WorldWideScience

Sample records for skills computer simulated

  1. Assessing Practical Skills in Physics Using Computer Simulations

    Science.gov (United States)

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  2. Teaching emergency medical services management skills using a computer simulation exercise.

    Science.gov (United States)

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  3. Computer simulations in the high school: students' cognitive stages, science process skills and academic achievement in microbiology

    Science.gov (United States)

    Huppert, J.; Michal Lomask, S.; Lazarowitz, R.

    2002-08-01

    Computer-assisted learning, including simulated experiments, has great potential to address the problem solving process which is a complex activity. It requires a highly structured approach in order to understand the use of simulations as an instructional device. This study is based on a computer simulation program, 'The Growth Curve of Microorganisms', which required tenth grade biology students to use problem solving skills whilst simultaneously manipulating three independent variables in one simulated experiment. The aims were to investigate the computer simulation's impact on students' academic achievement and on their mastery of science process skills in relation to their cognitive stages. The results indicate that the concrete and transition operational students in the experimental group achieved significantly higher academic achievement than their counterparts in the control group. The higher the cognitive operational stage, the higher students' achievement was, except in the control group where students in the concrete and transition operational stages did not differ. Girls achieved equally with the boys in the experimental group. Students' academic achievement may indicate the potential impact a computer simulation program can have, enabling students with low reasoning abilities to cope successfully with learning concepts and principles in science which require high cognitive skills.

  4. The ribbon microphone - an educational aid: use of a ribbon microphone to teach multi-discipline computer simulation skills

    CSIR Research Space (South Africa)

    Van Wyk, Marius

    2016-07-01

    Full Text Available The ribbon microphone serves as an excellent aid to learn computer simulation and computational skills. Simulation of this seemingly simple device is all but trivial. The ribbon microphone is an all-in-one example for simulations in acoustics...

  5. Using a computer simulation for teaching communication skills: A blinded multisite mixed methods randomized controlled trial.

    Science.gov (United States)

    Kron, Frederick W; Fetters, Michael D; Scerbo, Mark W; White, Casey B; Lypson, Monica L; Padilla, Miguel A; Gliva-McConvey, Gayle A; Belfore, Lee A; West, Temple; Wallace, Amelia M; Guetterman, Timothy C; Schleicher, Lauren S; Kennedy, Rebecca A; Mangrulkar, Rajesh S; Cleary, James F; Marsella, Stacy C; Becker, Daniel M

    2017-04-01

    To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group's experiences and learning preferences. A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR's intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. MPathic-VR's virtual human simulation offers an effective and engaging means of advanced communication training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Using a computer simulation for teaching communication skills: A blinded multisite mixed methods randomized controlled trial

    Science.gov (United States)

    Kron, Frederick W.; Fetters, Michael D.; Scerbo, Mark W.; White, Casey B.; Lypson, Monica L.; Padilla, Miguel A.; Gliva-McConvey, Gayle A.; Belfore, Lee A.; West, Temple; Wallace, Amelia M.; Guetterman, Timothy C.; Schleicher, Lauren S.; Kennedy, Rebecca A.; Mangrulkar, Rajesh S.; Cleary, James F.; Marsella, Stacy C.; Becker, Daniel M.

    2016-01-01

    Objectives To assess advanced communication skills among second-year medical students exposed either to a computer simulation (MPathic-VR) featuring virtual humans, or to a multimedia computer-based learning module, and to understand each group’s experiences and learning preferences. Methods A single-blinded, mixed methods, randomized, multisite trial compared MPathic-VR (N=210) to computer-based learning (N=211). Primary outcomes: communication scores during repeat interactions with MPathic-VR’s intercultural and interprofessional communication scenarios and scores on a subsequent advanced communication skills objective structured clinical examination (OSCE). Multivariate analysis of variance was used to compare outcomes. Secondary outcomes: student attitude surveys and qualitative assessments of their experiences with MPathic-VR or computer-based learning. Results MPathic-VR-trained students improved their intercultural and interprofessional communication performance between their first and second interactions with each scenario. They also achieved significantly higher composite scores on the OSCE than computer-based learning-trained students. Attitudes and experiences were more positive among students trained with MPathic-VR, who valued its providing immediate feedback, teaching nonverbal communication skills, and preparing them for emotion-charged patient encounters. Conclusions MPathic-VR was effective in training advanced communication skills and in enabling knowledge transfer into a more realistic clinical situation. Practice Implications MPathic-VR’s virtual human simulation offers an effective and engaging means of advanced communication training. PMID:27939846

  7. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    Full Text Available Abstract Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents.

  8. Using computer simulation to improve high order thinking skills of physics teacher candidate students in Compton effect

    Science.gov (United States)

    Supurwoko; Cari; Sarwanto; Sukarmin; Fauzi, Ahmad; Faradilla, Lisa; Summa Dewi, Tiarasita

    2017-11-01

    The process of learning and teaching in Physics is often confronted with abstract concepts. It makes difficulty for students to understand and teachers to teach the concept. One of the materials that has an abstract concept is Compton Effect. The purpose of this research is to evaluate computer simulation model on Compton Effect material which is used to improve high thinking ability of Physics teacher candidate students. This research is a case study. The subject is students at physics educations who have attended Modern Physics lectures. Data were obtained through essay test for measuring students’ high-order thinking skills and quisioners for measuring students’ responses. The results obtained indicate that computer simulation model can be used to improve students’ high order thinking skill and can be used to improve students’ responses. With this result it is suggested that the audiences use the simulation media in learning

  9. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    Science.gov (United States)

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights

  10. Training auscultatory skills: computer simulated heart sounds or additional bedside training? A randomized trial on third-year medical students

    Science.gov (United States)

    2010-01-01

    Background The present study compares the value of additional use of computer simulated heart sounds, to conventional bedside auscultation training, on the cardiac auscultation skills of 3rd year medical students at Oslo University Medical School. Methods In addition to their usual curriculum courses, groups of seven students each were randomized to receive four hours of additional auscultation training either employing a computer simulator system or adding on more conventional bedside training. Cardiac auscultation skills were afterwards tested using live patients. Each student gave a written description of the auscultation findings in four selected patients, and was rewarded from 0-10 points for each patient. Differences between the two study groups were evaluated using student's t-test. Results At the auscultation test no significant difference in mean score was found between the students who had used additional computer based sound simulation compared to additional bedside training. Conclusions Students at an early stage of their cardiology training demonstrated equal performance of cardiac auscultation whether they had received an additional short auscultation course based on computer simulated training, or had had additional bedside training. PMID:20082701

  11. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  12. Effect of computer game playing on baseline laparoscopic simulator skills.

    Science.gov (United States)

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  13. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  14. Simulation-based Mastery Learning Improves Cardiac Auscultation Skills in Medical Students

    Science.gov (United States)

    McGaghie, William C.; Cohen, Elaine R.; Kaye, Marsha; Wayne, Diane B.

    2010-01-01

    Background Cardiac auscultation is a core clinical skill. However, prior studies show that trainee skills are often deficient and that clinical experience is not a proxy for competence. Objective To describe a mastery model of cardiac auscultation education and evaluate its effectiveness in improving bedside cardiac auscultation skills. Design Untreated control group design with pretest and posttest. Participants Third-year students who received a cardiac auscultation curriculum and fourth year students who did not. Intervention A cardiac auscultation curriculum consisting of a computer tutorial and a cardiac patient simulator. All third-year students were required to meet or exceed a minimum passing score (MPS) set by an expert panel at posttest. Measurements Diagnostic accuracy with simulated heart sounds and actual patients. Results Trained third-year students (n = 77) demonstrated significantly higher cardiac auscultation accuracy compared to untrained fourth year students (n = 31) in assessment of simulated heart sounds (93.8% vs. 73.9%, p auscultation curriculum consisting of deliberate practice with a computer-based tutorial and a cardiac patient simulator resulted in improved assessment of simulated heart sounds and more accurate examination of actual patients. PMID:20339952

  15. COMPUTER LEARNING SIMULATOR WITH VIRTUAL REALITY FOR OPHTHALMOLOGY

    Directory of Open Access Journals (Sweden)

    Valeria V. Gribova

    2013-01-01

    Full Text Available A toolset of a medical computer learning simulator for ophthalmology with virtual reality and its implementation are considered in the paper. The simulator is oriented for professional skills training for students of medical universities. 

  16. The nature and use of prediction skills in a biological computer simulation

    Science.gov (United States)

    Lavoie, Derrick R.; Good, Ron

    The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.

  17. Transferability of laparoscopic skills using the virtual reality simulator.

    Science.gov (United States)

    Yang, Cui; Kalinitschenko, Uljana; Helmert, Jens R; Weitz, Juergen; Reissfelder, Christoph; Mees, Soeren Torge

    2018-03-30

    Skill transfer represents an important issue in surgical education, and is not well understood. The aim of this randomized study is to assess the transferability of surgical skills between two laparoscopic abdominal procedures using the virtual reality simulator in surgical novices. From September 2016 to July 2017, 44 surgical novices were randomized into two groups and underwent a proficiency-based basic training consisting of five selected simulated laparoscopic tasks. In group 1, participants performed an appendectomy training on the virtual reality simulator until they reached a defined proficiency. They moved on to the tutorial procedural tasks of laparoscopic cholecystectomy. Participants in group 2 started with the tutorial procedural tasks of laparoscopic cholecystectomy directly. Finishing the training, participants of both groups were required to perform a complete cholecystectomy on the simulator. Time, safety and economy parameters were analysed. Significant differences in the demographic characteristics and previous computer games experience between the two groups were not noted. Both groups took similar time to complete the proficiency-based basic training. Participants in group 1 needed significantly less movements (388.6 ± 98.6 vs. 446.4 ± 81.6; P virtual reality simulator; however, the transfer of cognitive skills is limited. Separate training curricula seem to be necessary for each procedure for trainees to practise task-specific cognitive skills effectively. Mentoring could help trainees to get a deeper understanding of the procedures, thereby increasing the chance for the transfer of acquired skills.

  18. A Reconfigurable Simulation-Based Test System for Automatically Assessing Software Operating Skills

    Science.gov (United States)

    Su, Jun-Ming; Lin, Huan-Yu

    2015-01-01

    In recent years, software operating skills, the ability in computer literacy to solve problems using specific software, has become much more important. A great deal of research has also proven that students' software operating skills can be efficiently improved by practicing customized virtual and simulated examinations. However, constructing…

  19. Data Entry Skills in a Computer-based Spread Sheet Amongst Postgraduate Medical Students: A Simulation Based Descriptive Assessment.

    Science.gov (United States)

    Khan, Amir Maroof; Shah, Dheeraj; Chatterjee, Pranab

    2014-07-01

    In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG) medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2(nd) year PG medical students of a medical college of North India. A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%), long variable names (51.4%), coding not being done for all the variables (76.6%), missing values entered in a non-uniform manner (84.7%) and two variables entered in the same column in the case of blood pressure reading (80.2%). PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  20. Students Computer Skills in Faculty of Education

    Directory of Open Access Journals (Sweden)

    Mehmet Caglar

    2010-09-01

    Full Text Available Nowadays; the usage of technology is not a privilege but an obligation. Technological developments influence structures andfunctions of educational institutions. It is also expected from the teachers that they integrate technology in their lessons inorder to educate the individuals of information society. This research has covered 145(68 female, 78 male students, studying inNear East University Faculty of Education. The Computer Skills Scale developed by Güçlü (2010 was used as a data collectingtool. Data were analysed using SPSS software program. In this study, students’ computer skills were investigated; the variationsin the relationships between computer skills and (a gender, (b family’s net monthly income, (c presence of computers athome, (d presence of a computer laboratory at school and (e parents’ computer skills were examined. Frequency analysis,percentage and mean calculations were used. In addition, t-test and multi-variate analysis were used to look at the relationshipbetween different variables. As a result of this study, a statistically significant relationship between computer skills of studentswho had a computer at home and computer skills of those who didn’t have a computer at home were found.

  1. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Science.gov (United States)

    Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314

  2. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills

    Directory of Open Access Journals (Sweden)

    Stephen T. Polyak

    2017-11-01

    Full Text Available This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  3. Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.

    Science.gov (United States)

    Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt

    2017-01-01

    This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.

  4. Data entry skills in a computer-based spread sheet amongst postgraduate medical students: A simulation based descriptive assessment

    Directory of Open Access Journals (Sweden)

    Amir Maroof Khan

    2014-01-01

    Full Text Available Background: In India, research work in the form of a thesis is a mandatory requirement for the postgraduate (PG medical students. Data entry in a computer-based spread sheet is one of the important basic skills for research, which has not yet been studied. This study was conducted to assess the data entry skills of the 2 nd year PG medical students of a medical college of North India. Materials and Methods: A cross-sectional, descriptive study was conducted among 111 second year PG students by using four simulated filled case record forms and a computer-based spread sheet in which data entry was to be carried out. Results: On a scale of 0-10, only 17.1% of the students scored more than seven. The specific sub-skills that were found to be lacking in more than half of the respondents were as follows: Inappropriate coding (93.7%, long variable names (51.4%, coding not being done for all the variables (76.6%, missing values entered in a non-uniform manner (84.7% and two variables entered in the same column in the case of blood pressure reading (80.2%. Conclusion: PG medical students were not found to be proficient in data entry skill and this can act as a barrier to do research. This being a first of its kind study in India, more research is needed to understand this issue and then include this yet neglected aspect in teaching research methodology to the medical students.

  5. Correlations between technical skills and behavioral skills in simulated neonatal resuscitations.

    Science.gov (United States)

    Sawyer, T; Leonard, D; Sierocka-Castaneda, A; Chan, D; Thompson, M

    2014-10-01

    Neonatal resuscitation requires both technical and behavioral skills. Key behavioral skills in neonatal resuscitation have been identified by the Neonatal Resuscitation Program. Correlations and interactions between technical skills and behavioral skills in neonatal resuscitation were investigated. Behavioral skills were evaluated via blinded video review of 45 simulated neonatal resuscitations using a validated assessment tool. These were statistically correlated with previously obtained technical skill performance data. Technical skills and behavioral skills were strongly correlated (ρ=0.48; P=0.001). The strongest correlations were seen in distribution of workload (ρ=0.60; P=0.01), utilization of information (ρ=0.55; P=0.03) and utilization of resources (ρ=0.61; P=0.01). Teams with superior behavioral skills also demonstrated superior technical skills, and vice versa. Technical and behavioral skills were highly correlated during simulated neonatal resuscitations. Individual behavioral skill correlations are likely dependent on both intrinsic and extrinsic factors.

  6. Assessing problem-solving skills in construction education with the virtual construction simulator

    Science.gov (United States)

    Castronovo, Fadi

    The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on

  7. Computer skills for the next generation of healthcare executives.

    Science.gov (United States)

    Côté, Murray J; Van Enyde, Donald F; DelliFraine, Jami L; Tucker, Stephen L

    2005-01-01

    Students beginning a career in healthcare administration must possess an array of professional and management skills in addition to a strong fundamental understanding of the field of healthcare administration. Proficient computer skills are a prime example of an essential management tool for healthcare administrators. However, it is unclear which computer skills are absolutely necessary for healthcare administrators and the extent of congruency between the computer skills possessed by new graduates and the needs of senior healthcare professionals. Our objectives in this research are to assess which computer skills are the most important to senior healthcare executives and recent healthcare administration graduates and examine the level of agreement between the two groups. Based on a survey of senior healthcare executives and graduate healthcare administration students, we identify a comprehensive and pragmatic array of computer skills and categorize them into four groups, according to their importance, for making recent health administration graduates valuable in the healthcare administration workplace. Traditional parametric hypothesis tests are used to assess congruency between responses of senior executives and of recent healthcare administration graduates. For each skill, responses of the two groups are averaged to create an overall ranking of the computer skills. Not surprisingly, both groups agreed on the importance of computer skills for recent healthcare administration graduates. In particular, computer skills such as word processing, graphics and presentation, using operating systems, creating and editing databases, spreadsheet analysis, using imported data, e-mail, using electronic bulletin boards, and downloading information were among the highest ranked computer skills necessary for recent graduates. However, there were statistically significant differences in perceptions between senior executives and healthcare administration students as to the extent

  8. Computer Networks E-learning Based on Interactive Simulations and SCORM

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Candelas

    2011-05-01

    Full Text Available This paper introduces a new set of compact interactive simulations developed for the constructive learning of computer networks concepts. These simulations, which compose a virtual laboratory implemented as portable Java applets, have been created by combining EJS (Easy Java Simulations with the KivaNS API. Furthermore, in this work, the skills and motivation level acquired by the students are evaluated and measured when these simulations are combined with Moodle and SCORM (Sharable Content Object Reference Model documents. This study has been developed to improve and stimulate the autonomous constructive learning in addition to provide timetable flexibility for a Computer Networks subject.

  9. Skills and the appreciation of computer art

    Science.gov (United States)

    Boden, Margaret A.

    2016-04-01

    The appreciation of art normally includes recognition of the artist's skills in making it. Most people cannot appreciate computer art in that way, because they know little or nothing about coding. Various suggestions are made about how computer artists and/or curators might design and present computer art in such a way as to make the relevant making-skills more intelligible.

  10. Surgical simulation in orthopaedic skills training.

    Science.gov (United States)

    Atesok, Kivanc; Mabrey, Jay D; Jazrawi, Laith M; Egol, Kenneth A

    2012-07-01

    Mastering rapidly evolving orthopaedic surgical techniques requires a lengthy period of training. Current work-hour restrictions and cost pressures force trainees to face the challenge of acquiring more complex surgical skills in a shorter amount of time. As a result, alternative methods to improve the surgical skills of orthopaedic trainees outside the operating room have been developed. These methods include hands-on training in a laboratory setting using synthetic bones or cadaver models as well as software tools and computerized simulators that enable trainees to plan and simulate orthopaedic operations in a three-dimensional virtual environment. Laboratory-based training offers potential benefits in the development of basic surgical skills, such as using surgical tools and implants appropriately, achieving competency in procedures that have a steep learning curve, and assessing already acquired skills while minimizing concerns for patient safety, operating room time, and financial constraints. Current evidence supporting the educational advantages of surgical simulation in orthopaedic skills training is limited. Despite this, positive effects on the overall education of orthopaedic residents, and on maintaining the proficiency of practicing orthopaedic surgeons, are anticipated.

  11. Computer-Assisted Face Processing Instruction Improves Emotion Recognition, Mentalizing, and Social Skills in Students with ASD

    Science.gov (United States)

    Rice, Linda Marie; Wall, Carla Anne; Fogel, Adam; Shic, Frederick

    2015-01-01

    This study examined the extent to which a computer-based social skills intervention called "FaceSay"™ was associated with improvements in affect recognition, mentalizing, and social skills of school-aged children with Autism Spectrum Disorder (ASD). "FaceSay"™ offers students simulated practice with eye gaze, joint attention,…

  12. Computational Physics Simulation of Classical and Quantum Systems

    CERN Document Server

    Scherer, Philipp O. J

    2010-01-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

  13. Simulation-based medical education in clinical skills laboratory.

    Science.gov (United States)

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education.

  14. Does teaching non-technical skills to medical students improve those skills and simulated patient outcome?

    Science.gov (United States)

    Hagemann, Vera; Herbstreit, Frank; Kehren, Clemens; Chittamadathil, Jilson; Wolfertz, Sandra; Dirkmann, Daniel; Kluge, Annette; Peters, Jürgen

    2017-03-29

    The purpose of this study is to evaluate the effects of a tailor-made, non-technical skills seminar on medical student's behaviour, attitudes, and performance during simulated patient treatment. Seventy-seven students were randomized to either a non-technical skills seminar (NTS group, n=43) or a medical seminar (control group, n=34). The human patient simulation was used as an evaluation tool. Before the seminars, all students performed the same simulated emergency scenario to provide baseline measurements. After the seminars, all students were exposed to a second scenario, and behavioural markers for evaluating their non-technical skills were rated. Furthermore, teamwork-relevant attitudes were measured before and after the scenarios, and perceived stress was measured following each simulation. All simulations were also evaluated for various medical endpoints. Non-technical skills concerning situation awareness (ptechnical skills to improve student's non-technical skills. In a next step, to improve student's handling of emergencies and patient outcomes, non-technical skills seminars should be accompanied by exercises and more broadly embedded in the medical school curriculum.

  15. Airway skills training using a human patient simulator | Moodley ...

    African Journals Online (AJOL)

    ... of airway management skills using the simulator. Participant satisfaction was much better in the simulator group. The importance of psychomotor reinforcement should be borne in mind when designing simulation courses. Keywords: human patient simulator, simulation, airway management, psychomotor skills ...

  16. Computer games and fine motor skills.

    Science.gov (United States)

    Borecki, Lukasz; Tolstych, Katarzyna; Pokorski, Mieczyslaw

    2013-01-01

    The study seeks to determine the influence of computer games on fine motor skills in young adults, an area of incomplete understanding and verification. We hypothesized that computer gaming could have a positive influence on basic motor skills, such as precision, aiming, speed, dexterity, or tremor. We examined 30 habitual game users (F/M - 3/27; age range 20-25 years) of the highly interactive game Counter Strike, in which players impersonate soldiers on a battlefield, and 30 age- and gender-matched subjects who declared never to play games. Selected tests from the Vienna Test System were used to assess fine motor skills and tremor. The results demonstrate that the game users scored appreciably better than the control subjects in all tests employed. In particular, the players did significantly better in the precision of arm-hand movements, as expressed by a lower time of errors, 1.6 ± 0.6 vs. 2.8 ± 0.6 s, a lower error rate, 13.6 ± 0.3 vs. 20.4 ± 2.2, and a shorter total time of performing a task, 14.6 ± 2.9 vs. 32.1 ± 4.5 s in non-players, respectively; p computer games on psychomotor functioning. We submit that playing computer games may be a useful training tool to increase fine motor skills and movement coordination.

  17. COMPUTER SIMULATION THE MECHANICAL MOVEMENT BODY BY MEANS OF MATHCAD

    Directory of Open Access Journals (Sweden)

    Leonid Flehantov

    2017-03-01

    Full Text Available Here considered the technique of using computer mathematics system MathCAD for computer implementation of mathematical model of the mechanical motion of the physical body thrown at an angle to the horizon, and its use for educational computer simulation experiment in teaching the fundamentals of mathematical modeling. The advantages of MathCAD as environment of implementation mathematical models in the second stage of higher education are noted. It describes the creation the computer simulation model that allows you to comprehensively analyze the process of mechanical movement of the body, changing the input parameters of the model: the acceleration of gravity, the initial and final position of the body, the initial velocity and angle, the geometric dimensions of the body and goals. The technique aimed at the effective assimilation of basic knowledge and skills of students on the basics of mathematical modeling, it provides an opportunity to better master the basic theoretical principles of mathematical modeling and related disciplines, promotes logical thinking development of students, their motivation to learn discipline, improves cognitive interest, forms skills research activities than creating conditions for the effective formation of professional competence of future specialists.

  18. Virtual reality simulators: current status in acquisition and assessment of surgical skills.

    Science.gov (United States)

    Cosman, Peter H; Cregan, Patrick C; Martin, Christopher J; Cartmill, John A

    2002-01-01

    Medical technology is currently evolving so rapidly that its impact cannot be analysed. Robotics and telesurgery loom on the horizon, and the technology used to drive these advances has serendipitous side-effects for the education and training arena. The graphical and haptic interfaces used to provide remote feedback to the operator--by passing control to a computer--may be used to generate simulations of the operative environment that are useful for training candidates in surgical procedures. One additional advantage is that the metrics calculated inherently in the controlling software in order to run the simulation may be used to provide performance feedback to individual trainees and mentors. New interfaces will be required to undergo evaluation of the simulation fidelity before being deemed acceptable. The potential benefits fall into one of two general categories: those benefits related to skill acquisition, and those related to skill assessment. The educational value of the simulation will require assessment, and comparison to currently available methods of training in any given procedure. It is also necessary to determine--by repeated trials--whether a given simulation actually measures the performance parameters it purports to measure. This trains the spotlight on what constitutes good surgical skill, and how it is to be objectively measured. Early results suggest that virtual reality simulators have an important role to play in this aspect of surgical training.

  19. Computer simulation games in population and education.

    Science.gov (United States)

    Moreland, R S

    1988-01-01

    Computer-based simulation games are effective training tools that have several advantages. They enable players to learn in a nonthreatening manner and develop strategies to achieve goals in a dynamic environment. They also provide visual feedback on the effects of players' decisions, encourage players to explore and experiment with options before making final decisions, and develop players' skills in analysis, decision making, and cooperation. 2 games have been developed by the Research Triangle Institute for public-sector planning agencies interested in or dealing with developing countries. The UN Population and Development Game teaches players about the interaction between population variables and the national economy and how population policies complement other national policies, such as education. The BRIDGES Education Planning Game focuses on the effects education has on national policies. In both games, the computer simulates the reactions of a fictional country's socioeconomic system to players' decisions. Players can change decisions after seeing their effects on a computer screen and thus can improve their performance in achieving goals.

  20. Computational physics. Simulation of classical and quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Philipp O.J. [TU Muenchen (Germany). Physikdepartment T38

    2010-07-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills. (orig.)

  1. Computer-Based Simulations for Maintenance Training: Current ARI Research. Technical Report 544.

    Science.gov (United States)

    Knerr, Bruce W.; And Others

    Three research efforts that used computer-based simulations for maintenance training were in progress when this report was written: Game-Based Learning, which investigated the use of computer-based games to train electronics diagnostic skills; Human Performance in Fault Diagnosis Tasks, which evaluated the use of context-free tasks to train…

  2. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  3. An Agent-Based Labor Market Simulation with Endogenous Skill-Demand

    Science.gov (United States)

    Gemkow, S.

    This paper considers an agent-based labor market simulation to examine the influence of skills on wages and unemployment rates. Therefore less and highly skilled workers as well as less and highly productive vacancies are implemented. The skill distribution is exogenous whereas the distribution of the less and highly productive vacancies is endogenous. The different opportunities of the skill groups on the labor market are established by skill requirements. This means that a highly productive vacancy can only be filled by a highly skilled unemployed. Different skill distributions, which can also be interpreted as skill-biased technological change, are simulated by incrementing the skill level of highly skilled persons exogenously. This simulation also provides a microeconomic foundation of the matching function often used in theoretical approaches.

  4. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per

    2016-01-01

    IMPORTANCE: The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR......) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. OBJECTIVES: To determine the retention of mastoidectomy skills after VR simulation training...... with distributed and massed practice and to investigate participants' cognitive load during retention procedures. DESIGN, SETTING, AND PARTICIPANTS: A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical...

  5. Exploring Students' Computational Thinking Skills in Modeling and Simulation Projects: : A Pilot Study

    NARCIS (Netherlands)

    Grgurina, Natasa; van Veen, Klaas; Barendsen, Erik; Zwaneveld, Bert; Suhre, Cor; Gal-Ezer, Judith; Sentance, Sue; Vahrenhold, Jan

    2015-01-01

    Computational Thinking (CT) is gaining a lot of attention in education. We explored how to discern the occurrences of CT in the projects of 12th grade high school students in the computer science (CS) course. Within the projects, they constructed models and ran simulations of phenomena from other

  6. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    2018-05-01

    Full Text Available Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects’ performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Resumo: Introdução: O objetivo prim

  7. Laparoscopic skills acquisition: a study of simulation and traditional training.

    Science.gov (United States)

    Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J

    2014-12-01

    Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.

  8. Computer-Based Simulation Games in Public Administration Education

    Directory of Open Access Journals (Sweden)

    Kutergina Evgeniia

    2017-12-01

    scores than students in the HSE control group. Students of the RANEPA experimental group had 38.0 % better scores than students in the RANEPA control group. Research indicates that lecture-based courses are less effective than courses with more interactive approaches. Therefore, our study highlights the need to implement computer-based simulation games in MPA programmes in Russian universities. Computer-based simulation games provide students with practical skills for their future careers.

  9. Teaching basic lung isolation skills on human anatomy simulator: attainment and retention of lung isolation skills.

    Science.gov (United States)

    Latif, Rana K; VanHorne, Edgar M; Kandadai, Sunitha Kanchi; Bautista, Alexander F; Neamtu, Aurel; Wadhwa, Anupama; Carter, Mary B; Ziegler, Craig H; Memon, Mohammed Faisal; Akça, Ozan

    2016-01-20

    Lung isolation skills, such as correct insertion of double lumen endobronchial tube and bronchial blocker, are essential in anesthesia training; however, how to teach novices these skills is underexplored. Our aims were to determine (1) if novices can be trained to a basic proficiency level of lung isolation skills, (2) whether video-didactic and simulation-based trainings are comparable in teaching lung isolation basic skills, and (3) whether novice learners' lung isolation skills decay over time without practice. First, five board certified anesthesiologist with experience of more than 100 successful lung isolations were tested on Human Airway Anatomy Simulator (HAAS) to establish Expert proficiency skill level. Thirty senior medical students, who were naive to bronchoscopy and lung isolation techniques (Novice) were randomized to video-didactic and simulation-based trainings to learn lung isolation skills. Before and after training, Novices' performances were scored for correct placement using pass/fail scoring and a 5-point Global Rating Scale (GRS); and time of insertion was recorded. Fourteen novices were retested 2 months later to assess skill decay. Experts' and novices' double lumen endobronchial tube and bronchial blocker passing rates showed similar success rates after training (P >0.99). There were no differences between the video-didactic and simulation-based methods. Novices' time of insertion decayed within 2 months without practice. Novices could be trained to basic skill proficiency level of lung isolation. Video-didactic and simulation-based methods we utilized were found equally successful in training novices for lung isolation skills. Acquired skills partially decayed without practice.

