WorldWideScience

Sample records for skin friction reduction

  1. Active compliant wall for skin friction reduction

    International Nuclear Information System (INIS)

    Pätzold, A.; Peltzer, I.; Nitsche, W.; Goldin, N.; King, R.; Haller, D.; Woias, P.

    2013-01-01

    Highlights: • Objective: Delay of laminar-turbulent transition on a wing by active wall actuation. • Natural, convective TS-instabilities are damped by travelling counter waves. • Piezo driven active wall and model predictive controller were developed. • TS amplitudes were damped by 83.6% (equals 15.7 dB within instability band). • Significant effect on skin friction distribution. -- Abstract: In order to reduce skin friction drag, an active laminarisation method is developed. Laminar-turbulent boundary layer transition caused by Tollmien–Schlichting (TS) waves is delayed by attenuation of these convective instabilities. An actively driven compliant wall is integrated as part of a wing’s surface. Different configurations of piezo-based actuators are combined with an array of sensitive surface flow sensors. Wall-normal actuation as well as inclined wall displacement are investigated. Together with a realtime-control strategy, transition onset is shifted downstream by six average TS-wave lengths. Using the example of flow velocity, the influence of variable flow conditions on TS-damping rates was investigated. Besides, the boundary layer flow downstream of the active wall area as well as required wall deflections and the global damping effect on skin friction are presented in this paper

  2. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  3. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    Science.gov (United States)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  4. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction

    Science.gov (United States)

    Elbing, Brian R.; Winkel, Eric S.; Lay, Keary A.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    To investigate the phenomena of skin-friction drag reduction in a turbulent boundary layer (TBL) at large scales and high Reynolds numbers, a set of experiments has been conducted at the US Navy's William B. Morgan Large Cavitation Channel (LCC). Drag reduction was achieved by injecting gas (air) from a line source through the wall of a nearly zero-pressure-gradient TBL that formed on a flat-plate test model that was either hydraulically smooth or fully rough. Two distinct drag-reduction phenomena were investigated; bubble drag reduction (BDR) and air-layer drag reduction (ALDR).The streamwise distribution of skin-friction drag reduction was monitored with six skin-friction balances at downstream-distance-based Reynolds numbers to 220 million and at test speeds to 20.0msinitial zone1. These results indicated that there are three distinct regions associated with drag reduction with air injection: Region I, BDR; Region II, transition between BDR and ALDR; and Region III, ALDR. In addition, once ALDR was established: friction drag reduction in excess of 80% was observed over the entire smooth model for speeds to 15.3ms1 with the surface fully roughened (though approximately 50% greater volumetric air flux was required); and ALDR was sensitive to the inflow conditions. The sensitivity to the inflow conditions can be mitigated by employing a small faired step (10mm height in the experiment) that helps to create a fixed separation line.

  5. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  6. Skin-friction drag reduction in turbulent channel flow based on streamwise shear control

    International Nuclear Information System (INIS)

    Kim, Jung Hoon; Lee, Jae Hwa

    2017-01-01

    Highlights: • We perform DNSs of fully developed turbulent channel flows to explore an active flow control concept using streamwise velocity shear control at the wall. • The structural spacing and wall amplitude parameters are systematically changed to achieve a high-efficient drag reduction rate for longitudinal control surface. • Significant drag reduction is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations. • The generation and evolution of the turbulent vortices in the absence of velocity shear and how they contribute to DR have been examined. - Abstract: It is known that stretching and intensification of a hairpin vortex by mean shear play an important role to create a hairpin vortex packet, which generates the large Reynolds shear stress associated with skin-friction drag in wall-bounded turbulent flows. In order to suppress the mean shear at the wall for high efficient drag reduction (DR), in the present study, we explore an active flow control concept using streamwise shear control (SSC) at the wall. The longitudinal control surface is periodically spanwise-arranged with no-control surface while varying the structural spacing, and an amplitude parameter for imposing the strength of the actuating streamwise velocity at the wall is introduced to further enhance the skin-friction DR. Significant DR is observed with an increase in the two parameters with an accompanying reduction of the Reynolds stresses and vorticity fluctuations, although a further increase in the parameters amplifies the turbulence activity in the near-wall region. In order to study the direct relationship between turbulent vortical structures and DR under the SSC, temporal evolution with initial eddies extracted by conditional averages for Reynolds-stress-maximizing Q2 events are examined. It is shown that the generation of new vortices is dramatically inhibited with an increase in the parameters

  7. Skin tribology: Science friction?

    NARCIS (Netherlands)

    van der Heide, Emile; Zeng, Xiangqiong; Masen, Marc Arthur

    2013-01-01

    The application of tribological knowledge is not just restricted to optimizing mechanical and chemical engineering problems. In fact, effective solutions to friction and wear related questions can be found in our everyday life. An important part is related to skin tribology, as the human skin is

  8. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    Science.gov (United States)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  9. A Simple Device For Measuring Skin Friction

    Directory of Open Access Journals (Sweden)

    Gupta A.B

    1995-01-01

    Full Text Available A simple device for measuring skin friction in vivo is described. The frictional coefficient of normal Indian skin and the effect of hydration and application of talc and glycerol on the frictional coefficient and also the friction of ichthyotic skin have been determined with its help. The average value of friction of friction of normal India skin at forearm is found to be 0.41 +- 0.08, the hydration raises the value to 0.71 +- 0.11 and the effect of glycerol is also to school it up to 0.70+- 0.05, almost equal to that of water. The effect of talc however is opposite and its application lowers the friction to 0.21+-0.07. The mean coeff of friction for ichthyotic skin is found to be 0.21+- 0.0.5, which closely agrees with talc-treated normal skin. A good positive correlation (p<0.01 between friction and sebum level at skin site, with r = 0.64, has been observed.

  10. Skin friction related behaviour of artificial turf systems.

    Science.gov (United States)

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  11. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables. This study has used a large dataset to identify the effect of variables on

  12. Variables influencing the frictional behaviour of in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, M.A.; Heide, E. van der

    2013-01-01

    In the past decades, skin friction research has focused on determining which variables are important to affect the frictional behaviour of in vivo human skin. Until now, there is still limited knowledge on these variables.This study has used a large dataset to identify the effect of variables on the

  13. Skin friction under pressure. The role of micromechanics

    Science.gov (United States)

    Leyva-Mendivil, Maria F.; Lengiewicz, Jakub; Limbert, Georges

    2018-03-01

    The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin

  14. Friction coefficient of skin in real-time.

    Science.gov (United States)

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  15. Relating friction on the human skin to the hydration and temperature of the skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2013-01-01

    The human skin is constantly in interaction with materials and products. Therefore, skin friction is relevant to all people. In the literature, the frictional properties of the skin have been linked to a large variety of variables, like age, gender and hydration. The present study compares the data

  16. Tribology of skin : review and analysis of experimental results for the friction coefficient of human skin

    NARCIS (Netherlands)

    Derler, S.; Gerhardt, L.C.

    2012-01-01

    In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin-friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing

  17. Skin-textile friction and skin elasticity in young and aged persons

    NARCIS (Netherlands)

    Gerhardt, L.C.; Lenz, A.; Spencer, N.D.; Munzer, T.; Derler, S.

    2009-01-01

    Background/purpose: The mechanical properties of human skin are known to change with ageing, rendering skin less resistant to friction and shear forces, as well as more vulnerable to wounds. Until now, only few and contradictory results on the age-dependent friction properties of skin have been

  18. Skin friction: a novel approach to measuring in vivo human skin

    OpenAIRE

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into three parts. The first part is an introduction to skin friction and to current knowledge on skin friction. The second part presents the RevoltST, the tribometer that was specially developed for skin...

  19. Skin friction measurements using He-Ne laser

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.H. [Hankuk Aviation University Graduate School, Kyonggi-do (Korea, Republic of); Lee, Y. [Hankuk Aviation University, Kyonggi-do (Korea, Republic of)

    1997-07-01

    An experimental study of the skin friction measurement in a turbulent boundary-layer has been carried out. The skin friction measurements are made using the laser interferometer skin friction (LISF) meter, which optically detects the rate of thinning of an oil applied to the test surface. This technique produces reliable skin friction data over a wide range of flow situations up to 3-dimensional complicated flows with separation, where traditional skin friction measurement techniques are not applicable. The present measured data in a turbulent boundary-layer on a flat plate using the LISF technique shows a good comparison with the result from the previous velocity profile techniques, which proves the validity of the present technique. An extensive error analysis is carried out for the present technique yielding an uncertainty of about {+-}8%, which makes them suitable for CFD code validation purposes. Finally the measurements of the skin friction in a separated region after a surface-mounted obstacle are also presented. (author). 19 refs., 12 figs., 3 tabs.

  20. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    Science.gov (United States)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  1. Friction of Human Skin against Different Fabrics for Medical Use

    Directory of Open Access Journals (Sweden)

    Luís Vilhena

    2016-03-01

    Full Text Available Knowledge of the tribology of human skin is essential to improve and optimize surfaces and materials in contact with the skin. Besides that, friction between the human skin and textiles is a critical factor in the formation of skin injuries, which are caused if the loads and shear forces are high enough and/or over long periods of time. This factor is of particular importance in bedridden patients, since they are not moving about or are confined to wheelchairs. Decubitus ulcers are one of the most frequently-reported iatrogenic injuries in developed countries. The risk of developing decubitus ulcers can be predicted by using the “Braden Scale for Predicting Pressure Ulcer Risk” that was developed in 1987 and contains six areas of risk (cognitive-perceptual, immobility, inactivity, moisture, nutrition, friction/shear, although there are limitations to the use of such tools. The coefficient of friction of textiles against skin is mainly influenced by: the nature of the textile, skin moisture content and ambient humidity. This study will investigate how skin friction (different anatomical regions varies, rubbing against different types of contacting materials (i.e., fabrics for medical use under different contact conditions and their relationship in the formation and prevention of decubitus ulcers.

  2. Empirical analysis of skin friction under variations of temperature

    International Nuclear Information System (INIS)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-01-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  3. In-Vivo Human Skin to Textiles Friction Measurements

    Science.gov (United States)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  4. Skin friction: a novel approach to measuring in vivo human skin

    NARCIS (Netherlands)

    Veijgen, N.K.

    2013-01-01

    The human skin plays an important role in people’s lives. It is in constant interaction with the environment, clothing and consumer products. This thesis discusses one of the parameters in the interaction between the human skin in vivo and other materials: skin friction. The thesis is divided into

  5. On the skin friction coefficient in viscoelastic wall-bounded flows

    International Nuclear Information System (INIS)

    Housiadas, Kostas D.; Beris, Antony N.

    2013-01-01

    Highlights: ► We decompose the skin friction coefficient to its individual contributions. ► The contributions are evaluated using simulation results in turbulent channel flow. ► We present a fitting curve for the drag reduction. ► A new formula for the skin friction coefficient is also developed. ► The results agree well with experimental data from the literature. -- Abstract: Analysis of the skin friction coefficient for wall bounded viscoelastic flows is performed by utilizing available direct numerical simulation (DNS) results for viscoelastic turbulent channel flow. The Oldroyd-B, FENE-P and Giesekus constitutive models are used. First, we analyze the friction coefficient in viscous, viscoelastic and inertial stress contributions, as these arise from suitable momentum balances, for the flow in channels and pipes. Following Fukagata et al. (Phys. Fluids, 14, p. L73, 2002) and Yu et al. (Int. J. Heat. Fluid Flow, 25, p. 961, 2004) these three contributions are evaluated averaging available numerical results, and presented for selected values of flow and rheological parameters. Second, based on DNS results, we develop a universal function for the relative drag reduction as a function of the friction Weissenberg number. This leads to a closed-form approximate expression for the inverse of the square root of the skin friction coefficient for viscoelastic turbulent pipe flow as a function of the friction Reynolds number involving two primary material parameters, and a secondary one which also depends on the flow. The primary parameters are the zero shear-rate elasticity number, El 0 , and the limiting value for the drag reduction at high Weissenberg number, LDR, while the secondary one is the relative wall viscosity, μ w . The predictions reproduce both types A and B of drag reduction, as first introduced by Virk (Nature, 253, p. 109, 1975), corresponding to partially and fully extended polymer molecules, respectively. Comparison of the results for the

  6. Skin friction on a flat perforated acoustic liner

    Science.gov (United States)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  7. A study on the frictional response of reptilian shed skin

    International Nuclear Information System (INIS)

    Abdel-Aal, H A; Vargiolu, R; Zahouani, H; Mansori, M El

    2011-01-01

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined tribological response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its tribological behaviour according to the evolution of sliding conditions. In seeking inspirations for such designs, many engineers are turning toward the biological world to study the construction and behaviour of bio-analogues, and to probe the role surface topography assumes in conditioning of frictional response. That is how a bio-analogue can self-adjust its tribological response to adapt to habitat constraints. From a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a snake (Python regius). The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakes. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the backward direction. Diagonal and side winding motion induces a different value of the friction coefficient. We discuss the origin of such a phenomenon in relation to surface texturing and study the energy constraints, implied by anisotropic friction, on the motion of the reptile.

  8. A study on the frictional response of reptilian shed skin

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Aal, H A [Arts et Metier ParisTech, Rue Saint Dominique BP 508, 51006 Chalons-en-Champagne (France); Vargiolu, R; Zahouani, H [Laboratoire de Tribology et Dynamique des Systemes, UMR CNRS 5513, ENI Saint Etienne - Ecole Centrale de Lyon -36 Avenue Guy de Collongue, 69131 Ecully cedex. France (France); Mansori, M El, E-mail: Hisham.abdel-aal@ensam.eu [Ecole Nationale Superieure d' Arts et Metiers, 2, cours des Arts et Metiers - 13617 Aix en Provence cedex 1 (France)

    2011-08-19

    Deterministic surfaces are constructs of which profile, topography and textures are integral to the function of the system they enclose. They are designed to yield a predetermined tribological response. Developing such entities relies on controlling the structure of the rubbing interface so that, not only the surface is of optimized topography, but also is able to self-adjust its tribological behaviour according to the evolution of sliding conditions. In seeking inspirations for such designs, many engineers are turning toward the biological world to study the construction and behaviour of bio-analogues, and to probe the role surface topography assumes in conditioning of frictional response. That is how a bio-analogue can self-adjust its tribological response to adapt to habitat constraints. From a tribological point of view, Squamate Reptiles, offer diverse examples where surface texturing, submicron and nano-scale features, achieves frictional regulation. In this paper, we study the frictional response of shed skin obtained from a snake (Python regius). The study employed a specially designed tribo-acoustic probe capable of measuring the coefficient of friction and detecting the acoustical behavior of the skin in vivo. The results confirm the anisotropy of the frictional response of snakes. The coefficient of friction depends on the direction of sliding: the value in forward motion is lower than that in the backward direction. Diagonal and side winding motion induces a different value of the friction coefficient. We discuss the origin of such a phenomenon in relation to surface texturing and study the energy constraints, implied by anisotropic friction, on the motion of the reptile.

  9. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    Science.gov (United States)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  10. Influence of epidermal hydration on the friction of human skin against textile

    NARCIS (Netherlands)

    Gerhardt, L.C.; Strässle, V.; Lenz, A.; Spencer, N.D.; Derler, S.

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles. The friction between

  11. Skin-friction measurements with hot-wire gages

    Science.gov (United States)

    Houdeville, R.; Juillen, J. C.; Cousteix, J.

    1983-11-01

    The development of two hot-wire gauges for implantation in wind-tunnel models and their application to the measurement of skin-friction phenomena are reported. The measurement principle is explained; the design and calibration of a single-wire gage containing a thermocouple for temperature determination (Cousteix and Juillen, 1982-1983) are summarized; and sample results for 2D and 3D flows with positive pressure gradients are shown. An advanced design employing a thin hot film deposited on an 80-micron-diameter quartz fiber extending into a 1-mm-sq 0.8-mm-deep cavity is characterized and demonstrated on a pulsed flow on a flat plate, Tollmien-Schlichting waves, and a turbulent boundary layer. Two cold-wire temperature sensors are added to this gage to permit detection of the skin of the skin friction in the separated flow over a cylinder.

  12. Microscopic contact area and friction between medical textiles and skin.

    Science.gov (United States)

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Theoretical skin-friction law in a turbulent boundary layer

    International Nuclear Information System (INIS)

    Cheskidov, A.

    2005-01-01

    We study transitional and turbulent boundary layers using a turbulent velocity profile equation recently derived from the Navier-Stokes-alpha and Leray-alpha models. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of c f max =0.0063 for turbulent velocity profiles. A two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free-stream turbulence intensity, while one-parameter family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers

  14. Characterization of skin friction coefficient, and relationship to stratum corneum hydration in a normal Chinese population.

    Science.gov (United States)

    Zhu, Y H; Song, S P; Luo, W; Elias, P M; Man, M Q

    2011-01-01

    Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. A total of 633 subjects (300 males and 333 females) aged 0.15-79 years were enrolled. A Frictiometer FR 770 and Corneometer CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. Copyright © 2010 S. Karger AG, Basel.

  15. Hot Films on Ceramic Substrates for Measuring Skin Friction

    Science.gov (United States)

    Noffz, Greg; Leiser, Daniel; Bartlett, Jim; Lavine, Adrienne

    2003-01-01

    Hot-film sensors, consisting of a metallic film on an electrically nonconductive substrate, have been used to measure skin friction as far back as 1931. A hot film is maintained at an elevated temperature relative to the local flow by passing an electrical current through it. The power required to maintain the specified temperature depends on the rate at which heat is transferred to the flow. The heat transfer rate correlates to the velocity gradient at the surface, and hence, with skin friction. The hot-film skin friction measurement method is most thoroughly developed for steady-state conditions, but additional issues arise under transient conditions. Fabricating hot-film substrates using low-thermal-conductivity ceramics can offer advantages over traditional quartz or polyester-film substrates. First, a low conductivity substrate increases the fraction of heat convected away by the fluid, thus increasing sensitivity to changes in flow conditions. Furthermore, the two-part, composite nature of the substrate allows the installation of thermocouple junctions just below the hot film, which can provide an estimate of the conduction heat loss.

  16. Dry friction of microstructured polymer surfaces inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-07-01

    Full Text Available The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae. Frictional properties of snake-inspired microstructured polymer surface (SIMPS made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i smooth ones, (ii rough ones, and (iii ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1 molecular interaction depending on real contact area and (2 the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  17. Dry friction of microstructured polymer surfaces inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  18. Friction of human skin against smooth and rough glass as a function of the contact pressure

    NARCIS (Netherlands)

    Derler, S.; Gerhardt, L.C.; Lenz, A.; Bertaux, E.; Hadad, M.

    2009-01-01

    The friction behaviour of human skin was studied by combining friction measurements using a tri-axial force plate with skin contact area measurements using a pressure sensitive film. Four subjects carried out friction measurement series, in which they rubbed the index finger pad and the edge of the

  19. Friction reduction using discrete surface textures: principle and design

    International Nuclear Information System (INIS)

    Hsu, Stephen M; Jing, Yang; Hua, Diann; Zhang, Huan

    2014-01-01

    There have been many reports on the use of dimples, grooves, and other surface textures to control friction in sliding interfaces. The effectiveness of surface textures in friction reduction has been demonstrated in conformal contacts under high speed low load applications such as mechanical seals and automotive water pump seals, etc., resulting in reduced friction and longer durability. For sliding components with higher contact pressures or lower speeds, conflicting results were reported. Reasons for the inconsistency may be due to the differences in texture fabrication techniques, lack of dimple size and shape uniformity, and different tester used. This paper examines the basic principles on which surface textural patterns influence friction under the three principle lubrication regimes: hydrodynamic, elastohydrodynamic, and boundary lubrication regimes. Our findings suggest that each regime requires specific dimple size, shape, depth, and areal density to achieve friction reduction. Control experiments were also conducted to explore mechanisms of friction reduction. The dimple geometric shape and the dimple's orientation with respect to the sliding direction influence friction significantly. The underlying mechanisms for friction control via textures are discussed. (paper)

  20. Influence of epidermal hydration on the friction of human skin against textiles

    OpenAIRE

    Gerhardt, L.-C; Strässle, V; Lenz, A; Spencer, N.D; Derler, S

    2008-01-01

    Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles.

  1. Direct measurement of skin friction with a new instrument

    Science.gov (United States)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    The design and performance of a small belt-type skin-friction gage to measure wall shear-stress coefficients in wind-tunnel testing are described, summarizing the report of Vakili and Wu (1982). The sensor employs a flexible belt of variable surface characteristics; this belt, wrapped tightly around two cylinders mounted on frictionless flexures, is equipped with strain gages to estimate the deflection of the belt by the flow. An alternative approach uses IR illumination, optical fibers, and a photosensitive transistor, permitting direct measurement of the belt deflection. Drawings, diagrams, and graphs of sample data are provided.

  2. Friction and durability of virgin and damaged skin with and without skin cream treatment using atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2012-11-01

    Full Text Available Skin can be damaged by the environment easily. Skin cream is an effective and rapid way to moisten the skin by changing the skin surface properties. Rat skin and pig skin are common animal models for studies and were used as skin samples in this study. The nano- and macroscale friction and durability of damaged skin were measured and compared with those of virgin (intact/undamaged skin. The effect of skin cream on friction and durability of damaged and virgin skin samples is discussed. The effects of velocity, normal load, relative humidity and number of cycles were studied. The nanoscale studies were performed by using atomic force microscope (AFM, and macroscale studies were performed by using a pin-on-disk (POD reciprocating tribometer. It was found that damaged skin has different mechanical properties, surface roughness, contact angle, friction and durability compared to that of virgin skin. But similar changes occur after skin cream treatment. Rat and pig skin show similar trends in friction and durability.

  3. A multivariable model for predicting the frictional behaviour and hydration of the human skin.

    Science.gov (United States)

    Veijgen, N K; van der Heide, E; Masen, M A

    2013-08-01

    The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is developed that describes the friction behaviour of human skin as a function of the subject characteristics, contact conditions, the properties of the counter material as well as environmental conditions. Although the frictional behaviour of human skin is a multivariable problem, in literature the variables that are associated with skin friction have been studied using univariable methods. In this work, multivariable models for the static and dynamic coefficients of friction as well as for the hydration of the skin are presented. A total of 634 skin-friction measurements were performed using a recently developed tribometer. Using a statistical analysis, previously defined potential influential variables were linked to the static and dynamic coefficient of friction and to the hydration of the skin, resulting in three predictive quantitative models that descibe the friction behaviour and the hydration of human skin respectively. Increased dynamic coefficients of friction were obtained from older subjects, on the index finger, with materials with a higher surface energy at higher room temperatures, whereas lower dynamic coefficients of friction were obtained at lower skin temperatures, on the temple with rougher contact materials. The static coefficient of friction increased with higher skin hydration, increasing age, on the index finger, with materials with a higher surface energy and at higher ambient temperatures. The hydration of the skin was associated with the skin temperature, anatomical location, presence of hair on the skin and the relative air humidity. Predictive models have been derived for the static and dynamic coefficient of friction using a multivariable approach. These

  4. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    Science.gov (United States)

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A novel approach to measuring the frictional behaviour of human skin in vivo

    NARCIS (Netherlands)

    Veijgen, N.K.; Masen, Marc Arthur; van der Heide, Emile

    2012-01-01

    Friction involving human skin plays a key role in human life. The availability of a portable tribometer improves the accessibility to large number of both subjects and anatomical sites. This is the first mobile device suitable to measure skin friction with a controlled and variable normal load

  6. Analysis of effect of different construction methods of piles on the end effect on skin friction of piles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongbo; CHEN Zhuchang

    2007-01-01

    Based on the comparative analysis of end effect on skin friction of displacement-pile (driven pile),the end effect on skin friction of bored pile is studied.The end effect on skin friction between driven pile and bored pile is different and the end effect on skin friction of bored pile is reduce of skin friction in the soil layer adjacent to the pile end.The degradation degree of skin friction is deduced with the increase of the distance from pile end.The concept of additional mud cake formed by the effect of cushion at the bottom of borehole during pouring concrete is introduced to explain the mechanism of end effect on skin friction of the bored pile.The test results of post-grouting piles indicate that the post-grouting technique is an effective way to improve the end effect on skin friction of bored pile.

  7. Friction-induced skin injuries-are they pressure ulcers? An updated NPUAP white paper.

    Science.gov (United States)

    Brienza, David; Antokal, Steven; Herbe, Laura; Logan, Susan; Maguire, Jeanine; Van Ranst, Jennifer; Siddiqui, Aamir

    2015-01-01

    Friction injuries are often misdiagnosed as pressure ulcers. The reason for the misdiagnosis may be a misinterpretation of classic pressure ulcer literature that reported friction increased the susceptibility of the skin to pressure damage. This analysis assesses the classic literature that led to the inclusion of friction as a causative factor in the development of pressure ulcers in light of more recent research on the effects of shear. The analysis in this article suggests that friction can contribute to pressure ulcers by creating shear strain in deeper tissues, but friction does not appear to contribute to pressure ulcers in the superficial layers of the skin. Injuries to the superficial layers of the skin caused by friction are not pressure ulcers and should not be classified or treated as such.

  8. Measurements of skin friction in water using surface stress sensitive films

    International Nuclear Information System (INIS)

    Crafton, J W; Fonov, S D; Jones, E G; Goss, L P; Forlines, R A; Fontaine, A

    2008-01-01

    The measurement of skin friction on hydrodynamic surfaces is of significant value for the design of advanced naval technology, particularly at high Reynolds numbers. Here we report on the development of a new sensor for measurement of skin friction and pressure that operates in both air and water. This sensor is based on an elastic polymer film that deforms under the action of applied normal and tangential loads. Skin friction and pressure gradients are determined by monitoring these deformations and then solving an inverse problem using a finite element model of the elastic film. This technique is known as surface stress sensitive films. In this paper, we describe the development of a sensor package specifically designed for two-dimensional skin friction measurements at a single point. The package has been developed with the goal of making two-dimensional measurements of skin friction in water. Quantitative measurements of skin friction are performed on a high Reynolds number turbulent boundary layer in the 12 inch water tunnel at Penn State University. These skin friction measurements are verified by comparing them to measurements obtained with a drag plate as well as by performing two-dimensional velocity measurements above the sensor using a laser Doppler velocimetry system. The results indicate that the sensor skin friction measurements are accurate to better than 5% and repeatable to better than 2%. The directional sensitivity of the sensor is demonstrated by positioning the sensor at several orientations to the flow. A final interesting feature of this sensor is that it is sensitive to pressure gradients, not to static pressure changes. This feature should prove useful for monitoring the skin friction on a seafaring vessel as the operating depth is changed

  9. Friction Reduction in Powertrain Materials: Role of Tribolayers

    Science.gov (United States)

    Banerji, Anindya

    This study aims at understanding the micromechanisms responsible for reduction in friction and wear in the engine cylinder bore/liner materials when tested under lubricated and unlubricated conditions. The tribolayers formed in-situ during sliding contact are unique to each tribosystem and a detailed study of these tribolayers will shed light on the friction reduction mechanisms in powertrain materials. Boundary lubricated tribological performance of grey cast iron (CI) tested against non-hydrogenated diamond-like carbon coating (NH-DLC) resulted in 21% lower coefficient of friction (COF) and an order of magnitude lower volumetric wear compared to CI and steel counterfaces. Dilution of the engine oil by ethanol containing E85 biofuel, consisting of 85% ethanol and 15% gasoline, was beneficial as COF and volumetric wear losses were further reduced. TEM/EELS studies of the NH-DLC counterface provided evidence for OH adsorption of the dangling carbon bonds at the coating surface leading to low friction. Advantage of E85/engine oil blend was also evident during boundary lubricated sliding of eutectic Al-12.6% Si alloy against AISI 52100 steel. The oil residue layer (ORL) formed during boundary lubricated sliding incorporated nanocrystalline regions of Al, Si, ZnS, AlPO4 and ZnO surrounded by amorphous carbon regions. Higher proportions of Zn, S, and P antiwear compounds formed in the ORL when tested using the E85/oil (1:1) blend compared to the unmixed engine oil as the hydroxyl groups in ethanol molecules facilitated ZDDP degradation. Mico-Raman spectroscopy indicated two types of tribolayers formed during unlubricated sliding of thermally sprayed low carbon steel 1010 coating deposited on linerless Al 380 cylinder bore: i) Fe2O3 layer transformed from FeO during dry sliding and ii) Fe2O3 layer with a top amorphous carbon transfer layer when run against H-DLC coated TCR with COF of 0.18. The NH- and H-DLC coatings, that provide low friction under room temperature

  10. Skin friction enhancement in a model problem of undulatory swimming

    Science.gov (United States)

    Ehrenstein, Uwe; Eloy, Christophe

    2013-10-01

    To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.

  11. Model of skin friction enhancement in undulatory swimming

    Science.gov (United States)

    Ehrenstein, Uwe; Eloy, Christophe

    2012-11-01

    To estimate the energetic cost of undulatory swimming, it is crucial to evaluate the drag forces originating from skin friction. This topic has been controversial for decades, some claiming that animals use ingenious mechanisms to reduce the drag and others hypothesizing that the undulatory motion induces a drag increase because of the compression of the boundary layers. In this paper, we examine this latter hypothesis, known as the ``Bone-Lighthill boundary-layer thinning hypothesis''. Considering a plate of section s moving perpendicular to itself at velocity U⊥ and applying the boundary-layer approximation for the incoming flow, the drag force per unit surface is shown to scale as √{U⊥ / s }. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 to 100%, depending on the geometry and the motion. M.J. Lighthill, Proc. R. Soc. Lond. B 179, 125 (1971).

  12. Velocity Profiles and Skin Friction on a Ribletted Flat Plate in Adverse Pressure Gradient

    National Research Council Canada - National Science Library

    Branam, Richard

    1997-01-01

    .... The skin friction drag coefficients were calculated using a numerical integration technique to determine an average value and scaled to the platform area of the plate to compare results with smooth plate values...

  13. Measurement of Turbulent Skin Friction Drag Coefficients Produced by Distributed Surface Roughness of Pristine Marine Coatings

    DEFF Research Database (Denmark)

    Zafiryadis, Frederik; Meyer, Knud Erik; Gökhan Ergin, F.

    drag coefficients as well as roughness Reynolds numbers for the various marine coatings across the range of Rex by fitting of the van Driest profile. The results demonstrate sound agreement with the present ITTC method for determining skin friction coefficients for practically smooth surfaces at low...... Reynolds numbers compared to normal operation mode for the antifouling coatings. Thus, better estimates for skin friction of rough hulls can be realised using the proposed method to optimise preliminary vessel design....

  14. Resolvent-based feedback control for turbulent friction drag reduction

    Science.gov (United States)

    Kawagoe, Aika; Nakashima, Satoshi; Luhar, Mitul; Fukagata, Koji

    2017-11-01

    Suboptimal control for turbulent friction drag reduction has been studied extensively. Nakashima et al. (accepted) extended resolvent analysis to suboptimal control, and for the control where the streamwise wall shear stress is used as an input (Case ST), they revealed the control effect across spectral space is mixed: there are regions of drag increase as well as reduction. This suggests that control performance may be improved if the control is applied for selective wavelengths, or if a new law is designed to suppress the spectral region leading to drag increase. In the present study, we first assess the effect of suboptimal control for selective wavelengths via DNS. The friction Reynolds number is set at 180. For Case ST, resolvent analysis predicts drag reduction at long streamwise wavelengths. DNS with control applied only for this spectral region, however, did not result in drag reduction. Then, we seek an effective control law using resolvent analysis and propose a new law. DNS results for this law are consistent with predictions from resolvent analysis, and about 10% drag reduction is attained. Further, we discuss how this law reduces the drag from a dynamical and theoretical point of view. This work was supported through Grant-in-Aid for Scientic Research (C) (No. 25420129) by Japan Society for the Promotion of Science (JSPS).

  15. Dry friction of microstructured polymer surfaces inspired by snake skin

    OpenAIRE

    Martina J. Baum; Lars Heepe; Elena Fadeeva; Stanislav N. Gorb

    2014-01-01

    Summary The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients ...

  16. Protecting the radiation-damaged skin from friction: a mini review

    International Nuclear Information System (INIS)

    Herst, Patries M

    2014-01-01

    Radiation-induced skin reactions are an unavoidable side effect of external beam radiation therapy, particularly in areas prone to friction and excess moisture such as the axilla, head and neck region, perineum and skin folds. Clinical studies investigating interventions for preventing or managing these reactions have largely focussed on formulations with moisturising, anti-inflammatory, anti-microbial and wound healing properties. However, none of these interventions has emerged as a consistent candidate for best practice. Much less emphasis has been placed on evaluating ways to protect the radiation-damaged skin from friction and excess moisture. This mini review analyses the clinical evidence for barrier products that form a protective layer by adhering very closely to the skin folds and do not cause further trauma to the radiation-damaged skin upon removal. A database search identified only two types of barrier products that fitted these criteria and these were tested in two case series and six controlled clinical trials. Friction protection was most effective when the interventions were used from the start of treatment and continued for several weeks after completion of treatment. Soft silicone dressings (Mepilex Lite and Mepitel Film) and Cavilon No Sting Barrier Film, but not Cavilon Moisturizing Barrier Cream, decreased skin reaction severity, most likely due to differences in formulation and skin build-up properties. It seems that prophylactic use of friction protection of areas at risk could be a worthwhile addition to routine care of radiation-damaged skin

  17. A multivariable model for predicting the frictional behaviour and hydration of the human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; van der Heide, Emile; Masen, Marc Arthur

    2013-01-01

    Background The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is

  18. A multivariable model for predicting the frictional behaviour and hydration of the human skin

    NARCIS (Netherlands)

    Veijgen, N.K.; Heide, E. van der; Masen, M.A.

    2013-01-01

    Background: The frictional characteristics of skin-object interactions are important when handling objects, in the assessment of perception and comfort of products and materials and in the origins and prevention of skin injuries. In this study, based on statistical methods, a quantitative model is

  19. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    Science.gov (United States)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  20. Method of dimensionality reduction in contact mechanics and friction

    CERN Document Server

    Popov, Valentin L

    2015-01-01

    This book describes for the first time a simulation method for the fast calculation of contact properties and friction between rough surfaces in a complete form. In contrast to existing simulation methods, the method of dimensionality reduction (MDR) is based on the exact mapping of various types of three-dimensional contact problems onto contacts of one-dimensional foundations. Within the confines of MDR, not only are three dimensional systems reduced to one-dimensional, but also the resulting degrees of freedom are independent from another. Therefore, MDR results in an enormous reduction of the development time for the numerical implementation of contact problems as well as the direct computation time and can ultimately assume a similar role in tribology as FEM has in structure mechanics or CFD methods, in hydrodynamics. Furthermore, it substantially simplifies analytical calculation and presents a sort of “pocket book edition” of the entirety contact mechanics. Measurements of the rheology of bodies in...

  1. A study of friction mechanisms between a surrogate skin (Lorica soft) and nonwoven fabrics.

    Science.gov (United States)

    Cottenden, David J; Cottenden, Alan M

    2013-12-01

    Hygiene products such as incontinence pads bring nonwoven fabrics into contact with users' skin, which can cause damage in various ways, including the nonwoven abrading the skin by friction. The aim of the work described here was to develop and use methods for understanding the origin of friction between nonwoven fabrics and skin by relating measured normal and friction forces to the nature and area of the contact (fibre footprint) between them. The method development work reported here used a skin surrogate (Lorica Soft) in place of skin for reproducibility. The work was primarily experimental in nature, and involved two separate approaches. In the first, a microscope with a shallow depth of field was used to determine the length of nonwoven fibre in contact with a facing surface as a function of pressure, from which the contact area could be inferred; and, in the second, friction between chosen nonwoven fabrics and Lorica Soft was measured at a variety of anatomically relevant pressures (0.25-32.1kPa) and speeds (0.05-5mms(-1)). Both techniques were extensively validated, and showed reproducibility of about 5% in length and force, respectively. Straightforward inspection of the data for Lorica Soft against the nonwovens showed that Amontons' law (with respect to load) was obeyed to high precision (R(2)>0.999 in all cases), though there was the suggestion of sub-linearity at low loads. More detailed consideration of the friction traces suggested that two different friction mechanisms are important, and comparison with the contact data suggests tentatively that they may correspond to adhesion between two different populations of contacts, one "rough" and one "smooth". This additional insight is a good illustration of how these techniques may prove valuable in studying other, similar interfaces. In particular, they could be used to investigate interfaces between nonwovens and skin, which was the primary motivation for developing them. Copyright © 2013 Elsevier Ltd

  2. The development of the friction coefficient inspection equipment for skin using a load cell.

    Science.gov (United States)

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  3. Neutral glycans from sandfish skin can reduce friction of polymers

    Science.gov (United States)

    Vihar, Boštjan; Hanisch, Franz Georg; Baumgartner, Werner

    2016-01-01

    The lizard Scincus scincus, also known as sandfish, can move through aeolian desert sand in a swimming-like manner. A prerequisite for this ability is a special integument, i.e. scales with a very low friction for sand and a high abrasion resistance. Glycans in the scales are causally related to the low friction. Here, we analysed the glycans and found that neutral glycans with five to nine mannose residues are important. If these glycans were covalently bound to acrylic polymers like poly(methyl methacrylate) or acrylic car coatings at a density of approximately one molecule per 4 nm², friction for and adhesion of sand particles could be reduced to levels close to those observed with sandfish scales. This was also found true, if the glycans were isolated from sources other than sandfish scales like plants such as almonds or mistletoe. We speculate that these neutral glycans act as low density spacers separating sand particles from the dense scales thereby reducing van der Waals forces. PMID:27030038

  4. Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques

    Science.gov (United States)

    Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.

  5. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    International Nuclear Information System (INIS)

    Bottini, H; Kurita, M; Iijima, H; Fukagata, K

    2015-01-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity–temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques. (paper)

  6. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  7. Rash with DERMABOND PRINEO Skin Closure System Use in Bilateral Reduction Mammoplasty: A Case Series.

