all showed significant time-dependent changes, but CD3 did not. The most striking time-dependent change was observed for the mitogen proliferation assay and for HLA-DR. There was a significant decrease in the mitogen proliferation values and HLA-DR immediately after the sleep deprivation experiment, which started to rise again on day 4 and normalized by day 7. The transiently impaired mitogen proliferation, the decreased HLA-DR, the upregulated CD14, and the variations in CD4 and CD8 that we observed in temporal relationship with partial sleep deprivation could be one possible explanation for the increased susceptibility to respiratory infections reported after reduced sleep duration. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Sleep deprivation amplifies striatal activation to monetary reward.

    Science.gov (United States)

    Mullin, B C; Phillips, M L; Siegle, G J; Buysse, D J; Forbes, E E; Franzen, P L

    2013-10-01

    Sleep loss produces abnormal increases in reward seeking but the mechanisms underlying this phenomenon are poorly understood. The present study examined the influence of one night of sleep deprivation on neural responses to a monetary reward task in a sample of late adolescents/young adults. Using a within-subjects crossover design, 27 healthy, right-handed late adolescents/young adults (16 females, 11 males; mean age 23.1 years) underwent functional magnetic resonance imaging (fMRI) following a night of sleep deprivation and following a night of normal sleep. Participants’ recent sleep history was monitored using actigraphy for 1 week prior to each sleep condition. Following sleep deprivation, participants exhibited increased activity in the ventral striatum (VS) and reduced deactivation in the medial prefrontal cortex (mPFC) during the winning of monetary reward, relative to the same task following normal sleep conditions. Shorter total sleep time over the five nights before the sleep-deprived testing condition was associated with reduced deactivation in the mPFC during reward. These findings support the hypothesis that sleep loss produces aberrant functioning in reward neural circuitry, increasing the salience of positively reinforcing stimuli. Aberrant reward functioning related to insufficient sleep may contribute to the development and maintenance of reward dysfunction-related disorders, such as compulsive gambling, eating, substance abuse and mood disorders.

  15. Resident Performance and Sleep Deprivation: A Review.

    Science.gov (United States)

    Asken, Michael J.; Raham, David C.

    1983-01-01

    A review of the literature on resident performance and sleep deprivation suggests that current research is sparse and inconclusive, and existing research suggests potentially severe negative effects. It is proposed that justifications for sleep-depriving night call schedules remain untested, and their use as part of residency training should be…

  16. Physiological responses of men during sleep deprivation.

    Science.gov (United States)

    1970-05-01

    The effects of 84 hours of sleep deprivation were examined in a group of six young men and compared with a group of six controls. Subjects were studied in pairs, one sleep-deprived and one control. Primary attention was given to the responses to acut...

  17. Effect of sleep deprivation on the human metabolome.

    Science.gov (United States)

    Davies, Sarah K; Ang, Joo Ern; Revell, Victoria L; Holmes, Ben; Mann, Anuska; Robertson, Francesca P; Cui, Nanyi; Middleton, Benita; Ackermann, Katrin; Kayser, Manfred; Thumser, Alfred E; Raynaud, Florence I; Skene, Debra J

    2014-07-22

    Sleep restriction and circadian clock disruption are associated with metabolic disorders such as obesity, insulin resistance, and diabetes. The metabolic pathways involved in human sleep, however, have yet to be investigated with the use of a metabolomics approach. Here we have used untargeted and targeted liquid chromatography (LC)/MS metabolomics to examine the effect of acute sleep deprivation on plasma metabolite rhythms. Twelve healthy young male subjects remained in controlled laboratory conditions with respect to environmental light, sleep, meals, and posture during a 24-h wake/sleep cycle, followed by 24 h of wakefulness. Two-hourly plasma samples collected over the 48 h period were analyzed by LC/MS. Principal component analysis revealed a clear time of day variation with a significant cosine fit during the wake/sleep cycle and during 24 h of wakefulness in untargeted and targeted analysis. Of 171 metabolites quantified, daily rhythms were observed in the majority (n = 109), with 78 of these maintaining their rhythmicity during 24 h of wakefulness, most with reduced amplitude (n = 66). During sleep deprivation, 27 metabolites (tryptophan, serotonin, taurine, 8 acylcarnitines, 13 glycerophospholipids, and 3 sphingolipids) exhibited significantly increased levels compared with during sleep. The increased levels of serotonin, tryptophan, and taurine may explain the antidepressive effect of acute sleep deprivation and deserve further study. This report, to our knowledge the first of metabolic profiling during sleep and sleep deprivation and characterization of 24 h rhythms under these conditions, offers a novel view of human sleep/wake regulation.

  18. Sleep deprivation and false confessions

    Science.gov (United States)

    Frenda, Steven J.; Berkowitz, Shari R.; Loftus, Elizabeth F.; Fenn, Kimberly M.

    2016-01-01

    False confession is a major contributor to the problem of wrongful convictions in the United States. Here, we provide direct evidence linking sleep deprivation and false confessions. In a procedure adapted from Kassin and Kiechel [(1996) Psychol Sci 7(3):125–128], participants completed computer tasks across multiple sessions and repeatedly received warnings that pressing the “Escape” key on their keyboard would cause the loss of study data. In their final session, participants either slept all night in laboratory bedrooms or remained awake all night. In the morning, all participants were asked to sign a statement, which summarized their activities in the laboratory and falsely alleged that they pressed the Escape key during an earlier session. After a single request, the odds of signing were 4.5 times higher for the sleep-deprived participants than for the rested participants. These findings have important implications and highlight the need for further research on factors affecting true and false confessions. PMID:26858426

  19. Total sleep deprivation decreases flow experience and mood status

    Directory of Open Access Journals (Sweden)

    Kaida K

    2013-12-01

    Full Text Available Kosuke Kaida, Kazuhisa NikiHuman Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, JapanBackground: The purpose of this study was to examine the effect of sleep deprivation on flow experience.Methods: Sixteen healthy male volunteers of mean age 21.4±1.59 (21–24 years participated in two experimental conditions, ie, sleep-deprivation and normal sleep. In the sleep-deprived condition, participants stayed awake at home for 36 hours (from 8 am until 10 pm the next day beginning on the day prior to an experimental day. In both conditions, participants carried out a simple reaction time (psychomotor vigilance task and responded to a questionnaire measuring flow experience and mood status.Results: Flow experience was reduced after one night of total sleep deprivation. Sleep loss also decreased positive mood, increased negative mood, and decreased psychomotor performance.Conclusion: Sleep deprivation has a strong impact on mental and behavioral states associated with the maintenance of flow, namely subjective well-being.Keywords: sleep deprivation, sleepiness, flow, mood, vigilance

  20. Sleep deprivation and neurobehavioral functioning in children.

    Science.gov (United States)

    Maski, Kiran P; Kothare, Sanjeev V

    2013-08-01

    Sleep deprivation can result in significant impairments in daytime neurobehavioral functioning in children. Neural substrates impacted by sleep deprivation include the prefrontal cortex, basal ganglia and amygdala and result in difficulties with executive functioning, reward anticipation and emotional reactivity respectively. In everyday life, such difficulties contribute to academic struggles, challenging behaviors and public health concerns of substance abuse and suicidality. In this article, we aim to review 1) core neural structures impacted by sleep deprivation; 2) neurobehavioral problems associated with sleep deprivation; 3) specific mechanisms that may explain the relationship between sleep disturbances and neurobehavioral dysfunction; and 4) sleep problems reported in common neurodevelopmental disorders including attention deficit hyperactivity disorder (ADHD) and autistic spectrum disorders (ASDs). Published by Elsevier B.V.

  1. Performance with total and partial sleep deprivation

    OpenAIRE

    Kurt, Cem; Pekünlü, Ekim; ATALAĞ, Ozan; ÇATIKKAŞ, Fatih

    2010-01-01

    Sleep as an important part of daily life is accepted as the process of recuperation and recovery in central nervous system. There’s a considerable relationship betweenphysical activity and sleep. American Sleep Disorders Association determined that physical activity is a non-pharmalogical cure for the quality and regulation of sleep. Sleep deprivation is a commonly seen health problem among athletes as well as among otheroccupations. The first aim of this review is to explain the effects of p...

  2. Benefits of Sleep Extension on Sustained Attention and Sleep Pressure Before and During Total Sleep Deprivation and Recovery.

    Science.gov (United States)

    Arnal, Pierrick J; Sauvet, Fabien; Leger, Damien; van Beers, Pascal; Bayon, Virginie; Bougard, Clément; Rabat, Arnaud; Millet, Guillaume Y; Chennaoui, Mounir

    2015-12-01

    To investigate the effects of 6 nights of sleep extension on sustained attention and sleep pressure before and during total sleep deprivation and after a subsequent recovery sleep. Subjects participated in two experimental conditions (randomized cross-over design): extended sleep (EXT, 9.8 ± 0.1 h (mean ± SE) time in bed) and habitual sleep (HAB, 8.2 ± 0.1 h time in bed). In each condition, subjects performed two consecutive phases: (1) 6 nights of either EXT or HAB (2) three days in-laboratory: baseline, total sleep deprivation and after 10 h of recovery sleep. Residential sleep extension and sleep performance laboratory (continuous polysomnographic recording). 14 healthy men (age range: 26-37 years). EXT vs. HAB sleep durations prior to total sleep deprivation. Total sleep time and duration of all sleep stages during the 6 nights were significantly higher in EXT than HAB. EXT improved psychomotor vigilance task performance (PVT, both fewer lapses and faster speed) and reduced sleep pressure as evidenced by longer multiple sleep latencies (MSLT) at baseline compared to HAB. EXT limited PVT lapses and the number of involuntary microsleeps during total sleep deprivation. Differences in PVT lapses and speed and MSLT at baseline were maintained after one night of recovery sleep. Six nights of extended sleep improve sustained attention and reduce sleep pressure. Sleep extension also protects against psychomotor vigilance task lapses and microsleep degradation during total sleep deprivation. These beneficial effects persist after one night of recovery sleep. © 2015 Associated Professional Sleep Societies, LLC.

  3. 3-minute smartphone-based and tablet-based psychomotor vigilance tests for the assessment of reduced alertness due to sleep deprivation.

    Science.gov (United States)

    Grant, Devon A; Honn, Kimberly A; Layton, Matthew E; Riedy, Samantha M; Van Dongen, Hans P A

    2017-06-01

    The psychomotor vigilance test (PVT) is widely used to measure reduced alertness due to sleep loss. Here, two newly developed, 3-min versions of the psychomotor vigilance test, one smartphone-based and the other tablet-based, were validated against a conventional 10-min laptop-based PVT. Sixteen healthy participants (ages 22-40; seven males, nine females) completed a laboratory study, which included a practice and a baseline day, a 38-h total sleep deprivation (TSD) period, and a recovery day, during which they performed the three different versions of the PVT every 3 h. For each version of the PVT, the number of lapses, mean response time (RT), and number of false starts showed statistically significant changes across the sleep deprivation and recovery days. The number of lapses on the laptop was significantly correlated with the numbers of lapses on the smartphone and tablet. The mean RTs were generally faster on the smartphone and tablet than on the laptop. All three versions of the PVT exhibited a time-on-task effect in RTs, modulated by time awake and time of day. False starts were relatively rare on all three PVTs. For the number of lapses, the effect sizes across 38 h of TSD were large for the laptop PVT and medium for the smartphone and tablet PVTs. These results indicate that the 3-min smartphone and tablet PVTs are valid instruments for measuring reduced alertness due to sleep deprivation and restored alertness following recovery sleep. The results also indicate that the loss of sensitivity on the 3-min PVTs may be mitigated by modifying the threshold defining lapses.

  4. Sleep deprivation impairs object recognition in mice

    NARCIS (Netherlands)

    Palchykova, S; Winsky-Sommerer, R; Meerlo, P; Durr, R; Tobler, Irene

    2006-01-01

    Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in in object

  5. Sleep deprivation affects reactivity to positive but not negative stimuli.

    Science.gov (United States)

    Pilcher, June J; Callan, Christina; Posey, J Laura

    2015-12-01

    The current study examined the effects of partial and total sleep deprivation on emotional reactivity. Twenty-eight partially sleep-deprived participants and 31 totally sleep-deprived participants rated their valence and arousal responses to positive and negative pictures across four testing sessions during the day following partial sleep deprivation or during the night under total sleep deprivation. The results suggest that valence and arousal ratings decreased under both sleep deprivation conditions. In addition, partial and total sleep deprivation had a greater negative effect on positive events than negative events. These results suggest that sleep-deprived persons are more likely to respond less to positive events than negative events. One explanation for the current findings is that negative events could elicit more attentive behavior and thus stable responding under sleep deprivation conditions. As such, sleep deprivation could impact reactivity to emotional stimuli through automated attentional and self-regulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Vascular compliance limits during sleep deprivation and recovery sleep.

    Science.gov (United States)

    Phillips, Derrick J; Schei, Jennifer L; Rector, David M

    2013-10-01

    Our previous studies showed that evoked hemodynamic responses are smaller during wake compared to sleep; suggesting neural activity is associated with vascular expansion and decreased compliance. We explored whether prolonged activity during sleep deprivation may exacerbate vascular expansion and blunt hemodynamic responses. Evoked auditory responses were generated with periodic 65 dB speaker clicks over a 72-h period and measured with cortical electrodes. Evoked hemodynamic responses were measured simultaneously with optical techniques using three light-emitting diodes, and a photodiode. Animals were housed in separate 30×30×80 cm enclosures, tethered to a commutator system and maintained on a 12-h light/dark cycle. Food and water were available ad libitum. Seven adult female Sprague-Dawley rats. Following a 24-h baseline recording, sleep deprivation was initiated for 0 to 10 h by gentle handling, followed by a 24-h recovery sleep recording. Evoked electrical and hemodynamic responses were measured before, during, and after sleep deprivation. Following deprivation, evoked hemodynamic amplitudes were blunted. Steady-state oxyhemoglobin concentration increased during deprivation and remained high during the initial recovery period before returning to baseline levels after approximately 9-h. Sleep deprivation resulted in blood vessel expansion and decreased compliance while lower basal neural activity during recovery sleep may allow blood vessel compliance to recover. Chronic sleep restriction or sleep deprivation could push the vasculature to critical levels, limiting blood delivery, and leading to metabolic deficits with the potential for neural trauma.

  7. Effects of sleep deprivation on central auditory processing

    Directory of Open Access Journals (Sweden)

    Liberalesso Paulo Breno

    2012-07-01

    Full Text Available Abstract Background Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. Although the impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP. Therefore, we examined the impact of sleep deprivation on CAP, for which there is sparse information. In the present study, thirty healthy adult volunteers (17 females and 13 males, aged 30.75 ± 7.14 years were subjected to a pure tone audiometry test, a speech recognition threshold test, a speech recognition task, the Staggered Spondaic Word Test (SSWT, and the Random Gap Detection Test (RGDT. Baseline (BSL performance was compared to performance after 24 hours of being sleep deprived (24hSD using the Student’s t test. Results Mean RGDT score was elevated in the 24hSD condition (8.0 ± 2.9 ms relative to the BSL condition for the whole cohort (6.4 ± 2.8 ms; p = 0.0005, for males (p = 0.0066, and for females (p = 0.0208. Sleep deprivation reduced SSWT scores for the whole cohort in both ears [(right: BSL, 98.4 % ± 1.8 % vs. SD, 94.2 % ± 6.3 %. p = 0.0005(left: BSL, 96.7 % ± 3.1 % vs. SD, 92.1 % ± 6.1 %, p  Conclusion Sleep deprivation impairs RGDT and SSWT performance. These findings confirm that sleep deprivation has central effects that may impair performance in other areas of life.

  8. Effects of sleep deprivation on central auditory processing.

    Science.gov (United States)

    Liberalesso, Paulo Breno Noronha; D'Andrea, Karlin Fabianne Klagenberg; Cordeiro, Mara L; Zeigelboim, Bianca Simone; Marques, Jair Mendes; Jurkiewicz, Ari Leon

    2012-07-23

    Sleep deprivation is extremely common in contemporary society, and is considered to be a frequent cause of behavioral disorders, mood, alertness, and cognitive performance. Although the impacts of sleep deprivation have been studied extensively in various experimental paradigms, very few studies have addressed the impact of sleep deprivation on central auditory processing (CAP). Therefore, we examined the impact of sleep deprivation on CAP, for which there is sparse information. In the present study, thirty healthy adult volunteers (17 females and 13 males, aged 30.75±7.14 years) were subjected to a pure tone audiometry test, a speech recognition threshold test, a speech recognition task, the Staggered Spondaic Word Test (SSWT), and the Random Gap Detection Test (RGDT). Baseline (BSL) performance was compared to performance after 24 hours of being sleep deprived (24hSD) using the Student's t test. Mean RGDT score was elevated in the 24hSD condition (8.0±2.9 ms) relative to the BSL condition for the whole cohort (6.4±2.8 ms; p=0.0005), for males (p=0.0066), and for females (p=0.0208). Sleep deprivation reduced SSWT scores for the whole cohort in both ears [(right: BSL, 98.4%±1.8% vs. SD, 94.2%±6.3%. p=0.0005)(left: BSL, 96.7%±3.1% vs. SD, 92.1%±6.1%, peffects were evident within both gender subgroups [(right: males, p=0.0080; females, p=0.0143)(left: males, p=0.0076; females: p=0.0010). Sleep deprivation impairs RGDT and SSWT performance. These findings confirm that sleep deprivation has central effects that may impair performance in other areas of life.

  9. Systemic bacterial invasion induced by sleep deprivation

    National Research Council Canada - National Science Library

    Carol A. Everson; Linda A. Toth

    2000-01-01

    .... The present study investigated the conditions antecedent to advanced morbidity in sleep-deprived rats by determining the time course and distribution of live microorganisms in body tissues that are normally sterile...

  10. Unsupervised online classifier in sleep scoring for sleep deprivation studies.

    Science.gov (United States)

    Libourel, Paul-Antoine; Corneyllie, Alexandra; Luppi, Pierre-Hervé; Chouvet, Guy; Gervasoni, Damien

    2015-05-01

    This study was designed to evaluate an unsupervised adaptive algorithm for real-time detection of sleep and wake states in rodents. We designed a Bayesian classifier that automatically extracts electroencephalogram (EEG) and electromyogram (EMG) features and categorizes non-overlapping 5-s epochs into one of the three major sleep and wake states without any human supervision. This sleep-scoring algorithm is coupled online with a new device to perform selective paradoxical sleep deprivation (PSD). Controlled laboratory settings for chronic polygraphic sleep recordings and selective PSD. Ten adult Sprague-Dawley rats instrumented for chronic polysomnographic recordings. The performance of the algorithm is evaluated by comparison with the score obtained by a human expert reader. Online detection of PS is then validated with a PSD protocol with duration of 72 hours. Our algorithm gave a high concordance with human scoring with an average κ coefficient > 70%. Notably, the specificity to detect PS reached 92%. Selective PSD using real-time detection of PS strongly reduced PS amounts, leaving only brief PS bouts necessary for the detection of PS in EEG and EMG signals (4.7 ± 0.7% over 72 h, versus 8.9 ± 0.5% in baseline), and was followed by a significant PS rebound (23.3 ± 3.3% over 150 minutes). Our fully unsupervised data-driven algorithm overcomes some limitations of the other automated methods such as the selection of representative descriptors or threshold settings. When used online and coupled with our sleep deprivation device, it represents a better option for selective PSD than other methods like the tedious gentle handling or the platform method. © 2015 Associated Professional Sleep Societies, LLC.

  11. Sleep deprivation increases formation of false memory.

    Science.gov (United States)

    Lo, June C; Chong, Pearlynne L H; Ganesan, Shankari; Leong, Ruth L F; Chee, Michael W L

    2016-12-01

    Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N = 58, mean age ± SD = 22.10 ± 1.60 years; 29 males), and 7 nights of partial sleep deprivation (5 h sleep opportunity) in these young adults and healthy adolescents (N = 54, mean age ± SD = 16.67 ± 1.03 years; 25 males). In both age groups, sleep-deprived individuals were more likely than well-rested persons to incorporate misleading post-event information into their responses during memory retrieval (P sleep in optimal cognitive functioning, reveal the vulnerability of adolescents' memory during sleep curtailment, and suggest the need to assess eyewitnesses' sleep history after encountering misleading information. © 2016 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.

  12. The dual effect of paradoxical sleep deprivation on murine immune functions.

    Science.gov (United States)

    Sá-Nunes, Anderson; Bizzarro, Bruna; Egydio, Flávia; Barros, Michele S; Sesti-Costa, Renata; Soares, Elyara M; Pina, Adriana; Russo, Momtchilo; Faccioli, Lúcia H; Tufik, Sergio; Andersen, Monica L

    2016-01-15

    We aimed to evaluate the effect of paradoxical sleep deprivation on the cellular migration during inflammation, the peritoneal macrophage phenotype and the infectious stimulus outcomes. A/J mice were inoculated with thioglycollate and exposed to paradoxical sleep deprivation. Sleep-deprived animals presented decreased cell migration compared to controls. Nitric oxide production was reduced in macrophages from sleep-deprived mice compared to controls. Cell surface analysis showed that sleep deprivation reduced F4/80(+)/CD80(low) peritoneal cell population induced by thioglycollate injection. Sleep-deprived mice were not more susceptible to infection than control mice. Our findings challenge the general perception that sleep loss always increases infection susceptibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Recovery sleep after sleep deprivation almost completely abolishes dream recall.

    Science.gov (United States)

    De Gennaro, Luigi; Marzano, Cristina; Moroni, Fabio; Curcio, Giuseppe; Ferrara, Michele; Cipolli, Carlo

    2010-01-20

    The study investigated the effect of one night of sleep deprivation on dream recall at morning awakening after recovery sleep. Forty healthy subjects were studied after adaptation (A) and baseline nights (B), and a recovery (R) night following 40 h of prolonged wakefulness. Parallel to the well-known recovery sleep changes (slow-wave sleep--SWS--rebound, decreased number of awakenings and of REM sleep amount), an almost complete abolition of dream recall was found, with an around 75% decrease with respect to the adaptation and baseline nights. The number of dreams recalled by those subjects with successful recall (REC) did not significantly differ between nights. Moreover, gender and sleep stage at awakening did not affect either the proportion of REC subjects or the number of dreams recalled by REC subjects during each night. Finally, the drastic impairment of dream recall after R night was associated to a larger increase of SWS and a shorter REM sleep duration. We suggest that dream recall could have been impaired during R night because: (i) the lower number of spontaneous awakenings over the night reduced the contents available in memory as possible cues for the retrieval of dream experiences at morning; (ii) mental experiences, having been elaborated during SWS more than in the other nights, were less dreamlike (i.e., perceptually vivid and bizarre) and, thus less accessible at morning recall than those elaborated during the nights with a higher proportion of REM sleep; (iii) dream contents, as a peculiar type of episodic information, were less consolidated because of the lower effectiveness of declarative memory during recovery sleep.

  14. Metabolic and endocrine effects of sleep deprivation.

    Science.gov (United States)

    Copinschi, Georges

    2005-01-01

    Sleep deprivation has multiple effects on endocrine and metabolic function. In particular, sleep restriction is accompanied by increased cortisol levels in the afternoon and early evening and a shorter quiescent period compared with extended sleep periods. Those alterations could facilitate central and peripheral disturbances that are associated with glucocorticoid excess, such as memory deficits, and are similar to those observed in aging. Thus, chronic sleep loss could contribute to acceleration of the aging process. Sleep restriction is also associated with an impairment of carbohydrate tolerance, similar to that observed in individuals with clinically significant impaired glucose tolerance. Thus, chronic sleep deprivation may increase the risk for diabetes. Finally, sleep plays an important role in energy balance. Partial sleep deprivation was found to be associated with a decrease in plasma levels of leptin and a concomitant increase in plasma levels of ghrelin; subjective ratings of hunger and appetite also increased (the appetite for protein-rich foods was not significantly affected). Moreover, a remarkable correlation was found between the increase in hunger and the increase in the ghrelin:leptin ratio. Thus, the neuroendocrine regulation of appetite and food intake appears to be influenced by sleep duration, and sleep restriction may favor the development of obesity.

  15. Sleep deprivation impairs cAMP signalling in the hippocampus

    NARCIS (Netherlands)

    Vecsey, Christopher G; Baillie, George S; Jaganath, Devan; Havekes, Robbert; Daniels, Andrew; Wimmer, Mathieu; Huang, Ted; Brown, Kim M; Li, Xiang-Yao; Descalzi, Giannina; Kim, Susan S; Chen, Tao; Shang, Yu-Ze; Zhuo, Min; Houslay, Miles D; Abel, Ted

    2009-01-01

    Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to

  16. Can sleep deprivation studies explain why human adults sleep?

    Science.gov (United States)

    Brown, Lee K

    2012-11-01

    This review will concentrate on the consequences of sleep deprivation in adult humans. These findings form a paradigm that serves to demonstrate many of the critical functions of the sleep states. The drive to obtain food, water, and sleep constitutes important vegetative appetites throughout the animal kingdom. Unlike nutrition and hydration, the reasons for sleep have largely remained speculative. When adult humans are nonspecifically sleep-deprived, systemic effects may include defects in cognition, vigilance, emotional stability, risk-taking, and, possibly, moral reasoning. Appetite (for foodstuffs) increases and glucose intolerance may ensue. Procedural, declarative, and emotional memory are affected. Widespread alterations of immune function and inflammatory regulators can be observed, and functional MRI reveals profound changes in regional cerebral activity related to attention and memory. Selective deprivation of rapid eye movement (REM) sleep, on the contrary, appears to be more activating and to have lesser effects on immunity and inflammation. The findings support a critical need for sleep due to the widespread effects on the adult human that result from nonselective sleep deprivation. The effects of selective REM deprivation appear to be different and possibly less profound, and the functions of this sleep state remain enigmatic.

  17. Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats

    Directory of Open Access Journals (Sweden)

    Ricardo Borges Machado

    2010-01-01

    Full Text Available Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical CRH9−41, a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.

  18. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Directory of Open Access Journals (Sweden)

    Sean P A Drummond

    Full Text Available Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1 in a well-rested condition (following 6 nights of 9 hours in bed/night; and 2 following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency. Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care

  19. The effects of two types of sleep deprivation on visual working memory capacity and filtering efficiency.

    Science.gov (United States)

    Drummond, Sean P A; Anderson, Dane E; Straus, Laura D; Vogel, Edward K; Perez, Veronica B

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep deprivation and 4 nights of partial sleep deprivation (4 hours in bed/night) on two components of visual working memory: capacity and filtering efficiency. Forty-four healthy young adults were randomly assigned to one of the two sleep deprivation conditions. All participants were studied: 1) in a well-rested condition (following 6 nights of 9 hours in bed/night); and 2) following sleep deprivation, in a counter-balanced order. Visual working memory testing consisted of two related tasks. The first measured visual working memory capacity and the second measured the ability to ignore distractor stimuli in a visual scene (filtering efficiency). Results showed neither type of sleep deprivation reduced visual working memory capacity. Partial sleep deprivation also generally did not change filtering efficiency. Total sleep deprivation, on the other hand, did impair performance in the filtering task. These results suggest components of visual working memory are differentially vulnerable to the effects of sleep deprivation, and different types of sleep deprivation impact visual working memory to different degrees. Such findings have implications for operational settings where individuals may need to perform with inadequate sleep and whose jobs involve receiving an array of visual information and discriminating the relevant from the irrelevant prior to making decisions or taking actions (e.g., baggage screeners, air traffic controllers, military personnel, health care providers).

  20. Sleep deprivation, pain and prematurity: a review study

    Directory of Open Access Journals (Sweden)

    Kelly Cristina Santos de Carvalho Bonan

    2015-02-01

    Full Text Available The aim was to describe current reports in the scientific literature on sleep in the intensive care environment and sleep deprivation associated with painful experiences in premature infant. A systematic search was conducted for studies on sleep, pain, premature birth and care of the newborn. Web of Knowledge, MEDLINE, LILACS, Cochrane Library, PubMed, EMBASE, Scopus, VHL and SciELO databases were consulted. The association between sleep deprivation and pain generates effects that are observed in the brain and the behavioral and physiological activity of preterm infants. Polysomnography in intensive care units and pain management in neonates allow comparison with the first year of life and term infants. We have found few references and evidence that neonatal care programs can influence sleep development and reduce the negative impact of the environment. This evidence is discussed from the perspective of how hospital intervention can improve the development of premature infants.

  1. Sleep deprivation, pain and prematurity: a review study.

    Science.gov (United States)

    Bonan, Kelly Cristina Santos de Carvalho; Pimentel Filho, João da Costa; Tristão, Rosana Maria; Jesus, José Alfredo Lacerda de; Campos Junior, Dioclécio

    2015-02-01

    The aim was to describe current reports in the scientific literature on sleep in the intensive care environment and sleep deprivation associated with painful experiences in premature infant. A systematic search was conducted for studies on sleep, pain, premature birth and care of the newborn. Web of Knowledge, MEDLINE, LILACS, Cochrane Library, PubMed, EMBASE, Scopus, VHL and SciELO databases were consulted. The association between sleep deprivation and pain generates effects that are observed in the brain and the behavioral and physiological activity of preterm infants. Polysomnography in intensive care units and pain management in neonates allow comparison with the first year of life and term infants. We have found few references and evidence that neonatal care programs can influence sleep development and reduce the negative impact of the environment. This evidence is discussed from the perspective of how hospital intervention can improve the development of premature infants.

  2. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity

    NARCIS (Netherlands)

    Beersma, D.G.M.; Dijk, D.J.; Blok, Guus; Everhardus, I.

    Nine healthy male subjects were deprived of REM sleep during the first 5 h after sleep onset. Afterwards recovery sleep was undisturbed. During the deprivation period the non-REM EEG power spectrum was reduced when compared to baseline for the frequencies up to 7 Hz, despite the fact that non-REM

  3. Is sleep deprivation a contributor to obesity in children?

    Science.gov (United States)

    Chaput, Jean-Philippe

    2016-03-01

    Chronic lack of sleep (called "sleep deprivation") is common in modern societies with 24/7 availability of commodities. Accumulating evidence supports the role of reduced sleep as contributing to the current obesity epidemic in children and youth. Longitudinal studies have consistently shown that short sleep duration is associated with weight gain and the development of obesity. Recent experimental studies have reported that sleep restriction leads to weight gain in humans. Increased food intake appears to be the main mechanism by which insufficient sleep results in weight gain. Voluntary sleep restriction has been shown to increase snacking, the number of meals eaten per day, and the preference for energy-dense foods. Although the causes of sleep loss in the pediatric population are numerous, more research looking at screen exposure before bedtime and its effects on sleep is needed given the pervasiveness of electronic media devices in today's environment. Health professionals should routinely ask questions about sleep and promote a good night's sleep because insufficient sleep impacts activity and eating behaviors. Future research should examine the clinical benefits of increasing sleep duration on eating behaviors and body weight control and determine the importance of adequate sleep to improve the treatment of obesity.

  4. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases.

    Science.gov (United States)

    Tobaldini, Eleonora; Costantino, Giorgio; Solbiati, Monica; Cogliati, Chiara; Kara, Tomas; Nobili, Lino; Montano, Nicola

    2017-03-01

    Sleep deprivation (SD) has become a relevant health problem in modern societies. We can be sleep deprived due to lifestyle habits or due to sleep disorders, such as insomnia, obstructive sleep apnea (OSA) and neurological disorders. One of the common element of sleep disorders is the condition of chronic SD, which has complex biological consequences. SD is capable of inducing different biological effects, such as neural autonomic control changes, increased oxidative stress, altered inflammatory and coagulatory responses and accelerated atherosclerosis. All these mechanisms links SD and cardiovascular and metabolic disorders. Epidemiological studies have shown that short sleep duration is associated with increased incidence of cardiovascular diseases, such as coronary artery disease, hypertension, arrhythmias, diabetes and obesity, after adjustment for socioeconomic and demographic risk factors and comorbidities. Thus, an early assessment of a condition of SD and its treatment is clinically relevant to prevent the harmful consequences of a very common condition in adult population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain.

    Science.gov (United States)

    Vanini, Giancarlo

    2016-01-01

    Insufficient sleep and chronic pain are public health epidemics. Sleep loss worsens pain and predicts the development of chronic pain. Whether previous, acute sleep loss and recovery sleep determine pain levels and duration remains poorly understood. This study tested whether acute sleep deprivation and recovery sleep prior to formalin injection alter post-injection pain levels and duration. Male Sprague-Dawley rats (n = 48) underwent sleep deprivation or ad libitum sleep for 9 hours. Thereafter, rats received a subcutaneous injection of formalin or saline into a hind paw. In the recovery sleep group, rats were allowed 24 h between sleep deprivation and the injection of formalin. Mechanical and thermal nociception were assessed using the von Frey test and Hargreaves' method. Nociceptive measures were performed at 1, 3, 7, 10, 14, 17 and 21 days post-injection. Formalin caused bilateral mechanical hypersensitivity (allodynia) that persisted for up to 21 days post-injection. Sleep deprivation significantly enhanced bilateral allodynia. There was a synergistic interaction when sleep deprivation preceded a formalin injection. Rats allowed a recovery sleep period prior to formalin injection developed allodynia only in the injected limb, with higher mechanical thresholds (less allodynia) and a shorter recovery period. There were no persistent changes in thermal nociception. The data suggest that acute sleep loss preceding an inflammatory insult enhances pain and can contribute to chronic pain. The results encourage studies in a model of surgical pain to test whether enhancing sleep reduces pain levels and duration. © 2016 Associated Professional Sleep Societies, LLC.

  6. Decrease in monocular sleep after sleep deprivation in the domestic chicken

    NARCIS (Netherlands)

    Boerema, AS; Riedstra, B; Strijkstra, AM

    2003-01-01

    We investigated the trade-off between sleep need and alertness, by challenging chickens to modify their monocular sleep. We sleep deprived domestic chickens (Gallus domesticus) to increase their sleep need. We found that in response to sleep deprivation the fraction of monocular sleep within sleep

  7. Effects of exercise on brain and peripheral inflammatory biomarkers induced by total sleep deprivation in rats.

    Science.gov (United States)

    Chennaoui, M; Gomez-Merino, D; Drogou, C; Geoffroy, H; Dispersyn, G; Langrume, C; Ciret, S; Gallopin, T; Sauvet, F

    2015-01-01

    Physical exercise induces neuroprotection through anti-inflammatory effects and total sleep deprivation is reported an inflammatory process. We examined whether 7 weeks of exercise training attenuates markers of inflammation during total sleep deprivation (24-h wakefulness) in the rat brain and periphery. Four groups of 10 rats were investigated: Sedentary control, Sedentary sleep-deprived, Exercised control, and Exercised sleep-deprived. Sleep deprivation and exercise training were induced using slowly rotating wheels and a motorized treadmill. We examined mRNA expression of pro-inflammatory (IL-1β, TNF-α, and IL-6) cytokine-related genes using real-time PCR, and protein levels in the hippocampus and frontal cortex, as well as circulating concentrations. Compared to Sedentary control rats, hippocampal and cortical IL-1β mRNA expressions in Sedentary sleep-deprived rats were up-regulated (p rats (p rats compared to Sedentary control (p Exercise training reduced the sleep deprivation-induced hippocampal IL-1β increases (mRNA expression and protein content) (p exercise reduced sleep deprivation-induced increase of IL-6 concentration (p effect on TNF-α and norepinephrine. We demonstrate that a 7-week exercise training program before acute total sleep deprivation prevents pro-inflammatory responses in the rat hippocampus, particularly the IL-1β cytokine at the gene expression level and protein content.

  8. Evidence That Sleep Deprivation Downregulates Dopamine D2R in Ventral Striatum in the Human Brain

    Energy Technology Data Exchange (ETDEWEB)

    Volkow N. D.; Fowler J.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Logan, J.; Benveniste, H.; Kin, R.; Thanos, P.K.; Sergi F.

    2012-03-23

    Dopamine D2 receptors are involved with wakefulness, but their role in the decreased alertness associated with sleep deprivation is unclear. We had shown that sleep deprivation reduced dopamine D2/D3 receptor availability (measured with PET and [{sup 11}C]raclopride in controls) in striatum, but could not determine whether this reflected dopamine increases ([{sup 11}C]raclopride competes with dopamine for D2/D3 receptor binding) or receptor downregulation. To clarify this, we compared the dopamine increases induced by methylphenidate (a drug that increases dopamine by blocking dopamine transporters) during sleep deprivation versus rested sleep, with the assumption that methylphenidate's effects would be greater if, indeed, dopamine release was increased during sleep deprivation. We scanned 20 controls with [{sup 11}C]raclopride after rested sleep and after 1 night of sleep deprivation; both after placebo and after methylphenidate. We corroborated a decrease in D2/D3 receptor availability in the ventral striatum with sleep deprivation (compared with rested sleep) that was associated with reduced alertness and increased sleepiness. However, the dopamine increases induced by methylphenidate (measured as decreases in D2/D3 receptor availability compared with placebo) did not differ between rested sleep and sleep deprivation, and were associated with the increased alertness and reduced sleepiness when methylphenidate was administered after sleep deprivation. Similar findings were obtained by microdialysis in rodents subjected to 1 night of paradoxical sleep deprivation. These findings are consistent with a downregulation of D2/D3 receptors in ventral striatum with sleep deprivation that may contribute to the associated decreased wakefulness and also corroborate an enhancement of D2 receptor signaling in the arousing effects of methylphenidate in humans.

  9. Cues of fatigue: effects of sleep deprivation on facial appearance.

    Science.gov (United States)

    Sundelin, Tina; Lekander, Mats; Kecklund, Göran; Van Someren, Eus J W; Olsson, Andreas; Axelsson, John

    2013-09-01

    To investigate the facial cues by which one recognizes that someone is sleep deprived versus not sleep deprived. Experimental laboratory study. Karolinska Institutet, Stockholm, Sweden. Forty observers (20 women, mean age 25 ± 5 y) rated 20 facial photographs with respect to fatigue, 10 facial cues, and sadness. The stimulus material consisted of 10 individuals (five women) photographed at 14:30 after normal sleep and after 31 h of sleep deprivation following a night with 5 h of sleep. Ratings of fatigue, fatigue-related cues, and sadness in facial photographs. The faces of sleep deprived individuals were perceived as having more hanging eyelids, redder eyes, more swollen eyes, darker circles under the eyes, paler skin, more wrinkles/fine lines, and more droopy corners of the mouth (effects ranging from b = +3 ± 1 to b = +15 ± 1 mm on 100-mm visual analog scales, P sleep deprivation (P sleep deprivation, nor associated with judgements of fatigue. In addition, sleep-deprived individuals looked sadder than after normal sleep, and sadness was related to looking fatigued (P sleep deprivation affects features relating to the eyes, mouth, and skin, and that these features function as cues of sleep loss to other people. Because these facial regions are important in the communication between humans, facial cues of sleep deprivation and fatigue may carry social consequences for the sleep deprived individual in everyday life.

  10. The sleep-deprived human brain.

    Science.gov (United States)

    Krause, Adam J; Simon, Eti Ben; Mander, Bryce A; Greer, Stephanie M; Saletin, Jared M; Goldstein-Piekarski, Andrea N; Walker, Matthew P

    2017-07-01

    How does a lack of sleep affect our brains? In contrast to the benefits of sleep, frameworks exploring the impact of sleep loss are relatively lacking. Importantly, the effects of sleep deprivation (SD) do not simply reflect the absence of sleep and the benefits attributed to it; rather, they reflect the consequences of several additional factors, including extended wakefulness. With a focus on neuroimaging studies, we review the consequences of SD on attention and working memory, positive and negative emotion, and hippocampal learning. We explore how this evidence informs our mechanistic understanding of the known changes in cognition and emotion associated with SD, and the insights it provides regarding clinical conditions associated with sleep disruption.

  11. Air travel: effects of sleep deprivation and jet lag.

    Science.gov (United States)

    Weingarten, Jeremy A; Collop, Nancy A

    2013-10-01

    Air travel is a common mode of transportation in today's society, particularly for individuals traveling long distances. Sleep disturbances associated with air travel frequently result in cognitive and physiologic impairments that may be detrimental to the traveler's experience and intent. A primary consequence of air travel is the development of acute sleep deprivation, which may result in reduced attention/vigilance, alteration in mood states, diminished memory processing, and alteration in executive function. Along with and contributing to acute sleep deprivation, circadian rhythm misalignment resulting in jet lag disorder (JLD) is frequently encountered by air travelers traversing multiple time zones. JLD is characterized by insomnia or excessive daytime sleepiness associated with physical or mental impairment associated with travel. This review focuses on the neurocognitive manifestations of acute sleep deprivation and the pathophysiology and treatment of JLD to provide the practicing clinician a greater understanding of the sleep abnormalities manifest in air travelers. Treatment recommendations for the traveler, including the use of light/melatonin therapy, sleep scheduling, and pharmacologic aids for both sleep and alertness, are provided.

  12. Sleep Deprivation in Mood Disorders

    National Research Council Canada - National Science Library

    Benedetti, Francesco; Colombo, Cristina

    2011-01-01

    ...: total versus partial, single versus repeated, alone or combined with antidepressant drugs, mood stabilizers, or other chronotherapeutic techniques, such as light therapy and sleep phase advance...

  13. Circadian Rhythms, Sleep Deprivation, and Human Performance

    Science.gov (United States)

    Goel, Namni; Basner, Mathias; Rao, Hengyi; Dinges, David F.

    2014-01-01

    Much of the current science on, and mathematical modeling of, dynamic changes in human performance within and between days is dominated by the two-process model of sleep–wake regulation, which posits a neurobiological drive for sleep that varies homeostatically (increasing as a saturating exponential during wakefulness and decreasing in a like manner during sleep), and a circadian process that neurobiologically modulates both the homeostatic drive for sleep and waking alertness and performance. Endogenous circadian rhythms in neurobehavioral functions, including physiological alertness and cognitive performance, have been demonstrated using special laboratory protocols that reveal the interaction of the biological clock with the sleep homeostatic drive. Individual differences in circadian rhythms and genetic and other components underlying such differences also influence waking neurobehavioral functions. Both acute total sleep deprivation and chronic sleep restriction increase homeostatic sleep drive and degrade waking neurobehavioral functions as reflected in sleepiness, attention, cognitive speed, and memory. Recent evidence indicating a high degree of stability in neurobehavioral responses to sleep loss suggests that these trait-like individual differences are phenotypic and likely involve genetic components, including circadian genes. Recent experiments have revealed both sleep homeostatic and circadian effects on brain metabolism and neural activation. Investigation of the neural and genetic mechanisms underlying the dynamically complex interaction between sleep homeostasis and circadian systems is beginning. A key goal of this work is to identify biomarkers that accurately predict human performance in situations in which the circadian and sleep homeostatic systems are perturbed. PMID:23899598

  14. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans.

    Science.gov (United States)

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J; Dinges, David F; Kuna, Samuel T; Maislin, Greg; Van Dongen, Hans P A; Tufik, Sergio; Hogenesch, John B; Hakonarson, Hakon; Pack, Allan I

    2014-08-01

    Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336.

  15. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback.

    Science.gov (United States)

    Whitney, Paul; Hinson, John M; Jackson, Melinda L; Van Dongen, Hans P A

    2015-05-01

    To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Twenty-six subjects (22-40 y of age; 10 women). Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback or because the feedback is not cognitively bound with the choice. This has important

  16. Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status.

    Science.gov (United States)

    Trivedi, Malav S; Holger, Dana; Bui, Anh Tuyet; Craddock, Travis J A; Tartar, Jaime L

    2017-01-01

    Sleep is critical for repair as well as the rejuvenation processes in the body and many of these functions are regulated via underlying cellular metabolic homeostasis. Changes in sleep pattern are reported to alter such metabolic function resulting in altered disease susceptibility or behavior. Here, we measured the extent to which overnight total sleep deprivation (SD) in young adult humans can influence systemic (plasma-derived) redox-metabolism including the major antioxidant, glutathione as well as DNA methylation levels. Nineteen participants (n = 19, μ age = 21, SD = 3.09) underwent morning testing before and after overnight total SD. Biochemical measures before and after SD revealed that glutathione, ATP, cysteine, and homocysteine levels were significantly reduced following one night of sleep deprivation (all p's sleep deprivation (maintaining wakefulness) uses up metabolic reserves, we observed that morning cortisol levels were blunted after sleep deprivation. There were no significant correlations between self-reported or actigraphy-measured sleep and the biochemical measurements, strongly indicating that prior sleep behavior did not have any direct influence on the biochemical measures taken at baseline or after sleep deprivation. Results from the current investigation supports the previous literature implicating the induction of oxidative stress and ATP depletion with sleep deprivation. Furthermore, such altered antioxidant status can also induce downstream epigenetic changes. Although we did not measure the specific genes that were altered under the influence of such sleep deprivation, such epigenetic changes could potentially contribute towards disease predisposition.

  17. Total sleep deprivation decreases flow experience and mood status

    OpenAIRE

    Kaida K; Niki K

    2013-01-01

    Kosuke Kaida, Kazuhisa NikiHuman Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, JapanBackground: The purpose of this study was to examine the effect of sleep deprivation on flow experience.Methods: Sixteen healthy male volunteers of mean age 21.4±1.59 (21–24) years participated in two experimental conditions, ie, sleep-deprivation and normal sleep. In the sleep-deprived condition, participants stayed awake at home...

  18. Increased photosensitivity following short sleep in sleep deprived patients.

    Science.gov (United States)

    Elmalı, Ayşe Deniz; Kurucu, Hatice; Ertürk Çetin, Özdem; Çokar, Özlem; Matur, Zeliha; Dervent, Ayşin; Benbir Şenel, Gülçin; Gürses, Candan; Demirbilek, Veysi

    2017-06-01

    We aimed to determine the effect of short day-time sleep on photoparoxysmal epileptic activity in sleep-deprived patients. We retrospectively reviewed video-EEG recordings performed between 2003 and 2015. All recordings following at least four hours of sleep deprivation, including intermittent photic stimulation (IPS) both before and after sleep with any form of epileptiform activity were included. The study group was divided into four subgroups: (1) no photoparoxysmal response (PPR) group, with epileptiform activities other than PPRs; (2) increment group, with PPR duration increased by ≥200% after vs. before sleep; (3) no significant change group, with PPR duration increased between 50% and 200% after vs. before sleep; (4) decrement group, with PPR duration increased ≤50% after vs. before sleep. A total number of 5805 EEG recordings from 459 patients was analyzed. Photosensitivity was present in 98 patients (21.4%). The PPRs after sleep were increased in 70% of the photosensitive patients, did not change in 23%, and were decreased in 7%. The increase in duration of PPRs was statistically significant (P<0.001). In our cohort, photosensitivity would have been detected in 67 patients if IPS was applied only before sleep and in 91 patients if IPS was applied only after awakening (P<0.05). This study demonstrates that photosensitivity is enhanced after awakening from a short sleep following sleep deprivation. Thus, we recommend performing IPS after awakening to increase sensitivity to detect photoparoxysmal epileptiform discharges. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Effects of sleep deprivation with reference to military operations.

    Science.gov (United States)

    Giam, G C

    1997-01-01

    This review discusses the need for sleep, effects of sleep deprivation on behaviour and performance in the military, and sleep management recommendations to optimise combat effectiveness. Most people, regardless of sex or race, prefer 7 to 8 hours of sleep each night. Sleeping during the day is less recuperative. Continuous sleep is more effective than multiple short naps-even when the total hours for naps is more. Ten to 20 minute naps are useful when continuous sleep is not possible. Sleep inertia is the 5 to 30 minute period of sluggishness after awakening and important military tasks should be avoided. Previously, continuous work episodes (CWEs) duration was restricted by limited night vision, unreliable equipment and reduced endurance of military personnel. With improved technology, CWEs are now restricted primarily by endurance which is affected by sleep deprivation. This was one of the experiences noted in recent conflicts (e.g. Desert Storm) by personnel in the air force, army and navy. Since there will be changes in operational requirements, several work-rest-sleep plans must be prepared. Sleeping the preferred 7 to 8 hours per 24 hours the week before an operation may help prepare for optimal performance. Personnel should be familiarised with conditions under which they may sleep. During combat, sleep management should ideally avoid situations where all personnel are exhausted at the same time. As sleep debt accumulates, a person's mood, motivation, attention, alertness, short-term memory, ability to complete routines, task performance (errors of omission more than errors of commission) and physical performance will become more negatively affected. Counter measures must then be taken (e.g. time for sleep or naps, changing routines or rotating jobs). Drugs like caffeine and amphetamine can help personnel stay awake. However, they may also keep them awake when they need to sleep- and on awakening, they could suffer from "hang-overs" and are less efficient

  20. Partial sleep deprivation and energy balance in adults: an emerging issue for consideration by dietetics practitioners.