  10. Computer Skills Training and Readiness to Work with Computers

    Directory of Open Access Journals (Sweden)

    Arnon Hershkovitz

    2016-05-01

    Full Text Available In today’s job market, computer skills are part of the prerequisites for many jobs. In this paper, we report on a study of readiness to work with computers (the dependent variable among unemployed women (N=54 after participating in a unique, web-supported training focused on computer skills and empowerment. Overall, the level of participants’ readiness to work with computers was much higher at the end of the course than it was at its begin-ning. During the analysis, we explored associations between this variable and variables from four categories: log-based (describing the online activity; computer literacy and experience; job-seeking motivation and practice; and training satisfaction. Only two variables were associated with the dependent variable: knowledge post-test duration and satisfaction with content. After building a prediction model for the dependent variable, another log-based variable was highlighted: total number of actions in the course website along the course. Overall, our analyses shed light on the predominance of log-based variables over variables from other categories. These findings might hint at the need of developing new assessment tools for learners and trainees that take into consideration human-computer interaction when measuring self-efficacy variables.

  11. Virtual Reality Simulator Developed Welding Technology Skills

    Science.gov (United States)

    Yunus, Faizal Amin Nur; Baser, Jamil Abd; Masran, Saiful Hadi; Razali, Nizamuddin; Rahim, Bekri

    2011-01-01

    The purpose of this study was to identify the suitability of VR welding simulator application towards CBT in developing welding skills upon new trainees at the Centre of Instructor and Advanced Skills Training (CIAST) Shah Alam Selangor and National Youth Skills Institute (IKBN) Pagoh Johor. The significance of the study was to create a…

  12. EXAMINATION OF THE COMPUTATIONAL THINKING SKILLS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Agah Tugrul Korucu

    2017-01-01

    Full Text Available Computational thinking is generally considered as a kind of analytical way of thinking. According to Wings (2008 it shares with mathematical thinking, engineering thinking and scientific thinking in the general ways in which we may use for solving a problem, designing and evaluating complex systems or understanding computability and intelligence as well as the mind and human behaviour. It is generally accepted important that like high order thinking skills the analytical way of thinking should be taught to the children at very early ages. The aim of this study is to investigate the computational thinking skills of secondary school students in terms of different variables. The study group of the research is 160 secondary school students who continue their education at different levels in Konya. The “Computational Thinking Skills Scale” which has been developed by Korkmaz, Çakır and Özden (2015 used for data collection. The scale includes 22 items and it is a 5 point likert type scale. The Cronbach Alpha reliability of the scale has been calculated as 0.80 and it has been found to be valid to measure the computational skills levels of the secondary school students as a result of the analysis. As a result of this research, the computational thinking skill levels of participants differ meaningfully in terms of their class levels, do not differ meaningfully in terms of their genders, do not differ meaningfully in terms of their weekly internet usage durations, do not differ meaningfully in terms of their mobile device usage competence situations, differ meaningfully in terms of their mobile Technologies possession durations.

  13. Enhancing Higher Order Thinking Skills through Clinical Simulation

    Science.gov (United States)

    Varutharaju, Elengovan; Ratnavadivel, Nagendralingan

    2014-01-01

    Purpose: The study aimed to explore, describe and analyse the design and implementation of clinical simulation as a pedagogical tool in bridging the deficiency of higher order thinking skills among para-medical students, and to make recommendations on incorporating clinical simulation as a pedagogical tool to enhance thinking skills and align the…

  14. Retention of Vaginal Breech Delivery Skills Taught in Simulation.

    Science.gov (United States)

    Stone, Heather; Crane, Joan; Johnston, Kathy; Craig, Catherine

    2018-02-01

    The optimal frequency of conducting simulation training for high-acuity, low-frequency events in obstetrics and gynaecology residency programs is unknown. This study evaluated retention over time of vaginal breech delivery skills taught in simulation, by comparing junior and senior residents. In addition, the residents' subjective comfort level to perform this skill clinically was assessed. This prospective cohort study included 22 obstetrics and gynaecology residents in a Canadian residency training program. Digital recordings were completed for pre-training, immediate post-training, and delayed (10-26 weeks later) post-training intervals of a vaginal breech delivery simulation, with skill assessment by a blinded observer using a binary checklist. Residents also completed questionnaires to assess their subjective comfort level at each interval. Junior and senior residents had significant improvements in vaginal breech delivery skills from the pre-training assessment to both the immediate post-training assessment (junior, P simulation 10-26 weeks later, although a decline in skills occurred over this time period. Comfort level was positively affected and retained. These results will aid in determining the frequency of simulation teaching for high-acuity, low-frequency events in a residency simulation curriculum. Copyright © 2018 Society of Obstetricians and Gynaecologists of Canada. Published by Elsevier Inc. All rights reserved.

  15. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    Science.gov (United States)

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to

  16. Computer skills and computer anxiety as predictors of internet use ...

    African Journals Online (AJOL)

    The study investigated the extent to which computer skills and computer anxiety predict Internet use among distance learning students in University of Ibadan, Nigeria. The descriptive method of correlative type was used for the study and the sample comprised of one hundred and thirty four (134) distance learning students ...

  17. Medical simulation-based education improves medicos' clinical skills.

    Science.gov (United States)

    Wang, Zhaoming; Liu, Qiaoyu; Wang, Hai

    2013-03-01

    Clinical skill is an essential part of clinical medicine and plays quite an important role in bridging medicos and physicians. Due to the realities in China, traditional medical education is facing many challenges. There are few opportunities for students to practice their clinical skills and their dexterities are generally at a low level. Medical simulation-based education is a new teaching modality and helps to improve medicos' clinical skills to a large degree. Medical simulation-based education has many significant advantages and will be further developed and applied.

  18. Simulation of skill acquisition in sequential learning of a computer game

    DEFF Research Database (Denmark)

    Hansen, John Paulin; Nielsen, Finn Ravnsbjerg; Rasmussen, Jens

    1995-01-01

    The paper presents some theoretical assumptions about the cognitive control mechanisms of subjects learning to play a computer game. A simulation model has been developed to investigate these assumptions. The model is an automaton, reacting to instruction-like cue action rules. The prototypical...... performances of 23 experimental subjects at succeeding levels of training are compared to the performance of the model. The findings are interpreted in terms of a general taxonomy for cognitive task analysis....

  19. Comparing the social skills of students addicted to computer games with normal students.

    Science.gov (United States)

    Zamani, Eshrat; Kheradmand, Ali; Cheshmi, Maliheh; Abedi, Ahmad; Hedayati, Nasim

    2010-01-01

    This study aimed to investigate and compare the social skills of studentsaddicted to computer games with normal students. The dependentvariable in the present study is the social skills. The study population included all the students in the second grade ofpublic secondary school in the city of Isfahan at the educational year of2009-2010. The sample size included 564 students selected using thecluster random sampling method. Data collection was conducted usingQuestionnaire of Addiction to Computer Games and Social SkillsQuestionnaire (The Teenage Inventory of Social Skill or TISS). The results of the study showed that generally, there was a significantdifference between the social skills of students addicted to computer gamesand normal students. In addition, the results indicated that normal studentshad a higher level of social skills in comparison with students addicted tocomputer games. As the study results showed, addiction to computer games may affectthe quality and quantity of social skills. In other words, the higher theaddiction to computer games, the less the social skills. The individualsaddicted to computer games have less social skills.).

  20. A Simulation Method Measuring Psychomotor Nursing Skills.

    Science.gov (United States)

    McBride, Helena; And Others

    1981-01-01

    The development of a simulation technique to evaluate performance of psychomotor skills in an undergraduate nursing program is described. This method is used as one admission requirement to an alternate route nursing program. With modifications, any health profession could use this technique where psychomotor skills performance is important.…

  1. A Multilevel Modeling Approach to Examining Individual Differences in Skill Acquisition for a Computer-Based Task

    OpenAIRE

    Nair, Sankaran N.; Czaja, Sara J.; Sharit, Joseph

    2007-01-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50–80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performan...

  2. Designing and using computer simulations in medical education and training: an introduction.

    Science.gov (United States)

    Friedl, Karl E; O'Neil, Harold F

    2013-10-01

    Computer-based technologies informed by the science of learning are becoming increasingly prevalent in education and training. For the Department of Defense (DoD), this presents a great potential advantage to the effective preparation of a new generation of technologically enabled service members. Military medicine has broad education and training challenges ranging from first aid and personal protective skills for every service member to specialized combat medic training; many of these challenges can be met with gaming and simulation technologies that this new generation has embraced. However, comprehensive use of medical games and simulation to augment expert mentorship is still limited to elite medical provider training programs, but can be expected to become broadly used in the training of first responders and allied health care providers. The purpose of this supplement is to review the use of computer games and simulation to teach and assess medical knowledge and skills. This review and other DoD research policy sources will form the basis for development of a research and development road map and guidelines for use of this technology in military medicine. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  3. Using the Computer to Improve Basic Skills.

    Science.gov (United States)

    Bozeman, William; Hierstein, William J.

    These presentations offer information on the benefits of using computer-assisted instruction (CAI) for remedial education. First, William J. Hierstein offers a summary of the Computer Assisted Basic Skills Project conducted by Southeastern Community College at the Iowa State Penitentiary. Hierstein provides background on the funding for the…

  4. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  5. MENTAL SHIFT TOWARDS SYSTEMS THINKING SKILLS IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    MILDEOVÁ, Stanislava

    2012-03-01

    Full Text Available When seeking solutions to current problems in the field of computer science – and other fields – we encounter situations where traditional approaches no longer bring the desired results. Our cognitive skills also limit the implementation of reliable mental simulation within the basic set of relations. The world around us is becoming more complex and mutually interdependent, and this is reflected in the demands on computer support. Thus, in today’s education and science in the field of computer science and all other disciplines and areas of life need to address the issue of the paradigm shift, which is generally accepted by experts. The goal of the paper is to present the systems thinking that facilitates and extends the understanding of the world through relations and linkages. Moreover, the paper introduces the essence of systems thinking and the possibilities to achieve mental a shift toward systems thinking skills. At the same time, the link between systems thinking and functional literacy is presented. We adopted the “Bathtub Test” from the variety of systems thinking tests that allow people to assess the understanding of basic systemic concepts, in order to assess the level of systems thinking. University students (potential information managers were the examined subjects of the examination of systems thinking that was conducted over a longer time period and whose aim was to determine the status of systems thinking. . The paper demonstrates that some pedagogical concepts and activities, in our case the subject of System Dynamics that leads to the appropriate integration of systems thinking in education. There is some evidence that basic knowledge of system dynamics and systems thinking principles will affect students, and their thinking will contribute to an improved approach to solving problems of computer science both in theory and practice.

  6. Scientific computer simulation review

    International Nuclear Information System (INIS)

    Kaizer, Joshua S.; Heller, A. Kevin; Oberkampf, William L.

    2015-01-01

    Before the results of a scientific computer simulation are used for any purpose, it should be determined if those results can be trusted. Answering that question of trust is the domain of scientific computer simulation review. There is limited literature that focuses on simulation review, and most is specific to the review of a particular type of simulation. This work is intended to provide a foundation for a common understanding of simulation review. This is accomplished through three contributions. First, scientific computer simulation review is formally defined. This definition identifies the scope of simulation review and provides the boundaries of the review process. Second, maturity assessment theory is developed. This development clarifies the concepts of maturity criteria, maturity assessment sets, and maturity assessment frameworks, which are essential for performing simulation review. Finally, simulation review is described as the application of a maturity assessment framework. This is illustrated through evaluating a simulation review performed by the U.S. Nuclear Regulatory Commission. In making these contributions, this work provides a means for a more objective assessment of a simulation’s trustworthiness and takes the next step in establishing scientific computer simulation review as its own field. - Highlights: • We define scientific computer simulation review. • We develop maturity assessment theory. • We formally define a maturity assessment framework. • We describe simulation review as the application of a maturity framework. • We provide an example of a simulation review using a maturity framework

  7. Fostering computational thinking skills with a tangible blocks programming environment

    OpenAIRE

    Turchi, T; Malizia, A

    2016-01-01

    Computational Thinking has recently returned into the limelight as an essential skill to have for both the general public and disciplines outside Computer Science. It encapsulates those thinking skills integral to solving complex problems using a computer, thus widely applicable in our technological society. Several public initiatives such as the Hour of Code successfully introduced it to millions of people of different ages and backgrounds, mostly using Blocks Programming Environments like S...

  8. Written and Computer-Mediated Accounting Communication Skills: An Employer Perspective

    Science.gov (United States)

    Jones, Christopher G.

    2011-01-01

    Communication skills are a fundamental personal competency for a successful career in accounting. What is not so obvious is the specific written communication skill set employers look for and the extent those skills are computer mediated. Using survey research, this article explores the particular skills employers desire and their satisfaction…

  9. Airway skills training using a human patient simulator

    African Journals Online (AJOL)

    Thesegan Moodley

    2016-04-11

    Apr 11, 2016 ... Airway management problems may be particularly challenging to junior doctors.1 ... They respond to real-time, real-life clinical ... Keywords: human patient simulator, simulation, airway management, psychomotor skills.

  10. Otologic Skills Training

    DEFF Research Database (Denmark)

    Wiet, Gregory J; Sørensen, Mads Sølvsten; Andersen, Steven Arild Wuyts

    2017-01-01

    This article presents a summary of the current simulation training for otologic skills. There is a wide variety of educational approaches, assessment tools, and simulators in use, including simple low-cost task trainers to complex computer-based virtual reality systems. A systematic approach...

  11. Learning by computer simulation does not lead to better test performance than textbook study in the diagnosis and treatment of dysrhythmias.

    Science.gov (United States)

    Kim, Jong Hoon; Kim, Won Oak; Min, Kyeong Tae; Yang, Jong Yoon; Nam, Yong Taek

    2002-08-01

    To compare computer-based learning with traditional learning methods in studying advanced cardiac life support (ACLS). Prospective, randomized study. University hospital. Senior medical students were randomized to perform computer simulation and textbook study. Each group studied ACLS for 150 minutes. Tests were performed 1 week before, immediately after, and 1 week after the study period. Testing consisted of 20 questions. All questions were formulated in such a way that there was a single best answer. Each student also completed a questionnaire designed to assess computer skills, as well as satisfaction with and benefit from the study materials. Test scores improved after both textbook study and computer simulation study in both groups, although the improvement in scores was significantly higher for the textbook group only immediately after the study. There was no significant difference between groups in their computer skill and satisfaction with the study materials. The textbook group reported greater benefit from study materials than did the computer simulation group. Studying ACLS with a hard-copy textbook may be more effective than computer simulation for acquiring simple information during a brief period. However, the difference in effectiveness is likely transient.

  12. The Effects of Computer Games on the Achievement of Basic Mathematical Skills

    Science.gov (United States)

    Sayan, Hamiyet

    2015-01-01

    This study aims to analyze the relationship between playing computer games and learning basic mathematics skills. It shows the role computer games play in the learning and achievement of basic mathematical skills by students. Nowadays it is clear that individuals, especially young persons are very fond of computer and computer games. Since…

  13. Assessment of skills using a virtual reality temporal bone surgery simulator.

    Science.gov (United States)

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  14. Simulation-based interpersonal communication skills training for neurosurgical residents.

    Science.gov (United States)

    Harnof, Sagi; Hadani, Moshe; Ziv, Amitai; Berkenstadt, Haim

    2013-09-01

    Communication skills are an important component of the neurosurgery residency training program. We developed a simulation-based training module for neurosurgery residents in which medical, communication and ethical dilemmas are presented by role-playing actors. To assess the first national simulation-based communication skills training for neurosurgical residents. Eight scenarios covering different aspects of neurosurgery were developed by our team: (1) obtaining informed consent for an elective surgery, (2) discharge of a patient following elective surgery, (3) dealing with an unsatisfied patient, (4) delivering news of intraoperative complications, (5) delivering news of a brain tumor to parents of a 5 year old boy, (6) delivering news of brain death to a family member, (7) obtaining informed consent for urgent surgery from the grandfather of a 7 year old boy with an epidural hematoma, and (8) dealing with a case of child abuse. Fifteen neurosurgery residents from all major medical centers in Israel participated in the training. The session was recorded on video and was followed by videotaped debriefing by a senior neurosurgeon and communication expert and by feedback questionnaires. All trainees participated in two scenarios and observed another two. Participants largely agreed that the actors simulating patients represented real patients and family members and that the videotaped debriefing contributed to the teaching of professional skills. Simulation-based communication skill training is effective, and together with thorough debriefing is an excellent learning and practical method for imparting communication skills to neurosurgery residents. Such simulation-based training will ultimately be part of the national residency program.

  15. Simulated parents: developing paediatric trainees' skills in giving bad news.

    Science.gov (United States)

    Gough, Jenny K; Frydenberg, Alexis R; Donath, Susan K; Marks, Michael M

    2009-03-01

    In curriculum documents for medicine in undergraduate, post-graduate and continuing professional development, there is now a focus on communication skills. The challenges are to place communication skills in the crowded curriculum and then to construct and sustain a programme that uses an evidence-based approach to the teaching and learning of communication skills. For 6 years, we have conducted a programme that involves simulated parents supporting junior medical staff to refine their skills in communication, particularly in giving parents bad news. The aim of our study was to obtain a better understanding of the trainees' experiences of the programme. Nine junior residents individually worked through two scenarios and received feedback from the simulated parent. They gave bad news to a simulated parent/actor who then gave feedback. A recording of the simulation was provided for discussion with a designated colleague at an arranged time. The tapes were then separately appraised by two independent raters - another actor and a paediatrician. Brief written reports and conducted semi-structured interviews provided more insights into the trainees' experience of the simulation. Other participating medical/medical education staff were interviewed about the simulation programme. Five themes emerged from the qualitative data: timeliness, emotional safety, the complexity of communication, practical usefulness and the challenge of effecting change. In addition, the ratings of the videos helped to clarify those 'parent-centred' communication skills that trainees may neglect in difficult conversations: 'ask about support', 'encourage the parent to ask questions' and 'repeat key messages'. The evaluation highlighted the value of an early-career experiential programme to highlight the importance of communication skills in post-graduate paediatrics practice.

  16. Assessing computer skills in Tanzanian medical students: an elective experience

    Directory of Open Access Journals (Sweden)

    Melvin Rob

    2004-08-01

    Full Text Available Abstract Background One estimate suggests that by 2010 more than 30% of a physician's time will be spent using information technology tools. The aim of this study is to assess the information and communication technologies (ICT skills of medical students in Tanzania. We also report a pilot intervention of peer mentoring training in ICT by medical students from the UK tutoring students in Tanzania. Methods Design: Cross sectional study and pilot intervention study. Participants: Fourth year medical students (n = 92 attending Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania. Main outcome measures: Self-reported assessment of competence on ICT-related topics and ability to perform specific ICT tasks. Further information related to frequency of computer use (hours per week, years of computer use, reasons for use and access to computers. Skills at specific tasks were reassessed for 12 students following 4 to 6 hours of peer mentoring training. Results The highest levels of competence in generic ICT areas were for email, Internet and file management. For other skills such as word processing most respondents reported low levels of competence. The abilities to perform specific ICT skills were low – less than 60% of the participants were able to perform the core specific skills assessed. A period of approximately 5 hours of peer mentoring training produced an approximate doubling of competence scores for these skills. Conclusion Our study has found a low level of ability to use ICT facilities among medical students in a leading university in sub-Saharan Africa. A pilot scheme utilising UK elective students to tutor basic skills showed potential. Attention is required to develop interventions that can improve ICT skills, as well as computer access, in order to bridge the digital divide.

  17. Visuospatial Aptitude Testing Differentially Predicts Simulated Surgical Skill.

    Science.gov (United States)

    Hinchcliff, Emily; Green, Isabel; Destephano, Christopher; Cox, Mary; Smink, Douglas; Kumar, Amanika; Hokenstad, Erik; Bengtson, Joan; Cohen, Sarah

    2018-02-05

    To determine if visuospatial perception (VSP) testing is correlated to simulated or intraoperative surgical performance as rated by the American College of Graduate Medical Education (ACGME) milestones. Classification II-2 SETTING: Two academic training institutions PARTICIPANTS: 41 residents, including 19 Brigham and Women's Hospital and 22 Mayo Clinic residents from three different specialties (OBGYN, general surgery, urology). Participants underwent three different tests: visuospatial perception testing (VSP), Fundamentals of Laparoscopic Surgery (FLS®) peg transfer, and DaVinci robotic simulation peg transfer. Surgical grading from the ACGME milestones tool was obtained for each participant. Demographic and subject background information was also collected including specialty, year of training, prior experience with simulated skills, and surgical interest. Standard statistical analysis using Student's t test were performed, and correlations were determined using adjusted linear regression models. In univariate analysis, BWH and Mayo training programs differed in both times and overall scores for both FLS® peg transfer and DaVinci robotic simulation peg transfer (p<0.05 for all). Additionally, type of residency training impacted time and overall score on robotic peg transfer. Familiarity with tasks correlated with higher score and faster task completion (p= 0.05 for all except VSP score). There was no difference in VSP scores by program, specialty, or year of training. In adjusted linear regression modeling, VSP testing was correlated only to robotic peg transfer skills (average time p=0.006, overall score p=0.001). Milestones did not correlate to either VSP or surgical simulation testing. VSP score was correlated with robotic simulation skills but not with FLS skills or ACGME milestones. This suggests that the ability of VSP score to predict competence differs between tasks. Therefore, further investigation is required into aptitude testing, especially prior

  18. Retention of Mastoidectomy Skills After Virtual Reality Simulation Training.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-07-01

    The ultimate goal of surgical training is consolidated skills with a consistently high performance. However, surgical skills are heterogeneously retained and depend on a variety of factors, including the task, cognitive demands, and organization of practice. Virtual reality (VR) simulation is increasingly being used in surgical skills training, including temporal bone surgery, but there is a gap in knowledge on the retention of mastoidectomy skills after VR simulation training. To determine the retention of mastoidectomy skills after VR simulation training with distributed and massed practice and to investigate participants' cognitive load during retention procedures. A prospective 3-month follow-up study of a VR simulation trial was conducted from February 6 to September 19, 2014, at an academic teaching hospital among 36 medical students: 19 from a cohort trained with distributed practice and 17 from a cohort trained with massed practice. Participants performed 2 virtual mastoidectomies in a VR simulator a mean of 3.2 months (range, 2.4-5.0 months) after completing initial training with 12 repeated procedures. Practice blocks were spaced apart in time (distributed), or all procedures were performed in 1 day (massed). Performance of the virtual mastoidectomy as assessed by 2 masked senior otologists using a modified Welling scale, as well as cognitive load as estimated by reaction time to perform a secondary task. Among 36 participants, mastoidectomy final-product skills were largely retained at 3 months (mean change in score, 0.1 points; P = .89) regardless of practice schedule, but the group trained with massed practice took more time to complete the task. The performance of the massed practice group increased significantly from the first to the second retention procedure (mean change, 1.8 points; P = .001), reflecting that skills were less consolidated. For both groups, increases in reaction times in the secondary task (distributed practice group: mean

  19. COMPUTER-AIDED ACQUISITION OF WRITING SKILLS

    NARCIS (Netherlands)

    Verhoef, R.; Tomic, W.

    2008-01-01

    This article presents the results of a review of the literature questioning whether and to what extent computers can be used as a means of instruction for the guided acquisition of communicative writing skills in higher education. To answer this question, the present paper first explores the

  20. Learning by Computer Simulation Does Not Lead to Better Test Performance on Advanced Cardiac Life Support Than Textbook Study.

    Science.gov (United States)

    Kim, Jong Hoon; Kim, Won Oak; Min, Kyeong Tae; Yang, Jong Yoon; Nam, Yong Taek

    2002-01-01

    For an effective acquisition and the practical application of rapidly increasing amounts of information, computer-based learning has already been introduced in medical education. However, there have been few studies that compare this innovative method to traditional learning methods in studying advanced cardiac life support (ACLS). Senior medical students were randomized to computer simulation and a textbook study. Each group studied ACLS for 150 minutes. Tests were done one week before, immediately after, and one week after the study period. Testing consisted of 20 questions. All questions were formulated in such a way that there was a single best answer. Each student also completed a questionnaire designed to assess computer skills as well as satisfaction with and benefit from the study materials. Test scores improved after both textbook study and computer simulation study in both groups but the improvement in scores was significantly higher for the textbook group only immediately after the study. There was no significant difference between groups in their computer skill and satisfaction with the study materials. The textbook group reported greater benefit from study materials than did the computer simulation group. Studying ACLS with a hard copy textbook may be more effective than computer simulation for the acquisition of simple information during a brief period. However, the difference in effectiveness is likely transient.

  1. Differences on the Level of Social Skills between Freshman Computer Gamers and Non-Gamers

    Directory of Open Access Journals (Sweden)

    Joseph B. Campit

    2015-02-01

    Full Text Available Computer games play a large role in socialization and the consequences of playing them have been a topic of debates. This observation led the researcher to conduct the study about the influence of computer games on the social skills of the BSIT first year students of Pangasinan State University, Bayambang Campus, during school year 2012-2013. This study determined the profile of the 115 BSIT first year students according to: preferred computer games and frequency of playing. It investigated the level of social skills among playing and non-playing gamers. This study used the descriptive-comparative method of research. It was found out that crossfire was the most preferred computer game played at least once a week. Computer gamers had lower social skills than non-computer gamers. Gamers have more negative social behaviors compared to non-gamers and there is a negative effect of playing computer games on the level of social skills among first year students. There is a significant difference in the level of social skills of the students when grouped according to frequency of playing computer games. Students who play computer games everyday had significantly lower social skills than who play once a week. Thus, parents and teachers should give proper guidance in the limitation of playing computer games and the choice of games. Teachers should organize seminars on the awareness of the influence and negative effects of violent computer games on social skills. And students should choose educational over violent games to enhance their knowledge and social skills.

  2. Current status of robotic simulators in acquisition of robotic surgical skills.

    Science.gov (United States)

    Kumar, Anup; Smith, Roger; Patel, Vipul R

    2015-03-01

    This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.

  3. The Cognitive Predictors of Computational Skill with Whole versus Rational Numbers: An Exploratory Study.

    Science.gov (United States)

    Seethaler, Pamela M; Fuchs, Lynn S; Star, Jon R; Bryant, Joan

    2011-10-01

    The purpose of the present study was to explore the 3(rd)-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n = 688) were assessed on incoming whole-number calculation skill, language, nonverbal reasoning, concept formation, processing speed, and working memory in the fall of 3(rd) grade. Students were followed longitudinally and assessed on calculation skill with whole numbers and with rational numbers in the spring of 5(th) grade. The unique predictors of skill with whole-number computation were incoming whole-number calculation skill, nonverbal reasoning, concept formation, and working memory (numerical executive control). In addition to these cognitive abilities, language emerged as a unique predictor of rational-number computational skill.

  4. Neurosurgical simulation by interactive computer graphics on iPad.

    Science.gov (United States)

    Maruyama, Keisuke; Kin, Taichi; Saito, Toki; Suematsu, Shinya; Gomyo, Miho; Noguchi, Akio; Nagane, Motoo; Shiokawa, Yoshiaki

    2014-11-01

    Presurgical simulation before complicated neurosurgery is a state-of-the-art technique, and its usefulness has recently become well known. However, simulation requires complex image processing, which hinders its widespread application. We explored handling the results of interactive computer graphics on the iPad tablet, which can easily be controlled anywhere. Data from preneurosurgical simulations from 12 patients (4 men, 8 women) who underwent complex brain surgery were loaded onto an iPad. First, DICOM data were loaded using Amira visualization software to create interactive computer graphics, and ParaView, another free visualization software package, was used to convert the results of the simulation to be loaded using the free iPad software KiwiViewer. The interactive computer graphics created prior to neurosurgery were successfully displayed and smoothly controlled on the iPad in all patients. The number of elements ranged from 3 to 13 (mean 7). The mean original data size was 233 MB, which was reduced to 10.4 MB (4.4% of original size) after image processing by ParaView. This was increased to 46.6 MB (19.9%) after decompression in KiwiViewer. Controlling the magnification, transfer, rotation, and selection of translucence in 10 levels of each element were smoothly and easily performed using one or two fingers. The requisite skill to smoothly control the iPad software was acquired within 1.8 trials on average in 12 medical students and 6 neurosurgical residents. Using an iPad to handle the result of preneurosurgical simulation was extremely useful because it could easily be handled anywhere.

  5. Effect of high-fidelity shoulder dystocia simulation on emergency obstetric skills and crew resource management skills among residents.