    Science.gov (United States)

    Knackstedt, R W; Dixon, J A; O'Neill, P J; Herrera, F A

    2015-01-01

    Background. Bilateral reduction mammoplasty is a common plastic surgery procedure that can be complicated by unfavorable scar formation along incision sites. Surgical adhesives can be utilized as an alternative or as an adjunct to conventional suture closures to help achieve good wound tension and provide an adequate barrier with excellent cosmesis. The recently introduced DERMABOND PRINEO Skin Closure System Skin Closure System combines the skin adhesive 2-octyl cyanoacrylate with a self-adhering polyester-based mesh. Proposed benefits of wound closure with DERMABOND PRINEO Skin Closure System, used with or without sutures, include its watertight seal, easy removal, microbial barrier, even distribution of tension, and reduction in wound closure time. Although allergic reactions to 2-octyl cyanoacrylate have been reported, few allergic reactions to DERMABOND PRINEO Skin Closure System have been noted in the literature. This case series describes three patients who experienced an allergic reaction to DERMABOND PRINEO Skin Closure System after undergoing elective bilateral reduction mammoplasties at our institution to further explore this topic. Methods. Retrospective chart review of bilateral reduction mammoplasty patients who received DERMABOND PRINEO Skin Closure System dressing at our institution was performed. Results. Three patients were identified as having a rash in reaction to DERMABOND PRINEO Skin Closure System after bilateral reduction mammoplasty. All three patients required systemic steroid treatment to resolve the rash. One patient was identified as having a prior adhesive reaction. Conclusions. DERMABOND PRINEO Skin Closure System has demonstrated its efficacy in optimizing scar healing and appearance. However, as we demonstrate these three allergic reactions to DERMABOND PRINEO Skin Closure System, caution must be utilized in its usage, namely, in patients with a prior adhesive allergy and in sites where moisture or friction may be apparent.

  8. Rash with DERMABOND PRINEO Skin Closure System Use in Bilateral Reduction Mammoplasty: A Case Series

    Directory of Open Access Journals (Sweden)

    R. W. Knackstedt

    2015-01-01

    Full Text Available Background. Bilateral reduction mammoplasty is a common plastic surgery procedure that can be complicated by unfavorable scar formation along incision sites. Surgical adhesives can be utilized as an alternative or as an adjunct to conventional suture closures to help achieve good wound tension and provide an adequate barrier with excellent cosmesis. The recently introduced DERMABOND PRINEO Skin Closure System Skin Closure System combines the skin adhesive 2-octyl cyanoacrylate with a self-adhering polyester-based mesh. Proposed benefits of wound closure with DERMABOND PRINEO Skin Closure System, used with or without sutures, include its watertight seal, easy removal, microbial barrier, even distribution of tension, and reduction in wound closure time. Although allergic reactions to 2-octyl cyanoacrylate have been reported, few allergic reactions to DERMABOND PRINEO Skin Closure System have been noted in the literature. This case series describes three patients who experienced an allergic reaction to DERMABOND PRINEO Skin Closure System after undergoing elective bilateral reduction mammoplasties at our institution to further explore this topic. Methods. Retrospective chart review of bilateral reduction mammoplasty patients who received DERMABOND PRINEO Skin Closure System dressing at our institution was performed. Results. Three patients were identified as having a rash in reaction to DERMABOND PRINEO Skin Closure System after bilateral reduction mammoplasty. All three patients required systemic steroid treatment to resolve the rash. One patient was identified as having a prior adhesive reaction. Conclusions. DERMABOND PRINEO Skin Closure System has demonstrated its efficacy in optimizing scar healing and appearance. However, as we demonstrate these three allergic reactions to DERMABOND PRINEO Skin Closure System, caution must be utilized in its usage, namely, in patients with a prior adhesive allergy and in sites where moisture or friction may

  9. The Effect of Thickness and Chemical Reduction of Graphene Oxide on Nanoscale Friction.

    Science.gov (United States)

    Kwon, Sangku; Lee, Kyung Eun; Lee, Hyunsoo; Koh, Sang Joon; Ko, Jae-Hyeon; Kim, Yong-Hyun; Kim, Sang Ouk; Park, Jeong Young

    2018-01-18

    The tribological properties of two-dimensional (2D) atomic layers are quite different from three-dimensional continuum materials because of the unique mechanical responses of 2D layers. It is known that friction on graphene shows a remarkable decreasing behavior as the number of layers increases, which is caused by the puckering effect. On other graphene derivatives, such as graphene oxide (GO) or reduced graphene oxide (rGO), the thickness dependence of friction is important because of the possibilities for technical applications. In this report, we demonstrate unexpected layer-dependent friction behavior on GO and rGO layers. Friction force microscopy measurements show that nanoscale friction on GO does not depend on the number of layers; however, after reduction, friction on rGO shows an inverse thickness dependence compared with pristine graphene. We show that the friction on rGO is higher than that on SiO 2 at low load, and that an interesting crossover behavior at higher load occurs because of the lower friction coefficient and higher adhesion of the rGO. We provide a relevant interpretation that explains the effect of thickness and chemical reduction on nanoscale friction.

  10. Direct Numerical Simulation of Turbulent Couette-Poiseuille Flow With Zero Skin Friction

    Science.gov (United States)

    Coleman, Gary N.; Spalart, Philippe R.

    2015-01-01

    The near-wall scaling of mean velocity U(yw) is addressed for the case of zero skin friction on one wall of a fully turbulent channel flow. The present DNS results can be added to the evidence in support of the conjecture that U is proportional to the square root of yw in the region just above the wall at which the mean shear dU=dy = 0.

  11. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.

    2017-03-28

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows for which all terms of the von Kármán integral relation, including the ratio of outer velocity to friction velocity U+∞≡U∞/uτ , are streamwise constant. For Rex assumed large, use is made of a simple log-wake model of the local turbulent mean-velocity profile that contains a standard mean-velocity correction for the asymptotic fully rough regime and with assumed constant parameter values. It is then shown that, for a general power-law external velocity variation U∞∼xm , all measures of the boundary-layer thickness must be proportional to x and that the surface sand-grain roughness scale variation must be the linear form ks(x)=αx , where x is the distance from the boundary layer of zero thickness and α is a dimensionless constant. This is shown to give a two-parameter (m,α) family of solutions, for which U+∞ (or equivalently Cf ) and boundary-layer thicknesses can be simply calculated. These correspond to perfectly self-similar boundary-layer growth in the streamwise direction with similarity variable z/(αx) , where z is the wall-normal coordinate. Results from this model over a range of α are discussed for several cases, including the zero-pressure-gradient ( m=0 ) and sink-flow ( m=−1 ) boundary layers. Trends observed in the model are supported by wall-modelled large-eddy simulation of the zero-pressure-gradient case for Rex in the range 108−1010 and for four values of α . Linear streamwise growth of the displacement, momentum and nominal boundary-layer thicknesses is confirmed, while, for each α , the mean-velocity profiles and streamwise turbulent variances are found to collapse reasonably well onto z/(αx) . For given α , calculations of U+∞ obtained from large-eddy simulations are streamwise

  12. Linear least-squares method for global luminescent oil film skin friction field analysis

    Science.gov (United States)

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  13. Friction

    Science.gov (United States)

    Matsuo, Yoshihiro; Clarke, Daryl D.; Ozeki, Shinichi

    Friction materials such as disk pads, brake linings, and clutch facings are widely used for automotive applications. Friction materials function during braking due to frictional resistance that transforms kinetic energy into thermal energy. There has been a rudimentary evolution, from materials like leather or wood to asbestos fabric or asbestos fabric saturated with various resins such as asphalt or resin combined with pitch. These efforts were further developed by the use of woven asbestos material saturated by either rubber solution or liquid resin binder and functioned as an internal expanding brake, similar to brake lining system. The role of asbestos continued through the use of chopped asbestos saturated by rubber, but none was entirely successful due to the poor rubber heat resistance required for increased speeds and heavy gearing demands of the automobile industry. The use of phenolic resins as binder for asbestos friction materials provided the necessary thermal resistance and performance characteristics. Thus, the utility of asbestos as the main friction component, for over 100 years, has been significantly reduced in friction materials due to asbestos identity as a carcinogen. Steel and other fibrous components have displaced asbestos in disk pads. Currently, non-asbestos organics are the predominate friction material. Phenolic resins continue to be the preferred binder, and increased amounts are necessary to meet the requirements of highly functional asbestos-free disk pads for the automotive industry. With annual automobile production exceeding 70 million vehicles and additional automobile production occurring in developing countries worldwide and increasing yearly, the amount of phenolic resin for friction material is also increasing (Fig. 14.1). Fig. 14.1 Worldwide commercial vehicle production In recent years, increased fuel efficiency of passenger car is required due to the CO2 emission issue. One of the solutions to improve fuel efficiency is to

  14. Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface

    Science.gov (United States)

    Zhang, Bin; Xue, Yong; Qiang, Li; Gao, Kaixong; Liu, Qiao; Yang, Baoping; Liang, Aiming; Zhang, Junyan

    2017-11-01

    Friction properties of carbon nanotubes have been widely studied and reported, however, the friction properties of carbon nanotubes related on state of itself. It is showing superlubricity under nanoscale, but indicates high shear adhesion as aligned carbon nanotube film. However, friction properties under high load (which is commonly in industry) of carbon nanotube films are seldom reported. In this paper, carbon nanotube films, via mechanical rubbing method, were obtained and its tribology properties were investigated at high load of 5 to 15 N. Though different couple pairs were employed, the friction coefficients of carbon nanotube films are nearly the same. Compared with bare stainless steel, friction coefficients and wear rates under carbon nanotube films lubrication reduced to, at least, 1/5 and 1/(4.3-14.5), respectively. Friction test as well as structure study were carried out to reveal the mechanism of the significant reduction wear and friction on steel surface. One can conclude that sliding and densifying of carbon nanotubes at sliding interface contribute to the sufficient decrease of friction coefficients and wear rates.

  15. Turbulent skin-friction drag on a slender body of revolution and Gray's Paradox

    International Nuclear Information System (INIS)

    Nesteruk, Igor; Cartwright, Julyan H E

    2011-01-01

    The boundary layer on a slender body of revolution differs considerably from that on a flat plate, but these two cases can be connected by the Mangler-Stepanov transformations. The presented analysis shows that turbulent frictional drag on a slender rotationally symmetric body is much smaller than the flat-plate concept gives and the flow can remain laminar at larger Reynolds numbers. Both facts are valid for an unseparated flow pattern and enable us to revise the turbulent drag estimation of a dolphin, presented by Gray 74 years ago, and to resolve his paradox, since experimental data testify that dolphins can achieve flow without separation. The small values of turbulent skin-friction drag on slender bodies of revolution have additional interest for further experimental investigations and for applications of shapes without boundary-layer separation to diminish the total drag and noise of air- and hydrodynamic hulls.

  16. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    Science.gov (United States)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  17. Reduction of the Adhesive Friction of Elastomers through Laser Texturing of Injection Molds

    Directory of Open Access Journals (Sweden)

    Joel Voyer

    2017-11-01

    Full Text Available It is well known that elastomers usually possess poor dry sliding friction properties due to their highly adhesive character. In order to overcome this problematic behavior in industrial applications, interfacial materials such as oils, greases, coatings, or lacks are normally used in order to separate or to functionalize the contact surfaces of elastomers. Alternatively, the high adhesion tendency of elastomers may be explicitly reduced by modifying the elastomer composition itself or by enabling a reduction of its effective contact area through, for example, surface laser texturing. This second approach, i.e., the reduction of the adhesive character of elastomers through laser structuring, will be the main topic of the present study. For this purpose, different micro-sized grooved structures were produced on flat injection molds using an ultra-short pulsed laser. The micro-structured molds were then used to produce injection molded micro-ridged Liquid Silicone Rubber (LSR sample pads. The investigations consisted firstly of determining the degree of replication of the mold micro-structures onto the surface of the LSR pads and secondly, to ascertain the degree of reduction of the friction force (or coefficient of friction of these micro-ridged LSR pads in comparison to the benchmark (unstructured LSR pads when tested under dry conditions against Aluminum alloy (Al-6082 or PA6.6-GF30 plates. For this second part of the investigation, the normal force (or contact pressure dependency of the coefficient of friction was determined through stepwise load increasing friction tests. The results of these investigations have shown that the production of micro-ridged surfaces on LSR pads through laser structuring of the injection molds could be successfully achieved and that it enables a significant reduction of the friction force for low normal forces (or contact pressures, where the component of adhesion friction is playing an important and determining

  18. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    Science.gov (United States)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  19. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

    Directory of Open Access Journals (Sweden)

    Jang Jinho

    2014-06-01

    Full Text Available In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

  20. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    Science.gov (United States)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  1. Empirical analysis of skin friction under variations of temperature; Variacion de la resistencia al corte con temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-07-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  2. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    Science.gov (United States)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  3. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    Science.gov (United States)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  4. Effect of coating material on heat transfer and skin friction due to impinging jet onto a laser producedhole

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.

    2013-07-01

    Jet impingement onto a two-layer structured hole in relation to laser drilling is investigated. The hole consists of a coating layer and a base material. The variations in the Nusselt number and the skin friction are predicted for various coating materials. The Reynolds stress turbulent model is incorporated to account for the turbulence effect of the jet flow and nitrogen is used as the working fluid. The study is extended to include two jet velocities emanating from the conical nozzle. It is found that coating material has significant effect on the Nusselt number variation along the hole wall. In addition, the skin friction varies considerably along the coating thickness in thehole.

  5. Impact of Friction Reduction Technologies on Fuel Economy for Ground Vehicles

    Science.gov (United States)

    2009-08-13

    UNCLAS: Dist A. Approved for public release IMPACT OF FRICTION REDUCTION TECHNOLOGIES ON FUEL ECONOMY FOR GROUND VEHICLES G. R. Fenske , R. A. Erck...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) G.R. Fenske ; R.A. Erck; O.O. Ajayi; A. Masoner’ A.S. Confort 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  6. Influence of the relative humidity and the temperature on the in-vivo friction behaviour of human skin

    NARCIS (Netherlands)

    Klaassen, M.; Schipper, D. J.; Masen, M.A.

    2016-01-01

    Both temperature and relative humidity are known to influence the frictional behaviour of human skin. However, literature does not completely cover to what extent both parameters play a role. Measurements were conducted using an in-house built reciprocating tribometer inside an enclosure in which

  7. Mathematical Model and Analysis of Negative Skin Friction of Pile Group in Consolidating Soil

    Directory of Open Access Journals (Sweden)

    Gangqiang Kong

    2013-01-01

    Full Text Available In order to calculate negative skin friction (NSF of pile group embedded in a consolidating soil, the dragload calculating formulas of single pile were established by considering Davis one-dimensional nonlinear consolidation soils settlement and hyperbolic load-transfer of pile-soil interface. Based on effective influence area theory, a simple semiempirical mathematical model of analysis for predicting the group effect of pile group under dragload was described. The accuracy and reliability of mathematical models built in this paper were verified by practical engineering comparative analysis. Case studies were studied, and the prediction values were found to be in good agreement with those of measured values. Then, the influences factors, such as, soil consolidation degree, the initial volume compressibility coefficient, and the stiffness of bearing soil, were analyzed and discussed. The results show that the mathematical models considering nonlinear soil consolidation and group effect can reflect the practical NSF of pile group effectively and accurately. The results of this paper can provide reference for practical pile group embedded in consolidating soil under NSF design and calculation.

  8. Friction Reduction Tested for a Downsized Diesel Engine with Low-Viscosity Lubricants Including a Novel Polyalkylene Glycol

    Directory of Open Access Journals (Sweden)

    David E. Sander

    2017-04-01

    Full Text Available With the increasing pressure to reduce emissions, friction reduction is always an up-to-date topic in the automotive industry. Among the various possibilities to reduce mechanical friction, the usage of a low-viscosity lubricant in the engine is one of the most effective and most economic options. Therefore, lubricants of continuously lower viscosity are being developed and offered on the market that promise to reduce engine friction while avoiding deleterious mixed lubrication and wear. In this work, a 1.6 L downsized Diesel engine is used on a highly accurate engine friction test-rig to determine the potential for friction reduction using low viscosity lubricants under realistic operating conditions including high engine loads. In particular, two hydrocarbon-based lubricants, 0W30 and 0W20, are investigated as well as a novel experimental lubricant, which is based on a polyalkylene glycol base stock. Total engine friction is measured for all three lubricants, which show a general 5% advantage for the 0W20 in comparison to the 0W30 lubricant. The polyalkylene glycol-based lubricant, however, shows strongly reduced friction losses, which are about 25% smaller than for the 0W20 lubricant. As the 0W20 and the polyalkylene glycol-based lubricant have the same HTHS-viscosity , the findings contradict the common understanding that the HTHS-viscosity is the dominant driver related to the friction losses.

  9. Self-dispersed crumpled graphene balls in oil for friction and wear reduction.

    Science.gov (United States)

    Dou, Xuan; Koltonow, Andrew R; He, Xingliang; Jang, Hee Dong; Wang, Qian; Chung, Yip-Wah; Huang, Jiaxing

    2016-02-09

    Ultrafine particles are often used as lubricant additives because they are capable of entering tribological contacts to reduce friction and protect surfaces from wear. They tend to be more stable than molecular additives under high thermal and mechanical stresses during rubbing. It is highly desirable for these particles to remain well dispersed in oil without relying on molecular ligands. Borrowing from the analogy that pieces of paper that are crumpled do not readily stick to each other (unlike flat sheets), we expect that ultrafine particles resembling miniaturized crumpled paper balls should self-disperse in oil and could act like nanoscale ball bearings to reduce friction and wear. Here we report the use of crumpled graphene balls as a high-performance additive that can significantly improve the lubrication properties of polyalphaolefin base oil. The tribological performance of crumpled graphene balls is only weakly dependent on their concentration in oil and readily exceeds that of other carbon additives such as graphite, reduced graphene oxide, and carbon black. Notably, polyalphaolefin base oil with only 0.01-0.1 wt % of crumpled graphene balls outperforms a fully formulated commercial lubricant in terms of friction and wear reduction.

  10. Friction behavior of a microstructured polymer surface inspired by snake skin.

    Science.gov (United States)

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  11. Friction behavior of a microstructured polymer surface inspired by snake skin

    Directory of Open Access Journals (Sweden)

    Martina J. Baum

    2014-01-01

    Full Text Available The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  12. Risk reduction for nonmelanoma skin cancer with childhood sunscreen use

    International Nuclear Information System (INIS)

    Stern, R.S.; Weinstein, M.C.; Baker, S.G.

    1986-01-01

    Exposure to ultraviolet radiation is the principle cause of basal and squamous cell carcinomas of the skin, which are the most frequent tumors occurring in white residents of the United States. Using a mathematical model based on epidemiologic data, we quantified the potential benefits of using a sunscreen with a sun protective factor of 15 and estimate that regular use of such a sunscreen during the first 18 years of life would reduce the lifetime incidence of these tumors by 78%. Additional benefits of sunscreen use during childhood include reduced risk of sunburn, retarding the pace of skin aging, and possible reduction in melanoma risk. We recommend that pediatricians encourage sunscreen use and sun avoidance as a regular part of pediatric preventive health care

  13. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    Science.gov (United States)

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  14. Turbulent skin-friction drag on a slender body of revolution and Gray's Paradox

    Energy Technology Data Exchange (ETDEWEB)

    Nesteruk, Igor [Institute of Hydromechanics, National Academy of Sciences of Ukraine, Kyiv (Ukraine); Cartwright, Julyan H E [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada (Spain)

    2011-12-22

    The boundary layer on a slender body of revolution differs considerably from that on a flat plate, but these two cases can be connected by the Mangler-Stepanov transformations. The presented analysis shows that turbulent frictional drag on a slender rotationally symmetric body is much smaller than the flat-plate concept gives and the flow can remain laminar at larger Reynolds numbers. Both facts are valid for an unseparated flow pattern and enable us to revise the turbulent drag estimation of a dolphin, presented by Gray 74 years ago, and to resolve his paradox, since experimental data testify that dolphins can achieve flow without separation. The small values of turbulent skin-friction drag on slender bodies of revolution have additional interest for further experimental investigations and for applications of shapes without boundary-layer separation to diminish the total drag and noise of air- and hydrodynamic hulls.

  15. Frictional Torque Reduction in Taylor-Couette Flows with Riblet-Textured Rotors

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2017-11-01

    Inspired by the riblets on the denticles of fast swimming shark species, periodic surface microtextures of different shapes have been studied under laminar and turbulent flow conditions to understand their drag reduction mechanism and to offer guides for designing optimized low-friction bio-inspired surfaces. Various reports over the past four decades have suggested that riblet surfaces can reduce the frictional drag force in high Reynolds number laminar and turbulent flow regimes. Here, we investigate the effect of streamwise riblets on torque reduction in steady flow between concentric cylinders, known as Taylor-Couette Flow. Using 3D printed riblet-textured rotors and a custom-built Taylor-Couette cell which can be mounted on a rheometer we measure the torque on the inner rotor as a function of three different dimensionless parameters; the Reynolds number of the flow, the sharpness of the riblets, and the size of the riblets with respect to the scale of the Taylor-Couette cell. Our experimental results in the laminar viscous flow regime show a reduction in torque up to 10% over a wide range of Reynolds numbers, that is a non-monotonic function of the aspect ratio and independent of Re. However, after transition to the Taylor vortex regime, the modification in torque becomes a function of the Reynolds number, while remaining a non-monotonic function of the aspect ratio. Using finite volume modelling of the geometry we discuss the changes in the Taylor-Couette flow in presence of the riblets compared to the case of smooth rotors and the resulting torque reduction as a function of the parameter space defined above.

  16. Large-eddy simulation of flow over a cylinder with from to : a skin-friction perspective

    KAUST Repository

    Cheng, Wan

    2017-05-05

    We present wall-resolved large-eddy simulations (LES) of flow over a smooth-wall circular cylinder up to , where is Reynolds number based on the cylinder diameter and the free-stream speed . The stretched-vortex subgrid-scale (SGS) model is used in the entire simulation domain. For the sub-critical regime, six cases are implemented with . Results are compared with experimental data for both the wall-pressure-coefficient distribution on the cylinder surface, which dominates the drag coefficient, and the skin-friction coefficient, which clearly correlates with the separation behaviour. In the super-critical regime, LES for three values of are carried out at different resolutions. The drag-crisis phenomenon is well captured. For lower resolution, numerical discretization fluctuations are sufficient to stimulate transition, while for higher resolution, an applied boundary-layer perturbation is found to be necessary to stimulate transition. Large-eddy simulation results at , with a mesh of , agree well with the classic experimental measurements of Achenbach (J. Fluid Mech., vol. 34, 1968, pp. 625-639) especially for the skin-friction coefficient, where a spike is produced by the laminar-turbulent transition on the top of a prior separation bubble. We document the properties of the attached-flow boundary layer on the cylinder surface as these vary with . Within the separated portion of the flow, mean-flow separation-reattachment bubbles are observed at some values of , with separation characteristics that are consistent with experimental observations. Time sequences of instantaneous surface portraits of vector skin-friction trajectory fields indicate that the unsteady counterpart of a mean-flow separation-reattachment bubble corresponds to the formation of local flow-reattachment cells, visible as coherent bundles of diverging surface streamlines.

  17. The Influence of Tool Texture on Friction and Lubrication in Strip Reduction Testing

    DEFF Research Database (Denmark)

    Sulaiman, Mohd Hafis Bin; Christiansen, Peter; Bay, Niels Oluf

    2017-01-01

    While texturing of workpiece surfaces to promote lubrication in metal forming has beenapplied for several decades, tool surface texturing is rather new. In the present paper, tool texturing is studied as a method to prevent galling. A strip reduction test was conducted with tools provided...... with shallow, longitudinal pockets oriented perpendicular to the sliding direction. The pockets had small angles to the workpiece surface and the distance between them were varied. The experiments reveal that the distance between pockets should be larger than the pocket width, thereby creating a topography...... similar to flat table mountains to avoid mechanical interlocking in the valleys; otherwise, an increase in drawing load and pick-up on the tools are observed. The textured tool surface lowers friction and improves lubrication performance, provided that the distance between pockets is 2–4 times larger than...

  18. Skin dose reduction by a clinically viable magnetic deflector

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N. [Illawarra Cancer Centre, NSW (Australia). Department of Radiotherapy]|[University of Wollongong, NSW (Australia). Department of Physics; Mathur, J.N. [University of Wollongong, NSW (Australia). Department of Physics; Yu, P.; Young, E. [City University of Hong Kong, Kowloon (Hong Kong). Department of Physics; Kan, M. [Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Optometry and Radiography]|[City University of Hong Kong, Kowloon (Hong Kong). Department of Physics

    1997-06-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD`s have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors). 14 refs., 6 figs.

  19. Skin dose reduction by a clinically viable magnetic deflector

    International Nuclear Information System (INIS)

    Butson, M.J.; Carolan, M.; Metcalfe, J.N.; University of Wollongong, NSW; Mathur, J.N.; Yu, P.; Young, E.; Kan, M.; City University of Hong Kong, Kowloon

    1997-01-01

    A variable magnetic deflector which attaches onto the treatment head of a linear accelerator has reduced skin dose by as much as 65% for 6MV x-rays. The magnetic deflector is constructed from Neodymium Iron Boron (NdFeB) rare earth magnets. It weighs approximately 15 kg and is designed to easily fit onto the accessory mount of a clinical linear accelerator. All field sizes are attainable up to 35 cm x 35 cm at 100 cm SSD. The gap between the magnetic poles can be adjusted, providing the highest field strength for each field size. Magnetic field strengths up to 0.55 Tesla are attainable. For a 6MV x-ray beam with a 10 mm perspex block tray, surface dose is reduced from 29% to 14% and from 59% to 37% for a 20 cm x 20 cm and 35 cm x 35 cm field size, respectively. Results at varying SSD's have shown at least 10 cm of space must be allowed between the magnets and patient for adequate reduction of skin dose through removal of electron contaminants. (authors)

  20. Determination of skin dose reduction by lead equivalent gloves

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Abd Aziz Mhd Ramli

    2006-01-01

    Radiation protective gloves are always used in medical facilities to protect radiation workers from unnecessary radiation exposure. A study on radiation protection gloves which are produced by local company had been performed by the Medical Physics Group, MINT. The gloves were made of lead equivalent material, as the attenuating element. The gloves were evaluated in term of the percentage of skin dose reduction by using a newly developed procedure and facilities in MINT. Attenuation measurements of the gloves had been carried out using direct beams and scattered radiations of different qualities. TLD rings were fitted on finger phantom; and water phantom were used in the measurement. The result were obtained and analysed based on data supplied by manufacturer. (Author)

  1. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    Science.gov (United States)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  2. Rough wall skin friction measurements using a high resolution surface balance

    International Nuclear Information System (INIS)

    Krogstad, Per-Age; Efros, Vladislav

    2010-01-01

    This paper describes the design of a floating element friction balance which is based upon a commercially available micro force balance. The balance has a perfectly linear calibration function and was successfully applied to rough wall flows in a channel and a diffusor. Extrapolation of the turbulent shear stress measured by two component LDA to the wall matched very well the shear stress measured using the friction balance. Also, the wall shear stress obtained from the balance in the fully developed channel flow agreed with the stress that could be derived from the pressure gradient to within 3%.

  3. Local skin friction coefficients and boundary layer profiles obtained in flight from the XB-70-1 airplane at Mach numbers up to 2.5

    Science.gov (United States)

    Fisher, D. F.; Saltzman, E. J.

    1973-01-01

    Boundary-layer and local friction data for Mach numbers up to 2.5 and Reynolds numbers up to 3.6 x 10 to the 8th power were obtained in flight at three locations on the XB-70-1 airplane: the lower forward fuselage centerline (nose), the upper rear fuselage centerline, and the upper surface of the right wing. Local skin friction coefficients were derived at each location by using (1) a skin friction force balance, (2) a Preston probe, and (3) an adaptation of Clauser's method which derives skin friction from the rake velocity profile. These three techniques provided consistent results that agreed well with the von Karman-Schoenherr relationship for flow conditions that are quasi-two-dimensional. At the lower angles of attack, the nose-boom and flow-direction vanes are believed to have caused the momentum thickness at the nose to be larger than at the higher angles of attack. The boundary-layer data and local skin friction coefficients are tabulated. The wind-tunnel-model surface-pressure distribution ahead of the three locations and the flight surface-pressure distribution ahead of the wing location are included.

  4. Efficiency Improvement through Reduction in Friction and Wear in Powertrain Systems

    Energy Technology Data Exchange (ETDEWEB)

    Michael Killian

    2009-09-30

    The objective of this project is to improve the efficiency of truck drivelines through reduction of friction and parasitic losses in transmission and drive axles. Known efficiencies for these products exceeded 97 percent, so the task was not trivial. The project relied on a working relationship between modeling and hardware testing. Modeling was to shorten the development cycle by guiding the selection of materials, processes and strategies. Bench top and fixture tests were to validate the models. Modeling was performed at a world class, high academic level, but in the end, modeling did not impact the hardware development as much as intended. Insights leading to the most significant accomplishments came from bench top and fixture tests and full scale dynamometer tests. A key development in the project was the formulation of the implementation strategy. Five technical elements with potential to minimize friction and parasitic losses were identified. These elements included churning, lubrication, surface roughness, coatings and textures. An interesting fact is that both Caterpillar and Eaton independently converged on the same set of technical elements in formulating their implementation strategies. Exploiting technical elements of the implementation strategy had a positive impact on transmission and drive axle efficiencies. During one dynamometer test of an Eaton Best Tech 1 transmission, all three gear ranges tested: Under drive, direct drive and over drive, showed efficiencies greater than 99 percent. Technology boosts to efficiency for transmissions reached 1 percent, while efficiency improvements to drive axle pushed 2 percent. These advancements seem small, but the accomplishment is large considering that these products normally run at greater than 97 percent efficiency. Barriers and risks to implementing these technology elements are clear. Schemes using a low fill sump and spray tubes endanger the gears and bearings by lubricant starvation. Gear coatings have

  5. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.

    Science.gov (United States)

    Zahouani, H; Pailler-Mattei, C; Sohm, B; Vargiolu, R; Cenizo, V; Debret, R

    2009-02-01

    The study of changes in skin structure with age is becoming all the more important with the increase in life. The atrophy that occurs during aging is accompanied by more profound changes, with a loss of organization within the elastic collagen network and alterations in the basal elements. The aim of this study is to present a method to determine the mechanical properties of total human skin in vivo compared with dermal equivalents (DEs) using indentation and static friction tests. A new bio-tribometer working at a low contact pressure for the characterization the mechanical properties of the skin has been developed. This device, based on indentation and static friction tests, also allows to characterize the skin in vivo and reconstructed DEs in a wide range of light contact forces, stress and strain. This original bio-tribometer shows the ability to assess the skin elasticity and friction force in a wide range of light normal load (0.5-2 g) and low contact pressure (0.5-2 kPa). The results obtained by this approach show identical values of the Young's modulus E(*) and the shear modulus G(*) of six DEs obtained from a 62-year-old subject (E(*)=8.5+/-1.74 kPa and G(*)=3.3+/-0.46 kPa) and in vivo total skin of 20 subjects aged 55 to 70 years (E(*)=8.3+/-2.1 kPa, G(*)=2.8+/-0.8 kpa).

  6. Average Skin-Friction Drag Coefficients from Tank Tests of a Parabolic Body of Revolution (NACA RM-10)

    Science.gov (United States)

    Mottard, Elmo J; Loposer, J Dan

    1954-01-01

    Average skin-friction drag coefficients were obtained from boundary-layer total-pressure measurements on a parabolic body of revolution (NACA rm-10, basic fineness ratio 15) in water at Reynolds numbers from 4.4 x 10(6) to 70 x 10(6). The tests were made in the Langley tank no. 1 with the body sting-mounted at a depth of two maximum body diameters. The arithmetic mean of three drag measurements taken around the body was in good agreement with flat-plate results, but, apparently because of the slight surface wave caused by the body, the distribution of the boundary layer around the body was not uniform over part of the Reynolds number range.

  7. An Approach to Noise Reduction in Human Skin Admittance Measurements

    National Research Council Canada - National Science Library

    Kondakci, Suleyman

    2001-01-01

    This paper presents the development of a signal averaging algorithm for recovering excitation responses contaminated by overwhelming amount of various types of interference in skin admittance measurements...

  8. Item reduction and psychometric validation of the Oily Skin Self Assessment Scale (OSSAS) and the Oily Skin Impact Scale (OSIS).

    Science.gov (United States)

    Arbuckle, Robert; Clark, Marci; Harness, Jane; Bonner, Nicola; Scott, Jane; Draelos, Zoe; Rizer, Ronald; Yeh, Yating; Copley-Merriman, Kati

    2009-01-01

    Developed using focus groups, the Oily Skin Self Assessment Scale (OSSAS) and Oily Skin Impact Scale (OSIS) are patient-reported outcome measures of oily facial skin. The aim of this study was to finalize the item-scale structure of the instruments and perform psychometric validation in adults with self-reported oily facial skin. The OSSAS and OSIS were administered to 202 adult subjects with oily facial skin in the United States. A subgroup of 152 subjects returned, 4 to 10 days later, for test–retest reliability evaluation. Of the 202 participants, 72.8% were female; 64.4% had self-reported nonsevere acne. Item reduction resulted in a 14-item OSSAS with Sensation (five items), Tactile (four items) and Visual (four items) domains, a single blotting item, and an overall oiliness item. The OSIS was reduced to two three-item domains assessing Annoyance and Self-Image. Confirmatory factor analysis supported the construct validity of the final item-scale structures. The OSSAS and OSIS scales had acceptable item convergent validity (item-scale correlations >0.40) and floor and ceiling effects (skin severity (P skin (P skin), as assessments of self-reported oily facial skin severity and its emotional impact, respectively.

  9. Behavior of Skin Friction of Piles subjected to Top-downward and ...

    African Journals Online (AJOL)

    In situ results of Osterberg cell load test and the conventional static compression load test are compared. Finite Element Method (FEM) is used to study the effects of changes in boundary conditions, mechanism of pile-soil interaction and the accompanying change in soil stress, which are responsible for the difference in skin ...

  10. Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle

    International Nuclear Information System (INIS)

    Kim, Jonghun; Park, Sungmin; Nam, Gyungmok; Yoon, Sang-Hee

    2016-01-01

    Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force

  11. Prestrain-induced Reduction in Skin Tissue Puncture Force of Microneedle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jonghun; Park, Sungmin; Nam, Gyungmok; Yoon, Sang-Hee [Inha Univ., Incheon (Korea, Republic of)

    2016-10-15

    Despite all the recent advances in biodegradable material-based microneedles, the bending and failure (especially buckling) of a biodegradable microneedle during skin tissue insertion remains a major technical hurdle for its large-scale commercialization. A reduction in skin tissue puncture force during microneedle insertion remains an essential issue in successfully developing a biodegradable microneedle. Here, we consider uniaxial and equibiaxial prestrains applied to a skin tissue as mechanophysical stimuli that can reduce the skin tissue puncture force, and investigate the effect of prestrain on the changes in skin tissue puncture force. For a porcine skin tissue similar to that of humans, the skin tissue puncture force of a flat-end microneedle is measured with a z-axis stage equipped with a load cell, which provides a force-time curve during microneedle insertion. The findings of this study lead to a quantitative characterization of the relationship between prestrain and the skin tissue puncture force.

  12. Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs)

    Science.gov (United States)

    Masoomi, Mohsen; Katbab, Ali Asghar; Nazockdast, Hossein

    2006-09-01

    Attempts have been made for the first time to prepare a friction material with the characteristic of thermal sensitive modulus, by the inclusion of thermoplastic elastomers (TPE) as viscoelastic polymeric materials into the formulation in order to the increase the damping behavior of the cured friction material. Styrene butadiene styrene (SBS), styrene ethylene butylene styrene (SEBS) and nitrile rubber/polyvinyl chloride (NBR/PVC) blend system were used as TPE materials. In order to evaluate the viscoelastic parameters such as loss factor (tan δ) and storage modulus (E‧) for the friction material, dynamic mechanical analyzer (DMA) were used. Natural frequencies and mode shapes of friction material and brake disc were determined by modal analysis. However, NBR/PVC and SEBS were found to be much more effective in damping behavior. The results from this comparative study suggest that the damping characteristics of commercial friction materials can be strongly affected by the TPE ingredients. This investigation also confirmed that the specimens with high TPE content had low noise propensity.

  13. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS2 Monolayer

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-04-01

    Full Text Available MoS2 nanosheets can be used as solid lubricants or additives of lubricating oils to reduce friction and resist wear. However, the atomic scale mechanism still needs to be illustrated. Herein, molecular simulations on the indentation and scratching process of MoS2 monolayer supported by Pt(111 surface were conducted to study the anti-pressure and friction reduction mechanisms of the MoS2 monolayer. Three deformation stages of Pt-supported MoS2 monolayer were found during the indentation process: elastic deformation, plastic deformation and finally, complete rupture. The MoS2 monolayer showed an excellent friction reduction effect at the first two stages, as a result of enhanced load bearing capacity and reduced deformation degree of the substrate. Unlike graphene, rupture of the Pt-supported MoS2 monolayer was related primarily to out-of-plane compression of the monolayer. These results provide a new insight into the relationship between the mechanical properties and lubrication properties of 2D materials.

  14. Rash with DERMABOND PRINEO Skin Closure System Use in Bilateral Reduction Mammoplasty: A Case Series

    OpenAIRE

    R. W. Knackstedt; J. A. Dixon; P. J. O’Neill; F. A. Herrera

    2015-01-01

    Background. Bilateral reduction mammoplasty is a common plastic surgery procedure that can be complicated by unfavorable scar formation along incision sites. Surgical adhesives can be utilized as an alternative or as an adjunct to conventional suture closures to help achieve good wound tension and provide an adequate barrier with excellent cosmesis. The recently introduced DERMABOND PRINEO Skin Closure System Skin Closure System combines the skin adhesive 2-octyl cyanoacrylate with a self-ad...