    Science.gov (United States)

    Shlisky, Julie D; Hartman, Terryl J; Kris-Etherton, Penny M; Rogers, Connie J; Sharkey, Neil A; Nickols-Richardson, Sharon M

    2012-11-01

    During the past 30 years, rates of partial sleep deprivation and obesity have increased in the United States. Evidence linking partial sleep deprivation, defined as sleeping sleep deprivation on energy balance and weight regulation. An inverse relationship between obesity and sleep duration has been demonstrated in cross-sectional and prospective studies. Several intervention studies have tested mechanisms by which partial sleep deprivation affects energy balance. Reduced sleep may disrupt appetitive hormone regulation, specifically increasing ghrelin and decreasing leptin and, thereby, influence energy intake. Increased wakefulness also may promote food intake episodes and energy imbalance. Energy expenditure may not be greatly affected by partial sleep deprivation, although additional and more accurate methods of measurements may be necessary to detect subtle changes in energy expenditure. Body weight loss achieved by reduced energy intake and/or increased energy expenditure combined with partial sleep deprivation may contribute to undesirable body composition change with proportionately more fat-free soft tissue mass lost compared with fat mass. Evaluating sleep patterns and recommending regular, sufficient sleep for individuals striving to manage weight may be prudent. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  1. Chronic partial sleep deprivation reduces brain sensitivity to glutamate N-methyl-d-aspartate receptor-mediated neurotoxicity

    NARCIS (Netherlands)

    Novati, Arianna; Hulshof, Henriette J.; Granic, Ivica; Meerlo, Peter

    2012-01-01

    It has been hypothesized that insufficient sleep may compromise neuronal function and contribute to neurodegenerative processes. While sleep loss by itself may not lead to cell death directly, it may affect the sensitivity to a subsequent neurodegenerative insult. Here we examined the effects of

  2. Sleep deprivation due to shift work.

    Science.gov (United States)

    Costa, Giovanni

    2015-01-01

    Sleep deprivation due to shift work is related to perturbation of the sleep/wake cycle, associated with the modified activity/rest pattern. This may cause a significant disruption of circadian rhythms of biologic functions, driven by the body clock located in the suprachiasmatic nuclei of the hypothalamus. Shift and night workers have to change sleep times and strategies according to their duty periods; consequently, both sleep length and quality can be considerably affected depending on the variable start and finish times on different shifts. About 10% of night and rotating shift workers, aged between 18 and 65 years, have been estimated to have a diagnosable "shift-work sleep disorder," according to the International Classification of Sleep Disorders, version 2 (ICSD-2). In the long run, this may lead to persistent and severe disturbances of sleep, chronic fatigue and psychoneurotic syndromes, besides being a risk or aggravating factor for accidents, gastrointestinal, cardiovascular, and reproductive disorders, as well as, probably, for cancer. Preventive and corrective actions deal with the organization of shift schedules according to ergonomic criteria, careful health surveillance, appropriate education and training on effective countermeasures, in particular, sleep hygiene and napping. © 2015 Elsevier B.V. All rights reserved.

  3. [Effects of sleep deprivation in hippocampal neurogenesis].

    Science.gov (United States)

    López-Virgen, Verónica; Zárate-López, David; Adirsch, Fabián L; Collas-Aguilar, Jorge; González-Pérez, Óscar

    2015-01-01

    Adult neurogenesis in the dentate gyrus (DG) in the hippocampus is a process that involves proliferation, differentiation, maturation, migration, and integration of young neurons in the granular layer of DG. These newborn neurons mature in three to four weeks and incorporate into neural circuits in the hippocampus. There, these new neurons play a role in cognitive functions, such as acquisition and retention of memory, which are consolidated during sleep period. In this review, we describe recent findings that associate sleep deprivation with changes in hippocampal neurogenesis and cognitive processes. In addition, we describe possible mechanisms implicated in this deterioration such as circadian rhythm, melatonin receptors, and growth factors.

  4. Effects of a selective sleep deprivation on subsequent anaerobic performance.

    Science.gov (United States)

    Mougin, F; Bourdin, H; Simon-Rigaud, M L; Didier, J M; Toubin, G; Kantelip, J P

    1996-02-01

    The aim of the study was to investigate the effects of a partial sleep deprivation on a subsequent supramaximal exercise evaluated from the 30 second Wingate test, and on the following recovery. To take into account the active muscle mass, the Wingate test was performed against a constant braking force related to the data of a force-velocity test conducted on a Monark cycle ergometer (Model 814 E with weights) one week before the experimental test. Eight highly trained athletes were enrolled for this study. The changes in ventilatory and metabolic responses were analyzed during and upon completion of physical 30 second exercise, taking place after two nights, in other words, after a reference night and after a night with reduced sleep. Partial sleep deprivation was obtained by delaying bedtime until 3 a.m. The 30 second Wingate test was performed between 9 a.m. and noon the following days, using a Monark ergometer (Model 814 F). The analyses of change scores disclosed that there were no main significant effects for measures of ventilation, lactates and pH(v) levels under the two experimental conditions. The peak power, the mean power output and the peak velocity recorded after partial sleep deprivation were not modified in comparison with the values obtained after the reference night. These findings suggest that acute sleep loss did not contribute to alterations in supramaximal exercise.

  5. Chronic sleep deprivation and seasonality: Implications for the obesity epidemic

    OpenAIRE

    Cizza, G.; Requena, M.; Galli, G.; de Jonge, L.

    2011-01-01

    Sleep duration has progressively fallen over the last 100 years while obesity has increased in the past 30 years. Several studies have reported an association between chronic sleep deprivation and long-term weight gain. Increased energy intake due to sleep loss has been listed as the main mechanism. The consequences of chronic sleep deprivation on energy expenditure have not been fully explored. Sleep, body weight, mood and behavior are subjected to circannual changes. However, in our modern ...

  6. Combined effects of alcohol and sleep deprivation in normal young adults.

    Science.gov (United States)

    Peeke, S C; Callaway, E; Jones, R T; Stone, G C; Doyle, J

    1980-01-01

    The effect of combining sleep deprivation and moderate alcohol consumption in male college students differed from the effects of each treatment alone. Following either alcohol or sleep deprivation, there was mild performance impairment, decreased alertness and reduced amplitude and increased latency of cortical evoked potential (EP) components. Heart rate increased after alcohol and anxiety increased after sleep deprivation. When alcohol and sleep deprivation were combined, antagonistic effects were found for most measures (reaction time, heart rate, alertness, anxiety, latency of early EP components), but synergistic effects also occurred (performance accuracy, latency of late EP components). These effects were found in a double-blind experiment using 24 subjects. The experimental treatments were alcohol doses of 0, 0.45 and 0.90 ml/kg of 95% ethanol and 0 and 26 h of sleep deprivation.

  7. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals

    National Research Council Canada - National Science Library

    Trksak, George H; Bracken, Bethany K; Jensen, J Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    .... The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants...

  8. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    National Research Council Canada - National Science Library

    Trksak, George H; Bracken, Bethany K; Jensen, J. Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    .... The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants...

  9. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions

    NARCIS (Netherlands)

    Verweij, I.M.; Romeijn, N.; Smit, D.J.A.; Piantoni, G.; van Someren, E.J.W.; van der Werf, Y.D.

    2014-01-01

    Background: The restorative effect of sleep on waking brain activity remains poorly understood. Previous studies have compared overall neural network characteristics after normal sleep and sleep deprivation. To study whether sleep and sleep deprivation might differentially affect subsequent

  10. Sleep deprivation leads to a loss of functional connectivity in frontal brain regions

    NARCIS (Netherlands)

    Verweij, Ilse M; Romeijn, Nico; Smit, Dirk Ja; Piantoni, Giovanni; Van Someren, Eus Jw; van der Werf, Ysbrand D

    2014-01-01

    BACKGROUND: The restorative effect of sleep on waking brain activity remains poorly understood. Previous studies have compared overall neural network characteristics after normal sleep and sleep deprivation. To study whether sleep and sleep deprivation might differentially affect subsequent

  11. Impact of monetary incentives on cognitive performance and error monitoring following sleep deprivation.

    Science.gov (United States)

    Hsieh, Shulan; Li, Tzu-Hsien; Tsai, Ling-Ling

    2010-04-01

    To examine whether monetary incentives attenuate the negative effects of sleep deprivation on cognitive performance in a flanker task that requires higher-level cognitive-control processes, including error monitoring. Twenty-four healthy adults aged 18 to 23 years were randomly divided into 2 subject groups: one received and the other did not receive monetary incentives for performance accuracy. Both subject groups performed a flanker task and underwent electroencephalographic recordings for event-related brain potentials after normal sleep and after 1 night of total sleep deprivation in a within-subject, counterbalanced, repeated-measures study design. Monetary incentives significantly enhanced the response accuracy and reaction time variability under both normal sleep and sleep-deprived conditions, and they reduced the effects of sleep deprivation on the subjective effort level, the amplitude of the error-related negativity (an error-related event-related potential component), and the latency of the P300 (an event-related potential variable related to attention processes). However, monetary incentives could not attenuate the effects of sleep deprivation on any measures of behavior performance, such as the response accuracy, reaction time variability, or posterror accuracy adjustments; nor could they reduce the effects of sleep deprivation on the amplitude of the Pe, another error-related event-related potential component. This study shows that motivation incentives selectively reduce the effects of total sleep deprivation on some brain activities, but they cannot attenuate the effects of sleep deprivation on performance decrements in tasks that require high-level cognitive-control processes. Thus, monetary incentives and sleep deprivation may act through both common and different mechanisms to affect cognitive performance.

  12. Estradiol treatment modulates spontaneous sleep and recovery after sleep deprivation in castrated male rats.

    Science.gov (United States)

    Wibowo, Erik; Deurveilher, Samüel; Wassersug, Richard J; Semba, Kazue

    2012-01-15

    Exogenous estradiol (E) is used occasionally to treat the side effects associated with androgen-deprivation in men, but its effects on sleep patterns have received little attention. We examined whether E modulates sleep patterns and recovery from sleep loss in castrated male rats. Adult male rats were castrated and implanted subcutaneously with Silastic tubes containing either oil (Cast+Oil) or E (Cast+E). Sham-operated male rats (Intact) were implanted with oil-filled tubes. All rats were also implanted with EEG and EMG electrodes for sleep/wake recordings. After two weeks, polysomnographic recordings were made before, during, and following 6h of sleep deprivation (SD). At baseline, the Cast+Oil group showed sleep and EEG patterns similar to those in the Intact group. Compared to these groups, the Cast+E group spent more time awake during the dark (active) phase, and showed higher EEG theta power (a measure of cortical activation) during wake and rapid eye movement (REM) sleep in both the light and dark phases. Following SD, the Cast+E group showed a larger increase from baseline in REM sleep amount, compared to the Cast+Oil group. The Cast+Oil group showed prolonged rebound in non-REM sleep and EEG delta power, and reduced REM sleep rebound, compared to the other two groups. These results indicate that E treatment in castrated male rats promotes baseline wakefulness during the active phase, and facilitates recovery of REM sleep after acute sleep loss. The possible benefit of E treatment for improving sleep quality in androgen-deprived men remains to be investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sleep deprivation and the effect on exercise performance.

    Science.gov (United States)

    VanHelder, T; Radomski, M W

    1989-04-01

    Sleep deprivation or partial sleep loss are common in work conditions as rotating shifts and prolonged work hours, in sustained military operations and in athletes competing in events after crossing several time zones or engaged in ultramarathon or triathlon events. Although it is well established that sleep loss has negative effects on mental performance, its effects on physical performance are equivocal. This review examines the latter question in light of recent studies published on this problem. Sleep deprivation of 30 to 72 hours does not affect cardiovascular and respiratory responses to exercise of varying intensity, or the aerobic and anaerobic performance capability of individuals. Muscle strength and electromechanical responses are also not affected. Time to exhaustion, however, is decreased by sleep deprivation. Although ratings of perceived exertion always increased during exercise in sleep-deprived (30 to 60 hours) subjects compared with normal sleep, this is not a reliable assessment of a subject's ability to perform physical work as the ratings of perceived exertion are dissociated from any cardiovascular changes in sleep deprivation. Examination of the various hormonal and metabolic parameters which have been measured in the studies reviewed reveals that the major metabolic perturbations accompanying sleep deprivation in humans are an increase in insulin resistance and a decrease in glucose tolerance. This may explain the reduction in observed time to exhaustion in sleep-deprived subjects. The role of growth hormone in mediating altered carbohydrate metabolism may be of particular relevance as to how sleep deprivation alters the supply of energy substrate to the muscle.

  14. Growth hormone rescues hippocampal synaptic function after sleep deprivation

    Science.gov (United States)

    Kim, Eunyoung; Bertolotti, Don; Green, Todd L.

    2010-01-01

    Sleep is required for, and sleep loss impairs, normal hippocampal synaptic N-methyl-d-aspartate (NMDA) glutamate receptor function and expression, hippocampal NMDA receptor-dependent synaptic plasticity, and hippocampal-dependent memory function. Although sleep is essential, the signals linking sleep to hippocampal function are not known. One potential signal is growth hormone. Growth hormone is released during sleep, and its release is suppressed during sleep deprivation. If growth hormone links sleep to hippocampal function, then restoration of growth hormone during sleep deprivation should prevent adverse consequences of sleep loss. To test this hypothesis, we examined rat hippocampus for spontaneous excitatory synaptic currents in CA1 pyramidal neurons, long-term potentiation in area CA1, and NMDA receptor subunit proteins in synaptic membranes. Three days of sleep deprivation caused a significant reduction in NMDA receptor-mediated synaptic currents compared with control treatments. When rats were injected with growth hormone once per day during sleep deprivation, the loss of NMDA receptor-mediated synaptic currents was prevented. Growth hormone injections also prevented the impairment of long-term potentiation that normally follows sleep deprivation. In addition, sleep deprivation led to a selective loss of NMDA receptor 2B (NR2B) from hippocampal synaptic membranes, but normal NR2B expression was restored by growth hormone injection. Our results identify growth hormone as a critical mediator linking sleep to normal synaptic function of the hippocampus. PMID:20237303

  15. Stress-free automatic sleep deprivation using air puffs.

    Science.gov (United States)

    Gross, Brooks A; Vanderheyden, William M; Urpa, Lea M; Davis, Devon E; Fitzpatrick, Christopher J; Prabhu, Kaustubh; Poe, Gina R

    2015-08-15

    Sleep deprivation via gentle handling is time-consuming and personnel-intensive. We present here an automated sleep deprivation system via air puffs. Implanted EMG and EEG electrodes were used to assess sleep/waking states in six male Sprague-Dawley rats. Blood samples were collected from an implanted intravenous catheter every 4h during the 12-h light cycle on baseline, 8h of sleep deprivation via air puffs, and 8h of sleep deprivation by gentle handling days. The automated system was capable of scoring sleep and waking states as accurately as our offline version (∼90% for sleep) and with sufficient speed to trigger a feedback response within an acceptable amount of time (1.76s). Manual state scoring confirmed normal sleep on the baseline day and sleep deprivation on the two manipulation days (68% decrease in non-REM, 63% decrease in REM, and 74% increase in waking). No significant differences in levels of ACTH and corticosterone (stress hormones indicative of HPA axis activity) were found at any time point between baseline sleep and sleep deprivation via air puffs. There were no significant differences in ACTH or corticosterone concentrations between sleep deprivation by air puffs and gentle handling over the 8-h period. Our system accurately detects sleep and delivers air puffs to acutely deprive rats of sleep with sufficient temporal resolution during the critical 4-5h post learning sleep-dependent memory consolidation period. The system is stress-free and a viable alternative to existing sleep deprivation techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sleep deprivation in pigeons and rats using motion detection.

    Science.gov (United States)

    Newman, Sarah M; Paletz, Elliott M; Obermeyer, William H; Benca, Ruth M

    2009-10-01

    Forced sleep deprivation results in substantial behavioral and physiologic effects in mammals. The disk-over-water (DOW) method produces a syndrome characterized by increased energy expenditure and a robust preferentially rapid-eye-movement sleep rebound upon recovery or eventual death after several weeks of sleep deprivation. The DOW has been used successfully only in rats. This paper presents a method to enforce long-term controlled sleep deprivation across species and to compare its effects in rats and pigeons. A conveyor was substituted for the DOW disk. Behavior rather than electroencephalography was used to trigger arousal stimuli, as in gentle-handling deprivation. Rats and pigeons were deprived using this apparatus, and the results were compared with each other and with published reports. The physiologic consequences and recovery sleep in rats were like those published for DOW rats. Magnitude of sleep loss and recovery patterns in pigeons were similar to those seen in rats, but expected symptoms of the sleep deprivation syndrome were absent in pigeons. The use of a motion trigger allowed us to measure and, thus, to assess the quality and impact of the procedure. Prolonged and controlled sleep deprivation can be enforced using automated motion detection and a conveyor-over-water system. Pigeons and rats, deprived of sleep to the same extent, showed similar patterns of recovery sleep, but pigeons did not exhibit the hyperphagia, weight loss, and debilitation seen in rats.

  17. Polysomnographic diagnosis of sleepwalking: effects of sleep deprivation.

    Science.gov (United States)

    Zadra, Antonio; Pilon, Mathieu; Montplaisir, Jacques

    2008-04-01

    Somnambulism affects up to 4% of adults and constitutes one of the leading causes of sleep-related violence and self-injury. Diagnosing somnambulism with objective instruments is often difficult because episodes rarely occur in the laboratory. Because sleep deprivation can precipitate sleepwalking, we aimed to determine the effects of 25 hours of sleep deprivation on the frequency and complexity of somnambulistic episodes recorded in the laboratory. Thirty consecutive sleepwalkers were evaluated prospectively by video-polysomnography for one baseline night and during recovery sleep after 25 hours of sleep deprivation. Ten sleepwalkers with a concomitant sleep disturbance were investigated with the same protocol. Sleepwalkers experienced a significant increase in the mean frequency of somnambulistic episodes during postdeprivation recovery sleep. Postsleep deprivation also resulted in a significantly greater proportion of patients experiencing more complex forms of somnambulism. Sleep deprivation was similarly effective in 9 of the 10 patients presenting with a comorbid sleep disturbance. Combining data from all 40 patients shows that whereas 32 episodes were recorded from 20 sleepwalkers (50%) at baseline, recovery sleep resulted in 92 episodes being recorded from 36 patients (90%). The findings support the view that sleepwalkers suffer from a dysfunction of the mechanisms responsible for sustaining stable slow-wave sleep and suggest that these patients are particularly vulnerable to increased homeostatic sleep pressure. Strong evidence is provided that 25 hours of sleep deprivation can be a valuable tool that facilitates the polysomnographically based diagnosis of somnambulism in predisposed patients.

  18. Sleep deprived and sweating it out: the effects of total sleep deprivation on skin conductance reactivity to psychosocial stress.

    Science.gov (United States)

    Liu, Jean C J; Verhulst, Silvan; Massar, Stijn A A; Chee, Michael W L

    2015-01-01

    We examined how sleep deprivation alters physiological responses to psychosocial stress by evaluating changes in skin conductance. Between-subjects design with one group allocated to 24 h of total sleep deprivation and the other to rested wakefulness. The study took place in a research laboratory. Participants were 40 healthy young adults recruited from a university. Sleep deprivation and feedback. Electrodermal activity was monitored while participants completed a difficult perceptual task with false feedback. All participants showed increased skin conductance levels following stress. However, compared to well-rested participants, sleep deprived participants showed higher skin conductance reactivity with increasing stress levels. Our results suggest that sleep deprivation augments allostatic responses to increasing psychosocial stress. Consequentially, we propose sleep loss as a risk factor that can influence the pathogenic effects of stress. © 2014 Associated Professional Sleep Societies, LLC.

  19. Role of Corticosterone on Sleep Homeostasis Induced by REM Sleep Deprivation in Rats

    OpenAIRE

    Ricardo Borges Machado; Sergio Tufik; Deborah Suchecki

    2013-01-01

    Sleep is regulated by humoral and homeostatic processes. If on one hand chronic elevation of stress hormones impair sleep, on the other hand, rapid eye movement (REM) sleep deprivation induces elevation of glucocorticoids and time of REM sleep during the recovery period. In the present study we sought to examine whether manipulations of corticosterone levels during REM sleep deprivation would alter the subsequent sleep rebound. Adult male Wistar rats were fit with electrodes for sleep monitor...

  20. Bench-to-bedside review: delirium in ICU patients - importance of sleep deprivation

    National Research Council Canada - National Science Library

    Weinhouse, Gerald L; Schwab, Richard J; Watson, Paula L; Patil, Namrata; Vaccaro, Bernardino; Pandharipande, Pratik; Ely, E Wesley

    2009-01-01

    .... One potentially modifiable risk factor is sleep deprivation. Critically ill patients are known to experience poor sleep quality with severe sleep fragmentation and disruption of sleep architecture...

  1. Effects of Sleep Deprivation on Dissociated Components of Executive Functioning

    Science.gov (United States)

    Tucker, Adrienne M.; Whitney, Paul; Belenky, Gregory; Hinson, John M.; Van Dongen, Hans P.A.

    2010-01-01

    Study Objectives: We studied the effects of sleep deprivation on executive functions using a task battery which included a modified Sternberg task, a probed recall task, and a phonemic verbal fluency task. These tasks were selected because they allow dissociation of some important executive processes from non-executive components of cognition. Design: Subjects were randomized to a total sleep deprivation condition or a control condition. Performance on the executive functions task battery was assessed at baseline, after 51 h of total sleep deprivation (or no sleep deprivation in the control group), and following 2 nights of recovery sleep, at fixed time of day (11:00). Performance was also measured repeatedly throughout the experiment on a control task battery, for which the effects of total sleep deprivation had been documented in previously published studies. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Participants: Twenty-three healthy adults (age range 22–38 y; 11 women). Twelve subjects were randomized to the sleep deprivation condition; the others were controls. Results: Performance on the control task battery was considerably degraded during sleep deprivation. Overall performance on the modified Sternberg task also showed impairment during sleep deprivation, as compared to baseline and recovery and compared to controls. However, two dissociated components of executive functioning on this task—working memory scanning efficiency and resistance to proactive interference—were maintained at levels equivalent to baseline. On the probed recall task, resistance to proactive interference was also preserved. Executive aspects of performance on the phonemic verbal fluency task showed improvement during sleep deprivation, as did overall performance on this task. Conclusion: Sleep deprivation affected distinct components of cognitive processing differentially. Dissociated non

  2. Sleep Deprivation in Adolescents and Adults: Changes in Affect

    OpenAIRE

    Talbot, Lisa S.; McGlinchey, Eleanor L.; Kaplan, Katherine A.; Dahl, Ronald E.; Harvey, Allison G.

    2010-01-01

    The present study investigated the impact of sleep deprivation on several aspects of affective functioning in healthy participants selected from three different developmental periods: early adolescence (ages 10–13), midadolescence (ages 13–16), and adulthood (ages 30–60). Participants completed an affective functioning battery under conditions of sleep deprivation (a maximum of 6.5 hours total sleep time on the first night followed by a maximum of 2 hours total sleep time on the second night)...

  3. Sleep deprivation, pain and prematurity: a review study

    OpenAIRE

    Kelly Cristina Santos de Carvalho Bonan; João da Costa Pimentel Filho; Rosana Maria Tristão; José Alfredo Lacerda de Jesus; Dioclécio Campos Junior

    2015-01-01

    The aim was to describe current reports in the scientific literature on sleep in the intensive care environment and sleep deprivation associated with painful experiences in premature infant. A systematic search was conducted for studies on sleep, pain, premature birth and care of the newborn. Web of Knowledge, MEDLINE, LILACS, Cochrane Library, PubMed, EMBASE, Scopus, VHL and SciELO databases were consulted. The association between sleep deprivation and pain generates effects that are observe...

  4. THE IMPACT OF SLEEP DEPRIVATION ON THE BRAIN.

    Science.gov (United States)

    Bobić, Tatjana Trošt; Šečić, Ana; Zavoreo, Iris; Matijević, Valentina; Filipović, Branimir; Kolak, Željka; Kes, Vanja Bašić; Ciliga, Dubravka; Sajković, Dubravka

    2016-09-01

    Each sleep phase is characterized by specific chemical, cellular and anatomic events of vital importance for normal neural functioning. Different forms of sleep deprivation may lead to a decline of cognitive functions in individuals. Studies in this field make a distinction between total sleep deprivation, chronic sleep restriction, and the situation of sleep disruption. Investigations covering the acute effects of sleep deprivation on the brain show that the discovered behavioral deficits in most cases regenerate after two nights of complete sleep. However, some studies done on mice emphasize the possible chronic effects of long-term sleep deprivation or chronic restriction on the occurrence of neurodegenerative diseases such as Alzheimer’s disease and dementia. In order to better understand the acute and chronic effects of sleep loss, the mechanisms of neural adaptation in the situations of insufficient sleep need to be further investigated. Future integrative research on the impact of sleep deprivation on neural functioning measured through the macro level of cognitive functions and the micro molecular and cell level could contribute to more accurate conclusions about the basic cellular mechanisms responsible for the detected behavioral deficits occurring due to sleep deprivation.

  5. Beauty sleep: experimental study on the perceived health and attractiveness of sleep deprived people

    NARCIS (Netherlands)

    Axelsson, J.; Ingre, M.; van Someren, E.J.W.; Olsson, A.; Lekander, M.

    2010-01-01

    Objective To investigate whether sleep deprived people are perceived as less healthy, less attractive, and more tired than after a normal night's sleep. Design Experimental study. Setting Sleep laboratory in Stockholm, Sweden. Participants 23 healthy, sleep deprived adults (age 18-31) who were

  6. The effects of sleep and sleep deprivation on metabolic, endocrine and immune parameters.

    Science.gov (United States)

    Maurovich-Horvat, E; Pollmächer, T Z; Sonka, K

    2008-01-01

    Sleep curtailment is becoming widespread in modern society. In parallel with this, more and more studies are dealing with the health consequences of sleep deprivation. This short review focuses on the main results of studies examining the effects of sleep and sleep deprivation on metabolism with extra emphasis on appetite regulation, and on the endocrine and immune system.

  7. Consequences of sleep deprivation on neurotransmitter receptor expression and function.

    Science.gov (United States)

    Longordo, Fabio; Kopp, Caroline; Lüthi, Anita

    2009-05-01

    Several pieces of evidence suggest that sleep deprivation causes marked alterations in neurotransmitter receptor function in diverse neuronal cell types. To date, this has been studied mainly in wake- and sleep-promoting areas of the brain and in the hippocampus, which is implicated in learning and memory. This article reviews findings linking sleep deprivation to modifications in neurotransmitter receptor function, including changes in receptor subunit expression, ligand affinity and signal transduction mechanisms. We focus on studies using sleep deprivation procedures that control for side-effects such as stress. We classify the changes with respect to their functional consequences on the activity of wake-promoting and/or sleep-promoting systems. We suggest that elucidation of how sleep deprivation affects neurotransmitter receptor function will provide functional insight into the detrimental effects of sleep loss.

  8. Cues of fatigue: effects of sleep deprivation on facial appearance

    NARCIS (Netherlands)

    Sundelin, T.; Lekander, M.; Kecklund, G.; van Someren, E.J.W.; Olsson, A.; Axelsson, J.

    2013-01-01

    Study Objective: To investigate the facial cues by which one recognizes that someone is sleep deprived versus not sleep deprived. Design: Experimental laboratory study. Setting: Karolinska Institutet, Stockholm, Sweden. Participants: Forty observers (20 women, mean age 25 ± 5 y) rated 20 facial

  9. Effect of sleep deprivation on saccades and eyelid blinking

    NARCIS (Netherlands)

    Crevits, Luc; Simons, Brian; Wildenbeest, Joanne

    2003-01-01

    In this study the effect of sleep deprivation on specific components of eye and eyelid movement was investigated in a group of young and healthy subjects. The duration of sleep deprivation was 20 h. Each subject had to execute different saccade tasks: reflexive saccades, voluntary prosaccades and

  10. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    In this study, we examined the potential protective effects of administration of vitamin C on acute and chronic sleep deprivation-induced metabolic derangement. In addition, possible processes involved in vitamin C effects on acute and chronic sleep deprivation-induced metabolic derangement were determined. Thirty-five ...

  11. Sleep deprivation and spike-wave discharges in epileptic rats

    NARCIS (Netherlands)

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial

  12. Effects of sleep deprivation on neural functioning: an integrative review

    NARCIS (Netherlands)

    Boonstra, T.W.; Stins, J.F.; Daffertshofer, A.; Beek, P.J.

    2007-01-01

    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of

  13. Effect of sleep deprivation on labour epidural catheter placement.

    Science.gov (United States)

    Hayter, M A; Friedman, Z; Katznelson, R; Hanlon, J G; Borges, B; Naik, V N

    2010-05-01

    Epidural catheter insertion for labour analgesia is an invasive procedure with potential serious complications, often performed by a sleep-deprived clinician. The aim of this study was to examine the effects of sleep deprivation on physicians of variable levels of experience performing this procedural skill in the clinical setting. After institutional review board approval, anaesthetists of three levels of experience were recruited: novice residents (100 epidurals, n=8), and attending anaesthetists (>500 epidurals, n=12). All participants were measured twice, rested and sleep deprived in a random order while performing a labour epidural for analgesia. Our primary outcome measures were scores achieved on the Imperial College Surgical Assessment Device (ICSAD) (measuring path length, number of movements, and time), task-specific checklist (CL), and global rating scale (GRS). Sleep deprivation was documented by the ActiGraph and Epworth sleepiness scale. Subjects were adequately sleep deprived for their sleep deprivation observation. Data were analysed with a two-way mixed design analysis of variance. No significant difference in the effect of sleep deprivation on performance was detected between the groups on the ICSAD measures of movement (P=0.86), path length (P=0.79), and time (P=0.80), or for the CL (P=0.65), and GRS (P=0.86). The performance of this procedural skill in a clinical setting does not seem to be affected by sleep deprivation irrespective of the level of experience.

  14. Sleep Deprivation, Allergy Symptoms, and Negatively Reinforced Problem Behavior.

    Science.gov (United States)

    Kennedy, Craig H.; Meyer, Kim A.

    1996-01-01

    A study of the relationship between presence or absence of sleep deprivation, allergy symptoms, and the rate and function of problem behavior in three adolescents with moderate to profound mental retardation found that problem behavior was negatively reinforced by escape from instruction, and both allergy symptoms and sleep deprivation influenced…

  15. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    Directory of Open Access Journals (Sweden)

    Florian Chouchou

    Full Text Available The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers. Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1 placebo analgesia improved with REM sleep deprivation; 2 pain relief expectations did not differ between REM sleep deprivation and control groups; and 3 REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  16. Selective REM Sleep Deprivation Improves Expectation-Related Placebo Analgesia.

    Science.gov (United States)

    Chouchou, Florian; Chauny, Jean-Marc; Rainville, Pierre; Lavigne, Gilles J

    2015-01-01

    The placebo effect is a neurobiological and psychophysiological process known to influence perceived pain relief. Optimization of placebo analgesia may contribute to the clinical efficacy and effectiveness of medication for acute and chronic pain management. We know that the placebo effect operates through two main mechanisms, expectations and learning, which is also influenced by sleep. Moreover, a recent study suggested that rapid eye movement (REM) sleep is associated with modulation of expectation-mediated placebo analgesia. We examined placebo analgesia following pharmacological REM sleep deprivation and we tested the hypothesis that relief expectations and placebo analgesia would be improved by experimental REM sleep deprivation in healthy volunteers. Following an adaptive night in a sleep laboratory, 26 healthy volunteers underwent classical experimental placebo analgesic conditioning in the evening combined with pharmacological REM sleep deprivation (clonidine: 13 volunteers or inert control pill: 13 volunteers). Medication was administered in a double-blind manner at bedtime, and placebo analgesia was tested in the morning. Results revealed that 1) placebo analgesia improved with REM sleep deprivation; 2) pain relief expectations did not differ between REM sleep deprivation and control groups; and 3) REM sleep moderated the relationship between pain relief expectations and placebo analgesia. These results support the putative role of REM sleep in modulating placebo analgesia. The mechanisms involved in these improvements in placebo analgesia and pain relief following selective REM sleep deprivation should be further investigated.

  17. Effects of sleep deprivation and exercise on cognitive, motor performance and mood.

    Science.gov (United States)

    Scott, Jonathon P R; McNaughton, Lars R; Polman, Remco C J

    2006-02-28

    This study examined the effect of 30 h of sleep deprivation and intermittent physical exercise, on both cognitive and psychomotor function as well subjective ratings of mood. Six subjects with the following physical characteristics participated in the study (Mean +/- S.D.): age 22 +/- 0.3 years, height 180 +/- 5 cm, body mass: 77 +/- 5 kg, VO2peak 44 +/- 5 ml kg(-1) min(-1). Three subjects engaged in normal sedentary activities while three others cycled on a cycle ergometer at 50% VO2peak for 20 min out of every 2 h during 30 h of sleep deprivation. One week later sleep deprivation was repeated with a cross over of subjects. Every 4 h, subjects completed simple and two-choice reaction time tasks at both rest and during exercise, a computerized tracking task, a number cancellation task, and an assessment of subjective mood state as measured by the POMS questionnaire. A 3 x 4 repeated measures ANOVA revealed that resting but not exercising reaction times were significantly slower with sleep deprivation. Sleep deprivation was also associated with significantly greater negative disturbances to subjective vigour, fatigue and depression assessed by the Profile of Mood States questionnaire. Compared to those who have been deprived of sleep alone, individuals that performed 5 h of intermittent moderate exercise during 30 h of sleep deprivation appeared to be more vulnerable to negative mood disturbances and impairment in reaction times. This could result in greater risk of accident due to a reduced capacity to respond quickly.

  18. Estradiol and progesterone modulate spontaneous sleep patterns and recovery from sleep deprivation in ovariectomized rats.

    Science.gov (United States)

    Deurveilher, Samüel; Rusak, Benjamin; Semba, Kazue

    2009-07-01

    Women undergo hormonal changes both naturally during their lives and as a result of sex hormone treatments. The objective of this study was to gain more knowledge about how these hormones affect sleep and responses to sleep loss. Rats were ovariectomized and implanted subcutaneously with Silastic capsules containing oil vehicle, 17 beta-estradiol and/or progesterone. After 2 weeks, sleep/wake states were recorded during a 24-h baseline period, 6 h of total sleep deprivation induced by gentle handling during the light phase, and an 18-h recovery period. At baseline and particularly in the dark phase, ovariectomized rats treated with estradiol or estradiol plus progesterone spent more time awake at the expense of non-rapid eye movement sleep (NREMS) and/or REMS, whereas those given progesterone alone spent less time in REMS than ovariectomized rats receiving no hormones. Following sleep deprivation, all rats showed rebound increases in NREMS and REMS, but the relative increase in REMS was larger in females receiving hormones, especially high estradiol. In contrast, the normal increase in NREMS EEG delta power (an index of NREMS intensity) during recovery was attenuated by all hormone treatments. Estradiol promotes arousal in the active phase in sleep-satiated rats, but after sleep loss, both estradiol and progesterone selectively facilitate REMS rebound while reducing NREMS intensity. These results indicate that effects of ovarian hormones on recovery sleep differ from those on spontaneous sleep. The hormonal modulation of recovery sleep architecture may affect recovery of sleep related functions after sleep loss.

  19. The impact of sleep deprivation in military surgical teams: a systematic review.

    Science.gov (United States)

    Parker, Rachael Sv; Parker, P

    2017-06-01

    Fatigue in military operations leads to safety and operational problems due to a decrease in alertness and performance. The primary method of counteracting the effects of sleep deprivation is to increase nightly sleep time, which in operational situations is not always feasible. History has taught us that surgeons and surgical teams are finite resources that cannot operate on patients indefinitely. A systematic review was conducted using the search terms 'sleep' and 'deprivation' examining the impact of sleep deprivation on cognitive performance in military surgical teams. Studies examining outcomes on intensive care patients and subjects with comorbidities were not addressed in this review. Sleep deprivation in any 'out-of-hours' surgery has a significant impact on overall morbidity and mortality. Sleep deprivation in surgeons and surgical trainees negatively impacts cognitive performance and puts their own and patients' health at risk. All published research lacks consensus when defining 'sleep deprivation' and 'rested' states. It is recognised that it would be unethical to conduct a well-designed randomised controlled trial, to determine the effects of fatigue on performance in surgery; however, there is a paucity between surrogate markers and applying simulated results to actual clinical performance. This requires further research. Recommended methods of combating fatigue include: prophylactically 'sleep-banking' prior to known periods of sleep deprivation, napping, use of stimulant or alerting substances such as modafinil, coordinated work schedules to reduce circadian desynchronisation and regular breaks with enforced rest periods. A forward surgical team will become combat-ineffective after 48 hours of continuous operations. This systematic review recommends implementing on-call periods of no more than 12 hours in duration, with adequate rest periods every 24 hours. Drug therapies and sleep banking may, in the short term, prevent negative effects of

  20. Sleep Deprivation and Time-Based Prospective Memory.

    Science.gov (United States)

    Esposito, Maria José; Occhionero, Miranda; Cicogna, PierCarla

    2015-11-01

    To evaluate the effect of sleep deprivation on time-based prospective memory performance, that is, realizing delayed intentions at an appropriate time in the future (e.g., to take a medicine in 30 minutes). Between-subjects experimental design. The experimental group underwent 24 h of total sleep deprivation, and the control group had a regular sleep-wake cycle. Participants were tested at 08:00. Laboratory. Fifty healthy young adults (mean age 22 ± 2.1, 31 female). 24 h of total sleep deprivation. Participants were monitored by wrist actigraphy for 3 days before the experimental session. The following cognitive tasks were administered: one time-based prospective memory task and 3 reasoning tasks as ongoing activity. Objective and subjective vigilance was assessed by the psychomotor vigilance task and a visual analog scale, respectively. To measure the time-based prospective memory task we assessed compliance and clock checking behavior (time monitoring). Sleep deprivation negatively affected time-based prospective memory compliance (P sleep deprivation on human behavior, particularly the ability to perform an intended action after a few minutes. Sleep deprivation strongly compromises time-based prospective memory compliance but does not affect time check frequency. Sleep deprivation may impair the mechanism that allows the integration of information related to time monitoring with the prospective intention. © 2015 Associated Professional Sleep Societies, LLC.

  1. Sleep Deprivation Attack Detection in Wireless Sensor Network

    Science.gov (United States)

    Bhattasali, Tapalina; Chaki, Rituparna; Sanyal, Sugata

    2012-02-01

    Deployment of sensor network in hostile environment makes it mainly vulnerable to battery drainage attacks because it is impossible to recharge or replace the battery power of sensor nodes. Among different types of security threats, low power sensor nodes are immensely affected by the attacks which cause random drainage of the energy level of sensors, leading to death of the nodes. The most dangerous type of attack in this category is sleep deprivation, where target of the intruder is to maximize the power consumption of sensor nodes, so that their lifetime is minimized. Most of the existing works on sleep deprivation attack detection involve a lot of overhead, leading to poor throughput. The need of the day is to design a model for detecting intrusions accurately in an energy efficient manner. This paper proposes a hierarchical framework based on distributed collaborative mechanism for detecting sleep deprivation torture in wireless sensor network efficiently. Proposed model uses anomaly detection technique in two steps to reduce the probability of false intrusion.

  2. A review of sleep deprivation studies evaluating the brain transcriptome.

    Science.gov (United States)

    Elliott, Alisa S; Huber, Jason D; O'Callaghan, James P; Rosen, Charles L; Miller, Diane B

    2014-01-01

    Epidemiological studies show a positive association between adequate sleep and good health. Further, disrupted sleep may increase the risk for CNS diseases, such as stroke and Alzheimer's disease. However, there has been limited progress in determining how sleep is linked to brain health or how sleep disruption may increase susceptibility to brain insult and disease. Animal studies can aid in understanding these links. In reviewing the animal literature related to the effects of sleep disruption on the brain, we found most of the work was directed toward investigating and characterizing the role of various brain areas or structures in initiating and regulating sleep. In contrast, limited effort has been directed towards understanding how sleep disruption alters the brain's health or susceptibility to insult. We also note many current studies have determined the changes in the brain following compromised sleep by examining, for example, the brain transcriptome or to a more limited extent the proteome. However, these studies have utilized almost exclusively total sleep deprivation (e.g., 24 out of 24 hours) paradigms or single short periods of limited acute sleep deprivation (e.g., 3 out of 24 hours). While such strategies are beneficial in understanding how sleep is controlled, they may not have much translational value for determining links between sleep and brain health or for determining how sleep disruption may increase brain susceptibility to insult. Surprisingly, few studies have determined how the duration and recurrence of sleep deprivation influence the effects seen after sleep deprivation. Our aim in this review was to identify relevant rodent studies from 1980 through 2012 and analyze those that use varying durations of sleep deprivation or restriction in their effort to evaluate the effects of sleep deprivation on the brain transcriptome and to a more limited extent the proteome. We examined how differences in the duration of sleep deprivation affect

  3. Feedback Blunting: Total Sleep Deprivation Impairs Decision Making that Requires Updating Based on Feedback

    Science.gov (United States)

    Whitney, Paul; Hinson, John M.; Jackson, Melinda L.; Van Dongen, Hans P.A.

    2015-01-01

    Study Objectives: To better understand the sometimes catastrophic effects of sleep loss on naturalistic decision making, we investigated effects of sleep deprivation on decision making in a reversal learning paradigm requiring acquisition and updating of information based on outcome feedback. Design: Subjects were randomized to a sleep deprivation or control condition, with performance testing at baseline, after 2 nights of total sleep deprivation (or rested control), and following 2 nights of recovery sleep. Subjects performed a decision task involving initial learning of go and no go response sets followed by unannounced reversal of contingencies, requiring use of outcome feedback for decisions. A working memory scanning task and psychomotor vigilance test were also administered. Setting: Six consecutive days and nights in a controlled laboratory environment with continuous behavioral monitoring. Subjects: Twenty-six subjects (22–40 y of age; 10 women). Interventions: Thirteen subjects were randomized to a 62-h total sleep deprivation condition; the others were controls. Results: Unlike controls, sleep deprived subjects had difficulty with initial learning of go and no go stimuli sets and had profound impairment adapting to reversal. Skin conductance responses to outcome feedback were diminished, indicating blunted affective reactions to feedback accompanying sleep deprivation. Working memory scanning performance was not significantly affected by sleep deprivation. And although sleep deprived subjects showed expected attentional lapses, these could not account for impairments in reversal learning decision making. Conclusions: Sleep deprivation is particularly problematic for decision making involving uncertainty and unexpected change. Blunted reactions to feedback while sleep deprived underlie failures to adapt to uncertainty and changing contingencies. Thus, an error may register, but with diminished effect because of reduced affective valence of the feedback

  4. Sleep Deprivation Impairs the Accurate Recognition of Human Emotions

    Science.gov (United States)

    van der Helm, Els; Gujar, Ninad; Walker, Matthew P.

    2010-01-01

    Study Objectives: Investigate the impact of sleep deprivation on the ability to recognize the intensity of human facial emotions. Design: Randomized total sleep-deprivation or sleep-rested conditions, involving between-group and within-group repeated measures analysis. Setting: Experimental laboratory study. Participants: Thirty-seven healthy participants, (21 females) aged 18–25 y, were randomly assigned to the sleep control (SC: n = 17) or total sleep deprivation group (TSD: n = 20). Interventions: Participants performed an emotional face recognition task, in which they evaluated 3 different affective face categories: Sad, Happy, and Angry, each ranging in a gradient from neutral to increasingly emotional. In the TSD group, the task was performed once under conditions of sleep deprivation, and twice under sleep-rested conditions following different durations of sleep recovery. In the SC group, the task was performed twice under sleep-rested conditions, controlling for repeatability. Measurements and Results: In the TSD group, when sleep-deprived, there was a marked and significant blunting in the recognition of Angry and Happy affective expressions in the moderate (but not extreme) emotional intensity range; differences that were most reliable and significant in female participants. No change in the recognition of Sad expressions was observed. These recognition deficits were, however, ameliorated following one night of recovery sleep. No changes in task performance were observed in the SC group. Conclusions: Sleep deprivation selectively impairs the accurate judgment of human facial emotions, especially threat relevant (Anger) and reward relevant (Happy) categories, an effect observed most significantly in females. Such findings suggest that sleep loss impairs discrete affective neural systems, disrupting the identification of salient affective social cues. Citation: van der Helm E; Gujar N; Walker MP. Sleep deprivation impairs the accurate recognition of human

  5. Sleep deprivation decreases neuronal excitability and responsiveness in rats both in vivo and ex vivo.

    Science.gov (United States)

    Borbély, Sándor; Világi, Ildikó; Haraszti, Zsófia; Szalontai, Örs; Hajnik, Tünde; Tóth, Attila; Détári, László

    2017-12-11

    Sleep deprivation has severe consequences for higher nervous functions. Its effects on neuronal excitability may be one of the most important factors underlying functional deterioration caused by sleep loss. In the present work, excitability changes were studied using two complementary in vivo and ex vivo models. Auditory evoked potentials were recorded from freely-moving animals in vivo. Amplitude of evoked responses showed a near-continuous decrease during deprivation. Prevention of sleep also reduced synaptic efficacy ex vivo, measured from brain slices derived from rats that underwent sleep deprivation. While seizure susceptibility was not affected significantly by sleep deprivation in these preparations, the pattern of spontaneous seizure activity was altered. If seizures developed, they lasted longer and tended to contain more spikes in slices obtained from sleep-deprived than from control rats. Current-source density analysis revealed that location and sequence of activation of local cortical networks recruited by seizures did not change by sleep deprivation. Moderate differences seen in the amplitude of individual sinks and sources might be explained by smaller net transmembrane currents as a consequence of decreased excitability. These findings contradict the widely accepted conception of synaptic homeostasis suggesting gradual increase of excitability during wakefulness. Our results also indicate that decreased neuronal excitability caused by sleep deprivation is preserved in slices prepared from rats immediately after deprivation. This observation might mean new opportunities to explore the effects of sleep deprivation in ex vivo preparations that allow a wider range of experimental manipulations and more sophisticated methods of analysis than in vivo preparations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Are seizures in the setting of sleep deprivation provoked?

    Science.gov (United States)

    Lawn, Nicholas; Lieblich, Sam; Lee, Judy; Dunne, John

    2014-04-01

    It is generally accepted that sleep deprivation contributes to seizures. However, it is unclear whether a seizure occurring in the setting of sleep deprivation should be considered as provoked or not and whether this is influenced by seizure type and etiology. This information may have an important impact on epilepsy diagnosis and management. We prospectively analyzed the influence of sleep deprivation on the risk of seizure recurrence in patients with first-ever unprovoked seizures and compared the findings with patients with first-ever provoked seizures. Of 1026 patients with first-ever unprovoked seizures, 204 (20%) were associated with sleep deprivation. While the overall likelihood of seizure recurrence was slightly lower in sleep-deprived patients with first-ever seizures (log-rank p=0.03), sleep deprivation was not an independent predictor of seizure recurrence on multivariate analysis. Seizure recurrence following a first-ever unprovoked seizure associated with sleep deprivation was far more likely than for 174 patients with a provoked first-ever seizure (log-rank psleep deprivation should not be regarded as provoked. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Night shifts, sleep deprivation, and attention performance in medical students.

    Science.gov (United States)

    Pérez-Olmos, Isabel; Ibáñez-Pinilla, Milcíades

    2014-03-29

    To determine attention performance of medical students after sleep deprivation due to night shift work. Prospective cohort design. All seventh, eighth and ninth semester students were invited to participate (n= 209). The effectiveness and concentration indices (d2 Test for attention, dependent variable) from 180 students at 3 evaluations during the semester were compared. Eighth and ninth semester students underwent their second evaluation after a night shift. The independent variables were nocturnal sleep measurements. No differences in nocturnal sleep hours during the previous week (p=0.966), sleep deprivation (p=0.703) or effectiveness in the d2 Test (p=0.428) were found between the groups at the beginning of the semester. At the beginning and the end of the semester, the d2 Test results were not different between groups (p=0.410, p=0.394) respectively. The second evaluation showed greater sleep deprivation in students with night shift work (p=0.001). The sleep deprived students had lower concentration indices (p=0.001).The differences were associated with the magnitude of sleep deprivation (p=0.008). Multivariate regression analysis showed that attention performance was explained by sleep deprivation due to night shift work, adjusting for age and gender. Students with sleep deprivation had worse concentration than those without. Sleep deprivation due to night shift work in medical students had a negative impact on their attention performance. Medical educators should address these potential negative learning and patient care consequences of sleep deprivation in medical students due to night shifts.

  8. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity resistant rats

    Science.gov (United States)

    Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2012-01-01

    Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Methods OR and SD rats (n=12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light-phase for 9 d. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS) and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake and body weight were documented. Results Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery-sleep during active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls Conclusions PSD by less-stressful means increases body weight in rats. Also, PSD during rest phase increases active period sleep. PMID:23666828

  9. Effects of donepezil on cognitive performance after sleep deprivation.

    Science.gov (United States)

    Dodds, Chris M; Bullmore, Edward T; Henson, Richard N; Christensen, Soren; Miller, Sam; Smith, Marie; Dewit, Odile; Lawrence, Phil; Nathan, Pradeep J

    2011-12-01

    To identify tasks that were sensitive to a temporary decline in cognitive performance after sleep deprivation and to investigate the ability of the acetylcholinesterase inhibitor donepezil to reverse any sleep deprivation-induced impairment. Thirty healthy volunteers were administered either a 5-mg daily dose of donepezil or placebo for 14-17 days, in a double-blind parallel group design, then underwent either 24 h sleep deprivation or a normal night of sleep in non-blinded crossover, and were subsequently tested on a battery of cognitive tasks designed to measure different components of memory and executive function. Sleep deprivation selectively impaired performance on several memory tasks whilst also impairing non-memory function on these tasks. Performance on other tasks was spared. Despite partially reversing the decline in subjective alertness associated with sleep deprivation, treatment with donepezil failed to significantly reverse the decline in cognitive performance on any of the tasks. The results demonstrate the sensitivity of certain tests, particularly those that measure memory function, to cognitive impairment after sleep deprivation. The inability of donepezil to reverse this performance decline suggests that the sleep deprivation model of cognitive impairment may not be suitable for detecting pro-cognitive effects of cholinergic augmentation. Copyright © 2011 John Wiley & Sons, Ltd.

  10. The effects of sleep deprivation on dissociable prototype learning systems.

    Science.gov (United States)

    Maddox, W Todd; Glass, Brian D; Zeithamova, Dagmar; Savarie, Zachary R; Bowen, Christopher; Matthews, Michael D; Schnyer, David M

    2011-03-01

    The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance.

  11. Metabolic, Endocrine, and Immune Consequences of Sleep Deprivation

    OpenAIRE

    AlDabal, Laila; BaHammam, Ahmed S.