    Science.gov (United States)

    Mannella, Paolo; Palla, Giulia; Cuttano, Armando; Boldrini, Antonio; Simoncini, Tommaso

    2016-12-01

    To determine the effect of a simulation training program for residents in obstetrics and gynecology in terms of technical and nontechnical skills for the management of shoulder dystocia. A prospective study was performed at a center in Italy in April-May 2015. Thirty-two obstetrics and gynecology residents were divided into two groups. Residents in the control group were immediately exposed to an emergency shoulder dystocia scenario, whereas those in the simulation group completed a 2-hour training session with the simulator before being exposed to the scenario. After 8weeks, the residents were again exposed to the shoulder dystocia scenario and reassessed. Participants were scored on their demonstration of technical and nontechnical skills. In the first set of scenarios, the mean score was higher in the simulation group than the control group in terms of both technical skills (P=0.008) and nontechnical skills (Pdystocia. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Atomic-level computer simulation

    International Nuclear Information System (INIS)

    Adams, J.B.; Rockett, Angus; Kieffer, John; Xu Wei; Nomura, Miki; Kilian, K.A.; Richards, D.F.; Ramprasad, R.

    1994-01-01

    This paper provides a broad overview of the methods of atomic-level computer simulation. It discusses methods of modelling atomic bonding, and computer simulation methods such as energy minimization, molecular dynamics, Monte Carlo, and lattice Monte Carlo. ((orig.))

  7. Learning Support Assessment Study of a Computer Simulation for the Development of Microbial Identification Strategies

    Directory of Open Access Journals (Sweden)

    Tristan E. Johnson

    2009-12-01

    Full Text Available This paper describes a study that examined how microbiology students construct knowledge of bacterial identification while using a computer simulation. The purpose of this study was to understand how the simulation affects the cognitive processing of students during thinking, problem solving, and learning about bacterial identification and to determine how the simulation facilitates the learning of a domain-specific problem-solving strategy. As part of an upper-division microbiology course, five students participated in several simulation assignments. The data were collected using think-aloud protocol and video action logs as the students used the simulation. The analysis revealed two major themes that determined the performance of the students: Simulation Usage—how the students used the software features and Problem-Solving Strategy Development—the strategy level students started with and the skill level they achieved when they completed their use of the simulation. Several conclusions emerged from the analysis of the data: (i The simulation affects various aspects of cognitive processing by creating an environment that makes it possible to practice the application of a problem-solving strategy. The simulation was used as an environment that allowed students to practice the cognitive skills required to solve an unknown. (ii Identibacter (the computer simulation may be considered to be a cognitive tool to facilitate the learning of a bacterial identification problem-solving strategy. (iii The simulation characteristics did support student learning of a problem-solving strategy. (iv Students demonstrated problem-solving strategy development specific to bacterial identification. (v Participants demonstrated an improved performance from their repeated use of the simulation.

  8. 'I'm good, but not that good': digitally-skilled young people's identity in computing

    Science.gov (United States)

    Wong, Billy

    2016-12-01

    Computers and information technology are fast becoming a part of young people's everyday life. However, there remains a difference between the majority who can use computers and the minority who are computer scientists or professionals. Drawing on 32 semi-structured interviews with digitally skilled young people (aged 13-19), we explore their views and aspirations in computing, with a focus on the identities and discourses that these youngsters articulate in relation to this field. Our findings suggest that, even among digitally skilled young people, traditional identities of computing as people who are clever but antisocial still prevail, which can be unattractive for youths, especially girls. Digitally skilled youths identify with computing in different ways and for different reasons. Most enjoy doing computing but few aspired to being a computer person. Implications of our findings for computing education are discussed especially the continued need to broaden identities in computing, even for the digitally skilled.

  9. Automated social skills training with audiovisual information.

    Science.gov (United States)

    Tanaka, Hiroki; Sakti, Sakriani; Neubig, Graham; Negoro, Hideki; Iwasaka, Hidemi; Nakamura, Satoshi

    2016-08-01

    People with social communication difficulties tend to have superior skills using computers, and as a result computer-based social skills training systems are flourishing. Social skills training, performed by human trainers, is a well-established method to obtain appropriate skills in social interaction. Previous works have attempted to automate one or several parts of social skills training through human-computer interaction. However, while previous work on simulating social skills training considered only acoustic and linguistic features, human social skills trainers take into account visual features (e.g. facial expression, posture). In this paper, we create and evaluate a social skills training system that closes this gap by considering audiovisual features regarding ratio of smiling, yaw, and pitch. An experimental evaluation measures the difference in effectiveness of social skill training when using audio features and audiovisual features. Results showed that the visual features were effective to improve users' social skills.

  10. Development of Technical Skills: Education, Simulation, and Maintenance of Certification.

    Science.gov (United States)

    Sullivan, Sarah A; Anderson, Barbara M H; Pugh, Carla M

    2015-11-01

    The goal of this article is to provide a focused overview of technical skills education inside the operating room (OR), opportunities for learning outside of the OR (with a focus on simulation), and methods for measuring technical skills. In addition, the authors review the role of maintenance of certification in continuing education and quality improvement and consider the role that simulation plays in this process. The perspectives on teaching in the OR of both residents and faculty going into the case affect the learning environment, and preoperative interactions between attendings and residents to establish learning needs and goals are important. Furthermore, in regards to attending surgeons improving their skills, interaction with more experienced peers and feedback during and after a procedure can be beneficial. Simulation is increasingly being utilized as an education tool outside of the OR. Training in plastic surgery is poised to exploit simulation in multiple technical areas. There is potential to utilize these simulation environments to collect real-time data, such as motion, visual focus, and pressure. How to incorporate technical skill evaluation results in ways that are most beneficial for learning should be the focus of future research and curriculum development. Finally, simulation could be better utilized as a mechanism for both self and peer evaluation and assessment for continuing education and quality improvement. Professional development for faculty and surgery trainees on how to engage with simulation for teaching and learning and how to translate these experiences into improving patient care will be required.

  11. A Framework for the Design of Computer-Assisted Simulation Training for Complex Police Situations

    Science.gov (United States)

    Söderström, Tor; Åström, Jan; Anderson, Greg; Bowles, Ron

    2014-01-01

    Purpose: The purpose of this paper is to report progress concerning the design of a computer-assisted simulation training (CAST) platform for developing decision-making skills in police students. The overarching aim is to outline a theoretical framework for the design of CAST to facilitate police students' development of search techniques in…

  12. The Crucible simulation: Behavioral simulation improves clinical leadership skills and understanding of complex health policy change.

    Science.gov (United States)

    Cohen, Daniel; Vlaev, Ivo; McMahon, Laurie; Harvey, Sarah; Mitchell, Andy; Borovoi, Leah; Darzi, Ara

    2017-05-11

    The Health and Social Care Act 2012 represents the most complex National Health Service reforms in history. High-quality clinical leadership is important for successful implementation of health service reform. However, little is known about the effectiveness of current leadership training. This study describes the use of a behavioral simulation to improve the knowledge and leadership of a cohort of medical doctors expected to take leadership roles in the National Health Service. A day-long behavioral simulation (The Crucible) was developed and run based on a fictitious but realistic health economy. Participants completed pre- and postsimulation questionnaires generating qualitative and quantitative data. Leadership skills, knowledge, and behavior change processes described by the "theory of planned behavior" were self-assessed pre- and postsimulation. Sixty-nine medical doctors attended. Participants deemed the simulation immersive and relevant. Significant improvements were shown in perceived knowledge, capability, attitudes, subjective norms, intentions, and leadership competency following the program. Nearly one third of participants reported that they had implemented knowledge and skills from the simulation into practice within 4 weeks. This study systematically demonstrates the effectiveness of behavioral simulation for clinical management training and understanding of health policy reform. Potential future uses and strategies for analysis are discussed. High-quality care requires understanding of health systems and strong leadership. Policymakers should consider the use of behavioral simulation to improve understanding of health service reform and development of leadership skills in clinicians, who readily adopt skills from simulation into everyday practice.

  13. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  14. Using Simulation to Develop Entrepreneurial Skills and Mind-Set: An Exploratory Case Study

    Science.gov (United States)

    Costin, Yvonne; O'Brien, Michael P.; Slattery, Darina M.

    2018-01-01

    Entrepreneurs need to develop a range of skills to be successful, including skills in decision making, risk management, problem solving, communication, and teamwork. Games and simulations are increasingly being used in both academia and business to encourage such skills development. This paper describes a business simulation module whereby…

  15. Simulation of quantum computers

    NARCIS (Netherlands)

    De Raedt, H; Michielsen, K; Hams, AH; Miyashita, S; Saito, K; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  16. Simulation of quantum computers

    NARCIS (Netherlands)

    Raedt, H. De; Michielsen, K.; Hams, A.H.; Miyashita, S.; Saito, K.

    2000-01-01

    We describe a simulation approach to study the functioning of Quantum Computer hardware. The latter is modeled by a collection of interacting spin-1/2 objects. The time evolution of this spin system maps one-to-one to a quantum program carried out by the Quantum Computer. Our simulation software

  17. FPGA-accelerated simulation of computer systems

    CERN Document Server

    Angepat, Hari; Chung, Eric S; Hoe, James C; Chung, Eric S

    2014-01-01

    To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed f

  18. Psychomotor skills training in pediatric airway endoscopy simulation.

    Science.gov (United States)

    Jabbour, Noel; Reihsen, Troy; Sweet, Robert M; Sidman, James D

    2011-07-01

    To develop a robust psychomotor skills curriculum to teach pediatric airway foreign body retrieval and to assess the effect of this curriculum on residents' confidence in and ability to perform the complete task in an infant airway mannequin. Instructional course. Objective Structured Assessment of Technical Skills (OSATS). Surgical simulation laboratory. A half-day simulation-based course was developed to train otolaryngology residents in bronchoscopic foreign body retrieval. This complex psychomotor skill was deconstructed into subtasks. The following curricular learning objectives were presented and assessed: understanding of tracheobronchial anatomy, ability to adequately visualize the larynx with laryngoscopy, proficiency in rigid bronchoscopy, and familiarity with foreign body instrumentation. Residents were objectively evaluated on their ability to perform the complete task on a simulator before and after the course using an OSATS grading system. Confidence in successfully assembling the instruments and completing the task was assessed at these time periods. Seventeen otolaryngology residents completed the study. Confidence in assembling the instruments and in performing the complete task increased on average by 81% and 43%, respectively (P < .001). Using a 15-point OSATS grading system, the average score for the precourse was 7 and for the postcourse was 11.3 (P < .001). Simulation-based subtask training shows promise as an effective and reproducible method to teach the complex psychomotor task of airway foreign body retrieval. Completion of the curriculum led to a significant improvement in residents' confidence in and ability to perform bronchoscopic foreign body retrieval in an infant airway mannequin.

  19. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics

    Science.gov (United States)

    Fero, Laura J.; O’Donnell, John M.; Zullo, Thomas G.; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T.; Hoffman, Leslie A.

    2018-01-01

    Aim This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Background Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. Methods In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation- based performance was rated as ‘meeting’ or ‘not meeting’ overall expectations. Test scores were categorized as strong, average, or weak. Results Most (75·0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0·277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0·001) using high-fidelity human simulation. The relationship between video-taped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer’s V = 0·444, P = 0·029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer’s V = 0·413, P = 0·047). Conclusion Students’ performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills

  20. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics.

    Science.gov (United States)

    Fero, Laura J; O'Donnell, John M; Zullo, Thomas G; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T; Hoffman, Leslie A

    2010-10-01

    This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation-based performance was rated as 'meeting' or 'not meeting' overall expectations. Test scores were categorized as strong, average, or weak. Most (75.0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0.277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0.001) using high-fidelity human simulation. The relationship between videotaped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer's V = 0.444, P = 0.029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer's V = 0.413, P = 0.047). Students' performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. © 2010 The Authors. Journal of Advanced

  1. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  2. Nontechnical skills training for the operating room: A prospective study using simulation and didactic workshop.

    Science.gov (United States)

    Pena, Guilherme; Altree, Meryl; Field, John; Sainsbury, David; Babidge, Wendy; Hewett, Peter; Maddern, Guy

    2015-07-01

    The best surgeons demonstrate skills beyond those required for the performance of technically competent surgery. These skills are described under the term nontechnical skills. Failure in these domains has been associated with adverse events inside the operating room. These nontechnical skills are not learned commonly in a structured manner during surgery training. The main purpose of this study was to explore the effects of participation in simulation-based training, either as a sole strategy or as part of a combined approach on surgeons and surgical trainees nontechnical skills performance in simulation environment. The study consisted of a single-blinded, prospective comparative trial. Forty participants were enrolled, all participating in 2 simulation sessions challenging nontechnical skills comprising 3 surgical scenarios. Seventeen participants attended a 1-day, nontechnical skills workshop between simulation sessions. Scenarios were video-recorded for assessment and debriefing purposes. Assessment was made by 2 observers using the Non-Technical Skills for Surgeons (NOTSS) scoring system. There was a significant improvement in nontechnical skills performance of both groups from the first to the second simulation session, for 2 of the 3 scenarios. No difference in performance between the simulation and the simulation plus workshop groups was noted. This study provides evidence that formal training in nontechnical skills is feasible and can impact positively participants' nontechnical performance in a simulated environment. The addition of a 1-day didactic workshop does not seem to provide additional benefit over simulation-based training as a sole strategy for nontechnical skills training. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The role of nontechnical skills in simulated trauma resuscitation.

    Science.gov (United States)

    Briggs, Alexandra; Raja, Ali S; Joyce, Maurice F; Yule, Steven J; Jiang, Wei; Lipsitz, Stuart R; Havens, Joaquim M

    2015-01-01

    Trauma team training provides instruction on crisis management through debriefing and discussion of teamwork and leadership skills during simulated trauma scenarios. The effects of team leader's nontechnical skills (NTSs) on technical performance have not been thoroughly studied. We hypothesized that team's and team leader's NTSs correlate with technical performance of clinical tasks. Retrospective cohort study. Brigham and Women's Hospital, STRATUS Center for Surgical Simulation A total of 20 teams composed of surgical residents, emergency medicine residents, emergency department nurses, and emergency services assistants underwent 2 separate, high-fidelity, simulated trauma scenarios. Each trauma scenario was recorded on video for analysis and divided into 4 consecutive sections. For each section, 2 raters used the Non-Technical Skills for Surgeons framework to assess NTSs of the team. To evaluate the entire team's NTS, 2 additional raters used the Modified Non-Technical Skills Scale for Trauma system. Clinical performance measures including adherence to guidelines and time to perform critical tasks were measured independently. NTSs performance by both teams and team leaders in all NTS categories decreased from the beginning to the end of the scenario (all p team's and team leader's cognitive skills and critical task performance, with correlation coefficients between 0.351 and 0.478 (p team leader highly correlated with that of the entire team, with correlation coefficients between 0.602 and 0.785 (p teams and team leaders deteriorate as clinical scenarios progress, and the performance of team leaders and teams is highly correlated. Cognitive NTS scores correlate with critical task performance. Increased attention to NTSs during trauma team training may lead to sustained performance throughout trauma scenarios. Decision making and situation awareness skills are critical for both team leaders and teams and should be specifically addressed to improve performance

  4. Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.

    Science.gov (United States)

    Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy

    2014-01-01

    A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights

  5. Enhancing Student Communication Skills Through Arabic Language Competency and Simulated Patient Assessments.

    Science.gov (United States)

    Hasan, Sanah; Tarazi, Hamadeh M Khier; Halim Hilal, Dana Abdel

    2017-05-01

    Objective. To assess student communication and patient management skill with introduction of Arabic and use of simulated patient assessments to a communication and counseling course. Design. Five, 3-hour tutorials (clinical skill laboratory) were added to the course covering: listening and empathic responding, non-verbal communications, interviewing skills, assertiveness, counseling in special situations: conflict, anger, worry or rushed situations, and professional decision making. Arabic content was introduced to the course to enhance Arabic communications and competence among students. Simulated patient assessment was used to evaluate student skills. Students' feedback about course changes was evaluated. Assessment. The course now covers a wider content and Arabic language. Students' scores were similar in the assessment and other assessments within the course and between Arabic and English groups. Students favorably rated the changes in the course and provided constructive feedback on content usefulness and adequacy. Conclusion. Expanding the course to include Arabic language and content and simulated patient assessments enhanced student communication skills.

  6. Integrating Problem-Based Learning and Simulation: Effects on Student Motivation and Life Skills.

    Science.gov (United States)

    Roh, Young Sook; Kim, Sang Suk

    2015-07-01

    Previous research has suggested that a teaching strategy integrating problem-based learning and simulation may be superior to traditional lecture. The purpose of this study was to assess learner motivation and life skills before and after taking a course involving problem-based learning and simulation. The design used repeated measures with a convenience sample of 83 second-year nursing students who completed the integrated course. Data from a self-administered questionnaire measuring learner motivation and life skills were collected at pretest, post-problem-based learning, and post-simulation time points. Repeated-measures analysis of variance determined that the mean scores for total learner motivation (F=6.62, P=.003), communication (F=8.27, Plearning (F=4.45, P=.016) differed significantly between time points. Post hoc tests using the Bonferroni correction revealed that total learner motivation and total life skills significantly increased both from pretest to postsimulation and from post-problem-based learning test to postsimulation test. Subscales of learner motivation and life skills, intrinsic goal orientation, self-efficacy for learning and performance, problem-solving skills, and self-directed learning skills significantly increased both from pretest to postsimulation test and from post-problem-based learning test to post-simulation test. The results demonstrate that an integrating problem-based learning and simulation course elicits significant improvement in learner motivation and life skills. Simulation plus problem-based learning is more effective than problem-based learning alone at increasing intrinsic goal orientation, task value, self-efficacy for learning and performance, problem solving, and self-directed learning.

  7. Simulation-based ureteroscopy skills training curriculum with integration of technical and non-technical skills: a randomised controlled trial.

    Science.gov (United States)

    Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; McIlhenny, Craig; Khan, Shahid; Raza, Syed Johar; Sahai, Arun; Brewin, James; Bello, Fernando; Kneebone, Roger; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2015-09-01

    Current training modalities within ureteroscopy have been extensively validated and must now be integrated within a comprehensive curriculum. Additionally, non-technical skills often cause surgical error and little research has been conducted to combine this with technical skills teaching. This study therefore aimed to develop and validate a curriculum for semi-rigid ureteroscopy, integrating both technical and non-technical skills teaching within the programme. Delphi methodology was utilised for curriculum development and content validation, with a randomised trial then conducted (n = 32) for curriculum evaluation. The developed curriculum consisted of four modules; initially developing basic technical skills and subsequently integrating non-technical skills teaching. Sixteen participants underwent the simulation-based curriculum and were subsequently assessed, together with the control cohort (n = 16) within a full immersion environment. Both technical (Time to completion, OSATS and a task specific checklist) and non-technical (NOTSS) outcome measures were recorded with parametric and non-parametric analyses used depending on the distribution of our data as evaluated by a Shapiro-Wilk test. Improvements within the intervention cohort demonstrated educational value across all technical and non-technical parameters recorded, including time to completion (p technical and non-technical skills teaching is both educationally valuable and feasible. Additionally, the curriculum offers a validated simulation-based training modality within ureteroscopy and a framework for the development of other simulation-based programmes.

  8. Using computer assisted learning for clinical skills education in nursing: integrative review.

    Science.gov (United States)

    Bloomfield, Jacqueline G; While, Alison E; Roberts, Julia D

    2008-08-01

    This paper is a report of an integrative review of research investigating computer assisted learning for clinical skills education in nursing, the ways in which it has been studied and the general findings. Clinical skills are an essential aspect of nursing practice and there is international debate about the most effective ways in which these can be taught. Computer assisted learning has been used as an alternative to conventional teaching methods, and robust research to evaluate its effectiveness is essential. The CINAHL, Medline, BNI, PsycInfo and ERIC electronic databases were searched for the period 1997-2006 for research-based papers published in English. Electronic citation tracking and hand searching of reference lists and relevant journals was also undertaken. Twelve studies met the inclusion criteria. An integrative review was conducted and each paper was explored in relation to: design, aims, sample, outcome measures and findings. Many of the study samples were small and there were weaknesses in designs. There is limited empirical evidence addressing the use of computer assisted learning for clinical skills education in nursing. Computer assisted learning has been used to teach a limited range of clinical skills in a variety of settings. The paucity of evaluative studies indicates the need for more rigorous research to investigate the effect of computer assisted learning for this purpose. Areas that need to be addressed in future studies include: sample size, range of skills, longitudinal follow-up and control of confounding variables.

  9. The Cognitive Predictors of Computational Skill with Whole versus Rational Numbers: An Exploratory Study

    Science.gov (United States)

    Seethaler, Pamela M.; Fuchs, Lynn S.; Star, Jon R.; Bryant, Joan

    2011-01-01

    The purpose of the present study was to explore the 3rd-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n=688) were assessed on incoming whole-number calculation skill, language, nonverbal…

  10. Biomass Gasifier for Computer Simulation; Biomassa foergasare foer Computer Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Jens; Leveau, Andreas; Hulteberg, Christian [Nordlight AB, Limhamn (Sweden)

    2011-08-15

    This report is an effort to summarize the existing data on biomass gasifiers as the authors have taken part in various projects aiming at computer simulations of systems that include biomass gasification. Reliable input data is paramount for any computer simulation, but so far there is no easy-accessible biomass gasifier database available for this purpose. This study aims at benchmarking current and past gasifier systems in order to create a comprehensive database for computer simulation purposes. The result of the investigation is presented in a Microsoft Excel sheet, so that the user easily can implement the data in their specific model. In addition to provide simulation data, the technology is described briefly for every studied gasifier system. The primary pieces of information that are sought for are temperatures, pressures, stream compositions and energy consumption. At present the resulting database contains 17 gasifiers, with one or more gasifier within the different gasification technology types normally discussed in this context: 1. Fixed bed 2. Fluidised bed 3. Entrained flow. It also contains gasifiers in the range from 100 kW to 120 MW, with several gasifiers in between these two values. Finally, there are gasifiers representing both direct and indirect heating. This allows for a more qualified and better available choice of starting data sets for simulations. In addition to this, with multiple data sets available for several of the operating modes, sensitivity analysis of various inputs will improve simulations performed. However, there have been fewer answers to the survey than expected/hoped for, which could have improved the database further. However, the use of online sources and other public information has to some extent counterbalanced the low response frequency of the survey. In addition to that, the database is preferred to be a living document, continuously updated with new gasifiers and improved information on existing gasifiers.

  11. Do technical skills correlate with non-technical skills in crisis resource management: a simulation study.

    Science.gov (United States)

    Riem, N; Boet, S; Bould, M D; Tavares, W; Naik, V N

    2012-11-01

    Both technical skills (TS) and non-technical skills (NTS) are key to ensuring patient safety in acute care practice and effective crisis management. These skills are often taught and assessed separately. We hypothesized that TS and NTS are not independent of each other, and we aimed to evaluate the relationship between TS and NTS during a simulated intraoperative crisis scenario. This study was a retrospective analysis of performances from a previously published work. After institutional ethics approval, 50 anaesthesiology residents managed a simulated crisis scenario of an intraoperative cardiac arrest secondary to a malignant arrhythmia. We used a modified Delphi approach to design a TS checklist, specific for the management of a malignant arrhythmia requiring defibrillation. All scenarios were recorded. Each performance was analysed by four independent experts. For each performance, two experts independently rated the technical performance using the TS checklist, and two other experts independently rated NTS using the Anaesthetists' Non-Technical Skills score. TS and NTS were significantly correlated to each other (r=0.45, P<0.05). During a simulated 5 min resuscitation requiring crisis resource management, our results indicate that TS and NTS are related to one another. This research provides the basis for future studies evaluating the nature of this relationship, the influence of NTS training on the performance of TS, and to determine whether NTS are generic and transferrable between crises that require different TS.

  12. Cognitive Load in Mastoidectomy Skills Training: Virtual Reality Simulation and Traditional Dissection Compared.

    Science.gov (United States)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten

    2016-01-01

    The cognitive load (CL) theoretical framework suggests that working memory is limited, which has implications for learning and skills acquisition. Complex learning situations such as surgical skills training can potentially induce a cognitive overload, inhibiting learning. This study aims to compare CL in traditional cadaveric dissection training and virtual reality (VR) simulation training of mastoidectomy. A prospective, crossover study. Participants performed cadaveric dissection before VR simulation of the procedure or vice versa. CL was estimated by secondary-task reaction time testing at baseline and during the procedure in both training modalities. The national Danish temporal bone course. A total of 40 novice otorhinolaryngology residents. Reaction time was increased by 20% in VR simulation training and 55% in cadaveric dissection training of mastoidectomy compared with baseline measurements. Traditional dissection training increased CL significantly more than VR simulation training (p < 0.001). VR simulation training imposed a lower CL than traditional cadaveric dissection training of mastoidectomy. Learning complex surgical skills can be a challenge for the novice and mastoidectomy skills training could potentially be optimized by employing VR simulation training first because of the lower CL. Traditional dissection training could then be used to supplement skills training after basic competencies have been acquired in the VR simulation. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Conception of professional skills in computer engineering education

    Directory of Open Access Journals (Sweden)

    Roberto Barrera Jiménez

    2012-12-01

    Full Text Available This article presents the main results of a research done on improving the process of developing professional skills of students from Computer Engineering degree in the University of Pinar del Rio One of the important elements needed by the students of Informatics, to show greatest potentialities when solving problem situations using languages and programming techniques, is related to the different approaches dealing with the development of skills. The success in this area depends on the didactic procedures to be applied by the discipline.

  14. DROpS: an object of learning in computer simulation of discrete events

    Directory of Open Access Journals (Sweden)

    Hugo Alves Silva Ribeiro

    2015-09-01

    Full Text Available This work presents the “Realistic Dynamics Of Simulated Operations” (DROpS, the name given to the dynamics using the “dropper” device as an object of teaching and learning. The objective is to present alternatives for professors teaching content related to simulation of discrete events to graduate students in production engineering. The aim is to enable students to develop skills related to data collection, modeling, statistical analysis, and interpretation of results. This dynamic has been developed and applied to the students by placing them in a situation analogous to a real industry, where various concepts related to computer simulation were discussed, allowing the students to put these concepts into practice in an interactive manner, thus facilitating learning

  15. Transesophageal echocardiography simulation is an effective tool in teaching psychomotor skills to novice echocardiographers.

    Science.gov (United States)

    Sohmer, Benjamin; Hudson, Christopher; Hudson, Jordan; Posner, Glenn D; Naik, Viren

    2014-03-01

    Performance of transesophageal echocardiography (TEE) requires the psychomotor ability to obtain interpretable echocardiographic images. The purpose of this study was to determine the effectiveness of a simulation-based curriculum in which a TEE simulator is used to teach the psychomotor skills to novice echocardiographers and to compare instructor-guided with self-directed online delivery of the curriculum. After institutional review board approval, subjects inexperienced in TEE completed an online review of TEE material prior to a baseline pre-test of TEE psychomotor skills using the simulator. Subjects were randomized to two groups. The first group received an instructor-guided lesson of TEE psychomotor skills with the simulator. The second group received a self-directed slide presentation of TEE psychomotor skills with the simulator. Both lessons delivered identical information. Following their respective training sessions, all subjects performed a post-test of their TEE psychomotor skills using the simulator. Two assessors rated the TEE performances using a validated scoring system for acquisition of images. Pre-test TEE simulator scores were similar between the two instruction groups (9.0 vs 5.0; P = 0.28). The scores in both groups improved significantly following training, regardless of the method of instruction (P psychomotor skills. There was no difference in improvement between the different modalities of instruction. Further research will examine the need for a faculty resource for a curriculum in which a simulator is used as an adjunct.

  16. Management and organisational barriers in the acquisition of computer usage skills by mature age workers.

    Science.gov (United States)

    Keogh, Mark

    2009-09-01

    To investigate workplace cultures in the acquisition of computer usage skills by mature age workers. Data were gathered through focus groups conducted at job network centres in the Greater Brisbane metropolitan region. Participants who took part were a mixture of workers and job-seekers. The results suggest that mature age workers can be exposed to inappropriate computer training practices and age-insensitive attitudes towards those with low base computer skills. There is a need for managers to be observant of ageist attitudes in the work place and to develop age-sensitive strategies to help mature age workers learn computer usage skills. Mature age workers also need to develop skills in ways which are practical and meaningful to their work.

  17. Simulation-based education with mastery learning improves residents' lumbar puncture skills

    Science.gov (United States)

    Cohen, Elaine R.; Caprio, Timothy; McGaghie, William C.; Simuni, Tanya; Wayne, Diane B.

    2012-01-01

    Objective: To evaluate the effect of simulation-based mastery learning (SBML) on internal medicine residents' lumbar puncture (LP) skills, assess neurology residents' acquired LP skills from traditional clinical education, and compare the results of SBML to traditional clinical education. Methods: This study was a pretest-posttest design with a comparison group. Fifty-eight postgraduate year (PGY) 1 internal medicine residents received an SBML intervention in LP. Residents completed a baseline skill assessment (pretest) using a 21-item LP checklist. After a 3-hour session featuring deliberate practice and feedback, residents completed a posttest and were expected to meet or exceed a minimum passing score (MPS) set by an expert panel. Simulator-trained residents' pretest and posttest scores were compared to assess the impact of the intervention. Thirty-six PGY2, 3, and 4 neurology residents from 3 medical centers completed the same simulated LP assessment without SBML. SBML posttest scores were compared to neurology residents' baseline scores. Results: PGY1 internal medicine residents improved from a mean of 46.3% to 95.7% after SBML (p < 0.001) and all met the MPS at final posttest. The performance of traditionally trained neurology residents was significantly lower than simulator-trained residents (mean 65.4%, p < 0.001) and only 6% met the MPS. Conclusions: Residents who completed SBML showed significant improvement in LP procedural skills. Few neurology residents were competent to perform a simulated LP despite clinical experience with the procedure. PMID:22675080

  18. Distributed simulation of large computer systems

    International Nuclear Information System (INIS)

    Marzolla, M.