  15. Weight reductions for the airbus A380; postbuckling of the A380 VTP skin panels

    NARCIS (Netherlands)

    Kroese, R.

    2014-01-01

    The skin panels of the Vertical Tail Plane (VTP) are the largest single piece composite components assembled on the Airbus A380. By allowing postbuckling to these skin panels might result in severe weight reductions for the VTP of the A380. The goal of the study is to give an indication of possible

  16. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  17. Preventing skin cancer through reduction of indoor tanning: current evidence.

    Science.gov (United States)

    Watson, Meg; Holman, Dawn M; Fox, Kathleen A; Guy, Gery P; Seidenberg, Andrew B; Sampson, Blake P; Sinclair, Craig; Lazovich, DeAnn

    2013-06-01

    Exposure to ultraviolet radiation from indoor tanning devices (tanning beds, booths, and sun lamps) or from the sun contributes to the risk of skin cancer, including melanoma, which is the type of skin cancer responsible for most deaths. Indoor tanning is common among certain groups, especially among older adolescents and young adults, adolescent girls and young women, and non-Hispanic whites. Increased understanding of the health risks associated with indoor tanning has led to many efforts to reduce use. Most environmental and systems efforts in the U.S. (e.g., age limits or requiring parental consent/accompaniment) have occurred at the state level. At the national level, the U.S. Food and Drug Administration and the Federal Trade Commission regulate indoor tanning devices and advertising, respectively. The current paper provides a brief review of (1) the evidence on indoor tanning as a risk factor for skin cancer; (2) factors that may influence use of indoor tanning devices at the population level; and (3) various environmental and systems options available for consideration when developing strategies to reduce indoor tanning. This information provides the context and background for the companion paper in this issue of the American Journal of Preventive Medicine, which summarizes highlights from an informal expert meeting convened by the CDC in August 2012 to identify opportunities to prevent skin cancer by reducing use of indoor tanning devices. Published by Elsevier Inc.

  18. Preventing Skin Cancer Through Reduction of Indoor Tanning

    Science.gov (United States)

    Watson, Meg; Holman, Dawn M.; Fox, Kathleen A.; Guy, Gery P.; Seidenberg, Andrew B.; Sampson, Blake P.; Sinclair, Craig; Lazovich, DeAnn

    2015-01-01

    Exposure to ultraviolet radiation from indoor tanning devices (tanning beds, booths, and sun lamps) or from the sun contributes to the risk of skin cancer, including melanoma, which is the type of skin cancer responsible for most deaths. Indoor tanning is common among certain groups, especially among older adolescents and young adults, adolescent girls and young women, and non-Hispanic whites. Increased understanding of the health risks associated with indoor tanning has led to many efforts to reduce use. Most environmental and systems efforts in the U.S. (e.g., age limits or requiring parental consent/accompaniment) have occurred at the state level. At the national level, the U.S. Food and Drug Administration and the Federal Trade Commission regulate indoor tanning devices and advertising, respectively. The current paper provides a brief review of (1) the evidence on indoor tanning as a risk factor for skin cancer; (2) factors that may influence use of indoor tanning devices at the population level; and (3) various environmental and systems options available for consideration when developing strategies to reduce indoor tanning. This information provides the context and background for the companion paper in this issue of the American Journal of Preventive Medicine, which summarizes highlights from an informal expert meeting convened by the CDC in August 2012 to identify opportunities to prevent skin cancer by reducing use of indoor tanning devices. PMID:23683987

  19. Calculation of skin-friction coefficients for low Reynolds number turbulent boundary layer flows. M.S. Thesis - California Univ. at Davis

    Science.gov (United States)

    Barr, P. K.

    1980-01-01

    An analysis is presented of the reliability of various generally accepted empirical expressions for the prediction of the skin-friction coefficient C/sub f/ of turbulent boundary layers at low Reynolds numbers in zero-pressure-gradient flows on a smooth flat plate. The skin-friction coefficients predicted from these expressions were compared to the skin-friction coefficients of experimental profiles that were determined from a graphical method formulated from the law of the wall. These expressions are found to predict values that are consistently different than those obtained from the graphical method over the range 600 Re/sub theta 2000. A curve-fitted empirical relationship was developed from the present data and yields a better estimated value of C/sub f/ in this range. The data, covering the range 200 Re/sub theta 7000, provide insight into the nature of transitional flows. They show that fully developed turbulent boundary layers occur at Reynolds numbers Re/sub theta/ down to 425. Below this level there appears to be a well-ordered evolutionary process from the laminar to the turbulent profiles. These profiles clearly display the development of the turbulent core region and the shrinking of the laminar sublayer with increasing values of Re/sub theta/.

  20. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  1. Heave induced reduction of friction capacity of pile embedded in clays

    OpenAIRE

    Setyo Budi Gogot; Wibowo Tantri Gondo

    2017-01-01

    Installation of new piles may cause heave which influence friction capacity of existing piles. The heave can be observed from the difference in the elevation of existing pile heads recorded before and after the installation of new piles or through load-settlement diagram from Static Load Test data. This paper presents the study of bearing capacity of hollow cylindrical concrete piles with diameter of 800 mm from two projects. The piles at Project I and Project II were hydraulically jacked int...

  2. Ways of Noninvasive Facial Skin Tightening and Fat Reduction.

    Science.gov (United States)

    Fritz, Klaus; Salavastru, Carmen

    2016-06-01

    For skin tightening, ablative and nonablative lasers have been used with various parameters full or fractionated. Currently, other energy-based technologies have been developed such as radiofrequency (RF) from mono- to multipolar, microneedling RF, and high-intensity focused ultrasound. They heat up the tissue to a clinical endpoint. Temperatures above 42°C stimulate fibroblasts to produce more collagen and some technologies produce small coagulation points that allow to shrink and to tighten the tissue with less downtime or side effects. Alternative treatments not based on heat can be chemical peels from light to deep and microneedling without RF. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Flight Measurements of Average Skin-Friction Coefficients on a Parabolic Body of Revolution (NACA RM-10) at Mach Numbers from 1.0 to 3.7

    Science.gov (United States)

    Loposer, J. Dan; Rumsey, Charles B.

    1954-01-01

    Measurement of average skin-friction coefficients have been made on six rocket-powered free-flight models by using the boundary-layer rake technique. The model configuration was the NACA RM-10, a 12.2-fineness-ratio parabolic body of revolution with a flat base. Measurements were made over a Mach number range from 1 to 3.7, a Reynolds number range 40 x 10(exp 6) to 170 x 10(exp 6) based on length to the measurement station, and with aerodynamic heating conditions varying from strong skin heating to strong skin cooling. The measurements show the same trends over the test ranges as Van Driest's theory for turbulent boundary layer on a flat plate. The measured values are approximately 7 percent higher than the values of the flat-plate theory. A comparison which takes into account the differences in Reynolds number is made between the present results and skin-friction measurements obtained on NACA RM-10 scale models in the Langley 4- by 4-foot supersonic pressure tunnel, the Lewis 8- by 6-foot supersonic tunnel, and the Langley 9-inch supersonic tunnel. Good agreement is shown at all but the lowest tunnel Reynolds number conditions. A simple empirical equation is developed which represents the measurements over the range of the tests.

  4. Full body illusion is associated with widespread skin temperature reduction

    Directory of Open Access Journals (Sweden)

    Roy eSalomon

    2013-07-01

    Full Text Available A central feature of our consciousness is the experience of the self as a unified entity residing in a physical body, termed bodily self-consciousness. This phenomenon includes aspects such as the sense of owning a body (also known as body ownership and has been suggested to arise from the integration of sensory and motor signals from the body. Several studies have shown that temporally synchronous tactile stimulation of the real body and visual stimulation of a fake or virtual body can induce changes in bodily self-consciousness, typically resulting in a sense of illusory ownership over the fake body. The present study assessed the effect of anatomical congruency of visuo-tactile stimulation on bodily self-consciousness. A virtual body was presented and temporally synchronous visuo-tactile stroking was applied simultaneously the participants’ body and to the virtual body. We manipulated the anatomical locations of the visuo-tactile stroking (i.e. on the back, on the leg, resulting in congruent stroking (stroking was felt and seen on the back or the leg or incongruent stroking (i.e. stroking was felt on the leg and seen on the back. We measured self-identification with the virtual body and self-location as well as skin temperature. Illusory self-identification with the avatar as well as changes in self-localization were experienced in the congruent stroking conditions. Participants showed a decrease in skin temperature across several body locations during congruent stimulation. These data establish that the full-body illusion alters bodily self-consciousness and instigates widespread physiological changes in the participant’s body.

  5. Effects of spatially varying slip length on friction drag reduction in wall turbulence

    International Nuclear Information System (INIS)

    Hasegawa, Yosuke; Frohnapfel, Bettina; Kasagi, Nobuhide

    2011-01-01

    A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.

  6. Comment on “The reduction of friction in long-runout landslides as an emergent phenomenon” by Brandon C. Johnson et al.

    Science.gov (United States)

    Iverson, Richard M.

    2016-01-01

    Results from a highly idealized, 2-D computational model indicate that dynamic normal-stress rarefactions might cause friction reduction in long-runout landslides, but the physical relevance of the idealized dynamics has not been confirmed by experimental tests. More importantly, the model results provide no evidence that refutes alternative hypotheses about friction reduction mechanisms. One alternative hypothesis, which is strongly supported by field evidence, experimental data, and the predictions of a well-constrained computational model, involves development of high pore fluid pressures in deforming landslide material or overridden bed material. However, no scientific basis exists for concluding that a universal mechanism is responsible for friction reduction in all long-runout landslides.

  7. The Reduction of Friction in Long Runout Landslides as an Emergent Phenomenon.

    Science.gov (United States)

    Johnson, B. C.; Melosh, H., IV; Campbell, C. S.

    2015-12-01

    Long runout landslides are one of the most remarkable and enigmatic geologic processes. During these events, large masses of rock fall a height, H,from a mountainside and runout extraordinary distances, L, along relatively flat surfaces. For rock masses with volumes exceeding 109 m3, these landslides regularly runout more than 10 times longer than the height they fall from (H/LL with increasing slide volume). We extend the work of Campbell et al. [1995] with a focus on the mechanism that reduces friction in these slides. We find sliding preferentially occurs when the overburden is relieved by pressure variations in the slide, similar to the pore pressure fluctuations observed in debris flows [Iverson and LaHusen, 1989 doi:10.1126/science.246.4931.796], but in this case without interstitial fluid. Although this is the hallmark of the acoustic fluidization hypothesis, we find that low frequency pressure variations are responsible for the relief of overburden instead of the kilohertz frequencies suggested by Melosh [1979, doi:10.1029/JB084iB13p07513].

  8. Multisource radiofrequency for fractional skin resurfacing-significant reduction of wrinkles.

    Science.gov (United States)

    Dahan, Serge; Rousseaux, Isabelle; Cartier, Hugues

    2013-04-01

    Skin roughness, color change, wrinkles and skin laxity are the main characteristics of aging skin. Dermatologists and plastic surgeons look for a treatment that will provide both epidermal resurfacing for the improvement of skin roughness and deep volumetric heating that will trigger collagen remodeling in the dermis to reduce wrinkles and skin laxity. These goals should be achieved with minimal pain and downtime. The study included 10 subjects (Fitzpatrick's skin type 2-3) with Fitzpatrick wrinkle and elastosis scale of 5-8 (average 7.3). Treatment was done with the Fractional skin resurfacing handpiece of the EndyMed PRO multisource radiofrequency system (EndyMed Ltd, Cesarea, Israel). Treatment was repeated each month up to a total of three treatment sessions. Patients photographs were graded according to accepted scales by a board certified dermatologists. Patients' pain and satisfaction were scored using dedicated questionnaires. Doctors' satisfaction was also evaluated. Post treatment skin erythema was noted in all treated patients, lasting up to 10 hours. Fifty six percent of patients reported no pain after treatment, and the rest (44%) reported minimal pain. All patients showed significant reduction in the Fitzpatrick wrinkle score. Average Fitzpatrick wrinkle score was 7.3 at baseline, 4.9 at 1 month after the first treatment, 4.2 at 1 month after the second treatment, and 4.1 at 1 month after the third treatment. The score was similar at 3 months after the third treatment with a score of 4.1. When asked at the end of three treatment sessions, all patients answered they will recommend the treatment to their friends (66% "definitely yes" and 33% "yes"). When asked the same question 3 months after the end of treatment, all patients (100%) answered "definitely yes".

  9. Analysis of load reduction possibilities using a hydraulic soft yaw system for a 5-MW turbine and its sensitivity to yaw-bearing friction

    DEFF Research Database (Denmark)

    Stubkier, S.; Pedersen, H. C.; Jonkman, J. M.

    2014-01-01

    With the increasing size of wind turbines and with increasing lifetime demands, new methods for load reduction in the turbines need to be examined. One method is to make the yaw system of the turbine flexible, thereby dampening the loads to the system. This paper presents a hydraulic soft yaw...... concept and investigates the effect this has on critical loads in the turbine. To analyze the system, a novel friction model is developed and implemented for the yaw system using the NREL 5-MW turbine in the aerodynamic code FAST. Based on this model, the influence of friction is investigated...

  10. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher.

    Science.gov (United States)

    Amanov, Auezhan; Ahn, Byungmin; Lee, Moon Gu; Jeon, Yongho; Pyun, Young-Sik

    2016-11-22

    An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM) technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties-microstructure, surface hardness, surface roughness, etc.

  11. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher

    Directory of Open Access Journals (Sweden)

    Auezhan Amanov

    2016-11-01

    Full Text Available An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic nanocrystalline surface modification (UNSM technique was used to further reduce the friction coefficient, to increase the wear resistance, and to extend the service life of the Sn-based Babbitt metal. The friction and wear behavior of the Sn-based Babbitt metal was investigated using a block-on-ring tester under both dry and oil-lubricated conditions. The results of the experiments revealed that the friction and wear behavior of Sn-based Babbitt metal could be improved by the application of the UNSM technique. The friction and wear mechanisms of the specimens were explained and discussed in terms of changes in surface properties—microstructure, surface hardness, surface roughness, etc.

  12. Friction and Wear Reduction of Eccentric Journal Bearing Made of Sn-Based Babbitt for Ore Cone Crusher

    OpenAIRE

    Amanov, Auezhan; Ahn, Byungmin; Lee, Moon Gu; Jeon, Yongho; Pyun, Young-Sik

    2016-01-01

    An anti-friction Babbitt alloy-coated bearing made by a casting process is a journal bearing, which is used in an ore cone crusher eccentric. The main purpose of the Babbitt coated eccentric is to provide a low friction to support and guide a rotating shaft. Despite the fact that the Babbitt-coated eccentric offers a low friction coefficient and can be operated without a continuous supply of lubricant, it suffers from mining environments and short service life. In this study, an ultrasonic na...

  13. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  14. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, and Skin Roughness: Results of a Clinical Study.

    Science.gov (United States)

    Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne

    2017-10-01

    Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study.

  15. The static friction response of non-glabrous skin as a function of surface energy and environmental conditions

    NARCIS (Netherlands)

    Klaassen, Michel; de Vries, Erik G.; Masen, Marc Arthur

    2017-01-01

    The (local) environmental conditions have a significant effect on the interaction between skin and products. Plasticisation of the stratum corneum occurs at high humidity, causing this layer to soften and change its surface free energy. In this work we study the effects of the micro-climate on the

  16. Skin reduction technique for correction of lateral deviation of the erect straight penis.

    Science.gov (United States)

    Shaeer, Osama

    2014-07-01

    Lateral deviation of the erect straight penis (LDESP) refers to a penis that despite being straight in the erect state, points laterally, yet can be directed forward manually without the use of force. While LDESP should not impose a negative impact on sexual function, it may have a negative cosmetic impact. This work describes skin reduction technique (SRT) for correction of LDESP. Counseling was offered to males with LDESP after excluding other abnormalities. Surgery was performed in case of failed counseling. In the erect state, the degree and direction of LDESP were noted. Skin on the base of the penis on the contralateral side of LDESP was excised from the base of the penis and the edges approximated to correct LDESP. Further excision was repeated if needed. The incision was closed in two layers. Long-term efficacy of SRT was the main outcome measure. Out of 183 males with LDESP, 66.7% were not sexually active. Counseling relieved 91.8% of cases. Fifteen patients insisted on surgery, mostly from among the sexually active where the complaint was mutual from the patient and partner. SRT resulted in full correction of the angle of erection in 12 cases out of 15. Two had minimal recurrence, and one had major recurrence indicating re-SRT. LDESP is more common a complaint among those who have not experienced coital relationship, and is mostly relieved by counseling. However, sexually active males with this complaint are more difficult to relieve by counseling. A minority of patients may opt for surgical correction. SRT achieves a forward erection in such patients, is minimally invasive, and relatively safe, provided the angle of erection can be corrected manually without force. Shaeer O. Skin reduction technique for correction of lateral deviation of the erect straight penis. © 2014 International Society for Sexual Medicine.

  17. Reduction of teat skin mastitis pathogen loads: differences between strains, dips, and contact times.

    Science.gov (United States)

    Enger, B D; Fox, L K; Gay, J M; Johnson, K A

    2015-02-01

    The purpose of these experiments was to (1) assess differences in mastitis pathogen strain sensitivities to teat disinfectants (teat dips), and (2) determine the optimum time for premilking teat dips to remain in contact with teat skin to reduce pathogen loads on teat skin. Two experiments were conducted using the excised teat model. In experiment 1, the differences in mastitis pathogen strain sensitivities to 4 commercially available dips (dip A: 1% H2O2; dip B: 1% chlorine dioxide; dip C: 1% iodophor; and dip D: 0.5% iodophor) were evaluated. Four strains of 11 common mastitis pathogens (Staphylococcus aureus, Streptococcus agalactiae, Mycoplasma bovis, Streptococcus dysgalactiae, Streptococcus uberis, Escherichia coli, Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus hyicus, Staphylococcus xylosus, and Staphylococcus haemolyticus) were tested. In experiment 2, the percentage log reduction of mastitis pathogens (Escherichia coli, Streptococcus uberis, Streptococcus dysgalactiae, Klebsiella species, Staphylococcus chromogenes, Staphylococcus haemolyticus, Staphylococcus xylosus, and Staphylococcus epidermidis) on teat skin with 3 commercially available teat dips: dip A; dip D; and dip E: 0.25% iodophor, using dip contact times of 15, 30, and 45 s, was evaluated. Experiment 1 results indicated significant differences in strain sensitivities to dips within pathogen species: Staphylococcus aureus, Staphylococcus chromogenes, and Streptococcus uberis. Species differences were also found where Mycoplasma bovis (97.9% log reduction) was the most sensitive to tested teat dips and Staphylococcus haemolyticus (71.4% log reduction) the most resistant. Experiment 2 results indicated that contact times of 30 and 45 s were equally effective in reducing recovered bacteria for dips D and E and were also significantly more effective than a 15-s contact time. No differences were seen in recovered bacteria between tested contact times after treatment with dip

  18. Laser and Light Treatments for Hair Reduction in Fitzpatrick Skin Types IV-VI: A Comprehensive Review of the Literature.

    Science.gov (United States)

    Fayne, Rachel A; Perper, Marina; Eber, Ariel E; Aldahan, Adam S; Nouri, Keyvan

    2018-04-01

    Unwanted facial and body hair presents as a common finding in many patients, such as females with hirsutism. With advances in laser and light technology, a clinically significant reduction in hair can be achieved in patients with light skin. However, in patients with darker skin, Fitzpatrick skin types (FST) IV-VI, the higher melanin content of the skin interferes with the proposed mechanism of laser-induced selective photothermolysis, which is to target the melanin in the hair follicle to cause permanent destruction of hair bulge stem cells. Many prospective and retrospective studies have been conducted with laser and light hair-removal devices, but most exclude patients with darkly pigmented skin, considering them a high-risk group for unwanted side effects, including pigmentation changes, blisters, and crust formation. We reviewed the published literature to obtain studies that focused on hair reduction for darker skin types. The existing literature for this patient population identifies longer wavelengths as a key element of the treatment protocol and indicates neodymium-doped yttrium aluminum garnet (Nd:YAG), diode, alexandrite, and ruby lasers as well as certain intense pulsed light sources for safe hair reduction with minimal side effects in patients with FST IV-VI, so long as energy settings and wavelengths are appropriate. Based on the findings in this review, safe and effective hair reduction for patients with FST IV-VI is achievable under proper treatment protocols and energy settings.

  19. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Neha, E-mail: neha87bhu@gmail.com [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India); Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E. [Defence Material Store Research Development and Establishment (DMSRDE), DRDO, GT Road, Kanpur 208013, U.P (India); Gandhi, M. N.; Bhattacharyya, A. R. [Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra (India)

    2016-05-06

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS{sub 2}) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS{sub 2} and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS{sub 2} and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  20. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    International Nuclear Information System (INIS)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Mukhopadhyay, K.; Prasad, N. E.; Gandhi, M. N.; Bhattacharyya, A. R.

    2016-01-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS_2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS_2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS_2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  1. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  2. Reduction of radiation-induced early skin damage (mouse foot) by 0-(β-hydroxyaethyl)-rutoside

    International Nuclear Information System (INIS)

    Fritz-Niggli, H.; Froehlich, E.

    1980-01-01

    The effect of a bioflavonoid, 0-(β-hydroxyethyl)-rutoside (HR) on early radiation-induced skin damage was examined, using the mouse foot system; the response to radiation is not species specific and comparison with the clinical situation is therefore possible. The aim was to see whether HR, which is highly effective in protecting against late damage, is also able to reduce early effects. Early reactions were considered to be erythema, swelling and ulceration and occurring up to 30 days after irradiation. It was found that HR significantly reduces early damage, both after a single dose and after fractionated irradiation with low doses. A single pre-treatment dose of HR and pre-treatment together with 30 days post-treatment administration were both found to be effective. The protective effect became more marked with increasing radiation dose (single irradiation). Reduction of late effects is produced iptimally by an interval of 0.25 hours between application of HR and irradiation, and this is also true for early skin damage. The early effects are partly reversible, but there is possibly an interesting correlation between these and irreversible late effects (such as loss of toes); a similar mechanism, presumably affecting the vascular system, may therefore be postulated. The protective action of this well tolesated, highly effective substance, which apparently protects normal tissues from early and late injury, is discussed. (orig.) [de

  3. Mycobacterium Abscessus Skin Infection Following Mesotherapy for Fat Reduction: A Case Report

    Directory of Open Access Journals (Sweden)

    Thanawan Iamphonrat

    2016-07-01

    Full Text Available Mesotherapy is referred to as a minimally invasive technique by using intradermal or subcutaneous injection with liquid containing a mixture of compounds for the treatment of varying medical and cosmetic conditions. Although noninvasive cosmetic procedures gain increasing popularity, mesotherapy remains a controversial treatment according to lack of scientific standpoint, standard formulas, and treatment protocol. In addition, a wide variety of side effects from mesotherapy have been reported. We reported a case of a 30-year-old Thai male, immunocompetent patient, who underwent mesotherapy for facial fat reduction at a private clinic and developed erythematous nodules on both cheeks 3 weeks after injection. The skin biopsy was then performed and histopathology showed mixed cell granuloma in deep dermis. Tissue culture was positive for Mycobacterium abscessus. He received a combination of clarithromycin and ciprofloxacin for six months with very good response. The nodules were healed with atrophic scar and post inflammatory hyperpigmentation without recurrence until eight months follow up.

  4. All Organic Polymers Based Morphing Skin with Controllable Surface Texture

    KAUST Repository

    Favero Bolson, Natanael

    2018-05-01

    Smart skins are integrating an increasing number of functionalities in order to improve the interaction between the systems they equip and their ambient environment. Here we have developed an electromechanical soft actuator with controlled surface texture due to applied thermal gradient via electrical voltage. The device was fabricated and integrated with optimized process parameters for a prepared heater element [doped PEDOT: PSS (poly-(3, 4 ethylenedioxythiophene): poly (styrene sulfonic acid))], a soft actuator (Ecoflex 00-50/ethanol) and overall packaging case [PDMS (polydimethylsiloxane)]. To study a potential application of the proposed smart skin, we analyze the fluid drag reduction in a texture controlled water flow unit. As a result, we obtained a reduction of approximately 14% in the skin drag friction coefficient during the actuation. We conclude that the proposed soft actuator device is a preferred option for a texture-controlled skin that reduces the skin drag friction coefficient.

  5. Tactile friction of topical formulations.

    Science.gov (United States)

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Skin

    International Nuclear Information System (INIS)

    Hunter, R.D.

    1985-01-01

    Malignant disease involving the skin represents a significant work load to the general radiotherapist and can involve interesting diagnostic and therapeutic decisions. Primary skin cancer is also relatively common and there is a need to provide an efficient service in which the first treatment is successful in the majority of patients. The reward for careful attention to technique is very considerable both in terms of clinical cancer control and functional results. Squamous cell carcinoma, basal cell carcinoma, and intra-epidermal carcinoma constitute the majority of the lesions dealt with clinically, but metastatic disease, lymphomas, and malignant melanomas are also referred regularly for opinions and may require radiotherapy. The general principle of the techniques of assessment and radiotherapeutic management to be described are equally applicable to any malignant skin tumour once the decision has been made to accept it for radiotherapy. Dosage and fractionation may have to be adjusted to allow for the nature of the disease process and the intent of the treatment

  7. Reduction of skin effect losses in double-level-T-gate structure

    Energy Technology Data Exchange (ETDEWEB)

    Mikulics, M., E-mail: m.mikulics@fz-juelich.de; Hardtdegen, H.; Arango, Y. C.; Adam, R.; Fox, A.; Grützmacher, D. [Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, D-52425 Jülich (Germany); Jülich-Aachen Research Alliance, JARA, Fundamentals of Future Information Technology, D-52425 Jülich (Germany); Gregušová, D.; Novák, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, SK-84104 Bratislava (Slovakia); Stanček, S. [Department of Nuclear Physic and Technique, Slovak University of Technology, SK-81219 Bratislava (Slovakia); Kordoš, P. [Institute of Electronics and Photonics, Slovak University of Technology, SK-81219 Bratislava (Slovakia); Sofer, Z. [Department of Inorganic Chemistry, Institute of Chemical Technology, Technická 5, Prague 6 (Czech Republic); Juul, L.; Marso, M. [Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, L-1359 Luxembourg (Luxembourg)

    2014-12-08

    We developed a T-gate technology based on selective wet etching yielding 200 nm wide T-gate structures used for fabrication of High Electron Mobility Transistors (HEMT). Major advantages of our process are the use of only standard photolithographic process and the ability to generate T-gate stacks. A HEMT fabricated on AlGaN/GaN/sapphire with gate length L{sub g} = 200 nm and double-stacked T-gates exhibits 60 GHz cutoff frequency showing ten-fold improvement compared to 6 GHz for the same device with 2 μm gate length. HEMTs with a double-level-T-gate (DLTG) structure exhibit up to 35% improvement of f{sub max} value compared to a single T-gate device. This indicates a significant reduction of skin effect losses in DLTG structure compared to its standard T-gate counterpart. These results agree with the theoretical predictions.

  8. Solar Heat Gain Reduction of Ventilated Double Skin Windows without a Shading Device

    Directory of Open Access Journals (Sweden)

    Bokyoung Koo

    2017-12-01

    Full Text Available With global efforts to strengthen various energy-saving policies for buildings to reduce greenhouse gas emissions, in South Korea, new laws and regulations have been in force since May 2015 to install shading devices in public buildings and to include the solar heat gain coefficient (SHGC reduction performance of shading devices in the evaluation of building performance. By making a ventilated air layer outer glass and inner glass to lower the temperatures of the air layer and glass surface, it is possible to reduce the amount of heat flowing into the building while maintaining the same level of light transmission as plain window systems. This study proposes a double-skin façade window with a 20 mm ventilated air cavity, and assumes that insolation inflow indoors would be reduced through ventilation in the air cavity. The artificial solar lab test results show that the SHGC can be lowered through ventilation by 28% to 52.9%. Additionally, in an outdoor test cell experiment, the results show that the mean temperature was 0.6 K and the peak temperature was 0.9 K lower with ventilation in the air cavity than that without ventilation in the air cavity.

  9. Layer-by-layer deposition of zirconium oxide films from aqueous solutions for friction reduction in silicon-based microelectromechanical system devices

    International Nuclear Information System (INIS)

    Liu Junfu; Nistorica, Corina; Gory, Igor; Skidmore, George; Mantiziba, Fadziso M.; Gnade, Bruce E.

    2005-01-01

    This work reports layer-by-layer deposition of zirconium oxide on a Si surface from aqueous solutions using the successive ionic layer adsorption and reaction technique. The process consists of repeated cycles of adsorption of zirconium precursors, water rinse, and hydrolysis. The film composition was determined by X-ray photoelectron spectroscopy. The film thickness was determined by Rutherford backscattering spectrometry, by measuring the Zr atom concentration. The average deposition rate from a 0.1 M Zr(SO 4 ) 2 solution on a SiO 2 /Si surface is 0.62 nm per cycle. Increasing the acidity of the zirconium precursor solution inhibits the deposition of the zirconium oxide film. Atomic force microscopy shows that the zirconium oxide film consists of nanoparticles of 10-50 nm in the lateral dimension. The surface roughness increased with increasing number of deposition cycles. Friction measurements made with a microelectromechanical system device reveal a reduction of 45% in the friction coefficient of zirconium oxide-coated surfaces vs. uncoated surfaces in air

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part 1: Pressure distribution. Part 2: Wall shear stress. Part 3: Simplified formulas for the prediction of surface pressures and skin friction

    Science.gov (United States)

    Adamson, T. C., Jr.; Liou, M. S.; Messiter, A. F.

    1980-01-01

    An asymptotic description is derived for the interaction between a shock wave and a turbulent boundary layer in transonic flow, for a particular limiting case. The dimensionless difference between the external flow velocity and critical sound speed is taken to be much smaller than one, but large in comparison with the dimensionless friction velocity. The basic results are derived for a flat plate, and corrections for longitudinal wall curvature and for flow in a circular pipe are also shown. Solutions are given for the wall pressure distribution and the shape of the shock wave. Solutions for the wall shear stress are obtained, and a criterion for incipient separation is derived. Simplified solutions for both the wall pressure and skin friction distributions in the interaction region are given. These results are presented in a form suitable for use in computer programs.

  11. Reduction of skin damage from transcutaneous oxygen electrodes using a spray on dressing.

    OpenAIRE

    Evans, N J; Rutter, N

    1986-01-01

    A spray on, copolymer acrylic dressing (Op-Site) was used to limit the skin damage caused by a transcutaneous oxygen electrode and its adhesive ring. Two identical electrodes were applied to the abdominal skin of 10 preterm infants, one on untreated skin, the other after application of Op-Site. It was found that Op-Site prevented the epidermal damage (as measured by transepidermal water loss) that occurs when the adhesive ring is removed from untreated skin. It did not interfere with transcut...

  12. Continuum Mechanical Modelling of Skin-pass Rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analyzed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...

  13. Reduction of skin damage from transcutaneous oxygen electrodes using a spray on dressing.

    Science.gov (United States)

    Evans, N J; Rutter, N

    1986-09-01

    A spray on, copolymer acrylic dressing (Op-Site) was used to limit the skin damage caused by a transcutaneous oxygen electrode and its adhesive ring. Two identical electrodes were applied to the abdominal skin of 10 preterm infants, one on untreated skin, the other after application of Op-Site. It was found that Op-Site prevented the epidermal damage (as measured by transepidermal water loss) that occurs when the adhesive ring is removed from untreated skin. It did not interfere with transcutaneous oxygen measurements; absolute values and response times were unchanged. Op-Site is therefore useful in preventing the skin trauma that occurs when transcutaneous oxygen monitoring is being performed in preterm infants below 30 weeks' gestation in the first week of life. Care must be taken, however, to prevent a build up of Op-Site--it should be applied as a single layer, allowed to dry, and removed after use.

  14. Real Scale test and analysis of the skin friction on a pile in rock; Ensayo a escala real e interpretacion del comportamiento de un pilote por fuest en roca

    Energy Technology Data Exchange (ETDEWEB)

    Olmo, D. del; Melentijevic, S.; Prieto, L.; Olalla, C.

    2011-07-01

    The skin friction behaviour of a pile in a flysch rock in San Sebastian (Guipuzcoa) has been studied. The static load test was performed on a pile of 1 meter diameter, on the 5 meter length segment of the pile between 12 and 17 meters depth- Two Osterberg cells were embedded into the pile segment to apply the load on the pile-rock system. The mechanism of the load transfer between the pile and the rock has been analyzed by laboratory tests on rock samples, load test results and a finite element method calculus. the results have also been compared to the existing formations of world wide published standards. (Author) 16 refs.

  15. Autologous inferior dermal sling (autoderm) with concomitant skin-envelope reduction mastectomy: an excellent surgical choice for women with macromastia and clinically significant ptosis.

    Science.gov (United States)

    Dietz, Jill; Lundgren, P; Veeramani, A; O'Rourke, C; Bernard, S; Djohan, R; Larson, J; Isakov, R; Yetman, R

    2012-10-01

    Skin-sparing mastectomy and prosthetic reconstruction can be complicated by poor surgical outcomes in large-breasted, obese women. This article describes a single surgeon's experience comparing conventional skin-sparing mastectomy (SSM) and skin-reduction mastectomy using an autologous vascularized inferior dermal/cutaneous sling (autoderm). From July 2007 to May 2012, patients undergoing skin-sparing mastectomy were evaluated for surgical outcomes. After July 2009, the surgeon performed skin-reduction mastectomies with autoderm (SRM-AD) on all patients with macromastia or grade 3-4 ptosis. Remaining patients in this time period (SSM-cont) underwent conventional skin-sparing mastectomies while all previous patients (historical) also underwent skin-sparing mastectomies (SSM-hist). A predictive model was used to compare the large historical patients (who would have had reduction mastectomy if available) with the smaller historical patients to evaluate the effect of the procedure. Body mass index (BMI) and specimen weight were higher in both the SRM group and large historical group. The hazard ratio for having skin-reduction mastectomy was 0.53 (P = 0.51) compared with the historical group. There was a total of 16 complications for the whole study. Smoking was the only significant risk factor. This study shows that mastectomy with prosthetic reconstruction using a skin-reduction technique with autoderm can be done safely with a low complication rate and improved cosmetic outcomes in the traditionally "at-risk" group of women with high BMI and large ptotic breasts.

  16. Pressure and Friction Injuries in Primary Care.

    Science.gov (United States)

    Phillips, Shawn; Seiverling, Elizabeth; Silvis, Matthew

    2015-12-01

    Pressure and friction injuries are common throughout the lifespan. A detailed history of the onset and progression of friction and pressure injuries is key to aiding clinicians in determining the underlying mechanism behind the development of the injury. Modifying or removing the forces that are creating pressure or friction is the key to both prevention and healing of these injuries. Proper care of pressure and friction injuries to the skin is important to prevent the development of infection. Patient education on positioning and ergonomics can help to prevent recurrence of pressure and friction injuries. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Pelleve procedure: an effective method for facial wrinkle reduction and skin tightening.

    Science.gov (United States)

    Stampar, Michael

    2011-05-01

    Devices using radiofrequency (RF) energy and electrical energy to deliver a controlled thermal injury to heat skin have proliferated within the nonablative skin treatment market since the introduction of Thermage in 2002. By delivering continuous monopolar RF energy, rather than pulsed heating, and repeatedly bringing the skin to therapeutic temperatures until maximal contraction is obtained, the Pelleve Procedure can give obvious cosmetic results confluently over all treated areas painlessly and with no downtime. In this article, the technique, mechanism of continuous RF heating, and apparent treatment requirements to produce these results are presented. Some controversies are also addressed. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Performance Analysis of a Fluidic Axial Oscillation Tool for Friction Reduction with the Absence of a Throttling Plate

    Directory of Open Access Journals (Sweden)

    Xinxin Zhang

    2017-04-01

    Full Text Available An axial oscillation tool is proved to be effective in solving problems associated with high friction and torque in the sliding drilling of a complex well. The fluidic axial oscillation tool, based on an output-fed bistable fluidic oscillator, is a type of axial oscillation tool which has become increasingly popular in recent years. The aim of this paper is to analyze the dynamic flow behavior of a fluidic axial oscillation tool with the absence of a throttling plate in order to evaluate its overall performance. In particular, the differences between the original design with a throttling plate and the current default design are profoundly analyzed, and an improvement is expected to be recorded for the latter. A commercial computational fluid dynamics code, Fluent, was used to predict the pressure drop and oscillation frequency of a fluidic axial oscillation tool. The results of the numerical simulations agree well with corresponding experimental results. A sufficient pressure pulse amplitude with a low pressure drop is desired in this study. Therefore, a relative pulse amplitude of pressure drop and displacement are introduced in our study. A comparison analysis between the two designs with and without a throttling plate indicates that when the supply flow rate is relatively low or higher than a certain value, the fluidic axial oscillation tool with a throttling plate exhibits a better performance; otherwise, the fluidic axial oscillation tool without a throttling plate seems to be a preferred alternative. In most of the operating circumstances in terms of the supply flow rate and pressure drop, the fluidic axial oscillation tool performs better than the original design.

  19. Contact conditions in skin-pass rolling

    DEFF Research Database (Denmark)

    Kijima, Hideo; Bay, Niels

    2007-01-01

    The special contact conditions in skin-pass rolling of steel strip is analysed by studying plane strain upsetting of thin sheet with low reduction applying long narrow tools and dry friction conditions. An extended sticking region is estimated by an elasto-plastic FEM analysis of the plane strain...... upsetting. This sticking region causes a highly inhomogeneous elasto-plastic deformation with large influence of work-hardening and friction. A numerical analysis of skin-pass rolling shows the same contact conditions, i.e. an extended sticking region around the center of the contact zone. The calculated...... size of the sticking region with varying contact length and pressure/reduction is experimentally verified by plane strain upsetting tests measuring the local surface deformation of the work pieces after unloading....