    2011-01-01

    Over the last three to four decades, it has been observed that the average total hours of sleep have decreased to less than seven hours per person per night. Concomitantly, global figures relating to obesity and diabetes mellitus have increased in an alarming fashion in adults and children, and it has been hypothesized that neuro-hormonal changes accompanying this behavioral sleep deprivation may lead to insulin resistance and, subsequently, to diabetes mellitus. Sleep deprivation has been as...

  12. Sleep Deprivation Selectively Impairs Memory Consolidation for Contextual Fear Conditioning

    OpenAIRE

    Graves, Laurel A.; Heller, Elizabeth A.; Pack, Allan I.; Abel, Ted

    2003-01-01

    Many behavioral and electrophysiological studies in animals and humans have suggested that sleep and circadian rhythms influence memory consolidation. In rodents, hippocampus-dependent memory may be particularly sensitive to sleep deprivation after training, as spatial memory in the Morris water maze is impaired by rapid eye movement sleep deprivation following training. Spatial learning in the Morris water maze, however, requires multiple training trials and performan...

  13. Coping with Sleep Deprivation: Shifts in Regional Brain Activity and Learning Strategy

    Science.gov (United States)

    Hagewoud, Roelina; Havekes, Robbert; Tiba, Paula A.; Novati, Arianna; Hogenelst, Koen; Weinreder, Pim; Van der Zee, Eddy A.; Meerlo, Peter

    2010-01-01

    Study Objectives: Dissociable cognitive strategies are used for place navigation. Spatial strategies rely on the hippocampus, an area important for flexible integration of novel information. Response strategies are more rigid and involve the dorsal striatum. These memory systems can compensate for each other in case of temporal or permanent damage. Sleep deprivation has adverse effects on hippocampal function. However, whether the striatal memory system can compensate for sleep-deprivation–induced hippocampal impairments is unknown. Design: With a symmetrical maze paradigm for mice, we examined the effect of sleep deprivation on learning the location of a food reward (training) and on learning that a previously nonrewarded arm was now rewarded (reversal training). Measurements and Results: Five hours of sleep deprivation after each daily training session did not affect performance during training. However, in contrast with controls, sleep-deprived mice avoided a hippocampus-dependent spatial strategy and preferentially used a striatum-dependent response strategy. In line with this, the training-induced increase in phosphorylation of the transcription factor cAMP response-element binding protein (CREB) shifted from hippocampus to dorsal striatum. Importantly, although sleep-deprived mice performed well during training, performance during reversal training was attenuated, most likely due to rigidity of the striatal system they used. Conclusions: Together, these findings suggest that the brain compensates for negative effects of sleep deprivation on the hippocampal memory system by promoting the use of a striatal memory system. However, effects of sleep deprivation can still appear later on because the alternative learning mechanisms and brain regions involved may result in reduced flexibility under conditions requiring adaptation of previously formed memories. Citation: Hagewoud R; Havekes R; Tiba PA; Novati A; Hogenelst K; Weinreder P; Van der Zee EA; Meerlo P

  14. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades.

    Science.gov (United States)

    Meyhöfer, Inga; Kumari, Veena; Hill, Antje; Petrovsky, Nadine; Ettinger, Ulrich

    2017-04-01

    Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.

  15. Sleep deprivation in adolescents and adults: changes in affect.

    Science.gov (United States)

    Talbot, Lisa S; McGlinchey, Eleanor L; Kaplan, Katherine A; Dahl, Ronald E; Harvey, Allison G

    2010-12-01

    The present study investigated the impact of sleep deprivation on several aspects of affective functioning in healthy participants selected from three different developmental periods: early adolescence (ages 10-13), midadolescence (ages 13-16), and adulthood (ages 30-60). Participants completed an affective functioning battery under conditions of sleep deprivation (a maximum of 6.5 hours total sleep time on the first night followed by a maximum of 2 hours total sleep time on the second night) and rest (approximately 7-8 hours total sleep time each night for two consecutive nights). Less positive affect was observed in the sleep-deprived, compared to rested, condition. This effect held for 9 of the 12 positive affect items on the PANAS-C. Participants also reported a greater increase in anxiety during a catastrophizing task and rated the likelihood of potential catastrophes as higher when sleep deprived, relative to when rested. Early adolescents appraised their main worry as more threatening when sleep deprived, relative to when rested. These results support and extend previous research underscoring the adverse affective consequences of sleep deprivation.

  16. The sleep-deprived electroencephalogram: evidence and practice.

    Science.gov (United States)

    Glick, Thomas H

    2002-08-01

    Sleep deprivation for the initial electroencephalogram for suspected seizures is a widespread but inconsistent practice not informed by balanced evidence. Daily practice suggests that nonneurologists are confused by the meaning and value of, and indications for, "sleep" (tracing) vs "sleep deprivation" (and other alternatives). They need specific, informed guidance from general neurologists on best practices. To document illustratively the variability of neurologists' practices, the level of relevant information among nonneurologists, and the current state of published evidence; and to stimulate formulation of consensus advisories. I surveyed knowledge and practices of (1) nonneurologists in a community teaching hospital; (2) local and national neurologists and epileptologists; (3) electroencephalogram laboratory protocols; and (4) textbook accounts and recommendations and the relevant journal literature. National professional organizations were contacted for advisories or guidelines. Most nonneurologists surveyed misunderstood "sleep" vs "sleep-deprived" electroencephalograms and their actual protocols. They are unaware of evidence on benefits vs burdens. Neurologists' practices are inconsistent. Experts generally agree that sleep deprivation produces substantial activation of interictal epileptiform discharges beyond the activation of sleep per se. However, most published recommendations and interviewed epileptologists do not suggest sleep deprivation for the initial electroencephalogram because of "inconvenience" (burdens) for the patient. Evidence-based or reasoned guidance is minimal, and professional societies have not issued advisories. Confusion over sleep deprivation, disparities between evidence and recommendations, and inconsistent practices create a need for expert consensus for guidance, as well as comparative research on alternative methods of increasing diagnostic yield.

  17. Sleep deprivation during pregnancy and maternal and fetal outcomes: is there a relationship?

    Science.gov (United States)

    Chang, Jen Jen; Pien, Grace W; Duntley, Stephen P; Macones, George A

    2010-04-01

    Sleep duration in the population has been declining. Women occupy an increasingly prominent place in the work force without reducing most of their responsibilities at home. Consequently, sleep needs are often pushed to the bottom of women's daily priority list. Prior research has indicated that sleep deprivation is associated with higher levels of pro-inflammatory serum cytokines. This is important because higher plasma concentrations of pro-inflammatory serum cytokine levels are associated with postpartum depression and adverse birth outcomes such as preterm delivery. However, little research has directly examined how sleep deprivation may affect maternal and fetal outcomes. This review summarizes the existing data on the effect of sleep deprivation during pregnancy on maternal and fetal outcomes. We review supporting evidence for the hypotheses that sleep deprivation during pregnancy increases the risk of preterm delivery and postpartum depression, and that systemic inflammation is the causal mechanism in the association. Prior research on sleep in pregnancy has been limited by varying data collection methods, subjective self-reported sleep measures, small and non-representative samples, cross-sectional designs; descriptive or non-hypothesis driven studies. Future research with longitudinal study designs is needed to allow examination of the effect of sleep deprivation on adverse maternal and fetal outcomes. (c) 2009 Elsevier Ltd. All rights reserved.

  18. A Novel BHLHE41 Variant is Associated with Short Sleep and Resistance to Sleep Deprivation in Humans

    Science.gov (United States)

    Pellegrino, Renata; Kavakli, Ibrahim Halil; Goel, Namni; Cardinale, Christopher J.; Dinges, David F.; Kuna, Samuel T.; Maislin, Greg; Van Dongen, Hans P.A.; Tufik, Sergio; Hogenesch, John B.; Hakonarson, Hakon; Pack, Allan I.

    2014-01-01

    Study Objectives: Earlier work described a mutation in DEC2 also known as BHLHE41 (basic helix-loophelix family member e41) as causal in a family of short sleepers, who needed just 6 h sleep per night. We evaluated whether there were other variants of this gene in two well-phenotyped cohorts. Design: Sequencing of the BHLHE41 gene, electroencephalographic data, and delta power analysis and functional studies using cell-based luciferase. Results: We identified new variants of the BHLHE41 gene in two cohorts who had either acute sleep deprivation (n = 200) or chronic partial sleep deprivation (n = 217). One variant, Y362H, at another location in the same exon occurred in one twin in a dizygotic twin pair and was associated with reduced sleep duration, less recovery sleep following sleep deprivation, and fewer performance lapses during sleep deprivation than the homozygous twin. Both twins had almost identical amounts of non rapid eye movement (NREM) sleep. This variant reduced the ability of BHLHE41 to suppress CLOCK/BMAL1 and NPAS2/BMAL1 transactivation in vitro. Another variant in the same exome had no effect on sleep or response to sleep deprivation and no effect on CLOCK/BMAL1 transactivation. Random mutagenesis identified a number of other variants of BHLHE41 that affect its function. Conclusions: There are a number of mutations of BHLHE41. Mutations reduce total sleep while maintaining NREM sleep and provide resistance to the effects of sleep loss. Mutations that affect sleep also modify the normal inhibition of BHLHE41 of CLOCK/BMAL1 transactivation. Thus, clock mechanisms are likely involved in setting sleep length and the magnitude of sleep homeostasis. Citation: Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. SLEEP 2014;37(8):1327-1336. PMID:25083013

  19. Causes and consequences of sleep deprivation in hospitalised patients.

    Science.gov (United States)

    Pilkington, Stephanie

    Sleep is a fundamental component of good health, however its promotion in acute hospital settings does not appear to be a priority. This literature review, which considered qualitative and quantitative research methodology, aimed to determine the factors that affect the quality of sleep experienced by patients in hospital, and the effects of sleep deprivation on the health and wellbeing of these individuals. Causes of sleep disruption are varied and include environmental and bio-cognitive factors, including pain, bright light, noise, anxiety and stress. The environmental and bio-cognitive consequences of sleep deprivation on the health and recovery of hospital inpatients are outlined.

  20. Neuropeptide S mitigates spatial memory impairment induced by rapid eye movement sleep deprivation in rats.

    Science.gov (United States)

    Zhao, Zhengqing; Huang, Liuqing; Wu, Huijuan; Li, Yanpeng; Zhang, Lin; Yin, You; Xiang, Zhenghua; Zhao, Zhongxin

    2010-06-23

    Rapid eye movement (REM) sleep deprivation causes learning and memory deficits. Neuropeptide S, a newly discovered neuropeptide, has been shown to regulate arousal, anxiety, and may enhance long-term memory formation and spatial memory. However, it is unknown whether neuropeptide S could improve the REM sleep deprivation-induced memory impairment. Here, we report that 72-h REM sleep deprivation in rats resulted in spatial memory impairment and reduced phosphorylation level of cAMP-response element binding protein in the hippocampus, both of which were reversed by central administration of neuropeptide S. The results suggest that neuropeptide S mitigates spatial memory impairment in rats induced by 72-h REM sleep deprivation, possibly through activating cAMP-response element binding protein phosphorylation in the hippocampus.

  1. Vitamin C Prevents Sleep Deprivation-induced Elevation in Cortisol ...

    African Journals Online (AJOL)

    olayemitoyin

    person can be aroused by sensory or other stimuli. (Hall, 2015), is an essential physiological need that must be satisfied to ensure normal physiological functions (Rechtschaffen and Bergmann, 2002). Sleep deprivation can be defined as the restriction of sleep below the level of basal sleep need (Lim and Dinges,. 2007).

  2. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Science.gov (United States)

    Deliens, Gaétane; Stercq, Fanny; Mary, Alison; Slama, Hichem; Cleeremans, Axel; Peigneux, Philippe; Kissine, Mikhail

    2015-01-01

    There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15) or a sleep deprivation night (n = 15), participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1) sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic), (2) sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm) or (3) sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep deprivation might

  3. Impact of Acute Sleep Deprivation on Sarcasm Detection.

    Directory of Open Access Journals (Sweden)

    Gaétane Deliens

    Full Text Available There is growing evidence that sleep plays a pivotal role on health, cognition and emotional regulation. However, the interplay between sleep and social cognition remains an uncharted research area. In particular, little is known about the impact of sleep deprivation on sarcasm detection, an ability which, once altered, may hamper everyday social interactions. The aim of this study is to determine whether sleep-deprived participants are as able as sleep-rested participants to adopt another perspective in gauging sarcastic statements. At 9am, after a whole night of sleep (n = 15 or a sleep deprivation night (n = 15, participants had to read the description of an event happening to a group of friends. An ambiguous voicemail message left by one of the friends on another's phone was then presented, and participants had to decide whether the recipient would perceive the message as sincere or as sarcastic. Messages were uttered with a neutral intonation and were either: (1 sarcastic from both the participant's and the addressee's perspectives (i.e. both had access to the relevant background knowledge to gauge the message as sarcastic, (2 sarcastic from the participant's but not from the addressee's perspective (i.e. the addressee lacked context knowledge to detect sarcasm or (3 sincere. A fourth category consisted in messages sarcastic from both the participant's and from the addressee's perspective, uttered with a sarcastic tone. Although sleep-deprived participants were as accurate as sleep-rested participants in interpreting the voice message, they were also slower. Blunted reaction time was not fully explained by generalized cognitive slowing after sleep deprivation; rather, it could reflect a compensatory mechanism supporting normative accuracy level in sarcasm understanding. Introducing prosodic cues compensated for increased processing difficulties in sarcasm detection after sleep deprivation. Our findings support the hypothesis that sleep

  4. Sleep deprivation and spike-wave discharges in epileptic rats

    OpenAIRE

    Drinkenburg, W.H.I.M.; Coenen, A.M.L.; Vossen, J.M.H.; Luijtelaar, E.L.J.M. van

    1995-01-01

    The effects of sleep deprivation were studied on the occurrence of spike-wave discharges in the electroencephalogram of rats of the epileptic WAG/Rij strain, a model for absence epilepsy. This was done before, during and after a period of 12 hours of near total sleep deprivation. A substantial increase in the number of spike-wave discharges was found during the first 4 hours of the deprivation period, whereas in the following deprivation hours epileptic activity returned to baseline values. I...

  5. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    Directory of Open Access Journals (Sweden)

    Thien Thanh Dang-Vu

    Full Text Available Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT with 99mTc-Ethylene Cysteinate Dimer (ECD, during wakefulness and after sleep deprivation.Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF were performed to characterize brain activity patterns during wakefulness in sleepwalkers.During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls.Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  6. Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques

    2015-01-01

    Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.

  7. Monitoring sleep depth: analysis of bispectral index (BIS) based on polysomnographic recordings and sleep deprivation.

    Science.gov (United States)

    Giménez, Sandra; Romero, Sergio; Alonso, Joan Francesc; Mañanas, Miguel Ángel; Pujol, Anna; Baxarias, Pilar; Antonijoan, Rosa Maria

    2017-02-01

    The assessment and management of sleep are increasingly recommended in the clinical practice. Polysomnography (PSG) is considered the gold standard test to monitor sleep objectively, but some practical and technical constraints exist due to environmental and patient considerations. Bispectral index (BIS) monitoring is commonly used in clinical practice for guiding anesthetic administration and provides an index based on relationships between EEG components. Due to similarities in EEG synchronization between anesthesia and sleep, several studies have assessed BIS as a sleep monitor with contradictory results. The aim of this study was to evaluate objectively both the feasibility and reliability of BIS for sleep monitoring through a robust methodology, which included full PSG recordings at a baseline situation and after 40 h of sleep deprivation. Results confirmed that the BIS index was highly correlated with the hypnogram (0.89 ± 0.02), showing a progressive decrease as sleep deepened, and an increase during REM sleep (awake: 91.77 ± 8.42; stage N1: 83.95 ± 11.05; stage N2: 71.71 ± 11.99; stage N3: 42.41 ± 9.14; REM: 80.11 ± 8.73). Mean and median BIS values were lower in the post-deprivation night than in the baseline night, showing statistical differences for the slow wave sleep (baseline: 42.41 ± 9.14 vs. post-deprivation: 39.49 ± 10.27; p = 0.02). BIS scores were able to discriminate properly between deep (N3) and light (N1, N2) sleep. BIS values during REM overlapped those of other sleep stages, although EMG activity provided by the BIS monitor could help to identify REM sleep if needed. In conclusion, BIS monitors could provide a useful measure of sleep depth in especially particular situations such as intensive care units, and they could be used as an alternative for sleep monitoring in order to reduce PSG-derived costs and to increase capacity in ambulatory care.

  8. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    Science.gov (United States)

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  9. Gender Differences in Sleep Deprivation Effects on Risk and Inequality Aversion: Evidence from an Economic Experiment

    Science.gov (United States)

    Ferrara, Michele; Bottasso, Anna; Tempesta, Daniela; Carrieri, Marika; De Gennaro, Luigi; Ponti, Giovanni

    2015-01-01

    Excessive working hours—even at night—are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects’ risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females’ reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making. PMID:25793869

  10. Gender differences in sleep deprivation effects on risk and inequality aversion: evidence from an economic experiment.

    Directory of Open Access Journals (Sweden)

    Michele Ferrara

    Full Text Available Excessive working hours--even at night--are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects' risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females' reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making.

  11. Gender differences in sleep deprivation effects on risk and inequality aversion: evidence from an economic experiment.

    Science.gov (United States)

    Ferrara, Michele; Bottasso, Anna; Tempesta, Daniela; Carrieri, Marika; De Gennaro, Luigi; Ponti, Giovanni

    2015-01-01

    Excessive working hours--even at night--are becoming increasingly common in our modern 24/7 society. The prefrontal cortex (PFC) is particularly vulnerable to the effects of sleep loss and, consequently, the specific behaviors subserved by the functional integrity of the PFC, such as risk-taking and pro-social behavior, may be affected significantly. This paper seeks to assess the effects of one night of sleep deprivation on subjects' risk and social preferences, which are probably the most explored behavioral domains in the tradition of Experimental Economics. This novel cross-over study employs thirty-two university students (gender-balanced) participating to 2 counterbalanced laboratory sessions in which they perform standard risk and social preference elicitation protocols. One session was after one night of undisturbed sleep at home, and the other was after one night of sleep deprivation in the laboratory. Sleep deprivation causes increased sleepiness and decreased alertness in all subjects. After sleep loss males make riskier decisions compared to the rested condition, while females do the opposite. Females likewise show decreased inequity aversion after sleep deprivation. As for the relationship between cognitive ability and economic decisions, sleep deprived individuals with higher cognitive reflection show lower risk aversion and more altruistic behavior. These results show that one night of sleep deprivation alters economic behavior in a gender-sensitive way. Females' reaction to sleep deprivation, characterized by reduced risky choices and increased egoism compared to males, may be related to intrinsic psychological gender differences, such as in the way men and women weigh up probabilities in their decision-making, and/or to the different neurofunctional substrate of their decision-making.

  12. Tempol prevents chronic sleep-deprivation induced memory impairment.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Albawaana, Amal S; Alhashimi, Farah H; Athamneh, Rabaa Y

    2016-01-01

    Sleep deprivation is associated with oxidative stress that causes learning and memory impairment. Tempol is a nitroxide compound that promotes the metabolism of many reactive oxygen species (ROS) and has antioxidant and neuroprotective effect. The current study investigated whether chronic administration of tempol can overcome oxidative stress and prevent learning and memory impairment induced by sleep deprivation. Sleep deprivation was induced in rats using multiple platform model. Tempol was administered to rats via oral gavages. Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze. The hippocampus was dissected; antioxidant biomarkers (GSH, GSSG, GSH/GSSG ratio, GPx, SOD, and catalase) were assessed. The result of this project revealed that chronic sleep deprivation impaired both short and long term memory (Psleep deprivation induced reduction in the hippocampus activity of catalase, GPx, and SOD (Psleep deprived rats treated with tempol as compared with only sleep deprived rats (Psleep deprivation induced memory impairment, and treatment with tempol prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition.

    Science.gov (United States)

    Chee, Michael W L; Chuah, Lisa Y M

    2008-08-01

    The review summarizes current knowledge about what fMRI has revealed regarding the neurobehavioral correlates of sleep deprivation and sleep-dependent memory consolidation. Functional imaging studies of sleep deprivation have characterized its effects on a number of cognitive domains, the best studied of these being working memory. There is a growing appreciation that it is important to consider interindividual differences in vulnerability to sleep deprivation, task and task difficulty when interpreting imaging results. Our understanding of the role of sleep and the dynamic evolution of offline memory consolidation has benefited greatly from human imaging studies. Both hippocampal-dependent and hippocampal-independent memory systems have been studied. Functional imaging studies contrasting sleep-deprived and well-rested brains provide substantial evidence that sleep is highly important for optimal cognitive function and learning. The experimental paradigms developed to date merit evaluation in clinical settings to determine the impact of sleep disruption in sleep disorders.

  14. Sleep deprivation impairs precision of waggle dance signaling in honey bees.

    Science.gov (United States)

    Klein, Barrett A; Klein, Arno; Wray, Margaret K; Mueller, Ulrich G; Seeley, Thomas D

    2010-12-28

    Sleep is essential for basic survival, and insufficient sleep leads to a variety of dysfunctions. In humans, one of the most profound consequences of sleep deprivation is imprecise or irrational communication, demonstrated by degradation in signaling as well as in receiving information. Communication in nonhuman animals may suffer analogous degradation of precision, perhaps with especially damaging consequences for social animals. However, society-specific consequences of sleep loss have rarely been explored, and no function of sleep has been ascribed to a truly social (eusocial) organism in the context of its society. Here we show that sleep-deprived honey bees (Apis mellifera) exhibit reduced precision when signaling direction information to food sources in their waggle dances. The deterioration of the honey bee's ability to communicate is expected to reduce the foraging efficiency of nestmates. This study demonstrates the impact of sleep deprivation on signaling in a eusocial animal. If the deterioration of signals made by sleep-deprived honey bees and humans is generalizable, then imprecise communication may be one detrimental effect of sleep loss shared by social organisms.

  15. Acute sleep deprivation increases food purchasing in men.

    Science.gov (United States)

    Chapman, Colin D; Nilsson, Emil K; Nilsson, Victor C; Cedernaes, Jonathan; Rångtell, Frida H; Vogel, Heike; Dickson, Suzanne L; Broman, Jan-Erik; Hogenkamp, Pleunie S; Schiöth, Helgi B; Benedict, Christian

    2013-12-01

    To investigate if acute sleep deprivation affects food purchasing choices in a mock supermarket. On the morning after one night of total sleep deprivation (TSD) or after one night of sleep, 14 normal-weight men were given a fixed budget (300 SEK-approximately 50 USD). They were instructed to purchase as much as they could out of a possible 40 items, including 20 high-caloric foods (>2 kcal/g) and 20 low-caloric foods (ghrelin were measured under fasting conditions. Independent of both type of food offered and price condition, sleep-deprived men purchased significantly more calories (+9%) and grams (+18%) of food than they did after one night of sleep (both P ghrelin concentrations were also higher after TSD (P sleep loss alters food purchasing behavior in men. Copyright © 2013 The Obesity Society.

  16. [Sleep deprivation and pain: a review of the newest literature].

    Science.gov (United States)

    Karmann, A J; Kundermann, B; Lautenbacher, S

    2014-04-01

    It has now been established that sleep deprivation or fragmentation causes hyperalgesia which cannot be explained by a general change in somatosensory perception. However, it has not yet been clarified which of the sleep stages are most relevant for this effect. The seemingly paradoxical effects of sleep deprivation on pain-evoked brain potentials on the one hand and the subjective pain report on the other hand suggest complex changes in gating mechanisms. As the effects on pain and affect can be dissociated a common mechanism of action seems unlikely. Data from animal studies suggest that hyperalgesia due to sleep deprivation might be particularly strong under preexisting neuropathic conditions. Together with results from animal research the finding that endogenous pain modulation (CPM) is impaired by sleep deprivation suggests that the serotoninergic system mediates the effect of sleep deprivation on pain perception. However, other neurotransmitters and neuromodulators still have to be considered. The clinically relevant question arises why sleep deprivation induces hyperalgesia more easily in certain individuals than in others and why this effect then has a longer duration?

  17. Coping with sleep deprivation: shifts in regional brain activity and learning strategy.

    Science.gov (United States)

    Hagewoud, Roelina; Havekes, Robbert; Tiba, Paula A; Novati, Arianna; Hogenelst, Koen; Weinreder, Pim; Van der Zee, Eddy A; Meerlo, Peter

    2010-11-01

    dissociable cognitive strategies are used for place navigation. Spatial strategies rely on the hippocampus, an area important for flexible integration of novel information. Response strategies are more rigid and involve the dorsal striatum. These memory systems can compensate for each other in case of temporal or permanent damage. Sleep deprivation has adverse effects on hippocampal function. However, whether the striatal memory system can compensate for sleep-deprivation-induced hippocampal impairments is unknown. with a symmetrical maze paradigm for mice, we examined the effect of sleep deprivation on learning the location of a food reward (training) and on learning that a previously nonrewarded arm was now rewarded (reversal training). five hours of sleep deprivation after each daily training session did not affect performance during training. However, in contrast with controls, sleep-deprived mice avoided a hippocampus-dependent spatial strategy and preferentially used a striatum-dependent response strategy. In line with this, the training-induced increase in phosphorylation of the transcription factor cAMP response-element binding protein (CREB) shifted from hippocampus to dorsal striatum. Importantly, although sleep-deprived mice performed well during training, performance during reversal training was attenuated, most likely due to rigidity of the striatal system they used. together, these findings suggest that the brain compensates for negative effects of sleep deprivation on the hippocampal memory system by promoting the use of a striatal memory system. However, effects of sleep deprivation can still appear later on because the alternative learning mechanisms and brain regions involved may result in reduced flexibility under conditions requiring adaptation of previously formed memories.

  18. Tempol protects sleep-deprivation induced behavioral deficits in aggressive male Long-Evans rats.

    Science.gov (United States)

    Solanki, Naimesh; Atrooz, Fatin; Asghar, Saman; Salim, Samina

    2016-01-26

    Earlier, we reported that elevated anxiety-like behavior and high aggression in aged retired breeder Long-Evans (L-E) rats was associated with increased plasma corticosterone and elevated oxidative stress levels. In the present study, we examined how this aged aggressive and anxious rat strain responds to acute sleep deprivation (24h) and whether their behaviors can be modulated via antioxidant tempol treatment. Four groups of L-E rats were utilized: naïve control (NC), tempol treated control (T+NC), sleep deprived (SD), tempol treated and sleep deprived (T+SD). Thus, two groups were treated with tempol (1mM in drinking water for 2 weeks) while the other two were not. Two groups were subjected to acute sleep deprivation (24h) using the columns-in-water model while the other two were not. Sleep deprivation induced anxiety-like behavior, led to significant depression-like behavior and short-term memory impairment in SD rats. And, decision-making behavior also was compromised in SD rats. These behavioral and cognitive impairments were prevented with tempol treatment in T+SD rats. Tempol treatment also reduced SD-induced increase in corticosterone and oxidative stress levels in T+SD rats. These results suggest potential involvement of oxidative stress mechanisms in regulation of sleep deprivation induced behavioral and cognitive deficits in male aged-aggressive rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    Science.gov (United States)

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (Psleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Spatial reversal learning is robust to total sleep deprivation

    NARCIS (Netherlands)

    Leenaars, C.H.; Joosten, R.N.J.M.; Kramer, M.; Post, G.; Eggels, L.; Wuite, M.; Dematteis, M.; Feenstra, M.G.P.; van Someren, E.J.W.

    2012-01-01

    Sleep deprivation affects cognitive functions that depend on the prefrontal cortex (PFC) such as cognitive flexibility, and the consolidation of newly learned information. The identification of cognitive processes that are either robustly sensitive or robustly insensitive to the same experimental

  1. Sleep and Nutritional Deprivation and Performance of House Officers.

    Science.gov (United States)

    Hawkins, Michael R.; And Others

    1985-01-01

    A study to compare cognitive functioning in acutely and chronically sleep-deprived house officers is described. A multivariate analysis of variance revealed significant deficits in primary mental tasks involving basic rote memory, language, and numeric skills. (Author/MLW)

  2. Effects of cocaine, methamphetamine and modafinil challenge on sleep rebound after paradoxical sleep deprivation in rats

    Directory of Open Access Journals (Sweden)

    R.C.S Martins

    2008-01-01

    Full Text Available Sleep loss is both common and critically relevant to our society and might lead to the abuse of psychostimulants such as amphetamines, cocaine and modafinil. Since psychoactive substance abuse often occurs within a scenario of sleep deficit, the purpose of this investigation was to compare the sleep patterns of rats challenged with cocaine (7 mg/kg, ip, methamphetamine (7 mg/kg, ip, or modafinil (100 mg/kg, ip subsequent to paradoxical sleep deprivation (PSD for 96 h. Our results show that, immediately after 96 h of PSD, rats (10 per group that were injected with a psychostimulant presented lower percentages of paradoxical sleep compared to those injected with saline (P < 0.01. Regarding slow wave sleep (SWS, rats injected with psychostimulants after PSD presented a late rebound (on the second night subsequent to the injection in the percentage of this phase of sleep when compared to PSD rats injected with saline (P < 0.05. In addition, the current study has produced evidence of the characteristic effect of each drug on sleep architecture. Home cage control rats injected with modafinil and methamphetamine showed a reduction in SWS compared with the saline group. Methamphetamine affected sleep patterns most, since it significantly reduced paradoxical sleep, SWS and sleep efficiency before and after PSD compared to control (P < 0.05. Cocaine was the psychostimulant causing the least changes in sleep pattern in relation to those observed after saline injection. Therefore, our results suggest that abuse of these psychostimulants in a PSD paradigm aggravates their impact on sleep patterns.

  3. Deconstructing and reconstructing cognitive performance in sleep deprivation.

    Science.gov (United States)

    Jackson, Melinda L; Gunzelmann, Glenn; Whitney, Paul; Hinson, John M; Belenky, Gregory; Rabat, Arnaud; Van Dongen, Hans P A

    2013-06-01

    Mitigation of cognitive impairment due to sleep deprivation in operational settings is critical for safety and productivity. Achievements in this area are hampered by limited knowledge about the effects of sleep loss on actual job tasks. Sleep deprivation has different effects on different cognitive performance tasks, but the mechanisms behind this task-specificity are poorly understood. In this context it is important to recognize that cognitive performance is not a unitary process, but involves a number of component processes. There is emerging evidence that these component processes are differentially affected by sleep loss. Experiments have been conducted to decompose sleep-deprived performance into underlying cognitive processes using cognitive-behavioral, neuroimaging and cognitive modeling techniques. Furthermore, computational modeling in cognitive architectures has been employed to simulate sleep-deprived cognitive performance on the basis of the constituent cognitive processes. These efforts are beginning to enable quantitative prediction of the effects of sleep deprivation across different task contexts. This paper reviews a rapidly evolving area of research, and outlines a theoretical framework in which the effects of sleep loss on cognition may be understood from the deficits in the underlying neurobiology to the applied consequences in real-world job tasks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Relationships between affect, vigilance, and sleepiness following sleep deprivation.

    Science.gov (United States)

    Franzen, Peter L; Siegle, Greg J; Buysse, Daniel J

    2008-03-01

    This pilot study examined the relationships between the effects of sleep deprivation on subjective and objective measures of sleepiness and affect, and psychomotor vigilance performance. Following an adaptation night in the laboratory, healthy young adults were randomly assigned to either a night of total sleep deprivation (SD group; n = 15) or to a night of normal sleep (non-SD group; n = 14) under controlled laboratory conditions. The following day, subjective reports of mood and sleepiness, objective sleepiness (Multiple Sleep Latency Test and spontaneous oscillations in pupil diameter, PUI), affective reactivity/regulation (pupil dilation responses to emotional pictures), and psychomotor vigilance performance (PVT) were measured. Sleep deprivation had a significant impact on all three domains (affect, sleepiness, and vigilance), with significant group differences for eight of the nine outcome measures. Exploratory factor analyses performed across the entire sample and within the SD group alone revealed that the outcomes clustered on three orthogonal dimensions reflecting the method of measurement: physiological measures of sleepiness and affective reactivity/regulation, subjective measures of sleepiness and mood, and vigilance performance. Sleepiness and affective responses to sleep deprivation were associated (although separately for objective and subjective measures). PVT performance was also independent of the sleepiness and affect outcomes. These findings suggest that objective and subjective measures represent distinct entities that should not be assumed to be equivalent. By including affective outcomes in experimental sleep deprivation research, the impact of sleep loss on affective function and their relationship to other neurobehavioral domains can be assessed.

  5. Deconstructing and Reconstructing Cognitive Performance in Sleep Deprivation

    Science.gov (United States)

    Jackson, Melinda L.; Gunzelmann, Glenn; Whitney, Paul; Hinson, John M.; Belenky, Gregory; Rabat, Arnaud; Van Dongen, Hans P. A.

    2012-01-01

    Summary Mitigation of cognitive impairment due to sleep deprivation in operational settings is critical for safety and productivity. Achievements in this area are hampered by limited knowledge about the effects of sleep loss on actual job tasks. Sleep deprivation has different effects on different cognitive performance tasks, but the mechanisms behind this task-specificity are poorly understood. In this context it is important to recognize that cognitive performance is not a unitary process, but involves a number of component processes. There is emerging evidence that these component processes are differentially affected by sleep loss. Experiments have been conducted to decompose sleep-deprived performance into underlying cognitive processes using cognitive-behavioral, neuroimaging and cognitive modeling techniques. Furthermore, computational modeling in cognitive architectures has been employed to simulate sleep-deprived cognitive performance on the basis of the constituent cognitive processes. These efforts are beginning to enable quantitative prediction of the effects of sleep deprivation across different task contexts. This paper reviews a rapidly evolving area of research, and outlines a theoretical framework in which the effects of sleep loss on cognition may be understood from the deficits in the underlying neurobiology to the applied consequences in real-world job tasks. PMID:22884948

  6. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation.

    Science.gov (United States)

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G

    2013-08-01

    To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Nine male wild-captured O. degus prepared for polysomnographic recordings. Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep

  7. Combined caffeine and bright light reduces dangerous driving in sleep-deprived healthy volunteers: a pilot cross-over randomised controlled trial.

    Science.gov (United States)

    Hartley, S L; Barbot, F; Machou, M; Lejaille, M; Moreau, B; Vaugier, I; Lofaso, F; Quera-Salva, M A

    2013-06-01

    To explore the effects of caffeine and bright light therapy on simulated nighttime driving in sleep-deprived healthy volunteers. Twelve male healthy volunteers aged 20 to 50 years participated in a randomized cross-over study of simulated nighttime driving at a sleep laboratory, followed by recovery sleep with polysomnography at home. The volunteers received variable combinations of caffeine 200mg (C+), caffeine placebo (C-), bright light 10,000 lux (L+), and bright light placebo<50 lux (L-), in four sessions (C+L+, C+L-, C-L+, C-L-), in random order with a wash-out period of 7 days. Treatments were given at 1 a.m. and testing was performed at 1:30 a.m., 3 a.m., 4 a.m., and 6 a.m. Lane drifting was the primary outcome measure. Other measures were reaction times, self-rated fatigue, sleepiness and recovery sleep. Without treatment, lane drifting increased throughout the night, and objective and subjective vigilance declined. Paired comparisons showed that lane drifting was significantly worse at 6 a.m. and at 4 a.m. than at 1:30 a.m. There was a global treatment effect on lane drifting. Lane drifting at 6 a.m. was significantly decreased with C+L+ compared to C-L-. Bright light therapy combined with caffeine administered at 1 a.m. decreased lane drifting by healthy volunteers during simulated nighttime driving. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Sleep deprivation and adverse health effects in United States Coast Guard responders to Hurricanes Katrina and Rita.

    Science.gov (United States)

    Bergan, Timothy; Thomas, Dana; Schwartz, Erica; McKibben, Jodi; Rusiecki, Jennifer

    2015-12-01

    Disaster responders are increasingly called upon to assist in various natural and manmade disasters. A critical safety concern for this population is sleep deprivation; however, there are limited published data regarding sleep deprivation and disaster responder safety. We expanded upon a cross-sectional study of 2695 United States Coast Guard personnel who responded to Hurricanes Katrina and Rita. Data were collected via survey on self-reported timing and location of deployment, missions performed, health effects, medical treatment sought, average nightly sleep, and other lifestyle variables. We created a 4-level sleep deprivation metric based on both average nightly reported sleep (d5hours; >5hours) and length of deployment (d2weeks; >2weeks) to examine the association between sustained sleep deprivation and illnesses, injuries, and symptoms using logistic regression to calculate odds ratios (ORs) and 95% confidence intervals. The strongest, statistically significant positive ORs for the highest sleep deprivation category compared with the least sleep-deprived category were for mental health and neurologic effects, specifically depression (OR=6.76), difficulty concentrating (OR=8.33), and confusion (OR=11.34), and for dehydration (OR=9.0). Injuries most strongly associated with sleep deprivation were twists, sprains, and strains (OR=6.20). Most health outcomes evaluated had monotonically increasing ORs with increasing sleep deprivation, and P tests for trend were statistically significant. Agencies deploying disaster responders should understand the risks incurred to their personnel by sustained sleep deprivation. Improved planning of response efforts to disasters can reduce the potential for sleep deprivation and lead to decreased morbidity in disaster responders. Published by Elsevier Inc.

  9. Sleep Deprivation during Pregnancy and Maternal and Fetal Outcomes: Is There a Relationship?

    OpenAIRE

    Chang, Jen Jen; Pien, Grace W.; Duntley, Stephen P.; Macones, George A.

    2009-01-01

    Sleep duration in the population has been declining. Women occupy an increasingly prominent place in the work force without reducing most of their responsibilities at home. Consequently, sleep needs are often pushed to the bottom of women's daily priority list. Prior research has indicated that sleep deprivation is associated with higher levels of pro-inflammatory serum cytokines. This is important because higher plasma concentations of pro-inflammatory serum cytokine levels are associated wi...

  10. Orexin activation precedes increased NPY expression, hyperphagia, and metabolic changes in response to sleep deprivation.

    Science.gov (United States)

    Martins, Paulo José Forcina; Marques, Marina Soares; Tufik, Sergio; D'Almeida, Vânia

    2010-03-01

    Several pieces of evidence support that sleep duration plays a role in body weight control. Nevertheless, it has been assumed that, after the identification of orexins (hypocretins), the molecular basis of the interaction between sleep and energy homeostasis has been provided. However, no study has verified the relationship between neuropeptide Y (NPY) and orexin changes during hyperphagia induced by sleep deprivation. In the current study we aimed to establish the time course of changes in metabolite, endocrine, and hypothalamic neuropeptide expression of Wistar rats sleep deprived by the platform method for a distinct period (from 24 to 96 h) or sleep restricted for 21 days (SR-21d). Despite changes in the stress hormones, we found no changes in food intake and body weight in the SR-21d group. However, sleep-deprived rats had a 25-35% increase in their food intake from 72 h accompanied by slight weight loss. Such changes were associated with increased hypothalamus mRNA levels of prepro-orexin (PPO) at 24 h followed by NPY at 48 h of sleep deprivation. Conversely, sleep recovery reduced the expression of both PPO and NPY, which rapidly brought the animals to a hypophagic condition. Our data also support that sleep deprivation rapidly increases energy expenditure and therefore leads to a negative energy balance and a reduction in liver glycogen and serum triacylglycerol levels despite the hyperphagia. Interestingly, such changes were associated with increased serum levels of glucagon, corticosterone, and norepinephrine, but no effects on leptin, insulin, or ghrelin were observed. In conclusion, orexin activation accounts for the myriad changes induced by sleep deprivation, especially the hyperphagia induced under stress and a negative energy balance.

  11. The Effects of Sleep Deprivation on Item and Associative Recognition Memory.

    Science.gov (United States)

    Ratcliff, Roger; Van Dongen, Hans P A

    2017-09-21

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Sleep deprivation leads to mood deficits in healthy adolescents.

    Science.gov (United States)

    Short, Michelle A; Louca, Mia

    2015-08-01

    The objectives of the study were to investigate the effects of 36 h of sleep deprivation on the discrete mood states of anger, depression, anxiety, confusion, fatigue, and vigour in healthy adolescents. Twelve healthy adolescent good sleepers (six male), aged 14-18 years (M = 16.17, standard deviation (SD) = 0.83), spent three consecutive nights in the sleep laboratory of the Centre for Sleep Research: two baseline nights with 10-h sleep opportunities and one night of total sleep deprivation. Every 2 h during wakefulness, they completed the Profile of Mood States - Short Form. Mood across two baseline days was compared to mood at the same clock time (0900 h to 1900 h) following one night without sleep. The subscales of depression, anger, confusion, anxiety, vigour, and fatigue were compared across days. All mood states significantly worsened following one night without sleep. Females showed a greater vulnerability to mood deficits following sleep loss, with greater depressed mood and anxiety following sleep deprivation only witnessed among female participants. While both males and females reported more confusion following sleep deprivation, the magnitude of this effect was greater for females. This study provides empirical support for the notion that sleep loss can causally affect mood states in healthy adolescents, with females having heightened vulnerability. Understanding the detrimental effects of insufficient sleep during adolescence is important, as it is a stage where sleep loss and mood dysregulation are highly prevalent. These findings escalate the importance of promoting sleep for the well-being of adolescents at this critical life phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Sleep Duration and Area-Level Deprivation in Twins.

    Science.gov (United States)

    Watson, Nathaniel F; Horn, Erin; Duncan, Glen E; Buchwald, Dedra; Vitiello, Michael V; Turkheimer, Eric

    2016-01-01

    We used quantitative genetic models to assess whether area-level deprivation as indicated by the Singh Index predicts shorter sleep duration and modifies its underlying genetic and environmental contributions. Participants were 4,218 adult twin pairs (2,377 monozygotic and 1,841 dizygotic) from the University of Washington Twin Registry. Participants self-reported habitual sleep duration. The Singh Index was determined by linking geocoding addresses to 17 indicators at the census-tract level using data from Census of Washington State and Census Tract Cartographic Boundary Files from 2000 and 2010. Data were analyzed using univariate and bivariate genetic decomposition and quantitative genetic interaction models that assessed A (additive genetics), C (common environment), and E (unique environment) main effects of the Singh Index on sleep duration and allowed the magnitude of residual ACE variance components in sleep duration to vary with the Index. The sample had a mean age of 38.2 y (standard deviation [SD] = 18), and was predominantly female (62%) and Caucasian (91%). Mean sleep duration was 7.38 h (SD = 1.20) and the mean Singh Index score was 0.00 (SD = 0.89). The heritability of sleep duration was 39% and the Singh Index was 12%. The uncontrolled phenotypic regression of sleep duration on the Singh Index showed a significant negative relationship between area-level deprivation and sleep length (b = -0.080, P sleep duration. For the quasi-causal bivariate model, there was a significant main effect of E (b(0E) = -0.063; standard error [SE] = 0.30; P sleep duration were significant for both A (b(0Au) = 0.734; SE = 0.020; P sleep duration, with greater deprivation being related to shorter sleep. As area-level deprivation increases, unique genetic and nonshared environmental residual variance in sleep duration increases. © 2016 Associated Professional Sleep Societies, LLC.

  14. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    Science.gov (United States)

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  15. An ERP examination of the different effects of sleep deprivation on exogenously cued and endogenously cued attention.

    Science.gov (United States)

    Trujillo, Logan T; Kornguth, Steve; Schnyer, David M

    2009-10-01

    Behavior and neuroimaging studies have shown selective attention to be negatively impacted by sleep deprivation. Two unresolved questions are (1) whether sleep deprivation impairs attention modulation of early visual processing or of a later stage of cognition and (2) how sleep deprivation affects exogenously versus endogenously driven selective attention. To investigate the time course and different effects of sleep deprivation on exogenously and endogenously cued selective attention. Participants performed modified Attention Network Tests (ANTs) using exogenously and endogenously cued targets to index brain networks underlying selective attention. Target-locked event-related potentials (ERPs) were recorded as participants performed the Attention Network Tests on 2 days separated by 24 hours of total sleeplessness. Fourteen US Military Academy cadets and 12 US Army soldiers from the Ironhorse Brigade, Ft. Hood, Texas. For both Attention Network Tests, sleep deprivation led to slowed response times, decreased accuracy rates, a diminished positive P3 (450- to 550-ms) ERP component, and an enhanced P2 (312- to 434-ms) ERP component. In contrast, the parietal N1 (157- to 227-ms) ERP response was reduced with sleep deprivation for endogenously, but not exogenously, cued targets. These sleep deprivation-related effects occurred in the context of typical behavior and ERP patterns expected in a cued spatial-attention task. These findings suggest that as little as 24 hours of sleep deprivation affects both early and late stages of attention selection but affects endogenously driven selective attention to a greater degree than it does exogenously driven selective attention.

  16. Reduced dental calcium expression and dental mass in chronic sleep deprived rats: Combined EDS, TOF-SIMS, and micro-CT analysis

    Science.gov (United States)

    Kuo, Yi-Jie; Huang, Yung-Kai; Chou, Hsiu-Chu; Pai, Man-Hui; Lee, Ai-Wei; Mai, Fu-Der; Chang, Hung-Ming

    2015-08-01

    Teeth are the hardest tissue in the body. The growth of teeth is closely regulated by circadian rhythmicity. Considering that sleep deprivation (SD) is a severe condition that disrupts normal circadian rhythmicity, this study was conducted to determine whether calcium expression (the major element participating in teeth constitution), and dental mass would be significantly impaired following SD. Adolescent rats subjected to 3 weeks of SD were processed for energy dispersive spectrum (EDS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and micro-computed tomography (micro-CT) analyses. The EDS and TOF-SIMS results indicated that high calcium intensity was detected in both the upper and lower incisors of untreated rats. Micro-CT analysis corresponded closely with spectral data in which an enhanced dental mass was calculated in intact animals. However, following SD, both calcium expression and the dental mass were remarkably decreased to nearly half those of the untreated values. Because SD plays a detrimental role in impairing dental structure, establishing satisfactory sleep behavior would therefore serve as a crucial strategy for preventing or improving prevalent dental dysfunctions.

  17. Decreased cortical response to verbal working memory following sleep deprivation.

    Science.gov (United States)

    Mu, Qiwen; Nahas, Ziad; Johnson, Kevin A; Yamanaka, Kaori; Mishory, Alexander; Koola, Jejo; Hill, Sarah; Horner, Michael D; Bohning, Daryl E; George, Mark S

    2005-01-01

    To investigate the cerebral hemodynamic response to verbal working memory following sleep deprivation. Subjects were scheduled for 3 functional magnetic resonance imaging scanning visits: an initial screening day (screening state), after a normal night of sleep (rested state), and after 30 hours of sleep deprivation (sleep-deprivation state). Subjects performed the Sternberg working memory task alternated with a control task during an approximate 13-minute functional magnetic resonance imaging scan. Inpatient General Clinical Research Center and outpatient functional magnetic resonance imaging center. Results from 33 men (mean age, 28.6 +/- 6.6 years) were included in the final analyses. None. Subjects performed the same Sternberg working memory task at the 3 states within the magnetic resonance imaging scanner. Neuroimaging data revealed that, in the screening and rested states, the brain regions activated by the Sternberg working memory task were found in the left dorsolateral prefrontal cortex, Broca's area, supplementary motor area, right ventrolateral prefrontal cortex, and the bilateral posterior parietal cortexes. After 30 hours of sleep deprivation, the activations in these brain regions significantly decreased, especially in the bilateral posterior parietal cortices. Task performance also decreased. A repeated-measures analysis of variance revealed that subjects at the screening and rested states had similar activation patterns, with each having significantly more activation than during the sleep-deprivation state. These results suggest that human sleep-deprivation deficits are not caused solely or even predominantly by prefrontal cortex dysfunction and that the paretal cortex, in particular, and other brain regions involved in verbal working memory exhibit significant sleep-deprivation vulnerability.

  18. [Effects of chronic partial sleep deprivation on growth and learning/memory in young rats].

    Science.gov (United States)

    Jiang, Fan; Shen, Xiao-Ming; Li, Sheng-Hui; Cui, Mao-Long; Zhang, Yin; Wang, Cheng; Yu, Xiao-Gang; Yan, Chong-Huai

    2009-02-01

    The effects of sleep deprivation on the immature brain remain unknown. Based on a computer controlled chronic sleep deprivation animal model, the effects of chronic partial sleep deprivation on growth, learning and memory in young rats were explored. Twelve weaned male Spraque-Dawley rats (3-week-old) were randomly divided into sleep deprivation, test control and blank control groups. Sleep deprivation was performed using computer-controlled "disc-over-water" technique at 8-11 am daily, for 14 days. The temperature and weights were measured every 7 days. Morris water maze was used to test spatial learning and memory abilities before and 7 and 14 days after sleep deprivation. After 14 days of sleep deprivation, the rats were sacrificed for weighting their major organs. After 14 days of sleep deprivation, the rats' temperature increased significantly. During the sleep deprivation, the rate of weight gain in the sleep deprivation group was much slower than that in the test control and blank control groups. The thymus of the rats subjected to sleep deprivation was much lighter than that of the blank control group. After 7 days of sleep deprivation, the rats showed slower acquisition of reference memory, but were capable of successfully performing the task by repeated exposure to the test. Such impairment of reference memory was not seen 14 days after sleep deprivation. Chronic sleep deprivation can affect growth of immature rats, as well as their abilities to acquire spatial reference memory.

  19. [Effects of sleep deprivation on human performance].