    2001-01-01

    Sequential simulation of large complex physical systems is often regarded as a computationally expensive task. In order to speed-up complex discrete-event simulations, the paradigm of Parallel and Distributed Discrete Event Simulation (PDES) has been introduced since the late 70s. The authors analyze the applicability of PDES to the modeling and analysis of large computer system; such systems are increasingly common in the area of High Energy and Nuclear Physics, because many modern experiments make use of large 'compute farms'. Some feasibility tests have been performed on a prototype distributed simulator

  19. Objective evaluation of minimally invasive surgical skills for transplantation. Surgeons using a virtual reality simulator.

    Science.gov (United States)

    Dănilă, R; Gerdes, B; Ulrike, H; Domínguez Fernández, E; Hassan, I

    2009-01-01

    The learning curve in laparoscopic surgery may be associated with higher patient risk, which is unacceptable in the setting of kidney donation. Virtual reality simulators may increase the safety and efficiency of training in laparoscopic surgery. The aim of this study was to investigate if the results of a training session reflect the actual skill level of transplantation surgeons and whether the simulator could differentiate laparoscopic experienced transplantation surgeon from advanced trainees. 16 subjects were assigned to one of two groups: 5 experienced transplantation surgeon and 11 advanced residents, with only assistant role during transplantation. The level of performance was measured by a relative scoring system that combines single parameters assessed by the computer. The higher the level of transplantation experience of a participant, the higher the laparoscopic performance. Experienced transplantation surgeons showed statistically significant better scores than the advanced group for time and precision parameters. Our results show that performance of the various tasks on the simulator corresponds to the respective level of experience in transplantation surgery in our research groups. This study confirms construct validity for the LapSim. It thus measures relevant skills and can be integrated in an endoscopic training and assessment curriculum for transplantations surgeons.

  20. Evaluating clinical simulations for learning procedural skills: a theory-based approach.

    Science.gov (United States)

    Kneebone, Roger

    2005-06-01

    Simulation-based learning is becoming widely established within medical education. It offers obvious benefits to novices learning invasive procedural skills, especially in a climate of decreasing clinical exposure. However, simulations are often accepted uncritically, with undue emphasis being placed on technological sophistication at the expense of theory-based design. The author proposes four key areas that underpin simulation-based learning, and summarizes the theoretical grounding for each. These are (1) gaining technical proficiency (psychomotor skills and learning theory, the importance of repeated practice and regular reinforcement), (2) the place of expert assistance (a Vygotskian interpretation of tutor support, where assistance is tailored to each learner's needs), (3) learning within a professional context (situated learning and contemporary apprenticeship theory), and (4) the affective component of learning (the effect of emotion on learning). The author then offers four criteria for critically evaluating new or existing simulations, based on the theoretical framework outlined above. These are: (1) Simulations should allow for sustained, deliberate practice within a safe environment, ensuring that recently-acquired skills are consolidated within a defined curriculum which assures regular reinforcement; (2) simulations should provide access to expert tutors when appropriate, ensuring that such support fades when no longer needed; (3) simulations should map onto real-life clinical experience, ensuring that learning supports the experience gained within communities of actual practice; and (4) simulation-based learning environments should provide a supportive, motivational, and learner-centered milieu which is conducive to learning.

  1. Greek Undergraduate Physical Education Students' Basic Computer Skills

    Science.gov (United States)

    Adamakis, Manolis; Zounhia, Katerina

    2013-01-01

    The purposes of this study were to determine how undergraduate physical education (PE) students feel about their level of competence concerning basic computer skills and to examine possible differences between groups (gender, specialization, high school graduation type, and high school direction). Although many students and educators believe…

  2. Surgical skills simulation in trauma and orthopaedic training.

    Science.gov (United States)

    Stirling, Euan R B; Lewis, Thomas L; Ferran, Nicholas A

    2014-12-19

    Changing patterns of health care delivery and the rapid evolution of orthopaedic surgical techniques have made it increasingly difficult for trainees to develop expertise in their craft. Working hour restrictions and a drive towards senior led care demands that proficiency be gained in a shorter period of time whilst requiring a greater skill set than that in the past. The resulting conflict between service provision and training has necessitated the development of alternative methods in order to compensate for the reduction in 'hands-on' experience. Simulation training provides the opportunity to develop surgical skills in a controlled environment whilst minimising risks to patient safety, operating theatre usage and financial expenditure. Many options for simulation exist within orthopaedics from cadaveric or prosthetic models, to arthroscopic simulators, to advanced virtual reality and three-dimensional software tools. There are limitations to this form of training, but it has significant potential for trainees to achieve competence in procedures prior to real-life practice. The evidence for its direct transferability to operating theatre performance is limited but there are clear benefits such as increasing trainee confidence and familiarity with equipment. With progressively improving methods of simulation available, it is likely to become more important in the ongoing and future training and assessment of orthopaedic surgeons.

  3. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  4. Evaluating Behavioral Skills Training with and without Simulated in Situ Training for Teaching Safety Skills to Children

    Science.gov (United States)

    Miltenberger, Raymond; Gross, Amy; Knudson, Peter; Bosch, Amanda; Jostad, Candice; Breitwieser, Carrie Brower

    2009-01-01

    This study compared the effectiveness of behavioral skills training (BST) to BST plus simulated in situ training (SIT) for teaching safety skills to children to prevent gun play. The results were evaluated in a posttest only control group design. Following the first assessment, participants in both training groups and the control group who did not…

  5. Cluster computing software for GATE simulations

    International Nuclear Information System (INIS)

    Beenhouwer, Jan de; Staelens, Steven; Kruecker, Dirk; Ferrer, Ludovic; D'Asseler, Yves; Lemahieu, Ignace; Rannou, Fernando R.

    2007-01-01

    Geometry and tracking (GEANT4) is a Monte Carlo package designed for high energy physics experiments. It is used as the basis layer for Monte Carlo simulations of nuclear medicine acquisition systems in GEANT4 Application for Tomographic Emission (GATE). GATE allows the user to realistically model experiments using accurate physics models and time synchronization for detector movement through a script language contained in a macro file. The downside of this high accuracy is long computation time. This paper describes a platform independent computing approach for running GATE simulations on a cluster of computers in order to reduce the overall simulation time. Our software automatically creates fully resolved, nonparametrized macros accompanied with an on-the-fly generated cluster specific submit file used to launch the simulations. The scalability of GATE simulations on a cluster is investigated for two imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT). Due to a higher sensitivity, PET simulations are characterized by relatively high data output rates that create rather large output files. SPECT simulations, on the other hand, have lower data output rates but require a long collimator setup time. Both of these characteristics hamper scalability as a function of the number of CPUs. The scalability of PET simulations is improved here by the development of a fast output merger. The scalability of SPECT simulations is improved by greatly reducing the collimator setup time. Accordingly, these two new developments result in higher scalability for both PET and SPECT simulations and reduce the computation time to more practical values

  6. Basic airway skills acquisition using the American College of Surgeons/Association for Surgical Education medical student simulation-based surgical skills curriculum: Initial results.

    Science.gov (United States)

    Muratore, Sydne; Kim, Michael; Olasky, Jaisa; Campbell, Andre; Acton, Robert

    2017-02-01

    The ACS/ASE Medical Student Simulation-Based Skills Curriculum was developed to standardize medical student training. This study aims to evaluate the feasibility and validity of implementing the basic airway curriculum. This single-center, prospective study of medical students participating in the basic airway module from 12/2014-3/2016 consisted of didactics, small-group practice, and testing in a simulated clinical scenario. Proficiency was determined by a checklist of skills (1-15), global score (1-5), and letter grade (NR-needs review, PS-proficient in simulation scenario, CP-proficient in clinical scenario). A proportion of students completed pre/post-test surveys regarding experience, satisfaction, comfort, and self-perceived proficiency. Over 16 months, 240 students were enrolled with 98% deemed proficient in a simulated or clinical scenario. Pre/post-test surveys (n = 126) indicated improvement in self-perceived proficiency by 99% of learners. All students felt moderately to very comfortable performing basic airway skills and 94% had moderate to considerable satisfaction after completing the module. The ACS/ASE Surgical Skills Curriculum is a feasible and effective way to teach medical students basic airway skills using simulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Parallel reservoir simulator computations

    International Nuclear Information System (INIS)

    Hemanth-Kumar, K.; Young, L.C.

    1995-01-01

    The adaptation of a reservoir simulator for parallel computations is described. The simulator was originally designed for vector processors. It performs approximately 99% of its calculations in vector/parallel mode and relative to scalar calculations it achieves speedups of 65 and 81 for black oil and EOS simulations, respectively on the CRAY C-90

  8. Coaching Non-technical Skills Improves Surgical Residents' Performance in a Simulated Operating Room.

    Science.gov (United States)

    Yule, Steven; Parker, Sarah Henrickson; Wilkinson, Jill; McKinley, Aileen; MacDonald, Jamie; Neill, Adrian; McAdam, Tim

    2015-01-01

    To investigate the effect of coaching on non-technical skills and performance during laparoscopic cholecystectomy in a simulated operating room (OR). Non-technical skills (situation awareness, decision making, teamwork, and leadership) underpin technical ability and are critical to the success of operations and the safety of patients in the OR. The rate of developing assessment tools in this area has outpaced development of workable interventions to improve non-technical skills in surgical training and beyond. A randomized trial was conducted with senior surgical residents (n = 16). Participants were randomized to receive either non-technical skills coaching (intervention) or to self-reflect (control) after each of 5 simulated operations. Coaching was based on the Non-Technical Skills For Surgeons (NOTSS) behavior observation system. Surgeon-coaches trained in this method coached participants in the intervention group for 10 minutes after each simulation. Primary outcome measure was non-technical skills, assessed from video by a surgeon using the NOTSS system. Secondary outcomes were time to call for help during bleeding, operative time, and path length of laparoscopic instruments. Non-technical skills improved in the intervention group from scenario 1 to scenario 5 compared with those in the control group (p = 0.04). The intervention group was faster to call for help when faced with unstoppable bleeding in the final scenario (no. 5; p = 0.03). Coaching improved residents' non-technical skills in the simulated OR compared with those in the control group. Important next steps are to implement non-technical skills coaching in the real OR and assess effect on clinically important process measures and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Computer simulation of ductile fracture

    International Nuclear Information System (INIS)

    Wilkins, M.L.; Streit, R.D.

    1979-01-01

    Finite difference computer simulation programs are capable of very accurate solutions to problems in plasticity with large deformations and rotation. This opens the possibility of developing models of ductile fracture by correlating experiments with equivalent computer simulations. Selected experiments were done to emphasize different aspects of the model. A difficult problem is the establishment of a fracture-size effect. This paper is a study of the strain field around notched tensile specimens of aluminum 6061-T651. A series of geometrically scaled specimens are tested to fracture. The scaled experiments are conducted for different notch radius-to-diameter ratios. The strains at fracture are determined from computer simulations. An estimate is made of the fracture-size effect

  10. Simulating chemistry using quantum computers.

    Science.gov (United States)

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  11. Building Professionalism and Employability Skills: Embedding Employer Engagement within First-Year Computing Modules

    Science.gov (United States)

    Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm

    2015-01-01

    This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner…

  12. An interprofessional course using human patient simulation to teach patient safety and teamwork skills.

    Science.gov (United States)

    Vyas, Deepti; McCulloh, Russell; Dyer, Carla; Gregory, Gretchen; Higbee, Dena

    2012-05-10

    To assess the effectiveness of human patient simulation to teach patient safety, team-building skills, and the value of interprofessional collaboration to pharmacy students. Five scenarios simulating semi-urgent situations that required interprofessional collaboration were developed. Groups of 10 to 12 health professions students that included 1 to 2 pharmacy students evaluated patients while addressing patient safety hazards. Pharmacy students' scores on 8 of 30 items on a post-simulation survey of knowledge, skills, and attitudes improved over pre-simulation scores. Students' scores on 3 of 10 items on a team building and interprofessional communications survey also improved after participating in the simulation exercise. Over 90% of students reported that simulation increased their understanding of professional roles and the importance of interprofessional communication. Simulation training provided an opportunity to improve pharmacy students' ability to recognize and react to patient safety concerns and enhanced their interprofessional collaboration and communication skills.

  13. HTTR plant dynamic simulation using a hybrid computer

    International Nuclear Information System (INIS)

    Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.

    1990-01-01

    A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)

  14. GPU-accelerated micromagnetic simulations using cloud computing

    Energy Technology Data Exchange (ETDEWEB)

    Jermain, C.L., E-mail: clj72@cornell.edu [Cornell University, Ithaca, NY 14853 (United States); Rowlands, G.E.; Buhrman, R.A. [Cornell University, Ithaca, NY 14853 (United States); Ralph, D.C. [Cornell University, Ithaca, NY 14853 (United States); Kavli Institute at Cornell, Ithaca, NY 14853 (United States)

    2016-03-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  15. GPU-accelerated micromagnetic simulations using cloud computing

    International Nuclear Information System (INIS)

    Jermain, C.L.; Rowlands, G.E.; Buhrman, R.A.; Ralph, D.C.

    2016-01-01

    Highly parallel graphics processing units (GPUs) can improve the speed of micromagnetic simulations significantly as compared to conventional computing using central processing units (CPUs). We present a strategy for performing GPU-accelerated micromagnetic simulations by utilizing cost-effective GPU access offered by cloud computing services with an open-source Python-based program for running the MuMax3 micromagnetics code remotely. We analyze the scaling and cost benefits of using cloud computing for micromagnetics. - Highlights: • The benefits of cloud computing for GPU-accelerated micromagnetics are examined. • We present the MuCloud software for running simulations on cloud computing. • Simulation run times are measured to benchmark cloud computing performance. • Comparison benchmarks are analyzed between CPU and GPU based solvers.

  16. Collecting Validity Evidence for Simulation-Based Assessment of Point-of-Care Ultrasound Skills

    DEFF Research Database (Denmark)

    Jensen, Jesper Kørup; Dyre, Liv; Jørgensen, Mattis Enggaard

    2017-01-01

    OBJECTIVES: The aim of this study was to examine the validity of a simulator test designed to evaluate focused assessment with sonography for trauma (FAST) skills. METHODS: Participants included a group of ultrasound novices (n = 25) and ultrasound experts (n = 10). All participants had their FAST...... skills assessed using a virtual reality ultrasound simulator. Procedural performance on the 4 FAST windows was assessed by automated simulator metrics, which received a passing or failing score. The validity evidence for these simulator metrics was examined by a stepwise approach according...

  17. Computer Simulation Western

    International Nuclear Information System (INIS)

    Rasmussen, H.

    1992-01-01

    Computer Simulation Western is a unit within the Department of Applied Mathematics at the University of Western Ontario. Its purpose is the development of computational and mathematical methods for practical problems in industry and engineering and the application and marketing of such methods. We describe the unit and our efforts at obtaining research and development grants. Some representative projects will be presented and future plans discussed. (author)

  18. Adaptation of non-technical skills behavioural markers for delivery room simulation.

    Science.gov (United States)

    Bracco, Fabrizio; Masini, Michele; De Tonetti, Gabriele; Brogioni, Francesca; Amidani, Arianna; Monichino, Sara; Maltoni, Alessandra; Dato, Andrea; Grattarola, Claudia; Cordone, Massimo; Torre, Giancarlo; Launo, Claudio; Chiorri, Carlo; Celleno, Danilo

    2017-03-17

    Simulation in healthcare has proved to be a useful method in improving skills and increasing the safety of clinical operations. The debriefing session, after the simulated scenario, is the core of the simulation, since it allows participants to integrate the experience with the theoretical frameworks and the procedural guidelines. There is consistent evidence for the relevance of non-technical skills (NTS) for the safe and efficient accomplishment of operations. However, the observation, assessment and feedback on these skills is particularly complex, because the process needs expert observers and the feedback is often provided in judgmental and ineffective ways. The aim of this study was therefore to develop and test a set of observation and rating forms for the NTS behavioural markers of multi-professional teams involved in delivery room emergency simulations (MINTS-DR, Multi-professional Inventory for Non-Technical Skills in the Delivery Room). The MINTS-DR was developed by adapting the existing tools and, when needed, by designing new tools according to the literature. We followed a bottom-up process accompanied by interviews and co-design between practitioners and psychology experts. The forms were specific for anaesthetists, gynaecologists, nurses/midwives, assistants, plus a global team assessment tool. We administered the tools in five editions of a simulation training course that involved 48 practitioners. Ratings on usability and usefulness were collected. The mean ratings of the usability and usefulness of the tools were not statistically different to or higher than 4 on a 5-point rating scale. In either case no significant differences were found across professional categories. The MINTS-DR is quick and easy to administer. It is judged to be a useful asset in maximising the learning experience that is provided by the simulation.

  19. Using NCLab-karel to improve computational thinking skill of junior high school students

    Science.gov (United States)

    Kusnendar, J.; Prabawa, H. W.

    2018-05-01

    Increasingly human interaction with technology and the increasingly complex development of digital technology world make the theme of computer science education interesting to study. Previous studies on Computer Literacy and Competency reveal that Indonesian teachers in general have fairly high computational skill, but their skill utilization are limited to some applications. This engenders limited and minimum computer-related learning for the students. On the other hand, computer science education is considered unrelated to real-world solutions. This paper attempts to address the utilization of NCLab- Karel in shaping the computational thinking in students. This computational thinking is believed to be able to making learn students about technology. Implementation of Karel utilization provides information that Karel is able to increase student interest in studying computational material, especially algorithm. Observations made during the learning process also indicate the growth and development of computing mindset in students.

  20. A multi-media computer program for training in basic professional counseling skills

    NARCIS (Netherlands)

    Adema, J.; Van der Zee, K.I.

    2003-01-01

    This paper concerns the development of a self-instructional program for training in basic counseling skills. The product was a multimedia computer program, named GEVAT. The training under consideration was based on a traditional training in which students enhance these skills under supervision.

  1. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  2. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    Science.gov (United States)

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  3. Indicators of computer skill use among university students. Educational and social implications

    Directory of Open Access Journals (Sweden)

    María del Pilar QUICIOS GARCÍA

    2013-07-01

    Full Text Available This article divulges the findings of the preliminary study for Research Project SEJ 2004-06803 I+D. It provides indicators of the use of the computer skills developed by two groups of Spanish university students. It then indicates the training the sample groups under study declared necessary in order to gain autonomy in their use of computer skills. The sample groups analyzed were two groups of students enrolled in the first year of the audiovisual communication curriculum and the third year of the journalism curriculum at the Complutensian University of Madrid. Each group was made up of 60 students who answered a quantitative questionnaire (Likert scale and a series of questions requiring qualitative answers. One finding was that age is not a telling factor in the use of computer skills, nor is the curriculum a student has chosen to follow. The declared educational needs include systematic instruction in tools and educational training that places limits on the relational use of virtual tools.

  4. Advanced computers and simulation

    International Nuclear Information System (INIS)

    Ryne, R.D.

    1993-01-01

    Accelerator physicists today have access to computers that are far more powerful than those available just 10 years ago. In the early 1980's, desktop workstations performed less one million floating point operations per second (Mflops), and the realized performance of vector supercomputers was at best a few hundred Mflops. Today vector processing is available on the desktop, providing researchers with performance approaching 100 Mflops at a price that is measured in thousands of dollars. Furthermore, advances in Massively Parallel Processors (MPP) have made performance of over 10 gigaflops a reality, and around mid-decade MPPs are expected to be capable of teraflops performance. Along with advances in MPP hardware, researchers have also made significant progress in developing algorithms and software for MPPS. These changes have had, and will continue to have, a significant impact on the work of computational accelerator physicists. Now, instead of running particle simulations with just a few thousand particles, we can perform desktop simulations with tens of thousands of simulation particles, and calculations with well over 1 million particles are being performed on MPPs. In the area of computational electromagnetics, simulations that used to be performed only on vector supercomputers now run in several hours on desktop workstations, and researchers are hoping to perform simulations with over one billion mesh points on future MPPs. In this paper we will discuss the latest advances, and what can be expected in the near future, in hardware, software and applications codes for advanced simulation of particle accelerators

  5. Digitalization of Education System and Teacher Educators' Computer Skill in Bangladesh

    Science.gov (United States)

    Rahman, Mohammad Ataur

    2011-01-01

    This study examined how teacher educators perceive the incorporation and use of computer technology resources in Teachers' Training Colleges in Bangladesh. This study encompasses the thorough investigation of teacher educators' "computer skills" by using the valid and reliable instruments. The study finally examined whether any…

  6. Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial.

    Science.gov (United States)

    Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide

    2017-04-05

    Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality

  7. Mobile computing deployment and management real world skills for Comptia Mobility+ certification and beyond

    CERN Document Server

    Bartz, Robert J

    2015-01-01

    Mobile computing skills are becoming standard in the IT industry Mobile Computing Deployment and Management: Real World Skills for CompTIA Mobility+ Certification and Beyond is the ultimate reference for mobile computing. Certified Wireless Network Expert Robert J. Bartz guides IT and networking professionals through the fundamental and advanced concepts of mobile computing, providing the information and instruction necessary to get up to speed on current technology and best practices. The book maps to the CompTIA Mobility+ (MB0-001) exam, making it an ideal resource for those s

  8. Commentary on: "Toward Computer-Based Support of Metacognitive Skills: A Computational Framework to Coach Self Explanation"

    Science.gov (United States)

    Conati, Cristina

    2016-01-01

    This paper is a commentary on "Toward Computer-Based Support of Meta-Cognitive Skills: a Computational Framework to Coach Self-Explanation", by Cristina Conati and Kurt Vanlehn, published in the "IJAED" in 2000 (Conati and VanLehn 2010). This work was one of the first examples of Intelligent Learning Environments (ILE) that…

  9. Non-technical skills of surgeons and anaesthetists in simulated operating theatre crises.

    Science.gov (United States)

    Doumouras, A G; Hamidi, M; Lung, K; Tarola, C L; Tsao, M W; Scott, J W; Smink, D S; Yule, S

    2017-07-01

    Deficiencies in non-technical skills (NTS) have been increasingly implicated in avoidable operating theatre errors. Accordingly, this study sought to characterize the impact of surgeon and anaesthetist non-technical skills on time to crisis resolution in a simulated operating theatre. Non-technical skills were assessed during 26 simulated crises (haemorrhage and airway emergency) performed by surgical teams. Teams consisted of surgeons, anaesthetists and nurses. Behaviour was assessed by four trained raters using the Non-Technical Skills for Surgeons (NOTSS) and Anaesthetists' Non-Technical Skills (ANTS) rating scales before and during the crisis phase of each scenario. The primary endpoint was time to crisis resolution; secondary endpoints included NTS scores before and during the crisis. A cross-classified linear mixed-effects model was used for the final analysis. Thirteen different surgical teams were assessed. Higher NTS ratings resulted in significantly faster crisis resolution. For anaesthetists, every 1-point increase in ANTS score was associated with a decrease of 53·50 (95 per cent c.i. 31·13 to 75·87) s in time to crisis resolution (P technical skills scores were lower during the crisis phase of the scenarios than those measured before the crisis for both surgeons and anaesthetists. A higher level of NTS of surgeons and anaesthetists led to quicker crisis resolution in a simulated operating theatre environment. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  10. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    Science.gov (United States)

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  11. Teaching and Assessing Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-02-01

    Full Text Available To be successful in today's workplace, engineering and computer science students must possess high levels of teamwork skills. Unfortunately, most engineering programs provide little or no specific instruction in this area. This paper outlines an assessment-driven approach toward teaching teamwork skills. Working with the Industrial Advisory Board for the College, a set of performance criteria for teamwork was developed. This set of criteria was used to build an assessment instrument to measure the extent to which students are able to achieve the necessary skills. This set of criteria provides a clear basis for the development of an approach toward teaching teamwork skills. Furthermore, the results from the assessment can be used to adjust the teaching techniques to address the particular skills where students show some weaknesses. Although this effort is in the early stages, the approach seems promising and will be improved over time.

  12. Computer simulations of collisionless shock waves

    International Nuclear Information System (INIS)

    Leroy, M.M.

    1984-01-01

    A review of the contributions of particle computer simulations to the understanding of the physics of magnetic shock waves in collisionless plasmas is presented. The emphasis is on the relation between the computer simulation results, spacecraft observations of shocks in space, and related theories, rather than on technical aspects of the numerics. It is shown that much has been learned from the comparison of ISEE spacecraft observations of the terrestrial bow shock and particle computer simulations concerning the quasi-perpendicular, supercritical shock (ion scale structure, ion reflection mechanism and ultimate dissipation processes). Particle computer simulations have also had an appreciable prospective role in the investigation of the physics of quasi-parallel shocks, about which still little is known observationally. Moreover, these numerical techniques have helped to clarify the process of suprathermal ion rejection by the shock into the foreshock, and the subsequent evolution of the ions in the foreshock. 95 references

  13. Cryogenic process simulation

    International Nuclear Information System (INIS)

    Panek, J.; Johnson, S.

    1994-01-01

    Combining accurate fluid property databases with a commercial equation-solving software package running on a desktop computer allows simulation of cryogenic processes without extensive computer programming. Computer simulation can be a powerful tool for process development or optimization. Most engineering simulations to date have required extensive programming skills in languages such as Fortran, Pascal, etc. Authors of simulation code have also usually been responsible for choosing and writing the particular solution algorithm. This paper describes a method of simulating cryogenic processes with a commercial software package on a desktop personal computer that does not require these traditional programming tasks. Applications include modeling of cryogenic refrigerators, heat exchangers, vapor-cooled power leads, vapor pressure thermometers, and various other engineering problems

  14. Possibilities and importance of using computer games and simulations in educational process

    Directory of Open Access Journals (Sweden)

    Danilović Mirčeta S.

    2003-01-01

    Full Text Available The paper discusses if it is possible and appropriate to use simulations (simulation games and traditional games in the process of education. It is stressed that the terms "game" and "simulation" can and should be taken in a broader sense, although they are chiefly investigated herein as video-computer games and simulations. Any activity combining the properties of game (competition, rules, players and the properties of simulation (i.e. operational presentation of reality should be understood as simulation games, where role-play constitutes their essence and basis. In those games the student assumes a new identity, identifies himself with another personality and responds similarly. Game rules are basic and most important conditions for its existence, accomplishment and goal achievement. Games and simulations make possible for a student to acquire experience and practice i.e. to do exercises in nearly similar or identical life situations, to develop cognitive and psycho-motor abilities and skills, to acquire knowledge, to develop, create and change attitudes and value criteria, and to develop perception of other people’s feelings and attitudes. It is obligatory for the teacher to conduct preparations to use and apply simulation games in the process of teaching.

  15. Computers and the Future of Skill Demand. Educational Research and Innovation Series

    Science.gov (United States)

    Elliott, Stuart W.

    2017-01-01

    Computer scientists are working on reproducing all human skills using artificial intelligence, machine learning and robotics. Unsurprisingly then, many people worry that these advances will dramatically change work skills in the years ahead and perhaps leave many workers unemployable. This report develops a new approach to understanding these…

  16. Computer algebra simulation - what can it do?; Was leistet Computer-Algebra-Simulation?

    Energy Technology Data Exchange (ETDEWEB)

    Braun, S. [Visual Analysis AG, Muenchen (Germany)

    2001-07-01

    Shortened development times require new and improved calculation methods. Numeric methods have long become state of the art. However, although numeric simulations provide a better understanding of process parameters, they do not give a feast overview of the interdependences between parameters. Numeric simulations are effective only if all physical parameters are sufficiently known; otherwise, the efficiency will decrease due to the large number of variant calculations required. Computer algebra simulation closes this gap and provides a deeper understanding of the physical fundamentals of technical processes. [German] Neue und verbesserte Berechnungsmethoden sind notwendig, um die staendige Verkuerzung der Entwicklungszyklen zu ermoeglichen. Herkoemmliche Methoden, die auf einem rein numerischen Ansatz basieren, haben sich in vielen Anwendungsbereichen laengst zum Standard entwickelt. Aber nicht nur die staendig kuerzer werdenden Entwicklungszyklen, sondern auch die weiterwachsende Komplexitaet machen es notwendig, ein besseres Verstaendnis der beteiligten Prozessparameter zu gewinnen. Die numerische Simulation besticht zwar durch Detailloesungen, selbst bei komplexen Strukturen und Prozessen, allerdings liefert sie keine schnelle Abschaetzung ueber die Zusammenhaenge zwischen den einzelnen Parametern. Die numerische Simulation ist nur dann effektiv, wenn alle physikalischen Parameter hinreichend bekannt sind; andernfalls sinkt die Effizienz durch die notwendige Anzahl von notwendigen Variantenrechnungen sehr stark. Die Computer-Algebra-Simulation schliesst diese Luecke in dem sie es erlaubt, sich einen tieferen Einblick in die physikalische Funktionsweise technischer Prozesse zu verschaffen. (orig.)