  20. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  1. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    Science.gov (United States)

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Skin and gonadal dose reduction during hip radiography of the bull

    International Nuclear Information System (INIS)

    Wood, A.K.W.; Blockey, deB.; Reynolds, K.M.; Leith, I.S.; Burns, P.A.

    1979-01-01

    Radiology is being used to an increasing extent in the clinical diagnosis of hip lameness in bulls. Consequent gonadal doses may have important implications in later breeding programmes. Skin and gonadal doses were recorded during hip radiography of 18 bulls. An additional 0.13 mm copper filtration reduced skin dose by more than one third, but had no effect on gonadal dose. The average radiation dose to the gonads was approximately halved by completely surrounding the scrotum with lead sheeting 0.95 mm in thickness. (author)

  3. [Friction: self-ligating brackets].

    Science.gov (United States)

    Thermac, Guilhem; Morgon, Laurent; Godeneche, Julien

    2008-12-01

    The manufacturers of self-ligating brackets advertise a reduction of the friction engendered between the wire and the bracket, which is an essential parameter for treatment's speed and comfort. We have compared the friction obtained with four types of self-ligating brackets - In-Ovation R, Damon 3, Smart Clip and Quick - with that of a standard bracket Omniarch associated with an elastomeric ligature. All bracket were tested on a bench of traction with three types of wires: steel .019"x.025", TMA .019"x.025" and NEO sentalloy F300 .020"x.020". The results confirm a clear friction reduction for all tested wire.

  4. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency.

    Science.gov (United States)

    Harth, Yoram

    2015-03-01

    In the last decade, Radiofrequency (RF) energy has proven to be safe and highly efficacious for face and neck skin tightening, body contouring, and cellulite reduction. In contrast to first-generation Monopolar/Bipolar and "X -Polar" RF systems which use one RF generator connected to one or more skin electrodes, multisource radiofrequency devices use six independent RF generators allowing efficient dermal heating to 52-55°C, with no pain or risk of other side effects. In this review, the basic science and clinical results of body contouring and cellulite treatment using multisource radiofrequency system (Endymed PRO, Endymed, Cesarea, Israel) will be discussed and analyzed. © 2015 Wiley Periodicals, Inc.

  5. METHOD OF DIMENSIONALITY REDUCTION IN CONTACT MECHANICS AND FRICTION: A USERS HANDBOOK. I. AXIALLY-SYMMETRIC CONTACTS

    Directory of Open Access Journals (Sweden)

    Valentin L. Popov

    2014-04-01

    Full Text Available The Method of Dimensionality Reduction (MDR is a method of calculation and simulation of contacts of elastic and viscoelastic bodies. It consists essentially of two simple steps: (a substitution of the three-dimensional continuum by a uniquely defined one-dimensional linearly elastic or viscoelastic foundation (Winkler foundation and (b transformation of the three-dimensional profile of the contacting bodies by means of the MDR-transformation. As soon as these two steps are completed, the contact problem can be considered to be solved. For axial symmetric contacts, only a small calculation by hand is required which does not exceed elementary calculus and will not be a barrier for any practically-oriented engineer. Alternatively, the MDR can be implemented numerically, which is almost trivial due to the independence of the foundation elements. In spite of their simplicity, all the results are exact. The present paper is a short practical guide to the MDR.

  6. 78 FR 47320 - Preventing Skin Cancer Through Reduction of UV Exposure

    Science.gov (United States)

    2013-08-05

    ... radiation and a history of sunburn (indicating both intensity of UV exposure and skin sensitivity to... experiencing one or more sunburns in the past 12 months, and sunburn is even more common among younger adults... sun protection is low, while excessive sun exposure, indoor tanning, and sunburn are common. HHS/CDC...

  7. Reduction of Skin Impedance by the Improvement of the Blood Circulation

    National Research Council Canada - National Science Library

    Bau, J

    2001-01-01

    ... 50% if the skin is soaked in warm water for 5 minutes. This method can be applied to all situations in which surface electrodes such as EKG, EEG, and EMG are used, especially in the case of patients with poor blood circulation...

  8. Treatment of unilateral giant fibroadenoma by breast reduction skin incision: the inverted "T" technique.

    Science.gov (United States)

    Achebe, J U; Njeze, G E; Okwesili, O R

    2014-01-01

    Giant fibroadenoma (GFA) has been defined as fibroadenoma greater than 5 cm in it's the widest diameter and/or weighing more than 500 g. A benign lesion, its size also raises the possibility of malignancy requiring differentiation from a malignant breast disease. When unilateral GFA presents with a severe breast asymmetry, due to its size, it is not correctable by simple enucleation alone. Postoperative asymmetry from volume and ptosis disparity results, which needs to be addressed at the primary surgery. The inverted "T" technique, which is effective in volume reduction and ptosis correction in breast hypertrophy, can be applied in the treatment of unilateral GFA. This is a retrospective review of all GFA treated by inverted "T" method. A retrospective review was carried out on all patients with GFA treated by inverted "T" skin pattern method over a period of 20 years (January 1988 to December 2007). The procedures were carried out at the University of Nigeria Teaching Hospital and the National Orthopedic Hospital, Enugu. Information, which included patients' demographics, pre-operative assessment, operative findings and outcome of surgery were obtained from the case files of the patients. The degree of ptosis was recorded for each patient. Diagnosis of GFA was made after clinical evaluation and pre-operative tissue biopsy. Immediate results of treatment were based on the patients' satisfaction, visual assessment of symmetry of size of breasts, correction of ptosis and position of nipple areola complex (NAC). A total of 27 patients underwent inverted "T" technique for excision of GFA in their breasts. Their average age was 17.5 years (range 12-25 years) delay in presentation ranged from 2 months to 15 months. In 16 patients (59.2%), the left breast was involved in GFA whilst the tumor occurred on the right breast in 11 (40.7%). The tumor weighed on the average 1500 g (range 655-2200 g). Average diameter of the tumor was 15 cm (range 12-20 cm). All quadrants of the

  9. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  10. Reduction of regulatory T cells in skin lesions but not in peripheral blood of patients with systemic scleroderma.

    Science.gov (United States)

    Klein, S; Kretz, C C; Ruland, V; Stumpf, C; Haust, M; Hartschuh, W; Hartmann, M; Enk, A; Suri-Payer, E; Oberle, N; Krammer, P H; Kuhn, A

    2011-08-01

    To determine the frequency and suppressive capacity of regulatory T cells (T(reg)) and their association with clinical parameters in patients with systemic scleroderma (SSc). Peripheral blood from 25 patients with SSc, 15 patients with localised scleroderma (LS) and 29 healthy controls (HC) was studied. Analysis of CD4(+) forkhead box P3 (Foxp3)(+) and CD4(+)CD25(++)Foxp3(+) T(reg) subpopulations was carried out by flow cytometry and cell proliferation was quantified by (3)H-thymidine incorporation. Quantitative analysis of T(reg) was further performed in skin biopsies from 17 patients with SSc and 21 patients with LS using anti-CD4 and anti-Foxp3 monoclonal antibodies for immunohistochemistry. The frequency of CD4(+)Foxp3(+) and CD4(+)CD25(++)Foxp3(+) T(reg) in peripheral blood from patients with SSc was not significantly different from that of patients with LS or HC. The suppressive capacity of CD4(+)CD25(++) T(reg) in SSc was also found to be similar to that of HC. Phenotypic and functional data revealed no significant difference between the limited or diffuse form of SSc. Moreover, therapy with bosentan showed no significant effect on the frequency of T(reg) during the course of the disease. However, the frequency of T(reg) in skin lesions from patients with SSc or LS, determined as the percentage of CD4(+) cells expressing Foxp3 in the inflammatory infiltrate, was significantly reduced compared with other inflammatory skin diseases. These results indicate that although the authors found no defect in the frequency or function of peripheral T(reg) subpopulations, the reduction of CD4(+)Foxp3(+) T(reg) in the skin of patients with SSc may be important in the pathogenesis of the disease.

  11. Feasibility of Performing Total Skin-Sparing Mastectomy in Patients With Prior Circumareolar Mastopexy or Reduction Mammoplasty Incisions.

    Science.gov (United States)

    Vaughn, Carolyn J; Peled, Anne Warren; Esserman, Laura J; Foster, Robert D

    2013-06-19

    Total skin-sparing mastectomy (TSSM) techniques with preservation of the nipple-areolar complex (NAC) skin are becoming increasingly popular due to improved cosmesis without compromise in oncologic safety. However, these techniques are not routinely offered to patients who have undergone previous breast surgery involving circumareolar incisions due to concern for NAC viability. We reviewed the outcomes of TSSM in 11 patients who underwent 21 TSSM procedures at our institution between 2008 and 2011. All patients had undergone previous breast surgery including reduction mammaplasty (7 breasts), mastopexy (4 breasts), augmentation (3 breasts), and combined mastopexy-augmentation (7 breasts). Incisions from previous breast surgery included circumareolar (11 cases) and Wise pattern (10 cases) incisions. All patients underwent TSSM through an inframammary incision followed by immediate tissue expander reconstruction and subsequent implant exchange. Patient demographics, previous breast surgery details, tumor and treatment characteristics, and postoperative complications were reviewed. Mean patient age was 43 years (range, 35-53 years) and mean body mass index was 24 kg/m (range, 19-32 kg/m). Mean follow-up was 10.2 months (range, 3-20 months).Indications for TSSM included prophylactic risk reduction in 10 cases, in situ cancer in 2 cases, and invasive cancer in 9 cases. Mean time from previous breast surgery to mastectomy was 6.9 years (range, 6 months-26 years). Major complications requiring operative reintervention included 1 (4.8%) case of cellulitis requiring expander removal and 2 (9.5%) cases of wound breakdown requiring operative closure. There were no complications involving the NAC. Total skin-sparing mastectomy with immediate reconstruction can safely be performed in patients who have undergone previous breast surgery involving circumareolar incisions. Our preferred technique in this group of patients is to perform TSSM through an inframammary incision with 2

  12. A systems based experimental approach to tactile friction

    NARCIS (Netherlands)

    Masen, Marc Arthur

    2011-01-01

    This work focuses on the friction in contacts where the human finger pad is one of the interacting surfaces. This ‘tactile friction’ requires a full understanding of the contact mechanics and the behaviour of human skin. The coefficient of friction cannot be considered as a property of the skin

  13. Use of negative-pressure dressings and split-thickness skin grafts following penile shaft reduction and reduction scrotoplasty in the management of penoscrotal elephantiasis.

    Science.gov (United States)

    Stokes, Tracey H; Follmar, Keith E; Silverstein, Ari D; Weizer, Alon Z; Donatucci, Craig F; Anderson, Everett E; Erdmann, Detlev

    2006-06-01

    From 1988 to 2005, 8 men who presented with penoscrotal elephantiasis underwent penile shaft degloving and reduction scrotoplasty, followed by transplantation of a split-thickness skin graft (STSG) to the penile shaft. The etiology of elephantiasis in these patients included self-injection of viscous fluid and postsurgical obstructive lymphedema. In the 6 most recent cases, negative-pressure dressings were applied over the STSG to promote graft take, and STSG take rate was 100%. The results of our series corroborate those of a previous report, which showed circumferential negative-pressure dressings to be safe and efficacious in bolstering STSGs to the penile shaft. Furthermore, these results suggest that the use of negative-pressure dressings may improve graft take in this patient population.

  14. Reduction of mandibular residual ridge after vestibuloplasty. A two-year follow-up study comparing the Edlan flap, mucosal and skin graft operations

    DEFF Research Database (Denmark)

    Hillerup, Søren; Eriksen, Erik; Solow, B

    1989-01-01

    Mandibular residual ridge reduction (RRR) after Edlan flap vestibuloplasty, buccal mucosal graft, and split skin graft vestibuloplasty was measured on lateral cephalometric radiographs obtained 1, 3, 6, 12 and 24 months postsurgery in 50 patients. The ridge reduction was most severe during...

  15. Contribution of natural ventilation in a double skin envelope to heating load reduction in winter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu-Min; Sohn, Jang-Yeul [Department of Architectural Engineering, Hanyang University, Seoul (Korea); Kim, Soo-Young [Department of Housing and Interior Design, Yonsei University, Seoul (Korea); Shin, Sung-Woo [Department of Architectural Engineering, Hanyang University, Ansan (Korea)

    2009-11-15

    This study examined the contribution of a double skin envelope (DSE) to the heating energy savings brought about by natural ventilation in office buildings. A DSE was applied to the east- and west-facing walls on an actual three-floor building. Field measurements and computer simulations were performed in winter. The results implied that the DSE on the west-facing wall contributed to energy savings when natural ventilation was supplied from the cavity to the indoor space. The DSE facing east was not recommended for energy savings by natural ventilation because of its smaller exposure to solar irradiance. Multiple linear regression models were developed based on field measurements to predict the temperature variation in the cavities, and effective control logics will be discussed in a future study. Of all variables, the outdoor air temperature was the most significant factor influencing the air temperature in the cavity. Computer simulation indicated that the air in the cavity was heated to the required temperature without consuming additional energy when the ratio of the diffused irradiance to global irradiance was smaller than 0.69. The cavity in the DSE worked as a thermal buffer zone and contributed to reducing heating energy consumption by 14.71% in January. (author)

  16. Friction dampers, the positive side of friction

    NARCIS (Netherlands)

    Lopez Arteaga, I.; Nijmeijer, H.; Busturia, J.M.; Sas, P.; Munck, de M.

    2004-01-01

    Friction is frequently seen as an unwanted phenomenon whose influence has to be either minimised or controlled. In this work one of the positive sides of friction is investigated: friction damping. Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of

  17. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 2: guinea pigs challenged with soman.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only decontamination product evaluated for delayed decontamination. In the GD delayed-decontamination experiments

  18. Efficacy studies of Reactive Skin Decontamination Lotion, M291 Skin Decontamination Kit, 0.5% bleach, 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents, part 1: guinea pigs challenged with VX.

    Science.gov (United States)

    Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D

    2011-03-01

    This report, first in a series of five, directly compares the efficacy of 4 decontamination products and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to VX. In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with VX and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Skin Exposure Reduction Paste Against Chemical Warfare Agents was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with VX. After a 2-hour challenge, any remaining VX was blotted off the animal, but no additional decontamination was done. Positive control animals were challenged with VX in the same manner as the treated animals, except that they received no treatment. In addition, the positive control animals were always challenged with 5% VX in isopropyl alcohol (IPA) solution, whereas the treatment animals received either neat (undiluted) VX or 5% VX in IPA solution. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the probit dose-response curves established for each treatment group and nontreated control animals. Significance in this report was defined as p decontamination experiments, the calculated PRs for Reactive Skin Decontamination Lotion (RSDL), 0.5% bleach, 1% soapy water, and the M291 Skin Decontamination Kit (SDK) were 66, 17, 16, and 1.1, respectively. Reactive Skin Decontamination Lotion was by far the most effective decontamination product tested and was significantly better than any of the other products. Bleach and soapy water provided equivalent and good (PR

  19. Ex vivo human skin evaluation of localized fat reduction and anti-aging effect by TriPollar radio frequency treatments.

    Science.gov (United States)

    Boisnic, Sylvie; Branchet, Marie Christine

    2010-02-01

    A wide variety of radio frequency (RF) treatments for localized fat and cellulite reduction as well as anti-aging are available nowadays, but only a few have shown the biological mechanism responsible for the clinical results. To determine the biological mechanism of the TriPollar RF device for localized fat and cellulite reduction as well as the collagen remodeling effect. Human skin samples were collected from abdominoplasty surgery and facial lifts, in order to evaluate the lipolytic and anti-aging effects of the apollo device powered by TriPollar RF technology using an ex vivo human skin model. The anti-cellulite effect was evaluated by the dosage of released glycerol and histological analysis of the hypodermis. Skin tightening was evaluated by morphometric analysis of collagen fibers and the dosage of collagen synthesis. Following TriPollar treatment, a significant increase of glycerol release by skin samples was found. The structure of fat cells was altered in shape and a modification of the fibrous tract was also detected in the fat layer. Additional findings indicated stimulation of the dermal fibroblasts with increased collagen synthesis. The detected alteration in the hypodermal layer is manifested by fat and cellulite reduction accompanied by structural and biochemical improvement of dermal collagen, which result in overall skin tightening.

  20. Vacuum friction

    Science.gov (United States)

    Barnett, Stephen M.; Sonnleitner, Matthias

    2018-03-01

    We know that in empty space there is no preferred state of rest. This is true both in special relativity but also in Newtonian mechanics with its associated Galilean relativity. It comes as something of a surprise, therefore, to discover the existence a friction force associated with spontaneous emission. The resolution of this paradox relies on a central idea from special relativity even though our derivation of it is non-relativistic. We examine the possibility that the physics underlying this effect might be explored in an ion trap, via the observation of a superposition of different mass states.

  1. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    Science.gov (United States)

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  2. Long pulsed Nd: YAG laser with inbuilt cool sapphire tip for long term hair reduction on type- IV and V skin: A prospective analysis of 200 patients

    Directory of Open Access Journals (Sweden)

    Nanda Soni

    2010-01-01

    Full Text Available Background: Laser hair reduction has become a very popular means to get rid of unwanted hair. Aims: We conducted the current study to evaluate the safety and efficacy of Nd: YAG laser on dark skin. We also evaluated the effect of increasing the gap between sessions on the long term efficacy of hair reduction achieved with long pulsed Nd: YAG laser. Methods: A prospective study was conducted on 200 consecutive female patients who underwent laser hair reduction for unwanted hair over the face, at Kaya skin clinic Delhi, with long pulsed Nd: YAG laser, from May 2006 to May 2009. The gap between sessions was increased from 2 nd session itself. Results were evaluated 6 months after 6 sessions. Also a note was made of worsening of hair growth or any side effects experienced the patient during any of the sessions. Results: A total of 200 female patients (160 skin type IV and 40 skin type V were followed up. Of these, 64 enrolled for lower face, 88 for chin or upper neck and 48 for upper lip. 6 months after 6 sessions, more than 50% improvement was seen in 68.7% of lower face, 89.69% cases of chin and 59% of upper lip cases. None of the patients had any worsening. Conclusions: The current study shows that long pulsed Nd: YAG is a very safe and effective means of hair reduction in skin types IV and V. Adequate fluences and increasing the gap between sessions from the 2 nd session could be the key to achieving long term hair reduction with Nd: YAG laser. Adequate cooling and proper shaving are the key factors determining the safety.

  3. Clinical and cost effectiveness evaluation of low friction and shear garments.

    Science.gov (United States)

    Smith, G; Ingram, A

    2010-12-01

    To determine the effectiveness of Parafricta low-friction garments in reducing the incidence and prevalence of pressure ulceration and to evaluate the curative aspects of these products on pre-existing skin breakdown within a hospital setting. Patients with a Waterlow score of >15 and who were unable to reposition independently were offered the low-friction undergarments and bootees. A total of 650 patient cases were initially reviewed. Of these, 204 met the criteria for use of the products in the 3 months prior to the start of the evaluation (cohort 1) and 165 patients met the criteria during the period when the garments were used (cohort 2). Data collected included pressure ulcer incidence, location, grading, and outcome of ulcer on discharge. Locally derived costs for length of stay, wound dressings, pressure-redistributing mattresses and additional cost of the low-friction garments were applied to build a cost-effectiveness model. In patients at risk of skin breakdown there was a statistically significant reduction in the number of patients who developed pressure ulcers following use of the low-friction garments in cohort 2 when compared with cohort 1 (16% reduction; p = 0.0286). In addition, the number of patients who were ulcer free on admission but who developed ulcers and then improved or completely healed before discharge was also statistically significant (41% increase; p = 0.0065) when cohort 2 was compared with cohort 1. Fewer patients admitted with ulcers deteriorated when using the low-friction garments (21% reduction; p = 0.0012). The costs, which were calculated by comparing patient throughput for these patients, suggest that the savings associated with preventing skin breakdown outweighed the cost of the products used (base case model indicated a saving of over £63,000 per 100 at risk patients). The results support the conclusion that low-friction garment products have a role to play in the prevention of skin breakdown, and appear to be both

  4. Microbubble drag reduction in liquid turbulent boundary layers

    International Nuclear Information System (INIS)

    Merkle, C.L.; Deutsch, S.

    1992-01-01

    The interactions between a dense cloud of small bubbles and a liquid turbulent boundary layer are reviewed on the basis of available experimental observations to understand and quantify their capability for reducing skin friction. Gas bubbles are generally introduced into the boundary layer by injection through a porous surface or by electrolysis. After injection, the bubbles stay near the wall in boundary-layer-like fashion giving rise to strong gradients in both velocity and gas concentration. In general, the magnitude of the skin friction reduction increases as the volume of bubbles in the boundary layer is increased until a maximum skin friction reduction of typically 80-90% of the undisturbed skin friction level is reached. The volumetric gas flow required for this maximum is nominally equal to the volume flow of the liquid in the boundary layer. Bubble size estimates indicate that in most microbubble experiments the bubbles have been intermediate in size between the inner and outer scales of the undisturbed boundary layer. Additional studies with other nondimensional bubble sizes would be useful. However, the bubble size is most likely controlled by the injection process, and considerably different conditions would be required to change this ratio appreciably. The trajectories of the bubble clouds are primarily determined by the random effects of turbulence and bubble-bubble interactions. The effects of buoyancy represent a weaker effect. The trajectories are unlike the deterministic trajectory of an individual bubble in a time-averaged boundary layer. Bubbles are most effective in high speed boundary layers and, for the bubble sizes tested to date, produce an effect that persists for some on hundred boundary layer thicknesses. Modeling suggests that microbubbles reduce skin friction by increasing the turbulence Reynolds number in the buffer layer in a manner similar to polymers

  5. An empirical model for friction in cold forging

    DEFF Research Database (Denmark)

    Bay, Niels; Eriksen, Morten; Tan, Xincai

    2002-01-01

    With a system of simulative tribology tests for cold forging the friction stress for aluminum, steel and stainless steel provided with typical lubricants for cold forging has been determined for varying normal pressure, surface expansion, sliding length and tool/work piece interface temperature...... of normal pressure and tool/work piece interface temperature. The model is verified by process testing measuring friction at varying reductions in cold forward rod extrusion. KEY WORDS: empirical friction model, cold forging, simulative friction tests....

  6. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF DRAGREDUCING SURFACE OF A REAL SHARK SKIN*

    Institute of Scientific and Technical Information of China (English)

    ZHANG De-yuan; LUO Yue-hao; LI Xiang; CHEN Hua-wei

    2011-01-01

    It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction,but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool.In this article, based on the real biological shark skin,the model of real shark skin is built through high-accurate scanning and data processing.The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed.In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.

  7. Fingerprints are unlikely to increase the friction of primate fingerpads.

    Science.gov (United States)

    Warman, Peter H; Ennos, A Roland

    2009-07-01

    It is generally assumed that fingerprints improve the grip of primates, but the efficiency of their ridging will depend on the type of frictional behaviour the skin exhibits. Ridges would be effective at increasing friction for hard materials, but in a rubbery material they would reduce friction because they would reduce contact area. In this study we investigated the frictional performance of human fingertips on dry acrylic glass using a modified universal mechanical testing machine, measuring friction at a range of normal loads while also measuring the contact area. Tests were carried out on different fingers, fingers at different angles and against different widths of acrylic sheet to separate the effects of normal force and contact area. The results showed that fingertips behaved more like rubbers than hard solids; their coefficients of friction fell at higher normal forces and friction was higher when fingers were held flatter against wider sheets and hence when contact area was greater. The shear stress was greater at higher pressures, suggesting the presence of a biofilm between the skin and the surface. Fingerprints reduced contact area by a factor of one-third compared with flat skin, however, which would have reduced the friction; this casts severe doubt on their supposed frictional function.

  8. Acoustics of friction

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  9. Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, Mehdi [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada); He, Youliang, E-mail: youliang.he@canada.ca [CanmetMATERIALS, Natural Resources Canada, Hamilton, ON L8P 0A5 (Canada); Hilinski, Erik J. [Tempel Steel Co., Chicago, IL 60640-1020 (United States); Edrisy, Afsaneh [Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, Windsor, ON N9B 3P4 (Canada)

    2017-05-01

    In order to promote the magnetically favourable <001>//ND texture (θ-fibre) and minimize the unfavourable <111>//ND fibre (γ-fibre) in non-oriented electrical steel, an unconventional cold rolling scheme was employed in this study, in which the cold rolling was carried out at an angle (i.e. 30°, 45°, 60°, and 90°) to the hot rolling direction (HRD). After annealing, two steel sheets (i.e. those after cold rolling at 60° and 45° to the HRD) were found to have considerably different textures from other sheets, i.e. showing the strongest and the weakest θ-fibre textures, respectively. These two sheets were then subjected to skin pass rolling to various reduction rates from 5–20% to investigate the effect of rolling reduction on the evolution of texture. It was found that during skin pass rolling, the cube texture ({001}<100>) was gradually weakened and the rotated cube orientation ({001}<110>) was strengthened. With the increase of the reduction rate, the {112}<110> orientation on the α-fibre became a major component. Upon final annealing, the cube texture was slightly restored, but the volume fraction was considerably lower than that before skin pass rolling. - Highlights: • Inclined cold rolling optimizes the textures of non-oriented electrical steels. • A 60° angle to the hot rolling direction results in the largest improvement of the favorable texture. • Skin pass rolling weakens the cube texture and promotes the {112}<110> texture. • Final annealing restores some of the cube texture and strengthens the rotated cube texture. • Low Taylor factor of the cube orientation leads to its easy deformation in skin pass rolling.

  10. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    Energy Technology Data Exchange (ETDEWEB)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  11. Frictional properties of jointed welded tuff

    International Nuclear Information System (INIS)

    Teufel, L.W.

    1981-07-01

    The results of the experiments on simulated joints in welded tuff from the Grouse Canyon Member of the Belted Range Tuff warrant the following conclusions: (1) The coefficient of friction of the joints is independent of normal stress at a given sliding velocity. (2) The coefficient of friction increases with both increasing time of stationary contact and decreasing sliding velocity. (3) Time and velocity dependence of friction is due to an increase in the real area of contact on the sliding surface, caused by asperity creep. (4) Joints in water-saturated tuff show a greater time and velocity dependence of friction than those in dehydrated tuff. (5) The enhanced time and velocity dependence of friction with water saturation is a result of increased creep at asperity contacts, which is in turn due to a reduction in the surface indentation hardness by hydrolytic weakening and/or stress corrosion cracking

  12. Friction characteristics for density of micro dimples using photolithography

    International Nuclear Information System (INIS)

    Chae, Young Jun; Kim, Seock Sam

    2005-01-01

    Surface texturing of tribological application is another attractive technology of friction reducing. Also, reduction of friction is therefore considered to be a necessary requirement for improved efficiency of machine. In this paper attempts to investigate the effect of density for micro-scale dimple pattern using photolithography on bearing steel flat mated with pin-on-disk. We demonstrated the lubrication mechanism for a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for lubrication condition. It is found that friction coefficient is depended on the density of surface pattern. It was thus verified that micro-scale dimple could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions from based on friction map. Lubrication condition regime has an influence on the friction coefficient induced the density of micro dimple

  13. Structural Damping with Friction Beams

    Directory of Open Access Journals (Sweden)

    L. Gaul

    2008-01-01

    Full Text Available In the last several years, there has been increasing interest in the use of friction joints for enhancing damping in structures. The joints themselves are responsible for the major part of the energy dissipation in assembled structures. The dissipated work in a joint depends on both the applied normal force and the excitation force. For the case of a constant amplitude excitation force, there is an optimal normal force which maximizes the damping. A ‘passive’ approach would be employed in this instance. In most cases however, the excitation force, as well as the interface parameters such as the friction coefficient, normal pressure distribution, etc., are not constant. In these cases, a ‘semi-active’ approach, which implements an active varying normal force, is necessary. For the ‘passive’ and ‘semi-active’ approaches, the normal force has to be measured. Interestingly, since the normal force in a friction joint influences the local stiffness, the natural frequencies of the assembled structure can be tuned by adjusting the normal force. Experiments and simulations are performed for a simple laboratory structure consisting of two superposed beams with friction in the interface. Numerical simulation of the friction interface requires non-linear models. The response of the double beam system is simulated using a numerical algorithm programmed in MATLAB which models point-to-point friction with the Masing friction model. Numerical predictions and measurements of the double beam free vibration response are compared. A practical application is then described, in which a friction beam is used to damp the vibrations of the work piece table on a milling machine. The increased damping of the table reduces vibration amplitudes, which in turn results in enhanced surface quality of the machined parts, reduction in machine tool wear, and potentially higher feed rates. Optimal positioning of the friction beams is based on knowledge of the mode

  14. Drag reduction: enticing turbulence, and then an industry.

    Science.gov (United States)

    Spalart, Philippe R; McLean, J Douglas

    2011-04-13

    We examine drag-reduction proposals, as presented in this volume and in general, first with concrete examples of how to bridge the distance from pure science through engineering to what makes inventions go into service; namely, the value to the public. We point out that the true drag reduction can be markedly different from an estimate based simply on the difference between turbulent and laminar skin friction over the laminarized region, or between the respective skin frictions of the baseline and the riblet-treated flow. In some situations, this difference is favourable, and is due to secondary differences in pressure drag. We reiterate that the benefit of riblets, if it is expressed as a percentage in skin-friction reduction, is unfortunately lower at full-size Reynolds numbers than in a small-scale experiment or simulation. The Reynolds number-independent measure of such benefits is a shift of the logarithmic law, or 'ΔU(+)'. Anticipating the design of a flight test and then a product, we note the relative ease in representing riblets or laminarization in computational fluid dynamics, in contrast with the huge numerical and turbulence-modelling challenge of resolving active flow control systems in a calculation of the full flow field. We discuss in general terms the practical factors that have limited applications of concepts that would appear more than ready after all these years, particularly riblets and laminar-flow control.

  15. Speckle reduction in optical coherence tomography images of human skin by a spatial diversity method - art. no. 66270P

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Martini; Thrane, Lars; Mogensen, M.

    2007-01-01

    the scheme with a mobile fiber-based time-domain real-time OCT system. Essential enhancement was obtained in image contrast when performing in vivo imaging of normal skin and lesions. Resulting images show improved delineation of structure in correspondence with the observed improvements in contrast...... system. Here, we consider a method that in principle can be fitted to most OCT systems without major modifications. Specifically, we address a spatial diversity technique for suppressing speckle noise in OCT images of human skin. The method is a variant of changing the position of the sample relative...

  16. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    International Nuclear Information System (INIS)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee

    2015-01-01

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  17. Origins of Rolling Friction

    Science.gov (United States)

    Cross, Rod

    2017-01-01

    When a hard object rolls on a soft surface, or vice versa, rolling friction arises from deformation of the soft object or the soft surface. The friction force can be described in terms of an offset in the normal reaction force or in terms of energy loss arising from the deformation. The origin of the friction force itself is not entirely clear. It…

  18. Reduction of different inflammatory cell types of the innate immune system in psoriatic skin during etanercept treatment

    NARCIS (Netherlands)

    de Groot, Marjan; Teunissen, Marcel B. M.; Picavet, Daisy I.; de Rie, Menno A.; Bos, Jan D.

    2010-01-01

    To investigate whether specific markers for innate immunity would diminish with successful treatment in psoriasis, we analyzed lesional and non-lesional skin biopsies taken from patients with moderate to severe psoriasis during 12 weeks of treatment with etanercept in correlation with the clinical

  19. MEMS Skin Friction Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Interdisciplinary Consulting Corporation proposes a sensor that offers the unique capability to make non-intrusive, direct, simultaneous mean and fluctuating shear...

  20. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  1. A Novel Time-Varying Friction Compensation Method for Servomechanism

    Directory of Open Access Journals (Sweden)

    Bin Feng

    2015-01-01

    Full Text Available Friction is an inevitable nonlinear phenomenon existing in servomechanisms. Friction errors often affect their motion and contour accuracies during the reverse motion. To reduce friction errors, a novel time-varying friction compensation method is proposed to solve the problem that the traditional friction compensation methods hardly deal with. This problem leads to an unsatisfactory friction compensation performance and the motion and contour accuracies cannot be maintained effectively. In this method, a trapezoidal compensation pulse is adopted to compensate for the friction errors. A generalized regression neural network algorithm is used to generate the optimal pulse amplitude function. The optimal pulse duration function and the pulse amplitude function can be established by the pulse characteristic parameter learning and then the optimal friction compensation pulse can be generated. The feasibility of friction compensation method was verified on a high-precision X-Y worktable. The experimental results indicated that the motion and contour accuracies were improved greatly with reduction of the friction errors, in different working conditions. Moreover, the overall friction compensation performance indicators were decreased by more than 54% and this friction compensation method can be implemented easily on most of servomechanisms in industry.

  2. Tuning the Friction of Silicon Surfaces Using Nanopatterns at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Jing Han

    2017-12-01

    Full Text Available Friction and wear become significant at small scale lengths, particularly in MEMS/NEMS. Nanopatterns are regarded as a potential approach to solve these problems. In this paper, we investigated the friction behavior of nanopatterned silicon surfaces with a periodical rectangular groove array in dry and wear-less single-asperity contact at the nanoscale using molecular dynamics simulations. The synchronous and periodic oscillations of the normal load and friction force with the sliding distance were determined at frequencies defined by the nanopattern period. The linear load dependence of the friction force is always observed for the nanopatterned surface and is independent of the nanopattern geometry. We show that the linear friction law is a formal Amontons’ friction law, while the significant linear dependence of the friction force-versus-real contact area and real contact area-versus-normal load captures the general features of the nanoscale friction for the nanopatterned surface. Interestingly, the nanopattern increases the friction force at the nanoscale, and the desired friction reduction is also observed. The enlargement and reduction of the friction critically depended on the nanopattern period rather than the area ratio. Our simulation results reveal that the nanopattern can modulate the friction behavior at the nanoscale from the friction signal to the friction law and to the value of the friction force. Thus, elaborate nanopatterning is an effective strategy for tuning the friction behavior at the nanoscale.

  3. Reduction of birefringence in a skin-layer of injection molded polymer strips using CO{sub 2} laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yasuo; Satoh, Isao; Saito, Takushi [Tokyo Inst. of Tech. (Japan). Dept. of Mechanical Intelligent Systems Engineering

    1995-12-31

    Injection molding of polymers is currently utilized for numerous industrial applications. Because of high productivity and stable quality of molded products, the injection-molding process makes the production costs lower, and therefore, is expected to spread more widely in the future. This paper deals with a technique for improving the optical quality of injection molded polymer products using radiative heating. The birefringence frozen in a skin-layer of the molded part was reduced by CO{sub 2} laser heating, and the efficiency of this technique was investigated experimentally. Namely, a simple numerical calculation was performed to estimate the heating efficiency of CO{sub 2} laser in the polymer, effects of radiation heating on the skin-layer of the molded polymer were observed by using a mold with transparent windows, and the residual birefringence frozen in the final molded specimen was measured. The results clearly showed that the birefringence in the skin-layer of injection molded polymer strips was reduced with CO{sub 2} laser heating. The authors believe that the proposed method for reducing the birefringence frozen in injection-molded polymer products is suitable for practical molding, because process time required for the injection-molding is only slightly increased with this method.

  4. Physics and control of wall turbulence for drag reduction.

    Science.gov (United States)

    Kim, John

    2011-04-13

    Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.

  5. SKIN CARE IN INFANTS

    Directory of Open Access Journals (Sweden)

    I. N. Zakharova

    2014-01-01

    Full Text Available Human skin is a complex organ in its structure. Numerous functions of the skin may be impaired in its pathology. Anatomical and physiological characteristics of the skin in children predispose to common diseases of the skin. Diaper dermatitis is one of the most common skin diseases during infancy and childhood. Diapered skin is exposed to friction and excessive hydration, has a higher pH than nondiapered skin, and is repeatedly soiled with feces that contains enzymes with high irritation potential for the skin. Diaper dermatitis may vary in clinical severity and course. Therapeutically, frequent diaper changes and adequate skin care are most important. Appropriate skin care can help to prevent the occurrence of diaper dermatitis and to speed up the healing of affected skin. This includes frequent diaper changes and aeration, gentle cleansing, and the use of a barrier cream. For the treatment of diaper dermatitis agents selected depending on the presence and severity of complications. For prevention and treatment of uncomplicated diaper dermatitis effective means of containing dexpantenol.

  6. FRICTION TORQUE IN THE SLIDE BEARINGS

    Directory of Open Access Journals (Sweden)

    BONDARENKO L. N.

    2016-09-01

    Full Text Available Summary. Problem statement. Until now slide bearings are used widely in engineering. But the calculation is made on obsolete method that is based on undetermined parameters such as wear of the bearing shell. It is accepted in the literature that if the shaft and liner material are homogeneous, the workpiece surface are cylindrical as they wear and contact between them occurs at all points contact arc. Research objective. The purpose of this study is determine a friction torque in the slide bearings of power-basis parameters. Conclusions. Since the friction is primarily responsible for wear of cinematic pairs “pin – liner” and “pivot – liner” slide bearings. It is shown that the friction torquesof angles wrap, that are obtained by the formulas and given in literature, are not only qualitatively but also quantitatively, namely, the calculation by literature to the formulas the friction torques are proportional to the angle wrap and the calculation by improved formulas the friction torques are inversely proportional to the angle wrap due to the reduction the normal pressure. Underreporting friction torque at large angle wrap is between 40 and 15 %. The difference in the magnitude of friction torque in the run-in and run-out cinematic pairs with real method of machining is 2...3 %, which it is possible to declare of reducing the finish of contacting surface of slide bearings.