    Science.gov (United States)

    Fu, Z J; Ma, R S

    2000-08-01

    Objective. To investigate the effects of sleep deprivation (SD) on human performance. Method. 8 healthy male college students participated the test. During 26 h of continuous awakeness (from 6:00 to 8:00 the next day), the volunteers were demanded to perform a battery of tests at 9 different time (7:00, 12:00, 16:00, 20:00, 0:00, 2:00, 4:00, 6:00, 8:00). The tests include: (1) single task: aural Oddball response, the response time (RT1) and correct rate (CR1) were recorded; (2) dual tasks: manual tracking and aural Oddball response, the response time (RT2), tracking error (ER) and correct rate (CR2) were recorded; (3) The Stanford sleepiness scale and subjective ratings of task difficulty access. Result. SD had significant effects on CT1, CT2 and ER (P=0.0001, P=0.00001, P=0.0004 respectively); SD increased RT1, RT2, ER at night time. SD had significant effects on SR, SSS score (P=0.0001, P=0.0000 respectively); SD increased SR, SSS score at night time. Since the subjects changed their response strategy, CR1 and CR2 were not influenced by SD at night time. Conclusion. SD has significant effects on response time, tracking error, subjective difficulty of cognitive tasks and subjective sleepiness.

  20. A Study of Possible Sleep Deprivation in Medical Students ...

    African Journals Online (AJOL)

    Two hundred medical students were investigated for possible sleep deprivation using questionnaires. The use of drugs in form of stimulants, use of sleeping pills, and the nature of hostel space accommodation for the students were also investigated. A similar sizeable number of non-medical students were also investigated.

  1. REM Sleep Phase Preference in the Crepuscular Octodon degus Assessed by Selective REM Sleep Deprivation

    Science.gov (United States)

    Ocampo-Garcés, Adrián; Hernández, Felipe; Palacios, Adrian G.

    2013-01-01

    Study Objectives: To determine rapid eye movement (REM) sleep phase preference in a crepuscular mammal (Octodon degus) by challenging the specific REM sleep homeostatic response during the diurnal and nocturnal anticrepuscular rest phases. Design: We have investigated REM sleep rebound, recovery, and documented REM sleep propensity measures during and after diurnal and nocturnal selective REM sleep deprivations. Subjects: Nine male wild-captured O. degus prepared for polysomnographic recordings Interventions: Animals were recorded during four consecutive baseline and two separate diurnal or nocturnal deprivation days, under a 12:12 light-dark schedule. Three-h selective REM sleep deprivations were performed, starting at midday (zeitgeber time 6) or midnight (zeitgeber time 18). Measurements and Results: Diurnal and nocturnal REM sleep deprivations provoked equivalent amounts of REM sleep debt, but a consistent REM sleep rebound was found only after nocturnal deprivation. The nocturnal rebound was characterized by a complete recovery of REM sleep associated with an augment in REM/total sleep time ratio and enhancement in REM sleep episode consolidation. Conclusions: Our results support the notion that the circadian system actively promotes REM sleep. We propose that the sleep-wake cycle of O. degus is modulated by a chorus of circadian oscillators with a bimodal crepuscular modulation of arousal and a unimodal promotion of nocturnal REM sleep. Citation: Ocampo-Garcés A; Hernández F; Palacios AG. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation. SLEEP 2013;36(8):1247-1256. PMID:23904685

  2. Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats.

    Science.gov (United States)

    Lasisi, Dr T J; Shittu, S T; Meludu, C C; Salami, A A

    2017-01-01

    Aim of this study was to investigate the effects of sleep deprivation on salivary factors in rats. Animals were randomly assigned into three groups of 6 animals each as control, total sleep deprivation (TSD) and partial sleep deprivation (PSD) groups. The multiple platform method was used to induce partial and total sleep deprivation for 7days. On the 8th day, stimulated saliva samples were collected for the analysis of salivary lag time, flow rate, salivary amylase activity, immunoglobulin A secretion rate and corticosterone levels using ELISA and standard kinetic enzyme assay. Data were analyzed using ANOVA with Dunnett T3 post hoc tests. Salivary flow rate reduced significantly in the TSD group compared with the PSD group as well as the control group (p=0.01). The secretion rate of salivary IgA was significantly reduced in the TSD group compared with the control group (p=0.04). Salivary amylase activity was significantly elevated in the TSD group compared with the PSD group as well as control group (psleep deprivation is associated with reduced salivary flow rate and secretion rate of IgA as well as elevated levels of salivary amylase activity in rats. However, sleep recovery of four hours in the PSD group produced ameliorative effects on the impaired functions of salivary glands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Effects of Two Types of Sleep Deprivation on Visual Working Memory Capacity and Filtering Efficiency

    OpenAIRE

    Drummond, Sean P.A.; Dane E Anderson; Straus, Laura D.; Vogel, Edward K.; Perez, Veronica B.

    2012-01-01

    Sleep deprivation has adverse consequences for a variety of cognitive functions. The exact effects of sleep deprivation, though, are dependent upon the cognitive process examined. Within working memory, for example, some component processes are more vulnerable to sleep deprivation than others. Additionally, the differential impacts on cognition of different types of sleep deprivation have not been well studied. The aim of this study was to examine the effects of one night of total sleep depri...

  4. Donepezil improves episodic memory in young individuals vulnerable to the effects of sleep deprivation.

    Science.gov (United States)

    Chuah, Lisa Y M; Chong, Delise L; Chen, Annette K; Rekshan, William R; Tan, Jiat-Chow; Zheng, Hui; Chee, Michael W L

    2009-08-01

    We investigated if donepezil, a long-acting orally administered cholinesterase inhibitor, would reduce episodic memory deficits associated with 24 h of sleep deprivation. Double-blind, placebo-controlled, crossover study involving 7 laboratory visits over 2 months. Participants underwent 4 functional MRI scans; 2 sessions (donepezil or placebo) followed a normal night's sleep, and 2 sessions followed a night of sleep deprivation. The study took place in a research laboratory. 26 young, healthy volunteers with no history of any sleep, psychiatric, or neurologic disorders. 5 mg of donepezil was taken once daily for approximately 17 days. Subjects were scanned while performing a semantic judgment task and tested for word recognition outside the scanner 45 minutes later. Sleep deprivation increased the frequency of non-responses at encoding and impaired delayed recognition. No benefit of donepezil was evident when participants were well rested. When sleep deprived, individuals who showed greater performance decline improved with donepezil, whereas more resistant individuals did not benefit. Accompanying these behavioral effects, there was corresponding modulation of task-related activation in functionally relevant brain regions. Brain regions identified in relation to donepezil-induced alteration in non-response rates could be distinguished from regions relating to improved recognition memory. This suggests that donepezil can improve delayed recognition in sleep-deprived persons by improving attention as well as enhancing memory encoding. Donepezil reduced decline in recognition performance in individuals vulnerable to the effects of sleep deprivation. Additionally, our findings demonstrate the utility of combined fMRI-behavior evaluation in psychopharmacological studies.

  5. [Circadian fluctuations in the muscular efficiency of athletes: with sleep versus sleep deprivation].

    Science.gov (United States)

    Callard, D; Gauthier, A; Maffiuletti, N; Davenne, D; Van Hoecke, J

    2000-01-01

    The influence of time of day on muscular performance was studied. From part of the results of two different studies (EAS et EPS), the effects of sleep deprivation were appreciated. Seven times over the 24-h period, developed torque and myoelectric activity were estimated during maximal isometric voluntary contractions using an isokinetic dynamometer: elbow flexion for EAS in standardised sleep, and knee extension for EPS in complete sleep deprivation. The results showed nycthemeral changes in torque in both conditions (p sleep deprivation (EPS) the rhythm followed neurophysiological factors, during EAS, this rhythm was accounted for by the variations in the contractile state of muscle.

  6. The effects of sleep deprivation on emotional empathy.

    Science.gov (United States)

    Guadagni, Veronica; Burles, Ford; Ferrara, Michele; Iaria, Giuseppe

    2014-12-01

    Previous studies have shown that sleep loss has a detrimental effect on the ability of the individuals to process emotional information. In this study, we tested the hypothesis that this negative effect extends to the ability of experiencing emotions while observing other individuals, i.e. emotional empathy. To test this hypothesis, we assessed emotional empathy in 37 healthy volunteers who were assigned randomly to one of three experimental groups: one group was tested before and after a night of total sleep deprivation (sleep deprivation group), a second group was tested before and after a usual night of sleep spent at home (sleep group) and the third group was tested twice during the same day (day group). Emotional empathy was assessed by using two parallel versions of a computerized test measuring direct (i.e. explicit evaluation of empathic concern) and indirect (i.e. the observer's reported physiological arousal) emotional empathy. The results revealed that the post measurements of both direct and indirect emotional empathy of participants in the sleep deprivation group were significantly lower than those of the sleep and day groups; post measurement scores of participants in the day and sleep groups did not differ significantly for either direct or indirect emotional empathy. These data are consistent with previous studies showing the negative effect of sleep deprivation on the processing of emotional information, and extend these effects to emotional empathy. The findings reported in our study are relevant to healthy individuals with poor sleep habits, as well as clinical populations suffering from sleep disturbances. © 2014 European Sleep Research Society.

  7. Sleep deprivation impairs consolidation of cued fear memory in rats.

    Directory of Open Access Journals (Sweden)

    Tankesh Kumar

    Full Text Available Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n=51. In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM (n=9 and lights-off (7 PM (n=9 periods. In experiment-II, animals were prepared for polysomnographic recording (n=8 and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD (n=9, Non-Sleep Deprived (NSD (n=9, Stress Control (SC (n=9 and Tone Control (n=7. Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory.

  8. Sleep deprivation impairs consolidation of cued fear memory in rats.

    Science.gov (United States)

    Kumar, Tankesh; Jha, Sushil K

    2012-01-01

    Post-learning sleep facilitates negative memory consolidation and also helps preserve it over several years. It is believed, therefore, that sleep deprivation may help prevent consolidation of fearful memory. Its effect, however, on consolidation of negative/frightening memories is not known. Cued fear-conditioning (CuFC) is a widely used model to understand the neural basis of negative memory associated with anxiety disorders. In this study, we first determined the suitable circadian timing for consolidation of CuFC memory and changes in sleep architecture after CuFC. Thereafter, we studied the effect of sleep deprivation on CuFC memory consolidation. Three sets of experiments were performed in male Wistar rat (n=51). In experiment-I, animals were conditioned to cued-fear by presenting ten tone-shock paired stimuli during lights-on (7 AM) (n=9) and lights-off (7 PM) (n=9) periods. In experiment-II, animals were prepared for polysomnographic recording (n=8) and changes in sleep architecture after CuFC was determined. Further in experiment-III, animals were cued fear-conditioned during the lights-off period and were randomly divided into four groups: Sleep-Deprived (SD) (n=9), Non-Sleep Deprived (NSD) (n=9), Stress Control (SC) (n=9) and Tone Control (n=7). Percent freezing amount, a hallmark of fear, was compared statistically in these groups. Rats trained during the lights-off period exhibited significantly more freezing compared to lights-on period. In CuFC trained animals, total sleep amount did not change, however, REM sleep decreased significantly. Further, out of total sleep time, animals spent proportionately more time in NREM sleep. Nevertheless, SD animals exhibited significantly less freezing compared to NSD and SC groups. These data suggest that sleep plays an important role in the consolidation of cued fear-conditioned memory.

  9. Sleep Deficiency and Deprivation Leading to Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Michelle Kohansieh

    2015-01-01

    Full Text Available Sleep plays a vital role in an individual’s mental, emotional, and physiological well-being. Not only does sleep deficiency lead to neurological and psychological disorders, but also the literature has explored the adverse effects of sleep deficiency on the cardiovascular system. Decreased quantity and quality of sleep have been linked to cardiovascular disease (CVD risk factors, such as hypertension, obesity, diabetes, and dyslipidemia. We explore the literature correlating primary sleep deficiency and deprivation as a cause for cardiovascular disease and cite endothelial dysfunction as a common underlying mechanism.

  10. Sleep Deficiency and Deprivation Leading to Cardiovascular Disease.

    Science.gov (United States)

    Kohansieh, Michelle; Makaryus, Amgad N

    2015-01-01

    Sleep plays a vital role in an individual's mental, emotional, and physiological well-being. Not only does sleep deficiency lead to neurological and psychological disorders, but also the literature has explored the adverse effects of sleep deficiency on the cardiovascular system. Decreased quantity and quality of sleep have been linked to cardiovascular disease (CVD) risk factors, such as hypertension, obesity, diabetes, and dyslipidemia. We explore the literature correlating primary sleep deficiency and deprivation as a cause for cardiovascular disease and cite endothelial dysfunction as a common underlying mechanism.

  11. The effects of sleep deprivation on oculomotor responses.

    Science.gov (United States)

    Goldich, Yakov; Barkana, Yaniv; Pras, Eran; Zadok, David; Hartstein, Morris; Morad, Yair

    2010-12-01

     Fatigue due to sleep deprivation is one of the main causes of accidents. An objective and efficient method for determining whether the person is tired could provide a valuable tool in accident prevention. In this study, we evaluated whether oculomotor responses related to pupillary light reflex and saccadic velocity can identify subjects with sleep deprivation and whether these objective values correlate with subjective feeling of sleepiness.  Thirteen normal subjects (5 male, 8 female) participated in a 4-day study. During the first two days following a full night's (8 hr in bed) sleep, they underwent baseline automated oculomotor testing using the FIT-2500-Fatigue-Analyzer. Following a third full night's sleep, participants were then sleep-deprived for 28 hr. Ten measurements of automated oculomotor tests were performed during the sleep deprivation period. Visually-guided saccadic velocity (SV), initial pupil diameter (PD), pupillary constriction latency (CL), and amplitude of pupil constriction (CA) were assessed using the FIT-2500-Fatigue-Analyzer. The FIT-index, which expresses the deviation of the ocular parameters from the baseline measurements, was calculated. Correlation of oculomotor parameters with the subjective Stanford Sleepiness Scale (SSS) was performed.  We found that oculomotor measures showed a significant increase in CL (298.6 to 308.4 msec, P sleep deprivation. The SSS was found to significantly increase over the sleep deprivation period (2.05 to 5.05, P  0.66, P < 0.02).  Evaluation of oculomotor responses, particularly CL and SV together with the FIT-index, might have practical applications for the assessment of an individual's state of alertness or fatigue. Correlation of the FIT-index to the SSS provides evidence for the potential usefulness of oculomotor function measurements in the detection of subjective sleepiness.

  12. Aging worsens the effects of sleep deprivation on postural control.

    Directory of Open Access Journals (Sweden)

    Rébecca Robillard

    Full Text Available Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o. and 15 older adults (64±3.2 y.o. stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  13. Aging worsens the effects of sleep deprivation on postural control.

    Science.gov (United States)

    Robillard, Rébecca; Prince, François; Filipini, Daniel; Carrier, Julie

    2011-01-01

    Falls increase with age and cause significant injuries in the elderly. This study aimed to determine whether age modulates the interactions between sleep deprivation and postural control and to evaluate how attention influences these interactions in the elderly. Fifteen young (24±2.7 y.o.) and 15 older adults (64±3.2 y.o.) stood still on a force plate after a night of sleep and after total sleep deprivation. Center of pressure range and velocity were measured with eyes open and with eyes closed while participants performed an interference task, a control task, and no cognitive task. Sleep deprivation increased the antero-posterior range of center of pressure in both age groups and center of pressure speed in older participants only. In elderly participants, the destabilizing effects of sleep deprivation were more pronounced with eyes closed. The interference task did not alter postural control beyond the destabilization induced by sleep loss in older subjects. It was concluded that sleep loss has greater destabilizing effects on postural control in older than in younger participants, and may therefore increase the risk of falls in the elderly.

  14. Paradoxical Sleep Deprivation Causes Cardiac Dysfunction and the Impairment Is Attenuated by Resistance Training.

    Science.gov (United States)

    Giampá, Sara Quaglia de Campos; Mônico-Neto, Marcos; de Mello, Marco Tulio; Souza, Helton de Sá; Tufik, Sergio; Lee, Kil Sun; Koike, Marcia Kiyomi; Dos Santos, Alexandra Alberta; Antonio, Ednei Luiz; Serra, Andrey Jorge; Tucci, Paulo José Ferreira; Antunes, Hanna Karen Moreira

    2016-01-01

    Paradoxical sleep deprivation activates the sympathetic nervous system and the hypothalamus-pituitary-adrenal axis, subsequently interfering with the cardiovascular system. The beneficial effects of resistance training are related to hemodynamic, metabolic and hormonal homeostasis. We hypothesized that resistance training can prevent the cardiac remodeling and dysfunction caused by paradoxical sleep deprivation. Male Wistar rats were distributed into four groups: control (C), resistance training (RT), paradoxical sleep deprivation for 96 hours (PSD96) and both resistance training and sleep deprivation (RT/PSD96). Doppler echocardiograms, hemodynamics measurements, cardiac histomorphometry, hormonal profile and molecular analysis were evaluated. Compared to the C group, PSD96 group had a higher left ventricular systolic pressure, heart rate and left atrium index. In contrast, the left ventricle systolic area and the left ventricle cavity diameter were reduced in the PSD96 group. Hypertrophy and fibrosis were also observed. Along with these alterations, reduced levels of serum testosterone and insulin-like growth factor-1 (IGF-1), as well as increased corticosterone and angiotensin II, were observed in the PSD96 group. Prophylactic resistance training attenuated most of these changes, except angiotensin II, fibrosis, heart rate and concentric remodeling of left ventricle, confirmed by the increased of NFATc3 and GATA-4, proteins involved in the pathologic cardiac hypertrophy pathway. Resistance training effectively attenuates cardiac dysfunction and hormonal imbalance induced by paradoxical sleep deprivation.

  15. Effects of sleep deprivation during pregnancy on the reproductive capability of the offspring.

    Science.gov (United States)

    Alvarenga, Tathiana A; Aguiar, Marina F P; Mazaro-Costa, Renata; Tufik, Sergio; Andersen, Monica L

    2013-12-01

    To investigate the effects of sleep deprivation during pregnancy on the reproductive capability of the offspring. Using a sleep loss model or control home-cage group (male and females rats) to evaluate sexual behavior and hormonal profile in males and females F1 offspring. Laboratory. First experiment: Pregnant females were exposed to sleep restriction (SR) protocol and the F1 generation was evaluated. Second experiment: male rats were submitted to SR or paradoxical sleep deprivation (PSD) protocol and the F1 generation was evaluated. Male and female rats were subjected to sleep restriction (SR) for 21 days or paradoxal sleep-deprived (PSD) for 96 hours. Sexual behavior and hormonal levels during the adult phase were analyzed in F1 offspring of female and male rats submitted to sleep loss. F1 male offspring of SR females had lower motivation for sex and reduced progesterone concentrations. In contrast, F1 female offspring displayed significantly enhanced proceptivity compared with control offspring. F1 female offspring also demonstrated hypersexuality by mounting the males in the absence of any significant hormonal alterations. F1 male offspring of SR or paradoxically sleep-deprived (PSD) males presented a decline in the sexual response, accompanied by a reduction in testosterone concentrations. Proceptivity was significantly increased among F1 female offspring of PSD and SR males compared with control offspring. SR in progenitors may alter sexual behavior of the F1 offspring in adulthood. These findings reveal far-reaching consequences of sleep deprivation, and suggest that parental sleep influences the reproductive capability of subsequent generations. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Evolution of sleep quantity, sleep deprivation, mood disturbances, empathy, and burnout among interns.

    Science.gov (United States)

    Rosen, Ilene M; Gimotty, Phyllis A; Shea, Judy A; Bellini, Lisa M

    2006-01-01

    To explore the relationships between sleep deprivation and the evolution of mood disturbances, empathy, and burnout among a cohort of interns. In 2002-03, 47 interns in the internal medicine resident program at the University of Pennsylvania School of Medicine completed the following instruments at baseline and at year end: sleep quantities, Epworth Sleepiness Scale, the Beck Depression Inventory-Short Form, the Interpersonal Reactivity Index, and the Maslach Burnout Inventory-Human Services Survey. The prevalences of acute and chronic sleep deprivation, subjective sleepiness, burnout, empathy, and depression at the beginning of the year were compared to prevalences at the end of internship. Associations between sleep deprivation and mood, empathy, or burnout were explored. The prevalence of chronic sleep deprivation, depression, burnout, and empathy increased from baseline to year end. Specifically, the prevalence of "high" scores changed for chronic sleep deprivation (9% to 43%, p = .0001). The prevalence of moderate depression increased from 4.3% to 29.8% (p = .0002). Only 4.3% reported a high level of burnout initially compared with 55.3% at year end (p sleep deprived and becoming depressed (OR = 7, p = .014). Given the association between chronic sleep deprivation and mood disturbances during internship, outcome assessment is warranted to see if duty-hour reform will translate into more hours slept or fewer hours worked, coincident with improved mood.

  17. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation

    OpenAIRE

    Giskeødegård, Guro F; Davies, Sarah K.; Victoria L Revell; Hector Keun; Skene, Debra J.

    2015-01-01

    Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprisi...

  18. Voluntary oculomotor performance upon awakening after total sleep deprivation.

    Science.gov (United States)

    Ferrara, M; De Gennaro MFL; Bertini, M

    2000-09-15

    The potential impact of sleep inertia on measures of voluntary oculomotor control have been surprisingly neglected. The present study examined the effects of 40 hours of sleep deprivation on saccadic (SAC) and smooth pursuit (SP) performance, attentional/visual search performance (Letter Cancellation Task, LCT) and subjective sleepiness (Sleepiness Visual Analog Scale, SVAS) recorded immediately after awakening. Standard polysomnography of nine normal subjects was recorded for 3 nights (1 adaptation, AD; 1 baseline, BSL; 1 recovery, REC); BSL and REC were separated by a period of 40 h of continuous wakefulness, during which subjects were tested every two hours. Within 30 s of each morning awakening, a test battery (SAC, SP, LCT, SVAS) was administered to subjects in bed. For data analysis, mean performance obtained during the day preceding the sleep deprivation night was considered as "Diurnal Baseline" and compared to performance upon awakening from nocturnal sleep. As a consequence of sleep deprivation, SWS percentage was doubled during REC. Saccade latency increased and velocity decreased significantly upon awakening from REC as compared to the other three conditions (Diurnal baseline, AD awakening, BSL awakening); accuracy was unaffected. As regards SP, phase did not show any impairment upon awakening, while velocity gain upon awakening from REC was significantly lower as compared to the other conditions. Finally, number of hits on LCT upon awakening from REC was significantly lower and subjective sleepiness higher as compared to Diurnal Baseline. It is concluded that 40 h of sleep deprivation significantly impaired performance to SAC and SP tasks recorded upon awakening from recovery sleep. This performance worsening is limited to the measures of speed, while both SAC accuracy and SP phase do not show a significant decrease upon awakening. Since saccadic velocity has recently been found to negatively correlate with simulator vehicle crash rates, it is

  19. Combining two model systems of psychosis: The effects of schizotypy and sleep deprivation on oculomotor control and psychotomimetic states.

    Science.gov (United States)

    Meyhöfer, Inga; Steffens, Maria; Faiola, Eliana; Kasparbauer, Anna-Maria; Kumari, Veena; Ettinger, Ulrich

    2017-11-01

    Model systems of psychosis, such as schizotypy or sleep deprivation, are valuable in informing our understanding of the etiology of the disorder and aiding the development of new treatments. Schizophrenia patients, high schizotypes, and sleep-deprived subjects are known to share deficits in oculomotor biomarkers. Here, we aimed to further validate the schizotypy and sleep deprivation models and investigated, for the first time, their interactive effects on smooth pursuit eye movements (SPEM), prosaccades, antisaccades, predictive saccades, and measures of psychotomimetic states, anxiety, depression, and stress. To do so, n = 19 controls and n = 17 high positive schizotypes were examined after both a normal sleep night and 24 h of sleep deprivation. Schizotypes displayed higher SPEM global position error, catch-up saccade amplitude, and increased psychotomimetic states. Sleep deprivation impaired SPEM, prosaccade, antisaccade, and predictive saccade performance and increased levels of psychotomimetic experiences. Additionally, sleep deprivation reduced SPEM gain in schizotypes but not controls. We conclude that oculomotor impairments are observed in relation to schizotypy and following sleep deprivation, supporting their utility as biomarkers in model systems of psychosis. The combination of these models with oculomotor biomarkers may be particularly fruitful in assisting the development of new antipsychotic or pro-cognitive drugs. © 2017 Society for Psychophysiological Research.

  20. Melatonin modulates adiponectin expression on murine colitis with sleep deprivation.

    Science.gov (United States)

    Kim, Tae Kyun; Park, Young Sook; Baik, Haing-Woon; Jun, Jin Hyun; Kim, Eun Kyung; Sull, Jae Woong; Sung, Ho Joong; Choi, Jin Woo; Chung, Sook Hee; Gye, Myung Chan; Lim, Ju Yeon; Kim, Jun Bong; Kim, Seong Hwan

    2016-09-07

    To determine adiponectin expression in colonic tissue of murine colitis and systemic cytokine expression after melatonin treatments and sleep deprivation. The following five groups of C57BL/6 mice were used in this study: (1) group I, control; (2) group II, 2% DSS induced colitis for 7 d; (3) group III, 2% DSS induced colitis and melatonin treatment; (4) group IV, 2% DSS induced colitis with sleep deprivation (SD) using specially designed and modified multiple platform water baths; and (5) group V, 2% DSS induced colitis with SD and melatonin treatment. Melatonin (10 mg/kg) or saline was intraperitoneally injected daily to mice for 4 d. The body weight was monitored daily. The degree of colitis was evaluated histologically after sacrificing the mice. Immunohistochemical staining and Western blot analysis was performed using anti-adiponectin antibody. After sampling by intracardiac punctures, levels of serum cytokines were measured by ELISA. Sleep deprivation in water bath exacerbated DSS induced colitis and worsened weight loss. Melatonin injection not only alleviated the severity of mucosal injury, but also helped survival during stressful condition. The expression level of adiponectin in mucosa was decreased in colitis, with the lowest level observed in colitis combined with sleep deprivation. Melatonin injection significantly (P sleep deprivation.

  1. Sleep Deprivation and Stressors: Evidence for Elevated Negative Affect in Response to Mild Stressors When Sleep Deprived

    OpenAIRE

    Minkel, Jared D.; Banks, Siobhan; Htaik, Oo; Moreta, Marisa C.; Jones, Christopher W.; McGlinchey, Eleanor L.; Simpson, Norah S.; Dinges, David F.

    2012-01-01

    Stress often co-occurs with inadequate sleep duration, and both are believed to impact mood and emotion. It is not yet known whether inadequate sleep simply increases the intensity of subsequent stress responses or interacts with stressors in more complicated ways. To address this issue, we investigated the effects of one night of total sleep deprivation on subjective stress and mood in response to low-stress and high-stress cognitive testing conditions in healthy adult volunteers in two sepa...

  2. Sleep deprivation and sleep recovery modifies connexin36 and connexin43 protein levels in rat brain.

    Science.gov (United States)

    Franco-Pérez, Javier; Ballesteros-Zebadúa, Paola; Fernández-Figueroa, Edith A; Ruiz-Olmedo, Isabel; Reyes-Grajeda, Pablo; Paz, Carlos

    2012-01-25

    Gap junctional communication is mainly mediated by connexin36 and connexin43 in neurons and astrocytes, respectively. It has been suggested that connexin36 allows electrical coupling between neurons whereas connexin43 participates in several process including release of ATP. It was recently reported that blockage of gap junctional communication mediated by connexin36 can disrupt the sleep architecture of the rat. However, there is no experimental approach about effects of sleep deprivation on connexins expression. Therefore, we examined in adult male Wistar rats whether protein levels of connexin36 and connexin43 change in pons, hypothalamus, and frontal cortex after 24 h of total sleep deprivation and 4 h of sleep recovery. Western blot revealed that total sleep deprivation significantly decreases the levels of connexin36 in the hypothalamus and this decrease maintains after sleep recovery. Meanwhile, connexin43 is not altered by total sleep deprivation but interestingly the sleep recovery period induces an increase of this connexin. These results suggest that electrical coupling between hypothalamic neurons could be altered by sleep deprivation and that sleep recovery drives changes in connexin43 expression probably as a mechanism related to ATP release and energy regulation during sleep. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  3. Effects of sleep deprivation on brain bioenergetics, sleep, and cognitive performance in cocaine-dependent individuals.

    Science.gov (United States)

    Trksak, George H; Bracken, Bethany K; Jensen, J Eric; Plante, David T; Penetar, David M; Tartarini, Wendy L; Maywalt, Melissa A; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E

    2013-01-01

    In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent ³¹P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, ³¹P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate), α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.

  4. Effects of Sleep Deprivation on Brain Bioenergetics, Sleep, and Cognitive Performance in Cocaine-Dependent Individuals

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2013-01-01

    Full Text Available In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent [31]P magnetic resonance spectroscopy (MRS brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep, [31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brain β-NTP (direct measure of adenosine triphosphate, α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.

  5. The Effects of Sleep Deprivation on Soccer Skills.

    Science.gov (United States)

    Pallesen, Ståle; Gundersen, Hilde Stokvold; Kristoffersen, Morten; Bjorvatn, Bjørn; Thun, Eirunn; Harris, Anette

    2017-08-01

    Many athletes sleep poorly due to stress, travel, and competition anxiety. In the present study, we investigated the effects of sleep deprivation on soccer skills (juggling, dribbling, ball control, continuous kicking, 20 and 40 m sprint, and 30 m sprint with changes of direction). In all, 19 male junior soccer players (14-19 years old) were recruited and participated in a cross-balanced experimental study comprising two conditions; habitual sleep and 24 hours sleep deprivation. In both conditions, testing took place between 8 a.m. and 10 a.m. Order of tests was counterbalanced. Each test was conducted once or twice in a sequence repeated three times. The results revealed a negative effect of sleep deprivation on the continuous kicking test. On one test, 30 meter sprint with directional changes, a significant condition × test repetition interaction was found, indicating a steeper learning curve in the sleep deprived condition from Test 1 to Test 2 and a steeper learning curve in the rested condition from Test 2 to Test 3. The results are discussed in terms of limitations and strengths, and recommendations for future studies are outlined.

  6. Evaluation of the effect of pentoxifylline on sleep-deprivation induced memory impairment.

    Science.gov (United States)

    Alzoubi, Karem H; Khabour, Omar F; Tashtoush, Noor H; Al-Azzam, Sayer I; Mhaidat, Nizar M

    2013-09-01

    In this study, we examined the ability of Pentoxifylline (PTX) to prevent sleep deprivation induced memory impairment probably through decreasing oxidative stress. Sleep deprivation was chronically induced 8 h/day for 6 weeks in rats using modified multiple platform model. Concurrently, PTX (100 mg/kg) was administered to animals on daily basis. After 6 weeks of treatment, behavioral studies were conducted to test the spatial learning and memory using the Radial Arm Water Maze. Additionally, the hippocampus was dissected; and levels/activities of antioxidant defense biomarkers glutathione reduced (GSH), glutathione oxidized (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), were assessed. The results show that chronic sleep deprivation impaired short- and long-term memories, which was prevented by chronic treatment with PTX. Additionally, PTX normalized sleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio (P sleep deprivation induces memory impairment, and treatment with PTX prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  7. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation

    OpenAIRE

    Irwin, DE; Olmstead, R; Carroll, JE

    2015-01-01

    © 2016 Society of Biological Psychiatry. Background Sleep disturbance is associated with inflammatory disease risk and all-cause mortality. Here, we assess global evidence linking sleep disturbance, sleep duration, and inflammation in adult humans. Methods A systematic search of English language publications was performed, with inclusion of primary research articles that characterized sleep disturbance and/or sleep duration or performed experimental sleep deprivation and assessed inflammation...

  8. Sleep deprivation in adolescents: correlations with health complaints and health-related quality of life.

    Science.gov (United States)

    Paiva, Teresa; Gaspar, Tania; Matos, Margarida G

    2015-04-01

    The present study aimed to evaluate the influences of sleep duration, sleep deprivation, and weekend variability of sleep upon other adolescents' features, namely those related to health and health-related quality of life. The Health Behaviour in School-Aged Children (HBSC) survey is based on a self-completed questionnaire. The participants in the present study were 3476 students (53.8% were girls) in the 8th and 10th grades at school; the mean age was 14.9 years (range 12.5-19.0). Subjective sleep duration during the weeknights and weekends was collected; sleep deprivation (SD) was considered whenever the difference was greater than 3 h. Health complaint frequency and health-related quality of life (with the Kidscreen 10) were collected. Sleep deprivation was present in 18.9% of the students. It was negatively correlated with sleep duration on weeknights. There were no gender differences, but SD increased with age and grade. Higher school grades were mainly associated with fatigue. A considerable number of adolescents had sleep problems (37.2%); 25.5% had difficulties in sleep initiation, which was more prevalent in adolescents with SD. The sleep duration on weeknights was decreased in the SD group. The average health-related quality of life was reduced in adolescents with SD. The frequency of health complaint was higher is adolescents with SD. Girls had significantly more health complaints than boys, with special focus on headaches. Sleep deprivation is associated with the perception of health-related quality of life and perceived physical and mental health. Copyright © 2014. Published by Elsevier B.V.

  9. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.

    Science.gov (United States)

    Kong, Danyang; Asplund, Christopher L; Ling, Aiqing; Chee, Michael W L

    2015-08-01

    Temporal expectation enables us to focus limited processing resources, thereby optimizing perceptual and motor processing for critical upcoming events. We investigated the effects of total sleep deprivation (TSD) on temporal expectation by evaluating the foreperiod and sequential effects during a psychomotor vigilance task (PVT). We also examined how these two measures were modulated by vulnerability to TSD. Three 10-min visual PVT sessions using uniformly distributed foreperiods were conducted in the wake-maintenance zone the evening before sleep deprivation (ESD) and three more in the morning following approximately 22 h of TSD. TSD vulnerable and nonvulnerable groups were determined by a tertile split of participants based on the change in the number of behavioral lapses recorded during ESD and TSD. A subset of participants performed six additional 10-min modified auditory PVTs with exponentially distributed foreperiods during rested wakefulness (RW) and TSD to test the effect of temporal distribution on foreperiod and sequential effects. Sleep laboratory. There were 172 young healthy participants (90 males) with regular sleep patterns. Nineteen of these participants performed the modified auditory PVT. Despite behavioral lapses and slower response times, sleep deprived participants could still perceive the conditional probability of temporal events and modify their level of preparation accordingly. Both foreperiod and sequential effects were magnified following sleep deprivation in vulnerable individuals. Only the foreperiod effect increased in nonvulnerable individuals. The preservation of foreperiod and sequential effects suggests that implicit time perception and temporal preparedness are intact during total sleep deprivation. Individuals appear to reallocate their depleted preparatory resources to more probable event timings in ongoing trials, whereas vulnerable participants also rely more on automatic processes. © 2015 Associated Professional Sleep

  10. Sleep mechanisms: Sleep deprivation and detection of changing levels of consciousness

    Science.gov (United States)

    Dement, W. C.; Barchas, J. D.

    1972-01-01

    An attempt was made to obtain information relevant to assessing the need to sleep and make up for lost sleep. Physiological and behavioral parameters were used as measuring parameters. Sleep deprivation in a restricted environment, derivation of data relevant to determining sleepiness from EEG, and the development of the Sanford Sleepiness Scale were discussed.

  11. Acute Sleep Deprivation Enhances Post-Infection Sleep and Promotes Survival during Bacterial Infection in Drosophila

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A.

    2014-01-01

    Study Objectives: Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Setting: Laboratory. Participants: Drosophila melanogaster. Methods and Results: Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Conclusions: Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection. Citation: Kuo TH, Williams JA. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila. SLEEP 2014;37(5):859-869. PMID:24790264

  12. [Impact of sleep deprivation on coronary heart disease and progress in prevention and treatment with traditional Chinese medicines].

    Science.gov (United States)

    Yuan, Rong; Wang, Jie; Guo, Li-li

    2015-05-01

    Sleep deprivation (SD) has been taken as an independent predictor for cardiovascular risks, which was closely related to the increased morbidity and mortality in coronary heart disease (CHD). In this article, after reviewing the impact of modern medical method sleep deprivation on CHD and studies on principle method recipe medicines for preventing and treating CHD, the authors observed the autonomic nerve dysfunction, hormonal metabolism dysfunction, endothelial dysfunction and inflammatory responses after sleep deprivation, which can cause or aggravate CHD. On the basis of the traditional Chinese medicine theories of "heart dominating the blood and vessels and the mind", the authors considered that traditional Chinese medicines can tonify heart and soothe the nerves, reducing all of the risk factors through multi-target and multi-pathway, and improve sleep and decrease the risk factors caused by sleep deprivation, which provides a new idea for the prevention and treatment of CHD.

  13. The impact of sleep deprivation on the quality of learning

    OpenAIRE

    Rozumová, Eva

    2017-01-01

    The bachelor thesis deals with issue of sleep, memory and learning.The primary aim of this work is to understand the relationship, and find a connection between sleep and learning and their influence on short-term memory.The work outlines the issues of learning and the associated memory, the influence of sleep deprivation on a certain type of memory and the interconnection of concentration and the nervous system. In the following chapters will be discussed issues of sleep and wakefulness, sle...

  14. Sleep deprivation and the organization of the behavioral states.

    Science.gov (United States)

    Dement, W. C.

    1972-01-01

    Questions concerning the significance of sleep in the developing organism are investigated, together with the mechanisms that underlie the unique distribution of behavioral states at any particular age and during any particular experimental manipulation. It is attempted to define the states of sleep and wakefulness in terms of a temporal confluence of a number of more or less independent processes, taking also into account the functional consequences of these attributes. The results of a selective deprivation of rapid eye movement sleep are explored, giving attention to effects on sleep, behavioral changes, brain excitability, pharmacological changes, and biochemical changes.

  15. The effects of sleep deprivation on brain fMRI activation during motion detection and tracking

    OpenAIRE

    Robinson, G

    2008-01-01

    Sleep deprivation is common and leads to inattention and impaired vigilance. Sleep deprived drivers have an increased road traffic accident rate. Police data suggest that sleep deprivation accounts for up to 23% of all accidents on UK roads. How sleep deprivation leads to impaired driving is uncertain. The skills needed for error free driving are the detection of moving objects, and the ability to track. Work using Functional Magnetic Resonance Imaging (fMRI) has established which brain areas...

  16. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  17. Sleep deprivation impairs inhibitory control during wakefulness in adult sleepwalkers.

    Science.gov (United States)

    Labelle, Marc-Antoine; Dang-Vu, Thien Thanh; Petit, Dominique; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2015-12-01

    Sleepwalkers often complain of excessive daytime somnolence. Although excessive daytime somnolence has been associated with cognitive impairment in several sleep disorders, very few data exist concerning sleepwalking. This study aimed to investigate daytime cognitive functioning in adults diagnosed with idiopathic sleepwalking. Fifteen sleepwalkers and 15 matched controls were administered the Continuous Performance Test and Stroop Colour-Word Test in the morning after an overnight polysomnographic assessment. Participants were tested a week later on the same neuropsychological battery, but after 25 h of sleep deprivation, a procedure known to precipitate sleepwalking episodes during subsequent recovery sleep. There were no significant differences between sleepwalkers and controls on any of the cognitive tests administered under normal waking conditions. Testing following sleep deprivation revealed significant impairment in sleepwalkers' executive functions related to inhibitory control, as they made more errors than controls on the Stroop Colour-Word Test and more commission errors on the Continuous Performance Test. Sleepwalkers' scores on measures of executive functions were not associated with self-reported sleepiness or indices of sleep fragmentation from baseline polysomnographic recordings. The results support the idea that sleepwalking involves daytime consequences and suggest that these may also include cognitive impairments in the form of disrupted inhibitory control following sleep deprivation. These disruptions may represent a daytime expression of sleepwalking's pathophysiological mechanisms. © 2015 European Sleep Research Society.

  18. Functional consequences of sustained sleep deprivation in the rat.

    Science.gov (United States)

    Everson, C A

    1995-01-01

    Sleep deprivation disrupts vital biological processes that are necessary for cognitive ability and physical health, but the physiological changes that underlie these outward effects are largely unknown. The purpose of the present studies in the laboratory rat is to prolong sleep deprivation to delineate the pathophysiology and to determine its mediation. In the rat, the course of prolonged sleep deprivation has a syndromic nature and eventuates in a life-threatening state. An early and central symptom of sleep deprivation is a progressive increase in peripheral energy expenditure to nearly double normal levels. An attempt to alleviate this negative energy balance by feeding rats a balanced diet that is high in its efficiency of utilization prolongs survival and attenuates or delays development of malnutrition-like symptoms, indicating that several symptoms can be manipulated to some extent by energy and nutrient consumption. Most changes in neuroendocrine parameters appear to be responses to metabolic demands, such as increased plasma catecholamines indicating sympathetic activation. Plasma total thyroid hormones, however, decline to severely low levels; a metabolic complication that is associated with other sleep deprivation-induced symptoms, such as a decline in body temperature to hypothermic levels despite increased energy expenditure. Metabolic mapping of the brain revealed a dissociation between the energy metabolism of the brain and that of the body. Sleep deprivation's effects on cerebral structures are heterogeneous and unidirectional toward decreased functional activity. The hypometabolic brain structures are concentrated in the hypothalamus, thalamus and limbic systems, whereas few regions in the rest of the brain and none in the medulla, are affected. Correspondence can be found between some of the affected cerebral structures and several of the peripheral symptoms, such as hyperphagia and possible heat retention problems. The factor predisposing to

  19. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Science.gov (United States)

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results show that cognitive lapses involve local state-dependent changes in neuronal activity already present in the MTL.

  20. Double Trouble? The Effects of Sleep Deprivation and Chronotype on Adolescent Affect

    Science.gov (United States)

    Dagys, Natasha; McGlinchey, Eleanor L.; Talbot, Lisa S.; Kaplan, Katherine A.; Dahl, Ronald E.; Harvey, Allison G.

    2012-01-01

    Background: Two understudied risk factors that have been linked to emotional difficulties in adolescence are chronotype and sleep deprivation. This study extended past research by using an experimental design to investigate the role of sleep deprivation and chronotype on emotion in adolescents. It was hypothesized that sleep deprivation and an…

  1. Meta-Analysis of the Antidepressant Effects of Acute Sleep Deprivation.

    Science.gov (United States)

    Boland, Elaine M; Rao, Hengyi; Dinges, David F; Smith, Rachel V; Goel, Namni; Detre, John A; Basner, Mathias; Sheline, Yvette I; Thase, Michael E; Gehrman, Philip R

    To provide a quantitative meta-analysis of the antidepressant effects of sleep deprivation to complement qualitative reviews addressing response rates. English-language studies from 1974 to 2016 using the keywords sleep deprivation and depression searched through PubMed and PsycINFO databases. A total of 66 independent studies met criteria for inclusion: conducted experimental sleep deprivation, reported the percentage of the sample that responded to sleep deprivation, provided a priori definition of antidepressant response, and did not seamlessly combine sleep deprivation with other therapies (eg, chronotherapeutics, repetitive transcranial magnetic stimulation). Data extracted included percentage of responders, type of sample (eg, bipolar, unipolar), type of sleep deprivation (eg, total, partial), demographics, medication use, type of outcome measure used, and definition of response (eg, 30% reduction in depression ratings). Data were analyzed with meta-analysis of proportions and a Poisson mixed-effects regression model. The overall response rate to sleep deprivation was 45% among studies that utilized a randomized control group and 50% among studies that did not. The response to sleep deprivation was not affected significantly by the type of sleep deprivation performed, the nature of the clinical sample, medication status, the definition of response used, or age and gender of the sample. These findings support a significant effect of sleep deprivation and suggest the need for future studies on the phenotypic nature of the antidepressant response to sleep deprivation, on the neurobiological mechanisms of action, and on moderators of the sleep deprivation treatment response in depression.

  2. Effects of total sleep deprivation on divided attention performance.

    Directory of Open Access Journals (Sweden)

    Eric Chern-Pin Chua

    Full Text Available Dividing attention across two tasks performed simultaneously usually results in impaired performance on one or both tasks. Most studies have found no difference in the dual-task cost of dividing attention in rested and sleep-deprived states. We hypothesized that, for a divided attention task that is highly cognitively-demanding, performance would show greater impairment during exposure to sleep deprivation. A group of 30 healthy males aged 21-30 years was exposed to 40 h of continuous wakefulness in a laboratory setting. Every 2 h, subjects completed a divided attention task comprising 3 blocks in which an auditory Go/No-Go task was 1 performed alone (single task; 2 performed simultaneously with a visual Go/No-Go task (dual task; and 3 performed simultaneously with both a visual Go/No-Go task and a visually-guided motor tracking task (triple task. Performance on all tasks showed substantial deterioration during exposure to sleep deprivation. A significant interaction was observed between task load and time since wake on auditory Go/No-Go task performance, with greater impairment in response times and accuracy during extended wakefulness. Our results suggest that the ability to divide attention between multiple tasks is impaired during exposure to sleep deprivation. These findings have potential implications for occupations that require multi-tasking combined with long work hours and exposure to sleep loss.

  3. Acute partial sleep deprivation increases food intake in healthy men.

    Science.gov (United States)

    Brondel, Laurent; Romer, Michael A; Nougues, Pauline M; Touyarou, Peio; Davenne, Damien

    2010-06-01

    Acute partial sleep deprivation increases plasma concentrations of ghrelin and decreases those of leptin. The objective was to observe modifications in energy intake and physical activity after acute partial sleep deprivation in healthy men. Twelve men [age: 22 +/- 3 y; body mass index (in kg/m(2)): 22.30 +/- 1.83] completed a randomized 2-condition crossover study. During the first night of each 48-h session, subjects had either approximately 8 h (from midnight to 0800) or approximately 4 h (from 0200 to 0600) of sleep. All foods consumed subsequently (jam on buttered toast for breakfast, buffet for lunch, and a free menu for dinner) were eaten ad libitum. Physical activity was recorded by an actimeter. Feelings of hunger, perceived pleasantness of the foods, desire to eat some foods, and sensation of sleepiness were also evaluated. In comparison with the 8-h sleep session, subjects consumed 559 +/- 617 kcal (ie, 22%) more energy on the day after sleep restriction (P sleep restriction than after 8 h of sleep (P sleep subsequently increased food intake and, to a lesser extent, estimated physical activity-related energy expenditure in healthy men. These experimental results, if confirmed by long-term energy balance measurements, suggest that sleep restriction could be a factor that promotes obesity. This trial was registered at clinicaltrials.gov as NCT00986492.

  4. Chronic sleep deprivation and seasonality: implications for the obesity epidemic.

    Science.gov (United States)

    Cizza, G; Requena, M; Galli, G; de Jonge, L

    2011-11-01

    Sleep duration has progressively fallen over the last 100 years while obesity has increased in the past 30 years. Several studies have reported an association between chronic sleep deprivation and long-term weight gain. Increased energy intake due to sleep loss has been listed as the main mechanism. The consequences of chronic sleep deprivation on energy expenditure have not been fully explored. Sleep, body weight, mood and behavior are subjected to circannual changes. However, in our modern environment seasonal changes in light and ambient temperature are attenuated. Seasonality, defined as cyclic changes in mood and behavior, is a stable personality trait with a strong genetic component. We hypothesize that the attenuation in seasonal changes in the environment may produce negative consequences, especially in individuals more predisposed to seasonality, such as women. Seasonal affective disorder, a condition more common in women and characterized by depressed mood, hypersomnia, weight gain, and carbohydrate craving during the winter, represents an extreme example of seasonality. One of the postulated functions of sleep is energy preservation. Hibernation, a phenomenon characterized by decreased energy expenditure and changes in the state of arousal, may offer useful insight into the mechanisms behind energy preservation during sleep. The goals of this article are to: a) consider the contribution of changes in energy expenditure to the weight gain due to sleep loss; b) review the phenomena of seasonality, hibernation, and their neuroendocrine mechanisms as they relate to sleep, energy expenditure, and body weight regulation.

  5. Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation.

    Science.gov (United States)

    Giskeødegård, Guro F; Davies, Sarah K; Revell, Victoria L; Keun, Hector; Skene, Debra J

    2015-10-09

    Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2-8 h intervals and analysed by (1)H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies.

  6. Sleep deprivation among critical care patients.

    Science.gov (United States)

    Fontana, Christine J; Pittiglio, Laura I

    2010-01-01

    To gain an understanding and increased knowledge regarding the presence and affects of ambient stressors on patients' sleep and the efficacy of implementing sleep promotion measures within the intensive care unit environment, the author reviewed 10 empirical studies. Research indicates that ambient stressors within the intensive care unit have detrimental effects on patients' sleep, and nursing interventions that focus on the abatement of ambient stressors enhance patients' sleep. In the intensive care unit, optimizing the environment to promote sleep requires the active removal of ambient stressors.

  7. Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats.

    Science.gov (United States)

    Deurveilher, Samuel; Seary, M Elizabeth; Semba, Kazue

    2013-04-01

    Sleep disturbances are commonly associated with menopause. Hormone replacement therapy is often used to treat various menopausal symptoms, but its efficacy for improving sleep is a matter of debate. We addressed this question by using a rodent model of ovarian hormone loss and replacement in midlife. Middle-aged female rats were ovariectomized and implanted with capsules containing estradiol with or without progesterone, or oil. After two weeks, sleep/wake states were recorded polygraphically during a 24-h baseline period, followed by 6h of sleep deprivation in the second half of the light phase, and a 24-h recovery period. During the baseline dark phase, hormone treatments increased wakefulness, and decreased non-rapid eye movement sleep (NREMS) by shortening NREMS episodes; however, NREMS EEG delta power or energy (cumulative power) was unaffected by combined hormones. Following sleep deprivation, all the groups showed NREMS and rapid eye movement sleep (REMS) rebounds, with similar relative increases from respective baseline levels. The increases in NREMS EEG delta power/energy during recovery were enhanced by combined hormones. These results from middle-aged ovariectomized rats indicate that replacement with estrogen with or without progesterone reduces baseline NREMS without affecting sleep intensity, particularly during the dark (active) phase, whereas following sleep deprivation the same hormone treatments do not affect the ability to increase NREMS or REMS, but treatment with both hormones, in particular, enhances the intensity of recovery sleep. These results support the usefulness of ovariectomized middle-aged rats as a model system to study the biological effects of hormone replacement on sleep regulation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals.