  17. Framework for utilizing computational devices within simulation

    Directory of Open Access Journals (Sweden)

    Miroslav Mintál

    2013-12-01

    Full Text Available Nowadays there exist several frameworks to utilize a computation power of graphics cards and other computational devices such as FPGA, ARM and multi-core processors. The best known are either low-level and need a lot of controlling code or are bounded only to special graphic cards. Furthermore there exist more specialized frameworks, mainly aimed to the mathematic field. Described framework is adjusted to use in a multi-agent simulations. Here it provides an option to accelerate computations when preparing simulation and mainly to accelerate a computation of simulation itself.

  18. The effects of video games on laparoscopic simulator skills.

    Science.gov (United States)

    Jalink, Maarten B; Goris, Jetse; Heineman, Erik; Pierie, Jean-Pierre E N; ten Cate Hoedemaker, Henk O

    2014-07-01

    Recently, there has been a growth in studies supporting the hypothesis that video games have positive effects on basic laparoscopic skills. This review discusses all studies directly related to these effects. A search in the PubMed and EMBASE databases was performed using synonymous terms for video games and laparoscopy. All available articles concerning video games and their effects on skills on any laparoscopic simulator (box trainer, virtual reality, and animal models) were selected. Video game experience has been related to higher baseline laparoscopic skills in different studies. There is currently, however, no standardized method to assess video game experience, making it difficult to compare these studies. Several controlled experiments have, nevertheless, shown that video games cannot only be used to improve laparoscopic basic skills in surgical novices, but are also used as a temporary warming-up before laparoscopic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Can the learning of laparoscopic skills be quantified by the measurements of skill parameters performed in a virtual reality simulator?

    Directory of Open Access Journals (Sweden)

    Natascha Silva Sandy

    2013-06-01

    Full Text Available Purpose To ensure patient safety and surgical efficiency, much emphasis has been placed on the training of laparoscopic skills using virtual reality simulators. The purpose of this study was to determine whether laparoscopic skills can be objectively quantified by measuring specific skill parameters during training in a virtual reality surgical simulator (VRSS. Materials and Methods Ten medical students (with no laparoscopic experience and ten urology residents (PGY3-5 with limited laparoscopic experience were recruited to participate in a ten-week training course in basic laparoscopic skills (camera, cutting, peg transfer and clipping skills on a VRSS. Data were collected from the training sessions. The time that individuals took to complete each task and the errors that they made were analyzed independently. Results The mean time that individuals took to complete tasks was significantly different between the groups (p < 0.05, with the residents being faster than the medical students. The residents' group also completed the tasks with fewer errors. The majority of the subjects in both groups exhibited a significant improvement in their task completion time and error rate. Conclusion The findings in this study demonstrate that laparoscopic skills can be objectively measured in a VRSS based on quantified skill parameters, including the time spent to complete skill tasks and the associated error rate. We conclude that a VRSS is a feasible tool for training and assessing basic laparoscopic skills.

  20. Development and evaluation of a decision-based simulation for assessment of team skills.

    Science.gov (United States)

    Andrew, Brandon; Plachta, Stephen; Salud, Lawrence; Pugh, Carla M

    2012-08-01

    There is a need to train and evaluate a wide variety of nontechnical surgical skills. The goal of this project was to develop and evaluate a decision-based simulation to assess team skills. The decision-based exercise used our previously validated Laparoscopic Ventral Hernia simulator and a newly developed team evaluation survey. Five teams of 3 surgical residents (N = 15) were tasked with repairing a 10 × 10-cm right upper quadrant hernia. During the simulation, independent observers (N = 6) completed a 6-item survey assessing: (1) work quality; (2) communication; and (3) team effectiveness. After the simulation, team members self-rated their performance by using the same survey. Survey reliability revealed a Cronbach's alpha of r = .811. Significant differences were found when we compared team members' (T) and observers' (O) ratings for communication (T = 4.33/5.00 vs O = 3.00/5.00, P work quality (T = 4.33/5.00 vs O = 3.33/5.00, P performance on the simulator. Our current and previous work provides strong evidence that nontechnical and team related skills can be assessed without simulating a crisis situation. Copyright © 2012 Mosby, Inc. All rights reserved.

  1. Health literacy, computer skills and quality of patient-physician communication in Chinese patients with cataract.

    Directory of Open Access Journals (Sweden)

    Xianchai Lin

    Full Text Available PURPOSE: The aim of the study was to assess levels of health literacy and computer skills in Chinese patients with cataract, and their impact on the doctor-patient relationship. METHODS: We undertook a cross-sectional study of cataract patients scheduled for cataract extraction procedures in Guangdong Province, China. Generic health literacy was assessed using 3 established screening questions. Adequate computer skills was determined if patients had used a computer and routinely used search engines on the Internet. Socio-demographic measures (e.g., age, sex, education were obtained from a standardized interview. Participants who indicated that they could not understand what their doctors mean were considered to have had poor patient-physician communications. RESULTS: Of the 211 participants, 92 (43.6% had inadequate health literacy and 204 (96.7% inadequate computer skills. In multivariate analysis, females were more likely to have inadequate health literacy (odds ratio = 2.5, 95% confidence intervals [CI]: 1.3 to 4.7. People with inadequately health literacy were more likely to have a poor patient-physician communication (odds ratio = 3.5, 95% CIs: 1.3 to 9.0. Similar associations were found for inadequate computer skills. CONCLUSION: Chinese elderly patients with cataract have inadequate health literacy and very limited computer skills, which place them at high risk of misunderstanding and mismanaging their ocular conditions. Patient education information other than online materials may improve the eye care and outcomes of these patients.

  2. Improving the Teaching of Teamwork Skills in Engineering and Computer Science

    Directory of Open Access Journals (Sweden)

    Robert W. Lingard

    2010-12-01

    Full Text Available It is important that engineering and computer science students learn teamwork skills as an integral part of their educational development. These skills are often not explicitly taught, but rather it is expected that students learn them on their own through participation in various team projects. Furthermore, the actual skills that students are expected to learn are usually not well articulated, or even understood. The approach outlined here attempts to address these problems by first establishing a process for defining what is meant by teamwork, by using this definition to assess the extent to which students are learning teamwork skills, and by using the assessment results to formulate approaches to improve student learning with respect to these skills. Specific attempts at the definition, assessment, and instruction improvement process are discussed.

  3. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    Science.gov (United States)

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  4. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    Science.gov (United States)

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  5. Using simulation to train orthopaedic trainees in non-technical skills: A pilot study.

    Science.gov (United States)

    Heaton, Samuel R; Little, Zoe; Akhtar, Kash; Ramachandran, Manoj; Lee, Joshua

    2016-08-18

    To enhance non-technical skills and to analyse participant's experience of a course tailored for orthopaedic surgeons. A Delphi technique was used to develop a course in human factors specific to orthopaedic residents. Twenty-six residents (six per course) participated in total with seven course facilitators all trained in Crisis Resource Management providing structured feedback. Six scenarios recreated challenging real-life situations using high-fidelity mannequins and simulated patients. Environments included a simulated operating suite, clinic room and ward setting. All were undertaken in a purpose built simulation suite utilising actors, mock operating rooms, mock clinical rooms and a high fidelity adult patient simulator organised through a simulation control room. Participants completed a 5-point Likert scale questionnaire (strongly disagree to strongly agree) before and after the course. This assessed their understanding of non-technical skills, scenario validity, relevance to orthopaedic training and predicted impact of the course on future practice. A course evaluation questionnaire was also completed to assess participants' feedback on the value and quality of the course itself. Twenty-six orthopaedic residents participated (24 male, 2 female; post-graduation 5-10 years), mean year of residency program 2.6 out of 6 years required in the United Kingdom. Pre-course questionnaires showed that while the majority of candidates recognised the importance of non-technical (NT) skills in orthopaedic training they demonstrated poor understanding of non-technical skills and their role. This improved significantly after the course (Likert score 3.0-4.2) and the perceived importance of these skills was reported as good or very good in 100%. The course was reported as enjoyable and provided an unthreatening learning environment with the candidates placing particular value on the learning opportunity provided by reflecting on their performance. All agreed that the

  6. Developing Decision-Making Skill: Experiential Learning in Computer Games

    OpenAIRE

    Kurt A. April; Katja M. J. Goebel; Eddie Blass; Jonathan Foster-Pedley

    2012-01-01

    This paper explores the value that computer and video games bring to learning and leadership and explores how games work as learning environments and the impact they have on personal development. The study looks at decisiveness, decision-making ability and styles, and on how this leadership-related skill is learnt through different paradigms. The paper compares the learning from a lecture to the learning from a designed computer game, both of which have the same content through the use of a s...

  7. Students Computer Skills in Faculty of Education

    OpenAIRE

    Mehmet Caglar; Mukaddes Sakalli Demirok

    2010-01-01

    Nowadays; the usage of technology is not a privilege but an obligation. Technological developments influence structures andfunctions of educational institutions. It is also expected from the teachers that they integrate technology in their lessons inorder to educate the individuals of information society. This research has covered 145(68 female, 78 male) students, studying inNear East University Faculty of Education. The Computer Skills Scale developed by Güçlü (2010) was used as a data colle...

  8. Exploring the use of high-fidelity simulation training to enhance clinical skills.

    Science.gov (United States)

    Ann Kirkham, Lucy

    2018-02-07

    The use of interprofessional simulation training to enhance nursing students' performance of technical and non-technical clinical skills is becoming increasingly common. Simulation training can involve the use of role play, virtual reality or patient simulator manikins to replicate clinical scenarios and assess the nursing student's ability to, for example, undertake clinical observations or work as part of a team. Simulation training enables nursing students to practise clinical skills in a safe environment. Effective simulation training requires extensive preparation, and debriefing is necessary following a simulated training session to review any positive or negative aspects of the learning experience. This article discusses a high-fidelity simulated training session that was used to assess a group of third-year nursing students and foundation level 1 medical students. This involved the use of a patient simulator manikin in a scenario that required the collaborative management of a deteriorating patient. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  9. Numerical characteristics of quantum computer simulation

    Science.gov (United States)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  10. Role of simulator training in developing teamwork and diagnostic skills

    International Nuclear Information System (INIS)

    Grimme, W.E.

    1987-01-01

    A review of the evolution of the control room team is necessary to understand team training needs. As control room responsibilities have increased and members have been added to the operating crews, teamwork and strong leadership has become crucial to the efficiency of these operating crews. In order to conduct effective team training in a simulated control room, it is essential that the fundamental principles of role definition and common team values are fully developed. The diagnostics model used to develop problem-solving skills must be adaptable to the dynamic environment of the control room. Once the fundamental principles of team building and a good diagnostics model are mastered, many training techniques using a simulator are available to perfect the development of team building and diagnostic skills

  11. Impact of subject related factors and position of flight control stick on acquisition of simulated flying skills using a flight simulator

    Science.gov (United States)

    Cho, Bo-Keun

    Increasing demand on aviation industry calls for more pilots. Thus, pilot training systems and pilot-candidate screening systems are essential for civil and military flying training institutes. Before actual flight training, it is not easy to determine whether a flight trainee will be successful in the training. Due to the high cost of actual flight training, it would be better if there were low cost methods for screening and training candidates prior to the actual flight training. This study intended to determine if subject related factors and flight control stick position have an impact on acquisition of simulated flying skills using a PC-based flight simulator. The experimental model was a factorial design with repeated measures. Sixty-four subjects participated in the experiment and were divided into 8 groups. Experiment consisted of 8 sessions in which performance data, such as heading, altitude and airspeed were collected every 15 seconds. Collected data were analyzed using SAS statistical program. Result of multivariate analysis of variance indicated that the three independent variables: nationality, computer game experience, and flight stick position have significant impact on acquiring simulated flying skill. For nationality, Americans recorded higher scores in general (mean: 81.7) than Koreans (mean: 78.9). The difference in mean scores between Americans and Koreans was 2.8 percent. Regarding computer game experience, the difference between high experience group (82.3) and low experience group (78.3) is significant. For high experience group, American side-stick group recorded the highest (mean: 85.6), and Korean side-stick group (mean: 77.2) scored the lowest. For the low experience group, American center-stick group scored the highest (80.6), and the Korean side-stick group (74.2) scored the lowest points. Therefore, there is a significant difference between high experience group and low experience group. The results also reveal that the center

  12. Analyzing Robotic Kinematics Via Computed Simulations

    Science.gov (United States)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  13. Computer Simulations, Disclosure and Duty of Care

    Directory of Open Access Journals (Sweden)

    John Barlow

    2006-05-01

    Full Text Available Computer simulations provide cost effective methods for manipulating and modeling 'reality'. However they are not real. They are imitations of a system or event, real or fabricated, and as such mimic, duplicate or represent that system or event. The degree to which a computer simulation aligns with and reproduces the ‘reality’ of the system or event it attempts to mimic or duplicate depends upon many factors including the efficiency of the simulation algorithm, the processing power of the computer hardware used to run the simulation model, and the expertise, assumptions and prejudices of those concerned with designing, implementing and interpreting the simulation output. Computer simulations in particular are increasingly replacing physical experimentation in many disciplines, and as a consequence, are used to underpin quite significant decision-making which may impact on ‘innocent’ third parties. In this context, this paper examines two interrelated issues: Firstly, how much and what kind of information should a simulation builder be required to disclose to potential users of the simulation? Secondly, what are the implications for a decision-maker who acts on the basis of their interpretation of a simulation output without any reference to its veracity, which may in turn comprise the safety of other parties?

  14. Workplace Skills Taught in a Simulated Analytical Department

    Science.gov (United States)

    Sonchik Marine, Susan

    2001-11-01

    Integration of workplace skills into the academic setting is paramount for any chemical technology program. In addition to the expected chemistry content, courses must build proficiency in oral and written communication skills, computer skills, laboratory safety, and logical troubleshooting. Miami University's Chemical Technology II course is set up as a contract analytical laboratory. Students apply the advanced sampling techniques, quality assurance, standard methods, and statistical analyses they have studied. For further integration of workplace skills, weekly "department meetings" are held where the student, as members of the department, report on their work in process, present completed projects, and share what they have learned and what problems they have encountered. Information is shared between the experienced members of the department and those encountering problems or starting a new project. The instructor as department manager makes announcements, reviews company and department status, and assigns work for the coming week. The department members report results to clients in formal reports or in short memos. Factors affecting the success of the "department meeting" approach include the formality of the meeting room, use of an official agenda, the frequency, time, and duration of the meeting, and accountability of the students.

  15. Does skill retention benefit from retentivity and symbolic rehearsal? - two studies with a simulated process control task.

    Science.gov (United States)

    Kluge, Annette; Frank, Barbara; Maafi, Sanaz; Kuzmanovska, Aleksandra

    2016-05-01

    Two experiments were designed to compare two symbolic rehearsal refresher interventions (imaginary practice, a hidden introspective process) and investigate the role of retentivity in skill retention. Retentivity is investigated as the ability to memorise and reproduce information and associations that were learned a short time ago. Both experiments comprised initial training (week 1), a symbolic rehearsal for the experimental group (week 2) and a retention assessment (week 3). In the first study, the experimental group received a symbolic rehearsal, while the control group received no rehearsal. In the second study, the experimental group received the same symbolic rehearsal used in study 1, enhanced with rehearsal tasks addressing human-computer interaction. The results showed that both symbolic rehearsal interventions were equally likely to mitigate skill decay. The retentivity showed medium to high correlations with skill retention in both studies, and the results suggest that subjects high in retentivity benefit more from a symbolic rehearsal refresher intervention. Practitioner Summary: Skill decay becomes a problem in situations in which jobs require the correct mastery of non-routine situations. Two experimental studies with simulated process control tasks showed that symbolic rehearsal and retentivity can significantly mitigate skill decay and that subjects higher in retentivity benefit more from refresher interventions.

  16. The effects of computer-aided design software on engineering students' spatial visualisation skills

    Science.gov (United States)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  17. Simulation of a small computer of the TRA-1001 type on the BESM computer

    International Nuclear Information System (INIS)

    Galaktionov, V.V.

    1975-01-01

    Considered are the purpose and probable simulation ways of one computer by the other. The emulator (simulation program) is given for a small computer of TRA-1001 type on BESM-6 computer. The simulated computer basic elements are the following: memory (8 K words), central processor, input-output program channel, interruption circuit, computer panel. The work with the input-output devices, teletypes ASP-33, FS-1500 is also simulated. Under actual operation the emulator has been used for translating the programs prepared on punched cards with the aid of translator SLANG-1 by BESM-6 computer. The translator alignment from language COPLAN has been realized with the aid of the emulator

  18. The Relationship Between Technical And Nontechnical Skills Within A Simulation-Based Ureteroscopy Training Environment.

    Science.gov (United States)

    Brunckhorst, Oliver; Shahid, Shahab; Aydin, Abdullatif; Khan, Shahid; McIlhenny, Craig; Brewin, James; Sahai, Arun; Bello, Fernando; Kneebone, Roger; Shamim Khan, Muhammad; Dasgupta, Prokar; Ahmed, Kamran

    2015-01-01

    Little integration of technical and nontechnical skills (e.g., situational awareness, communication, decision making, teamwork, and leadership) teaching exists within surgery. We therefore aimed to (1) evaluate the relationship between these 2 skill sets within a simulation-based environment and (2) assess if certain nontechnical skill components are of particular relevance to technical performance. A prospective analysis of data acquired from a comparative study of simulation vs nonsimulation training was conducted. Half of the participants underwent training of technical and nontechnical skills within ureteroscopy, with the remaining half undergoing no training. All were assessed within a full immersion environment against both technical (time to completion, Objective Structured Assessment of Technical Skills, and task-specific checklist scores) and nontechnical parameters (Nontechnical Skills for Surgeons [NOTSS] rating scale). The data of whole and individual cohorts were analyzed using Pearson correlation coefficient. The trial took place within the Simulation and Interactive Learning Centre at Guy's Hospital, London, UK. In total, 32 novice participants with no prior practical ureteroscopy experience were included within the data analysis. A correlation was found within all outcome measures analyzed. For the whole cohort, a strong negative correlation was found between time to completion and NOTSS scores (r = -0.75, p Technical Skills (r = 0.89, p technical skill parameters, regardless of training. A strong correlation between technical and nontechnical performance exists, which was demonstrated to be irrespective of training received. This may suggest an inherent link between skill sets. Furthermore, all nontechnical skill sets are important in technical performance. This supports the notion that both of these skills should be trained and assessed together within 1 curriculum. Copyright © 2015 Association of Program Directors in Surgery. Published by

  19. Effect of simulated emergency skills training and assessments on ...

    African Journals Online (AJOL)

    ... of emergency skills in simulation was highly effective in enhancing the competence and confidence of medical students when managing a clinical emergency. However, students appeared to be overconfident, which could be ascribed to ignorance, and possibly indicates that feedback during training should be improved.

  20. Efficacy of simulation-based trauma team training of non-technical skills. A systematic review.

    Science.gov (United States)

    Gjeraa, K; Møller, T P; Østergaard, D

    2014-08-01

    Trauma resuscitation is a complex situation, and most organisations have multi-professional trauma teams. Non-technical skills are challenged during trauma resuscitation, and they play an important role in the prevention of critical incidents. Simulation-based training of these is recommended. Our research question was: Does simulation-based trauma team training of non-technical skills have effect on reaction, learning, behaviour or patient outcome? The authors searched PubMed, EMBASE and the Cochrane Library and found 13 studies eligible for analysis. We described and compared the educational interventions and the evaluations of effect according to the four Kirkpatrick levels: reaction, learning (knowledge, skills, attitudes), behaviour (in a clinical setting) and patient outcome. No studies were randomised, controlled and blinded, resulting in a moderate to high risk of bias. The multi-professional trauma teams had positive reactions to simulation-based training of non-technical skills. Knowledge and skills improved in all studies evaluating the effect on learning. Three studies found improvements in team performance (behaviour) in the clinical setting. One of these found difficulties in maintaining these skills. Two studies evaluated on patient outcome, of which none showed improvements in mortality, complication rate or duration of hospitalisation. A significant effect on learning was found after simulation-based training of the multi-professional trauma team in non-technical skills. Three studies demonstrated significantly increased clinical team performance. No effect on patient outcome was found. All studies had a moderate to high risk of bias. More comprehensive randomised studies are needed to evaluate the effect on patient outcome. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Feedback Simulation for Acupressure Training and Skill Assessment.

    Science.gov (United States)

    Noll, Eric; Romeiser, Jamie; Shodhan, Shivam; Madariaga, Maria Cecilia; Guo, Xiaojun; Rizwan, Sabeen; Al-Bizri, Ehab; Bennett-Guerrero, Elliott

    2017-08-01

    Previous acupressure studies have yielded varying results. This could be due to differences in the amount of pressure applied to the acupressure point (acupoint) by study personnel within a study as well as between studies. Standardizing the level of pressure applied at an acupoint could improve clinical care and future research. As part of an ongoing randomized clinical trial of postoperative acupressure, five trainees were asked to perform 2 minutes of acupressure and light touch sessions on a simulator. The applied weight was recorded every minute. Individual skill assessment was performed using cumulative sum analysis. Six pretraining and 20 posttraining measurements in each acupressure and light touch group were compared with an expert's simulation values. Before training (baseline), there was significant difference in applied weight (grams) between the expert [5705 (636)] and five trainees [2998 (798), P = 0.004]. Four of the five trainees crossed the lower decision limit assessing proficiency in the acupressure group, and all five trainees were successful in the light touch group. The trainees' average number of measurements needed to cross the lower decision limit (H0), that is, defining that an individual failure rate does not statistically differ from the acceptable failure rate, was 21.3 measurements for acupressure. After this feedback simulation, trainees' scores showed no significant difference (P > 0.05) when assessed against the expert. Feedback simulation for acupressure training and skill assessment, evaluated by cumulative sum analysis, may help in improving the standardization of acupressure therapy performed during clinical practice or research.

  2. A computer-simulated liver phantom (virtual liver phantom) for multidetector computed tomography evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Funama, Yoshinori [Kumamoto University, Department of Radiological Sciences, School of Health Sciences, Kumamoto (Japan); Awai, Kazuo; Nakayama, Yoshiharu; Liu, Da; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Miyazaki, Osamu; Goto, Taiga [Hitachi Medical Corporation, Tokyo (Japan); Hori, Shinichi [Gate Tower Institute of Image Guided Therapy, Osaka (Japan)

    2006-04-15

    The purpose of study was to develop a computer-simulated liver phantom for hepatic CT studies. A computer-simulated liver phantom was mathematically constructed on a computer workstation. The computer-simulated phantom was calibrated using real CT images acquired by an actual four-detector CT. We added an inhomogeneous texture to the simulated liver by referring to CT images of chronically damaged human livers. The mean CT number of the simulated liver was 60 HU and we added numerous 5-to 10-mm structures with 60{+-}10 HU/mm. To mimic liver tumors we added nodules measuring 8, 10, and 12 mm in diameter with CT numbers of 60{+-}10, 60{+-}15, and 60{+-}20 HU. Five radiologists visually evaluated similarity of the texture of the computer-simulated liver phantom and a real human liver to confirm the appropriateness of the virtual liver images using a five-point scale. The total score was 44 in two radiologists, and 42, 41, and 39 in one radiologist each. They evaluated that the textures of virtual liver were comparable to those of human liver. Our computer-simulated liver phantom is a promising tool for the evaluation of the image quality and diagnostic performance of hepatic CT imaging. (orig.)

  3. Decision making in trauma settings: simulation to improve diagnostic skills.

    Science.gov (United States)

    Murray, David J; Freeman, Brad D; Boulet, John R; Woodhouse, Julie; Fehr, James J; Klingensmith, Mary E

    2015-06-01

    In the setting of acute injury, a wrong, missed, or delayed diagnosis can impact survival. Clinicians rely on pattern recognition and heuristics to rapidly assess injuries, but an overreliance on these approaches can result in a diagnostic error. Simulation has been advocated as a method for practitioners to learn how to recognize the limitations of heuristics and develop better diagnostic skills. The objective of this study was to determine whether simulation could be used to provide teams the experiences in managing scenarios that require the use of heuristic as well as analytic diagnostic skills to effectively recognize and treat potentially life-threatening injuries. Ten scenarios were developed to assess the ability of trauma teams to provide initial care to a severely injured patient. Seven standard scenarios simulated severe injuries that once diagnosed could be effectively treated using standard Advanced Trauma Life Support algorithms. Because diagnostic error occurs more commonly in complex clinical settings, 3 complex scenarios required teams to use more advanced diagnostic skills to uncover a coexisting condition and treat the patient. Teams composed of 3 to 5 practitioners were evaluated in the performance of 7 (of 10) randomly selected scenarios (5 standard, 2 complex). Expert rates scored teams using standardized checklists and global scores. Eighty-three surgery, emergency medicine, and anesthesia residents constituted 21 teams. Expert raters were able to reliably score the scenarios. Teams accomplished fewer checklist actions and received lower global scores on the 3 analytic scenarios (73.8% [12.3%] and 5.9 [1.6], respectively) compared with the 7 heuristic scenarios (83.2% [11.7%] and 6.6 [1.3], respectively; P heuristic scenarios but were less effective when managing the scenarios that require a more analytic approach. Simulation can be used to provide teams with decision-making experiences in trauma settings and could be used to improve

  4. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  5. Teachers' Support in Using Computers for Developing Students' Listening and Speaking Skills in Pre-Sessional English Courses

    Science.gov (United States)

    Zou, Bin

    2013-01-01

    Many computer-assisted language learning (CALL) studies have found that teacher direction can help learners develop language skills at their own pace on computers. However, many teachers still do not know how to provide support for students to use computers to reinforce the development of their language skills. Hence, more examples of CALL…

  6. Business Simulation as an Active Learning Activity for Developing Soft Skills

    Science.gov (United States)

    Levant, Yves; Coulmont, Michel; Sandu, Raluca

    2016-01-01

    Business simulations are innovative instruction models for active or cooperative learning. In this paper, we look at the social constructionist roots of these education models in light of the current efforts to enhance employability skills in undergraduate and graduate studies. More specifically, we analyse the role of business simulations in…

  7. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    Science.gov (United States)

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Radiotherapy Monte Carlo simulation using cloud computing technology.

    Science.gov (United States)

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  9. Radiotherapy Monte Carlo simulation using cloud computing technology

    International Nuclear Information System (INIS)

    Poole, C.M.; Cornelius, I.; Trapp, J.V.; Langton, C.M.

    2012-01-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  10. Effectiveness of simulation-based learning on student nurses' self-efficacy and performance while learning fundamental nursing skills.

    Science.gov (United States)

    Lin, Hsin-Hsin

    2015-01-01

    It was noted worldwide while learning fundamental skills and facing skills assessments, nursing students seemed to experience low confidence and high anxiety levels. Could simulation-based learning help to enhance students' self-efficacy and performance? Its effectiveness is mostly unidentified. This study was conducted to provide a shared experience to give nurse educators confidence and an insight into how simulation-based teaching can fit into nursing skills learning. A pilot study was completed with 50 second-year undergraduate nursing students, and the main study included 98 students where a pretest-posttest design was adopted. Data were gathered through four questionnaires and a performance assessment under scrutinized controls such as previous experiences, lecturers' teaching skills, duration of teaching, procedure of skills performance assessment and the inter-rater reliability. The results showed that simulation-based learning significantly improved students' self-efficacy regarding skills learning and the skills performance that nurse educators wish students to acquire. However, technology anxiety, examiners' critical attitudes towards students' performance and their unpredicted verbal and non-verbal expressions, have been found as possible confounding factors. The simulation-based learning proved to have a powerful positive effect on students' achievement outcomes. Nursing skills learning is one area that can benefit greatly from this kind of teaching and learning method.

  11. A Qualitative Study of Students' Computational Thinking Skills in a Data-Driven Computing Class

    Science.gov (United States)

    Yuen, Timothy T.; Robbins, Kay A.

    2014-01-01

    Critical thinking, problem solving, the use of tools, and the ability to consume and analyze information are important skills for the 21st century workforce. This article presents a qualitative case study that follows five undergraduate biology majors in a computer science course (CS0). This CS0 course teaches programming within a data-driven…

  12. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  13. Fel simulations using distributed computing

    NARCIS (Netherlands)

    Einstein, J.; Biedron, S.G.; Freund, H.P.; Milton, S.V.; Van Der Slot, P. J M; Bernabeu, G.

    2016-01-01

    While simulation tools are available and have been used regularly for simulating light sources, including Free-Electron Lasers, the increasing availability and lower cost of accelerated computing opens up new opportunities. This paper highlights a method of how accelerating and parallelizing code

  14. A multilevel modeling approach to examining individual differences in skill acquisition for a computer-based task.

    Science.gov (United States)

    Nair, Sankaran N; Czaja, Sara J; Sharit, Joseph

    2007-06-01

    This article explores the role of age, cognitive abilities, prior experience, and knowledge in skill acquisition for a computer-based simulated customer service task. Fifty-two participants aged 50-80 performed the task over 4 consecutive days following training. They also completed a battery that assessed prior computer experience and cognitive abilities. The data indicated that overall quality and efficiency of performance improved with practice. The predictors of initial level of performance and rate of change in performance varied according to the performance parameter assessed. Age and fluid intelligence predicted initial level and rate of improvement in overall quality, whereas crystallized intelligence and age predicted initial e-mail processing time, and crystallized intelligence predicted rate of change in e-mail processing time over days. We discuss the implications of these findings for the design of intervention strategies.