  7. Energy based optimization of viscous–friction dampers on cables

    International Nuclear Information System (INIS)

    Weber, F; Boston, C

    2010-01-01

    This investigation optimizes numerically a viscous–friction damper connected to a cable close to one cable anchor for fastest reduction of the total mechanical cable energy during a free vibration decay test. The optimization parameters are the viscous coefficient of the viscous part and the ratio between the friction force and displacement amplitude of the friction part of the transverse damper. Results demonstrate that an almost pure friction damper with negligibly small viscous damping generates fastest cable energy reduction over the entire decay. The ratio between the friction force and displacement amplitude of the optimal friction damper differs from that derived from the energy equivalent optimal viscous damper. The reason for this is that the nonlinearity of the friction damper causes energy spillover from the excited to higher modes of the order of 10%, i.e. cables with attached friction dampers vibrate at several frequencies. This explains why the energy equivalent approach does not yield the optimal friction damper. Analysis of the simulation data demonstrates that the optimally tuned friction damper dissipates the same energy per cycle as if each modal component of the cable were damped by its corresponding optimal linear viscous damper

  8. Proximity friction reexamined

    International Nuclear Information System (INIS)

    Krappe, H.J.

    1989-01-01

    The contribution of inelastic excitations to radial and tangential friction form-factors in heavy-ion collisions is investigated in the frame-work of perturbation theory. The dependence of the form factors on the essential geometrical and level-density parameters of the scattering system is exhibited in a rather closed form. The conditions for the existence of time-local friction coefficients are discussed. Results are compared to form factors from other models, in particular the transfer-related proximity friction. For the radial friction coefficient the inelastic excitation mechanism seems to be the dominant contribution in peripheral collisions. (orig.)

  9. Skin graft

    Science.gov (United States)

    Skin transplant; Skin autografting; FTSG; STSG; Split thickness skin graft; Full thickness skin graft ... donor site. Most people who are having a skin graft have a split-thickness skin graft. This takes ...

  10. Finger pad friction and tactile perception of laser treated, stamped and cold rolled micro-structured stainless steel sheet surfaces

    NARCIS (Netherlands)

    Zhang, Sheng; Zeng, X.; Matthews, D.T.A.; Igartua, A.; Rodriguez Vidal, E.; Contreras Fortes, J.; Van Der Heide, E.

    2017-01-01

    Tactile perception is a complex system, which depends on frictional interactions between skin and counter-body. The contact mechanics of tactile friction is governed by many factors such as the state and properties of skin and counter-body. In order to discover the connection between perception and

  11. A case of peeling skin syndrome

    OpenAIRE

    Anil K Singhal; Devendra K Yadav; Bajrang Soni; Savita Arya

    2017-01-01

    Peeling skin syndrome is a very rare autosomal recessive disease characterized by widespread painless peeling of the skin in superficial sheets. Etiology is still unknown with an autosomal recessive inheritance. Less than 100 cases have been reported in the medical literature. We present a 32-year-old man having asymptomatic peeling of skin since birth. Sheets of skin were peeling from his neck, trunk, and extremities, following friction or rubbing especially if pre-soaked in water but sparin...

  12. Reduction of pain via platelet-rich plasma in split-thickness skin graft donor sites: a series of matched pairs

    Science.gov (United States)

    Miller, John D.; Rankin, Timothy M.; Hua, Natalie T.; Ontiveros, Tina; Giovinco, Nicholas A.; Mills, Joseph L.; Armstrong, David G.

    2015-01-01

    In the past decade, autologous platelet-rich plasma (PRP) therapy has seen increasingly widespread integration into medical specialties. PRP application is known to accelerate wound epithelialization rates, and may also reduce postoperative wound site pain. Recently, we observed an increase in patient satisfaction following PRP gel (Angel, Cytomedix, Rockville, MD) application to split-thickness skin graft (STSG) donor sites. We assessed all patients known to our university-based hospital service who underwent multiple STSGs up to the year 2014, with at least one treated with topical PRP. Based on these criteria, five patients aged 48.4±17.6 (80% male) were identified who could serve as their own control, with mean time of 4.4±5.1 years between operations. In both therapies, initial dressing changes occurred on postoperative day (POD) 7, with donor site pain measured by Likert visual pain scale. Paired t-tests compared the size and thickness of harvested skin graft and patient pain level, and STSG thickness and surface area were comparable between control and PRP interventions (p>0.05 for all). Donor site pain was reduced from an average of 7.2 (±2.6) to 3 (±3.7), an average reduction in pain of 4.2 (standard error 1.1, p=0.0098) following PRP use. Based on these results, the authors suggest PRP as a beneficial adjunct for reducing donor site pain following STSG harvest. PMID:25623477

  13. Reduction of pain via platelet-rich plasma in split-thickness skin graft donor sites: a series of matched pairs

    Directory of Open Access Journals (Sweden)

    John D. Miller

    2015-01-01

    Full Text Available In the past decade, autologous platelet-rich plasma (PRP therapy has seen increasingly widespread integration into medical specialties. PRP application is known to accelerate wound epithelialization rates, and may also reduce postoperative wound site pain. Recently, we observed an increase in patient satisfaction following PRP gel (Angel, Cytomedix, Rockville, MD application to split-thickness skin graft (STSG donor sites. We assessed all patients known to our university-based hospital service who underwent multiple STSGs up to the year 2014, with at least one treated with topical PRP. Based on these criteria, five patients aged 48.4±17.6 (80% male were identified who could serve as their own control, with mean time of 4.4±5.1 years between operations. In both therapies, initial dressing changes occurred on postoperative day (POD 7, with donor site pain measured by Likert visual pain scale. Paired t-tests compared the size and thickness of harvested skin graft and patient pain level, and STSG thickness and surface area were comparable between control and PRP interventions (p>0.05 for all. Donor site pain was reduced from an average of 7.2 (±2.6 to 3 (±3.7, an average reduction in pain of 4.2 (standard error 1.1, p=0.0098 following PRP use. Based on these results, the authors suggest PRP as a beneficial adjunct for reducing donor site pain following STSG harvest.

  14. Measurement of Normal and Friction Forces in a Rolling Process

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Wanheim, Tarras

    2004-01-01

    by the fric-tion conditions. To achieve this important informa-tion, measurements of the normal pressure and friction stresses in the deformation zone are re-quested. The direction of the friction stresses is changing during the rolling gap. At the entrance of the de-formation zone, the peripherical velocity...... of the roll is higher than for the incoming material, which causes frictional stresses at the material acting in the rolling direction. At the outlet of the rolling gap, the velocity of the deformed material exceeds the velocity of the roll, generating frictional stresses contrary to the direction of rolling....... In a narrow area in the deformation zone, the velocity of the de-formed material is equal to the velocity of the rolls. This area or line is named “neutral line”. The posi-tion of the neutral line depends on friction, reduc-tion ratio, diameter of the rolls, and width of the sheet....

  15. Friction mediated by redox-active supramolecular connector molecules.

    Science.gov (United States)

    Bozna, B L; Blass, J; Albrecht, M; Hausen, F; Wenz, G; Bennewitz, R

    2015-10-06

    We report on a friction study at the nanometer scale using atomic force microscopy under electrochemical control. Friction arises from the interaction between two surfaces functionalized with cyclodextrin molecules. The interaction is mediated by connector molecules with (ferrocenylmethyl)ammonium end groups forming supramolecular complexes with the cyclodextrin molecules. With ferrocene connector molecules in solution, the friction increases by a factor of up to 12 compared to control experiments without connector molecules. The electrochemical oxidation of ferrocene to ferrocenium causes a decrease in friction owing to the lower stability of ferrocenium-cyclodextrin complex. Upon switching between oxidative and reduction potentials, a change in friction by a factor of 1.2-1.8 is observed. Isothermal titration calorimetry reveals fast dissociation and rebinding kinetics and thus an equilibrium regime for the friction experiments.

  16. On friction of Nb-Nb pair in He1 and He2

    International Nuclear Information System (INIS)

    Zinenko, S.A.; Karapetyan, S.S.; Silin, A.A.

    1990-01-01

    Peculiarities of manifestation of the effect of anomalous friction of superconductors (AFS) in He1 and He2 are studied. Helium thermodynamic state effect on the character of friction interaction of Nb-Nb pair velocity and reduction ratio for friction coefficient is studied. The intensity of heat removal released from friction contact region is estimated, the necessary and sufficient conditions for AFC effect manifestation are ascertained using characteristic relaxation time concept. Dependences for Nb-Nb pair friction coefficient in a superconducting state on the time of friction interaction in gaseous helium, He1, He2 are presented

  17. Tribology of human skin and mechanical skin equivalents in contact with textiles

    NARCIS (Netherlands)

    Derler, S.; Schrade, G.U.; Gerhardt, L.C.

    2007-01-01

    The friction of untreated human skin (finger) against a reference textile was investigated with 12 subjects using a force plate. In touch experiments, in which the subjects assessed the surface roughness of the textile at normal loads of 1.5 ± 0.7 N, the average friction coefficients ranged from

  18. Skin Diseases: Skin Health and Skin Diseases

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Skin Health and Skin Diseases Past Issues / Fall 2008 Table of Contents ... acne to wrinkles Did you know that your skin is the largest organ of your body? It ...

  19. Investigation of stormwater quality improvements utilizing permeable friction course (PFC).

    Science.gov (United States)

    2010-09-01

    This report describes research into the water quality and hydraulics of the Permeable Friction Course (PFC). : Water quality monitoring of 3 locations in the Austin area indicates up to a 90 percent reduction in pollutant : discharges from PFC compar...

  20. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  1. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.

    Science.gov (United States)

    Su, Bin; Li, Mei; Lu, Qinghua

    2010-04-20

    Superhydrophobic surfaces in nature such as legs of water striders can get an extra supporting force from the deformed water surface they contact, leading to an anticipation of using water-repellent surfaces on ship and even submarine hulls to reduce friction drag. Here, we first fabricate superhydrophobic coatings with microstructures on glass balls by introducing hydrophobic silica nanoparticles into a polyethylene terephthalate (PET) film. Then, the movement of a superhydrophobic ball on and below water surface is investigated and compared with that of a highly hydrophilic normal glass ball. The results reveal that a superhydrophobic ball can fall more slowly under water compared with a normal glass ball, because the dense microbubbles trapped at the solid/water interface around the superhydrophobic ball act not as a reducer, but as an enhancer for the friction drag. In contrast, the faster movement of a superhydrophobic ball on the water surface can be mainly attributed to the great reduction of skin friction owing to the increased area of the solid/atmosphere interface.

  2. Science 101: What Causes Friction?

    Science.gov (United States)

    Robertson, Bill

    2014-01-01

    Defining friction and asking what causes it might seem like a trivial question. Friction seems simple enough to understand. Friction is a force between surfaces that pushes against things that are moving or tending to move, and the rougher the surfaces, the greater the friction. Bill Robertson answers this by saying, "Well, not exactly".…

  3. Friction stir welding tool

    Science.gov (United States)

    Tolle,; Charles R. , Clark; Denis E. , Barnes; Timothy, A [Ammon, ID

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  4. Clinical efficacy of omalizumab in chronic spontaneous urticaria is associated with a reduction of FcεRI-positive cells in the skin.

    Science.gov (United States)

    Metz, Martin; Staubach, Petra; Bauer, Andrea; Brehler, Randolf; Gericke, Janine; Kangas, Michael; Ashton-Chess, Joanna; Jarvis, Philip; Georgiou, Panayiotis; Canvin, Janice; Hillenbrand, Rainer; Erpenbeck, Veit J; Maurer, Marcus

    2017-01-01

    Background. Treatment with omalizumab, a humanized recombinant monoclonal anti-IgE antibody, results in clinical efficacy in patients with Chronic Spontaneous Urticaria (CSU). The mechanism of action of omalizumab in CSU has not been elucidated in detail. Objectives. To determine the effects of omalizumab on levels of high affinity IgE receptor-positive (FcεRI + ) and IgE-positive (IgE + ) dermal cells and blood basophils. Treatment efficacy and safety were also assessed. Study design. In a double-blind study, CSU patients aged 18‑75 years were randomized to receive 300 mg omalizumab (n=20) or placebo (n=10) subcutaneously every 4 weeks for 12 weeks. Changes in disease activity were assessed by use of the weekly Urticaria Activity Score (UAS7). Circulating IgE levels, basophil numbers and levels of expression of FcεRI + and IgE + cells in the skin and in blood basophils were determined. Results. Patients receiving omalizumab showed a significantly greater decrease in UAS7 compared with patients receiving placebo. At Week 12 the mean difference in UAS7 between treatment groups was -14.82 (p=0.0027), consistent with previous studies. Total IgE levels in serum were increased after omalizumab treatment and remained elevated up to Week 12. Free IgE levels decreased after omalizumab treatment. Mean levels of FcεRI + skin cells in patients treated with omalizumab 300 mg were decreased at Week 12 compared with baseline in the dermis of both non-lesional and lesional skin, reaching levels comparable with those seen in healthy volunteers (HVs). There were no statistically significant changes in mean FcɛRI + cell levels in the placebo group. Similar results were seen for changes in IgE + cells, although the changes were not statistically significant. The level of peripheral blood basophils increased immediately after treatment start and returned to Baseline values after the follow-up period. The levels of FcεRI and IgE expression on peripheral blood basophils were

  5. Frictional stability-permeability relationships for fractures in shales

    Science.gov (United States)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  6. Reflections on Friction in Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Yair Rezek

    2010-08-01

    Full Text Available Distinctly quantum friction effects of three types are surveyed: internalfriction, measurement-induced friction, and quantum-fluctuation-induced friction. We demonstrate that external driving will lead to quantum internal friction, and critique the measurement-based interpretation of friction. We conclude that in general systems will experience internal and external quantum friction over and beyond the classical frictional contributions.

  7. Streamlined vessels for speedboats: Macro modifications of shark skin design applications

    Science.gov (United States)

    Ibrahim, M. D.; Amran, S. N. A.; Zulkharnain, A.; Sunami, Y.

    2018-01-01

    Functional properties of shark denticles have caught the attention of engineers and scientist today due to the hydrodynamic effects of its skin surface roughness. The skin of a fast swimming shark reveals riblet structures that help to reduce skin friction drag, shear stresses, making its movement to be more efficient and faster. Inspired by the structure of the shark skin denticles, our team has conducted a study on alternative on improving the hydrodynamic design of marine vessels by applying the simplified version of shark skin skin denticles on the surface hull of the vessels. Models used for this study are constructed and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained shows that the presence of biomimetic shark skin implemented on the vessels give improvements in the maximum speed as well as reducing the drag force experience by the vessels. The pattern of the wave generated post cruising area behind the vessels can also be observed to reduce the wakes and eddies. Theoretically, reduction of drag force provides a more efficient vessel with a better cruising speed. To further improve on this study, the authors are now actively arranging an experimental procedure in order to verify the numerical results obtained by CFD. The experimental test will be carried out using an 8 metre flow channel provided by University Malaysia Sarawak, Malaysia.

  8. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  9. Chemical origins of frictional aging.

    Science.gov (United States)

    Liu, Yun; Szlufarska, Izabela

    2012-11-02

    Although the basic laws of friction are simple enough to be taught in elementary physics classes and although friction has been widely studied for centuries, in the current state of knowledge it is still not possible to predict a friction force from fundamental principles. One of the highly debated topics in this field is the origin of static friction. For most macroscopic contacts between two solids, static friction will increase logarithmically with time, a phenomenon that is referred to as aging of the interface. One known reason for the logarithmic growth of static friction is the deformation creep in plastic contacts. However, this mechanism cannot explain frictional aging observed in the absence of roughness and plasticity. Here, we discover molecular mechanisms that can lead to a logarithmic increase of friction based purely on interfacial chemistry. Predictions of our model are consistent with published experimental data on the friction of silica.

  10. Nanoscale electrowetting effects observed by using friction force microscopy.

    Science.gov (United States)

    Revilla, Reynier; Guan, Li; Zhu, Xiao-Yang; Yang, Yan-Lian; Wang, Chen

    2011-06-21

    We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region. © 2011 American Chemical Society

  11. Your Skin

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Skin KidsHealth / For Kids / Your Skin What's in this ... body) are really dead skin cells. Bye-Bye Skin Cells These old cells are tough and strong, ...

  12. Frictional coefficient depending on active friction radius with BPV ...

    African Journals Online (AJOL)

    Frictional coefficient depending on active friction radius with BPV and BTV in automobile disc braking system. ... International Journal of Engineering, Science and Technology. Journal Home · ABOUT ... AJOL African Journals Online. HOW TO ...

  13. Drag reduction by dimples? - A complementary experimental/numerical investigation

    International Nuclear Information System (INIS)

    Lienhart, Hermann; Breuer, Michael; Koeksoy, Cagatay

    2008-01-01

    The paper is concerned with an experimental and numerical investigation of the turbulent flow over dimpled surfaces. Shallow dimples distributed regularly over the wall of a plane channel with large aspect ratio are used to study their effect on the friction drag. The resulting pressure drop in the channel was measured for smooth and dimpled walls. In addition to these investigations on internal flows, an external flow study was performed and boundary-layer profiles were measured using a Pitot-tube rake. Complementary to the measurements, direct numerical simulations for the internal flow configuration with and without dimples were carried out for two different grid resolutions and analyzed in detail. The objective was to clarify whether or not dimples cause reduction of the skin-friction drag

  14. Internal friction in uranium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1975-01-01

    Results are presented of studies conducted to relate internal friction measurements in U to allotropic transformations. It was found that several internal friction peaks occur in α-uranium whose magnitude changed drastically after annealing in the β phase. All of the allotropic transformations in uranium are diffusional in nature under slow heating and cooling conditions. Creep at regions of high stress concentration appears to be responsible for high temperature internal friction in α-uranium. The activation energy for grain boundary relaxation in α-uranium was found to be 65.1 +- 4 kcal/mole. Impurity atoms interfere with the basic mechanism for grain boundary relaxation resulting in a distribution in activation energies. A considerable distribution in ln tau 0 was also found which is a measure of the distribution in local order and in the Debye frequency around a grain boundary

  15. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  16. Friction and wear properties of ZrO2/SiO2 composite nanoparticles

    International Nuclear Information System (INIS)

    Li Wei; Zheng Shaohua; Cao Bingqiang; Ma Shiyu

    2011-01-01

    In this article, the lubrication properties of ZrO 2 /SiO 2 composite nanoparticles modified with aluminum zirconium coupling agent as additives in lubricating oil under variable applied load and concentration fraction were reported. It was demonstrated that the modified nanoparticles as additives in lubrication can effectively improve the lubricating properties. Under an optimized concentration of 0.1 wt%, the average friction coefficient was reduced by 16.24%. This was because the nanoparticles go into the friction zone with the flow of lubricant, and then the sliding friction changed to rolling friction with a result of the reduction of the friction coefficient.

  17. Labour market frictions and migration

    NARCIS (Netherlands)

    Cremers, Jan

    2016-01-01

    The 4th contribution to the series INT-AR papers is dedicated to the methods of assessing labour market frictions. The paper provides a (brief) international comparison of the role of labour migration in solving these frictions.

  18. Finger pad friction and its role in grip and touch

    Science.gov (United States)

    Adams, Michael J.; Johnson, Simon A.; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-01-01

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function. PMID:23256185

  19. Finger pad friction and its role in grip and touch.

    Science.gov (United States)

    Adams, Michael J; Johnson, Simon A; Lefèvre, Philippe; Lévesque, Vincent; Hayward, Vincent; André, Thibaut; Thonnard, Jean-Louis

    2013-03-06

    Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick-slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function.

  20. Friction effects on lateral loading behavior of rigid piles

    DEFF Research Database (Denmark)

    Zania, Varvara; Hededal, Ole

    2012-01-01

    taking into account the shear frictional resistance along the pile. For this purpose efficient three dimensional finite element models of different diameter have been developed. The increase of the side friction and of the diameter of the pile is shown to alter the failure pattern and increase...... the lateral capacity of the pile. The obtained p - y curves demonstrate the importance of the aforementioned parameters in the design of rigid piles, as the reduction of friction along the interface reduces not only the ultimate load but also the stiffness of the soil-pile response. Read More: http...

  1. Frictions in Project-Based Supply of Permits

    International Nuclear Information System (INIS)

    Liski, M.; Virrankoski, J.

    2004-01-01

    Emissions trading in climate change can entail large overall cost savings and transfers between developed and developing countries. However, the search for acceptable JI or CDM projects implies a deviation from the perfect market framework used in previous estimations. Our model combines the search market for projects with a frictionless permit market to quantify the supply-side frictions in the CO2 market. We also decompose the effects of frictions into the effects of search friction, bargaining, and bilateralism. A calibration using previous cost estimates of CO2 reductions illustrate changes in cost savings and allocative implications

  2. Friction in sheet metal forming

    DEFF Research Database (Denmark)

    Wiklund, D.; Liljebgren, M.; Berglund, J.

    2010-01-01

    and calls for functional tool surfaces that are durable in these severe tribological conditions. In this study the influence of tool surface topography on friction has been investigated. The frictional response was studied in a Bending Under Tension test. The results did show that a low frictional response...

  3. Intelligent Flow Friction Estimation.

    Science.gov (United States)

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  4. Student figures in friction

    DEFF Research Database (Denmark)

    Nielsen, Gritt B.

    , students' room for participation in their own learning, influenced by demands for efficiency, flexibility and student-centred education. The thesis recasts the anthropological endeavour as one of ‘figuration work'. That is, ‘frictional events' are explored as moments when conflicting figures...

  5. Coulomb Friction Damper

    Science.gov (United States)

    Appleberry, W. T.

    1983-01-01

    Standard hydraulic shock absorber modified to form coulomb (linear friction) damper. Device damps very small velocities and is well suited for use with large masses mounted on soft springs. Damping force is easily adjusted for different loads. Dampers are more reliable than fluid dampers and also more economical to build and to maintain.

  6. Intelligent Flow Friction Estimation

    Directory of Open Access Journals (Sweden)

    Dejan Brkić

    2016-01-01

    Full Text Available Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ. In the present study, a noniterative approach using Artificial Neural Network (ANN was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re and the relative roughness of pipe (ε/D were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re and the relative roughness (ε/D ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  7. Friction welding method

    International Nuclear Information System (INIS)

    Ishida, Ryuichi; Hatanaka, Tatsuo.

    1969-01-01

    A friction welding method for forming a lattice-shaped base and tie plate supporter for fuel elements is disclosed in which a plate formed with a concavity along its edge is pressure welded to a rotating member such as a boss by longitudinally contacting the projecting surfaces remaining on either side of the concavity with the rotating member during the high speed rotation thereof in the presence of an inert gas. Since only the two projecting surfaces of the plate are fused by friction to the rotary member, heat expansion is absorbed by the concavity to prevent distortion; moreover, a two point contact surface assures a stable fitting and promotes the construction of a rigid lattice in which a number of the abovementioned plates are friction welded between rotating members to form any desired complex arrangement. The inert has serves to protect the material quality of the contacting surfaces from air during the welding step. The present invention thus provides a method in which even Zircaloy may be friction welded in place of casting stainless steel in the construction of supporting lattices to thereby enhance neutron economy. (K. J. Owens)

  8. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  9. Internal rotor friction instability

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  10. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments

    International Nuclear Information System (INIS)

    Palacio, Manuel; Bhushan, Bharat

    2008-01-01

    Future micro/nanodevices will contain very small features such that liquid lubrication is not practical and inherent lubricity is needed. In this study, a nanoscale friction investigation was carried out during the manipulation of Au and SiO 2 nanoparticles on silicon using atomic force microscopy (AFM). Nanoparticle sliding was characterized by quantifying the lateral force associated with the AFM tip twisting as it hits the particle edge. The friction force varies with particle area and humidity, illustrating how meniscus forces on nanoparticles affect friction. A large tip slid on the nanoparticle-coated surface exhibited friction reduction due to nanoparticle sliding and contact area reduction

  11. Skin maintenance in the bed-ridden patient.

    Science.gov (United States)

    Flam, E

    1990-01-01

    The skin of a patient at risk of developing pressure ulcers can resist deterioration if the conditions that weaken it are controlled. The purpose of this study is to determine the relationships between hydration level, skin temperature, and friction in patients at risk of development or reoccurrence of pressure ulcers and in patients with newly created surgical flaps. Two systems were considered: the standard hospital mattress covered with a thick occlusive plastic film and a 50/50 cotton/polyester bed sheet and the KinAir and the TheraPulse support systems with nylon/High Air Loss GORE-TEX (n/HAL) laminate cushions and coverlets. The moisture vapor management and aeration capabilities of the support system materials were determined, and the frictional force generated against the skin was measured. The results revealed that excessive hydration increases the level of friction against the skin while at the same time reducing the mechanical properties of the protective skin layers. The n/HAL laminate coverlet also had a significantly lower skin friction coefficient than the 50/50 cotton/polyester bed sheet. The significance of these findings is that over-hydration accelerates the abrading action on the skin by increasing the frictional force and decreasing the shear resistance of the skin.

  12. Effect of Surface Roughness on Polymer Drag Reduction with a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven

    2007-11-01

    A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.

  13. A 12-week clinical and instrumental study evaluating the efficacy of a multisource radiofrequency home-use device for wrinkle reduction and improvement in skin tone, skin elasticity, and dermal collagen content.

    Science.gov (United States)

    Sadick, Neil S; Harth, Yoram

    2016-12-01

    This study was performed in order to evaluate the safety and efficacy of a new handheld home-use multisource radiofrequency device on facial rejuvenation. Forty-seven male and female subjects were enrolled. All subjects received a NEWA ® 3DEEP ™ home-use device (EndyMed Medical, Caesarea, Israel) to be used on facial skin three times per week for the first four weeks and then reduced to two times per week for the following eight weeks. Assessments included expert clinical grading for efficacy, instrumental evaluation, image analysis, and photography. Forty-five subjects completed the study; all subjects reported the treatment to be painless with only mild erythema lasting up to 15 minutes post-treatment. No other adverse events were reported. Statistically significant improvements were noted in the appearance of marionette lines, skin brightness, elasticity, firmness, lift (facial), lift (jawline), texture/smoothness, tone, and radiance/luminosity by expert visual assessment. Statistically significant improvements in skin firmness and elasticity were found using a Cutometer MPA 580, as well as in collagen and hemoglobin content of the skin using a SIAscope. The results of this study indicate that the NEWA ® multisource radiofrequency home-use device is effective in self-administered skin rejuvenation.

  14. FEM simulation of friction testing method based on combined forward rod-backward can extrusion

    DEFF Research Database (Denmark)

    Nakamura, T; Bay, Niels; Zhang, Z. L

    1997-01-01

    A new friction testing method by combined forward rod-backward can extrusion is proposed in order to evaluate frictional characteristics of lubricants in forging processes. By this method the friction coefficient mu and the friction factor m can be estimated along the container wall and the conical...... curves are obtained by rigid-plastic FEM simulations in a combined forward rod-backward can extrusion process for a reduction in area R-b = 25, 50 and 70 percent in the backward can extrusion. It is confirmed that the friction factor m(p) on the punch nose in the backward cart extrusion has almost...... in a mechanical press with aluminium alloy A6061 as the workpiece material and different kinds of lubricants. They confirm the analysis resulting in reasonable values for the friction coefficient and the friction factor....

  15. Skin Conditions

    Science.gov (United States)

    Your skin is your body's largest organ. It covers and protects your body. Your skin Holds body fluids in, preventing dehydration Keeps harmful ... it Anything that irritates, clogs, or inflames your skin can cause symptoms such as redness, swelling, burning, ...

  16. Quantum tunneling with friction

    Science.gov (United States)

    Tokieda, M.; Hagino, K.

    2017-05-01

    Using the phenomenological quantum friction models introduced by P. Caldirola [Nuovo Cimento 18, 393 (1941), 10.1007/BF02960144] and E. Kanai [Prog. Theor. Phys. 3, 440 (1948), 10.1143/ptp/3.4.440], M. D. Kostin [J. Chem. Phys. 57, 3589 (1972), 10.1063/1.1678812], and K. Albrecht [Phys. Lett. B 56, 127 (1975), 10.1016/0370-2693(75)90283-X], we study quantum tunneling of a one-dimensional potential in the presence of energy dissipation. To this end, we calculate the tunneling probability using a time-dependent wave-packet method. The friction reduces the tunneling probability. We show that the three models provide similar penetrabilities to each other, among which the Caldirola-Kanai model requires the least numerical effort. We also discuss the effect of energy dissipation on quantum tunneling in terms of barrier distributions.

  17. Skin abscess

    Science.gov (United States)

    Abscess - skin; Cutaneous abscess; Subcutaneous abscess; MRSA - abscess; Staph infection - abscess ... Skin abscesses are common and affect people of all ages. They occur when an infection causes pus ...

  18. Bioinspired orientation-dependent friction.

    Science.gov (United States)

    Xue, Longjian; Iturri, Jagoba; Kappl, Michael; Butt, Hans-Jürgen; del Campo, Aránzazu

    2014-09-23

    Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.

  19. A case of peeling skin syndrome

    Directory of Open Access Journals (Sweden)

    Anil K Singhal

    2017-01-01

    Full Text Available Peeling skin syndrome is a very rare autosomal recessive disease characterized by widespread painless peeling of the skin in superficial sheets. Etiology is still unknown with an autosomal recessive inheritance. Less than 100 cases have been reported in the medical literature. We present a 32-year-old man having asymptomatic peeling of skin since birth. Sheets of skin were peeling from his neck, trunk, and extremities, following friction or rubbing especially if pre-soaked in water but sparing palm and soles. Histologically, there was epidermal separation at the level of stratum corneum, just above the stratum granulosum. This case is being presented due to its rarity.

  20. A Case of Peeling Skin Syndrome.

    Science.gov (United States)

    Singhal, Anil K; Yadav, Devendra K; Soni, Bajrang; Arya, Savita

    2017-01-01

    Peeling skin syndrome is a very rare autosomal recessive disease characterized by widespread painless peeling of the skin in superficial sheets. Etiology is still unknown with an autosomal recessive inheritance. Less than 100 cases have been reported in the medical literature. We present a 32-year-old man having asymptomatic peeling of skin since birth. Sheets of skin were peeling from his neck, trunk, and extremities, following friction or rubbing especially if pre-soaked in water but sparing palm and soles. Histologically, there was epidermal separation at the level of stratum corneum, just above the stratum granulosum. This case is being presented due to its rarity.

  1. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  2. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    Science.gov (United States)

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  3. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  4. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  5. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    Science.gov (United States)

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  6. Skin Cancer.

    Science.gov (United States)

    Linares, Miguel A; Zakaria, Alan; Nizran, Parminder

    2015-12-01

    Skin cancer accounts for most malignancies across the globe. They are primarily divided into melanoma and nonmelanoma skin malignancies. Nonmelanoma skin cancer includes basal cell carcinoma and squamous cell carcinoma. Fair skin and chronic ultraviolet B exposure are the most important risk factors. Primary prevention is achieved by avoiding sun exposure and tanning beds. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  8. Friction and wear calculation methods

    CERN Document Server

    Kragelsky, I V; Kombalov, V S

    1981-01-01

    Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a

  9. Reduction of residual stresses in internal skin of transient zones of PWR steam generator expanded tubes: tests with a ''rotating brush''

    International Nuclear Information System (INIS)

    Vidal, P.

    1984-04-01

    A process aiming at preventing or suppressing cracks under stress corrosion on the primary side in the expanded zones of PWR steam generator tubes has been studied; it consists in hammering the internal skin of tubes in these zones what reduces the level of residual expanding stresses to lower values around 100-150 MPa without modifying the stress level in external skin. Tests in magnesium chloride to estimate the residual stresses of tubes in low carbon stainless austenitic steel 18% Cr-12% Ni with molybdene [fr

  10. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  11. Skin tightening.

    Science.gov (United States)

    Woolery-Lloyd, Heather; Kammer, Jenna N

    2011-01-01

    Skin tightening describes the treatment of skin laxity via radiofrequency (RF), ultrasound, or light-based devices. Skin laxity on the face is manifested by progressive loss of skin elasticity, loosening of the connective tissue framework, and deepening of skin folds. This results in prominence of submandibular and submental tissues. Genetic factors (chronological aging) and extrinsic factors (ultraviolet radiation) both contribute to skin laxity. There are many RF, ultrasound, and light-based devices directed at treating skin laxity. All of these devices target and heat the dermis to induce collagen contraction. Heating of the dermis causes collagen denaturation and immediate collagen contraction in addition to long-term collagen remodeling. Via RF, light, or ultrasound, these skin tightening devices deliver heat to the dermis to create new collagen and induce skin tightening. This chapter will provide an overview of the various skin tightening devices. Copyright © 2011 S. Karger AG, Basel.

  12. Understanding Friction Stir Welding

    Science.gov (United States)

    Nunes, A. C., Jr.

    2018-01-01

    This Technical Memorandum explains the friction stir welding process in terms of two basic concepts: the concentration of deformation in a shear surface enveloping the tool and the composition of the overall plastic flow field around the tool from simple flow field components. It is demonstrated how weld structure may be understood and torque, drag, and lateral tool forces may be estimated using these concepts. Some discrepancies between computations and accompanying empirical data are discussed in the text. This work is intended to be helpful to engineers in diagnosing problems and advancing technology.

  13. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  14. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  15. Frictional behaviour of high performance fibrous tows: Friction experiments

    NARCIS (Netherlands)

    Cornelissen, Bo; Rietman, Bert; Akkerman, Remko

    2013-01-01

    Tow friction is an important mechanism in the production and processing of high performance fibrous tows. The frictional behaviour of these tows is anisotropic due to the texture of the filaments as well as the tows. This work describes capstan experiments that were performed to measure the

  16. Local full-thickness skin graft of the donor arm--a novel technique for the reduction of donor site morbidity in radial forearm free flap.

    Science.gov (United States)

    Riecke, B; Assaf, A T; Heiland, M; Al-Dam, A; Gröbe, A; Blessmann, M; Wikner, J

    2015-08-01

    A novel technique to reduce donor site morbidity after radial forearm free flap (RFFF) harvest, using a local full-thickness skin graft (FTSG), is described. Thirty consecutive patients undergoing RFFF for head and neck reconstruction were enrolled in a prospective study. Donor site defect closure was performed with spindle-shaped FTSGs excised from the wavelike skin incision made for the vascular pedicle. Both the removal site of the FTSG on the volar forearm and the covered RFFF donor site healed uneventfully in 29 cases, with no impairment of function related to the skin graft. No skin graft failure and no exposure, tenting, or adherence of the flexor tendons occurred. All patients expressed satisfaction with postoperative pain, the functional outcome, and cosmetic appearance. Primary donor site defect closure could be achieved in all cases with the use of a local FTSG. This graft can be gained at the access incision for the vascular pedicle, avoids expansion of the incision for a local flap technique, and does not prolong wound healing, and thus reduces both donor site and graft site morbidity of the RFFF. This technique leads to an inconspicuous aesthetic result with no apparent relevant functional deficits and avoids the need for a second donor site. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  18. Coefficient of Friction at the Fingertips in Type II Diabetics Compared to Healthy Adults.

    Science.gov (United States)

    Thames, Beatriz H; Gorniak, Stacey L

    2017-07-01

    Clinical observations suggest that type II diabetes patients are more susceptible to skin changes, which may be associated with reduced coefficient of friction at the fingertips. Reduced coefficient of friction may explain recent reports of fine motor dysfunction in diabetic patients. Coefficient of friction was evaluated using slip force evaluation in a cross-sectional cohort of diabetic patients and age- and sex-matched healthy controls. Covariates of tactile sensation, disease duration, glycated hemoglobin, and clinical diagnosis of peripheral neuropathy were also assessed. A significant decrease in fingertip coefficient of friction in the diabetic group was found as compared to controls. Health state covariates did not alter the strength of between-group differences in statistical analyses. This finding of between-group differences for fingertip frictional properties suggests that causative factors of reported manual motor dysfunction lie in both the distal and proximal portions of the nervous system.

  19. Transducer for measuring normal and friction stress in contact zone during rolling

    DEFF Research Database (Denmark)

    Henningsen, Poul; Wanheim, Tarras; Arentoft, Mogens

    2004-01-01

    , generating frictional stresses contrary to the direction of rolling. In a narrow area in the deformation zone, the velocity of the deformed material is equal to the velocity of the rolls. This area or line is named “neutral line”[2]. The position of the neutral line depends on friction, reduction ratio...

  20. A reciprocating pin-on-plate test-rig for studying friction materials for holding brakes

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Drago, Nicola; Klit, Peder

    2014-01-01

    -on-plate test-rig for studying the evolution of wear by monitoring the pin height reduction using Eddy-current proximity sensors is presented. Moreover, a new mechanism for recording the friction force is suggested. Apart from the design of the test-rig, friction force and wear rate measurements for two...

  1. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  2. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  3. Friction and wear performance of low-friction carbon coatings under oil lubrication

    International Nuclear Information System (INIS)

    Kovalchenko, A.; Ajayi, O. O.; Erdemir, A.; Fenske, G. R.

    2001-01-01

    Amorphous carbon coatings with very low friction properties were recently developed at Argonne National Laboratory. These coatings have shown good promise in mitigating excessive wear and scuffing problems associated with low-lubricity diesel fuels. To reduce the negative effect of sulfur and other lubricant additives in poisoning the after-treatment catalyst, a lubricant formulation with a low level of sulfur may be needed. Exclusion of proven sulfur-containing extreme pressure (EP) and antiwear additives from oils will require other measures to ensure durability of critical lubricated components. The low-friction carbon coating has the potential for such applications. In the present study, we evaluated the friction and wear attributes of three variations of the coating under a boundary lubrication regime. Tests were conducted with both synthetic and mineral oil lubricants using a ball-on-flat contact configuration in reciprocating sliding. Although the three variations of the coating provided modest reductions in friction coefficient, they all reduced wear substantially compared to an uncoated surface. The degradation mode of oxidative wear on the uncoated surface was replaced by a polishing wear mode on the coated surfaces

  4. Blades Couple Dry Friction Connection

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk; Radolfová, Alena

    2015-01-01

    Roč. 9, č. 1 (2015), s. 31-40 ISSN 1802-680X Institutional support: RVO:61388998 Keywords : stick-slip dry friction * 3D friction characteristic * tangential contact stiffness * hysterezis loop * response curves Subject RIV: BI - Acoustics

  5. Friction laws at the nanoscale.

    Science.gov (United States)

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  6. Corrosion effects on friction factors

    International Nuclear Information System (INIS)

    Magleby, H.L.; Shaffer, S.J.