    Science.gov (United States)

    Lucassen, Eliane A; Piaggi, Paolo; Dsurney, John; de Jonge, Lilian; Zhao, Xiong-ce; Mattingly, Megan S; Ramer, Angela; Gershengorn, Janet; Csako, Gyorgy; Cizza, Giovanni

    2014-01-01

    Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals. To characterize neurocognitive functions and assess its reversibility. Prospective cohort study. Tertiary Referral Research Clinical Center. A cohort of 121 short-sleeping (Sleep extension (468±88 days) with life-style modifications. Neurocognitive functions, sleep quality and sleep duration. At baseline, 44% of the individuals had an impaired global deficit score (t-score 0-39). Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02), and lower urinary dopamine levels (p = 0.001). Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74), subjective sleep quality improved by 24% (psleep duration increased by 11% by questionnaires (psleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function. Drop-out rate. Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population. www.ClinicalTrials.gov NCT00261898. NIDDK protocol 06-DK-0036.

  9. Sleep deprivation and stressors: evidence for elevated negative affect in response to mild stressors when sleep deprived.

    Science.gov (United States)

    Minkel, Jared D; Banks, Siobhan; Htaik, Oo; Moreta, Marisa C; Jones, Christopher W; McGlinchey, Eleanor L; Simpson, Norah S; Dinges, David F

    2012-10-01

    Stress often co-occurs with inadequate sleep duration, and both are believed to impact mood and emotion. It is not yet known whether inadequate sleep simply increases the intensity of subsequent stress responses or interacts with stressors in more complicated ways. To address this issue, we investigated the effects of one night of total sleep deprivation on subjective stress and mood in response to low-stress and high-stress cognitive testing conditions in healthy adult volunteers in two separate experiments (total N = 53). Sleep was manipulated in a controlled, laboratory setting and stressor intensity was manipulated by changing difficulty of cognitive tasks, time pressure, and feedback about performance. Sleep-deprived participants reported greater subjective stress, anxiety, and anger than rested controls following exposure to the low-stressor condition, but not in response to the high-stressor condition, which elevated negative mood and stress about equally for both sleep conditions. These results suggest that sleep deprivation lowers the psychological threshold for the perception of stress from cognitive demands but does not selectively increase the magnitude of negative affect in response to high-stress performance demands.

  10. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity-resistant rats.

    Science.gov (United States)

    Mavanji, Vijayakumar; Teske, Jennifer A; Billington, Charles J; Kotz, Catherine M

    2013-07-01

    Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep. Copyright © 2012 The Obesity Society.

  11. Cognitive function during acute cold exposure with or without sleep deprivation lasting 53 hours.

    Science.gov (United States)

    Spitznagel, Mary Beth; Updegraff, John; Pierce, Katie; Walter, Kristen H; Collinsworth, Tiffany; Glickman, Ellen; Gunstad, John

    2009-08-01

    Cold exposure and sleep deprivation are independently associated with transient cognitive impairment, including difficulty in attention, reaction time, and executive function. The possible interactive effects of cold exposure and sleep deprivation on cognition have not previously been examined. Six apparently healthy young adult men participated in a within-subjects design with two counterbalanced 53-h protocols: 2-h cold exposure (10 degrees C) blocks every 24 h with normal sleep (Cold), and the same cold exposure in addition to 53 h of complete sleep deprivation (Cold + Sdep). Computerized cognitive tasks of attention, reaction time, and executive function were completed every 4 h during Cold + Sdep, and every 4 waking hours during Cold. Cold was associated with a decline in attention over time (b = -0.06). Cold + Sdep was associated with greater attentional decline than Cold (b = -0.13), a significantly reduced speeded/reaction time performance (b = 0.02; b = -0.13), and a trend toward reduced cognitive inhibition over time (b = -0.10). Findings suggest an additive effect of sleep deprivation to cold exposure in attention and reaction time, and a trend toward this pattern in aspects of executive functioning. These findings raise concern for errors when careful attention and speeded cognitive flexibility are necessary and optimal sleep and protection from the environment is not possible. Mechanisms are not entirely clear, but may be related to transient cerebrovascular or neurochemical changes, or direct physiological effects. Further work is needed to clarify mechanisms for the additive cognitive decline associated with cold exposure and sleep deprivation.

  12. The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide.

    Science.gov (United States)

    Zielinski, Mark R; Gerashchenko, Dmitry; Karpova, Svetlana A; Konanki, Varun; McCarley, Robert W; Sutterwala, Fayyaz S; Strecker, Robert E; Basheer, Radhika

    2017-05-01

    Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1β into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1β, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1β-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1β. NLRP3, ASC, and IL1β mRNA, IL-1β protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain. Published by Elsevier Inc.

  13. Sleep deprivation: a mind-body approach.

    Science.gov (United States)

    Aguirre, Claudia C

    2016-11-01

    The purpose of this review is to summarize recent advances in our understanding of the impact sleep disturbances have on our health, with particular focus on the brain. The present review considers the influence of sleep disturbance on the neurovascular unit; the role of sleep disturbance in neurodegenerative diseases; and relevant strategies of neuro-immuno-endocrine interactions that likely contribute to the restorative power of sleep. Given the latest discoveries about the brain's waste clearance system and its relationship to neurodegenerative diseases like Alzheimer's disease, this review gives a brief overview on the molecular mechanisms behind sleep loss-related impairments. Recent evidence indicates that sleep plays a vital role in neuro-immuno-endocrine homeostasis. Sleep loss has been linked to elevated risks for cognitive and mood disorders, underscored by impaired synaptic transmission. The glymphatic system has been shown to be modulated by sleep and implicated in neurodegenerative disorders. Interactions between sleep quality, the immune system, and neurodegenerative disease are complex and a challenge to distil. These interactions are frequently bidirectional, because of sleep's characterization as an early symptom and as a potential factor contributing to the development and progression of mood and cognitive disorders. VIDEO ABSTRACT.

  14. The effects of acute sleep deprivation during residency training.

    Science.gov (United States)

    Bartle, E J; Sun, J H; Thompson, L; Light, A I; McCool, C; Heaton, S

    1988-08-01

    Verbal and symbol concentration, learning, problem solving, clear thinking, manual skills, and memory were tested in 42 surgical residents to assess the effects of acute sleep deprivation on specific neuropsychological parameters. A series of eight neuropsychological tests--digit symbols, digit vigilance, story memory, trail making, PASAT, Raven matrices, delayed story, and pegboard--and a questionnaire on mood states were completed by the residents both when fatigued (less than 4 hours of sleep: mean, 2.0 +/- 1.5 hours) and when rested (more than 4 hours of sleep: mean, 6.5 +/- 1.0 hours), with at least 7 days between tests. In order to eliminate the effects of learning from the first test series, randomization of residents was performed so that one half were first evaluated when rested and one half when fatigued. ANOVA, multiple regression analysis, and the Student t test were used to assess differences. In the acute sleep-deprived state, residents were less vigorous and more fatigued, depressed, tense, confused, and angry (p less than 0.05) than they were in rested state. Despite these changes in mood, however, the responses on all of the functional tests were no different statistically in those who were rested and those who were fatigued (even in those with less than 2 hours' sleep). We conclude that acute sleep deprivation of less than 4 hours alters mood state but does not change performance in test situations in which concentration, clear thinking, and problem solving are important.

  15. Exploring the effect of vitamin C on sleep deprivation induced memory impairment.

    Science.gov (United States)

    Mhaidat, Nizar M; Alzoubi, Karem H; Khabour, Omar F; Tashtoush, Noor H; Banihani, Saleem A; Abdul-razzak, Khalid K

    2015-04-01

    In the current study, the possible beneficial effect of vitamin C (VitC) against sleep deprivation induced memory impairment was examined. Chronic sleep deprivation was induced via placing rats in a modified multiple platform apparatus for 8h/day for a period of 6 weeks. Concomitantly, VitC was administered to animals at doses of 150 and 500 mg/kg/day. After 6 weeks of treatment, the radial arm water maze (RAWM) was used to test for spatial learning and memory performance. Moreover, the hippocampus was dissected; and levels/activities of antioxidant defense biomarkers glutathione reduced (GSH), glutathione oxidized (GSSG), GSH/GSSG ratio, catalase, superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS), were evaluated. Results revealed that chronic sleep deprivation impaired short- and long-term memories (Psleep deprivation induced decreases in hippocamppal GSH/GSSG ratio (Pmemory impairment was induced by chronic sleep deprivation, and VitC treatment prevented such impairment. This was possibly achieved via normalizing antioxidant defense mechanisms of the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Prolonged Eyelid Closure Episodes during Sleep Deprivation in Professional Drivers.

    Science.gov (United States)

    Alvaro, Pasquale K; Jackson, Melinda L; Berlowitz, David J; Swann, Philip; Howard, Mark E

    2016-08-15

    Real life ocular measures of drowsiness use average blink duration, amplitude and velocity of eyelid movements to reflect drowsiness in drivers. However, averaged data may conceal the variability in duration of eyelid closure episodes, and more prolonged episodes that indicate higher levels of drowsiness. The current study aimed to describe the frequency and duration of prolonged eyelid closure episodes during acute sleep deprivation. Twenty male professional drivers (mean age ± standard deviation = 41.9 ± 8.3 years) were recruited from the Transport Workers Union newsletter and newspaper advertisements in Melbourne, Australia. Each participant underwent 24 hours of sleep deprivation and completed a simulated driving task (AusEd), the Psychomotor Vigilance Task, and the Karolinska Sleepiness Scale. Eyelid closure episodes during the driving task were recorded and analyzed manually from digital video recordings. Eyelid closure episodes increased in frequency and duration with a median of zero s/h of eyelid closure after 3 h increasing to 34 s/h after 23 h awake. Eyelid closure episodes were short and infrequent from 3 to 14 h of wakefulness. After 17 h of sleep deprivation, longer and more frequent eyelid closure episodes began to occur. Episodes lasting from 7 seconds up to 18 seconds developed after 20 h of wakefulness. Length of eyelid closure episodes was moderately to highly correlated with the standard deviation of lateral lane position, braking reaction time, crashes, impaired vigilance, and subjective sleepiness. The frequency and duration of episodes of prolonged eyelid closure increases during acute sleep deprivation, with very prolonged episodes after 17 hours awake. Automated devices that assess drowsiness using averaged measures of eyelid closure episodes need to be able to detect prolonged eyelid closure episodes that occur during more severe sleep deprivation. © 2016 American Academy of Sleep Medicine.

  17. The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2007-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  18. The Effect of Total Sleep Deprivation and Recovery Sleep on Cognitive on Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2005-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  19. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    Science.gov (United States)

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  20. EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation.

    Science.gov (United States)

    Tassi, Patricia; Bonnefond, Anne; Engasser, Ophélie; Hoeft, Alain; Eschenlauer, Roland; Muzet, Alain

    2006-01-30

    Sleep inertia (SI) is a transient period occurring immediately after awakening, usually characterized by performance decrement. When sleep is sufficient, SI is moderate, and produces few or no deficit. When it is associated with prior sleep deprivation, SI shows dose-dependent negative effects on cognitive performance, especially when subjects have been awaken in slow wave sleep (SWS). In the present study, spectral analysis was applied during the last 10 min before and the first 10 min after awakening, and during 1 h after awakening while subjects performed the Stroop test. Seventeen subjects were divided into a Control group who slept 8 h, and a Sleep Deprived group who slept only 2 h. The results show that performance was normal in the Control group, whereas reaction time was increased during the first half hour and error level during the second half hour in the Sleep Deprived group. Spectral analysis applied on the waking EEG during the whole test session showed that alpha activity was increased in both groups, but theta power only in the Sleep Deprived group. There was a high positive correlation in sleep deprived subjects between delta power during the last 10 min of sleep and subsequent performance decrement in speed and accuracy. Comparison of individual records showed a high positive correlation between spectral power before and after awakening in the Control group (generally in the sense of an increased frequency band), but no correlation was found in the Sleep Deprived group who exhibited a rather disorganized pattern. We discuss these results in terms of incoherence in the EEG continuity during sleep offset after prior sleep loss, which could partly account for the performance decrement observed during SI in sleep deprived subjects.

  1. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    Science.gov (United States)

    Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D

    2016-11-01

    It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats.

    Science.gov (United States)

    Acosta-Peña, Eva; Camacho-Abrego, Israel; Melgarejo-Gutiérrez, Montserrat; Flores, Gonzalo; Drucker-Colín, René; García-García, Fabio

    2015-01-01

    Sleep is a fundamental state necessary for maintenance of physical and neurological homeostasis throughout life. Several studies regarding the functions of sleep have been focused on effects of sleep deprivation on synaptic plasticity at a molecular and electrophysiological level, and only a few studies have studied sleep function from a structural perspective. Moreover, during normal aging, sleep architecture displays some changes that could affect normal development in the elderly. In this study, using a Golgi-Cox staining followed by Sholl analysis, we evaluate the effects of 24 h of total sleep deprivation on neuronal morphology of pyramidal neurons from Layer III of the prefrontal cortex (PFC) and the dorsal hippocampal CA1 region from male Wistar rats at two different ages (3 and 22 months). We found no differences in total dendritic length and branching length in both analyzed regions after sleep deprivation. Spine density was reduced in the CA1 of young-adults, and interestingly, sleep deprivation increased spine density in PFC of aged animals. Taken together, our results show that 24 h of total sleep deprivation have different effects on synaptic plasticity and could play a beneficial role in cognition during aging. © 2014 Wiley Periodicals, Inc.

  3. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... Is it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought ... night may be at higher risk of developing high blood pressure or worsening already high blood pressure. There's also ...

  4. The impact of sleep deprivation on surgeons' performance during night shifts.

    Science.gov (United States)

    Amirian, Ilda

    2014-09-01

    The median incidence of adverse events that may result in patient injury is a total of 9% of all in-hospital admissions. In order to reduce this high incidence initiatives are continuously worked on that can reduce the risk of patient harm during admission by strengthening hospital systems. However, the influence of physicians' shift work on the risk on adverse events in patients remains controversial. In the studies included in this PhD thesis we wished to examine the impact of sleep deprivation and circadian rhythm disturbances on surgeons' during night shifts. Further we wished to examine the impact sleep deprivation had on surgeons' performance as a measure of how patient safety would be affected. We found that sleep deprivation subjectively had an impact on the surgeons and that they were aware of the effect fatigue had on their work performance. As a result they applied different mechanisms to cope with fatigue. Attending surgeons felt that they had a better overview now, due to more experience and better skills, than when they were residents, despite the fatigue on night shifts. We monitored surgeons' performance during night shifts by laparoscopic simulation and cognitive tests in order to assess their performance; no deterioration was found when pre call values were compared to on call values. The surgeons were monitored prospectively for 4 days across a night shift in order to assess the circadian rhythm and sleep. We found that surgeons' circadian rhythm was affected by working night shifts and their sleep pattern altered, resembling that of shift workers on the post call day. We assessed the quality of admission in medical records as a measure of surgeons' performance, during day, evening and night hours and found no deterioration in the quality of night time medical records. However, consistent high errors were found in several categories. These findings should be followed up in the future with respect of clarifying mechanism and consequences for

  5. Dissimilarity of slow-wave activity enhancement by torpor and sleep deprivation in a hibernator

    NARCIS (Netherlands)

    Strijkstra, AM; Daan, S

    1998-01-01

    Sleep regulation processes have been hypothesized to be involved in function and timing of arousal episodes in hibernating ground squirrels. We investigated the importance of sleep regulation during arousal episodes by sleep deprivation experiments. After sleep deprivation of 4, 12, and 24 h,

  6. Sleep deprivation and daily torpor impair object recognition in Djungarian hamsters

    NARCIS (Netherlands)

    Palchykova, S; Crestani, F; Meerlo, P; Tobler, Irene

    2006-01-01

    Sleep has been shown to play a facilitating role in memory consolidation, whereas sleep deprivation leads to performance impairment both in humans and rodents. The effects of 4-h sleep deprivation on recognition memory were investigated in the Djungarian hamster (Phodopus sungorus). Because sleep

  7. Advice for the Sleep-Deprived

    Science.gov (United States)

    Wolfe, Pat

    2005-01-01

    A research has uncovered that adolescent sleep patterns are influenced not so much by the activities of the young adults as by the changes taking place in the biological timing system of their brains. It is evident that teenagers are not getting the amount of sleep they require and suggestions are presented to help diminish if not entirely avoid…

  8. Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717 in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Linda J Porrino

    2005-09-01

    Full Text Available The deleterious effects of prolonged sleep deprivation on behavior and cognition are a concern in modern society. Persons at risk for impaired performance and health-related issues resulting from prolonged sleep loss would benefit from agents capable of reducing these detrimental effects at the time they are sleep deprived. Agents capable of improving cognition by enhancing brain activity under normal circumstances may also have the potential to reduce the harmful or unwanted effects of sleep deprivation. The significant prevalence of excitatory alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA glutamatergic receptors in the brain provides a basis for implementing a class of drugs that could act to alter or remove the effects of sleep deprivation. The ampakine CX717 (Cortex Pharmaceuticals, a positive allosteric modulator of AMPA receptors, was tested for its ability to enhance performance of a cognitive, delayed match-to-sample task under normal circumstances in well-trained monkeys, as well as alleviate the detrimental effects of 30-36 h of sleep deprivation. CX717 produced a dose-dependent enhancement of task performance under normal alert testing conditions. Concomitant measures of regional cerebral metabolic rates for glucose (CMRglc during the task, utilizing positron emission tomography, revealed increased activity in prefrontal cortex, dorsal striatum, and medial temporal lobe (including hippocampus that was significantly enhanced over normal alert conditions following administration of CX717. A single night of sleep deprivation produced severe impairments in performance in the same monkeys, accompanied by significant alterations in task-related CMRglc in these same brain regions. However, CX717 administered to sleep-deprived monkeys produced a striking removal of the behavioral impairment and returned performance to above-normal levels even though animals were sleep deprived. Consistent with this recovery, CMRglc in all but

  9. Prolonged sleep deprivation decreases cell proliferation and immature newborn neurons in both dorsal and ventral hippocampus of male rats.

    Science.gov (United States)

    Murata, Yusuke; Oka, Ayana; Iseki, Ayaka; Mori, Masayoshi; Ohe, Kenji; Mine, Kazunori; Enjoji, Munechika

    2017-09-01

    Previous studies have indicated that sleep deprivation negatively affects hippocampal neurogenesis, which may explain the reason for the relation between sleep loss and depression. Increasing evidence indicates that the hippocampus is anatomically and functionally segregated along a dorsolateral (cognitive function)/ventromedial (control for mood and stress response) axis. Thus, the present study was conducted to elucidate regional differences in the adverse effects of sleep deprivation on hippocampal neurogenesis. Male Sprague-Dawley rats were subjected to sleep deprivation using the "platform on the water" method for 24- or 72-h. Quantification of hippocampal cell proliferation and immature newborn neurons was stereologically estimated using immunostaining with Ki-67 and doublecortin (DCX), respectively, by optical fractionator method. A consecutive three days of sleep deprivation significantly reduced the density of Ki-67- and DCX-immunopositive cells both in the dorsal and ventral hippocampal subgranular zone and the decrease in DCX-labeled cells was more pronounced in the ventral hippocampus than in dorsal region. Our results indicate that prolonged sleep deprivation decreases hippocampal cell proliferation and neurogenesis in both the dorsal and ventral dentate gyrus. Future studies will be needed to clarify the impact of sleep deprivation-induced decreases in hippocampal neurogenesis on the development of depression. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  10. Influence of food restriction on lipid profile and spontaneous glucose levels in male rats subjected to paradoxical sleep deprivation

    Directory of Open Access Journals (Sweden)

    Tathiana Aparecida Alvarenga

    2012-01-01

    Full Text Available OBJECTIVES: The purpose of this study was to determine the paired consequences of food restriction and paradoxical sleep deprivation on lipid profile and spontaneous glucose levels in male rats. METHOD: Food restriction began at weaning, with 6 g of food being provided per day, which was subsequently increased by 1 g per week until reaching 15 g per day by the eighth week. At adulthood, both rats subjected to food restriction and those fed ad libitum were exposed to paradoxical sleep deprivation for 96 h or were maintained in their home-cage groups. RESULTS: Animals subjected to food restriction exhibited a significant increase in high-density lipoprotein levels compared to animals that were given free access to food. After the paradoxical sleep deprivation period, the foodrestricted animals demonstrated reduced concentrations of high-density lipoprotein relative to their respective controls, although the values for the food-restricted animals after sleep deprivation were still higher than those for the ad libitum group. The concentration of low-density lipoproteins was significantly increased in sleep-deprived animals fed the ad libitum diet. The levels of triglycerides, very low-density lipoproteins, and glucose in foodrestricted animals were each decreased compared to both ad libitum groups. CONCLUSION: These results may help to illustrate the mechanisms underlying the relationship between sleep curtailment and metabolism and may suggest that, regardless of sleep deprivation, dietary restriction can minimize alterations in parameters related to cardiovascular risk.

  11. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation

    Science.gov (United States)

    Van Dongen, Hans P A.; Maislin, Greg; Mullington, Janet M.; Dinges, David F.

    2003-01-01

    OBJECTIVES: To inform the debate over whether human sleep can be chronically reduced without consequences, we conducted a dose-response chronic sleep restriction experiment in which waking neurobehavioral and sleep physiological functions were monitored and compared to those for total sleep deprivation. DESIGN: The chronic sleep restriction experiment involved randomization to one of three sleep doses (4 h, 6 h, or 8 h time in bed per night), which were maintained for 14 consecutive days. The total sleep deprivation experiment involved 3 nights without sleep (0 h time in bed). Each study also involved 3 baseline (pre-deprivation) days and 3 recovery days. SETTING: Both experiments were conducted under standardized laboratory conditions with continuous behavioral, physiological and medical monitoring. PARTICIPANTS: A total of n = 48 healthy adults (ages 21-38) participated in the experiments. INTERVENTIONS: Noctumal sleep periods were restricted to 8 h, 6 h or 4 h per day for 14 days, or to 0 h for 3 days. All other sleep was prohibited. RESULTS: Chronic restriction of sleep periods to 4 h or 6 h per night over 14 consecutive days resulted in significant cumulative, dose-dependent deficits in cognitive performance on all tasks. Subjective sleepiness ratings showed an acute response to sleep restriction but only small further increases on subsequent days, and did not significantly differentiate the 6 h and 4 h conditions. Polysomnographic variables and delta power in the non-REM sleep EEG-a putative marker of sleep homeostasis--displayed an acute response to sleep restriction with negligible further changes across the 14 restricted nights. Comparison of chronic sleep restriction to total sleep deprivation showed that the latter resulted in disproportionately large waking neurobehavioral and sleep delta power responses relative to how much sleep was lost. A statistical model revealed that, regardless of the mode of sleep deprivation, lapses in behavioral alertness

  12. Metabolic, endocrine, and immune consequences of sleep deprivation.

    Science.gov (United States)

    Aldabal, Laila; Bahammam, Ahmed S

    2011-01-01

    Over the last three to four decades, it has been observed that the average total hours of sleep have decreased to less than seven hours per person per night. Concomitantly, global figures relating to obesity and diabetes mellitus have increased in an alarming fashion in adults and children, and it has been hypothesized that neuro-hormonal changes accompanying this behavioral sleep deprivation may lead to insulin resistance and, subsequently, to diabetes mellitus. Sleep deprivation has been associated with multiple physiological changes, including increased cortisol and ghrelin levels, decreased leptin levels and impaired glucose metabolism. Experimental studies have also shown an increase in inflammatory and pro-inflammatory markers, which are indicators of body stress, under sleep deprivation. This review elaborates further on this hypothesis, exploring the molecular basis for the link between both entities and the underlying pathophysiology that results in insulin resistance and diabetes mellitus. We review the results of experimental and epidemiological studies, specifically examining the relationship between sleep duration and the immune and endocrine systems.

  13. Metabolic, Endocrine, and Immune Consequences of Sleep Deprivation

    Science.gov (United States)

    AlDabal, Laila; BaHammam, Ahmed S

    2011-01-01

    Over the last three to four decades, it has been observed that the average total hours of sleep have decreased to less than seven hours per person per night. Concomitantly, global figures relating to obesity and diabetes mellitus have increased in an alarming fashion in adults and children, and it has been hypothesized that neuro-hormonal changes accompanying this behavioral sleep deprivation may lead to insulin resistance and, subsequently, to diabetes mellitus. Sleep deprivation has been associated with multiple physiological changes, including increased cortisol and ghrelin levels, decreased leptin levels and impaired glucose metabolism. Experimental studies have also shown an increase in inflammatory and pro-inflammatory markers, which are indicators of body stress, under sleep deprivation. This review elaborates further on this hypothesis, exploring the molecular basis for the link between both entities and the underlying pathophysiology that results in insulin resistance and diabetes mellitus. We review the results of experimental and epidemiological studies, specifically examining the relationship between sleep duration and the immune and endocrine systems. PMID:21754974

  14. Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling.

    Science.gov (United States)

    Hines, D J; Schmitt, L I; Hines, R M; Moss, S J; Haydon, P G

    2013-01-15

    Major depressive disorder is a debilitating condition with a lifetime risk of ten percent. Most treatments take several weeks to achieve clinical efficacy, limiting the ability to bring instant relief needed in psychiatric emergencies. One intervention that rapidly alleviates depressive symptoms is sleep deprivation; however, its mechanism of action is unknown. Astrocytes regulate responses to sleep deprivation, raising the possibility that glial signaling mediates antidepressive-like actions of sleep deprivation. Here, we found that astrocytic signaling to adenosine (A1) receptors was required for the robust reduction of depressive-like behaviors following 12 hours of sleep deprivation. As sleep deprivation activates synaptic A1 receptors, we mimicked the effect of sleep deprivation on depression phenotypes by administration of the A1 agonist CCPA. These results provide the first mechanistic insight into how sleep deprivation impacts mood, and provide a novel pathway for rapid antidepressant development by modulation of glial signaling in the brain.

  15. Effects of Extreme Sleep Deprivation on Human Performance

    Energy Technology Data Exchange (ETDEWEB)

    Tuan Tran; Kimberly R. Raddatz; Elizabeth T. Cady; Bradford Amstutz; Pete D. Elgin; Christopher Vowels; Gerald Deehan

    2007-04-01

    Sleep is a fundamental recuperative process for the nervous system. Disruption of this homeostatic drive can lead to severe impairments of the operator’s ability to perceive, recognize, and respond to emergencies and/or unanticipated events, putting the operator at risk. Therefore, establishing a comprehensive understanding of how sleep deprivation influences human performance is essential in order to counter fatigue or to develop mitigation strategies. The goal of the present study was to examine the psychological effects of prolonged sleep deprivation (approx. 75 hrs) over a four-day span on a general aviation pilot flying a fixed-based flight simulator. During the study, a series of tasks were employed every four hours in order to examine the pilot’s perceptual and higher level cognitive abilities. Overall, results suggest that the majority of cognitive and perceptual degradation occurs between 30-40 hours into the flight. Limitations and future research directions are also discussed.

  16. [Disturbance of sports performance after partial sleep deprivation].

    Science.gov (United States)

    Mougin, F; Davenne, D; Simon-Rigaud, M L; Renaud, A; Garnier, A; Magnin, P

    1989-01-01

    The changes in cardiac and ventilatory responses were measured in 7 endurance athletes during physical exercise on a bicycle ergometer, taking place after a control night and after a night with partial sleep deprivation in the middle of the night. The results show that, despite the maximal work load was not modified with control, heart rate, ventilation and VE/VO2 ratio (ERO2) were greater at the submaximal (75% of the VO2 max) and maximal work load and oxygen consumption decreased at maximal work, after the night of partial sleep deprivation as compared to the control. These findings suggest that acute sleep loss may contribute to alter the endurance performance by impairment of aerobic pathways.

  17. Sleep deprivation attenuates experimental stroke severity in rats

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Constantinescu, Alexandra Oana; Balseanu, Adrian

    2010-01-01

    Indirect epidemiological and experimental evidence suggest that the severity of injury during stroke is influenced by prior sleep history. The aim of our study was to test the effect of acute sleep deprivation on early outcome following experimental stroke. Young male Sprague-Dawley rats (n=20......) were subjected to focal cerebral ischemia by reversible right middle cerebral artery occlusion (MCAO) for 90 min. In 10 rats, MCAO was performed just after 6-h of total sleep deprivation (TSD) by "gentle handling", whereas the other rats served as controls. Neurological function during the first week...... after stroke was monitored using a battery of behavioral tests investigating the asymmetry of sensorimotor deficit (tape removal test and cylinder test), bilateral sensorimotor coordination (rotor-rod and Inclined plane) and memory (T-maze and radial maze). Following MCAO, control rats had impaired...

  18. The relationship between tiredness prior to sleep deprivation and the antidepressant response to sleep deprivation in depression.

    NARCIS (Netherlands)

    Van den Burg, W.; Bouhuys, A.L; van den Hoofdakker, R.H

    1995-01-01

    Recently it was hypothesized that the antidepressant response to total sleep deprivation (SD) results from a disinhibition process induced by the increase of tiredness in the course of SD. In the present study, the role of tiredness in the antidepressant response to SD is further investigated,

  19. Circadian Modulation of Consolidated Memory Retrieval Following Sleep Deprivation in Drosophila

    Science.gov (United States)

    Glou, Eric Le; Seugnet, Laurent; Shaw, Paul J.; Preat, Thomas; Goguel, Valérie

    2012-01-01

    Objectives: Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Design: Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Results Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Conclusions Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time. Citation: Le Glou E; Seugnet L; Shaw PJ; Preat T; Goguel V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. SLEEP 2012;35(10):1377-1384. PMID:23024436

  20. Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C

    2016-12-01

    Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica, a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation.

  1. Exercise‐Induced growth hormone during acute sleep deprivation

    Science.gov (United States)

    Ritsche, Kevin; Nindl, Bradly C.; Wideman, Laurie

    2014-01-01

    Abstract The effect of acute (24‐h) sleep deprivation on exercise‐induced growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24‐h sessions including a brief, high‐intensity exercise bout following either a night of sleep (SLEEP) or (24‐h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30‐sec Wingate sprints on a cycle ergometer. Self‐reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P =0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P =0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise‐induced peak GH concentration (TTP), or free IGF‐1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P exercise‐induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P exercise‐induced GH response was significantly augmented in sleep‐deprived individuals. PMID:25281616

  2. Invited Review: How sleep deprivation affects gene expression in the brain: a review of recent findings

    National Research Council Canada - National Science Library

    Chiara Cirelli

    2002-01-01

    ..., and the functional consequences of sleep loss. To determine what molecular changes occur in the brain during the sleep-waking cycle and after sleep deprivation, our laboratory is performing a systematic screening of brain gene expression in rats...

  3. Sleep deprivation and hippocampal vulnerability : Changes in neuronal plasticity, neurogenesis and cognitive function

    NARCIS (Netherlands)

    Kreutzmann, J C; Havekes, R; Abel, T; Meerlo, P

    2015-01-01

    Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results

  4. Detrimental role of prolonged sleep deprivation on adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Carina eFernandes

    2015-04-01

    Full Text Available Adult mammalian brains continuously generate new neurons, a phenomenon called neurogenesis. Both environmental stimuli and endogenous factors are important regulators of neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and neurogenesis in brain function, such as learning, memory and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on neurogenesis.

  5. Detrimental role of prolonged sleep deprivation on adult neurogenesis

    Science.gov (United States)

    Fernandes, Carina; Rocha, Nuno Barbosa F.; Rocha, Susana; Herrera-Solís, Andrea; Salas-Pacheco, José; García-García, Fabio; Murillo-Rodríguez, Eric; Yuan, Ti-Fei; Machado, Sergio; Arias-Carrión, Oscar

    2015-01-01

    Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis. PMID:25926773

  6. Detrimental role of prolonged sleep deprivation on adult neurogenesis.

    Science.gov (United States)

    Fernandes, Carina; Rocha, Nuno Barbosa F; Rocha, Susana; Herrera-Solís, Andrea; Salas-Pacheco, José; García-García, Fabio; Murillo-Rodríguez, Eric; Yuan, Ti-Fei; Machado, Sergio; Arias-Carrión, Oscar

    2015-01-01

    Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis.

  7. Waking and sleeping following water deprivation in the rat.

    Directory of Open Access Journals (Sweden)

    Davide Martelli

    Full Text Available Wake-sleep (W-S states are affected by thermoregulation. In particular, REM sleep (REMS is reduced in homeotherms under a thermal load, due to an impairment of hypothalamic regulation of body temperature. The aim of this work was to assess whether osmoregulation, which is regulated at a hypothalamic level, but, unlike thermoregulation, is maintained across the different W-S states, could influence W-S occurrence. Sprague-Dawley rats, kept at an ambient temperature of 24°C and under a 12 h∶12 h light-dark cycle, were exposed to a prolonged osmotic challenge of three days of water deprivation (WD and two days of recovery in which free access to water was restored. Two sets of parameters were determined in order to assess: i the maintenance of osmotic homeostasis (water and food consumption; changes in body weight and fluid composition; ii the effects of the osmotic challenge on behavioral states (hypothalamic temperature (Thy, motor activity, and W-S states. The first set of parameters changed in WD as expected and control levels were restored on the second day of recovery, with the exception of urinary Ca(++ that almost disappeared in WD, and increased to a high level in recovery. As far as the second set is concerned, WD was characterized by the maintenance of the daily oscillation of Thy and by a decrease in activity during the dark periods. Changes in W-S states were small and mainly confined to the dark period: i REMS slightly decreased at the end of WD and increased in recovery; ii non-REM sleep (NREMS increased in both WD and recovery, but EEG delta power, a sign of NREMS intensity, decreased in WD and increased in recovery. Our data suggest that osmoregulation interferes with the regulation of W-S states to a much lesser extent than thermoregulation.

  8. Sleep deprivation accelerates delay-related loss of visual short-term memories without affecting precision.

    Science.gov (United States)

    Wee, Natalie; Asplund, Christopher L; Chee, Michael W L

    2013-06-01

    Visual short-term memory (VSTM) is an important measure of information processing capacity and supports many higher-order cognitive processes. We examined how sleep deprivation (SD) and maintenance duration interact to influence the number and precision of items in VSTM using an experimental design that limits the contribution of lapses at encoding. For each trial, participants attempted to maintain the location and color of three stimuli over a delay. After a retention interval of either 1 or 10 seconds, participants reported the color of the item at the cued location by selecting it on a color wheel. The probability of reporting the probed item, the precision of report, and the probability of reporting a nonprobed item were determined using a mixture-modeling analysis. Participants were studied twice in counterbalanced order, once after a night of normal sleep and once following a night of sleep deprivation. Sleep laboratory. Nineteen healthy college age volunteers (seven females) with regular sleep patterns. Approximately 24 hours of total SD. SD selectively reduced the number of integrated representations that can be retrieved after a delay, while leaving the precision of object information in the stored representations intact. Delay interacted with SD to lower the rate of successful recall. Visual short-term memory is compromised during sleep deprivation, an effect compounded by delay. However, when memories are retrieved, they tend to be intact.

  9. Acute sleep deprivation enhances post-infection sleep and promotes survival during bacterial infection in Drosophila.

    Science.gov (United States)

    Kuo, Tzu-Hsing; Williams, Julie A

    2014-05-01

    Sleep is known to increase as an acute response to infection. However, the function of this behavioral response in host defense is not well understood. To address this problem, we evaluated the effect of acute sleep deprivation on post-infection sleep and immune function in Drosophila. Laboratory. Drosophila melanogaster. Flies were subjected to sleep deprivation before (early DEP) or after (late DEP) bacterial infection. Relative to a non-deprived control, flies subjected to early DEP had enhanced sleep after infection as well as increased bacterial clearance and survival outcome. Flies subjected to late DEP experienced enhanced sleep following the deprivation period, and showed a modest improvement in survival outcome. Continuous DEP (early and late DEP) throughout infection also enhanced sleep later during infection and improved survival. However, improved survival in flies subjected to late or continuous DEP did not occur until after flies had experienced sleep. During infection, both early and late DEP enhanced NFκB transcriptional activity as measured by a luciferase reporter (κB-luc) in living flies. Early DEP also increased NFκB activity prior to infection. Flies that were deficient in expression of either the Relish or Dif NFκB transcription factors showed normal responses to early DEP. However, the effect of early DEP on post-infection sleep and survival was abolished in double mutants, which indicates that Relish and Dif have redundant roles in this process. Acute sleep deprivation elevated NFκB-dependent activity, increased post-infection sleep, and improved survival during bacterial infection.

  10. Partial sleep deprivation by environmental noise increases food intake and body weight in obesity resistant rats

    OpenAIRE

    Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.

    2013-01-01

    Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Meth...

  11. Self-awakening improves alertness in the morning and during the day after partial sleep deprivation.

    Science.gov (United States)

    Ikeda, Hiroki; Kubo, Tomohide; Kuriyama, Kenichi; Takahashi, Masaya

    2014-12-01

    The ability to awaken at a predetermined time without an alarm is known as self-awakening. Self-awakening improves morning alertness by eliminating sleep inertia; however, the effects of self-awakening on daytime alertness and alertness that has deteriorated as a result of sleep loss are unknown. The aim of this study was to determine the effects of self-awakening on both morning and daytime alertness after partial sleep deprivation. Fifteen healthy males without the habit of self-awakening participated in a cross-over trial including forced awakening and self-awakening conditions. In each condition, participants' sleep was restricted to 5 h per night in their homes for 4 consecutive days. They completed a psychomotor vigilance task and subjective ratings of sleepiness immediately upon awakening each morning. On the fourth day, participants completed subjective ratings of sleepiness, a psychomotor vigilance task and sleep latency tests in the laboratory seven times at 1-h intervals during the day. The response speed on the psychomotor vigilance task, in the morning and during the day, was higher in the self-awakening than the forced awakening condition. Our results showed that self-awakening improved alertness (assessed by response speeds) by reducing sleep inertia and alleviated daytime sleepiness heightened by partial sleep deprivation. © 2014 European Sleep Research Society.

  12. Occurrence of epileptiform discharges and sleep during EEG recordings in children after melatonin intake versus sleep-deprivation.

    Science.gov (United States)

    Gustafsson, Greta; Broström, Anders; Ulander, Martin; Vrethem, Magnus; Svanborg, Eva

    2015-08-01

    To determine if melatonin is equally efficient as partial sleep deprivation in inducing sleep without interfering with epileptiform discharges in EEG recordings in children 1-16 years old. We retrospectively analysed 129 EEGs recorded after melatonin intake and 113 EEGs recorded after partial sleep deprivation. Comparisons were made concerning occurrence of epileptiform discharges, the number of children who fell asleep and the technical quality of EEG recordings. Comparison between different age groups was also made. No significant differences were found regarding occurrence of epileptiform discharges (33% after melatonin intake, 36% after sleep deprivation), or proportion of unsuccessful EEGs (8% and 10%, respectively). Melatonin and sleep deprivation were equally efficient in inducing sleep (70% in both groups). Significantly more children aged 1-4 years obtained sleep after melatonin intake in comparison to sleep deprivation (82% vs. 58%, p⩽0.01), and in comparison to older children with melatonin induced sleep (58-67%, p⩽0.05). Sleep deprived children 9-12 years old had higher percentage of epileptiform discharges (62%, p⩽0.05) compared to younger sleep deprived children. Melatonin is equally efficient as partial sleep deprivation to induce sleep and does not affect the occurrence of epileptiform discharges in the EEG recording. Sleep deprivation could still be preferable in older children as melatonin probably has less sleep inducing effect. Melatonin induced sleep have advantages, especially in younger children as they fall asleep easier than after sleep deprivation. The procedure is easier for the parents than keeping a young child awake for half the night. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Xin-Hong Xu

    Full Text Available GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1 constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.

  14. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep-deprived mice.

    Science.gov (United States)

    Daniele, Thiago Medeiros da Costa; de Bruin, Pedro Felipe Carvalhedo; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Veralice Meireles Sales

    2017-08-14

    Exercise is a promising adjunctive therapy for depressive behavior, sleep/wake abnormalities, cognition and motor dysfunction. Conversely, sleep deprivation impairs mood, cognition and functional performance. The objective of this study is to evaluate the effects of exercise on anxiety and depressive behavior and striatal levels of norepinephrine (NE), serotonin and its metabolites in mice submitted to 6h of total sleep deprivation (6h-TSD) and 72h of Rapid Eye Movement (REM) sleep deprivation (72h-REMSD). Experimental groups were: (1) mice submitted to 6h-TSD by gentle handling; (2) mice submitted to 72h-REMSD by the flower pot method; (3) exercise (treadmill for 8 weeks); (4) exercise followed by 6h-TSD; (5) exercise followed by 72h-REMSD; (6) control (home cage). Behavioral tests included the Elevated Plus Maze and tail-suspension. NE, serotonin and its metabolites were determined in the striatum using high-performance liquid chromatography (HPLC). Sleep deprivation increased depressive behavior (time of immobilization in the tail-suspension test) and previous exercise hindered it. Sleep deprivation increased striatal NE and previous exercise reduced it. Exercise only was associated with higher levels of serotonin. Furthermore, exercise reduced serotonin turnover associated with sleep deprivation. In brief, previous exercise prevented depressive behavior and reduced striatal high NE levels and serotonin turnover. The present findings confirm the effects of exercise on behavior and neurochemical alterations associated with sleep deprivation. These findings provide new avenues for understanding the mechanisms of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.

    OpenAIRE

    Casey, Sarah; Solomons, Luke C.; Steier, Joerg Sebastian; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura Hilary; Kopelman, M D

    2016-01-01

    Objective: It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Method: Participants completed a set...

  16. Mutual relations between sleep deprivation, sleep stealers and risk behaviours in adolescents

    OpenAIRE

    Paiva, Teresa; Gaspar, Tania; Matos, Margarida Gaspar

    2016-01-01

    Open Access funded by Brazilian Association of Sleep Under a Creative Commons license © 2016 Brazilian Association of Sleep. Production and Hosting by Elsevier B.V. This is an open access article under the CCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). Objectives: The aim is to evaluate the mutual influences between sleep duration/sleep deprivation (SD) and the sleep stealers/adolescent risk behaviours. Methods: The national survey is a component of the Health...

  17. The ability to self-monitor cognitive performance during 60 h total sleep deprivation and following 2 nights recovery sleep.

    Science.gov (United States)

    Boardman, Johanna M; Bei, Bei; Mellor, Alix; Anderson, Clare; Sletten, Tracey L; Drummond, Sean P A

    2017-11-20

    We aimed to investigate whether self-monitoring of performance is altered during 60 h of total sleep deprivation, following 2 nights of recovery sleep, and by task difficulty and/or subjective sleepiness. Forty adults (22 females, aged 19-39 years) underwent a 5-day protocol, with a well-rested day, 66 h total sleep deprivation (last test session at 60 h), and 2 nights of 8 h recovery sleep. An arithmetic task (MATH) with three difficulty levels assessed working memory. The Psychomotor Vigilance Task assessed sustained attention. Arithmetic accuracy and Psychomotor Vigilance Task median reaction time measured objective performance. Subjective performance was measured with self-reported accuracy and speed. Objective-subjective differences assessed self-monitoring ability. The performance on both tasks declined during total sleep deprivation and improved following recovery. During total sleep deprivation, participants accurately self-monitored performance on the Psychomotor Vigilance Task; however, they overestimated cognitive deficits on MATH, self-reporting performance as worse than actually observed. Following recovery, participants overestimated the extent of performance improvement on the Psychomotor Vigilance Task. Task difficulty influenced self-monitoring ability, with greater overestimation of performance deficits during total sleep deprivation as difficulty increased. Subjective sleepiness predicted subjective performance ratings at several time points, only for the Psychomotor Vigilance Task. The ability to self-monitor performance was impaired during total sleep deprivation for working memory and after recovery sleep for the Psychomotor Vigilance Task, but was otherwise accurate. The development of self-monitoring strategies, assessing both subjective perceptions of performance and subjective sleepiness, within operational contexts may help reduce the consequences of sleep-related impairments. © 2017 European Sleep Research Society.

  18. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation.

    Science.gov (United States)

    Arthaud, Sebastien; Varin, Christophe; Gay, Nadine; Libourel, Paul-Antoine; Chauveau, Frederic; Fort, Patrice; Luppi, Pierre-Herve; Peyron, Christelle

    2015-06-01

    Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones. © 2014 European Sleep Research Society.

  19. REM sleep characteristics of nightmare sufferers before and after REM sleep deprivation.

    Science.gov (United States)

    Nielsen, Tore A; Paquette, Tyna; Solomonova, Elizaveta; Lara-Carrasco, Jessica; Popova, Ani; Levrier, Katia

    2010-02-01

    To examine whether disrupted regulation of REM sleep propensity is implicated in nightmare (NM) pathophysiology. Heightened REM propensity induced by REM sleep deprivation is belied by increases in REM %, REM density and the dream-like quality of dream mentation during post-deprivation recovery sleep. Compromised regulation of REM sleep propensity may be a contributing factor in the pathophysiology of frequent NMs. A preliminary study of 14 subjects with frequent NMs (> or = 1 NM/week; 27.6+/-9.9 years) and 11 healthy control subjects (dream logs and underwent three nights of polysomnographic recording with REM sleep deprivation on night 2. Group differences were assessed for a battery of REM sleep and dream measures on nights 1 and 3. Several measures, including #skipped early-night REM periods, REM latency, REM/NREM cycle length, early/late REM density, REM rebound, late-night REM% and dream vividness, suggested that REM sleep propensity was abnormally low for the frequent NM group throughout the 3-day study. Findings raise the possibility that REM anomalies recorded from NM sufferers sleeping in the laboratory environment reflect a disruption of one or more endogenous regulators of REM sleep propensity. 2009 Elsevier B.V. All rights reserved.

  20. How sleep deprivation affects psychological variables related to college students' cognitive performance.

    Science.gov (United States)

    Pilcher, J J; Walters, A S

    1997-11-01

    The effects of sleep deprivation on cognitive performance psychological variables related to cognitive performance were studied in 44 college students. Participants completed the Watson-Glaser Critical Thinking Appraisal after either 24 hours of sleep deprivation or approximately 8 hours of sleep. After completing the cognitive task, the participants completed 2 questionnaires, one assessing self-reported effort, concentration, and estimated performance, the other assessing off-task cognitions. As expected, sleep-deprived participants performed significantly worse than the nondeprived participants on the cognitive task. However, the sleep-deprived participants rated their concentration and effort higher than the nondeprived participants did. In addition, the sleep-deprived participants rated their estimated performance significantly higher than the nondeprived participants did. The findings indicate that college students are not aware of the extent to which sleep deprivation negatively affects their ability to complete cognitive tasks.

  1. Chronic Sleep Deprivation Differentially Affects Short and Long-term Operant Memory in Aplysia

    Science.gov (United States)

    Krishnan, Harini C.; Noakes, Eric J.; Lyons, Lisa C.

    2016-01-01

    The induction, formation and maintenance of memory represent dynamic processes modulated by multiple factors including the circadian clock and sleep. Chronic sleep restriction has become common in modern society due to occupational and social demands. Given the impact of cognitive impairments associated with sleep deprivation, there is a vital need for a simple animal model in which to study the interactions between chronic sleep deprivation and memory. We used the marine mollusk Aplysia californica, with its simple nervous system, nocturnal sleep pattern and well-characterized learning paradigms, to assess the effects of two chronic sleep restriction paradigms on short-term (STM) and long-term (LTM) associative memory. The effects of sleep deprivation on memory were evaluated using the operant learning paradigm, learning that food is inedible, in which the animal associates a specific netted seaweed with failed swallowing attempts. We found that two nights of 6 h sleep deprivation occurring during the first or last half of the night inhibited both STM and LTM. Moreover, the impairment in STM persisted for more than 24 hours. A milder, prolonged sleep deprivation paradigm consisting of 3 consecutive nights of 4 h sleep deprivation also blocked STM, but had no effect on LTM. These experiments highlight differences in the sensitivity of STM and LTM to chronic sleep deprivation. Moreover, these results establish Aplysia as a valid model for studying the interactions between chronic sleep deprivation and associative memory paving the way for future studies delineating the mechanisms through which sleep restriction affects memory formation. PMID:27555235

  2. Effect of 24 Hours of Sleep Deprivation on Auditory and Linguistic Perception: A Comparison among Young Controls, Sleep-Deprived Participants, Dyslexic Readers, and Aging Adults

    Science.gov (United States)

    Fostick, Leah; Babkoff, Harvey; Zukerman, Gil

    2014-01-01

    Purpose: To test the effects of 24 hr of sleep deprivation on auditory and linguistic perception and to assess the magnitude of this effect by comparing such performance with that of aging adults on speech perception and with that of dyslexic readers on phonological awareness. Method: Fifty-five sleep-deprived young adults were compared with 29…

  3. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation.