  15. CUBESIM, Hypercube and Denelcor Hep Parallel Computer Simulation

    International Nuclear Information System (INIS)

    Dunigan, T.H.

    1988-01-01

    1 - Description of program or function: CUBESIM is a set of subroutine libraries and programs for the simulation of message-passing parallel computers and shared-memory parallel computers. Subroutines are supplied to simulate the Intel hypercube and the Denelcor HEP parallel computers. The system permits a user to develop and test parallel programs written in C or FORTRAN on a single processor. The user may alter such hypercube parameters as message startup times, packet size, and the computation-to-communication ratio. The simulation generates a trace file that can be used for debugging, performance analysis, or graphical display. 2 - Method of solution: The CUBESIM simulator is linked with the user's parallel application routines to run as a single UNIX process. The simulator library provides a small operating system to perform process and message management. 3 - Restrictions on the complexity of the problem: Up to 128 processors can be simulated with a virtual memory limit of 6 million bytes. Up to 1000 processes can be simulated

  16. Accelerator simulation using computers

    International Nuclear Information System (INIS)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ''multi-track'' simulation and analysis code can be used for these applications

  17. Computer Simulation in Information and Communication Engineering

    CERN Multimedia

    Anton Topurov

    2005-01-01

    CSICE'05 Sofia, Bulgaria 20th - 22nd October, 2005 On behalf of the International Scientific Committee, we would like to invite you all to Sofia, the capital city of Bulgaria, to the International Conference in Computer Simulation in Information and Communication Engineering CSICE'05. The Conference is aimed at facilitating the exchange of experience in the field of computer simulation gained not only in traditional fields (Communications, Electronics, Physics...) but also in the areas of biomedical engineering, environment, industrial design, etc. The objective of the Conference is to bring together lectures, researchers and practitioners from different countries, working in the fields of computer simulation in information engineering, in order to exchange information and bring new contribution to this important field of engineering design and education. The Conference will bring you the latest ideas and development of the tools for computer simulation directly from their inventors. Contribution describ...

  18. Integrating psychoeducation in a basic computer skills course for people suffering from social anxiety: participants' experiences

    Directory of Open Access Journals (Sweden)

    Löhr HD

    2011-08-01

    Full Text Available Hildegard D Löhr1,2, Jan H Rosenvinge1,3, Rolf Wynn2,41Division of General Psychiatry, University Hospital of North Norway, 2Telemedicine Research Group, Department of Clinical Medicine, Faculty of Health Sciences, 3Department of Psychology, Faculty of Health Sciences, University of Tromsø, 4Division of Addiction and Specialized Psychiatry, University Hospital of North Norway, Tromsø, NorwayAbstract: We describe a psychoeducational program integrated in a basic computer skills course for participants suffering from social anxiety. The two main aims of the course were: that the participants learn basic computer skills, and that the participants learn to cope better with social anxiety. Computer skills were taught by a qualified teacher. Psychoeducation and cognitive therapy skills, including topics such as anxiety coping, self-accept, and self-regulation, were taught by a clinical psychologist. Thirteen of 16 participants completed the course, which lasted 11 weeks. A qualitative analysis was performed, drawing on observations during the course and on interviews with the participants. The participants were positive about the integration of psychoeducation sessions in the computer course, and described positive outcomes for both elements, including improved computer skills, improved self-esteem, and reduced social anxiety. Most participants were motivated to undertake further occupational rehabilitation after the course.Keywords: cognitive therapy, information technology, occupational rehabilitation, psychoeducation, self-help, social anxiety

  19. The Effects of Computer-Assisted Instruction of Simple Circuits on Experimental Process Skills

    Directory of Open Access Journals (Sweden)

    Şeyma ULUKÖK

    2013-01-01

    Full Text Available The experimental and control groups were composed of 30 sophomores majoring in Classroom Teaching for this study investigating the effects of computer-assisted instruction of simple circuits on the development of experimental process skills. The instruction includes experiments and studies about simple circuits and its elements (serial, parallel, and mixed conncetions of resistors covered in Science and Technology Laboratory II course curriculum. In this study where quantitative and qualitative methods were used together, the control list developed by the researchers was used to collect data. Results showed that experimental process skills of sophomores in experimental group were more developed than that of those in control group. Thus, it can be said that computer-assisted instruction has a positive impact on the development of experimental process skills of students.

  20. MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis

    Science.gov (United States)

    Ahn, Min-Seop; Kim, Daehyun; Sperber, Kenneth R.; Kang, In-Sik; Maloney, Eric; Waliser, Duane; Hendon, Harry

    2017-12-01

    The Madden-Julian Oscillation (MJO) simulation diagnostics developed by MJO Working Group and the process-oriented MJO simulation diagnostics developed by MJO Task Force are applied to 37 Coupled Model Intercomparison Project phase 5 (CMIP5) models in order to assess model skill in representing amplitude, period, and coherent eastward propagation of the MJO, and to establish a link between MJO simulation skill and parameterized physical processes. Process-oriented diagnostics include the Relative Humidity Composite based on Precipitation (RHCP), Normalized Gross Moist Stability (NGMS), and the Greenhouse Enhancement Factor (GEF). Numerous scalar metrics are developed to quantify the results. Most CMIP5 models underestimate MJO amplitude, especially when outgoing longwave radiation (OLR) is used in the evaluation, and exhibit too fast phase speed while lacking coherence between eastward propagation of precipitation/convection and the wind field. The RHCP-metric, indicative of the sensitivity of simulated convection to low-level environmental moisture, and the NGMS-metric, indicative of the efficiency of a convective atmosphere for exporting moist static energy out of the column, show robust correlations with a large number of MJO skill metrics. The GEF-metric, indicative of the strength of the column-integrated longwave radiative heating due to cloud-radiation interaction, is also correlated with the MJO skill metrics, but shows relatively lower correlations compared to the RHCP- and NGMS-metrics. Our results suggest that modifications to processes associated with moisture-convection coupling and the gross moist stability might be the most fruitful for improving simulations of the MJO. Though the GEF-metric exhibits lower correlations with the MJO skill metrics, the longwave radiation feedback is highly relevant for simulating the weak precipitation anomaly regime that may be important for the establishment of shallow convection and the transition to deep convection.

  1. Simulators and virtual reality in surgical education.

    Science.gov (United States)

    Chou, Betty; Handa, Victoria L

    2006-06-01

    This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.

  2. Bimodal Reading: Benefits of a Talking Computer for Average and Less Skilled Readers.

    Science.gov (United States)

    Montali, Julie; Lewandowski, Lawrence

    1996-01-01

    Eighteen average readers and 18 less-skilled readers (grades 8 and 9) were presented with social studies and science passages via a computer either visually (on screen), auditorily (read by digitized voice), or bimodally (on screen, highlighted while being voiced). Less-skilled readers demonstrated comprehension in the bimodal condition equivalent…

  3. Urology technical and non-technical skills development: the emerging role of simulation.

    Science.gov (United States)

    Rashid, Prem; Gianduzzo, Troy R J

    2016-04-01

    To review the emerging role of technical and non-technical simulation in urological education and training. A review was conducted to examine the current role of simulation in urology training. A PUBMED search of the terms 'urology training', 'urology simulation' and 'urology education' revealed 11,504 titles. Three hundred and fifty-seven abstracts were identified as English language, peer reviewed papers pertaining to the role of simulation in urology and related topics. Key papers were used to explore themes. Some cross-referenced papers were also included. There is an ongoing need to ensure that training time is efficiently utilised while ensuring that optimal technical and non-technical skills are achieved. Changing working conditions and the need to minimise patient harm by inadvertent errors must be taken into account. Simulation models for specific technical aspects have been the mainstay of graduated step-wise low and high fidelity training. Whole scenario environments as well as non-technical aspects can be slowly incorporated into the curriculum. Doing so should also help define what have been challenging competencies to teach and evaluate. Dedicated time, resources and trainer up-skilling are important. Concurrent studies are needed to help evaluate the effectiveness of introducing step-wise simulation for technical and non-technical competencies. Simulation based learning remains the best avenue of progressing surgical education. Technical and non-technical simulation could be used in the selection process. There are good economic, logistic and safety reasons to pursue the process of ongoing development of simulation co-curricula. While the role of simulation is assured, its progress will depend on a structured program that takes advantage of what can be delivered via this medium. Overall, simulation can be developed further for urological training programs to encompass technical and non-technical skill development at all stages, including

  4. Computational simulation of concurrent engineering for aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  5. Computational simulation for concurrent engineering of aerospace propulsion systems

    Science.gov (United States)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  6. Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution

    Science.gov (United States)

    Oh, Seok-Geun; Suh, Myoung-Seok

    2017-07-01

    The projection skills of five ensemble methods were analyzed according to simulation skills, training period, and ensemble members, using 198 sets of pseudo-simulation data (PSD) produced by random number generation assuming the simulated temperature of regional climate models. The PSD sets were classified into 18 categories according to the relative magnitude of bias, variance ratio, and correlation coefficient, where each category had 11 sets (including 1 truth set) with 50 samples. The ensemble methods used were as follows: equal weighted averaging without bias correction (EWA_NBC), EWA with bias correction (EWA_WBC), weighted ensemble averaging based on root mean square errors and correlation (WEA_RAC), WEA based on the Taylor score (WEA_Tay), and multivariate linear regression (Mul_Reg). The projection skills of the ensemble methods improved generally as compared with the best member for each category. However, their projection skills are significantly affected by the simulation skills of the ensemble member. The weighted ensemble methods showed better projection skills than non-weighted methods, in particular, for the PSD categories having systematic biases and various correlation coefficients. The EWA_NBC showed considerably lower projection skills than the other methods, in particular, for the PSD categories with systematic biases. Although Mul_Reg showed relatively good skills, it showed strong sensitivity to the PSD categories, training periods, and number of members. On the other hand, the WEA_Tay and WEA_RAC showed relatively superior skills in both the accuracy and reliability for all the sensitivity experiments. This indicates that WEA_Tay and WEA_RAC are applicable even for simulation data with systematic biases, a short training period, and a small number of ensemble members.

  7. Computer-Based Simulation Games in Public Administration Education

    OpenAIRE

    Kutergina Evgeniia

    2017-01-01

    Computer simulation, an active learning technique, is now one of the advanced pedagogical technologies. Th e use of simulation games in the educational process allows students to gain a firsthand understanding of the processes of real life. Public- administration, public-policy and political-science courses increasingly adopt simulation games in universities worldwide. Besides person-to-person simulation games, there are computer-based simulations in public-administration education. Currently...

  8. Inversion based on computational simulations

    International Nuclear Information System (INIS)

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-01-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal

  9. Defining a New 21st Century Skill-Computational Thinking: Concepts and Trends

    Science.gov (United States)

    Haseski, Halil Ibrahim; Ilic, Ulas; Tugtekin, Ufuk

    2018-01-01

    Computational Thinking is a skill that guides the 21th century individual in the problems experienced during daily life and it has an ever-increasing significance. Multifarious definitions were attempted to explain the concept of Computational Thinking. However, it was determined that there was no consensus on this matter in the literature and…

  10. The effect of dyad versus individual simulation-based ultrasound training on skills transfer

    DEFF Research Database (Denmark)

    Tolsgaard, Martin G; Madsen, Mette E; Oxlund, Birgitte S

    2015-01-01

    : This study was conducted to compare the effectiveness of simulation-based ultrasound training in pairs (dyad practice) with that of training alone (single-student practice) on skills transfer. METHODS: In a non-inferiority trial, 30 ultrasound novices were randomised to dyad (n = 16) or single-student (n...... through pre-, post- and transfer tests. The transfer test involved the assessment of a transvaginal ultrasound scan by one of two clinicians using the Objective Structured Assessment of Ultrasound Skills (OSAUS). RESULTS: Thirty participants completed the simulation-based training and 24...... interactions between training type and performance (p = 0.59). The dyad group demonstrated higher training efficiency in terms of simulator score per number of attempts compared with the single-student group (p = 0.03). CONCLUSION: Dyad practice improves the efficiency of simulation-based training and is non...

  11. Virtual reality and live simulation: a comparison between two simulation tools for assessing mass casualty triage skills.

    Science.gov (United States)

    Luigi Ingrassia, Pier; Ragazzoni, Luca; Carenzo, Luca; Colombo, Davide; Ripoll Gallardo, Alba; Della Corte, Francesco

    2015-04-01

    This study tested the hypothesis that virtual reality simulation is equivalent to live simulation for testing naive medical students' abilities to perform mass casualty triage using the Simple Triage and Rapid Treatment (START) algorithm in a simulated disaster scenario and to detect the improvement in these skills after a teaching session. Fifty-six students in their last year of medical school were randomized into two groups (A and B). The same scenario, a car accident, was developed identically on the two simulation methodologies: virtual reality and live simulation. On day 1, group A was exposed to the live scenario and group B was exposed to the virtual reality scenario, aiming to triage 10 victims. On day 2, all students attended a 2-h lecture on mass casualty triage, specifically the START triage method. On day 3, groups A and B were crossed over. The groups' abilities to perform mass casualty triage in terms of triage accuracy, intervention correctness, and speed in the scenarios were assessed. Triage and lifesaving treatment scores were assessed equally by virtual reality and live simulation on day 1 and on day 3. Both simulation methodologies detected an improvement in triage accuracy and treatment correctness from day 1 to day 3 (PVirtual reality simulation proved to be a valuable tool, equivalent to live simulation, to test medical students' abilities to perform mass casualty triage and to detect improvement in such skills.

  12. Acquisition of Skill Proficiency Over Multiple Sessions of a Novel Rover Simulation

    Science.gov (United States)

    Dean, S. L.; DeDios,Y. E.; MacDougall, H. G.; Moore, S. T.; Wood, S. J.

    2011-01-01

    Following long-duration exploration transits, adaptive changes in sensorimotor function may impair the crew's ability to safely perform manual control tasks such as operating pressurized rovers. Postflight performance will also be influenced by the level of preflight skill proficiency they have attained. The purpose of this study was to characterize the acquisition of skills in a motion-based rover simulation over multiple sessions, and to investigate the effects of varying the simulation scenarios. METHODS: Twenty healthy subjects were tested in 5 sessions, with 1-3 days between sessions. Each session consisted of a serial presentation of 8 discrete tasks to be completed as quickly and accurately as possible. Each task consisted of 1) perspective-taking, using a map that defined a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilized a Stewart-type motion base (CKAS, Australia), single-seat cabin with triple scene projection covering 150 deg horizontal by 50 deg vertical, and joystick controller. Subjects were randomly assigned to a control group (tasks identical in the first 4 sessions) or a varied-practice group. The dependent variables for each task included accuracy toward the target and time to completion. RESULTS: The greatest improvements in time to completion occurred during the docking phase. The varied-practice group showed more improvement in perspective-taking accuracy. Perspective-taking accuracy was also affected by the relative orientation of the rover to the docking target. Skill acquisition was correlated with self-ratings of previous gaming experience. DISCUSSION: Varying task selection and difficulty will optimize the preflight acquisition of skills when performing novel operational tasks. Simulation of operational manual control will provide functionally relevant evidence regarding the impact of sensorimotor adaptation on early

  13. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  14. The impact of patient and physician computer mediated communication skill training on reported communication and patient satisfaction.

    Science.gov (United States)

    Roter, Debra L; Wexler, Randy; Naragon, Phyllis; Forrest, Brian; Dees, Jason; Almodovar, Astrid; Wood, Julie

    2012-09-01

    The objective was to evaluate parallel patient and physician computer-mediated communication skill training on participants' report of skill use and patient satisfaction. Separate patient and clinician web-tools comprised of over 500, 10-s video clips demonstrating patient-centered skills in various ways. Four clinician members of the American Academy of Family Physicians National Research Network participated by enrolling 194 patients into a randomized patient trial and 29 physicians into a non-randomized clinician trial of respective interventions. All participants completed baseline and follow-up self-report measures of visit communication and satisfaction. Intervention patients reported using more skills than controls in five of six skill areas, including identification of problems/concerns, information exchange, treatment adherence, shared decision-making and interpersonal rapport (all ppost intervention, physicians reported using more skills in the same 5 areas (all pCommunication skill training delivered in a computer mediated format had a positive and parallel impact on both patient and clinician reported use of patient-centered communication and in patient satisfaction. Computer-mediated interventions are cost and time effective thereby increasing patient and clinician willingness to undertake training. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Software Engineering for Scientific Computer Simulations

    Science.gov (United States)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  16. Do Simulation-Based Skill Exercises and Post-Encounter Notes Add Additional Value to a Standardized Patient-Based Clinical Skills Examination?

    Directory of Open Access Journals (Sweden)

    Michael D. Prislin

    2011-01-01

    Full Text Available Background. Standardized patient (SP clinical assessments have limited utility in assessing higher-level clinical competencies. This study explores the value of including simulation exercises and postencounter notes in an SP clinical skills examination. Methods. Two exercises involving cardiac auscultation and ophthalmic funduscopy simulations along with written post encounter notes were added to an SP-based performance examination. Descriptive analyses of students' performance and correlations with SP-based performance measures were obtained. Results. Students' abilities to detect abnormalities on physical exam were highly variable. There were no correlations between SP-based and simulation-derived measures of physical examination competency. Limited correlations were found between students' abilities to perform and document physical examinations and their formulation of appropriate differential diagnoses. Conclusions. Clinical simulation exercises add depth to SP-based assessments of performance. Evaluating the content of post encounter notes offers some insight into students' integrative abilities, and this appears to be improved by the addition of simulation-based post encounter skill exercises. However, further refinement of this methodology is needed.

  17. Effect of Simulation on the Confidence of University Nursing Students in Applying Cardiopulmonary Assessment Skills: A Randomized Controlled Trial.

    Science.gov (United States)

    Tawalbeh, Loai I

    2017-08-01

    Simulation is an effective teaching strategy. However, no study in Jordan has examined the effect of simulation on the confidence of university nursing students in applying heart and lung physical examination skills. The current study aimed to test the effect of simulation on the confidence of university nursing students in applying heart and lung physical examination skills. A randomized controlled trial design was applied. The researcher introduced the simulation scenario regarding cardiopulmonary examination skills. This scenario included a 1-hour PowerPoint presentation and video for the experimental group (n= 35) and a PowerPoint presentation and a video showing a traditional demonstration in the laboratory for the control group (n = 34). Confidence in applying cardiopulmonary physical examination skills was measured for both groups at baseline and at 1 day and 3 months posttest. A paired t test showed that confidence was significantly higher in the posttest than in the pretest for both groups. An independent t test showed a statistically significant difference (t(67) = -42.95, p skills. Both simulation and traditional training in the laboratory significantly improved the confidence of participants in applying cardiopulmonary assessment skills. However, the simulation training had a more significant effect than usual training in enhancing the confidence of nursing students in applying physical examination skills.

  18. A computer-based feedback only intervention with and without a moderation skills component.

    Science.gov (United States)

    Weaver, Cameron C; Leffingwell, Thad R; Lombardi, Nathaniel J; Claborn, Kasey R; Miller, Mary E; Martens, Matthew P

    2014-01-01

    Research on the efficacy of computer-delivered feedback-only interventions (FOIs) for college alcohol misuse has been mixed. Limitations to these FOIs include participant engagement and variation in the use of a moderation skills component. The current investigation sought to address these limitations using a novel computer-delivered FOI, the Drinkers Assessment and Feedback Tool for College Students (DrAFT-CS). Heavy drinking college students (N=176) were randomly assigned to DrAFT-CS, DrAFT-CS plus moderation skills (DrAFT-CS+), moderation skills only (MSO), or assessment only (AO) group, and were assessed at 1-month follow-up (N=157). Participants in the DrAFT-CS and DrAFT-CS+groups reported significantly lower estimated blood alcohol concentrations (eBACs) on typical heaviest drinking day than participants in the AO group. The data also supported the incorporation of a moderation skills component within FOIs, such that participants in DrAFT-CS+group reported significantly fewer drinks per week and drinks per heaviest drinking occasion than participants in the AO group. © 2013.

  19. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  20. Discrete Event Simulation Computers can be used to simulate the ...

    Indian Academy of Sciences (India)

    IAS Admin

    people who use computers every moment of their waking lives, others even ... How is discrete event simulation different from other kinds of simulation? ... time, energy consumption .... Schedule the CustomerDeparture event for this customer.

  1. The effectiveness of and satisfaction with high-fidelity simulation to teach cardiac surgical resuscitation skills to nurses.

    Science.gov (United States)

    McRae, Marion E; Chan, Alice; Hulett, Renee; Lee, Ai Jin; Coleman, Bernice

    2017-06-01

    There are few reports of the effectiveness or satisfaction with simulation to learn cardiac surgical resuscitation skills. To test the effect of simulation on the self-confidence of nurses to perform cardiac surgical resuscitation simulation and nurses' satisfaction with the simulation experience. A convenience sample of sixty nurses rated their self-confidence to perform cardiac surgical resuscitation skills before and after two simulations. Simulation performance was assessed. Subjects completed the Satisfaction with Simulation Experience scale and demographics. Self-confidence scores to perform all cardiac surgical skills as measured by paired t-tests were significantly increased after the simulation (d=-0.50 to 1.78). Self-confidence and cardiac surgical work experience were not correlated with time to performance. Total satisfaction scores were high (mean 80.2, SD 1.06) indicating satisfaction with the simulation. There was no correlation of the satisfaction scores with cardiac surgical work experience (τ=-0.05, ns). Self-confidence scores to perform cardiac surgical resuscitation procedures were higher after the simulation. Nurses were highly satisfied with the simulation experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Examining Residents' Strategic Mindfulness During Self-Regulated Learning of a Simulated Procedural Skill.

    Science.gov (United States)

    Brydges, Ryan; Hatala, Rose; Mylopoulos, Maria

    2016-07-01

    Simulation-based training is currently embedded in most health professions education curricula. Without evidence for how trainees think about their simulation-based learning, some training techniques may not support trainees' learning strategies. This study explored how residents think about and self-regulate learning during a lumbar puncture (LP) training session using a simulator. In 2010, 20 of 45 postgraduate year 1 internal medicine residents attended a mandatory procedural skills training boot camp. Independently, residents practiced the entire LP skill on a part-task trainer using a clinical LP tray and proper sterile technique. We interviewed participants regarding how they thought about and monitored their learning processes, and then we conducted a thematic analysis of the interview data. The analysis suggested that participants considered what they could and could not learn from the simulator; they developed their self-confidence by familiarizing themselves with the LP equipment and repeating the LP algorithmic steps. Participants articulated an idiosyncratic model of learning they used to interpret the challenges and successes they experienced. Participants reported focusing on obtaining cerebrospinal fluid and memorizing the "routine" version of the LP procedure. They did not report much thinking about their learning strategies (eg, self-questioning). During simulation-based training, residents described assigning greater weight to achieving procedural outcomes and tended to think that the simulated task provided them with routine, generalizable skills. Over this typical 1-hour session, trainees did not appear to consider their strategic mindfulness (ie, awareness and use of learning strategies).

  3. [Clinical skills and outcomes of chair-side computer aided design and computer aided manufacture system].

    Science.gov (United States)

    Yu, Q

    2018-04-09

    Computer aided design and computer aided manufacture (CAD/CAM) technology is a kind of oral digital system which is applied to clinical diagnosis and treatment. It overturns the traditional pattern, and provides a solution to restore defect tooth quickly and efficiently. In this paper we mainly discuss the clinical skills of chair-side CAD/CAM system, including tooth preparation, digital impression, the three-dimensional design of prosthesis, numerical control machining, clinical bonding and so on, and review the outcomes of several common kinds of materials at the same time.

  4. Developing Oral and Written Communication Skills in Undergraduate Computer Science and Information Systems Curriculum

    Science.gov (United States)

    Kortsarts, Yana; Fischbach, Adam; Rufinus, Jeff; Utell, Janine M.; Yoon, Suk-Chung

    2010-01-01

    Developing and applying oral and written communication skills in the undergraduate computer science and computer information systems curriculum--one of the ABET accreditation requirements - is a very challenging and, at the same time, a rewarding task that provides various opportunities to enrich the undergraduate computer science and computer…

  5. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  6. Quantum chemistry simulation on quantum computers: theories and experiments.

    Science.gov (United States)

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  7. Interprofessional teamwork skills as predictors of clinical outcomes in a simulated healthcare setting.

    Science.gov (United States)

    Shrader, Sarah; Kern, Donna; Zoller, James; Blue, Amy

    2013-01-01

    Teaching interprofessional (IP) teamwork skills is a goal of interprofessional education. The purpose of this study was to examine the relationship between IP teamwork skills, attitudes and clinical outcomes in a simulated clinical setting. One hundred-twenty health professions students (medicine, pharmacy, physician assistant) worked in interprofessional teams to manage a "patient" in a health care simulation setting. Students completed the Interdisciplinary Education Perception Scale (IEPS) attitudinal survey instrument. Students' responses were averaged by team to create an IEPS attitudes score. Teamwork skills for each team were rated by trained observers using a checklist to calculate a teamwork score (TWS). Clinical outcome scores (COS) were determined by summation of completed clinical tasks performed by the team based on an expert developed checklist. Regression analyses were conducted to determine the relationship of IEPS and TWS with COS. IEPS score was not a significant predictor of COS (p=0.054), but TWS was a significant predictor (pstudents' interprofessional teamwork skills are significant predictors of positive clinical outcomes. Interprofessional curricular models that produce effective teamwork skills can improve student performance in clinical environments and likely improve teamwork practice to positively affect patient care outcomes.

  8. Young Children's Computer Skills Development from Kindergarten to Third Grade

    Science.gov (United States)

    Sackes, Mesut; Trundle, Kathy Cabe; Bell, Randy L.

    2011-01-01

    This investigation explores young children's computer skills development from kindergarten to third grade using the Early Childhood Longitudinal Study-Kindergarten (ECLS-K) dataset. The sample size of the study was 8642 children. Latent growth curve modeling analysis was used as an analytical tool to examine the development of children's computer…

  9. The role of computer simulation in nuclear technologies development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, V. V.; Ryazanov, D.K.; Tellin, A.I.

    2001-01-01

    In the report the role and purposes of computer simulation in nuclear technologies development is discussed. The authors consider such applications of computer simulation as nuclear safety researches, optimization of technical and economic parameters of acting nuclear plant, planning and support of reactor experiments, research and design new devices and technologies, design and development of 'simulators' for operating personnel training. Among marked applications the following aspects of computer simulation are discussed in the report: neutron-physical, thermal and hydrodynamics models, simulation of isotope structure change and damage dose accumulation for materials under irradiation, simulation of reactor control structures. (authors)

  10. Teamwork skills, shared mental models, and performance in simulated trauma teams: an independent group design

    Directory of Open Access Journals (Sweden)

    Westli Heidi

    2010-08-01

    Full Text Available Abstract Background Non-technical skills are seen as an important contributor to reducing adverse events and improving medical management in healthcare teams. Previous research on the effectiveness of teams has suggested that shared mental models facilitate coordination and team performance. The purpose of the study was to investigate whether demonstrated teamwork skills and behaviour indicating shared mental models would be associated with observed improved medical management in trauma team simulations. Methods Revised versions of the 'Anesthetists' Non-Technical Skills Behavioural marker system' and 'Anti-Air Teamwork Observation Measure' were field tested in moment-to-moment observation of 27 trauma team simulations in Norwegian hospitals. Independent subject matter experts rated medical management in the teams. An independent group design was used to explore differences in teamwork skills between higher-performing and lower-performing teams. Results Specific teamwork skills and behavioural markers were associated with indicators of good team performance. Higher and lower-performing teams differed in information exchange, supporting behaviour and communication, with higher performing teams showing more effective information exchange and communication, and less supporting behaviours. Behavioural markers of shared mental models predicted effective medical management better than teamwork skills. Conclusions The present study replicates and extends previous research by providing new empirical evidence of the significance of specific teamwork skills and a shared mental model for the effective medical management of trauma teams. In addition, the study underlines the generic nature of teamwork skills by demonstrating their transferability from different clinical simulations like the anaesthesia environment to trauma care, as well as the potential usefulness of behavioural frequency analysis in future research on non-technical skills.

  11. Validation of the second-generation Olympus colonoscopy simulator for skills assessment.

    Science.gov (United States)

    Haycock, A V; Bassett, P; Bladen, J; Thomas-Gibson, S

    2009-11-01

    Simulators have potential value in providing objective evidence of technical skill for procedures within medicine. The aim of this study was to determine face and construct validity for the Olympus colonoscopy simulator and to establish which assessment measures map to clinical benchmarks of expertise. Thirty-four participants were recruited: 10 novices with no prior colonoscopy experience, 13 intermediate (trainee) endoscopists with fewer than 1000 previous colonoscopies, and 11 experienced endoscopists with more than 1000 previous colonoscopies. All participants completed three standardized cases on the simulator and experts gave feedback regarding the realism of the simulator. Forty metrics recorded automatically by the simulator were analyzed for their ability to distinguish between the groups. The simulator discriminated participants by experience level for 22 different parameters. Completion rates were lower for novices than for trainees and experts (37 % vs. 79 % and 88 % respectively, P variable stiffness function ( P = 0.004), number of sigmoid N-loops ( P = 0.02); size of sigmoid N-loops ( P = 0.01), and time to remove alpha loops ( P = 0.004). Out of 10, experts rated the realism of movement at 6.4, force feedback at 6.6, looping at 6.6, and loop resolution at 6.8. The Olympus colonoscopy simulator has good face validity and excellent construct validity. It provides an objective assessment of colonoscopic skill on multiple measures and benchmarks have been set to allow its use as both a formative and a summative assessment tool. Georg Thieme Verlag KG Stuttgart. New York.