    1996-01-01

    This paper presents the results of NRC-sponsored material specimen tests that were performed to determine if corrosion increases the friction factors of sliding surfaces of motor-operated gate valves, which could require higher forces to close and open safety-related valves when subjected to their design basis differential pressures. Friction tests were performed with uncorroded specimens and specimens subjected to accelerated corrosion. Preliminary tests at ambient conditions showed that corrosion increased the friction factors, indicating the need for additional tests duplicating valve operating parameters at hot conditions. The additional tests showed friction factors of corroded specimens were 0.1 to 0.2 higher than for uncorroded specimens, and that the friction factors of the corroded specimens were not very dependent on contact stress or corrosion film thickness. The measured values of friction factors for the three corrosion films tested (simulating three operating times) were in the range of 0.3 to 0.4. The friction factor for even the shortest simulated operating time was essentially the same as the others, indicating that the friction factors appear to reach a plateau and that the plateau is reached quickly

  7. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  8. Biophysics of skin and its treatments structural, nanotribological, and nanomechanical studies

    CERN Document Server

    Bhushan, Bharat

    2017-01-01

    This book provides a comprehensive overview of the structural, nanotribological and nanomechanical properties of skin with and without cream treatment as a function of operating environment. The biophysics of skin as the outer layer covering human or animal body is discussed as a complex biological structure. Skin cream is used to improve skin health and create a smooth, soft, and flexible surface with moist perception by altering the surface roughness, friction, adhesion, elastic modulus, and surface charge of the skin surface. .

  9. Skin Complications

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Skin Complications Diabetes can affect every part of the ... lipoidica diabeticorum, diabetic blisters, and eruptive xanthomatosis. General Skin Conditions Bacterial Infections Several kinds of bacterial infections ...

  10. Cryotherapy - skin

    Science.gov (United States)

    Cryosurgery - skin; Warts - freezing; Warts - cryotherapy; Actinic keratosis - cryotherapy; Solar keratosis - cryotherapy ... may be used to: Remove warts Destroy precancerous skin lesions (actinic keratoses or solar keratoses) In rare ...

  11. Skin Cancer

    Science.gov (United States)

    Skin cancer is the most common form of cancer in the United States. The two most common types ... face, neck, hands, and arms. Another type of skin cancer, melanoma, is more dangerous but less common. Anyone ...

  12. Sagging Skin

    Science.gov (United States)

    ... turkey neck,” this occurs as skin loses its elasticity and in cases where individuals have lost a ... technique or procedure is appropriate for my skin type? Did the doctor show me before-and-after ...

  13. Skin Biopsy

    Science.gov (United States)

    ... Development Infections Diseases & Conditions Pregnancy & Baby Nutrition & Fitness Emotions & Behavior School & Family Life First Aid & Safety Doctors & ... like these: skin rashes or conditions, such as eczema or psoriasis skin infections, such as staph diseases, ...

  14. Frictional Heating with Time-Dependent Specific Power of Friction

    Directory of Open Access Journals (Sweden)

    Topczewska Katarzyna

    2017-06-01

    Full Text Available In this paper analytical solutions of the thermal problems of friction were received. The appropriate boundary-value problems of heat conduction were formulated and solved for a homogeneous semi–space (a brake disc heated on its free surface by frictional heat fluxes with different and time-dependent intensities. Solutions were obtained in dimensionless form using Duhamel's theorem. Based on received solutions, evolution and spatial distribution of the dimensionless temperature were analyzed using numerical methods. The numerical results allowed to determine influence of the time distribution of friction power on the spatio-temporal temperature distribution in brake disc.

  15. Wave friction factor rediscovered

    Science.gov (United States)

    Le Roux, J. P.

    2012-02-01

    The wave friction factor is commonly expressed as a function of the horizontal water particle semi-excursion ( A wb) at the top of the boundary layer. A wb, in turn, is normally derived from linear wave theory by {{U_{{wb}}/T_{{w}}}}{{2π }} , where U wb is the maximum water particle velocity measured at the top of the boundary layer and T w is the wave period. However, it is shown here that A wb determined in this way deviates drastically from its real value under both linear and non-linear waves. Three equations for smooth, transitional and rough boundary conditions, respectively, are proposed to solve this problem, all three being a function of U wb, T w, and δ, the thickness of the boundary layer. Because these variables can be determined theoretically for any bottom slope and water depth using the deepwater wave conditions, there is no need to physically measure them. Although differing substantially from many modern attempts to define the wave friction factor, the results coincide with equations proposed in the 1960s for either smooth or rough boundary conditions. The findings also confirm that the long-held notion of circular water particle motion down to the bottom in deepwater conditions is erroneous, the motion in fact being circular at the surface and elliptical at depth in both deep and shallow water conditions, with only horizontal motion at the top of the boundary layer. The new equations are incorporated in an updated version (WAVECALC II) of the Excel program published earlier in this journal by Le Roux et al. Geo-Mar Lett 30(5): 549-560, (2010).

  16. Skin Graft

    OpenAIRE

    Shimizu, Ruka; Kishi, Kazuo

    2012-01-01

    Skin graft is one of the most indispensable techniques in plastic surgery and dermatology. Skin grafts are used in a variety of clinical situations, such as traumatic wounds, defects after oncologic resection, burn reconstruction, scar contracture release, congenital skin deficiencies, hair restoration, vitiligo, and nipple-areola reconstruction. Skin grafts are generally avoided in the management of more complex wounds. Conditions with deep spaces and exposed bones normally require the use o...

  17. Skin Aging

    Science.gov (United States)

    Your skin changes as you age. You might notice wrinkles, age spots and dryness. Your skin also becomes thinner and loses fat, making it ... heal, too. Sunlight is a major cause of skin aging. You can protect yourself by staying out ...

  18. Friction and anchorage loading revisited.

    Science.gov (United States)

    Dholakia, Kartik D

    2012-01-01

    Contemporary concepts of sliding mechanics explain that friction is inevitable. To overcome this frictional resistance, excess force is required to retract the tooth along the archwire (ie, individual retraction of canines, en masse retraction of anterior teeth), in addition to the amount of force required for tooth movement. The anterior tooth retraction force, in addition to excess force (to overcome friction), produces reciprocal protraction force on molars, thereby leading to increased anchorage loading. However, this traditional concept was challenged in recent literature, which was based on the finite element model, but did not bear correlation to the clinical scenario. This article will reinforce the fact that clinically, friction increases anchorage loading in all three planes of space, considering the fact that tooth movement is a quasistatic process rather than a purely continuous or static one, and that conventional ways of determining the effects of static or dynamic friction on anchorage load cannot be applied to clinical situations (which consist of anatomical resistance units and a complex muscular force system). The article does not aim to quantify friction and its effect on the amount of anchorage load. Rather, a new perspective regarding the role of various additional factors (which is not explained by contemporary concept) that may influence friction and anchorage loading is provided..

  19. Frictional performance of ball screw

    International Nuclear Information System (INIS)

    Nakashima, Katuhiro; Takafuji, Kazuki

    1985-01-01

    As feed screws, ball screws have become to be adopted in place of trapezoidal threads. The structure of ball screws is complex, but those are the indispensable component of NC machine tools and machining centers, and are frequently used for industrial robots. As the problems in the operation of ball screws, there are damage, life and the performance related to friction. As to the damage and life, though there is the problem of the load distribution on balls, the results of the research on rolling bearings are applied. The friction of ball screws consists of the friction of balls and a spiral groove, the friction of a ball and a ball, the friction in a ball-circulating mechanism and the viscous friction of lubricating oil. It was decided to synthetically examine the frictional performance of ball screws, such as driving torque, the variation of driving torque, efficiency, the formation of oil film and so on, under the working condition of wide range, using the screws with different accuracy and the nuts of various circuit number. The experimental setup and the processing of the experimental data, the driving performance of ball screws and so on are reported. (Kako, I.)

  20. Flow Friction or Spontaneous Ignition?

    Science.gov (United States)

    Stoltzfus, Joel M.; Gallus, Timothy D.; Sparks, Kyle

    2012-01-01

    "Flow friction," a proposed ignition mechanism in oxygen systems, has proved elusive in attempts at experimental verification. In this paper, the literature regarding flow friction is reviewed and the experimental verification attempts are briefly discussed. Another ignition mechanism, a form of spontaneous combustion, is proposed as an explanation for at least some of the fire events that have been attributed to flow friction in the literature. In addition, the results of a failure analysis performed at NASA Johnson Space Center White Sands Test Facility are presented, and the observations indicate that spontaneous combustion was the most likely cause of the fire in this 2000 psig (14 MPa) oxygen-enriched system.

  1. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  2. Showing Area Matters: A Work of Friction

    Science.gov (United States)

    Van Domelen, David

    2010-01-01

    Typically, we teach the simplified friction equation of the form F[subscript s] = [mu][subscript s]N for static friction, where F[subscript s] is the maximum static friction, [mu][subscript s] is the coefficient of static friction, and "N" is the normal force pressing the surfaces together. However, this is a bit too simplified, and…

  3. A Pedagogical Model of Static Friction

    OpenAIRE

    Pickett, Galen T.

    2015-01-01

    While dry Coulombic friction is an elementary topic in any standard introductory course in mechanics, the critical distinction between the kinetic and static friction forces is something that is both hard to teach and to learn. In this paper, I describe a geometric model of static friction that may help introductory students to both understand and apply the Coulomb static friction approximation.

  4. Multimodal Friction Ignition Tester

    Science.gov (United States)

    Davis, Eddie; Howard, Bill; Herald, Stephen

    2009-01-01

    The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal

  5. Friction induced hunting limit cycles : a comparison between the LuGre and switch friction model

    NARCIS (Netherlands)

    Hensen, R.H.A.; Molengraft, van de M.J.G.; Steinbuch, M.

    2003-01-01

    In this paper, friction induced limit cycles are predicted for a simple motion system consisting of a motor-driven inertia subjected to friction and a PID-controlled regulator task. The two friction models used, i.e., (i) the dynamic LuGre friction model and (ii) the static switch friction model,

  6. Comparative Research on Characteristics of the Isolation Systems with Dry Friction Damping and with Vicious Damping under Base Excitation

    Science.gov (United States)

    Hou, Junfang; jing, Min; Zhang, Weihua; Lu, Yahui; He, Haiwen

    2017-12-01

    As for the isolation problem of electronic equipments on vehicle, the vibration response characteristics of dry friction damping isolation system under base displacement excitation was analyzed in theory by harmonic balance method, and the displacement response was compared between the isolation systems with dry friction damping and vicious damping separately. The results show that the isolation system with small dry friction damping can’t meet the demands of displacement reduction close to the natural frequency, and it can realize full-frequency vibration isolation by improving dry friction damping when the lock frequency passes beyond the resonance frequency band. The results imply that the damping mechanism of dry friction isolator can’t be described only by dry friction damping, and the composite damping with dry friction and vicious damping is more appropriate.

  7. Rubber friction and tire dynamics

    International Nuclear Information System (INIS)

    Persson, B N J

    2011-01-01

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  8. Friction Material Composites Materials Perspective

    CERN Document Server

    Sundarkrishnaa, K L

    2012-01-01

    Friction Material Composites is the first of the five volumes which strongly educates and updates engineers and other professionals in braking industries, research and test labs. It explains besides the formulation of design processes and its complete manufacturing input. This book gives an idea of mechanisms of friction and how to control them by designing .The book is  useful for designers  of automotive, rail and aero industries for designing the brake systems effectively with the integration of friction material composite design which is critical. It clearly  emphasizes the driving  safety and how serious designers should  select the design input. The significance of friction material component like brake pad or a liner as an integral part of the brake system of vehicles is explained. AFM pictures at nanolevel illustrate broadly the explanations given.

  9. Size scaling of static friction.

    Science.gov (United States)

    Braun, O M; Manini, Nicola; Tosatti, Erio

    2013-02-22

    Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.

  10. Rubber friction and tire dynamics.

    Science.gov (United States)

    Persson, B N J

    2011-01-12

    We propose a simple rubber friction law, which can be used, for example, in models of tire (and vehicle) dynamics. The friction law is tested by comparing numerical results to the full rubber friction theory (Persson 2006 J. Phys.: Condens. Matter 18 7789). Good agreement is found between the two theories. We describe a two-dimensional (2D) tire model which combines the rubber friction model with a simple mass-spring description of the tire body. The tire model is very flexible and can be used to accurately calculate μ-slip curves (and the self-aligning torque) for braking and cornering or combined motion (e.g. braking during cornering). We present numerical results which illustrate the theory. Simulations of anti-blocking system (ABS) braking are performed using two simple control algorithms.

  11. Nuclear friction and chaotic motion

    International Nuclear Information System (INIS)

    Srokowski, T.; Szczurek, A.; Drozdz, S.

    1990-01-01

    The concept of nuclear friction is considered from the point of view of regular versus chaotic motion in an atomic nucleus. Using a realistic nuclear Hamiltonian it is explicitly shown that the frictional description of the gross features of nuclear collisions is adequate if the system behaves chaotically. Because of the core in the Hamiltonian, the three-body nuclear system already reveals a structure of the phase space rich enough for this concept to be applicable

  12. Slipforming - Materials effect on friction

    OpenAIRE

    Busterud, Jørgen Thomasgaard

    2016-01-01

    Master's thesis in Structural engineering Slipforming is a construction method for concrete and it is especially suited for tall constructions with simple geometry. This method have occasionally caused lifting cracks and other surface damages, due to the friction between the slipform panel and the concrete has become to high. The thesis will look at how the choice of material composition in concrete mixes in the combination of a given slipform rate would affect the friction between the ...

  13. Slow rupture of frictional interfaces

    OpenAIRE

    Sinai, Yohai Bar; Brener, Efim A.; Bouchbinder, Eran

    2011-01-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not comple...

  14. Labor Supply and Optimization Frictions

    DEFF Research Database (Denmark)

    Søgaard, Jakob Egholt

    In this paper I investigate the nature of optimization frictions by studying the labor market of Danish students. This particular labor market is an interesting case study as it features a range of special institutional settings that affect students’ incentive to earn income and comparing outcomes...... theory. More concretely I find the dominate optimization friction to be individuals’ inattention about their earnings during the year, while real adjustment cost and gradual learning appears to be of less importance....

  15. Available friction of ladder shoes and slip potential for climbing on a straight ladder.

    Science.gov (United States)

    Chang, Wen-Ruey; Chang, Chien-Chi; Matz, Simon

    2005-07-15

    Straight ladder accidents are a major safety problem. As a leading cause of injuries involving straight ladders, slips at the ladder base occur when the required friction exceeds the available friction at the ladder shoe and floor interface. The objectives of this experiment were to measure the available friction at the base of a portable straight ladder in contact with a floor and to estimate the slip potential of the ladder. The results of friction measurements indicated that the measured friction coefficient on the oily surfaces differed among the six commercially available ladder shoes evaluated. A statistical model was used to compare the available friction results from the current study with the friction requirements under different climbing conditions from a previous study based on their stochastic distributions to estimate the slip potential at the base of the ladder. The results showed that different climbing conditions used in the previous study could be supported by available friction on dry surfaces. However, when the ladder was put onto oily surfaces, resulting in a significant reduction in the available friction due to contamination, slip potential was significantly increased.

  16. Prospective Internally Controlled Blind Reviewed Clinical Evaluation of Cryolipolysis Combined With Multipolar Radiofrequency andVaripulseTechnology for Enhanced Subject Results in Circumferential Fat Reduction and Skin Laxity of the Flanks.

    Science.gov (United States)

    Few, Julius; Gold, Michael; Sadick, Neil

    2016-11-01

    satisfaction with both treatment results, but there was a 10% statistically significant higher satisfaction rating of the outcomes in the flank treated with the combination treatment. Procedures were well tolerated, side effects were transient and self-resolving and no unexpected adverse effects were reported for the duration of the study. The results of this study show that the combination of multipolar RF with PEMF/suction following cryolipolysis is a safe, effective, and painless approach to enhance skin tightening following fat reduction procedures in the flanks. J Drugs Dermatol. 2016;15(11):1354-1358..

  17. The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives

    International Nuclear Information System (INIS)

    Graham, Jocelyn Claire Herries

    2001-01-01

    In recent years there has been growing concern to produce energy-efficient lubricated components and modem engine oil specifications require lubricants to demonstrate fuel efficiency in standardised engine tests. One important method of producing low friction and thus fuel-efficient lubricants is to use oil-soluble, molybdenum-containing, friction modifier additives. In optimal conditions these additives are able to produce very low friction coefficients, in the range 0.045 to 0.075 in boundary lubrication conditions. Very little is known about the chemical and physical mechanisms by which oil soluble molybdenum additives form low friction films in tribological contacts. Information about their activity could lead to optimal use of these additives in lubricants and, therefore, more efficient engine running. The work outlined in this thesis investigated the behaviour of oil-soluble molybdenum additives and showed that these additives were able to effectively reduce friction in the absence of other additives such as ZnDTP. Their activity was shown to be highly concentration and temperature dependent and was also found to be sensitive to the roughness of the contacting surfaces. Raman spectroscopy was used to analyse the chemical nature of molybdenum-containing reaction films and found that friction reduction indubitably arises from the local formation of platelets (diameter 30-50 nm) of MoS 2 . The formation of MoS 2 -rich films was found to occur only during direct asperity-asperity rubbing of the contacting surfaces (this type of contact being especially prevalent in pure sliding contacts). At elevated temperatures and in the presence of oxidising gases the consumption of MoDTC was monitored. MoDTC concentration dropped until the total value fell below a critical level to reduce friction. The study showed that decay rate of molybdenum-containing species was reduced by the addition of peroxide-decomposing antioxidants. (author)

  18. Remora fish suction pad attachment is enhanced by spinule friction.

    Science.gov (United States)

    Beckert, Michael; Flammang, Brooke E; Nadler, Jason H

    2015-11-01

    The remora fishes are capable of adhering to a wide variety of natural and artificial marine substrates using a dorsal suction pad. The pad is made of serial parallel pectinated lamellae, which are homologous to the dorsal fin elements of other fishes. Small tooth-like projections of mineralized tissue from the dorsal pad lamella, known as spinules, are thought to increase the remora's resistance to slippage and thereby enhance friction to maintain attachment to a moving host. In this work, the geometry of the spinules and host topology as determined by micro-computed tomography and confocal microscope data, respectively, are combined in a friction model to estimate the spinule contribution to shear resistance. Model results are validated with natural and artificially created spinules and compared with previous remora pull-off experiments. It was found that spinule geometry plays an essential role in friction enhancement, especially at short spatial wavelengths in the host surface, and that spinule tip geometry is not correlated with lamellar position. Furthermore, comparisons with pull-off experiments suggest that spinules are primarily responsible for friction enhancement on rough host topologies such as shark skin. © 2015. Published by The Company of Biologists Ltd.

  19. Friction and wear behavior of glasses and ceramics

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Adhesion, friction, and wear behavior of glasses and ionic solids are reviewed. These materials are shown to behave in a manner similar to other solids with respect to adhesion. Their friction characteristics are shown to be sensitive to environmental constituents and surface films. This sensitivity can be related to a reduction in adhesive bonding and the changes in surficial mechanical behavior associated with Rehbinder and Joffe effects. Both friction and wear properties of ionic crystalline solids are highly anisotropic. With metals in contact with ionic solids the fracture strength of the ionic solid and the shear strength in the metal and those properties that determine these will dictate which of the materials undergoes adhesive wear. The chemical activity of the metal plays an important role in the nature and strength of the adhesive interfacial bond that develops between the metal and a glass or ionic solid.

  20. In vitro prediction of in vivo skin damage associated with the wiping of dry tissue against skin.

    Science.gov (United States)

    Koenig, David W; Dvoracek, Barb; Vongsa, Rebecca

    2013-02-01

    The ideal gentle cleansing product is one that effectively removes soils while minimizing damage to the skin. Thus, measuring physical abrasion caused by cleansing tissues is critical to the continued development of gentle cleansing products. Current analysis of cleansing materials for skin gentleness is time consuming and requires expensive human subject testing. This report describes the development of a rapid and inexpensive bench assay for the assessment of skin abrasion caused by wiping. Coefficient of friction (COF) evaluations using bench methods were compared with results from clinical studies of repeated wiping and with confocal visualizations of excised skin. A Monitor/Slip and Friction instrument (model 32-06; TMI, Amityville, NY, USA) was used to measure tissue friction on simulated skin (Vitro-Skin, N19-5X; IMS, Milford, CT, USA). Clinical data from a 4-day repetitive forearm wiping study measuring transepidermal water loss (TEWL) in 30 subjects was compared with results from the bench top assay. In addition, excised skin samples were also treated using the COF bench assay and examined using confocal microscopy to visualize stratum corneum damage caused by wiping. Using the bench COF assay, we were able to distinguish between bath tissue codes by comparing average static friction value (ASFV) for the test codes, where lower ASFV indicated less abrasive tissue. The ASFV followed the same gentleness trend observed in the clinical study. Confocal microscopy of excised skin wiped with the same materials indicated stratum corneum damage consistent with the bench COF and clinical TEWL observations. We observed significant correlation between bench and clinical methods for measuring skin damage caused by wiping of skin with tissue. The bench method will facilitate rapid and inexpensive skin gentleness assessment of cleansing materials. © 2012 John Wiley & Sons A/S.

  1. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Cuomo, F. W.

    1986-01-01

    A fiber optic lever sensing technique that can be used to measure normal pressure as well as shear stresses is discussed. This method uses three unequal fibers combining small size and good sensitivity. Static measurements appear to confirm the theoretical models predicted by geometrical optics and dynamic tests performed at frequencies up to 10 kHz indicate a flat response within this frequency range. These sensors are intended for use in a low speed wind tunnel environment.

  2. Fiber optic pressure sensors in skin-friction measurements

    Science.gov (United States)

    Kidwell, R.

    1985-01-01

    Fiber optic lever pressure sensors intended for use in a low speed wind tunnel environment were designed, constructed and tested for the measurement of normal and shear displacements associated with the pressures acting on a flat aluminum plate. On-site tests performed along with several static and dynamic measurements made have established that, with proper modifications and improvements, the design concepts are acceptable and can be utilized for their intended use. Several elastomers were investigated for use in sensors and for their incorporation into these sensors. Design and assembly techniques for probes and complete sensors were developed.

  3. A skin friction sensor suitable for extreme conditions

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2013-01-01

    Roč. 33, October (2013), s. 228-238 ISSN 0955-5986 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : shear stress in fluid * sensor s * flow separation Subject RIV: BK - Fluid Dynamics Impact factor: 1.030, year: 2013

  4. Rough-wall turbulent boundary layers with constant skin friction

    KAUST Repository

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2017-01-01

    A semi-empirical model is presented that describes the development of a fully developed turbulent boundary layer in the presence of surface roughness with length scale ks that varies with streamwise distance x . Interest is centred on flows

  5. Friction ridge skin - Automated Fingerprint Identification System (AFIS)

    NARCIS (Netherlands)

    Meuwly, Didier

    2013-01-01

    This contribution describes the development and the forensic use of automated fingerprint identification systems (AFISs). AFISs were initially developed in order to overcome the limitations of the paper-based fingerprint collections, by digitizing the ten-print cards in computerized databases and to

  6. Modeling Friction in Modelica with the Lund-Grenoble Friction Model

    OpenAIRE

    Aberger, Martin; Otter, Martin

    2002-01-01

    The properties of the Lund-Grenoble friction model are summarized and different types of friction elements - bearing friction, clutch, one-way clutch, are implemented in Modelica using this friction formulation. The dynamic properties of these components are determined in simulations and compared with the friction models available in the Modelica standard library. This includes also an automatic gearbox model where 6 friction elements are coupled dynamically.

  7. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  8. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  9. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  10. Dry Skin Relief

    Science.gov (United States)

    ... on a budget Skin care products Skin care secrets Skin lighteners Skin of color Summer skin problems ... condition, such as eczema. Additional related information Dermatologists' top tips for relieving dry skin FIND A DERMATOLOGIST ...

  11. Real-Time Dynamic Observation of Micro-Friction on the Contact Interface of Friction Lining

    Science.gov (United States)

    Zhang, Dekun; Chen, Kai; Guo, Yongbo

    2018-01-01

    This paper aims to investigate the microscopic friction mechanism based on in situ microscopic observation in order to record the deformation and contact situation of friction lining during the frictional process. The results show that friction coefficient increased with the shear deformation and energy loss of the surfacee, respectively. Furthermore, the friction mechanism mainly included adhesive friction in the high-pressure and high-speed conditions, whereas hysteresis friction was in the low-pressure and low-speed conditions. The mixed-friction mechanism was in the period when the working conditions varied from high pressure and speed to low pressure and speed. PMID:29498677

  12. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  13. A comparison of two methods of measuring static coefficient of friction at low normal forces: a pilot study.

    Science.gov (United States)

    Seo, Na Jin; Armstrong, Thomas J; Drinkaus, Philip

    2009-01-01

    This study compares two methods for estimating static friction coefficients for skin. In the first method, referred to as the 'tilt method', a hand supporting a flat object is tilted until the object slides. The friction coefficient is estimated as the tangent of the angle of the object at the slip. The second method estimates the friction coefficient as the pull force required to begin moving a flat object over the surface of the hand, divided by object weight. Both methods were used to estimate friction coefficients for 12 subjects and three materials (cardboard, aluminium, rubber) against a flat hand and against fingertips. No differences in static friction coefficients were found between the two methods, except for that of rubber, where friction coefficient was 11% greater for the tilt method. As with previous studies, the friction coefficients varied with contact force and contact area. Static friction coefficient data are needed for analysis and design of objects that are grasped or manipulated with the hand. The tilt method described in this study can easily be used by ergonomic practitioners to estimate static friction coefficients in the field in a timely manner.

  14. Slow rupture of frictional interfaces

    Science.gov (United States)

    Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran

    2012-02-01

    The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.

  15. Skin cancer

    International Nuclear Information System (INIS)

    Yamada, Michiko

    1992-01-01

    This chapter reviews the development of skin cancer associated with radiation, focusing on the knowledge of A-bomb radiation-induced skin cancer. Since the discovery of X radiation in 1895, acute and chronic radiation dermatitis has been the first matter of concern. Then, in 1902, skin cancer found among radiological personnel has posed a social problem. In earlier study determining the relationship between skin cancer and A-bomb radiation, there is no increase in the incidence of either skin cancer or precancerous condition during the first 20 years after A-bombing. More recent studies have showed that there is a significant correlation between the incidence of skin cancer and distance from the hypocenter; and the incidence of skin cancer is found to be remarkably increased since 1975 in the group exposed at ≤2,000 m. Excess relative risk is 2.2 at one Gy dose. The incidence of skin cancer is also found to be extremely increased with aging. Relative risk is high in younger A-bomb survivors at the time of exposure. Histologically, basal cell carcinoma is more senstitive to ionizing radiation than squamous cell carcinoma. (N.K.)

  16. Nonlinear friction model for servo press simulation

    Science.gov (United States)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  17. Efficacy of patient skin dose reduction by a compensating filter through of irradiation field overlaps on the area during percutaneous coronary intervention

    International Nuclear Information System (INIS)

    Yamasaki, Hiroyuki; Yamaguchi, Sadao; Yamamoto, Naomi; Miyagawa, Takashi; Hirose, Etsuko; Takenaka, Tatsuaki; Nakahara, Makoto

    2011-01-01

    Our study was involved with entrance surface dose reduction and irradiation field by the filter use of PCI, and insertion in place of an effective compensating filter to maximize entrance surface dose reduction, which we verified. The radiation dosimetry put a 6 cc ion chamber on the back side of the thorax phantom, and changed the filter of the four corners (a: upper left, b: upper right, c: lower right, d: lower left) of the monitor confirmed with fluoroscopy [(0) no filter, (1) one filter, (2) two filters]. The angle of C arm was assumed to be eight directions and 0 degrees adopted by this hospital. It was compared with a corrective rate of which one was no filter. Next, the presence of filter and irradiation field overlaps on the area in monitor in the angle of C arm was verified by this hospital's classic example. As for corrective rate, (1) becomes 0.41 and (2) become 0.25 at fluoroscopy, (1) becomes 0.26 and (2) become 0.16 at exposure. Irradiation field overlaps on the area (+) compensating filter (-) was many with d of right anterior oblique (RAO)/cranial (CAU), a of RAO and c of CAU at left coronary angiography (CAG), c of left anterior oblique (LAO) at right CAG, b of LAO/cranial (CRA) (left CAG), b of CRA (right CAG) and a and d of RAO (right CAG) at both CAG. Irradiation field overlaps on the area (+) compensating filter (+) was many with b of CRA at left CAG, a of LAO/CRA at right CAG, b of CRA (left CAG) and b of RAO (right CAG) at both CAG. When the compensating filter is used the entrance surface dose reduction effect was great. If automatic exposure control protects the part of irradiation field overlaps on the area in the range without operating excessively, the radiological risk can be reduced, and it is conceivable as useful clinical setting. (author)

  18. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  19. Mimicking the tribo-mechanical performance of human skin: a scale dependent approach based on poly (vinyl alcohol) hydrogel

    NARCIS (Netherlands)

    Morales Hurtado, Marina

    2016-01-01

    The development of an appropriate substitute to simulate the frictional performance of human skin at different conditions is required for the design and optimization of products in contact with the skin. With this purpose, the composition, structure and mechanical properties of the skin need to be

  20. Shark skin-inspired designs that improve aerodynamic performance.

    Science.gov (United States)

    Domel, August G; Saadat, Mehdi; Weaver, James C; Haj-Hariri, Hossein; Bertoldi, Katia; Lauder, George V

    2018-02-01

    There have been significant efforts recently aimed at improving the aerodynamic performance of aerofoils through the modification of their surfaces. Inspired by the drag-reducing properties of the tooth-like denticles that cover the skin of sharks, we describe here experimental and simulation-based investigations into the aerodynamic effects of novel denticle-inspired designs placed along the suction side of an aerofoil. Through parametric modelling to query a wide range of different designs, we discovered a set of denticle-inspired surface structures that achieve simultaneous drag reduction and lift generation on an aerofoil, resulting in lift-to-drag ratio improvements comparable to the best-reported for traditional low-profile vortex generators and even outperforming these existing designs at low angles of attack with improvements of up to 323%. Such behaviour is enabled by two concurrent mechanisms: (i) a separation bubble in the denticle's wake altering the flow pressure distribution of the aerofoil to enhance suction and (ii) streamwise vortices that replenish momentum loss in the boundary layer due to skin friction. Our findings not only open new avenues for improved aerodynamic design, but also provide new perspective on the role of the complex and potentially multifunctional morphology of shark denticles for increased swimming efficiency. © 2018 The Author(s).

  1. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  2. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. An asbestos free friction material composite for brake linings is synthesized containing fibrous re- inforcing ... every manufacturer of automotive friction materials uses phenolics as ... The resin binder is a critical compo- nent. The limits ...

  3. Friction tensor concept for textured surfaces

    Indian Academy of Sciences (India)

    Directionality of grinding marks influences the coefficient of friction ... Menezes et al (2006a,b) studied the effect of roughness parameters and grinding angle on ... as coefficient of friction, sliding velocity, normal load, hardness and thermal.

  4. Effect of electrostatic field on dynamic friction coefficient of pistachio

    Directory of Open Access Journals (Sweden)

    M. H Aghkhani

    2016-04-01

    25 mm and with wall thickness of 5 mm placed on trolleys. In the bottom of the container a separate aluminum plate was installed as the negative pole of the electric field. The friction plates as a positive pole placed on top of the sample. There were no contact between friction plates and walls of vessel (samples were about 2 to 3 mm higher from the edges of wall. Frictional force changes due to movement of table, measured and recorded by an accurate load cell. From force-displacement curves, the coefficient of dynamic friction and static coefficient of friction calculated. In general, according to the experimental design, 486 tests were performed. Results and Discussion: According to the results of statistical analysis, there is significant interaction affect between pistachios type and electrical field, as well as, the interaction between electrical field and speed, on dynamic coefficient of friction. It means two pistachio types can be separated by electrical charging. Different physical properties of surface of filled non-splits pistachio nuts (such as corners and edges and filled splits ones, caused differences in the distribution of electric charge and as a result, its interaction with the electric field were significant. Changes in dynamic coefficient of friction according to the electric field intensity at different levels of moisture content and speed on the friction surfaces of iron, aluminum and rubber, was drawn in Fig.4, 5 and 6, respectively. These figures reflected the reduction of dynamic coefficient of friction by increasing the movement speed of table. According to Fig.7, increasing the intensity of the electric field increases the dynamic coefficient of friction. Because this leads to build the opposition charge on samples and galvanized iron sheets, and with increase of electrical field, these charges will rise. Fig.9 shows different trends of variation of dynamic coefficient of friction against moisture on rubber surface. This chart shows the

  5. Nanotribological characterization of human hair and skin using atomic force microscopy

    International Nuclear Information System (INIS)

    LaTorre, Carmen; Bhushan, Bharat

    2005-01-01

    Healthy hair and skin is highly desired. Characterization of their morphological, frictional, and adhesive properties (tribological properties) is essential to enhance understanding of hair and skin and to advance the science. Literature on the tribological characterization of hair and skin is scarce to date. The paper presents nanotribological data and analysis on hair (Caucasian, Asian, and African hair at virgin, chemo-mechanically damaged, and treated conditions) and synthetic hair and skin, as well as roughness data of human skin replica. Roughness statistics are presented to characterize the vertical and spatial surface parameters. Average coefficient of friction values were determined for each ethnicity and hair type, and are discussed. The directionality dependence of friction is also discussed. Magnitude and spatial distribution of adhesive force are used to estimate thickness and distribution of the conditioner film

  6. Methods and Devices used to Measure Friction

    DEFF Research Database (Denmark)

    Jeswiet, Jack; Arentoft, Mogens; Henningsen, Poul

    2004-01-01

    . To gain a good understanding of the mechanisms at the interface and to be able to verify the friction and tribology models that exist, friction sensors are needed. Designing sensors to measure friction-stress in metal working has been pursued by many researchers. This paper surveys methods, which have...... been tried in the past and discusses some of the recent sensor designs, which can now be used to measure Friction in both production situations and for research purposes....

  7. Advances on LuGre friction model

    OpenAIRE

    Fuad, Mohammad; Ikhouane, Fayçal

    2013-01-01

    LuGre friction model is an ordinary differential equation that is widely used in describing the friction phenomenon for mechanical systems. The importance of this model comes from the fact that it captures most of the friction behavior that has been observed including hysteresis. In this paper, we study some aspects related to the hysteresis behavior induced by the LuGre friction model.

  8. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  9. A field theoretic model for static friction

    OpenAIRE

    Mahyaeh, I.; Rouhani, S.

    2013-01-01

    We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...

  10. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanasaki, Itsuo [Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531 (Japan)

    2016-03-07

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  11. Enhancement of Friction against a Rough Surface by a Ridge-Channel Surface Microstructure.

    Science.gov (United States)

    Bai, Ying; Hui, Chung-Yuen; Levrard, Benjamin; Jagota, Anand

    2015-07-14

    We report on a study of the sliding friction of elastomeric surfaces patterned with ridges and channels (and unstructured flat controls), against both smooth and roughened spherical indenters. Against the smooth spherical indenter, all of the structured surfaces have highly reduced sliding friction due to the reduction in actual area of contact. Against roughened spherical indenters, however, the sliding force for structured samples can be up to 50% greater than that of an unstructured flat control. The mechanism of enhanced friction against a rough surface is due to a combination of increased actual area of contact, interlocking between roughness and the surface structure, and attendant dynamic instabilities that dissipate energy.

  12. Skin Dictionary

    Science.gov (United States)

    ... Registration General information Housing & travel Education Exhibit hall Mobile app 2019 Annual Meeting Derm Exam Prep Course ... SkinPAC State societies Scope of practice Truth in advertising NP/PA laws Action center Public and patients ...

  13. Hyperelastic skin

    Science.gov (United States)

    ... is most often seen in people who have Ehlers-Danlos syndrome. People with this disorder have very elastic skin. ... any member of your family been diagnosed with Ehlers-Danlos syndrome? What other symptoms are present? Genetic counseling may ...

  14. Skin Cancer

    Science.gov (United States)

    ... sunlamps. There are 2 types of UV rays: UVA rays (long-wave) – UVA rays penetrate clouds and glass. They penetrate the ... to cancer. But studies have shown that both UVA and UVB damage the skin and can cause ...

  15. Friction and dissipative phenomena in quantum mechanics

    International Nuclear Information System (INIS)

    Kostin, M.D.

    1975-01-01

    Frictional and dissipative terms of the Schroedinger equation are studied. A proof is given showing that the frictional term of the Schroedinger--Langevin equation causes the quantum system to lose energy. General expressions are derived for the frictional term of the Schroedinger equation. (U.S.)

  16. Adaptive friction compensation: a globally stable approach

    NARCIS (Netherlands)

    Verbert, K.A.; Tóth, R.; Babuska, R.

    2016-01-01

    In this paper, an adaptive friction compensation scheme is proposed. The friction force is computed as a timevarying friction coefficient multiplied by the sign of the velocity and an on-line update law is designed to estimate this coefficient based on the actual position and velocity errors.

  17. Multiscale friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.; Felder, Eric; Montmitonnet, Pierre

    2010-01-01

    The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when

  18. A thermodynamic model of sliding friction

    Directory of Open Access Journals (Sweden)

    Lasse Makkonen

    2012-03-01

    Full Text Available A first principles thermodynamic model of sliding friction is derived. The model predictions are in agreement with the observed friction laws both in macro- and nanoscale. When applied to calculating the friction coefficient the model provides a quantitative agreement with recent atomic force microscopy measurements on a number of materials.