    Science.gov (United States)

    Rajdev, Pooja; Thorsley, David; Rajaraman, Srinivasan; Rupp, Tracy L; Wesensten, Nancy J; Balkin, Thomas J; Reifman, Jaques

    2013-08-21

    Performance prediction models based on the classical two-process model of sleep regulation are reasonably effective at predicting alertness and neurocognitive performance during total sleep deprivation (TSD). However, during sleep restriction (partial sleep loss) performance predictions based on such models have been found to be less accurate. Because most modern operational environments are predominantly characterized by chronic sleep restriction (CSR) rather than by episodic TSD, the practical utility of this class of models has been limited. To better quantify performance during both CSR and TSD, we developed a unified mathematical model that incorporates extant sleep debt as a function of a known sleep/wake history, with recent history exerting greater influence. This incorporation of sleep/wake history into the classical two-process model captures an individual's capacity to recover during sleep as a function of sleep debt and naturally bridges the continuum from CSR to TSD by reducing to the classical two-process model in the case of TSD. We validated the proposed unified model using psychomotor vigilance task data from three prior studies involving TSD, CSR, and sleep extension. We compared and contrasted the fits, within-study predictions, and across-study predictions from the unified model against predictions generated by two previously published models, and found that the unified model more accurately represented multiple experimental studies and consistently predicted sleep restriction scenarios better than the existing models. In addition, we found that the model parameters obtained by fitting TSD data could be used to predict performance in other sleep restriction scenarios for the same study populations, and vice versa. Furthermore, this model better accounted for the relatively slow recovery process that is known to characterize CSR, as well as the enhanced performance that has been shown to result from sleep banking. Published by Elsevier Ltd.

  4. Hormonal responses to exercise after partial sleep deprivation and after a hypnotic drug-induced sleep.

    Science.gov (United States)

    Mougin, F; Bourdin, H; Simon-Rigaud, M L; Nguyen, N U; Kantelip, J P; Davenne, D

    2001-02-01

    The aim of this study was to determine the hormonal responses, which are dependent on the sleep wake cycle, to strenuous physical exercise. Exercise was performed after different nocturnal regimens: (i) a baseline night preceded by a habituation night; (ii) two nights of partial sleep deprivation caused by a delayed bedtime or by an early awakening; and (iii) two nights of sleep after administration of either a hypnotic compound (10 mg zolpidem) or a placebo. Eight well-trained male endurance athletes with a maximal oxygen uptake of 63.5 +/- 3.8 ml x kg(-1) x min(-1) (mean value +/- s(x)) were selected on the basis of their sleeping habits and their physical training. Polygraphic recordings of EEG showed that both nights with partial sleep loss led to a decrease (Psleep. A delayed bedtime also led to a decrease (P sleep. Zolpidem had no effect on the different stages of sleep. During the afternoon after an experimental night, exercise was performed on a cycle ergometer. After a 10-min warm-up, the participants performed 30 min steady-state cycling at 75% VO(2-max) followed by a progressively increased workload until exhaustion. The recovery period lasted 30 min. Plasma growth hormone, prolactin, cortisol, catecholamine and lactate concentrations were measured at rest, during exercise and after recovery. The concentration of plasma growth hormone and catecholamine were not affected by partial sleep deprivation, whereas that of plasma prolactin was higher (P sleep deprivation conditions. Blood lactate was higher (P sleep did not affect the hormonal and metabolic responses to subsequent exercise. Our results demonstrate only minor alterations in the hormonal responses to exercise after partial sleep deprivation.

  5. Sleep-wake behavior and responses of interleukin-6-deficient mice to sleep deprivation.

    Science.gov (United States)

    Morrow, Jonathan D; Opp, Mark R

    2005-01-01

    Interleukin (IL)-1 and tumor necrosis factor (TNF) are involved in the regulation of non-rapid eye movements sleep (NREMS). Accumulating evidence suggests IL-6 modulates sleep under some pathophysiologic conditions. We used mice lacking a functional IL-6 gene to investigate further a potential role for IL-6 in the regulation of sleep. IL-6 knockout mice (B6.129S6-Il6tm1Kopf; n=10) and C57BL/6J mice (n=10) were purchased from the Jackson Laboratory (Bar Harbor, ME). Twenty-four-hour baseline recordings were obtained from mice in the absence of any experimental manipulation. Mice were then subjected to 6-h sleep deprivation beginning at light onset. Recordings were obtained during the deprivation period and for 18 h thereafter. During baseline conditions there were no differences between mouse strains with respect to the duration, timing or intensity of NREMS. However, across the 24-h recording period IL-6 knockout mice spent approximately 30% more time in rapid eye movements sleep (REMS) than did C57BL/6J mice. Relative to C57BL/6J mice, core body temperatures of IL-6 knockout mice were higher during the light period of the light:dark cycle. Both strains responded to sleep deprivation by spending more time in NREMS and REMS. Although the total increase in the amount of NREMS after sleep deprivation was the same in both strains, IL-6 knockout mice took 6h longer to accumulate this additional sleep. Under the conditions of this study, IL-6 does not appear necessary for the full manifestation of NREMS, although this cytokine may influence the dynamics of responses to sleep deprivation. That mice lacking IL-6 spend more time in REMS suggests that interactions between IL-6 and REMS regulatory mechanisms may differ from those of IL-1 and/or TNF.

  6. Sleep extension increases IGF-I concentrations before and during sleep deprivation in healthy young men.

    Science.gov (United States)

    Chennaoui, Mounir; Arnal, Pierrick J; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle

    2016-09-01

    Sleep deprivation is known to suppress circulating trophic factors such as insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF). This experiment examined the effect of an intervention involving 6 nights of extended sleep before total sleep deprivation on this catabolic profile. In a randomized crossover design, 14 young men (age range: 26-37 years) were either in an extended (EXT; time in bed: 2100-0700 h) or habitual (HAB: 2230-0700 h) sleep condition, followed by 3 days in the laboratory with blood sampling at baseline (B), after 24 h of sleep deprivation (24h-SD), and after 1 night of recovery sleep (R). In the EXT condition compared with the HAB condition, free IGF-I levels were significantly higher at B, 24h-SD, and R (P < 0.001), and those of total IGF-I at B and 24h-SD (P < 0.05). EXT did not influence growth hormone, IGF binding protein 3, BDNF, insulin, and glucose levels. The only effect of 24 h of sleep deprivation was for insulin levels, which were significantly higher after R compared with B. In a healthy adult, additional sleep over 1 week increased blood concentrations of the anabolic factor IGF-I before and during 24 h of sleep deprivation and after the subsequent recovery night without effects on BDNF. With further research, these findings may prove to be important in guiding effective lifestyle modifications to limit physical or cognitive deficits associated with IGF-I decrease with age.

  7. Sleep deprivation increases cerebral serotonin 2A receptor binding in humans.

    Science.gov (United States)

    Elmenhorst, David; Kroll, Tina; Matusch, Andreas; Bauer, Andreas

    2012-12-01

    Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT(2A)R) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. Volunteers were tested twice with the subtype-selective radiotracer [(18)F]altanserin and positron emission tomography (PET) for imaging of 5-HT(2A)Rs at baseline and after 24 h of sleep deprivation. [(18)F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. Sleep laboratory and neuroimaging center. Eighteen healthy volunteers. Sleep deprivation. A total of 24 hours of sleep deprivation led to a 9.6% increase of [(18)F]altanserin binding on neocortical 5-HT(2A) receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT(2A)R binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain.

  8. The Effect of Sleep Deprivation on Coronary Heart Disease.

    Science.gov (United States)

    Yuan, Rong; Wang, Jie; Guo, Lili

    2016-11-20

    Sleep deprivation (SD) has been associated with an increased morbidity and mortality of coronary heart disease (CHD). SD could induce autonomic nervous dysfunction, hypertension, arrhythmia, hormonal dysregulation, oxidative stress, endothelial dysfunction, inflammation and metabolic disorder in CHD patients. This paper reviewed the study results of SD in clinical trials and animal experiments and concluded that SD was associated with cardiovascular risk factors, which aggravated CHD in pathogenesis and outcomes.

  9. Creatine supplementation reduces sleep need and homeostatic sleep pressure in rats.

    Science.gov (United States)

    Dworak, Markus; Kim, Tae; Mccarley, Robert W; Basheer, Radhika

    2017-06-01

    Sleep has been postulated to promote brain energy restoration. It is as yet unknown if increasing the energy availability within the brain reduces sleep need. The guanidine amino acid creatine (Cr) is a well-known energy booster in cellular energy homeostasis. Oral Cr-monohydrate supplementation (CS) increases exercise performance and has been shown to have substantial effects on cognitive performance, neuroprotection and circadian rhythms. The effect of CS on cellular high-energy molecules and sleep-wake behaviour is unclear. Here, we examined the sleep-wake behaviour and brain energy metabolism before and after 4-week-long oral administration of CS in the rat. CS decreased total sleep time and non-rapid eye movement (NREM) sleep significantly during the light (inactive) but not during the dark (active) period. NREM sleep and NREM delta activity were decreased significantly in CS rats after 6 h of sleep deprivation. Biochemical analysis of brain energy metabolites showed a tendency to increase in phosphocreatine after CS, while cellular adenosine triphosphate (ATP) level decreased. Microdialysis analysis showed that the sleep deprivation-induced increase in extracellular adenosine was attenuated after CS. These results suggest that CS reduces sleep need and homeostatic sleep pressure in rats, thereby indicating its potential in the treatment of sleep-related disorders. © 2017 European Sleep Research Society.

  10. Replication and Pedagogy in the History of Psychology IV: Patrick and Gilbert (1896) on Sleep Deprivation

    Science.gov (United States)

    Fuchs, Thomas; Burgdorf, Jeffrey

    2008-01-01

    We report an attempted replication of G. T. W. Patrick and J. A. Gilbert's pioneering sleep deprivation experiment "Studies from the psychological laboratory of the University of Iowa. On the effects of loss of sleep", conducted in 1895/96. Patrick and Gilbert's study was the first sleep deprivation experiment of its kind, performed by some of the…

  11. Sleepless in Adolescence: Prospective Data on Sleep Deprivation, Health and Functioning

    Science.gov (United States)

    Roberts, Robert E.; Roberts, Catherine Ramsay; Duong, Hao T.

    2009-01-01

    We estimate prevalence, incidence and persistence of short sleep or sleep deprivation in a two wave cohort study of 4175 youths 11-17 years old at baseline and 3134 of these a year later. Data were collected using computer interviews and questionnaires. Sleep deprivation was defined as 6 h or less per night during the past 4 weeks. Weighted…

  12. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior

    OpenAIRE

    Sprenger, Andreas; Weber, Frederik D.; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-01-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as w...

  13. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2015-10-01

    mechanism underlying the most successful treatment for PTSD, Prolonged Exposure. In animal models, sleep deprivation has been shown to impair extinction ...2. 3. 9 +Sleep and Extinction Learning  Animal models show fear conditioning:  Disrupts sleep  Disrupted sleep, in turn  Impairs extinction ...examining impact of total sleep deprivation (TSD) on extinction learning and recall  Hypotheses  TSD may impair extinction learning  TSD will impair

  14. Sweet taste perception not altered after acute sleep deprivation in healthy young men

    OpenAIRE

    Hogenkamp, P.S.; Nilsson, E; Chapman, C.D.; Cedernaes, J; Vogel, H; Dickson, S. L.; Broman, J-E; Schi?th, H B; Benedict, C

    2013-01-01

    Background We hypothesized that acutely sleep-deprived participants would rate ascending concentrations of sucrose as more intense and pleasant, than they would do after one night of normal sleep. Such a finding would offer a potential mechanism through which acute sleep loss could promote overeating in humans. Method A total of 16?healthy normal-weight men participated in 2?conditions: sleep (permitted between 22:30 and 06:30?h) and total sleep deprivation (TSD) respectively. On the morning ...

  15. Creatine supplementation, sleep deprivation, cortisol, melatonin and behavior.

    Science.gov (United States)

    McMorris, T; Harris, R C; Howard, A N; Langridge, G; Hall, B; Corbett, J; Dicks, M; Hodgson, C

    2007-01-30

    The effect of creatine supplementation and sleep deprivation, with intermittent moderate-intensity exercise, on cognitive and psychomotor performance, mood state, effort and salivary concentrations of cortisol and melatonin were examined. Subjects were divided into a creatine supplementation group and a placebo group. They took 5 g of creatine monohydrate or a placebo, dependent on their group, four times a day for 7 days immediately prior to the experiment. They undertook tests examining central executive functioning, short-term memory, choice reaction time, balance, mood state and effort at baseline and following 18-, 24- and 36-h sleep deprivation, with moderate intermittent exercise. Saliva samples were taken prior to each set of tests. A group x time analysis of covariance, with baseline performance the covariate, showed that the creatine group performed significantly (p Cortisol concentrations on Day 1 were significantly (p < 0.01) higher than on Day 2. Mood significantly (p < 0.001) deteriorated up to 24 h with no change from 24 to 36 h. Effort at baseline was significantly (p < 0.01) lower than in the other conditions. It was concluded that, during sleep deprivation with moderate-intensity exercise, creatine supplementation only affects performance of complex central executive tasks.

  16. Functional imaging correlates of impaired distractor suppression following sleep deprivation.

    Science.gov (United States)

    Kong, Danyang; Soon, Chun Siong; Chee, Michael W L

    2012-05-15

    Sleep deprivation (SD) has been shown to affect selective attention but it is not known how two of its component processes: target enhancement and distractor suppression, are affected. To investigate, young volunteers either attended to houses or were obliged to ignore them (when attending to faces) while viewing superimposed face-house pictures. MR signal enhancement and suppression in the parahippocampal place area (PPA) were determined relative to a passive viewing control condition. Sleep deprivation was associated with lower PPA activation across conditions. Critically SD specifically impaired distractor suppression in selective attention, leaving target enhancement relatively preserved. These findings parallel some observations in cognitive aging. Additionally, following SD, attended houses were not significantly better recognized than ignored houses in a post-experiment test of recognition memory contrasting with the finding of superior recognition of attended houses in the well-rested state. These results provide evidence for co-encoding of distracting information with targets into memory when one is sleep deprived. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The effect of REM sleep deprivation on motivation for food reward.

    Science.gov (United States)

    Hanlon, Erin C; Andrzejewski, Matthew E; Harder, Bridgette K; Kelley, Ann E; Benca, Ruth M

    2005-08-30

    Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.

  18. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.

    Science.gov (United States)

    Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie

    2012-10-01

    Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.

  19. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus.

    Science.gov (United States)

    Guan, Zhiwei; Peng, Xuwen; Fang, Jidong

    2004-08-20

    Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.

  20. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  1. Assessing Individual Differences in Adaptation to Extreme Environments: A 36-Hour Sleep Deprivation Study

    Science.gov (United States)

    Martinez, Jacqueline; Cowings, Patricia S.; Toscano, William B.

    2012-01-01

    In space, astronauts may experience effects of cumulative sleep loss due to demanding work schedules that can result in cognitive performance impairments, mood state deteriorations, and sleep-wake cycle disruption. Individuals who experience sleep deprivation of six hours beyond normal sleep times experience detrimental changes in their mood and performance states. Hence, the potential for life threatening errors increases exponentially with sleep deprivation. We explored the effects of 36-hours of sleep deprivation on cognitive performance, mood states, and physiological responses to identify which metrics may best predict fatigue induced performance decrements of individuals.

  2. Learning and memory are impaired in the object recognition task during metestrus/diestrus and after sleep deprivation.

    Science.gov (United States)

    Cordeira, Joshua; Kolluru, Sai Saroja; Rosenblatt, Heather; Kry, Jenny; Strecker, Robert E; McCarley, Robert W

    2017-11-24

    Females are an under-represented research model and the mechanisms through which sleep loss impairs cognition are not clear. Since levels of reproductive hormones and the estrous cycle are sensitive to sleep loss and necessary for learning and memory, we hypothesized that sleep deprivation impacts learning and memory in female mice by interfering with the estrous cycle. We used the object recognition task to assess learning and memory in female mice during separate phases of the estrous cycle and after sleep loss. Mice in metestrus/diestrus attended to sample objects less than mice in proestrus/estrus during object acquisition, the first phase of the object recognition task. Subsequently, during the recognition phase of the task, only mice in proestrus/estrus displayed a preference for the novel object. Sleep deprivation for 12h immediately before the object recognition task reduced time attending to sample objects and novel object preference for mice in proestrus/estrus, without changing length of the estrous cycle. These results show that sleep deprived mice in proestrus/estrus had learning deficits and memory impairments, like mice in metestrus/diestrus. Since sleep deprivation did not disrupt the estrous cycle, however, results did not support the hypothesis. Cognitive impairments due to acute sleep loss were not due to alterations to the estrous cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of Sleep and Sleep Deprivation on Ictal and Interictal Epileptiform Activity

    Directory of Open Access Journals (Sweden)

    Antonio Díaz-Negrillo

    2013-01-01

    Full Text Available Sleep is probably one of the most important physiological factors implicated both in epileptic seizures and interictal epileptiform discharges. The neurophysiology concerning the relationship between sleep and epilepsy is well described in the literature; however, the pathological events that culminate in the seizures are poorly explored. The present paper intends to make a rigorous approach to the main mechanisms involved in this reciprocal relation. Knowledge of sleep and sleep deprivation effects in epilepsy stands as crucial in the understanding of how seizures are produced, their possible lines of treatment, and future research.

  4. Evidence for cortical structural plasticity in humans after a day of waking and sleep deprivation.

    Science.gov (United States)

    Elvsåshagen, Torbjørn; Zak, Nathalia; Norbom, Linn B; Pedersen, Per Ø; Quraishi, Sophia H; Bjørnerud, Atle; Alnæs, Dag; Doan, Nhat Trung; Malt, Ulrik F; Groote, Inge R; Westlye, Lars T

    2017-08-01

    Sleep is an evolutionarily conserved process required for human health and functioning. Insufficient sleep causes impairments across cognitive domains, and sleep deprivation can have rapid antidepressive effects in mood disorders. However, the neurobiological effects of waking and sleep are not well understood. Recently, animal studies indicated that waking and sleep are associated with substantial cortical structural plasticity. Here, we hypothesized that structural plasticity can be observed after a day of waking and sleep deprivation in the human cerebral cortex. To test this hypothesis, 61 healthy adult males underwent structural magnetic resonance imaging (MRI) at three time points: in the morning after a regular night's sleep, the evening of the same day, and the next morning, either after total sleep deprivation (N=41) or a night of sleep (N=20). We found significantly increased right prefrontal cortical thickness from morning to evening across all participants. In addition, pairwise comparisons in the deprived group between the two morning scans showed significant thinning of mainly bilateral medial parietal cortices after 23h of sleep deprivation, including the precuneus and posterior cingulate cortex. However, there were no significant group (sleep vs. sleep deprived group) by time interactions and we can therefore not rule out that other mechanisms than sleep deprivation per se underlie the bilateral medial parietal cortical thinning observed in the deprived group. Nonetheless, these cortices are thought to subserve wakefulness, are among the brain regions with highest metabolic rate during wake, and are considered some of the most sensitive cortical regions to a variety of insults. Furthermore, greater thinning within the left medial parietal cluster was associated with increased sleepiness after sleep deprivation. Together, these findings add to a growing body of data showing rapid structural plasticity within the human cerebral cortex detectable with

  5. Sleep deprivation selectively disrupts top-down adaptation to cognitive conflict in the Stroop test

    OpenAIRE

    Gevers, Wim; Deliens, G; Hoffmann, S.; Notebaert, Wim; Peigneux, P.

    2015-01-01

    AB Sleep deprivation is known to exert detrimental effects on various cognitive domains, including attention, vigilance and working memory. Seemingly at odds with these findings, prior studies repeatedly failed to evidence an impact of prior sleep deprivation on cognitive interference in the Stroop test, a hallmark paradigm in the study of cognitive control abilities. The present study investigated further the effect of sleep deprivation on cognitive control using an adapted version of the St...

  6. Effect of on-call-related sleep deprivation on physicians? mood and alertness

    OpenAIRE

    Wali, Siraj O.; Karimah Qutah; Lujain Abushanab; Roa′a Basamh; Jolanar Abushanab; Ayman Krayem

    2013-01-01

    Background And Objective: Physicians may experience periods of acute sleep deprivation while on-call, in addition to baseline chronic sleep deprivation which may affect physicians′ performance and patients′ safety. The purpose of this study was to determine the effect of acute sleep deprivation due to working long on-call shifts on mood and alertness, both of which may impair physicians′ performance. Methods: Eighty-eight junior physicians working in one university hospital completed a que...

  7. Sleep homeostatic pressure and PER3 VNTR gene polymorphism influence antidepressant response to sleep deprivation in bipolar depression.

    Science.gov (United States)

    Dallaspezia, Sara; Locatelli, Clara; Lorenzi, Cristina; Pirovano, Adele; Colombo, Cristina; Benedetti, Francesco

    2016-03-01

    Combined Total sleep deprivation (TSD) and light therapy (LT) cause a rapid improvement in bipolar depression which has been hypothesized to be paralleled by changes in sleep homeostasis. Recent studies showed that bipolar patients had lower changes of EEG theta power after sleep and responders to antidepressant TSD+LT slept less and showed a lower increase of EEG theta power then non-responders. A polymorphism in PER3 gene has been associated with diurnal preference, sleep structure and homeostatic response to sleep deprivation in healthy subjects. We hypothesized that the individual variability in the homeostatic response to TSD could be a correlate of antidepressant response and be influenced by genetic factors. We administered three TSD+LT cycles to bipolar depressed patients. Severity of depression was rated on Hamilton Depression Rating Scale. Actigraphic recordings were performed in a group of patients. PER3 polymorphism influenced changes in total sleep time (F=2.24; p=0.024): while PER3(4/4) and PER3(4/5) patients showed a reduction in it after treatment, PER3(5/5) subjects showed an increase of about 40min, suggesting a higher homeostatic pressure. The same polymorphism influenced the change of depressive symptomatology during treatment (F=3.72; p=0.028). Sleep information was recorded till the day after the end of treatment: a longer period of observation could give more information about the possible maintenance of allostatic adaptation. A higher sleep homeostatic pressure reduced the antidepressant response to TSD+LT, while an allostatic adaptation to sleep loss was associated with better response. This process seems to be under genetic control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of sleep deprivation on cardiorespiratory functions of the runners and volleyball players during rest and exercise.

    Science.gov (United States)

    Azboy, O; Kaygisiz, Z

    2009-03-01

    The effect of sleep deprivation on male runners (age 18.1 +/- 0.35) and volleyball players (age 17.8 +/- 0.36) has not been investigated. Therefore, we studied the possible effect of sleep deprivation in the sportsmen. The athletes performed spirometric tests at rest and then incremental exercise test on ergometer following one night sleep and one night (25-30 h) sleeplessness. Several standard measurements of spirometric function showed no significant change following sleep loss. Sleep loss raised resting oxygen uptake (VO2) in the runners and resting carbon dioxide production (VCO2) in both the runners and the volleyball players (p Sleep loss decreased time to exhaustion in the volleyball players (p sleep loss did not alter exercise values of HR, VO2, VCO2, R and SaO2, but it reduced exercise VE (p sleep deprivation may reduce exercise performance by decreasing exercise VE and time to exhaustion. We also indicate that sleep loss may decrease more the performance of volleyball players than that of runners.

  9. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    NARCIS (Netherlands)

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on

  10. Individual Differences in Response to Sleep Deprivation: Assessment of Fatigue Following Sleep Loss

    Science.gov (United States)

    Carskadon, Mary A.

    1997-01-01

    Previous work has indicated that a small but significant number of participants in sleep deprivation studies or in simulated shift work experiments manifests an exaggerated performance decrement when they reach a critical point in the experiment, usually near the trough of the circadian cycle or the middle of the night. Those who show this exaggerated response do not appear to differ from other normal volunteers in any substantial way according to usual screening criteria or baseline values. The present study aims to examine factors that may provide the basis for this extreme response. We propose that a preexisting sleep deficit-as manifested by low values on the Multiple Sleep Latency Test (MSLT)-may account for extreme responders. Roth and colleagues (1993) have shown that among normal volunteers screened for a variety of studies, approximately 20 to 25 percent show low ( or = 13 minutes). Additionally, studies by this group have indicated that subjects with low MSLT scores may suffer from chronic insufficient sleep (Roth et al., 1993), as further substantiated by the finding that they have consistently higher nocturnal sleep efficiency and that their MSLT scores rise to normal values when sleep is extended (Roehrs et al., 1996). We hypothesize that the short MSLT subjects have a significant long-term sleep deficit that leads to a marked intolerance for sleep deprivation or shift work. We further suggest that this sleep debt may signify an increased sleep need in these individuals that is not met either due to personal preference or to societal pressures (or both). If this speculation is accurate, then we predict that the tolerance for sleep deprivation in such individuals can be increased by "pretreatment" with sleep extension. Thus, the present study is designed to test the following two hypotheses: subjects with nominal sleep patterns who have low MSLT scores (e.g., Sleepy subjects) will show an exaggerated response (performance decrement) to sleep loss

  11. Neuroethologic differences in sleep deprivation induced by the single- and multiple-platform methods

    Directory of Open Access Journals (Sweden)

    R. Medeiros

    1998-05-01

    Full Text Available It has been proposed that the multiple-platform method (MP for desynchronized sleep (DS deprivation eliminates the stress induced by social isolation and by the restriction of locomotion in the single-platform (SP method. MP, however, induces a higher increase in plasma corticosterone and ACTH levels than SP. Since deprivation is of heuristic value to identify the functional role of this state of sleep, the objective of the present study was to determine the behavioral differences exhibited by rats during sleep deprivation induced by these two methods. All behavioral patterns exhibited by a group of 7 albino male Wistar rats submitted to 4 days of sleep deprivation by the MP method (15 platforms, spaced 150 mm apart and by 7 other rats submitted to sleep deprivation by the SP method were recorded in order to elaborate an ethogram. The behavioral patterns were quantitated in 10 replications by naive observers using other groups of 7 rats each submitted to the same deprivation schedule. Each quantification session lasted 35 min and the behavioral patterns presented by each rat over a period of 5 min were counted. The results obtained were: a rats submitted to the MP method changed platforms at a mean rate of 2.62 ± 1.17 platforms h-1 animal-1; b the number of episodes of noninteractive waking patterns for the MP animals was significantly higher than that for SP animals (1077 vs 768; c additional episodes of waking patterns (26.9 ± 18.9 episodes/session were promoted by social interaction in MP animals; d the cumulative number of sleep episodes observed in the MP test (311 was significantly lower (chi-square test, 1 d.f., P<0.05 than that observed in the SP test (534; e rats submitted to the MP test did not show the well-known increase in ambulatory activity observed after the end of the SP test; f comparison of 6 MP and 6 SP rats showed a significantly shorter latency to the onset of DS in MP rats (7.8 ± 4.3 and 29.0 ± 25.0 min, respectively

  12. Circadian clock resetting by sleep deprivation without exercise in Syrian hamsters: dark pulses revisited.

    Science.gov (United States)

    Mistlberger, Ralph E; Belcourt, Jodi; Antle, Michael C

    2002-06-01

    Circadian rhythms in Syrian hamsters can be phase shifted by procedures that stimulate wheel running ("exercise") in the mid-subjective day (the hamster's usual sleep period). The authors recently demonstrated that keeping hamsters awake by gentle handling, without continuous running, is sufficient to mimic this effect. Here, the authors assessed whether wakefulness, independent of wheel running, also mediates phase shifts to dark pulses during the midsubjective day in hamsters free-running in constant light (LL). With running wheels locked during a 3 h dark pulse on day 3 of LL, hamsters (N = 16) averaged only 43+/-15 min of spontaneous wake time and phase shifted only 24+/-43 min. When wheels were open during a dark pulse, two hamsters remained awake, ran continuously, and showed phase advance shifts of 7.3 h and 8.7 h, respectively, whereas the other hamsters were awake awake for 3 h without running. Additional time in LL (10 and 20 days) did not potentiate the waking or phase shift response to dark pulses. When all hamsters were sleep deprived with wheels locked during a dark pulse, phase advance shifts averaged 261+/-110 min and ranged up to 7.3 h. These shifts are large compared to those previously observed in response to the 3 h sleep deprivation procedure. Additional tests revealed that this potentiated shift response is dependent on LL prior to sleep deprivation but not LL after sleep deprivation. A final sleep deprivation test showed that a small part of the potentiation may be due to suppression of spontaneous wheel running by LL. These results indicate that some correlate of waking, other than continuous running, mediates the phase-shifting effect of dark pulses in the mid-subjective day. The mechanism by which LL potentiates shifting remains to be determined. The lack of effect of subsequent LL on the magnitude of shifts to sleep deprivation in the dark suggests that LL reduces responsivity to light by processes that take >3 h of dark to reverse.

  13. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    OpenAIRE

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2013-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found...

  14. Phosphorous31 magnetic resonance spectroscopy after total sleep deprivation in healthy adult men.

    Science.gov (United States)

    Dorsey, Cynthia M; Lukas, Scott E; Moore, Constance M; Tartarini, Wendy L; Parow, Aimee M; Villafuerte, Rosemond A; Renshaw, Perry F

    2003-08-01

    To investigate chemical changes in the brains of healthy adults after sleep deprivation and recovery sleep, using phosphorous magnetic resonance spectroscopy. Three consecutive nights (baseline, sleep deprivation, recovery) were spent in the laboratory. Objective sleep measures were assessed on the baseline and recovery nights using polysomnography. Phosphorous magnetic resonance spectroscopy scans took place beginning at 7 am to 8 am on the morning after each of the 3 nights. Sleep laboratory in a private psychiatric teaching hospital. Eleven healthy young men. Following a baseline night of sleep, subjects underwent a night of total sleep deprivation, which involved supervision to ensure the absence of sleep but was not polysomnographically monitored. No significant changes in any measure of brain chemistry were observed the morning after a night of total sleep deprivation. However, after the recovery night, significant increases in total and beta-nucleoside triphosphate and decreases in phospholipid catabolism, measured by an increase in the concentration of glycerylphosphorylcholine, were observed. Chemical changes paralleled some changes in objective sleep measures. Significant chemical changes in the brain were observed following recovery sleep after 1 night of total sleep deprivation. The specific process underlying these changes is unclear due to the large brain region sampled in this exploratory study, but changes may reflect sleep inertia or some aspect of the homeostatic sleep mechanism that underlies the depletion and restoration of sleep. Phosphorous magnetic resonance spectroscopy is a technique that may be of value in further exploration of such sleep-wake functions.

  15. Effects of acute sleep deprivation on state anxiety levels: a systematic review and meta-analysis.

    Science.gov (United States)

    Pires, Gabriel Natan; Bezerra, Andreia Gomes; Tufik, Sergio; Andersen, Monica Levy

    2016-08-01

    Increased anxiety levels have been widely recognized as one of the most important consequences of sleep deprivation. However, despite this general consensus, there are still aspects of this relationship, such as the extent of the anxiogenic potential and the specific effects of different types of sleep deprivation, which remain unclear. As no broad review has been undertaken to evaluate this relationship, we performed a systematic review and meta-analysis regarding the effects of sleep deprivation on state anxiety. Our search strategy encompassed two databases - Pubmed/Medline and Scopus - through which we were able to identify 756 articles. After the selection process, 18 articles, encompassing 34 experiments, composed our final sample. Our analyses indicate that sleep deprivation, whether total or not, leads to a significant increase in state anxiety levels, but sleep restriction does not. Regarding the effect of the length of the period of sleep deprivation, no significant results were observed, but there was a notable tendency for an increase in anxiety in longer sleep deprivations. With regard to tools, the State-Trait Anxiety Inventory (STAI) seems to be the best one to measure sleep-induced anxiogenesis, while the Profile of Mood States (POMS) presented inconclusive results. In conclusion, it can be affirmed that sleep deprivation induces a state of increased anxiety, with similar results also in the case of total sleep deprivation; however, results in more specific experimental conditions are not definitive. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio).

    Science.gov (United States)

    Pinheiro-da-Silva, Jaquelinne; Silva, Priscila Fernandes; Nogueira, Marcelo Borges; Luchiari, Ana Carolina

    2017-03-01

    The zebrafish is an ideal vertebrate model for neurobehavioral studies with translational relevance to humans. Many aspects of sleep have been studied, but we still do not understand how and why sleep deprivation alters behavioral and physiological processes. A number of hypotheses suggest its role in memory consolidation. In this respect, the aim of this study was to analyze the effects of sleep deprivation on memory in zebrafish (Danio rerio), using an object discrimination paradigm. Four treatments were tested: control, partial sleep deprivation, total sleep deprivation by light pulses, and total sleep deprivation by extended light. The control group explored the new object more than the known object, indicating clear discrimination. The partially sleep-deprived group explored the new object more than the other object in the discrimination phase, suggesting a certain degree of discriminative performance. By contrast, both total sleep deprivation groups equally explored all objects, regardless of their novelty. It seems that only one night of sleep deprivation is enough to affect discriminative response in zebrafish, indicating its negative impact on cognitive processes. We suggest that this study could be a useful screening tool for cognitive dysfunction and a better understanding of the effect of sleep-wake cycles on cognition.

  17. Inverse benzodiazepine agonist beta-CCM does not reverse learning deficit induced by sleep deprivation.

    Science.gov (United States)

    Dubiela, Francisco Paulino; Oliveira, Maria Gabriela Menezes de; Moreira, Karin Di Monteiro; Nobrega, José N; Tufik, Sergio; Hipólide, Débora Cristina

    2010-01-18

    Increasing evidence indicates that sleep deprivation (SD) alters responses to pharmacological agents by affecting specific transmitter systems. The present work addressed deficits in passive avoidance (PA) performance that are seen after SD, and investigated whether treatment with the inverse benzodiazepine agonist beta-CCM could prevent such deficits. Male Wistar rats were deprived of sleep for 96 h using the platform method (SD group), or were sleep deprived and then allowed to recover sleep for 24h (SR group). Animals were treated with saline or 0.5mg/kg beta-CCM before PA training, and were tested 30 min or 24h later. A separate set of animals was sacrificed for [(3)H]Ro 15-4513 binding analysis. beta-CCM increased PA performance in control animals in both short and long term retention tests, whereas SD and SR animals were unaffected by the drug treatment. Interestingly, [(3)H]Ro 15-4513 binding was reduced in the entorhinal cortex in both SD and SR groups. These findings suggest that the lack of promnesic effects of beta-CCM after SD and SR may be associated with benzodiazepine receptor downregulation in specific brain regions related to memory formation. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Decreased arousals among healthy infants after short-term sleep deprivation.

    Science.gov (United States)

    Franco, Patricia; Seret, Nicole; Van Hees, Jean Noël; Scaillet, Sonia; Vermeulen, Françoise; Groswasser, José; Kahn, André

    2004-08-01

    Sleep deprivation is a risk factor for sudden infant death syndrome (SIDS). Recent changes in normal life routines were more common among SIDS victims, compared with control infants. Sleep deprivation can result from handling conditions or from sleep fragmentation attributable to respiratory or digestive conditions, fever, or airway obstructions during sleep. Compared with matched control infants, future SIDS victims exhibited fewer complete arousals by the end of the night, when most SIDS cases occur. Arousal from sleep could be an important defense against potentially dangerous situations during sleep. Because the arousal thresholds of healthy infants were increased significantly under conditions known to favor SIDS, we evaluated the effects of a brief period of sleep deprivation on sleep and arousal characteristics of healthy infants. Fourteen healthy infants, with a median age of 8 weeks (range: 6-18 weeks), underwent polygraphic recording during a morning nap and an afternoon nap, in a sleep laboratory. The infants were sleep-deprived for 2 hours before being allowed to fall asleep. Sleep deprivation was achieved by keeping the infants awake, with playing, handling, and mild tactile or auditory stimulations, for as long as possible beyond their habitual bedtimes. To avoid any confounding effect attributable to differences in sleep tendencies throughout the day, sleep deprivation was induced before either the morning nap or the afternoon nap. Seven infants were sleep-deprived before the morning nap and 7 before the afternoon nap. The sleep and arousal characteristics of each infant were compared for the non-sleep-deprived condition (normal condition) and the sleep-deprived condition. During each nap, the infants were exposed, during rapid eye movement (REM) sleep, to white noise of increasing intensity, from 50 dB(A) to 100 dB(A), to determine their arousal thresholds. Arousal thresholds were defined on the basis of the lowest auditory stimuli needed to induce

  19. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation

    Science.gov (United States)

    Irwin, Michael R.; Olmstead, Richard; Carroll, Judith E.

    2015-01-01

    Background Sleep disturbance is associated with inflammatory disease risk and all-cause mortality. Here, we assess global evidence linking sleep disturbance, sleep duration, and inflammation in adult humans. Methods A systematic search of English language publications was performed, with inclusion of primary research articles that characterized sleep disturbance and/or sleep duration or performed experimental sleep deprivation, and assessed inflammation by levels of circulating markers. Effect sizes (ES) and 95% confidence intervals (CI) were extracted and pooled using a random effect model. Results A total of 72 studies (n>50000) were analyzed with assessment of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF). Sleep disturbance was associated with higher levels of CRP (ES 0.12; 95% CI 0.05 – 0.19) and IL-6 (ES 0.20; 95% CI 0.08 – 0.31). Shorter sleep duration, but not the extreme of short sleep, was associated with higher levels of CRP (ES 0.09; 95% CI 0.01 – 0.17) but not IL-6 (ES 0.03; 95% CI −0.09 – 0.14). The extreme of long sleep duration was associated with higher levels of CRP (ES 0.17; 95% CI 0.01 – 0.34) and IL-6 (ES 0.11; 95% CI 0.02 – 0.20). Neither sleep disturbances nor sleep duration was associated with TNF. Neither experimental sleep deprivation nor sleep restriction was associated with CRP, IL-6, or TNF. Some heterogeneity among studies was found, but no evidence of publication bias. Conclusions Sleep disturbance and long sleep duration, but not short sleep duration, are associated with increases in markers of systemic inflammation. PMID:26140821

  20. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation.

    Science.gov (United States)

    Irwin, Michael R; Olmstead, Richard; Carroll, Judith E

    2016-07-01

    Sleep disturbance is associated with inflammatory disease risk and all-cause mortality. Here, we assess global evidence linking sleep disturbance, sleep duration, and inflammation in adult humans. A systematic search of English language publications was performed, with inclusion of primary research articles that characterized sleep disturbance and/or sleep duration or performed experimental sleep deprivation and assessed inflammation by levels of circulating markers. Effect sizes (ES) and 95% confidence intervals (CI) were extracted and pooled using a random effect model. A total of 72 studies (n > 50,000) were analyzed with assessment of C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNFα). Sleep disturbance was associated with higher levels of CRP (ES .12; 95% CI = .05-.19) and IL-6 (ES .20; 95% CI = .08-.31). Shorter sleep duration, but not the extreme of short sleep, was associated with higher levels of CRP (ES .09; 95% CI = .01-.17) but not IL-6 (ES .03; 95% CI: -.09 to .14). The extreme of long sleep duration was associated with higher levels of CRP (ES .17; 95% CI = .01-.34) and IL-6 (ES .11; 95% CI = .02-20). Neither sleep disturbances nor sleep duration was associated with TNFα. Neither experimental sleep deprivation nor sleep restriction was associated with CRP, IL-6, or TNFα. Some heterogeneity among studies was found, but there was no evidence of publication bias. Sleep disturbance and long sleep duration, but not short sleep duration, are associated with increases in markers of systemic inflammation. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Sleep Deprivation and Caffeine Treatment Potentiate Photic Resetting of the Master Circadian Clock in a Diurnal Rodent.

    Science.gov (United States)

    Jha, Pawan Kumar; Bouâouda, Hanan; Gourmelen, Sylviane; Dumont, Stephanie; Fuchs, Fanny; Goumon, Yannick; Bourgin, Patrice; Kalsbeek, Andries; Challet, Etienne

    2017-04-19

    Circadian rhythms in nocturnal and diurnal mammals are primarily synchronized to local time by the light/dark cycle. However, nonphotic factors, such as behavioral arousal and metabolic cues, can also phase shift the master clock in the suprachiasmatic nuclei (SCNs) and/or reduce the synchronizing effects of light in nocturnal rodents. In diurnal rodents, the role of arousal or insufficient sleep in these functions is still poorly understood. In the present study, diurnal Sudanian grass rats, Arvicanthis ansorgei, were aroused at night by sleep deprivation (gentle handling) or caffeine treatment that both prevented sleep. Phase shifts of locomotor activity were analyzed in grass rats transferred from a light/dark cycle to constant darkness and aroused in early night or late night. Early night, but not late night, sleep deprivation induced a significant phase shift. Caffeine on its own induced no phase shifts. Both sleep deprivation and caffeine treatment potentiated light-induced phase delays and phase advances in response to a 30 min light pulse, respectively. Sleep deprivation in early night, but not late night, potentiated light-induced c-Fos expression in the ventral SCN. Caffeine treatment in midnight triggered c-Fos expression in dorsal SCN. Both sleep deprivation and caffeine treatment potentiated light-induced c-Fos expression in calbindin-containing cells of the ventral SCN in early and late night. These findings indicate that, in contrast to nocturnal rodents, behavioral arousal induced either by sleep deprivation or caffeine during the sleeping period potentiates light resetting of the master circadian clock in diurnal rodents, and activation of calbindin-containing suprachiasmatic cells may be involved in this effect.SIGNIFICANCE STATEMENT Arousing stimuli have the ability to regulate circadian rhythms in mammals. Behavioral arousal in the sleeping period phase shifts the master clock in the suprachiasmatic nuclei and/or slows down the photic

  2. Sleep Deprivation During Early-Adult Development Results in Long-Lasting Learning Deficits in Adult Drosophila

    Science.gov (United States)

    Seugnet, Laurent; Suzuki, Yasuko; Donlea, Jeff M.; Gottschalk, Laura; Shaw, Paul J.

    2011-01-01

    Study Objectives: Multiple lines of evidence indicate that sleep is important for the developing brain, although little is known about which cellular and molecular pathways are affected. Thus, the aim of this study was to determine whether the early adult life of Drosophila, which is associated with high amounts of sleep and critical periods of brain plasticity, could be used as a model to identify developmental processes that require sleep. Subjects: Wild type Canton-S Drosophila melanogaster. Design; Intervention: Flies were sleep deprived on their first full day of adult life and allowed to recover undisturbed for at least 3 days. The animals were then tested for short-term memory and response-inhibition using aversive phototaxis suppression (APS). Components of dopamine signaling were further evaluated using mRNA profiling, immunohistochemistry, and pharmacological treatments. Measurements and Results: Flies exposed to acute sleep deprivation on their first day of life showed impairments in short-term memory and response inhibition that persisted for at least 6 days. These impairments in adult performance were reversed by dopamine agonists, suggesting that the deficits were a consequence of reduced dopamine signaling. However, sleep deprivation did not impact dopaminergic neurons as measured by their number or by the levels of dopamine, pale (tyrosine hydroxylase), dopadecarboxylase, and the Dopamine transporter. However, dopamine pathways were impacted as measured by increased transcript levels of the dopamine receptors D2R and dDA1. Importantly, blocking signaling through the dDA1 receptor in animals that were sleep deprived during their critical developmental window prevented subsequent adult learning impairments. Conclusions: These data indicate that sleep plays an important and phylogenetically conserved role in the developing brain. Citation: Seugnet L; Suzuki Y; Donlea JM; Gottschalk L; Shaw PJ. Sleep deprivation during early-adult development results in

  3. The effect of selective REM-sleep deprivation on the consolidation and affective evaluation of emotional memories.

    Science.gov (United States)

    Wiesner, Christian D; Pulst, Julika; Krause, Fanny; Elsner, Marike; Baving, Lioba; Pedersen, Anya; Prehn-Kristensen, Alexander; Göder, Robert

    2015-07-01

    Emotion boosts the consolidation of events in the declarative memory system. Rapid eye movement (REM) sleep is believed to foster the memory consolidation of emotional events. On the other hand, REM sleep is assumed to reduce the emotional tone of the memory. Here, we investigated the effect of selective REM-sleep deprivation, SWS deprivation, or wake on the affective evaluation and consolidation of emotional and neutral pictures. Prior to an 9-h retention interval, sixty-two healthy participants (23.5 ± 2.5 years, 32 female, 30 male) learned and rated their affect to 80 neutral and 80 emotionally negative pictures. Despite rigorous deprivation of REM sleep or SWS, the residual sleep fostered the consolidation of neutral and negative pictures. Furthermore, emotional arousal helped to memorize the pictures. The better consolidation of negative pictures compared to neutral ones was most pronounced in the SWS-deprived group where a normal amount of REM sleep was present. This emotional memory bias correlated with REM sleep only in the SWS-deprived group. Furthermore, emotional arousal to the pictures decreased over time, but neither sleep nor wake had any differential effect. Neither the comparison of the affective ratings (arousal, valence) during encoding and recognition, nor the affective ratings of the recognized targets and rejected distractors supported the hypothesis that REM sleep dampens the emotional reaction to remembered stimuli. The data suggest that REM sleep fosters the consolidation of emotional memories but has no effect on the affective evaluation of the remembered contents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1

    National Research Council Canada - National Science Library

    Havekes, Robbert; Park, Alan J; Tudor, Jennifer C; Luczak, Vincent G; Hansen, Rolf T; Ferri, Sarah L; Bruinenberg, Vibeke M; Poplawski, Shane G; Day, Jonathan P; Aton, Sara J; Radwańska, Kasia; Meerlo, Peter; Houslay, Miles D; Baillie, George S; Abel, Ted

    2016-01-01

    .... Recovery sleep normalizes these structural alterations. Suppression of cofilin function prevents spine loss, deficits in hippocampal synaptic plasticity, and impairments in long-term memory caused by sleep deprivation...

  5. Effects of sleep deprivation on serum cortisol level and mental health in servicemen.

    Science.gov (United States)

    Song, Hong-Tao; Sun, Xin-Yang; Yang, Ting-Shu; Zhang, Li-Yi; Yang, Jia-Lin; Bai, Jing

    2015-06-01

    This study aimed to investigate the effects of sleep deprivation on serum cortisol level and mental health and explore the correlations between them in servicemen. A total of 149 out of the 207 Chinese servicemen were randomly selected to go through 24hour sleep deprivation, leaving the rest (58) as the control group, before and after which their blood samples were drawn for cortisol measurement. Following the procedure, all the participants were administered the Military Personnel Mental Disorder Prediction Scale, taking the military norm as baseline. The results revealed that the post-deprivation serum cortisol level was positively correlated with the factor score of mania in the sleep deprivation group (rSp=0.415, pSleep deprivation could significantly increase serum cortisol level and may affect mental health in servicemen. The increase of serum cortisol level is significantly related to mania disorder during sleep deprivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Partial REM-sleep deprivation increases the dream-like quality of mentation from REM sleep and sleep onset.

    Science.gov (United States)

    Nielsen, Tore; Stenstrom, Philippe; Takeuchi, Tomoka; Saucier, Sebastien; Lara-Carrasco, Jessica; Solomonova, Elizaveta; Martel, Emilie

    2005-09-01

    Sleep onset (SO) is cognitively and physiologically similar to rapid eye movement (REM) sleep, supporting the notion that REM sleep-related processes are 'covertly' active at this time. The objective was to determine if SO mentation is sensitive to REM sleep deprivation. Two-group cross-sectional design; sleep recordings for 3 nights. Standard sleep laboratory with 24-channel polysomnography recording. Fourteen female, 13 male healthy volunteers (18-41 yrs, mean=24.8 +/- 6.07). On Night 2, half were and half were not partially REM sleep-deprived (REMD), recalled REM mentation, and rated it for dream-like quality (DLQ), sleepiness, and sensory attributes. On Night 3, all were awakened from SO substages 4 and 5 for mentation reports and further ratings. REMD measures were derived from scored sleep tracings. REMD produced increases in DLQ for both REM and SO reports (P REM than for SO mentation (P REM/SO difference. Whereas 2 sensory attributes (presence of self, visual intensity) tended to distinguish the REM-mentation reports of REMD and control subjects, only 1, self-movement, distinguished their SO mentation reports (P REM and SO mentation was associated with increased sleepiness and decreased REM sleep time on Night 2. SO mentation responds to REMD much like REM mentation does, a finding consistent with other work supporting the notion of covert REM-sleep processes at SO. DLQ may be mediated by both increases in REM-sleep propensity and a circadian process indexed by sleepiness ratings.

  7. Sleep

    Science.gov (United States)

    ... REM sleep? What is the effect of sleep deprivation? What are sleep myths? What are sleep disorders? ... Some hormones produced during sleep affect the body's use of energy. This may be how inadequate sleep ...

  8. The behavioral and health consequences of sleep deprivation among U.S. high school students: relative deprivation matters.

    Science.gov (United States)

    Meldrum, Ryan Charles; Restivo, Emily

    2014-06-01

    To evaluate whether the strength of the association between sleep deprivation and negative behavioral and health outcomes varies according to the relative amount of sleep deprivation experienced by adolescents. 2011 Youth Risk Behavior Survey data of high school students (N=15,364) were analyzed. Associations were examined on weighted data using logistic regression. Twelve outcomes were examined, ranging from weapon carrying to obesity. The primary independent variable was a self-reported measure of average number of hours slept on school nights. Participants who reported deprivations in sleep were at an increased risk of a number of negative outcomes. However, this varied considerably across different degrees of sleep deprivation. For each of the outcomes considered, those who slept less than 5h were more likely to report negative outcomes (adjusted odds ratios ranging from 1.38 to 2.72; psleeping 8 or more hours. However, less extreme forms of sleep deprivation were, in many instances, unrelated to the outcomes considered. Among U.S. high school students, deficits in sleep are significantly and substantively associated with a variety of negative outcomes, and this association is particularly pronounced for students achieving fewer than 5h of sleep at night. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Obstructive sleep apnea is a predictor of abnormal glucose metabolism in chronically sleep deprived obese adults.