  12. Objective assessment of gynecologic laparoscopic skills using the LapSimGyn virtual reality simulator

    DEFF Research Database (Denmark)

    Larsen, C R; Grantcharov, Teodor; Aggarwal, R

    2006-01-01

    Safe realistic training and unbiased quantitative assessment of technical skills are required for laparoscopy. Virtual reality (VR) simulators may be useful tools for training and assessing basic and advanced surgical skills and procedures. This study aimed to investigate the construct validity...

  13. Computational steering of GEM based detector simulations

    Science.gov (United States)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  14. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  15. The Nature and Use of Prediction Skills in a Biological Computer Simulation.

    Science.gov (United States)

    Lavoie, Derrick R.; Good, Ron

    1988-01-01

    Describes mechanisms of thought associated with making predictions. Concludes that successful predictors had high initial knowledge of the subject matter and were formally operational. Unsuccessful predictors had low initial knowledge and were concretely operational. Systematic manipulation, note taking, and higher-level thinking skills were…

  16. Framework and implementation for improving physics essential skills via computer-based practice: Vector math

    Science.gov (United States)

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-06-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.

  17. Using simulation pedagogy to teach clinical education skills: A randomized trial.

    Science.gov (United States)

    Holdsworth, Clare; Skinner, Elizabeth H; Delany, Clare M

    2016-05-01

    Supervision of students is a key role of senior physiotherapy clinicians in teaching hospitals. The objective of this study was to test the effect of simulated learning environments (SLE) on educators' self-efficacy in student supervision skills. A pilot prospective randomized controlled trial with concealed allocation was conducted. Clinical educators were randomized to intervention (SLE) or control groups. SLE participants completed two 3-hour workshops, which included simulated clinical teaching scenarios, and facilitated debrief. Standard Education (StEd) participants completed two online learning modules. Change in educator clinical supervision self-efficacy (SE) and student perceptions of supervisor skill were calculated. Between-group comparisons of SE change scores were analyzed with independent t-tests to account for potential baseline differences in education experience. Eighteen educators (n = 18) were recruited (SLE [n = 10], StEd [n = 8]). Significant improvements in SE change scores were seen in SLE participants compared to control participants in three domains of self-efficacy: (1) talking to students about supervision and learning styles (p = 0.01); (2) adapting teaching styles for students' individual needs (p = 0.02); and (3) identifying strategies for future practice while supervising students (p = 0.02). This is the first study investigating SLE for teaching skills of clinical education. SLE improved educators' self-efficacy in three domains of clinical education. Sample size limited the interpretation of student ratings of educator supervision skills. Future studies using SLE would benefit from future large multicenter trials evaluating its effect on educators' teaching skills, student learning outcomes, and subsequent effects on patient care and health outcomes.

  18. Alternative energy technologies an introduction with computer simulations

    CERN Document Server

    Buxton, Gavin

    2014-01-01

    Introduction to Alternative Energy SourcesGlobal WarmingPollutionSolar CellsWind PowerBiofuelsHydrogen Production and Fuel CellsIntroduction to Computer ModelingBrief History of Computer SimulationsMotivation and Applications of Computer ModelsUsing Spreadsheets for SimulationsTyping Equations into SpreadsheetsFunctions Available in SpreadsheetsRandom NumbersPlotting DataMacros and ScriptsInterpolation and ExtrapolationNumerical Integration and Diffe

  19. Evaluating an undergraduate interprofessional simulation-based educational module: communication, teamwork, and confidence performing cardiac resuscitation skills

    Directory of Open Access Journals (Sweden)

    Marian Luctkar-Flude

    2010-11-01

    Full Text Available Marian Luctkar-Flude1, Cynthia Baker1, Cheryl Pulling1, Robert McGraw2, Damon Dagnone2, Jennifer Medves1, Carly Turner-Kelly11School of Nursing, Queen’s University, Kingston, Ontario, Canada; 2School of Medicine, Queen’s University, Kingston, Ontario, CanadaPurpose: Interprofessional (IP collaboration during cardiac resuscitation is essential and contributes to patient wellbeing. The purpose of this study is to evaluate an innovative simulation-based IP educational module for undergraduate nursing and medical students on cardiac resuscitation skills.Methods: Nursing and medical trainees participated in a new cardiac resuscitation curriculum involving a 2-hour IP foundational cardiac resuscitation skills lab, followed by three 2-hour IP simulation sessions. Control group participants attended the existing two 2-hour IP simulation sessions. Study respondents (N = 71 completed a survey regarding their confidence performing cardiac resuscitation skills and their perceptions of IP collaboration.Results: Despite a consistent positive trend, only one out of 17 quantitative survey items were significantly improved for learners in the new curriculum. They were more likely to report feeling confident managing the airway during cardiac resuscitation (P = 0.001. Overall, quantitative results suggest that senior nursing and medical students were comfortable with IP communication and teamwork and confident with cardiac resuscitation skills. There were no significant differences between nursing students’ and medical students’ results. Through qualitative feedback, participants reported feeling comfortable learning with students from other professions and found value in the IP simulation sessions.Conclusion: Results from this study will inform ongoing restructuring of the IP cardiac resuscitation skills simulation module as defined by the action research process. Specific improvements that are suggested by these findings include strengthening the team

  20. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  1. Sodium bicarbonate supplementation prevents skilled tennis performance decline after a simulated match

    Directory of Open Access Journals (Sweden)

    Huang Ming-Hsiang

    2010-10-01

    Full Text Available Abstract The supplementation of sodium bicarbonate (NaHCO3 could increase performance or delay fatigue in intermittent high-intensity exercise. Prolonged tennis matches result in fatigue, which impairs skilled performance. The aim of this study was to investigate the effect of NaHCO3 supplementation on skilled tennis performance after a simulated match. Nine male college tennis players were recruited for this randomized cross-over, placebo-controlled, double-blind study. The participants consumed NaHCO3 (0.3 g. kg-1 or NaCl (0.209 g. kg-1 before the trial. An additional supplementation of 0.1 g. kg-1 NaHCO3 or 0.07 g. kg-1 NaCl was ingested after the third game in the simulated match. The Loughborough Tennis Skill Test was performed before and after the simulated match. Post-match [HCO3-] and base excess were significantly higher in the bicarbonate trial than those in the placebo trial. Blood [lactate] was significantly increased in the placebo (pre: 1.22 ± 0.54; post: 2.17 ± 1.46 mM and bicarbonate (pre: 1.23 ± 0.41; post: 3.21 ± 1.89 mM trials. The match-induced change in blood [lactate] was significantly higher in the bicarbonate trial. Blood pH remained unchanged in the placebo trial (pre: 7.37 ± 0.32; post: 7.37 ± 0.14 but was significantly increased in the bicarbonate trial (pre: 7.37 ± 0.26; post: 7.45 ± 0.63, indicating a more alkaline environment. The service and forehand ground stroke consistency scores were declined significantly after the simulated match in the placebo trial, while they were maintained in the bicarbonate trial. The match-induced declines in the consistency scores were significantly larger in the placebo trial than those in the bicarbonate trial. This study suggested that NaHCO3 supplementation could prevent the decline in skilled tennis performance after a simulated match.

  2. Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve

    Directory of Open Access Journals (Sweden)

    Ricardo Jordao Duarte

    2013-09-01

    Full Text Available Introduction Medical literature is scarce on information to define a basic skills training program for laparoscopic surgery (peg and transferring, cutting, clipping. The aim of this study was to determine the minimal number of simulator sessions of basic laparoscopic tasks necessary to elaborate an optimal virtual reality training curriculum. Materials and Methods Eleven medical students with no previous laparoscopic experience were spontaneously enrolled. They were submitted to simulator training sessions starting at level 1 (Immersion Lap VR, San Jose, CA, including sequentially camera handling, peg and transfer, clipping and cutting. Each student trained twice a week until 10 sessions were completed. The score indexes were registered and analyzed. The total of errors of the evaluation sequences (camera, peg and transfer, clipping and cutting were computed and thereafter, they were correlated to the total of items evaluated in each step, resulting in a success percent ratio for each student for each set of each completed session. Thereafter, we computed the cumulative success rate in 10 sessions, obtaining an analysis of the learning process. By non-linear regression the learning curve was analyzed. Results By the non-linear regression method the learning curve was analyzed and a r2 = 0.73 (p < 0.001 was obtained, being necessary 4.26 (∼five sessions to reach the plateau of 80% of the estimated acquired knowledge, being that 100% of the students have reached this level of skills. From the fifth session till the 10th, the gain of knowledge was not significant, although some students reached 96% of the expected improvement. Conclusions This study revealed that after five simulator training sequential sessions the students' learning curve reaches a plateau. The forward sessions in the same difficult level do not promote any improvement in laparoscopic basic surgical skills, and the students should be introduced to a more difficult training

  3. Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve.

    Science.gov (United States)

    Duarte, Ricardo Jordão; Cury, José; Oliveira, Luis Carlos Neves; Srougi, Miguel

    2013-01-01

    Medical literature is scarce on information to define a basic skills training program for laparoscopic surgery (peg and transferring, cutting, clipping). The aim of this study was to determine the minimal number of simulator sessions of basic laparoscopic tasks necessary to elaborate an optimal virtual reality training curriculum. Eleven medical students with no previous laparoscopic experience were spontaneously enrolled. They were submitted to simulator training sessions starting at level 1 (Immersion Lap VR, San Jose, CA), including sequentially camera handling, peg and transfer, clipping and cutting. Each student trained twice a week until 10 sessions were completed. The score indexes were registered and analyzed. The total of errors of the evaluation sequences (camera, peg and transfer, clipping and cutting) were computed and thereafter, they were correlated to the total of items evaluated in each step, resulting in a success percent ratio for each student for each set of each completed session. Thereafter, we computed the cumulative success rate in 10 sessions, obtaining an analysis of the learning process. By non-linear regression the learning curve was analyzed. By the non-linear regression method the learning curve was analyzed and a r2 = 0.73 (p sessions) to reach the plateau of 80% of the estimated acquired knowledge, being that 100% of the students have reached this level of skills. From the fifth session till the 10th, the gain of knowledge was not significant, although some students reached 96% of the expected improvement. This study revealed that after five simulator training sequential sessions the students' learning curve reaches a plateau. The forward sessions in the same difficult level do not promote any improvement in laparoscopic basic surgical skills, and the students should be introduced to a more difficult training tasks level.

  4. Teaching surgical skills in obstetrics using a cesarean section simulator – bringing simulation to life

    Directory of Open Access Journals (Sweden)

    Venkata Sujatha Vellanki

    2010-12-01

    Full Text Available Venkata Sujatha Vellanki1, Sarath Babu Gillellamudi21Department of Obstetrics and Gynaecology 2Department of General Surgery Kamineni Institute of Medical Sciences, Sreepuram, Narketpally, Nalgonda, Andhra Pradesh, IndiaPurpose: Cesarean section is the most common surgery performed in obstetrics. Incorporating a simulation model into training provides a safe, low-stress environment in which students can gain skills and receive feedback. The purpose of this study was to determine the effectiveness of obstetrics simulator training for medical students doing their internship.Methods: Twenty-five students posted in the Department of Obstetrics and Gynecology received a formal lecture on cesarean section and demonstration of the procedure on a mannequin in the first week of their internship, The study group (n = 12 practiced their skills on an obstetrics simulator under the direct supervision of a faculty member. The control group received no simulator-based training (n = 13 or further instruction. All students were asked to complete a prevalidated questionnaire to assess their level of confidence in performing the procedure after the educational session.Results: Compared with their peers in the study, students in the simulator group were significantly more likely to define the steps of cesarean section (91% vs 61.5%, and were comfortable in assisting cesarean section (100% vs 46.15% as they were able to identify the layers of abdomen opened during cesarean section. All 12 students reported this as an excellent experience.Conclusion: We were able to construct an inexpensive cesarean section trainer that facilitates instruction in cesarean section technique in a low-stress environment.Keywords: simulation, obstetrics, medical students

  5. Applied computational physics

    CERN Document Server

    Boudreau, Joseph F; Bianchi, Riccardo Maria

    2018-01-01

    Applied Computational Physics is a graduate-level text stressing three essential elements: advanced programming techniques, numerical analysis, and physics. The goal of the text is to provide students with essential computational skills that they will need in their careers, and to increase the confidence with which they write computer programs designed for their problem domain. The physics problems give them an opportunity to reinforce their programming skills, while the acquired programming skills augment their ability to solve physics problems. The C++ language is used throughout the text. Physics problems include Hamiltonian systems, chaotic systems, percolation, critical phenomena, few-body and multi-body quantum systems, quantum field theory, simulation of radiation transport, and data modeling. The book, the fruit of a collaboration between a theoretical physicist and an experimental physicist, covers a broad range of topics from both viewpoints. Examples, program libraries, and additional documentatio...

  6. The role of computer simulation in nuclear technology development

    International Nuclear Information System (INIS)

    Tikhonchev, M.Yu.; Shimansky, G.A.; Lebedeva, E.E.; Lichadeev, VV.; Ryazanov, D.K.; Tellin, A.I.

    2000-01-01

    In the report, the role and purpose of computer simulation in nuclear technology development is discussed. The authors consider such applications of computer simulation as: (a) Nuclear safety research; (b) Optimization of technical and economic parameters of acting nuclear plant; (c) Planning and support of reactor experiments; (d) Research and design new devices and technologies; (f) Design and development of 'simulators' for operating personnel training. Among marked applications, the following aspects of computer simulation are discussed in the report: (g) Neutron-physical, thermal and hydrodynamics models; (h) Simulation of isotope structure change and dam- age dose accumulation for materials under irradiation; (i) Simulation of reactor control structures. (authors)

  7. Development of computational science in JAEA. R and D of simulation

    International Nuclear Information System (INIS)

    Nakajima, Norihiro; Araya, Fumimasa; Hirayama, Toshio

    2006-01-01

    R and D of computational science in JAEA (Japan Atomic Energy Agency) is described. Environment of computer, R and D system in CCSE (Center for Computational Science and e-Systems), joint computational science researches in Japan and world, development of computer technologies, the some examples of simulation researches, 3-dimensional image vibrational platform system, simulation researches of FBR cycle techniques, simulation of large scale thermal stress for development of steam generator, simulation research of fusion energy techniques, development of grid computing technology, simulation research of quantum beam techniques and biological molecule simulation researches are explained. Organization of JAEA, development of computational science in JAEA, network of JAEA, international collaboration of computational science, and environment of ITBL (Information-Technology Based Laboratory) project are illustrated. (S.Y.)

  8. Polymer Composites Corrosive Degradation: A Computational Simulation

    Science.gov (United States)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  9. Evaluation of leadership skills during the simulation education course for the initial management of blunt trauma.

    Science.gov (United States)

    Schott, Eric; Brautigam, Robert T; Smola, Jacqueline; Burns, Karyl J

    2012-04-01

    Leadership skills of senior residents, trauma fellows, and a nurse practitioner were assessed during simulation training for the initial management of blunt trauma. This was a pilot, observational study, that in addition to skill development and assessment also sought to determine the need for a dedicated leadership training course for surgical residents. The study evaluated the leadership skills and adherence to Advance Trauma Life Support (ATLS) guidelines of the team leaders during simulation training. The team leaders' performances on criteria regarding prearrival planning, critical actions based on ATLS, injury identification, patient management, and communication were evaluated for each of five blunt-trauma scenarios. Although there was a statistically significant increase in leadership skills for performing ATLS critical actions, P skills for team leadership willbe a worthwhile endeavor at our institution.

  10. Effectiveness of Standardized Patient Simulations in Teaching Clinical Communication Skills to Dental Students.

    Science.gov (United States)

    McKenzie, Carly T; Tilashalski, Ken R; Peterson, Dawn Taylor; White, Marjorie Lee

    2017-10-01

    The aim of this study was to investigate dental students' long-term retention of clinical communication skills learned in a second-year standardized patient simulation at one U.S. dental school. Retention was measured by students' performance with an actual patient during their fourth year. The high-fidelity simulation exercise focused on clinical communication skills took place during the spring term of the students' second year. The effect of the simulation was measured by comparing the fourth-year clinical performance of two groups: those who had participated in the simulation (intervention group; Class of 2016) and those who had not (no intervention/control group; Class of 2015). In the no intervention group, all 47 students participated; in the intervention group, 58 of 59 students participated. Both instructor assessments and students' self-assessments were used to evaluate the effectiveness of key patient interaction principles as well as comprehensive presentation of multiple treatment options. The results showed that students in the intervention group more frequently included cost during their treatment option presentation than did students in the no intervention group. The instructor ratings showed that the intervention group included all key treatment option components except duration more frequently than did the no intervention group. However, the simulation experience did not result in significantly more effective student-patient clinical communication on any of the items measured. This study presents limited evidence of the effectiveness of a standardized patient simulation to improve dental students' long-term clinical communication skills with respect to thorough presentation of treatment options to a patient.

  11. An integrated computational tool for precipitation simulation

    Science.gov (United States)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  12. Surgical simulation: Current practices and future perspectives for technical skills training.

    Science.gov (United States)

    Bjerrum, Flemming; Thomsen, Ann Sofia Skou; Nayahangan, Leizl Joy; Konge, Lars

    2018-06-17

    Simulation-based training (SBT) has become a standard component of modern surgical education, yet successful implementation of evidence-based training programs remains challenging. In this narrative review, we use Kern's framework for curriculum development to describe where we are now and what lies ahead for SBT within surgery with a focus on technical skills in operative procedures. Despite principles for optimal SBT (proficiency-based, distributed, and deliberate practice) having been identified, massed training with fixed time intervals or a fixed number of repetitions is still being extensively used, and simulators are generally underutilized. SBT should be part of surgical training curricula, including theoretical, technical, and non-technical skills, and be based on relevant needs assessments. Furthermore, training should follow evidence-based theoretical principles for optimal training, and the effect of training needs to be evaluated using relevant outcomes. There is a larger, still unrealized potential of surgical SBT, which may be realized in the near future as simulator technologies evolve, more evidence-based training programs are implemented, and cost-effectiveness and impact on patient safety is clearly demonstrated.

  13. Effect of music on surgical skill during simulated intraocular surgery.

    Science.gov (United States)

    Kyrillos, Ralph; Caissie, Mathieu

    2017-12-01

    To evaluate the effect of Mozart music compared to silence on anterior segment surgical skill in the context of simulated intraocular surgery. Prospective stratified and randomized noninferiority trial. Fourteen ophthalmologists and 12 residents in ophthalmology. All participants were asked to perform 4 sets of predetermined tasks on the EyeSI surgical simulator (VRmagic, Mannheim, Germany). The participants completed 1 Capsulorhexis task and 1 Anti-Tremor task during 3 separate visits. The first 2 sets determined the basic level on day 1. Then, the participants were stratified by surgical experience and randomized to be exposed to music (Mozart sonata for 2 pianos in D-K448) during either the third or the fourth set of tasks (day 2 or 3). Surgical skill was evaluated using the parameters recorded by the simulator such as "Total score" and "Time" for both tasks and task-specific parameters such as "Out of tolerance percentage" for the Anti-Tremor task and "Deviation of rhexis radius from 2.5 mm," "Roundness," and "Centering" for the Capsulorhexis task. The data were analyzed using the Wilcoxon signed-rank test. No statistically significant differences were noted between exposure and nonexposure for all the Anti-Tremor task parameters as well as most parameters for the Capsulorhexis task. Two parameters for the Capsulorhexis task showed a strong trend for improvement with exposure to music ("Total score" +23.3%, p = 0.025; "Roundness" +33.0%, p = 0.037). Exposure to music did not negatively impact surgical skills. Moreover, a trend for improvement was shown while listening to Mozart music. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  14. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences.

    Directory of Open Access Journals (Sweden)

    Melanie I Stefan

    2015-04-01

    Full Text Available The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a "boot camp" in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students' engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014 show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.

  15. The quantitative methods boot camp: teaching quantitative thinking and computing skills to graduate students in the life sciences.

    Science.gov (United States)

    Stefan, Melanie I; Gutlerner, Johanna L; Born, Richard T; Springer, Michael

    2015-04-01

    The past decade has seen a rapid increase in the ability of biologists to collect large amounts of data. It is therefore vital that research biologists acquire the necessary skills during their training to visualize, analyze, and interpret such data. To begin to meet this need, we have developed a "boot camp" in quantitative methods for biology graduate students at Harvard Medical School. The goal of this short, intensive course is to enable students to use computational tools to visualize and analyze data, to strengthen their computational thinking skills, and to simulate and thus extend their intuition about the behavior of complex biological systems. The boot camp teaches basic programming using biological examples from statistics, image processing, and data analysis. This integrative approach to teaching programming and quantitative reasoning motivates students' engagement by demonstrating the relevance of these skills to their work in life science laboratories. Students also have the opportunity to analyze their own data or explore a topic of interest in more detail. The class is taught with a mixture of short lectures, Socratic discussion, and in-class exercises. Students spend approximately 40% of their class time working through both short and long problems. A high instructor-to-student ratio allows students to get assistance or additional challenges when needed, thus enhancing the experience for students at all levels of mastery. Data collected from end-of-course surveys from the last five offerings of the course (between 2012 and 2014) show that students report high learning gains and feel that the course prepares them for solving quantitative and computational problems they will encounter in their research. We outline our course here which, together with the course materials freely available online under a Creative Commons License, should help to facilitate similar efforts by others.

  16. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  17. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  18. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Sophistication of computational science and fundamental physics simulations

    International Nuclear Information System (INIS)

    Ishiguro, Seiji; Ito, Atsushi; Usami, Shunsuke; Ohtani, Hiroaki; Sakagami, Hitoshi; Toida, Mieko; Hasegawa, Hiroki; Horiuchi, Ritoku; Miura, Hideaki

    2016-01-01

    Numerical experimental reactor research project is composed of the following studies: (1) nuclear fusion simulation research with a focus on specific physical phenomena of specific equipment, (2) research on advanced simulation method to increase predictability or expand its application range based on simulation, (3) visualization as the foundation of simulation research, (4) research for advanced computational science such as parallel computing technology, and (5) research aiming at elucidation of fundamental physical phenomena not limited to specific devices. Specifically, a wide range of researches with medium- to long-term perspectives are being developed: (1) virtual reality visualization, (2) upgrading of computational science such as multilayer simulation method, (3) kinetic behavior of plasma blob, (4) extended MHD theory and simulation, (5) basic plasma process such as particle acceleration due to interaction of wave and particle, and (6) research related to laser plasma fusion. This paper reviews the following items: (1) simultaneous visualization in virtual reality space, (2) multilayer simulation of collisionless magnetic reconnection, (3) simulation of microscopic dynamics of plasma coherent structure, (4) Hall MHD simulation of LHD, (5) numerical analysis for extension of MHD equilibrium and stability theory, (6) extended MHD simulation of 2D RT instability, (7) simulation of laser plasma, (8) simulation of shock wave and particle acceleration, and (9) study on simulation of homogeneous isotropic MHD turbulent flow. (A.O.)

  20. Computer Simulation Performed for Columbia Project Cooling System

    Science.gov (United States)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  1. Validation study of a computer-based open surgical trainer: SimPraxis(®) simulation platform.

    Science.gov (United States)

    Tran, Linh N; Gupta, Priyanka; Poniatowski, Lauren H; Alanee, Shaheen; Dall'era, Marc A; Sweet, Robert M

    2013-01-01

    Technological advances have dramatically changed medical education, particularly in the era of work-hour restrictions, which increasingly highlights a need for novel methods to teach surgical skills. The purpose of this study was to evaluate the validity of a novel, computer-based, interactive, cognitive simulator for training surgeons to perform pelvic lymph node dissection (PLND). Eight prostate cancer experts evaluated the content of the simulator. Contextual aspects of the simulator were rated on a five-point Likert scale. The experts and nine first-year residents completed a simulated PLND. Time and deviations were logged, and the results were compared between experts and novices using the Mann-Whitney test. Before training, 88% of the experts felt that a validated simulator would be useful for PLND training. After testing, 100% of the experts felt that it would be more useful than standard video training. Eighty-eight percent stated that they would like to see the simulator in the curriculum of residency programs and 56% thought it would be useful for accreditation purposes. The experts felt that the simulator aided in overall understanding, training indications, concepts and steps of the procedure, training how to use an assistant, and enhanced the knowledge of anatomy. Median performance times taken by experts and interns to complete a PLND procedure on the simulator were 12.62 and 23.97 minutes, respectively. Median deviation from the incorporated procedure pathway for experts was 24.5 and was 89 for novices. We describe an interactive, computer-based simulator designed to assist in mastery of the cognitive steps of an open surgical procedure. This platform is intuitive and flexible, and could be applied to any stepwise medical procedure. Overall, experts outperformed novices in their performance on the trainer. Experts agreed that the content was acceptable, accurate, and representative.

  2. A Review of Freely Available Quantum Computer Simulation Software

    OpenAIRE

    Brandhorst-Satzkorn, Johan

    2012-01-01

    A study has been made of a few different freely available Quantum Computer simulators. All the simulators tested are available online on their respective websites. A number of tests have been performed to compare the different simulators against each other. Some untested simulators of various programming languages are included to show the diversity of the quantum computer simulator applications. The conclusion of the review is that LibQuantum is the best of the simulators tested because of ea...

  3. Prior video game utilization is associated with improved performance on a robotic skills simulator.

    Science.gov (United States)

    Harbin, Andrew C; Nadhan, Kumar S; Mooney, James H; Yu, Daohai; Kaplan, Joshua; McGinley-Hence, Nora; Kim, Andrew; Gu, Yiming; Eun, Daniel D

    2017-09-01

    Laparoscopic surgery and robotic surgery, two forms of minimally invasive surgery (MIS), have recently experienced a large increase in utilization. Prior studies have shown that video game experience (VGE) may be associated with improved laparoscopic surgery skills; however, similar data supporting a link between VGE and proficiency on a robotic skills simulator (RSS) are lacking. The objective of our study is to determine whether volume or timing of VGE had any impact on RSS performance. Pre-clinical medical students completed a comprehensive questionnaire detailing previous VGE across several time periods. Seventy-five subjects were ultimately evaluated in 11 training exercises on the daVinci Si Skills Simulator. RSS skill was measured by overall score, time to completion, economy of motion, average instrument collision, and improvement in Ring Walk 3 score. Using the nonparametric tests and linear regression, these metrics were analyzed for systematic differences between non-users, light, and heavy video game users based on their volume of use in each of the following four time periods: past 3 months, past year, past 3 years, and high school. Univariate analyses revealed significant differences between heavy and non-users in all five performance metrics. These trends disappeared as the period of VGE went further back. Our study showed a positive association between video game experience and robotic skills simulator performance that is stronger for more recent periods of video game use. The findings may have important implications for the evolution of robotic surgery training.

  4. Computer simulation of liquid crystals

    International Nuclear Information System (INIS)

    McBride, C.

    1999-01-01

    Molecular dynamics simulation performed on modern computer workstations provides a powerful tool for the investigation of the static and dynamic characteristics of liquid crystal phases. In this thesis molecular dynamics computer simulations have been performed for two model systems. Simulations of 4,4'-di-n-pentyl-bibicyclo[2.2.2]octane demonstrate the growth of a structurally ordered phase directly from an isotropic fluid. This is the first time that this has been achieved for an atomistic model. The results demonstrate a strong coupling between orientational ordering and molecular shape, but indicate that the coupling between molecular conformational changes and molecular reorientation is relatively weak. Simulations have also been performed for a hybrid Gay-Berne/Lennard-Jones model resulting in thermodynamically stable nematic and smectic phases. Frank elastic constants have been calculated for the nematic phase formed by the hybrid model through analysis of the fluctuations of the nematic director, giving results comparable with those found experimentally. Work presented in this thesis also describes the parameterization of the torsional potential of a fragment of a dimethyl siloxane polymer chain, disiloxane diol (HOMe 2 Si) 2 O, using ab initio quantum mechanical calculations. (author)

  5. The role of simulation in developing surgical skills.

    Science.gov (United States)

    Akhtar, K S N; Chen, Alvin; Standfield, N J; Gupte, C M

    2014-06-01

    Surgical training has followed the master-apprentice model for centuries but is currently undergoing a paradigm shift. The traditional model is inefficient with no guarantee of case mix, quality, or quantity. There is a growing focus on competency-based medical education in response to restrictions on doctors' working hours and the traditional mantra of "see one, do one, teach one" is being increasingly questioned. The medical profession is subject to more scrutiny than ever before and is facing mounting financial, clinical, and political pressures. Simulation may be a means of addressing these challenges. It provides a way for trainees to practice technical tasks in a protected environment without putting patients at risk and helps to shorten the learning curve. The evidence for simulation-based training in orthopedic surgery using synthetic models, cadavers, and virtual reality simulators is constantly developing, though further work is needed to ensure the transfer of skills to the operating theatre.