  19. Asbestos free friction composition for brake linings

    Indian Academy of Sciences (India)

    An asbestos free friction material composite for brake linings is synthesized containing fibrous reinforcing constituents, friction imparting and controlling additives, elastomeric additives, fire retarding components and a thermosetting resin. The composite shows exemplary friction characteristics and has great resistance to ...

  20. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively i...

  1. Improved Coulomb-Friction Damper

    Science.gov (United States)

    Campbell, G. E.

    1985-01-01

    Equal damping provided on forward and reverse strokes. Improved damper has springs and wedge rings symmetrically placed on both ends of piston wedge, so friction force same in both directions of travel. Unlike conventional automotive shock absorbers, they resemble on outside, both versions require no viscous liquid and operate over wide temperature range.

  2. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  3. Information frictions and monetary policy

    Czech Academy of Sciences Publication Activity Database

    Matějka, Filip

    2012-01-01

    Roč. 6, č. 1 (2012), s. 7-24 ISSN 1802-792X Institutional support: RVO:67985998 Keywords : nominal rigidity * information frictions * monetary economics Subject RIV: AH - Economics http://www.vsfs.cz/periodika/acta-2012-01.pdf

  4. Effect of solid lubricants on friction and wear behaviour of alloyed ...

    Indian Academy of Sciences (India)

    Friction and wear behaviour of MoS2, boric acid, graphite and TiO2 at four different sliding speeds (1.0, 1.5, 2.0, 2.5 m/s) has been compared with dry sliding condition. MoS2 and graphite show 30 to 50% reduction in mass loss compared to other lubricants at all sliding speeds. Friction coefficient reduces with increase in ...

  5. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    Science.gov (United States)

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  6. Skin Cancer Screening

    Science.gov (United States)

    ... Genetics of Skin Cancer Skin Cancer Screening Research Skin Cancer Screening (PDQ®)–Patient Version What is screening? ... These are called diagnostic tests . General Information About Skin Cancer Key Points Skin cancer is a disease ...

  7. Friction, Free Axes of Rotation and Entropy

    Directory of Open Access Journals (Sweden)

    Alexander Kazachkov

    2017-03-01

    Full Text Available Friction forces acting on rotators may promote their alignment and therefore eliminate degrees of freedom in their movement. The alignment of rotators by friction force was shown by experiments performed with different spinners, demonstrating how friction generates negentropy in a system of rotators. A gas of rigid rotators influenced by friction force is considered. The orientational negentropy generated by a friction force was estimated with the Sackur-Tetrode equation. The minimal change in total entropy of a system of rotators, corresponding to their eventual alignment, decreases with temperature. The reported effect may be of primary importance for the phase equilibrium and motion of ubiquitous colloidal and granular systems.

  8. Friction stir weld-bonding defect inspection using phased array ultrasonic testing

    NARCIS (Netherlands)

    Fortunato, J.; Anand, C.; Braga, Daniel F.O.; Groves, R.M.; Moreira, P. M.G.P.; Infante, V

    2017-01-01

    Weight reduction is an important driver of the aerospace industry, which encourages the development of lightweight joining techniques to substitute rivet joints. Friction stir welding (FSW) is a solid-state process that enables the production of lighter joints with a small performance reduction

  9. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  10. Skin decontamination

    International Nuclear Information System (INIS)

    Moehrle, G.

    1975-01-01

    A general survey of skin decontamination is given. The success of every decontamination treatments depends mainly on the speed, but also on the care, with which the action is taken. The best way to remove the skin contaminants is thorough washing under lukewarm running water with mild soap and a soft brush. This washing is to be repeated several times for a period of several minutes. If results are not satisfactory, light duty detergents and wetting agents available commercially may also be used. Some solutions which have proved useful are mentioned. The decontamination solutions are best used in the order given. When one has no satisfactory decontamination effect, the next one is to be used. If necessary, these agents must be used several times in the stated order as long as this does not involve too much strain for the skin. All the decontamination measures mentioned refer, of course, to intact healthy skin. After decontamination has been completed, the skin should be treated with a protective cream

  11. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  12. Friction stir welding of T joints of dissimilar aluminum alloy: A review

    Science.gov (United States)

    Thakare, Shrikant B.; Kalyankar, Vivek D.

    2018-04-01

    Aluminum alloys are preferred in the mechanical design due to their advantages like high strength, good corrosion resistance, low density and good weldability. In various industrial applications T joints configuration of aluminum alloys are used. In different fields, T joints having skin (horizontal sheet) strengthen by stringers (vertical sheets) were used to increase the strength of structure without increasing the weight. T joints are usually carried out by fusion welding which has limitations in joining of aluminum alloy due to significant distortion and metallurgical defects. Some aluminum alloys are even non weldable by fusion welding. The friction stir welding (FSW) has an excellent replacement of conventional fusion welding for T joints. In this article, FSW of T joints is reviewed by considering aluminum alloy and various joint geometries for defect analysis. The previous experiments carried out on T joints shows the factors such as tool geometry, fixturing device and joint configurations plays significant role in defect free joints. It is essential to investigate the material flow during FSW to know joining mechanism and the formation of joint. In this study the defect occurred in the FSW are studied for various joint configurations and parameters. Also the effect of the parameters and defects occurs on the tensile strength are studied. It is concluded that the T-joints of different joint configurations can be pretended successfully. Comparing to base metal some loss in tensile strength was observed in the weldments as well as overall reduction of the hardness in the thermos mechanically affected zone also observed.

  13. Friction and wear in sodium

    International Nuclear Information System (INIS)

    Hoffman, N.J.; Droher, J.J.

    1973-01-01

    In the design of a safe and reliable sodium-cooled reactor one of the more important problem areas is that of friction and wear of components immersed in liquid sodium or exposed to sodium vapor. Sodium coolant at elevated temperatures may severely affect most oxide-bearing surface layers which provide corrosion resistance and, to some extent, lubrication and surface hardness. Consequently, accelerated deterioration may be experienced on engaged-motion contact surfaces, which could result in unexpected reactor shutdown from component malfunction or failure due to galling and seizure. An overall view of the friction and wear phenomena encountered during oscillatory rubbing of surfaces in high-temperature, liquid-sodium environments is presented. Specific data generated at the Liquid Metal Engineering Center (LMEC) on this subject is also presented. (U.S.)

  14. Internal friction in irradiated textolite

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Kozhamkulov, B.A.; Koztaeva, U.P.

    1996-01-01

    Structural relaxation in irradiated textolite of ST and ST-EhTF trade marks presenting pressed material got by method of impregnation of fibreglass by phenole and epoxytriphenole binders relatively. Measuring of temperature dependences of internal friction (TDIF) is carried out in torsional pendulum at oscillation frequency 0.6-1.0 Hz before and after irradiation by stopped gamma-quanta with energy 3 MeV on electron accelerator EhLU-4. α and β peaks, related with segments motion in base and side chains of macromolecular have being observed on TDIF of all textolite. Growth of peaks height after irradiation evident about increase of segments mobility in base chain and about de-freezing of segments in side chains and it could be considered as qualitative measure of radiation destruction rate. Comparison of temperature dependences of internal friction indicates on higher radiation stability of textolite of ST-EhTF trade mark

  15. Development of a Plasma Injector for Supersonic Drag Reduction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Methods to reduce the turbulent viscous skin friction stand out as paramount to increasing the energy efficiency, and therefore the aerodynamic efficiency of...

  16. Protective Effects of Chlorella-Derived Peptide Against UVC-Induced Cytotoxicity through Inhibition of Caspase-3 Activity and Reduction of the Expression of Phosphorylated FADD and Cleaved PARP-1 in Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Jong Yuh Cherng

    2012-08-01

    Full Text Available UVC irradiation induces oxidative stress and leads to cell death through an apoptotic pathway. This apoptosis is caused by activation of caspase-3 and formation of poly(ADP-ribose polymerase-1 (PARP-1. In this study, the underlying mechanisms of Chlorella derived peptide (CDP activity against UVC-induced cytotoxicity were investigated. Human skin fibroblasts were treated with CDP, vitamin C, or vitamin E after UVC irradiation for a total energy of 15 J/cm2. After the UVC exposure, cell proliferation and caspase-3 activity were measured at 12, 24, 48, and 72 h later. Expression of phosphorylated FADD and cleaved PARP-1 were measured 16 h later. DNA damage (expressed as pyrimidine (6-4 pyrimidone photoproducts DNA concentration and fragmentation assay were performed 24 h after the UVC exposure. Results showed that UVC irradiation induced cytotoxicity in all groups except those treated with CDP. The caspase-3 activity in CDP-treated cells was inhibited from 12 h onward. Expression of phosphorylated FADD and cleaved PARP-1 were also reduced in CDP-treated cells. Moreover, UVC-induced DNA damage and fragmentation were also prevented by the CDP treatment. This study shows that treatment of CDP provides protective effects against UVC-induced cytotoxicity through the inhibition of caspase-3 activity and the reduction of phosphorylated FADD and cleaved PARP-1 expression.

  17. Internal friction in uranium dioxide

    International Nuclear Information System (INIS)

    Paulin Filho, Pedro Iris

    1979-01-01

    The uranium dioxide inelastic properties were studied measuring internal friction at low frequencies (of the order of 1 Hz). The work was developed in the 160 to 400 deg C temperature range. The effect of stoichiometry variation was studied oxidizing the sample with consequent change of the defect structure originally present in the non-stoichiometric uranium dioxide. The presence of a wide and irregular peak due to oxidation was observed at low temperatures. Activation energy calculations indicated the occurrence of various relaxation processes and assuming the existence of a peak between - 80 and - 70 deg C , the absolute value obtained for the activation energy (0,54 eV) is consistent with the observed values determined at medium and high frequencies for the stress induced reorientation of defects. The microstructure effect on the inelastic properties was studied for stoichiometric uranium dioxide, by varying grain size and porosity. These parameters have influence on the high temperature measurements of internal friction. The internal friction variation for temperatures higher than 340 deg C is thought to be due to grain boundary relaxation phenomena. (author)

  18. Frictional resistance of orthodontic wires tied with 3 types of elastomeric ligatures

    Directory of Open Access Journals (Sweden)

    Amanda Carneiro da Cunha

    2011-12-01

    Full Text Available The aims of this study were to determine and compare frictional resistance obtained by low-friction and conventional elastomeric ligatures in the presence of artificial saliva, and observe whether this variable changed after 21 days. Super Slick® low-friction elastomeric ligatures and conventional ligatures of the brands TP conventional® and Unitek® were placed on standard edgewise maxillary central incisor metal brackets, slot .022" × .028" tying rectangular orthodontic wires .018" × .025". Three experimental groups were arranged according to the type of ligature and a control group in which no wires were used. The friction values obtained between the bracket/wire/ligature set were measured using a Universal Test Machine at a speed of 20 mm/minute, at two experimental time intervals: T0 - immediately after specimen fabrication; and T1 - 21 days after fabrication and immersion in artificial saliva at 37 ºC. Conventional Unitek ligatures and the low-friction ligature (Super Slick showed the lowest friction values at T0. After 21 days (T1, however, conventional Unitek ligatures presented the lowest value. All groups assessed from T0 to T1 showed a numerical reduction in friction values, suggesting that time, heat and humidity may cause elastic degradation, however this was not verified statistically (P > 0.05.

  19. Friction of elastomer-on-glass system and direct observation of its frictional interface

    International Nuclear Information System (INIS)

    Okamoto, Yoshihiro; Nishio, Kazuyuki; Sugiura, Jun-ichi; Hirano, Motohisa; Nitta, Takahiro

    2007-01-01

    We performed a study on the static friction of PDMS elastomers with well-defined surface topography sliding over glass. An experimental setup for simultaneous measurements of friction force and direct observations of frictional interface has been developed. The static friction force was nearly proportional to normal load. The static friction force was independent of stick time. The simultaneous measurements revealed that the static friction force was proportional to the total area of contact. The coefficient was nearly independent of the surface topography of PDMS elastomers

  20. The effect of friction in coulombian damper

    Science.gov (United States)

    Wahad, H. S.; Tudor, A.; Vlase, M.; Cerbu, N.; Subhi, K. A.

    2017-02-01

    The study aimed to analyze the damping phenomenon in a system with variable friction, Stribeck type. Shock absorbers with limit and dry friction, is called coulombian shock-absorbers. The physical damping vibration phenomenon, in equipment, is based on friction between the cushioning gasket and the output regulator of the shock-absorber. Friction between them can be dry, limit, mixture or fluid. The friction is depending on the contact pressure and lubricant presence. It is defined dimensionless form for the Striebeck curve (µ friction coefficient - sliding speed v). The friction may damp a vibratory movement or can maintain it (self-vibration), depending on the µ with v (it can increase / decrease or it can be relative constant). The solutions of differential equation of movement are obtained for some work condition of one damper for automatic washing machine. The friction force can transfer partial or total energy or generates excitation energy in damper. The damping efficiency is defined and is determined analytical for the constant friction coefficient and for the parabolic friction coefficient.

  1. Kinetic Friction of Sport Fabrics on Snow

    Directory of Open Access Journals (Sweden)

    Werner Nachbauer

    2016-03-01

    Full Text Available After falls, skiers or snowboarders often slide on the slope and may collide with obstacles. Thus, the skier’s friction on snow is an important factor to reduce incidence and severity of impact injuries. The purpose of this study was to measure snow friction of different fabrics of ski garments with respect to roughness, speed, and contact pressure. Three types of fabrics were investigated: a commercially available ski overall, a smooth downhill racing suit, and a dimpled downhill racing suit. Friction was measured for fabrics taped on a short ski using a linear tribometer. The fabrics’ roughness was determined by focus variation microscopy. Friction coefficients were between 0.19 and 0.48. Roughness, friction coefficient, and friction force were highest for the dimpled race suit. The friction force of the fabrics was higher for the higher contact pressure than for the lower one at all speeds. It was concluded that the main friction mechanism for the fabrics was dry friction. Only the fabric with the roughest surface showed friction coefficients, which were high enough to sufficiently decelerate a sliding skier on beginner and intermediate slopes.

  2. Nano-friction behavior of phosphorene.

    Science.gov (United States)

    Bai, Lichun; Liu, Bo; Srikanth, Narasimalu; Tian, Yu; Zhou, Kun

    2017-09-01

    Nano-friction of phosphorene plays a significant role in affecting the controllability and efficiency of applying strain engineering to tune its properties. So far, the friction behavior of phosphorene has not been studied. This work studies the friction of single-layer and bilayer phosphorene on an amorphous silicon substrate by sliding a rigid tip. For the single-layer phosphorene, it is found that its friction is highly anisotropic, i.e. the friction is larger along the armchair direction than that along the zigzag direction. Moreover, pre-strain of the phosphorene also exhibits anisotropic effects. The friction increases with the pre-strain along the zigzag direction, but decreases with that along the armchair direction. Furthermore, the strong adhesion between the phosphorene and its substrate increases the friction between the phosphorene and the tip. For bilayer phosphorene, its friction highly depends on its stacking mode, which determines the contact interface with a commensurate or incommensurate pattern. This friction behavior is quite unique and greatly differs from that of graphene and molybdenum disulfide. Detailed analysis reveals that this behavior results from the combination effect of the friction contact area, the potential-energy profile of phosphorene, and its unique elongation.

  3. THE THEORETICAL FOUNDATIONS OF VIBRATION DAMPERS BY ROLLING FRICTION

    Directory of Open Access Journals (Sweden)

    L. M. Bondarenko

    2015-06-01

    Full Text Available Purpose. There are some unresolved issues in vibration damping – the lack of engineering calculations for the vibration dampers by rolling friction; the absence of evidence of their application appropriateness. Considering this fact, the authors suggest to prove that the dampers based on rolling friction, are similar in rate of oscillation damping by hydraulic shock absorbers. At the same time, they are easier for the hydraulic design, and easily amenable to manual adjustment, both in automatic and manual mode. Methodology. Fixed techniques of practice in order to determine amplitudes of the oscillations of a shock absorber led to a predetermined result and will apply this theory in the calculation of other vibration dampers. Findings. Analysis of the formulas and graphs leads to the following conclusions and recommendations: 1 the nature of the oscillation damping at vibration dampers by rolling friction is close to their decay in the viscous resistance; 2 when conducting the necessary experiments the shock absorber rolling can be recommended as alternatives to hydraulic ones. The research results of this task will help implement the new trend in reduction of dynamic loads in vehicles. Originality. With the help of theoretical curves to determine the coefficients of rolling friction the dependences for determining the amplitudes of the oscillations in the vertical movement of cargo were obtained. At the same time, the previously proposed analytical dependence for determining the coefficient of rolling friction contains only conventional mechanical constants of the contacting bodies and there geometrical dimensions. Practical value. Due to the existing well-known disadvantages of hydraulic shock absorbers it would be logical to apply shock absorbers that are technologically convenient in manufacturing and easy to adjust the damping rate. The proposed theory can be used in the design of shock absorbers rolling as an alternative to the hydraulic

  4. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  5. Drag reduction by streamwise traveling wave-like Lorenz Force in channel flow

    International Nuclear Information System (INIS)

    Mamori, Hiroya; Fukagata, Koji

    2011-01-01

    Skin-friction drag reduction effect of traveling wave-like wall-normal Lorenz force in a fully developed turbulent channel flow is investigated by means of direct numerical simulation. A sinusoidal profile of the wall-normal body force is assumed as the Lorenz force. While upstream traveling waves reduce the drag in the case of blowing/suction, standing waves reduce it in the case of present forcing. Visualization of vortical structure under the standing wave-like wall-normal Lorenz force reveals that the near-wall streamwise vortices, which increase the skin-friction drag, disappear and spanwise roller-like vortices are generated instead. Three component decomposition of the Reynolds shear stress indicates that the spanwise roller-like vortices contribute to the negative Reynolds shear stress in the region near the wall, similarly to the case of laminar flows. While the analogy between the wall-normal and streamwise forcings can be expected, the statistics are found to exhibit different behaviors due to the difference in the energy flow.

  6. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  7. Semi-active friction damper for buildings subject to seismic excitation

    Science.gov (United States)

    Mantilla, Juan S.; Solarte, Alexander; Gomez, Daniel; Marulanda, Johannio; Thomson, Peter

    2016-04-01

    Structural control systems are considered an effective alternative for reducing vibrations in civil structures and are classified according to their energy supply requirement: passive, semi-active, active and hybrid. Commonly used structural control systems in buildings are passive friction dampers, which add energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Semi-Active Variable Friction Dampers (SAVFD) allow the optimum efficiency range of friction dampers to be enhanced by controlling the clamping force in real time. This paper describes the development and performance evaluation of a low-cost SAVFD for the reduction of vibrations of structures subject to earthquakes. The SAVFD and a benchmark structural control test structure were experimentally characterized and analytical models were developed and updated based on the dynamic characterization. Decentralized control algorithms were implemented and tested on a shaking table. Relative displacements and accelerations of the structure controlled with the SAVFD were 80% less than those of the uncontrolled structure

  8. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  9. Friction Anisotropy with Respect to Topographic Orientation

    Science.gov (United States)

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  10. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)

  11. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  12. Static friction between rigid fractal surfaces.

    Science.gov (United States)

    Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A H; Flores-Johnson, E A; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming

    2015-09-01

    Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.

  13. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    Science.gov (United States)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  14. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    Science.gov (United States)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  15. Skin Pigmentation Disorders

    Science.gov (United States)

    Pigmentation means coloring. Skin pigmentation disorders affect the color of your skin. Your skin gets its color from a pigment called melanin. Special cells in the skin make melanin. When these cells become damaged or ...

  16. Skin Cancer Foundation

    Science.gov (United States)

    ... Host a Fundraising Event | About Us | Store The Skin Cancer Foundation The Skin Cancer Foundation is the ... Handbook A "Sunscreen Gene"? Skin Cancer Facts & Statistics Skin Cancer Treatment Glossary Information on medications and procedures ...

  17. Skin Cancer Treatment

    Science.gov (United States)

    ... Unusual Cancers of Childhood Treatment Genetics of Skin Cancer Skin color and being exposed to sunlight can increase ... is based on the type of nonmelanoma skin cancer or other skin condition diagnosed: Basal cell carcinoma Enlarge Basal cell ...

  18. Stages of Skin Cancer

    Science.gov (United States)

    ... Unusual Cancers of Childhood Treatment Genetics of Skin Cancer Skin color and being exposed to sunlight can increase ... is based on the type of nonmelanoma skin cancer or other skin condition diagnosed: Basal cell carcinoma Enlarge Basal cell ...

  19. Friction measurement in a hip wear simulator.

    Science.gov (United States)

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  20. Effect of grafted oligopeptides on friction.

    Science.gov (United States)

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  1. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  2. Friction & Wear Under Very High Electromagnetic Stress

    National Research Council Canada - National Science Library

    Cowan, Richard S; Danyluk, Steven; Moon, Francis; Ford, J. C; Brenner, Donald W

    2004-01-01

    This document summarizes initial progress toward advancing the fundamental understanding of the friction, wear and mechanics of interfaces subjected to extreme electromagnetic stress, high relative...

  3. The friction cost method: a comment.

    Science.gov (United States)

    Johannesson, M; Karlsson, G

    1997-04-01

    The friction cost method has been proposed as an alternative to the human-capital approach of estimating indirect costs. We argue that the friction cost method is based on implausible assumptions not supported by neoclassical economic theory. Furthermore consistently applying the friction cost method would mean that the method should also be applied in the estimation of direct costs, which would mean that the costs of health care programmes are substantially decreased. It is concluded that the friction cost method does not seem to be a useful alternative to the human-capital approach in the estimation of indirect costs.

  4. Servo Reduces Friction In Flexure Bearing

    Science.gov (United States)

    Clingman, W. Dean

    1991-01-01

    Proposed servocontrol device reduces such resistive torques as stiction, friction, ripple, and cogging in flexure bearing described in LAR-14348, "Flexure Bearing Reduces Startup Friction". Reduces frictional "bump" torque encountered when bearing ball runs into buildup of grease on bearing race. Also used as cable follower to reduce torque caused by cable and hoses when they bend because of motion of bearing. New device includes torquer across ball race. Torquer controlled by servo striving to keep flexure at null, removing torque to outer ring. In effect, device is inner control loop reducing friction, but does not control platforms or any outer-control-loop functions.

  5. EVALUATION OF A LOW FRICTION - HIGH EFFICIENCY ROLLER BEARING ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Kolarik, Robert V. II; Shattuck, Charles W.; Copper, Anthony P.

    2009-06-30

    machining and heat treatment. Timken designed and manufactured all of the roller bearing related components such as the thrust bearing package. The production connecting rods and camshafts could not be used for the roller bearing engine, so new ones were produced according to the team’s designs using Timken steel. The remaining miscellaneous components were designed and procured by FEV. Timken prepared a display version of the crankshaft portion of the production engine without connecting rods which could be driven by a motor through a cogged-belt and electrically actuated clutch arrangement. A modified version was also made in which the engine was outfitted with roller bearings on the main bearing positions. Preliminary tests showed that the rollerized engine was running with 1/3 less friction than the standard display engine. Additional friction testing and noise characterization was cut short because of shipping damage to the rollerized engine display and because of other project priorities. The team did successfully demonstrate the ability to package roller bearings satisfactorily in numerous locations in a typical automotive engine. The scope of this project did not include durability demonstration and that subject would have to be addressed in any follow-on work. In the actual test phase, the rollerized engine did show significantly less friction in motored dynamometer tests compared to its production equivalent. The 5-10% improvement measured in this study was about half that seen in other studies. However, the fired test results did not show a reduction in friction which did not match prior experience or expectations. Subsequent teardown and inspection of the rollerized engine revealed potential sources of excessive friction in the experimental application. These features would be eliminated in a design not based on modification of production parts. The team is confident (based on experience) that friction reduction would be realized with proper modifications.

  6. Characterization of friction and wear behavior of friction modifiers used in wheel-rail contacts

    NARCIS (Netherlands)

    Oomen, M. A.; Bosman, R.; Lugt, P. M.

    2017-01-01

    Reliable traction between wheel and rail is an important issue in the railway industry. To reduce variations in the coefficient of friction, so-called “friction modifiers” (carrier with particles) are used. Twin-disk tests were done with three commercial friction modifiers, based on different

  7. Friction-induced Vibrations in an Experimental Drill-string System for Various Friction Situations

    NARCIS (Netherlands)

    Mihajlovic, N.; Wouw, van de N.; Hendriks, M.P.M.; Nijmeijer, H.

    2005-01-01

    Friction-induced limit cycling deteriorates system performance in a wide variety of mechanical systems. In this paper, we study the way in which essential friction characteristics affect the occurrence and nature of friction-induced limit cycling in flexible rotor systems. This study is performed on

  8. On the nature of the static friction, kinetic friction and creep

    DEFF Research Database (Denmark)

    Persson, B. N. J.; Albohr, O.; Mancosu, F.

    2003-01-01

    of capillary bridges. However, there is no single value of the static friction coefficient, since it depends upon the initial dwell time and on rate of starting.We argue that the correct basis for the Coulomb friction law, which states that the friction force is proportional to the normal load...

  9. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  10. Quantum friction across the vacuum

    International Nuclear Information System (INIS)

    Ebelein, C.

    1998-01-01

    Friction is so ubiquitous that it seems to be almost trivially familiar. The rubbing of two solid surfaces is opposed by a resistance and accompanied by the production of heat. Engineers still dream of perfectly smooth surfaces that can be moved against each other without any friction. However, this dream has now been shattered by John Pendry of Imperial College, London, who has published a theory that shows that even two perfectly smooth surfaces can experience an appreciable friction when moved relative to each other (J. Phys.: Condens. Matter 1997 9 10301-10320). Moreover, the two surfaces he considers are not even in contact but separated by a gap a lattice constant or so wide. The explanation of this lies in what Pendry calls the shearing of the vacuum in the gap. In quantum physics the vacuum is not just empty nothingness; it is full of virtually everything. The vacuum abounds with virtual photons. These zero-point fluctuations cannot normally be seen, but they give the vacuum a structure that manifests itself in a variety of effects (for example, the Casimir effect). A more subtle, yet more familiar, manifestation of these zero-point fluctuations is the van der Waals force. The effect described by Pendry can be understood as a van der Waals interaction between two infinite slabs of dielectric material moving relative to each other. Each slab will be aware of the motion of the other because the virtual photons reflected from the moving surface are Doppler-shifted up or down, depending on the direction of the photon wave vector relative to the motion. Pendry shows that this asymmetry in the exchange of virtual photons can lead to an appreciable effect for materials of reasonably strong dispersion. (author)

  11. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    Science.gov (United States)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  12. Stabilizing Stick-Slip Friction

    International Nuclear Information System (INIS)

    Capozza, Rosario; Barel, Itay; Urbakh, Michael; Rubinstein, Shmuel M.; Fineberg, Jay

    2011-01-01

    Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear systems driven near to criticality.

  13. Job Heterogeneity and Coordination Frictions

    DEFF Research Database (Denmark)

    Kennes, John; le Maire, Daniel

    We develop a new directed search model of a frictional labor market with a continuum of heterogenous workers and firms. We estimate two versions of the model - auction and price posting - using Danish data on wages and productivities. Assuming heterogenous workers with no comparative advantage, we...... the job ladder, how the identification of assortative matching is fundamentally different in directed and undirected search models, how our theory accounts for business cycle facts related to inter-temporal changes in job offer distributions, and how our model could also be used to identify...

  14. Cutaneous skin tag

    Science.gov (United States)

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  15. Low-friction nanojoint prototype

    Science.gov (United States)

    Vlassov, Sergei; Oras, Sven; Antsov, Mikk; Butikova, Jelena; Lõhmus, Rünno; Polyakov, Boris

    2018-05-01

    High surface energy of individual nanostructures leads to high adhesion and static friction that can completely hinder the operation of nanoscale systems with movable parts. For instance, silver or gold nanowires cannot be moved on silicon substrate without plastic deformation. In this paper, we experimentally demonstrate an operational prototype of a low-friction nanojoint. The movable part of the prototype is made either from a gold or silver nano-pin produced by laser-induced partial melting of silver and gold nanowires resulting in the formation of rounded bulbs on their ends. The nano-pin is then manipulated into the inverted pyramid (i-pyramids) specially etched in a Si wafer. Due to the small contact area, the nano-pin can be repeatedly tilted inside an i-pyramid as a rigid object without noticeable deformation. At the same time in the absence of external force the nanojoint is stable and preserves its position and tilt angle. Experiments are performed inside a scanning electron microscope and are supported by finite element method simulations.

  16. Mathematical models of viscous friction

    CERN Document Server

    Buttà, Paolo; Marchioro, Carlo

    2015-01-01

    In this monograph we present a review of a number of recent results on the motion of a classical body immersed in an infinitely extended medium and subjected to the action of an external force. We investigate this topic in the framework of mathematical physics by focusing mainly on the class of purely Hamiltonian systems, for which very few results are available. We discuss two cases: when the medium is a gas and when it is a fluid. In the first case, the aim is to obtain microscopic models of viscous friction. In the second, we seek to underline some non-trivial features of the motion. Far from giving a general survey on the subject, which is very rich and complex from both a phenomenological and theoretical point of view, we focus on some fairly simple models that can be studied rigorously, thus providing a first step towards a mathematical description of viscous friction. In some cases, we restrict ourselves to studying the problem at a heuristic level, or we present the main ideas, discussing only some as...

  17. Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    A. Yamileva

    2014-07-01

    Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.

  18. Occupational skin problems in construction workers.

    Science.gov (United States)

    Shah, Kartik R; Tiwari, Rajnarayan R

    2010-10-01

    Construction workers handle cement which has constituents to produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients, such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients, such as chromium). The present study has been carried out among unorganized construction workers to find the prevalence of skin problems. The present cross-sectional study was conducted in 92 construction workers of Ahmedabad and Vadodara. All the workers were subjected to clinical examination after collection of information regarding demographic characteristics, occupational characteristics and clinical history on a predesigned proforma. Of them, 47.8% had morbid skin conditions. Frictional callosities in palm were observed in 18 (19.6%) subjects while 4 (4.3%) subjects had contact dermatitis. Other conditions included dry, fissured and scaly skin, infectious skin lesion, tinea cruris, lesion and ulcers on hands and/or soles. The skin conditions were common in the age group of 20-25 years, males, those having ≥1 year exposure and those working for longer hours. Half of the workers not using personal protective equipment had reported skin-related symptoms.

  19. Velocity Dependence in the Cyclic Friction Arising with Gears

    OpenAIRE

    García Armada, Elena; González de Santos, Pablo; Canudas de Wit, Carlos

    2002-01-01

    Recent research on friction in robot joints and transmission systems has considered meshing friction a position-dependent friction component. However, in this paper we show experimental evidence that meshing friction depends highly on joint speed.We identify the meshing friction in the gearboxes of a robotic leg, and we propose a new mathematical model that considers the rate dependency of meshing friction. The resulting model is validated through experimentation. Results...

  20. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  1. Rolling Friction on a Wheeled Laboratory Cart

    Science.gov (United States)

    Mungan, Carl E.

    2012-01-01

    A simple model is developed that predicts the coefficient of rolling friction for an undriven laboratory cart on a track that is approximately independent of the mass loaded onto the cart and of the angle of inclination of the track. The model includes both deformation of the wheels/track and frictional torque at the axles/bearings. The concept of…

  2. Magnetic Viscous Drag for Friction Labs

    Science.gov (United States)

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  3. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  4. Gimbaled-shoulder friction stir welding tool

    Science.gov (United States)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  5. Friction in textile thermoplastic composites forming

    NARCIS (Netherlands)

    Akkerman, Remko; ten Thije, R.H.W.; Sachs, Ulrich; de Rooij, Matthias B.; Binetruy, C.; Boussu, F.

    2010-01-01

    A previously developed mesoscopic friction model for glass/PP textile composite laminates during forming is evaluated for glass and carbon/PPS laminates, at higher temperatures and lower viscosities than before. Experiments were performed for tool/ply and ply/ply configurations in a new friction

  6. The role of friction in tow mechanics

    NARCIS (Netherlands)

    Cornelissen, Bo

    2013-01-01

    Friction plays and important role in the processing of fibrous materials: during production of tow materials, during textile manufacturing and during preforming operations for composite moulding processes. One of the poorly understood phenomena in these processes is the dynamic frictional behaviour

  7. High Friction Surface Treatments, Transportation Research Synthesis

    Science.gov (United States)

    2018-03-01

    MnDOT and local transportation agencies in Minnesota are considering the use of a high friction surface treatment (HFST) as a safety strategy. HFST is used as a spot pavement surfacing treatment in locations with high friction demand (for example, cr...

  8. Device measures static friction of magnetic tape

    Science.gov (United States)

    Cole, P. T.

    1967-01-01

    Device measures the coefficient of static friction of magnetic tape over a range of temperatures and relative humidities. It uses a strain gage to measure the force of friction between a reference surface and the tape drawn at a constant velocity of approximately 0.0001 inch per second relative to the reference surface.

  9. Friction brake cushions acceleration and vibration loads

    Science.gov (United States)

    Fraser, G. F.; Zawadski, G. Z.

    1966-01-01

    Friction brake cushions an object in a vehicle from axially applied vibration and steady-state acceleration forces. The brake incorporates a doubly tapered piston that applies a controlled radial force to friction brake segments bearing against the walls of a cylinder.

  10. Dynamic frictional contact for elastic viscoplastic material

    Directory of Open Access Journals (Sweden)

    Kenneth L. Kuttler

    2007-05-01

    Full Text Available Using a general theory for evolution inclusions, existence and uniqueness theorems are obtained for weak solutions to a frictional dynamic contact problem for elastic visco-plastic material. An existence theorem in the case where the friction coefficient is discontinuous is also presented.

  11. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  12. Advanced friction modeling for sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; de Rooij, Matthias B.; Meinders, Vincent T.

    2012-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  13. Advanced friction modeling in sheet metal forming

    NARCIS (Netherlands)

    Hol, J.; Cid Alfaro, M.V.; Meinders, Vincent T.; Huetink, Han

    2011-01-01

    The Coulomb friction model is frequently used for sheet metal forming simulations. This model incorporates a constant coefficient of friction and does not take the influence of important parameters such as contact pressure or deformation of the sheet material into account. This article presents a

  14. Position-dependent friction in quantum mechanics

    International Nuclear Information System (INIS)

    Srokowski, T.

    1985-01-01

    The quantum description of motion of a particle subjected to position-dependent frictional forces is presented. The two cases are taken into account: a motion without external forces and in the harmonic oscillator field. As an example, a frictional barrier penetration is considered. 16 refs. (author)

  15. High-velocity frictional properties of gabbro

    Science.gov (United States)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  16. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    International Nuclear Information System (INIS)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-01-01

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS 2 and MoS 2 . • WS 2 and MoS 2 are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS 2 and MoS 2 , where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  17. Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding

    Energy Technology Data Exchange (ETDEWEB)

    Hovsepian, Papken Eh., E-mail: p.hovsepian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Mandal, Paranjayee, E-mail: 200712mum@gmail.com [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Ehiasarian, Arutiun P., E-mail: a.ehiasarian@shu.ac.uk [Nanotechnology Centre for PVD Research, HIPIMS Research Centre, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB (United Kingdom); Sáfrán, G., E-mail: safran.gyorgy@ttk.mta.hu [Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thegeut 29-33 (Hungary); Tietema, R., E-mail: rtietema@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands); Doerwald, D., E-mail: ddoerwald@hauzer.nl [IHI Hauzer Techno Coating B.V., Van Heemskerckweg 22, 5928 LL Venlo (Netherlands)

    2016-03-15

    Graphical abstract: - Highlights: • Novel Mo–W–C coating provides extremely low friction (μ ∼ 0.03) in lubricated condition. • Mo–W–C outperforms existing DLCs in terms of low friction, independent of temperature. • Tribochemical reactions govern the wear mechanism of Mo–W–C coating. • The transfer layer contains graphitic carbon and ‘in situ’ formed WS{sub 2} and MoS{sub 2}. • WS{sub 2} and MoS{sub 2} are the key factors facilitating appreciably low friction and wear rate. - Abstract: A molybdenum and tungsten doped carbon-based coating (Mo–W–C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo–W–C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo–W–C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and ‘in situ’ formed metal sulphides (WS{sub 2} and MoS{sub 2}, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  18. Trial manufacture of rotary friction tester and frictional force measurement of metals

    CERN Document Server

    Abe, T; Kanari, M; Tanzawa, S

    2002-01-01

    In the plasma confinement type fusion reactor, in-vessel structures such as a blanket module slide at the joints each other when plasma disruption occurs, and then frictional heat is generated there. Therefore, for the selection of material and the use as the design data, it is important to understand the frictional characteristics of metals and ceramic films in the vacuum. In the present study, we have manufactured a prototype of rotary friction tester and examined the performances of the tester. The frictional characteristics of metals in the room air was measured using the friction tester, and the results obtained are as follows. A drifting friction force for a constant time and a friction force during the idling were 98 mN and 225 mN, respectively. These values were sufficiently small as compared to pressing load (9.8 - 57.8 N) used in the friction test. In a friction force measurement of stainless steel, dynamic friction force obeyed Amontons' law which indicated that dynamic friction force is not depend...

  19. Frictional ageing from interfacial bonding and the origins of rate and state friction.

    Science.gov (United States)

    Li, Qunyang; Tullis, Terry E; Goldsby, David; Carpick, Robert W

    2011-11-30

    Earthquakes have long been recognized as being the result of stick-slip frictional instabilities. Over the past few decades, laboratory studies of rock friction have elucidated many aspects of tectonic fault zone processes and earthquake phenomena. Typically, the static friction of rocks grows logarithmically with time when they are held in stationary contact, but the mechanism responsible for this strengthening is not understood. This time-dependent increase of frictional strength, or frictional ageing, is one manifestation of the 'evolution effect' in rate and state friction theory. A prevailing view is that the time dependence of rock friction results from increases in contact area caused by creep of contacting asperities. Here we present the results of atomic force microscopy experiments that instead show that frictional ageing arises from the formation of interfacial chemical bonds, and the large magnitude of ageing at the nanometre scale is quantitatively consistent with what is required to explain observations in macroscopic rock friction experiments. The relative magnitude of the evolution effect compared with that of the 'direct effect'--the dependence of friction on instantaneous changes in slip velocity--determine whether unstable slip, leading to earthquakes, is possible. Understanding the mechanism underlying the evolution effect would enable us to formulate physically based frictional constitutive laws, rather than the current empirically based 'laws', allowing more confident extrapolation to natural faults.