    Science.gov (United States)

    Cizza, Giovanni; Piaggi, Paolo; Lucassen, Eliane A; de Jonge, Lilian; Walter, Mary; Mattingly, Megan S; Kalish, Heather; Csako, Gyorgy; Rother, Kristina I

    2013-01-01

    Sleep abnormalities, including obstructive sleep apnea (OSA), have been associated with insulin resistance. To determine the relationship between sleep, including OSA, and glucose parameters in a prospectively assembled cohort of chronically sleep-deprived obese subjects. Cross-sectional evaluation of a prospective cohort study. Tertiary Referral Research Clinical Center. Sleep duration and quality assessed by actigraphy, sleep diaries and questionnaires, OSA determined by a portable device; glucose metabolism assessed by oral glucose tolerance test (oGTT), and HbA1c concentrations in 96 obese individuals reporting sleeping less than 6.5 h on a regular basis. Sixty % of subjects had an abnormal respiratory disturbance index (RDI≥5) and 44% of these subjects had abnormal oGTT results. Severity of OSA as assessed by RDI score was associated with fasting glucose (R = 0.325, p = 0.001) and fasting insulin levels (ρ = 0.217, p = 0.033). Subjects with moderate to severe OSA (RDI>15) had higher glucose concentrations at 120 min than those without OSA (RDIsleep deprived individuals. Since sleep apnea is common and frequently undiagnosed, health care providers should be aware of its occurrence and associated risks. This study was conducted under the NIDDK protocol 06-DK-0036 and is listed in ClinicalTrials.gov NCT00261898.

  10. Chronic Sleep Deprivation Differentially Affects Short and Long-term Operant Memory in Aplysia

    OpenAIRE

    Krishnan, Harini C.; Noakes, Eric J.; Lyons, Lisa C.

    2016-01-01

    The induction, formation and maintenance of memory represent dynamic processes modulated by multiple factors including the circadian clock and sleep. Chronic sleep restriction has become common in modern society due to occupational and social demands. Given the impact of cognitive impairments associated with sleep deprivation, there is a vital need for a simple animal model in which to study the interactions between chronic sleep deprivation and memory. We used the marine mollusk Aplysia cali...

  11. THE EFFECT OF SLEEP DEPRIVATION ON SERUM IGG RESPONSES TO AEROBIC ACTIVITY IN COLLEGE STUDENT ATHLETES

    OpenAIRE

    Saeed Jamshidi Far; Mirza Hossein Norouzi Kamareh

    2014-01-01

    Background & Aims: Sleep is a restorative process for the immune system. There are many situations in which sleep is disturbed prior to an athletic event. However, the effect of sleep deprivation on immune indices in response to exercise remains unknown. The aim of this study was to investigate the effects of sleep deprivation on serum IgG responses to aerobic activity. Materials & Methods: In this quasi-experimental study, 10 male physical education students were voluntarily participated. St...

  12. Effects of Acute Sleep Deprivation on Motor and Reversal Learning in Mice

    OpenAIRE

    Varga, Andrew W.; Kang, Mihwa; Ramesh, Priyanka V.; Klann, Eric

    2014-01-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5 hours of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum s...

  13. Sleep deprivation influences some but not all processes of supervisory attention

    Science.gov (United States)

    Jennings, J. R.; Monk, T. H.; van der Molen, M. W.

    2003-01-01

    Does one night of sleep deprivation alter processes of supervisory attention in general or only a specific subset of such processes? Twenty college-aged volunteers, half female, performed a choice reaction time task. A cue indicated that compatible (e.g., right button, right-pointing arrow) or incompatible (e.g., left button, right-pointing arrow) responses were to be given to a stimulus that followed 50 or 500 ms later. The paradigm assessed response inhibition, task-shifting skill, and task strategy-processes inherent in supervisory attention. Performance, along with heart rate, was assessed for 12 hr following normal sleep or a night of complete sleep deprivation. Sleep deprivation altered neither preparation for task shifting nor response inhibition. The ability to use preparatory bias to speed performance did decrease with sleep deprivation. Sleep deprivation appears to selectively affect this supervisory attention process, which is perceived as an active effort to cope with a challenging task.

  14. Does sleep deprivation impair orthopaedic surgeons' cognitive and psychomotor performance?

    Science.gov (United States)

    O'Brien, Michael J; O'Toole, Robert V; Newell, Mary Zadnik; Lydecker, Alison D; Nascone, Jason; Sciadini, Marcus; Pollak, Andrew; Turen, Clifford; Eglseder, W Andrew

    2012-11-07

    Sleep deprivation may slow reaction time, cloud judgment, and impair the ability to think. Our purpose was to study the cognitive and psychomotor performances of orthopaedic trauma surgeons on the basis of the amount of sleep that they obtained. We prospectively studied the performances of thirty-two orthopaedic trauma surgeons (residents, fellows, and attending surgeons) over two four-week periods at an urban academic trauma center. Testing sessions used handheld computers to administer validated cognitive and psychomotor function tests. We conducted a multivariate analysis to examine the independent association between test performance and multiple covariates, including the amount of sleep the night before testing. Our analysis demonstrated that orthopaedic surgeons who had slept four hours or less the night before the test had 1.43 times the odds (95% confidence interval, 1.04 to 1.95; p = 0.03) of committing at least one error on an individual test compared with orthopaedic surgeons who had slept more than four hours the previous night. The Running Memory test, which assesses sustained attention, concentration, and working memory, was most sensitive to deterioration in performance in participants who had had four hours of sleep or less; when controlling for other covariates, the test demonstrated a 72% increase in the odds of making at least one error (odds ratio, 1.72 [95% confidence interval, 1.02 to 2.90]; p = 0.04). No significant decrease in performance with sleep deprivation was shown with the other three tests. Orthopaedic trauma surgeons showed deterioration in performance on a validated cognitive task when they had slept four hours or less the previous night. It is unknown how performance on this test relates to surgical performance.

  15. Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study

    Science.gov (United States)

    Lo, June C.; Ong, Ju Lynn; Leong, Ruth L.F.; Gooley, Joshua J.; Chee, Michael W.L.

    2016-01-01

    Study Objectives: To investigate the effects of sleep restriction (7 nights of 5 h time in bed [TIB]) on cognitive performance, subjective sleepiness, and mood in adolescents. Methods: A parallel-group design was adopted in the Need for Sleep Study. Fifty-six healthy adolescents (25 males, age = 15–19 y) who studied in top high schools and were not habitual short sleepers were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-w protocol consisting of 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the control groups), and 3 nights of recovery sleep (TIB = 9 h) at a boarding school. A cognitive test battery was administered three times each day. Results: During the manipulation period, the SR group demonstrated incremental deterioration in sustained attention, working memory and executive function, increase in subjective sleepiness, and decrease in positive mood. Subjective sleepiness and sustained attention did not return to baseline levels even after 2 recovery nights. In contrast, the control group maintained baseline levels of cognitive performance, subjective sleepiness, and mood throughout the study. Incremental improvement in speed of processing, as a result of repeated testing and learning, was observed in the control group but was attenuated in the sleep-restricted participants, who, despite two recovery sleep episodes, continued to perform worse than the control participants. Conclusions: A week of partial sleep deprivation impairs a wide range of cognitive functions, subjective alertness, and mood even in high-performing high school adolescents. Some measures do not recover fully even after 2 nights of recovery sleep. Commentary: A commentary on this article appears in this issue on page 497. Citation: Lo JC, Ong JL, Leong RL, Gooley JJ, Chee MW. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: the need for sleep study

  16. [Sleep deprivation as a risk factor for obesity].

    Science.gov (United States)

    Chamorro, Rodrigo A; Durán, Samuel A; Reyes, Sussanne C; Ponce, Rosemarie; Algarín, Cecilia R; Peirano, Patricio D

    2011-07-01

    Nocturnal sleep patterns may be a contributing factor for the epidemic of obesity. Epidemiologic ana experimental studies have reported that sleep restriction is an independent risk factor for weight gain and obesity. Moreover, sleep restriction is significantly associated with incidence and prevalence of obesity and several non-transmissible chronic diseases. Experimental sleep restriction is related to altered plasma leptin and ghrelin concentrations. Both hormones are directly related to appetite and satiety mechanisms. Also, a higher activity of the orexin/hypocretin system has been reported, as well as changes in glucose metabolism and autonomic nervous system. Some studies indicate that these endocrine changes could be associated with a higher diurnal food intake and preference for energy- dense foods. All these changes could result in a positive energy balance, leading to weight gain and a higher obesity risk in the long-term. The present article summarizes the epidemiologic and experimental evidence related to sleep deprivation and higher obesity risk. The possible mechanisms are highlighted.

  17. Sleep extension improves neurocognitive functions in chronically sleep-deprived obese individuals.

    Directory of Open Access Journals (Sweden)

    Eliane A Lucassen

    Full Text Available Sleep deprivation and obesity, are associated with neurocognitive impairments. Effects of sleep deprivation and obesity on cognition are unknown, and the cognitive long-term effects of improvement of sleep have not been prospectively assessed in short sleeping, obese individuals.To characterize neurocognitive functions and assess its reversibility.Prospective cohort study.Tertiary Referral Research Clinical Center.A cohort of 121 short-sleeping (<6.5 h/night obese (BMI 30-55 kg/m(2 men and pre-menopausal women.Sleep extension (468±88 days with life-style modifications.Neurocognitive functions, sleep quality and sleep duration.At baseline, 44% of the individuals had an impaired global deficit score (t-score 0-39. Impaired global deficit score was associated with worse subjective sleep quality (p = 0.02, and lower urinary dopamine levels (p = 0.001. Memory was impaired in 33%; attention in 35%; motor skills in 42%; and executive function in 51% of individuals. At the final evaluation (N = 74, subjective sleep quality improved by 24% (p<0.001, self-reported sleep duration increased by 11% by questionnaires (p<0.001 and by 4% by diaries (p = 0.04, and daytime sleepiness tended to improve (p = 0.10. Global cognitive function and attention improved by 7% and 10%, respectively (both p = 0.001, and memory and executive functions tended to improve (p = 0.07 and p = 0.06. Serum cortisol increased by 17% (p = 0.02. In a multivariate mixed model, subjective sleep quality and sleep efficiency, urinary free cortisol and dopamine and plasma total ghrelin accounted for 1/5 of the variability in global cognitive function.Drop-out rate.Chronically sleep-deprived obese individuals exhibit substantial neurocognitive deficits that are partially reversible upon improvement of sleep in a non-pharmacological way. These findings have clinical implications for large segments of the US population.www.ClinicalTrials.gov NCT00261898

  18. Sleep deprivation affects inflammatory marker expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Santos Ronaldo VT

    2010-10-01

    Full Text Available Abstract Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C group and a paradoxical sleep deprivation by 96 h (PSD group. Ten rats were randomly assigned to either the control group (C or the PSD. Mesenteric (MEAT and retroperitoneal (RPAT adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL-6, interleukin (IL-10 and tumour necrosis factor (TNF-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG, VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum.

  19. Effects of sleep deprivation on memory in mice: role of state-dependent learning.

    Science.gov (United States)

    Patti, Camilla L; Zanin, Karina A; Sanday, Leandro; Kameda, Sonia R; Fernandes-Santos, Luciano; Fernandes, Helaine A; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2010-12-01

    A considerable amount of experimental evidence suggests that sleep plays a critical role in learning/memory processes. In addition to paradoxical sleep, slow wave sleep is also reported to be involved in the consolidation process of memories. Additionally, sleep deprivation can induce other behavioral modifications, such as emotionality and alternations in locomotor activity in rodents. These sleep deprivation-induced alterations in the behavioral state of animals could produce state-dependent learning and contribute, at least in part, to the amnestic effects of sleep deprivation. The aim of the present study was to examine the participation of state-dependent learning during memory impairment induced by either paradoxical sleep deprivation (PSD) or total sleep deprivation (TSD) in mice submitted to the plus-maze discriminative avoidance or to the passive avoidance task. Paradoxical sleep deprivation (by the multiple platform method) and total sleep deprivation (by the gentle handling method) were applied to animals before training and/or testing. Whereas pre-training or pre-test PSD impaired retrieval in both memory models, pre-training plus pre-test PSD counteracted this impairment. For TSD, pre-training, pre-test, and pre-training plus pre-test TSD impaired retrieval in both models. Our data demonstrate that PSD- (but not TSD-) memory deficits are critically related to state-dependent learning.

  20. Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation.

    Science.gov (United States)

    Mu, Qiwen; Mishory, Alexander; Johnson, Kevin A; Nahas, Ziad; Kozel, Frank A; Yamanaka, Kaori; Bohning, Daryl E; George, Mark S

    2005-04-01

    To examine whether differences in patterns of brain activation under baseline conditions relate to the differences in sleep-deprivation vulnerability. Using blood oxygenation level dependent (BOLD) functional magnetic resonance imaging, we scanned 33 healthy young men while they performed the Sternberg working memory task following a normal night of sleep and again following 30 hours of sleep deprivation. From this initial group, based on their Sternberg working memory task performance, we found 10 subjects resilient to sleep deprivation (sleep deprivation-resilient group) and then selected 10 age- and education-matched subjects vulnerable to sleep deprivation (sleep deprivation-vulnerable group). Inpatient General Clinical Research Center and outpatient functional magnetic resonance imaging center. Data from 10 young men (mean age 27.8 +/- 1.7 years) in the sleep deprivation-resilient group and 10 young men (mean age 28.2 +/- 1.9 years) in the sleep deprivation-vulnerable group were included in the final analyses. None. We compared functional magnetic resonance imaging BOLD signal at rested baseline and sleep deprivation states in the 2 groups. As hypothesized, following sleep deprivation, both groups showed significant decreases in global brain activation compared to their rested group baseline. At rested baseline and in the sleep-deprivation state, the sleep deprivation-resilient group had significantly more brain activation than did the sleep deprivation-vulnerable group. There were also differences in functional circuits within and between groups in response to sleep deprivation. These preliminary data suggest that patterns of brain activation during the Sternberg working memory task at the rested baseline and the sleep-deprivation state, differ across individuals as a function of their sleep-deprivation vulnerability.

  1. Effects of SWS deprivation on subsequent EEG power density and spontaneous sleep duration

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.

    In order to test predictions of the 2-process model of sleep regulation, the effects of slow wave sleep (SWS) deprivation by acoustic stimulation during the first part of the sleep period on EEG power density and sleep duration were investigated in 2 experiments. In the first experiment, 8 subjects

  2. Identification of genes associated with resilience/vulnerability to sleep deprivation and starvation in Drosophila.

    Science.gov (United States)

    Thimgan, Matthew S; Seugnet, Laurent; Turk, John; Shaw, Paul J

    2015-05-01

    Flies mutant for the canonical clock protein cycle (cyc(01)) exhibit a sleep rebound that is ∼10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc(01) mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc(01) mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Laboratory. Drosophila melanogaster. Sleep deprivation and starvation. We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc(01) mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis. © 2015 Associated Professional Sleep Societies, LLC.

  3. Effects of Sleep Deprivation on Mice Bone Marrow and Spleen B Lymphopoiesis.

    Science.gov (United States)

    Lungato, Lisandro; Nogueira-Pedro, Amanda; Carvalho Dias, Carolina; Paredes-Gamero, Edgar Julian; Tufik, Sergio; D'Almeida, Vânia

    2016-06-01

    B lymphocytes are immune cells crucial for the maintenance and viability of the humoral response. Sleep is an essential event for the maintenance and integrity of all systems, including the immune system (IS). Thus, sleep deprivation (SD) causes problems in metabolism and homeostasis in many cell systems, including the IS. In this study, our goal was to determine changes in B lymphocytes from the bone marrow (BM) and spleen after SD. Three-month-old male Swiss mice were used. These mice were sleep deprived through the modified multiple platform method for different periods (24, 48, and 72 h), whereas another group was allowed to sleep for 24 h after 72 h of SD (rebound group) and a third group was allowed to sleep normally during the entire experiment. After this, the spleen and BM were collected, and cell analyses were performed. The numbers of B lymphocytes in the BM and spleen were reduced by SD. Additionally, reductions in the percentage of lymphocyte progenitors and their ability to form colonies were observed. Moreover, an increase in the death of B lymphocytes from the BM and spleen was associated with an increase in oxidative stress indicators, such as DCFH-DA, CAT, and mitochondrial SOD. Rebound was not able to reverse most of the alterations elicited by SD. The reduction in B lymphocytes and their progenitors by cell death, with a concomitant increase in oxidative stress, showed that SD promoted a failure in B lymphopoiesis. © 2015 Wiley Periodicals, Inc.

  4. A Time for Learning and a Time for Sleep : The Effect of Sleep Deprivation on Contextual Fear Conditioning at Different Times of the Day

    NARCIS (Netherlands)

    Hagewoud, Roelina; Whitcomb, Shamiso N.; Heeringa, Amarins N.; Havekes, Robbert; Koolhaas, Jaap M.; Meerlo, Peter

    2010-01-01

    Study Objectives: Sleep deprivation negatively affects memory consolidation, especially in the case of hippocampus-dependent memories. Studies in rodents have shown that 5 hours of sleep deprivation immediately following footshock exposure selectively impairs the formation of a contextual fear

  5. Free recall of word lists under total sleep deprivation and after recovery sleep.

    Science.gov (United States)

    de Almeida Valverde Zanini, Gislaine; Tufik, Sérgio; Andersen, Monica Levy; da Silva, Raquel Cristina Martins; Bueno, Orlando Francisco Amodeo; Rodrigues, Camila Cruz; Pompéia, Sabine

    2012-02-01

    One task that has been used to assess memory effects of prior total sleep deprivation (TSD) is the immediate free recall of word lists; however, results have been mixed. A possible explanation for this is task impurity, since recall of words from different serial positions reflects use of distinct types of memory (last words: short-term memory; first and intermediate words: episodic memory). Here we studied the effects of 2 nights of TSD on immediate free recall of semantically unrelated word lists considering the serial position curve. Random allocation to a 2-night TSD protocol followed by one night of recovery sleep or to a control group. Study conducted under continuous behavioral monitoring. 24 young, healthy male volunteers. 2 nights of total sleep deprivation (TSD) and one night of recovery sleep. Participants were shown five 15 unrelated word-lists at baseline, after one and 2 nights of TSD, and after one night of recovery sleep. We also investigated the development of recall strategies (learning) and susceptibility to interference from previous lists. No free recall impairment occurred during TSD, irrespective of serial position. Interference was unchanged. Both groups developed recall strategies, but task learning occurred earlier in controls and was evident in the TSD group only after sleep recovery. Prior TSD spared episodic memory, short-term phonological memory, and interference, allowed the development of recall strategies, but may have decreased the advantage of using these strategies, which returned to normal after recovery sleep.

  6. Sleep deprivation in bright and dim light : antidepressant effects on major depressive disorder

    NARCIS (Netherlands)

    Burg, W. van den; Bouhuys, A.L.; Hoofdakker, R.H. van den; Beersma, D.G.M.

    Twenty-three patients with a major depressive disorder were deprived of a night’s sleep twice weekly, one week staying up in the dimly lit living room of the ward (< 60 lux), and one week in a brightly lit room (> 2000 lux). Immediate, but transient beneficial effects of sleep deprivation were

  7. Differential effects of total sleep deprivation on contextual and spatial memory: modulatory effects of modafinil.

    Science.gov (United States)

    Pierard, Christophe; Liscia, Pierrette; Chauveau, Frédéric; Coutan, Mathieu; Corio, Marc; Krazem, Ali; Beracochea, Daniel

    2011-01-01

    The aim of the present work was to investigate in mice the effects of a total 10-hr sleep deprivation on contextual (episodic-like) and spatial (reference) memory tasks. For that purpose, mice learned two consecutive discriminations (D1 and D2) in a 4-hole board involving either identical (Serial Spatial Discrimination, SSD) or distinct (Contextual Serial Discrimination, CSD) internal contextual cues. In a second step, we intended to assess the corrective effect of modafinil on memory impairments generated by sleep deprivation. Sleep deprivation was triggered through an alternative platform apparatus (water box), previously validated using EEG recording and spectral analysis. We showed that a 10-hr total sleep deprivation impaired the CSD task but not the SSD one. Moreover, the impairment of contextual memory in sleep-deprived animals was dose-dependently corrected by modafinil. Indeed, modafinil administered after the sleep deprivation period and 30 min before the test session restored a memory retrieval pattern identical to non sleep-deprived animals at the doses of 32 and 64 mg/kg, however not at 16 mg/kg. Results hereby evidence that the vigilance-enhancing drug modafinil is able to restore the contextual memory performance at a low dose as compared to other memory tasks, possibly by an enhancement of hippocampal activity known to be both involved in the processing of contextual information and impaired following our sleep deprivation procedure. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. In surgeons performing cardiothoracic surgery is sleep deprivation significant in its impact on morbidity or mortality?

    Science.gov (United States)

    Asfour, Leila; Asfour, Victoria; McCormack, David; Attia, Rizwan

    2014-09-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: is there a difference in cardiothoracic surgery outcomes in terms of morbidity or mortality of patients operated on by a sleep-deprived surgeon compared with those operated by a non-sleep-deprived surgeon? Reported search criteria yielded 77 papers, of which 15 were deemed to represent the best evidence on the topic. Three studies directly related to cardiothoracic surgery and 12 studies related to non-cardiothoracic surgery. Recommendations are based on 18 121 cardiothoracic patients and 214 666 non-cardiothoracic surgical patients. Different definitions of sleep deprivation were used in the studies, either reviewing surgeon's sleeping hours or out-of-hours operating. Surgical outcomes reviewed included: mortality rate, neurological, renal, pulmonary, infectious complications, length of stay, length of intensive care stay, cardiopulmonary bypass times and aortic-cross-clamp times. There were no significant differences in mortality or intraoperative complications in the groups of patients operated on by sleep-deprived versus non-sleep-deprived surgeons in cardiothoracic studies. One study showed a significant increase in the rate of septicaemia in patients operated on by severely sleep-deprived surgeons (3.6%) compared with the moderately sleep-deprived (0.9%) and non-sleep-deprived groups (0.8%) (P = 0.03). In the non-cardiothoracic studies, 7 of the 12 studies demonstrated statistically significant higher reoperation rate in trauma cases (P sleep deprivation in cardiothoracic surgeons on morbidity or mortality. However, overall the non-cardiothoracic studies have demonstrated that operative time and sleep deprivation can have a significant impact on overall morbidity and mortality. It is likely that other confounding factors concomitantly affect outcomes in out-of-hours surgery. © The Author 2014. Published by Oxford University Press on behalf of

  9. Sleep deprivation selectively disrupts top-down adaptation to cognitive conflict in the Stroop test.

    Science.gov (United States)

    Gevers, Wim; Deliens, Gaetane; Hoffmann, Sophie; Notebaert, Wim; Peigneux, Philippe

    2015-12-01

    Sleep deprivation is known to exert detrimental effects on various cognitive domains, including attention, vigilance and working memory. Seemingly at odds with these findings, prior studies repeatedly failed to evidence an impact of prior sleep deprivation on cognitive interference in the Stroop test, a hallmark paradigm in the study of cognitive control abilities. The present study investigated further the effect of sleep deprivation on cognitive control using an adapted version of the Stroop test that allows to segregate top-down (attentional reconfiguration on incongruent items) and bottom-up (facilitated processing after repetitions in responses and/or features of stimuli) components of performance. Participants underwent a regular night of sleep or a night of total sleep deprivation before cognitive testing. Results disclosed that sleep deprivation selectively impairs top-down adaptation mechanisms: cognitive control no longer increased upon detection of response conflict at the preceding trial. In parallel, bottom-up abilities were found unaffected by sleep deprivation: beneficial effects of stimulus and response repetitions persisted. Changes in vigilance states due to sleep deprivation selectively impact on cognitive control in the Stroop test by affecting top-down, but not bottom-up, mechanisms that guide adaptive behaviours. © 2015 European Sleep Research Society.

  10. Chronic Melatonin Treatment Prevents Memory Impairment Induced by Chronic Sleep Deprivation.

    Science.gov (United States)

    Alzoubi, Karem H; Mayyas, Fadia A; Khabour, Omar F; Bani Salama, Fatima M; Alhashimi, Farah H; Mhaidat, Nizar M

    2016-07-01

    Sleep deprivation (SD) has been associated with memory impairment through induction of oxidative stress. Melatonin, which promotes the metabolism of many reactive oxygen species (ROS), has antioxidant and neuroprotective properties. In this study, the effect of melatonin on memory impairment induced by 4 weeks of SD was investigated using rat animal model. Animals were sleep deprived using modified multiple platform model. Melatonin was administered via oral gavage (100 mg/kg/day). Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in oxidative stress biomarkers in the hippocampus following treatments were measured using ELISA procedure. The result revealed that SD impaired both short- and long-term memory (P memory impairment induced by SD. Furthermore, melatonin normalized SD-induced reduction in the hippocampus activity of catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). In addition, melatonin enhanced the ratio of reduced to oxidized glutathione GSH/GSSG in sleep-deprived rats (P  0.05). In conclusion, SD induced memory impairment, which was prevented by melatonin. This was correlated with normalizing hippocampus antioxidant mechanisms during chronic SD.

  11. The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function.

    Science.gov (United States)

    Havekes, Robbert; Abel, Ted

    2017-06-01

    Memory consolidation, the process by which information is stored following training, consists of synaptic consolidation and systems consolidation. It is widely acknowledged that sleep deprivation has a profound effect on synaptic consolidation, particularly for memories that require the hippocampus. It is unclear, however, which of the many molecular changes associated with sleep deprivation directly contribute to memory deficits. In this review, we highlight recent studies showing that sleep deprivation impairs hippocampal cAMP and mTOR signaling, and ultimately causes spine loss in CA1 neurons in a cofilin-dependent fashion. Reversing these molecular alterations made memory consolidation resistant to the negative impact of sleep deprivation. Together, these studies have started to identify the molecular underpinnings by which sleep deprivation impairs synaptic consolidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The homeostatic and circadian sleep recovery responses after total sleep deprivation in mice.

    Science.gov (United States)

    Dispersyn, Garance; Sauvet, Fabien; Gomez-Merino, Danielle; Ciret, Sylvain; Drogou, Catherine; Leger, Damien; Gallopin, Thierry; Chennaoui, Mounir

    2017-10-01

    Many studies on sleep deprivation effects lack data regarding the recovery period. We investigated the 2-day homeostatic and circadian sleep recovery response to 24 h of total sleep deprivation (TSD) induced by brief rotation of an activity wheel. Eight mice were implanted with telemetry transmitters (DSI F40-EET) that recorded simultaneously their electroencephalography (EEG), locomotor activity and temperature during 24 h of baseline (BSL), TSD and 2 days of recovery (D1 and D2). In a second experiment, two groups of five non-implanted mice underwent TSD or ad libitum sleep, after which they were killed, adrenal glands were weighed and blood was collected for analysis of corticosterone concentration. During TSD mice were awake at least 97% of the time, with a consecutive sleep rebound during D1 that persisted during D2. This was characterized by increases of non-rapid eye movement (NREM) sleep (44.2 ± 6.9% for D1 and 43.0 ± 7.7% for D2 versus 33.8 ± 9.2% for BSL) and the relative delta band power (179.2 ± 34.4% for D1 and 81.9 ± 11.2% for D2). Greater NREM and REM sleep amounts were observed during the 'light' periods. Temperature and locomotor activity characteristics were unchanged during D1 and D2 versus BSL. In non-implanted mice, corticosterone levels as well as adrenal gland and overall body weights did not differ between TSD and ad libitum sleep groups. In conclusion, 24 h of TSD in an activity wheel without stress responses influence homeostatic sleep regulation with no effect on the circadian regulation over at least 2 days of recovery in mice. © 2017 European Sleep Research Society.

  13. Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

    Science.gov (United States)

    2015-12-01

    performance task, and how analogous the effects of deprivation are to the homologues model in animals. These data helped validate the use of this...task to assesse sleep deprivation effects on cognitive performance using a cross-species task. These data suggest that this task may have...1 Award Number: W81XWH-11-2-0001 TITLE: Role of Sleep Deprivation in Fear Conditioning and Extinction: Implications for Treatment of PTSD

  14. UEffect of acute sleep deprivation on concentration and mood states with a controlled effect of experienced stress

    Directory of Open Access Journals (Sweden)

    Tanja Kajtna

    2011-05-01

    Conclusions: As previous studies have shown, mood changes rather than decreased concentration occur after acute sleep deprivation – cognitive abilities seem to be more resistant to sleep deprivation. Further studies with longer sleep deprivation should show how long it takes to disrupt our concentration and higher cognitive abilities.

  15. Chronic sleep deprivation differentially affects short and long-term operant memory in Aplysia.

    Science.gov (United States)

    Krishnan, Harini C; Noakes, Eric J; Lyons, Lisa C

    2016-10-01

    The induction, formation and maintenance of memory represent dynamic processes modulated by multiple factors including the circadian clock and sleep. Chronic sleep restriction has become common in modern society due to occupational and social demands. Given the impact of cognitive impairments associated with sleep deprivation, there is a vital need for a simple animal model in which to study the interactions between chronic sleep deprivation and memory. We used the marine mollusk Aplysia californica, with its simple nervous system, nocturnal sleep pattern and well-characterized learning paradigms, to assess the effects of two chronic sleep restriction paradigms on short-term (STM) and long-term (LTM) associative memory. The effects of sleep deprivation on memory were evaluated using the operant learning paradigm, learning that food is inedible, in which the animal associates a specific netted seaweed with failed swallowing attempts. We found that two nights of 6h sleep deprivation occurring during the first or last half of the night inhibited both STM and LTM. Moreover, the impairment in STM persisted for more than 24h. A milder, prolonged sleep deprivation paradigm consisting of 3 consecutive nights of 4h sleep deprivation also blocked STM, but had no effect on LTM. These experiments highlight differences in the sensitivity of STM and LTM to chronic sleep deprivation. Moreover, these results establish Aplysia as a valid model for studying the interactions between chronic sleep deprivation and associative memory paving the way for future studies delineating the mechanisms through which sleep restriction affects memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of acute sleep deprivation on motor and reversal learning in mice.

    Science.gov (United States)

    Varga, Andrew W; Kang, Mihwa; Ramesh, Priyanka V; Klann, Eric

    2014-10-01

    Sleep supports the formation of a variety of declarative and non-declarative memories, and sleep deprivation often impairs these types of memories. In human subjects, natural sleep either during a nap or overnight leads to long-lasting improvements in visuomotor and fine motor tasks, but rodent models recapitulating these findings have been scarce. Here we present evidence that 5h of acute sleep deprivation impairs mouse skilled reach learning compared to a matched period of ad libitum sleep. In sleeping mice, the duration of total sleep time during the 5h of sleep opportunity or during the first bout of sleep did not correlate with ultimate gain in motor performance. In addition, we observed that reversal learning during the skilled reaching task was also affected by sleep deprivation. Consistent with this observation, 5h of sleep deprivation also impaired reversal learning in the water-based Y-maze. In conclusion, acute sleep deprivation negatively impacts subsequent motor and reversal learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: A high density EEG investigation.

    Science.gov (United States)

    Plante, David T; Goldstein, Michael R; Cook, Jesse D; Smith, Richard; Riedner, Brady A; Rumble, Meredith E; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M; Peterson, Michael J

    2016-02-01

    Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. These results demonstrate a homeostatic response to partial sleep loss in humans. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Effects of partial sleep deprivation on slow waves during non-rapid eye movement sleep: a high density EEG investigation

    Science.gov (United States)

    Plante, David T.; Goldstein, Michael R.; Cook, Jesse D.; Smith, Richard; Riedner, Brady A.; Rumble, Meredith E.; Jelenchick, Lauren; Roth, Andrea; Tononi, Giulio; Benca, Ruth M.; Peterson, Michael J.

    2015-01-01

    Objective Changes in slow waves during non-rapid eye movement (NREM) sleep in response to acute total sleep deprivation are well-established measures of sleep homeostasis. This investigation utilized high-density electroencephalography (hdEEG) to examine topographic changes in slow waves during repeated partial sleep deprivation. Methods Twenty-four participants underwent a 6-day sleep restriction protocol. Spectral and period-amplitude analyses of sleep hdEEG data were used to examine changes in slow wave energy, count, amplitude, and slope relative to baseline. Results Changes in slow wave energy were dependent on the quantity of NREM sleep utilized for analysis, with widespread increases during sleep restriction and recovery when comparing data from the first portion of the sleep period, but restricted to recovery sleep if the entire sleep episode was considered. Period-amplitude analysis was less dependent on the quantity of NREM sleep utilized, and demonstrated topographic changes in the count, amplitude, and distribution of slow waves, with frontal increases in slow wave amplitude, numbers of high-amplitude waves, and amplitude/slopes of low amplitude waves resulting from partial sleep deprivation. Conclusions Topographic changes in slow waves occur across the course of partial sleep restriction and recovery. Significance These results demonstrate a homeostatic response to partial sleep loss in humans. PMID:26596212

  19. Bench-to-bedside review: delirium in ICU patients - importance of sleep deprivation.

    Science.gov (United States)

    Weinhouse, Gerald L; Schwab, Richard J; Watson, Paula L; Patil, Namrata; Vaccaro, Bernardino; Pandharipande, Pratik; Ely, E Wesley

    2009-01-01

    Delirium occurs frequently in critically ill patients and has been associated with both short-term and long-term consequences. Efforts to decrease delirium prevalence have been directed at identifying and modifying its risk factors. One potentially modifiable risk factor is sleep deprivation. Critically ill patients are known to experience poor sleep quality with severe sleep fragmentation and disruption of sleep architecture. Poor sleep while in the intensive care unit is one of the most common complaints of patients who survive critical illness. The relationship between delirium and sleep deprivation remains controversial. However, studies have demonstrated many similarities between the clinical and physiologic profiles of patients with delirium and sleep deprivation. This article aims to review the literature, the clinical and neurobiologic consequences of sleep deprivation, and the potential relationship between sleep deprivation and delirium in intensive care unit patients. Sleep deprivation may prove to be a modifiable risk factor for the development of delirium with important implications for the acute and long-term outcome of critically ill patients.

  20. Changes in attention to an emotional task after sleep deprivation: neurophysiological and behavioral findings.

    Science.gov (United States)

    Alfarra, Ramey; Fins, Ana I; Chayo, Isaac; Tartar, Jaime L

    2015-01-01

    While sleep loss is shown to have widespread effects on cognitive processes, little is known about the impact of sleep loss on emotion processes. In order to expand on previous behavioral and physiological findings on how sleep loss influences emotion processing, we administered positive, negative, and neutral affective visual stimuli to individuals after one night of sleep deprivation while simultaneously acquiring EEG event related potential (ERP) data and recording affective behavioral responses. We compared these responses to a baseline testing session. We specifically looked at the late positive potential (LPP) component of the visual ERP as an established sensitive measure of attention to emotionally-charged visual stimuli. Our results show that after sleep deprivation, the LPP no longer discriminates between emotional and non-emotional pictures; after sleep deprivation the LPP amplitude was of similar amplitude for neutral, positive, and negative pictures. This effect was driven by an increase in the LPP to neutral pictures. Our behavioral measures show that, relative to baseline testing, emotional pictures are rated as less emotional following sleep deprivation with a concomitant reduction in emotional picture-induced anxiety. We did not observe any change in cortisol concentrations after sleep deprivation before or after emotional picture exposure, suggesting that the observed changes in emotion processing are independent of potential stress effects of sleep deprivation. Combined, our findings suggest that sleep loss interferes with proper allocation of attention resources during an emotional task. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    Science.gov (United States)

    Morgenthaler, Jarste; Wiesner, Christian D; Hinze, Karoline; Abels, Lena C; Prehn-Kristensen, Alexander; Göder, Robert

    2014-01-01

    Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM) sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students) were separated into two groups (undisturbed sleep and selective REM-sleep deprived). Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional) between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  2. Selective REM-sleep deprivation does not diminish emotional memory consolidation in young healthy subjects.

    Directory of Open Access Journals (Sweden)

    Jarste Morgenthaler

    Full Text Available Sleep enhances memory consolidation and it has been hypothesized that rapid eye movement (REM sleep in particular facilitates the consolidation of emotional memory. The aim of this study was to investigate this hypothesis using selective REM-sleep deprivation. We used a recognition memory task in which participants were shown negative and neutral pictures. Participants (N=29 healthy medical students were separated into two groups (undisturbed sleep and selective REM-sleep deprived. Both groups also worked on the memory task in a wake condition. Recognition accuracy was significantly better for negative than for neutral stimuli and better after the sleep than the wake condition. There was, however, no difference in the recognition accuracy (neutral and emotional between the groups. In summary, our data suggest that REM-sleep deprivation was successful and that the resulting reduction of REM-sleep had no influence on memory consolidation whatsoever.

  3. Migraine, arousal and sleep deprivation: comment on: "sleep quality, arousal and pain thresholds in migraineurs: a blinded controlled polysomnographic study".

    Science.gov (United States)

    Vollono, Catello; Testani, Elisa; Losurdo, Anna; Mazza, Salvatore; Della Marca, Giacomo

    2013-06-10

    We discuss the hypothesis proposed by Engstrom and coworkers that Migraineurs have a relative sleep deprivation, which lowers the pain threshold and predispose to attacks. Previous data indicate that Migraineurs have a reduction of Cyclic Alternating Pattern (CAP), an essential mechanism of NREM sleep regulation which allows to dump the effect of incoming disruptive stimuli, and to protect sleep. The modifications of CAP observed in Migraineurs are similar to those observed in patients with impaired arousal (narcolepsy) and after sleep deprivation. The impairment of this mechanism makes Migraineurs more vulnerable to stimuli triggering attacks during sleep, and represents part of a more general vulnerability to incoming stimuli.

  4. Mutual relations between sleep deprivation, sleep stealers and risk behaviours in adolescents.

    Science.gov (United States)

    Paiva, Teresa; Gaspar, Tania; Matos, Margarida Gaspar

    2016-01-01

    The aim is to evaluate the mutual influences between sleep duration/sleep deprivation (SD) and the sleep stealers/adolescent risk behaviours. The national survey is a component of the Health Behaviour in School-Aged Children (HBSC) study, it is based on a school-based self-completed questionnaire; 3476 students were randomly selected from 139 randomly chosen Portuguese schools using as an unit the class, 53.8% were girls; 45.9% attended the 8th grade and 54.1% the 10th grade; the mean age was 14.9 years. The measured variables were: 1) gender and age; 2) sociodemographics; 3) sleep duration during the week and during weekends and computed SD; 4) screen time (computer use during the week and during the week end (PC use); watching TV and mobile phone use; 5) earlier sexual behaviour; 6) violent behaviours: fights, use of weapons; 7) use of tobacco, alcohol and drugs. The statistical analysis included Pearson chi-square tests and logistic regression. Excessive use of mobile phone, of computer use during weekdays, and internet facilities; substance use; violence and earlier sexual relations had significantly higher prevalence in sleep deprived adolescents. By logistic regression only using PC during weekdays, tobacco, drugs and weapons were associated to SD, while SD was associated to PC use during weekdays, tobacco use and drugs' use. Computer uses tend to be associated among themselves. Mobile phone is associated with computer practices and with alcohol and tobacco use. Tobacco is associated with most risk behaviours. Alcohol use is associated with other substance use, computer use and violent behaviours. Violence behaviours, earlier sex and drugs use tend to be associated among themselves. Sleep stealers use and risk behaviours are more prevalent in sleep deprived adolescents, but, in spite of significant individual associations, models of risk behaviours are still lacking.

  5. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Nina Herzog

    Full Text Available Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin, the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory and a list of semantically associated word pairs (declarative memory. After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG. Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also

  6. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation.

    Science.gov (United States)

    Herzog, Nina; Friedrich, Alexia; Fujita, Naoko; Gais, Steffen; Jauch-Chara, Kamila; Oltmanns, Kerstin M; Benedict, Christian

    2012-01-01

    Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ∼50% or ∼150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the

  7. Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals.

    Science.gov (United States)

    Pilon, Mathieu; Montplaisir, Jacques; Zadra, Antonio

    2008-06-10

    Experimental attempts to induce sleepwalking with forced arousals during slow-wave sleep (SWS) have yielded mixed results in children and have not been investigated in adult patients. We hypothesized that the combination of sleep deprivation and external stimulation would increase the probability of inducing somnambulistic episodes in sleepwalkers recorded in the sleep laboratory. The main goal of this study was to assess the effects of forced arousals from auditory stimuli (AS) in adult sleepwalkers and control subjects during normal sleep and following post-sleep deprivation recovery sleep. Ten sleepwalkers and 10 controls were investigated. After a baseline night, participants were presented with AS at predetermined sleep stages either during normal sleep or recovery sleep following 25 hours of sleep deprivation. One week later, the conditions with AS were reversed. No somnambulistic episodes were induced in controls. When compared to the effects of AS during sleepwalkers' normal sleep, the presentation of AS during sleepwalkers' recovery sleep significantly increased their efficacy in experimentally inducing somnambulistic events and a significantly greater proportion of sleepwalkers (100%) experienced at least one induced episode during recovery SWS as compared to normal SWS (30%). There was no significant difference between the mean intensity of AS that induced episodes during sleepwalkers' SWS and the mean intensity of AS that awakened sleepwalkers and controls from SWS. Sleep deprivation and forced arousals during slow-wave sleep can induce somnambulistic episodes in predisposed adults. The results highlight the potential value of this protocol in establishing a video-polysomnographically based diagnosis for sleepwalking.

  8. Reduced False Memory after Sleep

    Science.gov (United States)

    Fenn, Kimberly M.; Gallo, David A.; Margoliash, Daniel; Roediger, Henry L., III; Nusbaum, Howard C.

    2009-01-01

    Several studies have shown that sleep contributes to the successful maintenance of previously encoded information. This research has focused exclusively on memory for studied events, as opposed to false memories. Here we report three experiments showing that sleep reduces false memories in the Deese-Roediger-McDermott (DRM) memory illusion. False…

  9. High-Throughput Analysis of Dynamic Gene Expression Associated with Sleep Deprivation and Recovery Sleep in the Mouse Brain

    Science.gov (United States)

    2006-12-01

    sleep deprivation followed by recovery sleep (ZT10), 4) control for recovery sleep (ZT10), 5) spontaneous waking (ZT18). cDNA synthesis , cRNA...associated VLPO Dbi Diazepam binding inhibitor SD and RS associated PMCO 31 Dscr3 Down syndrome critical region gene 3 RS associated HCRT Dusp4

  10. The impact of sleep deprivation on neuronal and glial signalling pathways important for memory and synaptic plasticity

    OpenAIRE

    Havekes, Robbert; Vecsey, Christopher G.; Abel, Ted

    2012-01-01

    Sleep deprivation is a common feature in modern society, and one of the consequences of sleep loss is the impairment of cognitive function. Although it has been widely accepted that sleep deprivation affects learning and memory, only recently has research begun to address which molecular signalling pathways are altered by sleep loss and, more importantly, which pathways can be targeted to reverse the memory impairments resulting from sleep deprivation. In this review, we discuss the different...

  11. Obstructive sleep apnea is a predictor of abnormal glucose metabolism in chronically sleep deprived obese adults.

    Directory of Open Access Journals (Sweden)

    Giovanni Cizza

    Full Text Available Sleep abnormalities, including obstructive sleep apnea (OSA, have been associated with insulin resistance.To determine the relationship between sleep, including OSA, and glucose parameters in a prospectively assembled cohort of chronically sleep-deprived obese subjects.Cross-sectional evaluation of a prospective cohort study.Tertiary Referral Research Clinical Center.Sleep duration and quality assessed by actigraphy, sleep diaries and questionnaires, OSA determined by a portable device; glucose metabolism assessed by oral glucose tolerance test (oGTT, and HbA1c concentrations in 96 obese individuals reporting sleeping less than 6.5 h on a regular basis.Sixty % of subjects had an abnormal respiratory disturbance index (RDI≥5 and 44% of these subjects had abnormal oGTT results. Severity of OSA as assessed by RDI score was associated with fasting glucose (R = 0.325, p = 0.001 and fasting insulin levels (ρ = 0.217, p = 0.033. Subjects with moderate to severe OSA (RDI>15 had higher glucose concentrations at 120 min than those without OSA (RDI<5 (p = 0.017. Subjects with OSA also had significantly higher concentrations of plasma ACTH (p = 0.009. Several pro-inflammatory cytokines were higher in subjects with OSA (p<0.050. CRP levels were elevated in this sample, suggesting increased cardiovascular risk.OSA is associated with impaired glucose metabolism in obese, sleep deprived individuals. Since sleep apnea is common and frequently undiagnosed, health care providers should be aware of its occurrence and associated risks.This study was conducted under the NIDDK protocol 06-DK-0036 and is listed in ClinicalTrials.gov NCT00261898.

  12. Sleep deprivation in chronic somatoform pain-effects on mood and pain regulation.

    Science.gov (United States)

    Busch, Volker; Haas, Joachim; Crönlein, Tatjana; Pieh, Christoph; Geisler, Peter; Hajak, Göran; Eichhammer, Peter

    2012-02-28

    Sleep deprivation was found to exert complex effects on affective dimensions and modalities of pain perception both in healthy volunteers and patients with major depression. Considering multifaceted links between mood and pain regulation in patients with chronic somatoform pain, it is intriguing to study sleep deprivation effects for the first time in this group of patients. Twenty patients with a somatoform pain disorder according to ICD-10 diagnostic criteria were sleep-deprived for one night, followed by one recovery night. Clinical pain complaints (visual analog scale), detection- and pain thresholds (temperature and pressure) as well as mood states (Profile of Mood States) were assessed on the day prior to the experiment, on the day after sleep deprivation and on the day after recovery sleep. We found a discrepancy between significantly increased clinical pain complaints and unaltered experimental pain perception after sleep deprivation. Only the clinical pain complaints, but not the experimental pain thresholds were correlated with tiredness-associated symptoms. Total mood disturbances decreased and feelings of depression and anger improved significantly after sleep deprivation. However, these changes were not correlated with a change in clinical pain perception. We conclude that sleep deprivation may generally change the reagibility of the limbic system, but mood processing and pain processing may be affected in an opposite way reflecting neurobiological differences between emotional regulation and interoceptive pain processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Effect of flumazenil-augmentation on microsleep and mood in depressed patients during partial sleep deprivation.

    Science.gov (United States)

    Hemmeter, Ulrich; Hatzinger, Martin; Brand, Serge; Holsboer-Trachsler, Edith

    2007-11-01

    The antidepressive effect of sleep deprivation (SD) in depressed patients disappears after sleep of the recovery night and after early morning naps. Both can provoke a rapid relapse into depression in SD-responders. In addition, the occurrence of short episodes of sleep (termed microsleep, MS) during partial SD (PSD) is associated with SD-nonresponse, suggesting that MS during the time awake may be related to relapse or PSD-nonresponse. The GABA-benzodiazepine receptor antagonist flumazenil augments vigilance and reduces NonREM-sleep pressure in early morning recovery sleep in volunteers after SD. Therefore, in this study 27 patients with major depression were subjected to a PSD. In a double blind randomized design either flumazenil or placebo was orally applied during PSD in order to examine whether the application of flumazenil reduces sleep propensity and thus, increases antidepressant efficacy of PSD. EEG was registered continuously for 60h by a portable device for the assessment of microsleep episodes at baseline and during PSD. Flumazenil application significantly suppressed frequency and total amount of MS. While the antidepressant efficacy of PSD was not different between flumazenil and placebo during PSD, the subjective mood improved after the recovery night in patients treated with flumazenil. It is concluded that GABAergic mechanisms are involved in the regulation of MS during PSD, which may be related to a mood stabilizing effect after the recovery night. However, the mechanisms underlying the association between the occurrence of MS during PSD and mood variation have to be further clarified.

  14. Sustained Partial Sleep Deprivation: Effects on Immune Modulation and Growth Factors

    Science.gov (United States)

    Mullington, Janet M.

    1999-01-01

    The vulnerability to medical emergencies is greatest in space where there are real limits to the availability or effectiveness of ground based assistance. Moreover, astronaut safety and health maintenance will be of increasing importance as we venture out into space for extended periods of time. It is therefore critical to understand the mechanisms of the regulatory physiology of homeostatic systems (sleep, circadian, neuroendocrine, fluid and nutritional balance) and the key roles played in adaptation. This synergy project has combined aims of the "Human Performance Factors, Sleep and Chronobiology Team"; the "Immunology, Infection and Hematology Team"; and the "Muscle Alterations and Atrophy Team", to broadly address the effects of long term sleep reduction, as is frequently encountered in space exploration, on neuroendocrine, neuroimmune and circulating growth factors. Astronaut sleep is frequently curtailed to averages of between 4- 6.5 hours per night. There is evidence that this amount of sleep is inadequate for maintaining optimal daytime functioning. However, there is a lack of information concerning the effects of chronic sleep restriction, or reduction, on regulatory physiology in general, and there have been no controlled studies of the cumulative effects of chronic sleep reduction on neuroendocrine and neuroimmune parameters. This synergy project represents a pilot study designed to characterize the effects of chronic partial sleep deprivation (PSD) on neuroendocrine, neuroimmune and growth factors. This project draws its subjects from two (of 18) conditions of the larger NSBRI project, "Countermeasures to Neurobehavioral Deficits from Cumulative Partial Sleep Deprivation During Space Flight", one of the projects on the "Human Performance Factors, Sleep and Chronobiology Team ". For the purposes of this study, to investigate the effects of chronic sleep loss on neuroendocrine and neuroimmune function, we have focused on the two extreme sleep conditions

  15. Effects of proprioceptive vibratory stimulation on body movement at 24 and 36 h of sleep deprivation

    OpenAIRE

    Gomez, Stephen; Patel, M.(Imperial College London, London, United Kingdom); Berg, Sören; Magnusson, Måns; Johansson, Rolf; Fransson, P. A.

    2008-01-01

    Objectives: To investigate whether postural stability and adaptation differed after a normal night of sleep, after 24 h (24 SDep) and 36 h (36 SDep) of sleep deprivation while subjected to repeated balance perturbations. Also, to determine whether there was any correlation between subjective alertness scores and objective posturographic measurements. Lastly, to investigate the effects of vision on the stability during sleep deprivation. Methods: Body movements at five locations were record...