  20. Novel friction law for the static friction force based on local precursor slipping.

    Science.gov (United States)

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-09-10

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µM, which is considered to be a constant. Here, we conduct experiments demonstrating that the static friction force of a slider on a substrate follows a novel friction law under certain conditions. The magnitude of µM decreases as the loading force increases or as the apparent contact area decreases. This behavior is caused by the slip of local precursors before the onset of bulk sliding and is consistent with recent theory. The results of this study will develop novel methods for static friction control.

  1. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  2. Friction Properties of Carbon Fiber Brush

    OpenAIRE

    大塚, 由佳; 月山, 陽介; 野老山, 貴行; 梅原, 徳次; OHTSUKA, Yuka; TSUKIYAMA, Yosuke; TOKOROYAMA, Takayuki; UMEHARA, Noritsugu

    2011-01-01

    直径数μmのカーボンファイバーを束ねたカーボンファイバーブラシ材料と金属材料のすべり摩擦におけるすべり出しの摩擦及び平均摩擦特性と,金属同士のそれらの摩擦特性の相違を調べ,カーボンファイバーブラシ材料の摩擦の特異性を明らかにした. Friction properties as initial and average friction coefficient were investigated for carbon brush materials. Experimental results shows that static friction coefficient of carbon fiber brush is smaller than kinetic friction after a macro slip. This phenomena is different from the usual friction properties between metals. I...

  3. On the geometric phenomenology of static friction.

    Science.gov (United States)

    Ghosh, Shankar; Merin, A P; Nitsure, Nitin

    2017-09-06

    In this note we introduce a hierarchy of phase spaces for static friction, which give a graphical way to systematically quantify the directional dependence in static friction via subregions of the phase spaces. We experimentally plot these subregions to obtain phenomenological descriptions for static friction in various examples where the macroscopic shape of the object affects the frictional response. The phase spaces have the universal property that for any experiment in which a given object is put on a substrate fashioned from a chosen material with a specified nature of contact, the frictional behaviour can be read off from a uniquely determined classifying map on the control space of the experiment which takes values in the appropriate phase space.

  4. Friction forces on phase transition fronts

    International Nuclear Information System (INIS)

    Mégevand, Ariel

    2013-01-01

    In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling

  5. Influence of Surface Roughness on Polymer Drag Reduction

    National Research Council Canada - National Science Library

    Ceccio, Steven L; Dowling, David R; Perlin, Marc; Solomon, Michael

    2007-01-01

    .... The details of that effort can be found in the final technical report for that project. The purpose of the additional investigation was to examine the physics and engineering of friction drag reduction methods for turbulent boundary layers (TBL...

  6. Decontamination for radiators by friction effect

    International Nuclear Information System (INIS)

    Nojima, Takeshi; Yoshida, Yuji

    2016-01-01

    Radiators are equipped with cars, vending machines and outdoor units of air conditioners. Aluminum metal surfaces in their heat exchange part have been contaminated by radioactive material taking in dust after the nuclear accident. The dust adhering to the metal surface could be removed by flushing with water immediately after scattering radioactive material. But radioactive material such as cesium cannot be removed by water washing, because of growth of the oxide film and transfer of the nuclides in the metal surface due to aging. On the other hand, we have verified the effect of decontamination of radiators by friction cleaning using a cross flow shredder (CFS) and solvent washing of crushed metallic chips, as a different approach to high-pressure washing decontamination, and confirmed a certain decontamination effect. This paper describes the results of program, “Processing Technology of Radioactive Material Removal by Cross Flow Shredder,” in August to December 2015, on support of FY 2015 Demonstration Test Project for Decontamination and Volume Reduction of Ministry of the Environment. (author)

  7. Estimation method for first excursion probability of secondary system with impact and friction using maximum response

    International Nuclear Information System (INIS)

    Shigeru Aoki

    2005-01-01

    The secondary system such as pipings, tanks and other mechanical equipment is installed in the primary system such as building. The important secondary systems should be designed to maintain their function even if they are subjected to destructive earthquake excitations. The secondary system has many nonlinear characteristics. Impact and friction characteristic, which are observed in mechanical supports and joints, are common nonlinear characteristics. As impact damper and friction damper, impact and friction characteristic are used for reduction of seismic response. In this paper, analytical methods of the first excursion probability of the secondary system with impact and friction, subjected to earthquake excitation are proposed. By using the methods, the effects of impact force, gap size and friction force on the first excursion probability are examined. When the tolerance level is normalized by the maximum response of the secondary system without impact or friction characteristics, variation of the first excursion probability is very small for various values of the natural period. In order to examine the effectiveness of the proposed method, the obtained results are compared with those obtained by the simulation method. Some estimation methods for the maximum response of the secondary system with nonlinear characteristics have been developed. (author)

  8. A Generic Friction Model for Radial Slider Bearing Simulation Considering Elastic and Plastic Deformation

    Directory of Open Access Journals (Sweden)

    Günter Offner

    2015-06-01

    Full Text Available The investigation of component dynamics is one of the main tasks of internal combustion engine (ICE simulation. This prediction is important in order to understand complex loading conditions, which happen in a running ICE. Due to the need for fuel saving, mechanical friction, in particular in radial slider bearings, is one important investigation target. A generic friction modeling approach for radial slider bearings, which can be applied to lubricated contact regimes, will be presented in this paper. Besides viscous friction, the approach considers in particular boundary friction. The parameterization of the friction model is done using surface material and surface roughness measurement data. Furthermore, fluid properties depending on the applied oil additives are being considered. The application of the model will be demonstrated for a typical engineering task of a connecting rod big end study to outline the effects of contact surface texture. AlSn-based and polymer coated bearing shells will be analyzed and compared with respect to friction reduction effects, running-in behavior and thermal load capabilities.

  9. Modeling of Instabilities and Self-organization at the Frictional Interface

    Science.gov (United States)

    Mortazavi, Vahid

    The field of friction-induced self-organization and its practical importance remains unknown territory to many tribologists. Friction is usually thought of as irreversible dissipation of energy and deterioration; however, under certain conditions, friction can lead to the formation of new structures at the interface, including in-situ tribofilms and various patterns at the interface. This thesis studies self-organization and instabilities at the frictional interface, including the instability due to the temperature-dependency of the coefficient of friction, the transient process of frictional running-in, frictional Turing systems, the stick-and-slip phenomenon, and, finally, contact angle (CA) hysteresis as an example of solid-liquid friction and dissipation. All these problems are chosen to bridge the gap between fundamental interest in understanding the conditions leading to self-organization and practical motivation. We study the relationship between friction-induced instabilities and friction-induced self-organization. Friction is usually thought of as a stabilizing factor; however, sometimes it leads to the instability of sliding, in particular when friction is coupled with another process. Instabilities constitute the main mechanism for pattern formation. At first, a stationary structure loses its stability; after that, vibrations with increasing amplitude occur, leading to a limit cycle corresponding to a periodic pattern. The self-organization is usually beneficial for friction and wear reduction because the tribological systems tend to enter a state with the lowest energy dissipation. The introductory chapter starts with basic definitions related to self-organization, instabilities and friction, literature review, and objectives. We discuss fundamental concepts that provide a methodological tool to investigate, understand and enhance beneficial processes in tribosystems which might lead to self-organization. These processes could result in the ability of a

  10. FRICTION-BOON OR BANE IN ORTHODONTICS

    Directory of Open Access Journals (Sweden)

    Sameer

    2015-11-01

    Full Text Available OBJECTIVE: Most fixed appliance techniques involve some degree of sliding between brackets and arch wires. A sound knowledge of the various factors affecting the magnitude of friction is of paramount importance to the clinician. The present study was performed to evaluate and compare the frictional resistance and characteristics between self-ligating brackets and pre-adjusted edgewise brackets with different types of ligation. MATERIALS AND METHODS: Tidy's frictional test design was used to simulate retraction of tooth along with artificial saliva to simulate wet conditions in oral cavity. The jig with this assembly was mounted on the Instron machine with the cross head moving upwards at a speed of 5mm/min. The movable bracket was suspended from the load cell of the testing machine, while the jig was mounted on cross head of machine and the load cell readings were recorded on digital display. Following wires are used 0.016 HANT, 0.019X 0.025HANT, 0.019X 0.025 SS, 0.021X 0.025 SS wires are used. The brackets used were 0.022 slot Damon, 0.022 Smart clip and 0.022 slot MBT system. RESULTS: Self ligating brackets were shown to produce lesser friction when compared to the conventional brackets used with modules, and stainless steel ligatures. Damon self-ligating brackets produce a least friction of all the brackets used in the study. Stainless steel ligatures produced the least friction compared to elastomeric. CONCLUSION: Self ligation brackets produce lesser friction than the conventional brackets ligated with elastomeric modules and stainless steel ligature. Damon self-ligating brackets produce a least friction of all the brackets used in the study width of the bracket was also found to be directly proportional to the friction produced 0.0016HANT with elastomeric modules produce more friction due increase in flexibility of wire.

  11. Anticipating the friction coefficient of friction materials used in automobiles by means of machine learning without using a test instrument

    OpenAIRE

    TİMUR, Mustafa; AYDIN, Fatih

    2013-01-01

    The most important factor for designs in which friction materials are used is the coefficient of friction. The coefficient of friction has been determined taking such variants as velocity, temperature, and pressure into account, which arise from various factors in friction materials, and by analyzing the effects of these variants on friction materials. Many test instruments have been produced in order to determine the coefficient of friction. In this article, a study about the use ...

  12. Preliminary Report on the Effect of Pre-Boring on the Mobilized Friction Capacity of Pile Foundation Hydraulically Jacked into Expansive Soil

    Directory of Open Access Journals (Sweden)

    Budi G.S.

    2015-01-01

    Full Text Available Pre-drilling was performed to reduce lateral earth pressure generated by pile foundation hydraulically jacked into expansive soil. Nineteen prestressed-precast spun concrete pile with diameter of 800 mm were penetrated into expansive soil up the depth of 40 m. Pre-drilling with diameter of 700 mm was carried out up to the depth of 12.5 m. Penetration loads required to install the piles, which was displayed on the built-in pressure panel, were recorded every 1 m interval. The load that was consisted of merely shaft friction was then used to find out the mobilized skin friction between pile shaft and its surrounding soils. The calculated mobilized skin friction was correlated to the value of Standard Penetration Test (NSPT and compared to Decourt formula. The result shows that skin friction calculated using Decourt formula relatively conservative compared to those determined from the records of field penetration. The upper bound of mobilized skin friction can be defined by modifying Decourt formula.

  13. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  14. Powder metallurgy ferrous synchronizer ring with brass-based friction layer; Tetsu-do niso shoketsu synchronize ring no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Yoshikawa, K; Miyajima, K; Sugiyama, M [Toyota Motor Corp., Aichi (Japan); Nakamura, M; Ito, M [Japan Powder Metallurgy Co. Ltd., Tokyo (Japan)

    1997-10-01

    Synchronizer rings for manual transmissions are generally made of brass or molybdenum coated brass. Powder metallurgy (PM) synchronizer ring was developed for the purpose of high performance and cost reduction. This synchronizer ring consists of the high strength PM ferrous ring that needs neither special densification nor heat treatment, and it has the brass-based friction layer. New joining technique was required because of that shape and two different materials. Powder of copper-phosphorus alloy are admixed with the friction material. While sintering, that melt and migrate to the interface. Then the friction layer and the ferrous ring are joined tightly. 7 refs., 9 figs., 6 tabs.

  15. Design, Construction, and Evaluation of Rubber Friction Tester

    Directory of Open Access Journals (Sweden)

    Mehdi Razzaghi Kashani

    2012-12-01

    Full Text Available Coeffcient of  friction  (COF  for  rubber parts  is one of  the key parameters in their interaction with solid rough surfaces (micrometer to millimeter scales,  such  as  tire-road  interactions. COF  of  rubber  depends  on  viscoelastic properties of rubber, roughness characteristics of the counter-part surface, and process variables such as contact nominal pressure and sliding speed. Due to the need for measuring COF  for  rubber,  a  new  friction  tester, with  continuous  variation  of nominal pressure and sliding speed, was designed and constructed in order to assess the effect of above mentioned parameters. Tire tread compounds, as the most common rubber part  in  the feld of  rubber  tribology, was used  for  this purpose. Viscoelastic properties of compounds were varied by changing composition of styrene-butadiene rubber (SBR and butadiene rubber (BR in the blend. Effect of surface roughness was evaluated by using silicon-carbide papers with different roughness parameters. By statistical analysis it was shown that the designed friction tester has high accuracy in measuring the coeffcient of friction of rubber and differentiating the effective parameters. Increasing the nominal pressure led to reduction of COF and increase in sliding speed forced it through a maximum. In conclusion, the loss factor of the compound and asymmetry in roughness distribution of the counter-surface are considered as the most effective parameters on COF of rubber.

  16. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  17. Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates

    Directory of Open Access Journals (Sweden)

    Paweł Sędłak

    2017-01-01

    Full Text Available Laboratorial two-body wear testing was carried out in order to assess effects of polypropylene modification by impregnating it with oils on friction coefficient and wear in comparison to those parameters of unmodified polypropylene, Teflon, and polyamide during operation under conditions of sliding friction without lubrication. Wear behaviour of the tested specimens was investigated using ASTM G77-98 standard wear test equipment. Recording program made it possible to visualise and record the following parameters: rotational speed and load, linear wear, friction coefficient, temperature of the specimen, and ambient temperature. In addition, wear mechanisms of the analysed materials were determined with use of scanning electron microscopy. In the case of the remaining tested polymers, the most important mechanism of wear was adhesion (PP, PTFE, PA 6.6, and PA MoS2, microcutting (PTFE, PA 6.6, and PA MoS2, fatigue wear (PTFE, forming “roll-shaped particles” combined with plastic deformation (PA 6.6 and PA MoS2, and thermal wear (PP. Impregnation of polypropylene with engine oil, gear oil, or RME results in significant reduction of friction coefficient and thus of friction torque, in relation to not only unmodified polypropylene but also the examined polyamide and Teflon.

  18. Skin tightening with a combined unipolar and bipolar radiofrequency device.

    Science.gov (United States)

    Mayoral, Flor A

    2007-02-01

    Monopolar radiofrequency (RF) devices are well established treatment modalities for tightening facial skin. A 60-year-old woman presented with a desire to tighten the lax skin and improve the appearance of both upper arms. A combination unipolar and bipolar RF device may provide volume reduction as well as skin tightening in the upper arm.

  19. Anyone Can Get Skin Cancer

    Science.gov (United States)

    ... of Skin Cancer Skin Cancer Screening Research Anyone Can Get Skin Cancer Order the free Anyone Can ... rarely, younger children can develop skin cancer. How can people with dark skin get skin cancer? Although ...

  20. Friction Stir Welding and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  1. Ultrasonic Low-Friction Containment Plate for Thermal and Ultrasonic Stir Weld Processes

    Science.gov (United States)

    Graff, Karl; Short, Matt

    2013-01-01

    The thermal stir welding (TSW) process is finding applications in fabrication of space vehicles. In this process, workpieces to be joined by TSW are drawn, by heavy forces, between "containment plates," past the TSW tool that then causes joining of the separate plates. It is believed that the TSW process would be significantly improved by reducing the draw force, and that this could be achieved by reducing the friction forces between the workpieces and containment plates. Based on use of high-power ultrasonics in metal forming processes, where friction reduction in drawing dies has been achieved, it is believed that ultrasonic vibrations of the containment plates could achieve similar friction reduction in the TSW process. By applying ultrasonic vibrations to the containment plates in a longitudinal vibration mode, as well as by mounting and holding the containment plates in a specific manner such as to permit the plates to acoustically float, friction between the metal parts and the containment plates is greatly reduced, and so is the drawing force. The concept was to bring in the ultrasonics from the sides of the plates, permitting the ultrasonic hardware to be placed to the side, away from the equipment that contains the thermal stir tooling and that applies clamping forces to the plates. Tests demonstrated that one of the major objectives of applying ultrasonics to the thermal stir system, that of reducing draw force friction, should be achievable on a scaled-up system.

  2. From microscopic to macroscopic dynamics in mean-field theory: effect of neutron skin on fusion barrier and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2001-07-01

    In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)

  3. Using squeeze-film effect to reduce surface friction in electrostatic actuators

    DEFF Research Database (Denmark)

    Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio; Zhang, Zhe

    2015-01-01

    This paper presents a method of reducing load friction in two degrees-of-freedom (2-DOF) transparent electrostatic induction actuator by using vibration-induced squeeze film effect. An experimental set-up was built to prove the concept. An overall 70% reduction in required driving voltage...

  4. The influence of longitudinal micro grooves on hydrodynamic friction drag of a plate

    Directory of Open Access Journals (Sweden)

    В.І. Коробов

    2005-01-01

    Full Text Available  Weight measurements in a water tunnel have shown that there exist a range of parameters of longitudinally fine-ribbed surface such that turbulent friction in flow over the surface is less than that over a smooth flat plane of the same projected area. Maximum drag reduction due to ribbing is up to 16%.

  5. Surface Friction of Polyacrylamide Hydrogel Particles

    Science.gov (United States)

    Cuccia, Nicholas; Burton, Justin

    Polyacrylamide hydrogel particles have recently become a popular system for modeling low-friction, granular materials near the jamming transition. Because a gel consists of a polymer network filled with solvent, its frictional behavior is often explained using a combination of hydrodynamic lubrication and polymer-surface interactions. As a result, the frictional coefficient can vary between 0.001 and 0.03 depending on several factors such as contact area, sliding velocity, normal force, and the gel surface chemistry. Most tribological measurements of hydrogels utilize two flat surfaces, where the contact area is not well-defined. We have built a custom, low-force tribometer to measure the single-contact frictional properties of spherical hydrogel particles on flat hydrogel surfaces under a variety of measurement conditions. At high velocities (> 1 cm/s), the friction coefficient depends linearly on velocity, but does not tend to zero at zero velocity. We also compare our measurements to solid particles (steel, glass, etc.) on hydrogel surfaces, which exhibit larger frictional forces, and show less dependence on velocity. A physical model for the friction which includes the lubrication layer between the deformed surfaces will be discussed. National Science Foundation Grant No. 1506446.

  6. Amontonian frictional behaviour of nanostructured surfaces.

    Science.gov (United States)

    Pilkington, Georgia A; Thormann, Esben; Claesson, Per M; Fuge, Gareth M; Fox, Oliver J L; Ashfold, Michael N R; Leese, Hannah; Mattia, Davide; Briscoe, Wuge H

    2011-05-28

    With nanotextured surfaces and interfaces increasingly being encountered in technological and biomedical applications, there is a need for a better understanding of frictional properties involving such surfaces. Here we report friction measurements of several nanostructured surfaces using an Atomic Force Microscope (AFM). These nanostructured surfaces provide well defined model systems on which we have tested the applicability of Amontons' laws of friction. Our results show that Amontonian behaviour is observed with each of the surfaces studied. However, no correlation has been found between measured friction and various surface roughness parameters such as average surface roughness (R(a)) and root mean squared (rms) roughness. Instead, we propose that the friction coefficient may be decomposed into two contributions, i.e., μ = μ(0) + μ(g), with the intrinsic friction coefficient μ(0) accounting for the chemical nature of the surfaces and the geometric friction coefficient μ(g) for the presence of nanotextures. We have found a possible correlation between μ(g) and the average local slope of the surface nanotextures. This journal is © the Owner Societies 2011

  7. Nonmonotonicity of the Frictional Bimaterial Effect

    Science.gov (United States)

    Aldam, Michael; Xu, Shiqing; Brener, Efim A.; Ben-Zion, Yehuda; Bouchbinder, Eran

    2017-10-01

    Sliding along frictional interfaces separating dissimilar elastic materials is qualitatively different from sliding along interfaces separating identical materials due to the existence of an elastodynamic coupling between interfacial slip and normal stress perturbations in the former case. This bimaterial coupling has important implications for the dynamics of frictional interfaces, including their stability and rupture propagation along them. We show that while this bimaterial coupling is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a nonmonotonic dependence on the bimaterial contrast. In particular, we show that for a regularized Coulomb friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is a nonmonotonic function of the bimaterial contrast and provides analytic insight into the origin of this nonmonotonicity. We further show that for velocity-strengthening rate-and-state friction, the maximal growth rate of unstable interfacial perturbations of homogeneous sliding is also a nonmonotonic function of the bimaterial contrast. Results from simulations of dynamic rupture along a bimaterial interface with slip-weakening friction provide evidence that the theoretically predicted nonmonotonicity persists in nonsteady, transient frictional dynamics.

  8. Assessment of semi-active friction dampers

    Science.gov (United States)

    dos Santos, Marcelo Braga; Coelho, Humberto Tronconi; Lepore Neto, Francisco Paulo; Mafhoud, Jarir

    2017-09-01

    The use of friction dampers has been widely proposed for a variety of mechanical systems for which applying viscoelastic materials, fluid based dampers or other viscous dampers is impossible. An important example is the application of friction dampers in aircraft engines to reduce the blades' vibration amplitudes. In most cases, friction dampers have been studied in a passive manner, but significant improvements can be achieved by controlling the normal force in the contact region. The aim of this paper is to present and study five control strategies for friction dampers based on three different hysteresis cycles by using the Harmonic Balance Method (HBM), a numerical and experimental analysis. The first control strategy uses the friction force as a resistance when the system is deviating from its equilibrium position. The second control strategy maximizes the energy removal in each harmonic oscillation cycle by calculating the optimal normal force based on the last displacement peak. The third control strategy combines the first strategy with the homogenous modulation of the friction force. Finally, the last two strategies attempt to predict the system's movement based on its velocity and acceleration and our knowledge of its physical properties. Numerical and experimental studies are performed with these five strategies, which define the performance metrics. The experimental testing rig is fully identified and its parameters are used for numerical simulations. The obtained results show the satisfactory performance of the friction damper and selected strategy and the suitable agreement between the numerical and experimental results.

  9. Enhanced nanoscale friction on fluorinated graphene.

    Science.gov (United States)

    Kwon, Sangku; Ko, Jae-Hyeon; Jeon, Ki-Joon; Kim, Yong-Hyun; Park, Jeong Young

    2012-12-12

    Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

  10. Abnormally dark or light skin

    Science.gov (United States)

    Hyperpigmentation; Hypopigmentation; Skin - abnormally light or dark ... Normal skin contains cells called melanocytes. These cells produce melanin , the substance that gives skin its color. Skin with ...

  11. Experimental investigation of drag reduction effect of Si-Polyurea paint

    International Nuclear Information System (INIS)

    Lee, In Won; Jang, Ho Yun; Chun, Ho Hwan; Kwon, Sang Hoon

    2008-01-01

    A novel Silicone-Polyurea paint has been newly developed and introduced for the antifouling marine paint. This paint is featured with such advantages as the shock-proofness and the scratch-proofness. In addition, the roughness of the resulting paint film is found to be much less than the conventional SPC AF paints. Ultra fast drying ability enables the formation of very thick paint film, e. g., 500μm. The Silicone-Polyurea resin exhibits similar material behavior as that of silicone rubber in terms of hardness and elongation. This material is regarded as a potent candidate to substantiate the compliant coating for the skin friction reduction. This study aims at the assessment of the drag reducing efficiency of the silicone-polyurea paint

  12. Drag reduction in a turbulent channel flow using a passivity-based approach

    Science.gov (United States)

    Heins, Peter; Jones, Bryn; Sharma, Atul

    2013-11-01

    A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.

  13. Influence of vermiculite on performance of flyash-based fibre-reinforced hybrid composites as friction materials

    International Nuclear Information System (INIS)

    Satapathy, Bhabani K.; Patnaik, Amar; Dadkar, Nandan; Kolluri, Dilip K.; Tomar, Bharat S.

    2011-01-01

    Highlights: → Study successfully demonstrates the possibility of designing fibre reinforced friction materials with vermiculite-flyash combination. → Vermiculite has caused an increase in the post-braking onset of degradation temperature. → Fade behaviour was found to be optimally dependent on the flyash-vermiculite combination whereas recovery remained broadly unaffected. → Vermiculite caused reduction in the maximum disc temperature rise and enhanced the frictional amplitude, i.e. μ max -μ min . → Static-friction, fade and recovery acted as major determinants for the overall friction performance whereas wear remained thermally activated. -- Abstract: Flyash-based fibre-reinforced hybrid phenolic composites filled with vermiculite were fabricated and characterized for their physical, thermal, mechanical and tribological performance. The performance were evaluated in terms of their friction-fade, friction-recovery, maximum disc temperature rise and wear behaviour on a Krauss friction tester conforming to the Regulation-90 as per the Economic Commission for Europe (ECE) norms. The fade behaviour has been observed to be optimally dependent on the flyash-vermiculite combination whereas the recovery remained broadly unaffected at ∼112 ± 14%. Addition of vermiculite has contributed to the reduction in the maximum disc temperature rise whereas it enhanced the frictional amplitude, i.e. μ max -μ min . The wear behaviour remains closely related to the trend observed in fade. The addition of vermiculite has caused an increase in the post-braking onset of degradation temperature of the surface composition as compared to the pre-braking composition. The analyses of friction and wear performance of the composites were carried out and major factors influencing the tribo-performance were identified. Worn surface morphology investigation using scanning electron microscope has revealed that the addition of vermiculite alters the compositional interactions at the

  14. Anisotropy in cohesive, frictional granular media

    International Nuclear Information System (INIS)

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  15. Internal Friction And Instabilities Of Rotors

    Science.gov (United States)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  16. NASA tire/runway friction projects

    Science.gov (United States)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  17. Skin color - patchy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003224.htm Skin color - patchy To use the sharing features on this page, please enable JavaScript. Patchy skin color is areas where the skin color is irregular. ...

  18. Histoplasma skin test

    Science.gov (United States)

    Histoplasmosis skin test ... health care provider cleans an area of your skin, usually the forearm. An allergen is injected just below the cleaned skin surface. An allergen is a substance that causes ...

  19. Skin Condition Finder

    Science.gov (United States)

    ... SKIN CONDITIONS HEALTH TOPICS FOR PROFESSIONALS Rash and Skin Condition Finder 1 Select Age Group Infant Child ... Toe Toe Webspace Toe Nail CLOSE About the Skin Condition Finder Have a health question or concern? ...

  20. Skin Complications of IBD

    Science.gov (United States)

    ... Home > Resources > Skin Complications of IBD Go Back Skin Complications of IBD Email Print + Share After arthritis, ... about 5% of people with inflammatory bowel disease. SKIN DISORDERS COMMONLY SEEN IN IBD ERHTHEMA NODOSUM The ...

  1. Skin Peeling Syndrome

    Directory of Open Access Journals (Sweden)

    Sharma Rajeev

    2000-01-01

    Full Text Available Peeling of the skin is an uncommonly encountered disorder. Occurrence of vesicles and bullae in peeling skin syndrome is very rare. We report a case of idiopathic peeling skin syndrome with vesicular lesions.

  2. Development of an Active Topical Skin Protectant (aTSP)

    Science.gov (United States)

    2016-02-01

    protectant as a follow-on product to Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA). 15. SUBJECT TERMS decontamination , Skin...corresponding author), Chemical Warfare Agent Decontamination from Skin, In J.A. Romano Jr., B.J. Lukey, and H. Salem, eds., 2nd Edition of Chemical Warfare ...CG, and Braue, EH Jr (corresponding author), “ Chemical warfare agent decontamination from skin,” In J.A. Romano Jr., B.J. Lukey, and H. Salem

  3. Instrumentation, computer software and experimental techniques used in low-frequency internal friction studies at WNRE

    International Nuclear Information System (INIS)

    Sprugmann, K.W.; Ritchie, I.G.

    1980-04-01

    A detailed and comprehensive account of the equipment, computer programs and experimental methods developed at the Whiteshell Nuclear Research Estalbishment for the study of low-frequency internal friction is presented. Part 1 describes the mechanical apparatus, electronic instrumentation and computer software, while Part II describes in detail the laboratory techniques and various types of experiments performed together with data reduction and analysis. Experimental procedures for the study of internal friction as a function of temperature, strain amplitude or time are described. Computer control of these experiments using the free-decay technique is outlined. In addition, a pendulum constant-amplitude drive system is described. (auth)

  4. TEM analysis of a friction stir-welded butt joint of Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Cabibbo, M.; Meccia, E.; Evangelista, E.

    2003-01-01

    The microstructure evolution of a joint of Al-Si-Mg alloys A6056-T4 and A6056-T6 has been characterized by transmission electron microscopy (TEM). Metallurgical investigations, hardness and mechanical tests were also performed to correlate the TEM investigations to the mechanical properties of the produced friction stir-welded butt joint. After friction stir-welding thermal treatment has been carried out at 530 deg. C followed by ageing at 160 deg. C (T6). The base material (T4) and the heat-treated one (T6) were put in comparison showing a remarkable ductility reduction of the joint after T6 treatment

  5. Investigation of scale effects and directionality dependence on friction and adhesion of human hair using AFM and macroscale friction test apparatus

    International Nuclear Information System (INIS)

    LaTorre, Carmen; Bhushan, Bharat

    2006-01-01

    Macroscale testing of human hair tribological properties has been widely used to aid in the development of better shampoos and conditioners. Recently, literature has focused on using the atomic force microscope (AFM) to study surface roughness, coefficient of friction, adhesive force, and wear (tribological properties) on the nanoscale in order to increase understanding about how shampoos and conditioners interact with the hair cuticle. Since there are both similarities and differences when comparing the tribological trends at both scales, it is thus recognized that scale effects are an important aspect of studying the tribology of hair. However, no microscale tribological data for hair exists in literature. This is unfortunate because many interactions between hair-skin, hair-comb, and hair-hair contact takes place at microasperities ranging from a few μm to hundreds of μm. Thus, to bridge the gap between the macro- and nanoscale data, as well as to gain a full understanding of the mechanisms behind the trends, it is now worthwhile to look at hair tribology on the microscale. Presented in this paper are coefficient of friction and adhesive force data on various scales for virgin and chemically damaged hair, both with and without conditioner treatment. Macroscale coefficient of friction was determined using a traditional friction test apparatus. Microscale and nanoscale tribological characterization was performed with AFM tips of various radii. The nano-, micro-, and macroscale trends are compared and the mechanisms behind the scale effects are discussed. Since the coefficient of friction changes drastically (on any scale) depending on whether the direction of motion is along or against the cuticle scales, the directionality dependence and responsible mechanisms are discussed

  6. Comparisons of friction models in bulk metal forming

    DEFF Research Database (Denmark)

    Tan, Xincai

    2002-01-01

    A friction model is one of the key input boundary conditions in finite element simulations. It is said that the friction model plays an important role in controlling the accuracy of necessary output results predicted. Among the various friction models, which one is of higher accuracy is still...... unknown and controversial. In this paper, finite element analyses applying five different friction models to experiments of upsetting of AA 6082 lubricated with four lubricants are presented. Frictional parameter values are determined by fitness of data of friction area ratio from finite element analysis...... to experimental results. It is found that calibration curves of the friction area ratio for all of the five chosen friction models used in the finite element simulation do fit the experimental results. Usually, calbration curves of the friction area ratio are more sensitive to friction at the tool...

  7. Novel Friction Law for the Static Friction Force based on Local Precursor Slipping

    OpenAIRE

    Katano, Yu; Nakano, Ken; Otsuki, Michio; Matsukawa, Hiroshi

    2014-01-01

    The sliding of a solid object on a solid substrate requires a shear force that is larger than the maximum static friction force. It is commonly believed that the maximum static friction force is proportional to the loading force and does not depend on the apparent contact area. The ratio of the maximum static friction force to the loading force is called the static friction coefficient µ M, which is considered to be a constant. Here, we conduct experiments demonstrating that the static fricti...

  8. Velocity dependence of friction of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.

    2009-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: (a) polymer sliding against a hard substrate, and (b) polymer sliding on polymer. We discuss the velocity dependence of the frictional...... shear stress for both cases. In our simulations, the polymer films are very thin (approx. 3 nm), and the solid walls are connected to a thermostat at a short distance from the polymer slab. Under these circumstances we find that frictional heating effects are not important, and the effective temperature...... in the polymer film is always close to the thermostat temperature. In the first setup (a), for hydrocarbons with molecular lengths from 60 to 1400 carbon atoms, the shear stresses are nearly independent of molecular length, but for the shortest hydrocarbon C20H42 the frictional shear stress is lower. In all...

  9. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  10. Experimental studies of the magnetized friction force

    International Nuclear Information System (INIS)

    Fedotov, A. V.; Litvinenko, V. N.; Gaalnander, B.; Lofnes, T.; Ziemann, V.; Sidorin, A.; Smirnov, A.

    2006-01-01

    High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chosen in a manner to reproduce regimes expected in future high-energy operation. Here, we report a set of dedicated experiments in CELSIUS aimed at a detailed study of the magnetized friction force. Some results of the accurate comparison of experimental data with the friction force formulas are presented

  11. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  12. Interfacial Friction and Adhesion of Polymer Brushes

    KAUST Repository

    Landherr, Lucas J. T.; Cohen, Claude; Agarwal, Praveen; Archer, Lynden A.

    2011-01-01

    higher molar mass chains exhibit higher friction forces than those created using lower molar mass polymers. Increased grafting density of chains in the brush significantly reduces the COF by creating a uniform surface of stretched chains with a decreased

  13. The coefficient of friction, particularly of ice

    International Nuclear Information System (INIS)

    Mills, Allan

    2008-01-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04–0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found

  14. Wear reduction through piezoelectrically-assisted ultrasonic lubrication

    International Nuclear Information System (INIS)

    Dong, Sheng; J Dapino, Marcelo

    2014-01-01

    Traditional lubricants are undesirable in harsh aerospace environments and certain automotive applications. Ultrasonic vibrations can be used to reduce and modulate the effective friction coefficient between two sliding surfaces. This paper investigates the relationship between friction force reduction and wear reduction in ultrasonically lubricated surfaces. A pin-on-disc tribometer is modified through the addition of a piezoelectric transducer which vibrates the pin at 22 kHz in the direction perpendicular to the rotating disc surface. Friction and wear metrics including volume loss, surface roughness, friction forces and apparent stick-slip effects are measured without and with ultrasonic vibrations at three different sliding velocities. SEM imaging and 3D profilometry are used to characterize the wear surfaces and guide model development. Over the range of speeds considered, ultrasonic vibrations reduce the effective friction force up to 62% along with a wear reduction of up to 49%. A simple cube model previously developed to quantify friction force reduction is implemented which describes wear reduction within 15% of the experimental data. (paper)

  15. Comparing numerically exact and modelled static friction

    Directory of Open Access Journals (Sweden)

    Krengel Dominik

    2017-01-01

    Full Text Available Currently there exists no mechanically consistent “numerically exact” implementation of static and dynamic Coulomb friction for general soft particle simulations with arbitrary contact situations in two or three dimension, but only along one dimension. We outline a differential-algebraic equation approach for a “numerically exact” computation of friction in two dimensions and compare its application to the Cundall-Strack model in some test cases.

  16. Hedging, arbitrage and optimality with superlinear frictions

    OpenAIRE

    Guasoni, Paolo; Rásonyi, Miklós

    2015-01-01

    In a continuous-time model with multiple assets described by c\\`{a}dl\\`{a}g processes, this paper characterizes superhedging prices, absence of arbitrage, and utility maximizing strategies, under general frictions that make execution prices arbitrarily unfavorable for high trading intensity. Such frictions induce a duality between feasible trading strategies and shadow execution prices with a martingale measure. Utility maximizing strategies exist even if arbitrage is present, because it is n...

  17. Political frictions and public policy outcomes

    OpenAIRE

    Grechyna, Daryna

    2016-01-01

    We study the role of political frictions in public policy outcomes. We propose a simple model of fiscal policy that combines a lack of commitment by the government, political turnover, and another political friction that can be interpreted either as political polarization or as public rent-seeking. We show that political turnover increases public debt levels, while political polarization or public rent-seeking leads to higher public spending. We evaluate the importance of different political ...

  18. Probing friction in actin-based motility

    International Nuclear Information System (INIS)

    Marcy, Yann; Joanny, Jean-Francois; Prost, Jacques; Sykes, Cecile

    2007-01-01

    Actin dynamics are responsible for cell protrusion and certain intracellular movements. The transient attachment of the actin filaments to a moving surface generates a friction force that resists the movement. We probe here the dynamics of these attachments by inducing a stick-slip behavior via micromanipulation of a growing actin comet. We show that general principles of adhesion and friction can explain our observations

  19. Friction Stir Welding Process: A Green Technology

    OpenAIRE

    Esther T. Akinlabi; Stephen A. Akinlabi

    2012-01-01

    Friction Stir Welding (FSW) is a solid state welding process invented and patented by The Welding Institute (TWI) in the United Kingdom in 1991 for butt and lap welding of metals and plastics. This paper highlights the benefits of friction stir welding process as an energy efficient and a green technology process in the field of welding. Compared to the other conventional welding processes, its benefits, typical applications and its use in joining similar and dissimilar materia...

  20. Macroeconomics with Financial Frictions: A Survey

    OpenAIRE

    Markus K. Brunnermeier; Thomas M. Eisenbach; Yuliy Sannikov

    2012-01-01

    This article surveys the macroeconomic implications of financial frictions. Financial frictions lead to persistence and when combined with illiquidity to non-linear amplification effects. Risk is endogenous and liquidity spirals cause financial instability. Increasing margins further restrict leverage and exacerbate downturns. A demand for liquid assets and a role for money emerges. The market outcome is generically not even constrained efficient and the issuance of government debt can lead t...