  16. Distinctive patterns of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome, restless legs syndrome, insomnia, and sleep deprivation.

    Science.gov (United States)

    Lanza, Giuseppe; Cantone, Mariagiovanna; Lanuzza, Bartolo; Pennisi, Manuela; Bella, Rita; Pennisi, Giovanni; Ferri, Raffaele

    2015-02-01

    Altered responses to transcranial magnetic stimulation (TMS) in obstructive sleep apnea syndrome (OSAS), restless legs syndrome (RLS), insomnia, and sleep-deprived healthy subjects have been reported. We have reviewed the relevant literature in order to identify eventual distinctive electrocortical profiles based on single and paired-pulse TMS, sensorimotor modulation, plasticity-related and repetitive TMS measures. Although obtained from heterogeneous studies, the detected changes might be the result of the different pathophysiological substrates underlying OSAS, RLS, insomnia and sleep deprivation rather than reflect the general effect of non-specific sleep loss and instability. OSAS tends to exhibit an increased motor cortex inhibition, which is reduced in RLS; intracortical excitability seems to be in favor of an "activating" profile in chronic insomnia and in sleep-deprived healthy individuals. Abnormal plasticity-related TMS phenomena have been demonstrated in OSAS and RLS. This review provides a perspective of TMS techniques by further understanding the role of neurotransmission pathways and plastic remodeling of neuronal networks involved in common sleep disorders. TMS might be considered a valuable tool in the assessment of sleep disorders, the evaluation of the effect of therapy and the design of non-pharmacological approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. THE EFFECT OF SLEEP DEPRIVATION ON SERUM IGG RESPONSES TO AEROBIC ACTIVITY IN COLLEGE STUDENT ATHLETES

    Directory of Open Access Journals (Sweden)

    Saeed Jamshidi Far

    2014-11-01

    Full Text Available Background & Aims: Sleep is a restorative process for the immune system. There are many situations in which sleep is disturbed prior to an athletic event. However, the effect of sleep deprivation on immune indices in response to exercise remains unknown. The aim of this study was to investigate the effects of sleep deprivation on serum IgG responses to aerobic activity. Materials & Methods: In this quasi-experimental study, 10 male physical education students were voluntarily participated. Study was performed in two separate occasions; control and experimental within two weeks. In the control occasion, normal sleep and aerobic activity and in the experimental occasion, sleep deprivation and aerobic activity was applied. Aerobic activity was performed on bicycle ergometer for 30 minutes at intensity of 70 to 75 percent of maximum heart rate. Changes in serum IgG concentrations in pre-test, before and after aerobic activity in both occasions were analyzed by the two repeated measures ANOVA and dependent T-test using SPSS software. Results: The results showed that sleep deprivation not significantly effect on Serum IgG response to aerobic activity (p=0.130. Also, aerobic activity not significantly effect on Serum IgG concentration (p=0.357. But sleep deprivation caused a significantly increase in serum IgG concentration (p=0.035. Conclusion: No significant effect of sleep deprivation on serum IgG concentrations response to aerobic activity.

  18. The effect of sleep deprivation on retrieval of emotional memory: a behavioural study using film stimuli.

    Science.gov (United States)

    Tempesta, Daniela; Socci, Valentina; Dello Ioio, Giada; De Gennaro, Luigi; Ferrara, Michele

    2017-07-24

    Although the deleterious effects of sleep deprivation on memory consolidation are well documented, it is still unclear how the facilitating effect of emotions on memory consolidation processes could be modulated by the lack of sleep. In this study, we investigated the effects of sleep deprivation on episodic memory using emotional and non-emotional film stimuli. Forty-eight healthy subjects, divided into a sleep group (SG) and a sleep-deprived (SD) group, completed an Encoding and a Recall phase. Participants in the SD group were sleep deprived the night immediately following the Encoding phase, whereas the control group slept at home. The Recall phase was administered to all subjects 48 h after the Encoding. During the Encoding phase, six film clips of different valence (two positive, two neutral and two negative) were presented to the participants. During the Recall phase, episodic memory was assessed by a recognition task. Results showed that the SD group had a lower discrimination memory performance for all stimuli compared to the SG, confirming the deleterious effect of sleep deprivation on episodic memory consolidation. Therefore, lack of sleep severely impairs the consolidation of both emotional and neutral memories, as valence-related effects on memory consolidation were not observed after sleep deprivation.

  19. Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis.

    Science.gov (United States)

    Tudor, Jennifer C; Davis, Emily J; Peixoto, Lucia; Wimmer, Mathieu E; van Tilborg, Erik; Park, Alan J; Poplawski, Shane G; Chung, Caroline W; Havekes, Robbert; Huang, Jiayan; Gatti, Evelina; Pierre, Philippe; Abel, Ted

    2016-04-26

    Sleep deprivation is a public health epidemic that causes wide-ranging deleterious consequences, including impaired memory and cognition. Protein synthesis in hippocampal neurons promotes memory and cognition. The kinase complex mammalian target of rapamycin complex 1 (mTORC1) stimulates protein synthesis by phosphorylating and inhibiting the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2). We investigated the involvement of the mTORC1-4EBP2 axis in the molecular mechanisms mediating the cognitive deficits caused by sleep deprivation in mice. Using an in vivo protein translation assay, we found that loss of sleep impaired protein synthesis in the hippocampus. Five hours of sleep loss attenuated both mTORC1-mediated phosphorylation of 4EBP2 and the interaction between eukaryotic initiation factor 4E (eIF4E) and eIF4G in the hippocampi of sleep-deprived mice. Increasing the abundance of 4EBP2 in hippocampal excitatory neurons before sleep deprivation increased the abundance of phosphorylated 4EBP2, restored the amount of eIF4E-eIF4G interaction and hippocampal protein synthesis to that seen in mice that were not sleep-deprived, and prevented the hippocampus-dependent memory deficits associated with sleep loss. These findings collectively demonstrate that 4EBP2-regulated protein synthesis is a critical mediator of the memory deficits caused by sleep deprivation. Copyright © 2016, American Association for the Advancement of Science.

  20. Bench-to-bedside review: Delirium in ICU patients - importance of sleep deprivation

    OpenAIRE

    Weinhouse, Gerald L.; Schwab, Richard J.; Watson, Paula L; Patil, Namrata; Vaccaro, Bernardino; Pandharipande,Pratik; Ely, E. Wesley

    2009-01-01

    Delirium occurs frequently in critically ill patients and has been associated with both short-term and long-term consequences. Efforts to decrease delirium prevalence have been directed at identifying and modifying its risk factors. One potentially modifiable risk factor is sleep deprivation. Critically ill patients are known to experience poor sleep quality with severe sleep fragmentation and disruption of sleep architecture. Poor sleep while in the intensive care unit is one of the most com...

  1. Acute sleep deprivation: the effects of the AMPAKINE compound CX717 on human cognitive performance, alertness and recovery sleep.

    Science.gov (United States)

    Boyle, Julia; Stanley, Neil; James, Lynette M; Wright, Nicola; Johnsen, Sigurd; Arbon, Emma L; Dijk, Derk-Jan

    2012-08-01

    AMPA receptor modulation is a potential novel approach to enhance cognitive performance. CX717 is a positive allosteric modulator of the AMPA receptor that has shown efficacy in rodent and primate cognition models. CX717 (100 mg, 300 mg and 1000 mg) and placebo were studied in 16 healthy male volunteers (18-45 years) in a randomized, crossover study. Cognitive function, arousal and recovery sleep (by polysomnography) were assessed during the extended wakefulness protocol. Placebo condition was associated with significant decrements in cognition, particularly at the circadian nadir (between 03:00 and 05:00). Pre-specified primary and secondary analyses (general linear mixed modelling, GLMM) at each separate time point did not reveal consistent improvements in performance or objective alertness with any dose of CX717. Exploratory repeated measures analysis, a method used to take into account the influence of individual differences, demonstrated an improvement in attention-based task performance following the 1000 mg dose. Analysis of the recovery sleep showed that CX717 1000 mg significantly reduced stage 4 and slow-wave sleep (p ≤ 0.05) with evidence of reduced electroencephalogram (EEG) slow-wave and spindle activity. The study suggests that CX717 only at the 1000 mg dose may counteract effects of sleep deprivation on attention-based tasks and that it may interfere with subsequent recovery sleep.

  2. The impact of sleep deprivation on visual perspective taking.

    Science.gov (United States)

    Deliens, Gaétane; Bukowski, Henryk; Slama, Hichem; Surtees, Andrew; Cleeremans, Axel; Samson, Dana; Peigneux, Philippe

    2017-10-11

    Total sleep deprivation (TSD) is known to alter cognitive processes. Surprisingly little attention has been paid to its impact on social cognition. Here, we investigated whether TSD alters levels-1 and -2 visual perspective-taking abilities, i.e. the capacity to infer (a) what can be seen and (b) how it is seen from another person's visual perspective, respectively. Participants completed levels-1 and -2 visual perspective-taking tasks after a night of sleep and after a night of TSD. In these tasks, participants had to take their own (self trials) or someone else's (other trials) visual perspective in trials where both perspectives were either the same (consistent trials) or different (inconsistent trials). An instruction preceding each trial indicated the perspective to take (i.e. the relevant perspective). Results show that TSD globally deteriorates social performance. In the level-1 task, TSD affects the selection of relevant over irrelevant perspectives. In the level-2 task, the effect of TSD cannot be unequivocally explained. This implies that visual perspective taking should be viewed as partially state-dependent, rather than a wholly static trait-like characteristic. © 2017 European Sleep Research Society.

  3. Effects of sleep deprivation on measures of the febrile reaction and the recovery of somatovisceral functions and sleep in endotoxemia.

    Science.gov (United States)

    Lapshina, K V; Ekimova, I V

    2010-05-01

    Electroencephalographic methods were used to study the effects of total sleep deprivation on thermoregulatory measures of the fever response in pigeons (Columba livia): brain temperature, peripheral vasomotor reactions, thoracic muscle contractile activity, and the recovery of somatic functions and the time characteristics of waking and sleep in lipopolysaccharide (LPS)-induced endotoxemia. Sleep deprivation during the period in which the quantity of slow-wave sleep increased on administration of LPS induced decreases in the latent period of fever onset and in the duration of fever, along with more significant increases in brain temperature and the level of muscle contractile activity as compared with the effects of LPS alone. The period after sleep deprivation was characterized by more prolonged recovery of muscle contractile activity and the time characteristics of sleep and waking states, along with more prolonged compensatory "rebound" of slow-wave sleep as compared with the effects of sleep deprivation alone. Thus, sleep deprivation in endotoxemia led to decreases in the latent period of fever onset, exacerbation of fever, and increases in the latent period of recovery of physiological functions.

  4. Does experimental paradoxical sleep deprivation (EPSD) is an appropriate model for evaluation of cardiovascular complications of obstructive sleep apnea?

    Science.gov (United States)

    Joukar, Siyavash; Ghorbani-Shahrbabaki, Soodabe

    2016-05-01

    Some of the previous studies have used animal model of paradoxical sleep deprivation for investigation of sleep loss complications. The present study is designed to examine the effectiveness and reliability of this model for investigation and assessment of some cardiovascular complications of obstructive sleep apnea syndrome. The Wistar rat groups were divided into the control group, the Test48 and Test72 groups, who experienced paradoxical sleep deprivation for 48 and 72 h, and the Sham48 and Sham72 groups, who were exposed to environmental conditions same to test groups but without sleep deprivation, respectively. At the end of the experiment, blood pressure and heart rate variability were assessed. The results showed that 72 h rapid eye movements sleep deprivation significantly increased the systolic blood pressure compared to the control (p sleep deprivation may be a suitable model for induction and investigation of hemodynamic alterations which occurs in obstructive sleep apnea syndrome; however, it cannot be an alternative model to induce heart rate variability alterations similar to those reported in patient with obstructive sleep apnea.

  5. Cold hands, warm feet: sleep deprivation disrupts thermoregulation and its association with vigilance.

    Science.gov (United States)

    Romeijn, Nico; Verweij, Ilse M; Koeleman, Anne; Mooij, Anne; Steimke, Rosa; Virkkala, Jussi; van der Werf, Ysbrand; Van Someren, Eus J W

    2012-12-01

    Vigilance is affected by induced and spontaneous skin temperature fluctuations. Whereas sleep deprivation strongly affects vigilance, no previous study examined in detail its effect on human skin temperature fluctuations and their association with vigilance. In a repeated-measures constant routine design, skin temperatures were assessed continuously from 14 locations while performance was assessed using a reaction time task, including eyes-open video monitoring, performed five times a day for 2 days, after a normal sleep or sleep deprivation night. Participants were seated in a dimly lit, temperature-controlled laboratory. Eight healthy young adults (five males, age 22.0 ± 1.8 yr (mean ± standard deviation)). One night of sleep deprivation. Mixed-effect regression models were used to evaluate the effect of sleep deprivation on skin temperature gradients of the upper (ear-mastoid), middle (hand-arm), and lower (foot-leg) body, and on the association between fluctuations in performance and in temperature gradients. Sleep deprivation induced a marked dissociation of thermoregulatory skin temperature gradients, indicative of attenuated heat loss from the hands co-occurring with enhanced heat loss from the feet. Sleep deprivation moreover attenuated the association between fluctuations in performance and temperature gradients; the association was best preserved for the upper body gradient. Sleep deprivation disrupts coordination of fluctuations in thermoregulatory skin temperature gradients. The dissociation of middle and lower body temperature gradients may therefore be evaluated as a marker for sleep debt, and the upper body gradient as a possible aid in vigilance assessment when sleep debt is unknown. Importantly, our findings suggest that sleep deprivation affects the coordination between skin blood flow fluctuations and the baroreceptor-mediated cardiovascular regulation that prevents venous pooling of blood in the lower limbs when there is the orthostatic

  6. Too tired to inspire or be inspired: Sleep deprivation and charismatic leadership.

    Science.gov (United States)

    Barnes, Christopher M; Guarana, Cristiano L; Nauman, Shazia; Kong, Dejun Tony

    2016-08-01

    We draw from theory on sleep and affect regulation to extend the emotional labor model of leadership. We examine both leader and follower sleep as important antecedents of attributions of charismatic leadership. In Study 1, we manipulate the sleep of leaders, and find that leader emotional labor in the form of deep acting (but not surface acting or authentically experienced positive affect) mediates the harmful effect of leader sleep deprivation on follower ratings of charismatic leadership. In Study 2, we manipulate the sleep of followers, and find that follower experienced positive affect mediates the harmful effect of follower sleep deprivation on follower ratings of charismatic leadership of the leader. Thus, both leader and follower sleep deprivation harm attributions of charismatic leadership, with the regulation and experience of affect as causal mechanisms. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Novel application of brain-targeting polyphenol compounds in sleep deprivation-induced cognitive dysfunction.

    Science.gov (United States)

    Zhao, Wei; Wang, Jun; Bi, Weina; Ferruzzi, Mario; Yemul, Shrishailam; Freire, Daniel; Mazzola, Paolo; Ho, Lap; Dubner, Lauren; Pasinetti, Giulio Maria

    2015-10-01

    Sleep deprivation produces deficits in hippocampal synaptic plasticity and hippocampal-dependent memory storage. Recent evidence suggests that sleep deprivation disrupts memory consolidation through multiple mechanisms, including the down-regulation of the cAMP-response element-binding protein (CREB) and of mammalian target of rapamycin (mTOR) signaling. In this study, we tested the effects of a Bioactive Dietary Polyphenol Preparation (BDPP), comprised of grape seed polyphenol extract, Concord grape juice, and resveratrol, on the attenuation of sleep deprivation-induced cognitive impairment. We found that BDPP significantly improves sleep deprivation-induced contextual memory deficits, possibly through the activation of CREB and mTOR signaling pathways. We also identified brain-available polyphenol metabolites from BDPP, among which quercetin-3-O-glucuronide activates CREB signaling and malvidin-3-O-glucoside activates mTOR signaling. In combination, quercetin and malvidin-glucoside significantly attenuated sleep deprivation-induced cognitive impairment in -a mouse model of acute sleep deprivation. Our data suggests the feasibility of using select brain-targeting polyphenol compounds derived from BDPP as potential therapeutic agents in promoting resilience against sleep deprivation-induced cognitive dysfunction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of mental resilience on neuroendocrine hormones level changes induced by sleep deprivation in servicemen.

    Science.gov (United States)

    Sun, Xinyang; Dai, Xuyan; Yang, Tingshu; Song, Hongtao; Yang, Jialin; Bai, Jing; Zhang, Liyi

    2014-12-01

    The aim of this study was to investigate the effects of mental resilience on the changes of serum rennin, angiotensin, and cortisol level induced by sleep deprivation in servicemen. By random cluster sampling, a total of 160 servicemen, aged from 18 to 30, were selected to undergo 24-hour total sleep deprivation and administered the military personnel mental resilience scale after the deprivation procedure. The sleep deprivation procedure started at 8 a.m. on Day 8 and ended at 8 a.m. on Day 9 after 7 days of normal sleep for baseline preparation. Blood samples were drawn from the 160 participants at 8 a.m. respectively on Day 8 and Day 9 for hormonal measurements. All blood samples were analyzed using radioimmunoassay. As hypothesized, serum rennin, angiotensin II, and cortisol level of the participants after sleep deprivation were significantly higher than those before (P sleep deprivation. We conclude that mental resilience plays a significant role in alleviating the changes of neurohormones level induced by sleep deprivation in servicemen.

  9. Total and Partial Sleep Deprivation in Clomipramine-Treated Endogenous Depressives

    NARCIS (Netherlands)

    Elsenga, Simon; Beersma, Domien; Hoofdakker, Rutger H. van den

    1990-01-01

    Improvement in depression after total sleep deprivation (TSD) is, as a rule, followed by relapse after subsequent ad libitum sleep. This study is addressed to the question of how nocturnal partial sleep following TSD affects this relapse. Thirty endogenously depressed patients participated in the

  10. Global Prevalence of Sleep Deprivation in Students and Heavy Media Use

    Science.gov (United States)

    Zhang, Meilan; Tillman, Daniel A.; An, Song A.

    2017-01-01

    The latest two international educational assessments found global prevalence of sleep deprivation in students, consistent with what has been reported in sleep research. However, despite the fundamental role of adequate sleep in cognitive and social functioning, this important issue has been largely overlooked by educational researchers. Drawing…

  11. Sleep deprivation in Depression : What do we know, where do we go?

    NARCIS (Netherlands)

    Wirz-Justice, A; Van den Hoofdakker, RH

    1999-01-01

    Manipulations of the sleep-wake cycle, whether of duration (total or partial sleep deprivation [SD]) or timing (partial SD, phase advance), have profound and rapid effects on depressed mood in 60% of all diagnostic subgroups of affective disorders. Relapse after recovery sleep is less when patients

  12. Human Hippocampal Structure: A Novel Biomarker Predicting Mnemonic Vulnerability to, and Recovery from, Sleep Deprivation

    Science.gov (United States)

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Stark, Shauna; Stark, Craig E.

    2016-01-01

    Sleep deprivation impairs the formation of new memories. However, marked interindividual variability exists in the degree to which sleep loss compromises learning, the mechanistic reasons for which are unclear. Furthermore, which physiological sleep processes restore learning ability following sleep deprivation are similarly unknown. Here, we demonstrate that the structural morphology of human hippocampal subfields represents one factor determining vulnerability (and conversely, resilience) to the impact of sleep deprivation on memory formation. Moreover, this same measure of brain morphology was further associated with the quality of nonrapid eye movement slow wave oscillations during recovery sleep, and by way of such activity, determined the success of memory restoration. Such findings provide a novel human biomarker of cognitive susceptibility to, and recovery from, sleep deprivation. Moreover, this metric may be of special predictive utility for professions in which memory function is paramount yet insufficient sleep is pervasive (e.g., aviation, military, and medicine). SIGNIFICANCE STATEMENT Sleep deprivation does not impact all people equally. Some individuals show cognitive resilience to the effects of sleep loss, whereas others express striking vulnerability, the reasons for which remain largely unknown. Here, we demonstrate that structural features of the human brain, specifically those within the hippocampus, accurately predict which individuals are susceptible (or conversely, resilient) to memory impairments caused by sleep deprivation. Moreover, this same structural feature determines the success of memory restoration following subsequent recovery sleep. Therefore, structural properties of the human brain represent a novel biomarker predicting individual vulnerability to (and recovery from) the effects of sleep loss, one with occupational relevance in professions where insufficient sleep is pervasive yet memory function is paramount. PMID:26911684

  13. Does sleep deprivation alter functional EEG networks in children with focal epilepsy?

    Directory of Open Access Journals (Sweden)

    Eric evan Diessen

    2014-04-01

    Full Text Available Electroencephalography (EEG recordings after sleep deprivation increase the diagnostic yield in patients suspected of epilepsy if the routine EEG remains inconclusive. Sleep deprivation is associated with increased interictal EEG abnormalities in patients with epilepsy, but the exact mechanism is unknown. In this feasibility study, we used a network analytical approach to provide novel insights into this clinical observation. The aim was to characterize the effect of sleep deprivation on interictal functional network organization using a unique dataset of paired routine and sleep deprivation recordings in patients and controls. We included twenty-one children referred to the first seizure clinic of our center with suspected new onset focal epilepsy in whom a routine interictal and a sleep deprivation EEG (SD-EEG were performed. Seventeen children, in whom the diagnosis of epilepsy was excluded, served as controls. For both time points weighted functional networks were constructed based on interictal artifact free time-series. Routine and sleep deprivation networks were characterized at different frequency bands using minimum spanning tree (MST measures (leaf number and diameter and classical measures of integration (path length and segregation (clustering coefficient. A significant interaction was found for leaf number and diameter between patients and controls after sleep deprivation: patients showed a shift towards a more path-like MST network whereas controls showed a shift towards a more star-like MST network. This shift in network organization after sleep deprivation in patients is in accordance with previous studies showing a more regular network organization in the ictal state and might relate to the increased epileptiform abnormalities found in patients after sleep deprivation. Larger studies are needed to verify these results. Finally, MST measures were more sensitive in detecting network changes as compared to the classical measures of

  14. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation.

    Directory of Open Access Journals (Sweden)

    Namni Goel

    2009-06-01

    Full Text Available The variable number tandem repeat (VNTR polymorphism 5-repeat allele of the circadian gene PERIOD3 (PER3(5/5 has been associated with cognitive decline at a specific circadian phase in response to a night of total sleep deprivation (TSD, relative to the 4-repeat allele (PER3(4/4. PER3(5/5 has also been related to higher sleep homeostasis, which is thought to underlie this cognitive vulnerability. To date, no study has used a candidate gene approach to investigate the response to chronic partial sleep deprivation (PSD, a condition distinct from TSD and one commonly experienced by millions of people on a daily and persistent basis. We evaluated whether the PER3 VNTR polymorphism contributed to cumulative neurobehavioral deficits and sleep homeostatic responses during PSD.PER3(5/5 (n = 14, PER3(4/5 (n = 63 and PER3(4/4 (n = 52 healthy adults (aged 22-45 y demonstrated large, but equivalent cumulative decreases in cognitive performance and physiological alertness, and cumulative increases in sleepiness across 5 nights of sleep restricted to 4 h per night. Such effects were accompanied by increasing daily inter-subject variability in all groups. The PER3 genotypes did not differ significantly at baseline in habitual sleep, physiological sleep structure, circadian phase, physiological sleepiness, cognitive performance, or subjective sleepiness, although during PSD, PER3(5/5 subjects had slightly but reliably elevated sleep homeostatic pressure as measured physiologically by EEG slow-wave energy in non-rapid eye movement sleep compared with PER3(4/4 subjects. PER3 genotypic and allelic frequencies did not differ significantly between Caucasians and African Americans.The PER3 VNTR polymorphism was not associated with individual differences in neurobehavioral responses to PSD, although it was related to one marker of sleep homoeostatic response during PSD. The comparability of PER3 genotypes at baseline and their equivalent inter-individual vulnerability

  15. Impairment of male reproductive function after sleep deprivation.

    Science.gov (United States)

    Alvarenga, Tathiana A; Hirotsu, Camila; Mazaro-Costa, Renata; Tufik, Sergio; Andersen, Monica L

    2015-05-01

    To evaluate the influence of sleep loss on sexual behavior, hormone levels, sperm parameters, and testis-specific gene expression in male rats. Experimental research. Animal laboratory. Male adult Wistar-Hannover rats. Sexually experienced rats were subjected to paradoxic sleep deprivation (PSD) for 96 hours or sleep restriction (SR) for 21 days or kept in their home cage as control (CTRL). Sexual behavior, hormone levels, sperm parameters and expression of stress and nitric oxide-related genes were evaluated. PSD significantly decreased sexual behavior compared with the CTRL group, whereas SR had no effect. The PSD group had significantly lower testosterone levels than the CTRL group. Both PSD and SR groups had lower sperm viabilities than the CTRL group. The decrease in the number of live sperm compared with the CTRL group was larger in the PSD group than in the SR group. Regarding testicular gene expression, both PSD and SR led to an increase of iNOS and hydroxysteroid 11β-dehydrogenase 1 expressions compared with the CTRL group. These changes were more pronounced in the PSD group. A significant increase in endothelial nitric oxide synthase expression was observed in the PSD groups compared with the CTRL group. No changes were observed in dimethylarginine dimethylaminohydrolase 1 and casein kinase 2β-polypeptide expressions. Sleep loss can promote marked changes in the male reproductive system of rats, particularly affecting spermatic function in part by interfering in the testicular nitric oxide pathway. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Synaptic plasticity model of therapeutic sleep deprivation in major depression.

    Science.gov (United States)

    Wolf, Elias; Kuhn, Marion; Normann, Claus; Mainberger, Florian; Maier, Jonathan G; Maywald, Sarah; Bredl, Aliza; Klöppel, Stefan; Biber, Knut; van Calker, Dietrich; Riemann, Dieter; Sterr, Annette; Nissen, Christoph

    2016-12-01

    Therapeutic sleep deprivation (SD) is a rapid acting treatment for major depressive disorder (MDD). Within hours, SD leads to a dramatic decrease in depressive symptoms in 50-60% of patients with MDD. Scientifically, therapeutic SD presents a unique paradigm to study the neurobiology of MDD. Yet, up to now, the neurobiological basis of the antidepressant effect, which is most likely different from today's first-line treatments, is not sufficiently understood. This article puts the idea forward that sleep/wake-dependent shifts in synaptic plasticity, i.e., the neural basis of adaptive network function and behavior, represent a critical mechanism of therapeutic SD in MDD. Particularly, this article centers on two major hypotheses of MDD and sleep, the synaptic plasticity hypothesis of MDD and the synaptic homeostasis hypothesis of sleep-wake regulation, and on how they can be integrated into a novel synaptic plasticity model of therapeutic SD in MDD. As a major component, the model proposes that therapeutic SD, by homeostatically enhancing cortical synaptic strength, shifts the initially deficient inducibility of associative synaptic long-term potentiation (LTP) in patients with MDD in a more favorable window of associative plasticity. Research on the molecular effects of SD in animals and humans, including observations in the neurotrophic, adenosinergic, monoaminergic, and glutamatergic system, provides some support for the hypothesis of associative synaptic plasticity facilitation after therapeutic SD in MDD. The model proposes a novel framework for a mechanism of action of therapeutic SD that can be further tested in humans based on non-invasive indices and in animals based on direct studies of synaptic plasticity. Further determining the mechanisms of action of SD might contribute to the development of novel fast acting treatments for MDD, one of the major health problems worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Sleep Deprivation Promotes Habitual Control over Goal-Directed Control: Behavioral and Neuroimaging Evidence.

    Science.gov (United States)

    Chen, Jie; Liang, Jie; Lin, Xiao; Zhang, Yang; Zhang, Yan; Lu, Lin; Shi, Jie

    2017-12-06

    Sleep is one of the most fundamental processes of life, playing an important role in the regulation of brain function. The long-term lack of sleep can cause memory impairments, declines in learning ability, and executive dysfunction. In the present study, we evaluated the effects of sleep deprivation on instrumental learning behavior, particularly goal-directed and habitual actions in humans, and investigated the underlying neural mechanisms. Healthy college students of either gender were enrolled and randomly divided into sleep deprivation group and sleep control group. fMRI data were collected. We found that one night of sleep deprivation led to greater responsiveness to stimuli that were associated with devalued outcomes in the slips-of-action test, indicating a deficit in the formation of goal-directed control and an overreliance on habits. Furthermore, sleep deprivation had no effect on the expression of acquired goal-directed action. The level of goal-directed action after sleep deprivation was positively correlated with baseline working memory capacity. The neuroimaging data indicated that goal-directed learning mainly recruited the ventromedial PFC (vmPFC), the activation of which was less pronounced during goal-directed learning after sleep deprivation. Activation of the vmPFC during goal-directed learning during training was positively correlated with the level of goal-directed action performance. The present study suggests that people rely predominantly on habits at the expense of goal-directed control after sleep deprivation, and this process involves the vmPFC. These results contribute to a better understanding of the effects of sleep loss on decision-making.SIGNIFICANCE STATEMENT Understanding the cognitive consequences of sleep deprivation has become extremely important over the past half century, given the continued decline in sleep duration in industrialized societies. Our results provide novel evidence that goal-directed action may be particularly

  18. Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Camilo eLibedinsky

    2011-10-01

    Full Text Available Even a single night of total sleep-deprivation (SD can have dramatic effects on economic decision making. Here we tested the novel hypothesis that SD influences economic decisions by altering the valuation process. Using functional magnetic resonance imaging (fMRI we identified value signals related to the anticipation and the experience of monetary and social rewards (attractive female faces. We then derived decision value signals that were predictive of each participant’s willingness to exchange money for brief views of attractive faces in an independent market task. Strikingly, SD altered decision value signals in ventromedial prefrontal cortex (VMPFC in proportion to the corresponding change in economic preferences. These changes in preference were independent of the effects of SD on attention and vigilance. Our results provide novel evidence that signals in VMPFC track the current state of the individual, and thus reflect not static but constructed preferences.

  19. Sleep deprivation alters valuation signals in the ventromedial prefrontal cortex.

    Science.gov (United States)

    Libedinsky, Camilo; Smith, David V; Teng, Chieh Schen; Namburi, Praneeth; Chen, Vanessa W; Huettel, Scott A; Chee, Michael W L

    2011-01-01

    Even a single night of total sleep deprivation (SD) can have dramatic effects on economic decision making. Here we tested the novel hypothesis that SD influences economic decisions by altering the valuation process. Using functional magnetic resonance imaging we identified value signals related to the anticipation and the experience of monetary and social rewards (attractive female faces). We then derived decision value signals that were predictive of each participant's willingness to exchange money for brief views of attractive faces in an independent market task. Strikingly, SD altered decision value signals in ventromedial prefrontal cortex (VMPFC) in proportion to the corresponding change in economic preferences. These changes in preference were independent of the effects of SD on attention and vigilance. Our results provide novel evidence that signals in VMPFC track the current state of the individual, and thus reflect not static but constructed preferences.

  20. Differential effects of paradoxical sleep deprivation on memory and oxidative stress.

    Science.gov (United States)

    Lima, Alisson Menezes Araujo; de Bruin, Veralice Meireles Sales; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Pedro Felipe Carvalhedo

    2014-05-01

    Sleep has important functions for every organ in the body and sleep deprivation (SD) leads to disorders that cause irreparable damage. The aim of this study was to investigate behavioral and brain structural alterations in mice deprived of paradoxical sleep for 48 and 72 h. Working memory, aversive memory as well as levels of nitric oxide (NO) and thiobarbituric acid reactive substances (TBARS) in the hippocampus, body striatum, and prefrontal cortex were evaluated. Working memory was affected in the 48- and 72-h SD groups while aversive memory was altered only in the 48-h SD group (p ≤ 0.05). Our findings showed that SD reduces NO levels in most brain areas (p stress and is only affected by SD of longer duration. Increased TBARS and reduced NO levels in the hippocampus and prefrontal cortex confirm a central role for both these structures in working memory and aversive memory. Contextual fear conditioning was not affected by longer periods of SD. Thus, our findings suggest that shorter SD time may be more beneficial to avoid aversive memory where this may have implications for the management of posttraumatic stress.

  1. White blood cells and cortisol after sleep deprivation and recovery sleep in humans.

    Science.gov (United States)

    Heiser, P; Dickhaus, B; Schreiber, W; Clement, H W; Hasse, C; Hennig, J; Remschmidt, H; Krieg, J C; Wesemann, W; Opper, C

    2000-01-01

    Sleep deprivation (SD) has enriched our treatment programme for major depression. SD has been demonstrated to modify different host defence activities. There is some evidence that there are reciprocal relationships between immune function and increased hypothalamic-pituitary-adrenocortical (HPA) axis activity in depression. We therefore investigated the number of leukocytes, granulocytes, monocytes, lymphocytes, B cells, T cells, helper T cells, cytotoxic T cells, NK cells and salivary cortisol in 10 healthy men before and after total SD (TSD) as well as after recovery sleep. Blood samples were drawn on 3 consecutive days at 7 am, 1 pm and 7 pm, respectively. Comparison of the 7 am values by contrast analysis yielded significant differences for granulocytes (p = 0.044) and NK cells (p = 0.001) after SD and recovery sleep. NK cells decreased and granulocytes increased after SD and after recovery sleep. Significant differences between single points in time across the day were found for granulocytes (p = 0.022), monocytes (p = 0.031), T cells (p = 0.005), helper T cells (p = 0.004), cytotoxic T cells (p = 0.005) and NK cells (p = 0.017). No significant difference could be detected for leukocytes, lymphocytes and B cells counts. These results favour the thesis that SD and recovery sleep lead to changes in the distribution of peripheral leukocytes, especially in a reduction of NK cells after SD and recovery sleep. The cortisol rhythm was affected neither by SD nor recovery sleep.

  2. PR01 - The Effects of Total Sleep Deprivation and Recovery Sleep on Cognitive Performance and Brain Function

    National Research Council Canada - National Science Library

    Drummond, Sean P

    2006-01-01

    .... Although considerable data show that sleep deprivation alters many aspects of behavior, little is known about changes in the brain substrate underlying the behavioral effects, and even less is known...

  3. Homeostatic & Circadian Regulation of Wakefulness During Jet Lag and Sleep. Sleep Deprivation: Effect of Wake-Promoting Countermeasures

    National Research Council Canada - National Science Library

    Dinges, David

    2000-01-01

    .... Major human research projects on the effects of induced jet lag and sleep deprivation and their mitigation by sustained low-dose caffeine and naps were undertaken at the University of Pennsylvania...

  4. Classifying vulnerability to sleep deprivation using baseline measures of psychomotor vigilance.

    Science.gov (United States)

    Patanaik, Amiya; Kwoh, Chee Keong; Chua, Eric C P; Gooley, Joshua J; Chee, Michael W L

    2015-05-01

    To identify measures derived from baseline psychomotor vigilance task (PVT) performance that can reliably predict vulnerability to sleep deprivation. Subjects underwent total sleep deprivation and completed a 10-min PVT every 1-2 h in a controlled laboratory setting. Participants were categorized as vulnerable or resistant to sleep deprivation, based on a median split of lapses that occurred following sleep deprivation. Standard reaction time, drift diffusion model (DDM), and wavelet metrics were derived from PVT response times collected at baseline. A support vector machine model that incorporated maximum relevance and minimum redundancy feature selection and wrapper-based heuristics was used to classify subjects as vulnerable or resistant using rested data. Two academic sleep laboratories. Independent samples of 135 (69 women, age 18 to 25 y), and 45 (3 women, age 22 to 32 y) healthy adults. In both datasets, DDM measures, number of consecutive reaction times that differ by more than 250 ms, and two wavelet features were selected by the model as features predictive of vulnerability to sleep deprivation. Using the best set of features selected in each dataset, classification accuracy was 77% and 82% using fivefold stratified cross-validation, respectively. In both datasets, DDM measures, number of consecutive reaction times that differ by more than 250 ms, and two wavelet features were selected by the model as features predictive of vulnerability to sleep deprivation. Using the best set of features selected in each dataset, classification accuracy was 77% and 82% using fivefold stratified cross-validation, respectively. Despite differences in experimental conditions across studies, drift diffusion model parameters associated reliably with individual differences in performance during total sleep deprivation. These results demonstrate the utility of drift diffusion modeling of baseline performance in estimating vulnerability to psychomotor vigilance decline

  5. Sleep deprivation impairs object-selective attention: a view from the ventral visual cortex.

    Directory of Open Access Journals (Sweden)

    Julian Lim

    Full Text Available BACKGROUND: Most prior studies on selective attention in the setting of total sleep deprivation (SD have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. CONCLUSIONS/SIGNIFICANCE: SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition.

  6. Sleep Deprivation Impairs Object-Selective Attention: A View from the Ventral Visual Cortex

    Science.gov (United States)

    Lim, Julian; Tan, Jiat Chow; Parimal, Sarayu; Dinges, David F.; Chee, Michael W. L.

    2010-01-01

    Background Most prior studies on selective attention in the setting of total sleep deprivation (SD) have focused on behavior or activation within fronto-parietal cognitive control areas. Here, we evaluated the effects of SD on the top-down biasing of activation of ventral visual cortex and on functional connectivity between cognitive control and other brain regions. Methodology/Principal Findings Twenty-three healthy young adult volunteers underwent fMRI after a normal night of sleep (RW) and after sleep deprivation in a counterbalanced manner while performing a selective attention task. During this task, pictures of houses or faces were randomly interleaved among scrambled images. Across different blocks, volunteers responded to house but not face pictures, face but not house pictures, or passively viewed pictures without responding. The appearance of task-relevant pictures was unpredictable in this paradigm. SD resulted in less accurate detection of target pictures without affecting the mean false alarm rate or response time. In addition to a reduction of fronto-parietal activation, attending to houses strongly modulated parahippocampal place area (PPA) activation during RW, but this attention-driven biasing of PPA activation was abolished following SD. Additionally, SD resulted in a significant decrement in functional connectivity between the PPA and two cognitive control areas, the left intraparietal sulcus and the left inferior frontal lobe. Conclusions/Significance SD impairs selective attention as evidenced by reduced selectivity in PPA activation. Further, reduction in fronto-parietal and ventral visual task-related activation suggests that it also affects sustained attention. Reductions in functional connectivity may be an important additional imaging parameter to consider in characterizing the effects of sleep deprivation on cognition. PMID:20140099

  7. Quantitative EEG Monitoring of Vigilance: Effects of Sleep Deprivation, Circadian Phase and Sympathetic Activation

    Science.gov (United States)

    Dijk, Derk-Jan

    1999-01-01

    Shuttle astronauts typically sleep only 6 to 6.5 hours per day while in orbit. This sleep loss is related to recurrent sleep cycle shifting--due to mission-dependent orbital mechanics and mission duration requirements-- and associated circadian displacement of sleep, the operational demands of space flight, noise and space motion sickness. Such sleep schedules are known to produce poor subjective sleep quality, daytime sleepiness, reduced attention, negative mood, slower reaction times, and impaired daytime alertness. Countermeasures to allow crew members to obtain an adequate amount of sleep and maintain adequate levels of neurobehavioral performance are being developed and investigated. However, it is necessary to develop methods that allow effective and attainable in-flight monitoring of vigilance to evaluate the effectiveness of these countermeasures and to detect and predict online critical decrements in alertness/performance. There is growing evidence to indicate that sleep loss and associated decrements in neurobehavioral function are reflected in the spectral composition of the electroencephalogram (EEG) during wakefulness as well as in the incidence of slow eye movements recorded by the electro-oculogram (EOG). Further-more, our preliminary data indicated that these changes in the EEG during wakefulness are more pronounced when subjects are in a supine posture, which mimics some of the physiologic effects of microgravity. Therefore, we evaluate the following hypotheses: (1) that during a 40-hour period of wakefulness (i.e., one night of total sleep deprivation) neurobehavioral function deteriorates, the incidence of slow eye-movements and EEG power density in the theta frequencies increases especially in frontal areas of the brain; (2) that the sleep deprivation induced deterioration of neurobehavioral function and changes in the incidence of slow eye movements and the spectral composition of the EEG are more pronounced when subjects are in a supine

  8. Cognitive Performance, Sleepiness, and Mood in Partially Sleep Deprived Adolescents: The Need for Sleep Study.

    Science.gov (United States)

    Lo, June C; Ong, Ju Lynn; Leong, Ruth L F; Gooley, Joshua J; Chee, Michael W L

    2016-03-01

    To investigate the effects of sleep restriction (7 nights of 5 h time in bed [TIB]) on cognitive performance, subjective sleepiness, and mood in adolescents. A parallel-group design was adopted in the Need for Sleep Study. Fifty-six healthy adolescents (25 males, age = 15-19 y) who studied in top high schools and were not habitual short sleepers were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-w protocol consisting of 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the control groups), and 3 nights of recovery sleep (TIB = 9 h) at a boarding school. A cognitive test battery was administered three times each day. During the manipulation period, the SR group demonstrated incremental deterioration in sustained attention, working memory and executive function, increase in subjective sleepiness, and decrease in positive mood. Subjective sleepiness and sustained attention did not return to baseline levels even after 2 recovery nights. In contrast, the control group maintained baseline levels of cognitive performance, subjective sleepiness, and mood throughout the study. Incremental improvement in speed of processing, as a result of repeated testing and learning, was observed in the control group but was attenuated in the sleep-restricted participants, who, despite two recovery sleep episodes, continued to perform worse than the control participants. A week of partial sleep deprivation impairs a wide range of cognitive functions, subjective alertness, and mood even in high-performing high school adolescents. Some measures do not recover fully even after 2 nights of recovery sleep. A commentary on this article appears in this issue on page 497. © 2016 Associated Professional Sleep Societies, LLC.

  9. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males.

    Science.gov (United States)

    de Souza, Jorge F T; Dáttilo, Murilo; de Mello, Marco T; Tufik, Sergio; Antunes, Hanna K M

    2017-01-01

    Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT) is emerging as a potential strategy. Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation. Method: Eleven healthy male volunteers were recruited, aged 18-35 years, who declared taking 7-8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition), 24 h of total sleep deprivation ( SD condition), HIIT training followed by regular sleep (HIIT+RS condition), and HIIT training followed by 24 h of total sleep deprivation (HIIT+ SD condition). They performed six training sessions over 2 weeks and each session consisted of 8-12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT), were performed. Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids. Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  10. High-Intensity Interval Training Attenuates Insulin Resistance Induced by Sleep Deprivation in Healthy Males

    Directory of Open Access Journals (Sweden)

    Jorge F. T. de Souza

    2017-12-01

    Full Text Available Introduction: Sleep deprivation can impair several physiological systems and recently, new evidence has pointed to the relationship between a lack of sleep and carbohydrate metabolism, consequently resulting in insulin resistance. To minimize this effect, High-Intensity Interval Training (HIIT is emerging as a potential strategy.Objective: The aim of this study was to investigate the effects of HIIT on insulin resistance induced by sleep deprivation.Method: Eleven healthy male volunteers were recruited, aged 18–35 years, who declared taking 7–8 h sleep per night. All volunteers were submitted to four different conditions: a single night of regular sleep (RS condition, 24 h of total sleep deprivation (SD condition, HIIT training followed by regular sleep (HIIT+RS condition, and HIIT training followed by 24 h of total sleep deprivation (HIIT+SD condition. They performed six training sessions over 2 weeks and each session consisted of 8–12 × 60 s intervals at 100% of peak power output. In each experimental condition, tests for glucose, insulin, cortisol, free fatty acids, and insulin sensitivity, measured by oral glucose tolerance test (OGTT, were performed.Results: Sleep deprivation increased glycaemia and insulin levels, as well as the area under the curve. Furthermore, an increase in free fatty acids concentrations and basal metabolism was observed. There were no differences in the concentrations of cortisol. However, HIIT before 24 h of sleep deprivation attenuated the increase of glucose, insulin, and free fatty acids.Conclusion: Twenty-four hours of sleep deprivation resulted in acute insulin resistance. However, HIIT is an effective strategy to minimize the deleterious effects promoted by this condition.

  11. The effect of one night's sleep deprivation on adolescent neurobehavioral performance.

    Science.gov (United States)

    Louca, Mia; Short, Michelle A

    2014-11-01

    To investigate the effects of one night's sleep deprivation on neurobehavioral functioning in adolescents. Participants completed a neurobehavioral test battery measuring sustained attention, reaction speed, cognitive processing speed, sleepiness, and fatigue every 2 h during wakefulness. Baseline performance (defined as those test bouts between 09:00 and 19:00 on days 2 and 3, following two 10-h sleep opportunities) were compared to performance at the same clock time the day following total sleep deprivation. The sleep laboratory at the Centre for Sleep Research. Twelve healthy adolescents (6 male), aged 14-18 years (mean = 16.17, standard deviation = 0.83). Sustained attention, reaction speed, cognitive processing speed, and subjective sleepiness were all significantly worse following one night without sleep than following 10-h sleep opportunities (all main effects of day, P Sleep deprivation led to increased variability on objective performance measures. There were between-subjects differences in response to sleep loss that were task-specific, suggesting that adolescents may not only vary in terms of the degree to which they are affected by sleep loss but also the domains in which they are affected. These findings suggest that one night of total sleep deprivation has significant deleterious effects upon neurobehavioral performance and subjective sleepiness. These factors impair daytime functioning in adolescents, leaving them at greater risk of poor academic and social functioning and accidents and injuries.

  12. Factors contributing to sleep deprivation in a multidisciplinary intensive care unit in South Africa

    Directory of Open Access Journals (Sweden)

    Valerie J. Ehlers

    2013-02-01

    Full Text Available Patients in intensive care units require rest and sleep to recuperate, but might suffer from sleep deprivation due to ongoing unit activities. The study aimed to identify and describe the factors contributing to sleep deprivation in one multi-disciplinary intensive care unit MDICU in a private hospital in South Africa. Quantitative, descriptive research was conducted to identify factors contributing to sleep deprivation in the research setting, and to make recommendations to enhance these patients’ abilities to sleep. Structured interviewswere conducted with 34 adult non-ventilated patients who had spent at least one night in the MDICU and who gave informed consent. Out of the 34 interviewed patients 70.6% n = 24 indicated that they suffered from sleep deprivation in the MDICU. The five major factors contributing to sleep deprivation in a MDICU were, (1 not knowing nurses’ names, noise caused by alarms, (2 stress, (3 inability to understand medical terms, and (3 blood pressure cuffs that restricted patients’ movements and smelled badly. Patients’ abilities to sleep were enhanced by reassuring nurses whose names they knew and with whom they could communicate. By attending to the identified five major factors, patients’ abilities to sleep in a MDICU could be enhanced enabling patients to recuperate faster. The implementation of such measures need not incur financial costs for the MDICU concerned.

  13. Factors contributing to sleep deprivation in a multidisciplinary intensive care unit in South Africa

    Directory of Open Access Journals (Sweden)

    Valerie J. Ehlers

    2013-01-01

    Full Text Available Patients in intensive care units require rest and sleep to recuperate, but might suffer from sleep deprivation due to ongoing unit activities. The study aimed to identify and describe the factors contributing to sleep deprivation in one multi-disciplinary intensive care unit (MDICU in a private hospital in South Africa. Quantitative, descriptive research was conducted to identify factors contributing to sleep deprivation in the research setting, and to make recommendations to enhance these patients’ abilities to sleep. Structured interviews were conducted with 34 adult non-ventilated patients who had spent at least one night in the MDICU and who gave informed consent. Out of the 34 interviewed patients 70.6% (n = 24 indicated that they suffered from sleep deprivation in the MDICU. The five major factors contributing to sleep deprivation in a MDICU were, (1 not knowing nurses’ names, noise caused by alarms, (2 stress, (3 inability to understand medical terms, and (3 blood pressure cuffs that restricted patients’ movements and smelled badly. Patients’ abilities to sleep were enhanced by reassuring nurses whose names they knew and with whom they could communicate. By attending to the identified five major factors, patients’ abilities to sleep in a MDICU could be enhanced enabling patients to recuperate faster. The implementation of such measures need not incur financial costs for the MDICU concerned.

  14. Changes in Body Water Caused by Sleep Deprivation in Taeeum and Soyang Types in Sasang Medicine: Prospective Intervention Study

    OpenAIRE

    Seung Min Hong; Byung Joo Kim; Seungwon Shin; Minwoo Hwang

    2017-01-01

    Background. There is a negative relationship between sleep deprivation and health. However, no study has investigated the effect of sleep deprivation on individuals with different body composition. The aim of this study was to determine the differential effect of sleep deprivation in individuals with different body compositions (fluid) according to Soyang type (SY) and Taeeum type (TE). Methods. Sixty-two cognitively normal, middle-aged people with normal sleep patterns were recruited from th...

  15. Impact of nocturnal sleep deprivation on declarative memory retrieval in students at an orphanage: a psychoneuroradiological study.

    Science.gov (United States)

    Tantawy, Ahmed O; Tallawy, Hamdy N El; Farghaly, Hussein Rs; Farghaly, Wafaa M; Hussein, Amr S

    2013-01-01

    This study investigated the effects of sleep deprivation on total and partial (early and late) declarative memory and activation in the areas of the brain involved in these activities. The study included two experiments. Experiment 1 included 40 male residents of an orphanage aged 16-19 years, who were divided into four groups (n = 10 each) and subjected to total sleep deprivation, normal sleep, early-night sleep deprivation, or late-night sleep deprivation. Experiment 2 included eight students from the same institution who were divided into the same four groups (n = 2) as in experiment 1. Declarative memory was tested using lists of associated word pairs in both experiments, and activation of the relevant brain regions was measured before and after retrieval by single-photon emission computed tomography for subjects in experiment 2 only. Students subjected to normal sleep had significantly higher scores for declarative memory retrieval than those su