  6. Improving advanced cardiovascular life support skills in medical students: simulation-based education approach

    Directory of Open Access Journals (Sweden)

    Hamidreza Reihani

    2015-01-01

    Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.

  7. Disaster response team FAST skills training with a portable ultrasound simulator compared to traditional training: pilot study.

    Science.gov (United States)

    Paddock, Michael T; Bailitz, John; Horowitz, Russ; Khishfe, Basem; Cosby, Karen; Sergel, Michelle J

    2015-03-01

    Pre-hospital focused assessment with sonography in trauma (FAST) has been effectively used to improve patient care in multiple mass casualty events throughout the world. Although requisite FAST knowledge may now be learned remotely by disaster response team members, traditional live instructor and model hands-on FAST skills training remains logistically challenging. The objective of this pilot study was to compare the effectiveness of a novel portable ultrasound (US) simulator with traditional FAST skills training for a deployed mixed provider disaster response team. We randomized participants into one of three training groups stratified by provider role: Group A. Traditional Skills Training, Group B. US Simulator Skills Training, and Group C. Traditional Skills Training Plus US Simulator Skills Training. After skills training, we measured participants' FAST image acquisition and interpretation skills using a standardized direct observation tool (SDOT) with healthy models and review of FAST patient images. Pre- and post-course US and FAST knowledge were also assessed using a previously validated multiple-choice evaluation. We used the ANOVA procedure to determine the statistical significance of differences between the means of each group's skills scores. Paired sample t-tests were used to determine the statistical significance of pre- and post-course mean knowledge scores within groups. We enrolled 36 participants, 12 randomized to each training group. Randomization resulted in similar distribution of participants between training groups with respect to provider role, age, sex, and prior US training. For the FAST SDOT image acquisition and interpretation mean skills scores, there was no statistically significant difference between training groups. For US and FAST mean knowledge scores, there was a statistically significant improvement between pre- and post-course scores within each group, but again there was not a statistically significant difference between

  8. Comparison of the development of performance skills in ultrasound-guided regional anesthesia simulations with different phantom models.

    Science.gov (United States)

    Liu, Yang; Glass, Nancy L; Glover, Chris D; Power, Robert W; Watcha, Mehernoor F

    2013-12-01

    Ultrasound-guided regional anesthesia (UGRA) skills are traditionally obtained by supervised performance on patients, but practice on phantom models improves success. Currently available models are expensive or use perishable products, for example, olive-in-chicken breasts (OCB). We constructed 2 inexpensive phantom (transparent and opaque) models with readily available nonperishable products and compared the process of learning UGRA skills by novice practitioners on these models with the OCB model. Three experts first established criteria for a satisfactory completion of the simulated UGRA task in the 3 models. Thirty-six novice trainees (simulations was accomplished. The number of errors, needle passes, and time for task completion per attempt progressively decreased in all 3 groups. However, failure to identify the target and to visualize the needle on the ultrasound image occurred more frequently with the OCB model. The time to complete simulator training was shortest with the transparent model, owing to shorter target identification times. However, trainees were less likely to agree strongly that this model was realistic for teaching UGRA skills. Training on inexpensive synthetic simulation models with no perishable products permits learning of UGRA skills by novices. The OCB model has disadvantages of containing potentially infective material, requires refrigeration, cannot be used after multiple needle punctures, and is associated with more failures during simulated UGRA. Direct visualization of the target in the transparent model allows the trainee to focus on needle insertion skills, but the opaque model may be more realistic for learning target identification skills required when UGRA is performed on real patients in the operating room.

  9. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, M.; Esch, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  10. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  11. Building professionalism and employability skills: embedding employer engagement within first-year computing modules

    Science.gov (United States)

    Hanna, Philip; Allen, Angela; Kane, Russell; Anderson, Neil; McGowan, Aidan; Collins, Matthew; Hutchison, Malcolm

    2015-07-01

    This paper outlines a means of improving the employability skills of first-year university students through a closely integrated model of employer engagement within computer science modules. The outlined approach illustrates how employability skills, including communication, teamwork and time management skills, can be contextualised in a manner that directly relates to student learning but can still be linked forward into employment. The paper tests the premise that developing employability skills early within the curriculum will result in improved student engagement and learning within later modules. The paper concludes that embedding employer participation within first-year models can help relate a distant notion of employability into something of more immediate relevance in terms of how students can best approach learning. Further, by enhancing employability skills early within the curriculum, it becomes possible to improve academic attainment within later modules.

  12. [Simulation training in surgical education - application of virtual reality laparoscopic simulators in a surgical skills course].

    Science.gov (United States)

    Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J

    2012-04-01

    Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the

  13. Computer security simulation

    International Nuclear Information System (INIS)

    Schelonka, E.P.

    1979-01-01

    Development and application of a series of simulation codes used for computer security analysis and design are described. Boolean relationships for arrays of barriers within functional modules are used to generate composite effectiveness indices. The general case of multiple layers of protection with any specified barrier survival criteria is given. Generalized reduction algorithms provide numerical security indices in selected subcategories and for the system as a whole. 9 figures, 11 tables

  14. Assessment of medical communication skills by computer: assessment method and student experiences

    NARCIS (Netherlands)

    Hulsman, R. L.; Mollema, E. D.; Hoos, A. M.; de Haes, J. C. J. M.; Donnison-Speijer, J. D.

    2004-01-01

    BACKGROUND A computer-assisted assessment (CAA) program for communication skills designated ACT was developed using the objective structured video examination (OSVE) format. This method features assessment of cognitive scripts underlying communication behaviour, a broad range of communication

  15. Computer simulation games as an adjunct for treatment in male veterans with alcohol use disorder.

    Science.gov (United States)

    Verduin, Marcia L; LaRowe, Steven D; Myrick, Hugh; Cannon-Bowers, Jan; Bowers, Clint

    2013-03-01

    This study examined the impact of a computer simulation designed to provide the opportunity for individuals with alcohol use disorders (AUDs) to practice relapse prevention skills. Participants were 41 male veterans enrolled in an intensive outpatient substance abuse treatment program. Participants were randomly assigned to either view educational slides about treatment for AUD or play a simulation videogame for eight sessions within 12 weeks. Participants were assessed at a 4-week follow-up visit. Outcome measures included relapse rates as well as ratings on the Obsessive Compulsive Drinking Scale (OCDS) and a custom-designed relapse prevention self efficacy scale. While rates of relapse did not differ between groups, those who played the game showed overall reductions in ratings on the OCDS, as well as higher ratings of self-efficacy at week 8, suggesting that the videogame simulation may be a useful adjunct to AUD treatment. Published by Elsevier Inc.

  16. Understanding Islamist political violence through computational social simulation

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Jennifer H [Los Alamos National Laboratory; Mackerrow, Edward P [Los Alamos National Laboratory; Patelli, Paolo G [Los Alamos National Laboratory; Eberhardt, Ariane [Los Alamos National Laboratory; Stradling, Seth G [Los Alamos National Laboratory

    2008-01-01

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates the computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.

  17. The effect of a simulation training package on skill acquisition for duplex arterial stenosis detection.

    Science.gov (United States)

    Jaffer, Usman; Normahani, Pasha; Singh, Prashant; Aslam, Mohammed; Standfield, Nigel J

    2015-01-01

    In vascular surgery, duplex ultrasonography is a valuable diagnostic tool in patients with peripheral vascular disease, and there is increasing demand for vascular surgeons to be able to perform duplex scanning. This study evaluates the role of a novel simulation training package on vascular ultrasound (US) skill acquisition. A total of 19 novices measured predefined stenosis in a simulated pulsatile vessel using both peak systolic velocity ratio (PSVR) and diameter reduction (DR) methods before and after a short period of training using a simulated training package. The training package consisted of a simulated pulsatile vessel phantom, a set of instructional videos, duplex ultrasound objective structured assessment of technical skills (DUOSATS) tool, and a portable US scanner. Quantitative metrics (procedure time, percentage error using PSVR and DR methods, DUOSAT scores, and global rating scores) before and after training were compared. Subjects spent a median time of 144 mins (IQR: 60-195) training using the simulation package. Subjects exhibited statistically significant improvements when comparing pretraining and posttraining DUOSAT scores (pretraining = 17 [16-19.3] vs posttraining = 30 [27.8-31.8]; p duplex images in a pulsatile simulated phantom following a short period of goal direct training using a simulation training package. A simulation training package may be a valuable tool for integration into a vascular training program. However, further work is needed to explore whether these newly attained skills are translated into clinical assessment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  18. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  19. Research Skills for Journalism Students: From Basics to Computer-Assisted Reporting.

    Science.gov (United States)

    Drueke, Jeanetta; Streckfuss, Richard

    1997-01-01

    Despite the availability of computer-assisted research, a survey of 300 newspapers found that many journalists still rely on paper sources or neglect research altogether. This article describes the development and implementation of a beginning reporting course that integrates research skills, demonstrates the value of research in reporting, and…

  20. Increasing Mathematical Computation Skills for Students with Physical and Health Disabilities

    Science.gov (United States)

    Webb, Paula

    2017-01-01

    Students with physical and health disabilities struggle with basic mathematical concepts. The purpose of this research study was to increase the students' mathematical computation skills through implementing new strategies and/or methods. The strategies implemented with the students was utilizing the ten-frame tiles and technology with the purpose…

  1. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action

    NARCIS (Netherlands)

    Pawlik, A.; Gelder, C.W.G. van; Nenadic, A.; Palagi, P.M.; Korpelainen, E.; Lijnzaad, P.; Marek, D.; Sansone, S.A.; Hancock, J.; Goble, C.

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training

  2. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  3. Accomplishments and challenges of surgical simulation.

    Science.gov (United States)

    Satava, R M

    2001-03-01

    For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.

  4. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  5. Using Computer-Assisted Argumentation Mapping to develop effective argumentation skills in high school advanced placement physics

    Science.gov (United States)

    Heglund, Brian

    Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument

  6. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.

    Science.gov (United States)

    Lee, Gyusung I; Lee, Mija R

    2018-01-01

    While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.

  7. Validation of a novel basic virtual reality simulator, the LAP-X, for training basic laparoscopic skills.

    Science.gov (United States)

    Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki

    2014-10-01

    Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps training device.

  8. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  9. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  10. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  11. Validity evidence of non-technical skills assessment instruments in simulated anaesthesia crisis management.

    Science.gov (United States)

    Jirativanont, T; Raksamani, K; Aroonpruksakul, N; Apidechakul, P; Suraseranivongse, S

    2017-07-01

    We sought to evaluate the validity of two non-technical skills evaluation instruments, the Anaesthetists' Non-Technical Skills (ANTS) behavioural marker system and the Ottawa Global Rating Scale (GRS), to apply them to anaesthesia training. The content validity, response process, internal structure, relations with other variables and consequences were described for validity evidence. Simulated crisis management sessions were initiated during which two trained raters evaluated the performance of postgraduate first-, second- and third-year (PGY-1, PGY-2 and PGY-3) anaesthesia residents. The study included 70 participants, composed of 24 PGY-1, 24 PGY-2 and 22 PGY-3 residents. Both instruments differentiated the non-technical skills of PGY-1 from PGY-3 residents ( P skills were 0.86, 0.83, 0.84, 0.87, 0.80 and 0.86, respectively. The Cronbach's alpha for internal consistency of the ANTS instrument was 0.93, and was 0.96 for the Ottawa GRS. There was a high correlation between the ANTS and Ottawa GRS. The raters reported the ease of use of the Ottawa GRS compared to the ANTS. We found sufficient evidence of validity in the ANTS instrument and the Ottawa GRS for the evaluation of non-technical skills in a simulated anaesthesia setting, but the Ottawa GRS was more practical and had higher reliability.

  12. The relationship between managerial skills and managerial effectiveness in a Managerial simulation game

    OpenAIRE

    Smutný Petr; Procházka Jakub; Vaculík Martin

    2016-01-01

    The study explores the relationship between managerial skills and managerial effectiveness, measuring managerial effectiveness by four different methods. Evaluation of 96 top managers of fictitious companies by a group of 1,746 subordinates took place after three months of intensive cooperation during a managerial simulation game. All respondents were college students. Results show that different managerial effectiveness indicators have different sets of managerial skills predictors: Group pe...

  13. Perception versus reality: a comparative study of the clinical judgment skills of nurses during a simulated activity.

    Science.gov (United States)

    Fenske, Cynthia L; Harris, Margaret A; Aebersold, Michelle L; Hartman, Laurie S

    2013-09-01

    This study was conducted to determine how closely nurses' perceptions of their clinical judgment abilities matched their demonstrated clinical judgment skills during a simulation. Seventy-four registered nurses participated in a simulation using a video format. After the simulation, the nurses self-assessed their performance using the Lasater Clinical Judgment Rubric. This rubric was then used to rate the nurses' actual performance in the simulation activity. The study results showed a significant discrepancy between nurses' perceptions of their own clinical judgment abilities and their demonstrated clinical judgment skills. Age and length of nursing experience enhanced the difference between the findings of self-assessment and actual performance. Younger nurses and those with 1 year or less of nursing experience were significantly more likely to have self-assessed their abilities at a much higher level compared with their actual skills. Copyright 2013, SLACK Incorporated.

  14. Comparing the Social Skills of Students Addicted to Computer Games with Normal Students

    OpenAIRE

    Zamani, Eshrat; Kheradmand, Ali; Cheshmi, Maliheh; Abedi, Ahmad; Hedayati, Nasim

    2010-01-01

    Background This study aimed to investigate and compare the social skills of studentsaddicted to computer games with normal students. The dependentvariable in the present study is the social skills. Methods The study population included all the students in the second grade ofpublic secondary school in the city of Isfahan at the educational year of2009-2010. The sample size included 564 students selected using thecluster random sampling method. Data collection was conducted usingQuestionnaire o...

  15. Interoceanic canal excavation scheduling via computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Baldonado, Orlino C [Holmes and Narver, Inc., Los Angeles, CA (United States)

    1970-05-15

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  16. Interoceanic canal excavation scheduling via computer simulation

    International Nuclear Information System (INIS)

    Baldonado, Orlino C.

    1970-01-01

    The computer simulation language GPSS/360 was used to simulate the schedule of several nuclear detonation programs for the interoceanic canal project. The effects of using different weather restriction categories due to air blast and fallout were investigated. The effect of increasing the number of emplacement and stemming crews and the effect of varying the reentry period after detonating a row charge or salvo were also studied. Detonation programs were simulated for the proposed Routes 17A and 25E. The study demonstrates the method of using computer simulation so that a schedule and its associated constraints can be assessed for feasibility. Since many simulation runs can be made for a given set of detonation program constraints, one readily obtains an average schedule for a range of conditions. This provides a method for analyzing time-sensitive operations so that time and cost-effective operational schedules can be established. A comparison of the simulated schedules with those that were published shows them to be similar. (author)

  17. Retention of skills 2 years after completion of a postpartum hemorrhage simulation training program in rural Rwanda.

    Science.gov (United States)

    Nathan, Lisa M; Patauli, Desire; Nsabimana, Damien; Bernstein, Peter S; Rulisa, Stephen; Goffman, Dena

    2016-09-01

    To evaluate the long-term retention of skills gained by rural physicians who completed a postpartum hemorrhage simulation-training program. A quasi-experimental pre-post intervention study enrolled a convenience sample of generalist physicians in rural Rwanda. Participants underwent initial simulation training including pre- and post-training testing in February 2012. Simulation drills to assess skill retention were conducted in March 2014. Participants were scored based on their communication, evaluation, and management skills. Median scores and inter-quartile ranges were calculated and the Wilcoxon signed-rank sum test was used to compare the pre-training, post-training, and retention scores. Physician confidence was assessed using a survey. In total, 11 physicians were enrolled; eight were available for the 2-year skill-retention evaluation. Significant improvements were observed when comparing participants' pre-training and post-training communication (P=0.03), evaluation (P=0.05), and management (P=0.02) scores, and there were no changes between participants' post-training and 2-year communication (P>0.99), evaluation (P=0.16), and management (P=0.46) scores. There were no differences in the self-reported confidence measures across the duration of the study. Simulation training is an effective method for teaching postpartum hemorrhage-management skills to generalist physicians in rural areas and skills are retained for at least 2 years. Further studies could determine the optimal time intervals for refresher training. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Implementing a Cardiac Skills Orientation and Simulation Program.

    Science.gov (United States)

    Hemingway, Maureen W; Osgood, Patrice; Mannion, Mildred

    2018-02-01

    Patients with cardiac morbidities admitted for cardiac surgical procedures require perioperative nurses with a high level of complex nursing skills. Orienting new cardiac team members takes commitment and perseverance in light of variable staffing levels, high-acuity patient populations, an active cardiac surgical schedule, and the unpredictability of scheduling patients undergoing cardiac transplantation. At an academic medical center in Boston, these issues presented opportunities to orient new staff members to the scrub person role, but hampered efforts to provide active learning opportunities in a safe environment. As a result, facility personnel created a program to increase new staff members' skills, confidence, and proficiency, while also increasing the number of staff members who were proficient at scrubbing complex cardiac procedures. To address the safe learning requirement, personnel designed a simulation program to provide scrubbing experience, decrease orientees' supervision time, and increase staff members' confidence in performing the scrub person role. © AORN, Inc, 2018.

  19. Learning health 'safety' within non-technical skills interprofessional simulation education: a qualitative study.

    Science.gov (United States)

    Gordon, Morris; Fell, Christopher W R; Box, Helen; Farrell, Michael; Stewart, Alison

    2017-01-01

    Healthcare increasingly recognises and focusses on the phenomena of 'safe practice' and 'patient safety.' Success with non-technical skills (NTS) training in other industries has led to widespread transposition to healthcare education, with communication and teamwork skills central to NTS frameworks. This study set out to identify how the context of interprofessional simulation learning influences NTS acquisition and development of 'safety' amongst learners. Participants receiving a non-technical skills (NTS) safety focussed training package were invited to take part in a focus group interview which set out to explore communication, teamwork, and the phenomenon of safety in the context of the learning experiences they had within the training programme. The analysis was aligned with a constructivist paradigm and took an interactive methodological approach. The analysis proceeded through three stages, consisting of open, axial, and selective coding, with constant comparisons taking place throughout each phase. Each stage provided categories that could be used to explore the themes of the data. Additionally, to ensure thematic saturation, transcripts of observed simulated learning encounters were then analysed. Six themes were established at the axial coding level, i.e., analytical skills, personal behaviours, communication, teamwork, context, and pedagogy. Underlying these themes, two principal concepts emerged, namely: intergroup contact anxiety - as both a result of and determinant of communication - and teamwork, both of which must be considered in relation to context. These concepts have subsequently been used to propose a framework for NTS learning. This study highlights the role of intergroup contact anxiety and teamwork as factors in NTS behaviour and its dissipation through interprofessional simulation learning. Therefore, this should be a key consideration in NTS education. Future research is needed to consider the role of the affective non

  20. The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills

    Science.gov (United States)

    Kösa, Temel; Karakus, Fatih

    2018-01-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…

  1. Biomes computed from simulated climatologies

    Energy Technology Data Exchange (ETDEWEB)

    Claussen, W.; Esch, M.

    1992-09-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study is undertaken in order to show the advantage of this biome model in comprehensively diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rain fall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential North-East shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favorable for the existence of certain biomes, not as a prediction of a future distribution of biomes. (orig.).

  2. Computer graphics in heat-transfer simulations

    International Nuclear Information System (INIS)

    Hamlin, G.A. Jr.

    1980-01-01

    Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges

  3. Parallel Computing for Brain Simulation.

    Science.gov (United States)

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E

    2017-01-01

    Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration....... The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...

  5. Translating medical documents improves students' communication skills in simulated physician-patient encounters.

    Science.gov (United States)

    Bittner, Anja; Bittner, Johannes; Jonietz, Ansgar; Dybowski, Christoph; Harendza, Sigrid

    2016-02-27

    Patient-physician communication should be based on plain and simple language. Despite communication skill trainings in undergraduate medical curricula medical students and physicians are often still not aware of using medical jargon when communicating with patients. The aim of this study was to compare linguistic communication skills of undergraduate medical students who voluntarily translate medical documents into plain language with students who do not participate in this voluntary task. Fifty-nine undergraduate medical students participated in this study. Twenty-nine participants were actively involved in voluntarily translating medical documents for real patients into plain language on the online-platform https://washabich.de (WHI group) and 30 participants were not (non-WHI group). The assessment resembled a virtual consultation hour, where participants were connected via skype to six simulated patients (SPs). The SPs assessed participants' communication skills. All conversations were transcribed and assessed for communication skills and medical correctness by a blinded expert. All participants completed a self-assessment questionnaire on their communication skills. Across all raters, the WHI group was assessed significantly (p = .007) better than the non-WHI group regarding the use of plain language. The blinded expert assessed the WHI group significantly (p = .018) better regarding the use of stylistic devices of communication. The SPs would choose participants from the WHI group significantly (p = .041) more frequently as their personal physician. No significant differences between the two groups were observed with respect to the medical correctness of the consultations. Written translation of medical documents is associated with significantly more frequent use of plain language in simulated physician-patient encounters. Similar extracurricular exercises might be a useful tool for medical students to enhance their communication skills with

  6. Computer simulation of thermal plant operations

    CERN Document Server

    O'Kelly, Peter

    2012-01-01

    This book describes thermal plant simulation, that is, dynamic simulation of plants which produce, exchange and otherwise utilize heat as their working medium. Directed at chemical, mechanical and control engineers involved with operations, control and optimization and operator training, the book gives the mathematical formulation and use of simulation models of the equipment and systems typically found in these industries. The author has adopted a fundamental approach to the subject. The initial chapters provide an overview of simulation concepts and describe a suitable computer environment.

  7. Evaluating the influence of goal setting on intravenous catheterization skill acquisition and transfer in a hybrid simulation training context.

    Science.gov (United States)

    Brydges, Ryan; Mallette, Claire; Pollex, Heather; Carnahan, Heather; Dubrowski, Adam

    2012-08-01

    Educators often simplify complex tasks by setting learning objectives that focus trainees on isolated skills rather than the holistic task. We designed 2 sets of learning objectives for intravenous catheterization using goal setting theory. We hypothesized that setting holistic goals related to technical, cognitive, and communication skills would result in superior holistic performance, whereas setting isolated goals related to technical skills would result in superior technical performance. We randomly assigned practicing health care professionals to set holistic (n = 14) or isolated (n = 15) goals. All watched an instructional video and studied a list of 9 goals specific to their group. Participants practiced independently in a hybrid simulation (standardized patient combined with an arm simulator). The first and the last practice trials were videotaped for analysis. One-week later, participants completed a transfer test in another hybrid simulation scenario. Blinded experts evaluated performance on all 3 trials using the Direct Observation of Procedural Skills tool. The holistic group scored higher than the isolated group on the holistic Direct Observation of Procedural Skills score for all 3 trials [mean (SD), 45.0 (9.16) vs. 38.4 (9.17); P = 0.01]. The isolated group did not perform better than the holistic group on the technical skills score [10.3 (2.73) vs. 11.6 (3.01); P = 0.11]. Our results suggest that asking learners to set holistic goals did not interfere with their attaining competent holistic and technical skills during hybrid simulation training. This exploratory trial provides preliminary evidence for how to consider integrating hybrid simulation into medical curricula and for the design of learning goals in simulation-based education.

  8. A Computer-Based Simulation of an Acid-Base Titration

    Science.gov (United States)

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  9. Improving Nurses' Peripheral Intravenous Catheter Insertion Knowledge, Confidence, and Skills Using a Simulation-Based Blended Learning Program

    Science.gov (United States)

    Keleekai, Nowai L.; Schuster, Catherine A.; Murray, Connie L.; King, Mary Anne; Stahl, Brian R.; Labrozzi, Laura J.; Gallucci, Susan; LeClair, Matthew W.; Glover, Kevin R.

    2016-01-01

    Introduction Peripheral intravenous catheter (PIVC) insertion is one of the most common invasive procedures performed in a hospital, but most nurses receive little formal training in this area. Blended PIVC insertion training programs that incorporate deliberate simulated practice have the potential to improve clinical practice and patient care. Methods The study was a randomized, wait-list control group with crossover using nurses on three medical/surgical units. Baseline PIVC knowledge, confidence, and skills assessments were completed for both groups. The intervention group then received a 2-hour PIVC online course, followed by an 8-hour live training course using a synergistic mix of three simulation tools. Both groups were then reassessed. After crossover, the wait-list group received the same intervention and both groups were reassessed. Results At baseline, both groups were similar for knowledge, confidence, and skills. Compared with the wait-list group, the intervention group had significantly higher scores for knowledge, confidence, and skills upon completing the training program. After crossover, the wait-list group had similarly higher scores for knowledge, confidence, and skills than the intervention group. Between the immediate preintervention and postintervention periods, the intervention group improved scores for knowledge by 31%, skills by 24%, and decreased confidence by 0.5%, whereas the wait-list group improved scores for knowledge by 28%, confidence by 16%, and skills by 15%. Conclusions Results demonstrate significant improvements in nurses' knowledge, confidence, and skills with the use of a simulation-based blended learning program for PIVC insertion. Transferability of these findings from a simulated environment into clinical practice should be further explored. PMID:27504890

  10. Impact of sleep deprivation on anaesthesia residents' non-technical skills: a pilot simulation-based prospective randomized trial.

    Science.gov (United States)

    Neuschwander, A; Job, A; Younes, A; Mignon, A; Delgoulet, C; Cabon, P; Mantz, J; Tesniere, A

    2017-07-01

    Sleep deprivation is common in anaesthesia residents, but its impact on performance remains uncertain. Non-technical skills (team working, situation awareness, decision making, and task management) are key components of quality of care in anaesthesia, particularly in crisis situations occurring in the operating room. The impact of sleep deprivation on non-technical skills is unknown. We tested the hypothesis that in anaesthesia residents sleep deprivation is associated with impaired non-technical skills. Twenty anaesthesia residents were randomly allocated to undergo a simulation session after a night shift [sleep-deprived (SLD) group, n =10] or after a night of rest [rested (R) group, n =10] from January to March 2015. The simulated scenario was a situation of crisis management in the operating room. The primary end point was a composite score of anaesthetists' non-technical skills (ANTS) assessed by two blinded evaluators. Non-technical skills were significantly impaired in the SLD group [ANTS score 12.2 (interquartile range 10.5-13)] compared with the R group [14.5 (14-15), P technical skills of anaesthesia residents in a simulated anaesthesia intraoperative crisis scenario. NCT02622217. © The Author 2017. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Quantum simulations with noisy quantum computers

    Science.gov (United States)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  12. Salesperson Ethics: An Interactive Computer Simulation

    Science.gov (United States)

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  13. Simulations of Probabilities for Quantum Computing

    Science.gov (United States)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  14. A Trend Analysis of Computer Literacy Skills of Preservice Teachers During Six Academic Years.

    Science.gov (United States)

    Sheffield, Caryl J.

    1998-01-01

    Analyzes trends in computer-literacy skills of preservice teachers during the period 1991/92 to 1996/97. A significant linear pattern of increasing means was found in word processing, spreadsheet, hardware, operating system software, and the mouse. Analysis provides a perspective on how increasing access to computers in high school translates into…

  15. Design of a Screen Based Simulation for Training and Automated Assessment of Teamwork Skills

    Science.gov (United States)

    2017-08-01

    assessable teamwork skills and actions that were identified. Since the last quarterly report, a few modifications regarding the relationship ...and team’s) medical actions and decision-making. Like with the development of so many pedagogical games and simulations, educators can find...approach offers utility not only to team training simulation, but to any pedagogical simulation development. References Douglass, B. P. (2016

  16. Computer Simulation of Reading.

    Science.gov (United States)

    Leton, Donald A.

    In recent years, coding and decoding have been claimed to be the processes for converting one language form to another. But there has been little effort to locate these processes in the human learner or to identify the nature of the internal codes. Computer simulation of reading is useful because the similarities in the human reception and…

  17. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    Science.gov (United States)

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  18. Skills-O-Mat: Computer Supported Interactive Motion- and Game-Based Training in Mixing Alginate in Dental Education

    Science.gov (United States)

    Hannig, Andreas; Lemos, Martin; Spreckelsen, Cord; Ohnesorge-Radtke, Ulla; Rafai, Nicole

    2013-01-01

    The training of motor skills is a crucial aspect of medical education today. Serious games and haptic virtual simulations have been used in the training of surgical procedures. Otherwise, however, a combination of serious games and motor skills training is rarely used in medical education. This article presents Skills-O-Mat, an interactive serious…

  19. A randomized control trial comparing use of a novel electrocardiogram simulator with traditional teaching in the acquisition of electrocardiogram interpretation skill.

    Science.gov (United States)

    Fent, Graham; Gosai, Jivendra; Purva, Makani

    2016-01-01

    Accurate interpretation of the electrocardiogram (ECG) remains an essential skill for medical students and junior doctors. While many techniques for teaching ECG interpretation are described, no single method has been shown to be superior. This randomized control trial is the first to investigate whether teaching ECG interpretation using a computer simulator program or traditional teaching leads to improved scores in a test of ECG interpretation among medical students and postgraduate doctors immediately after and 3months following teaching. Participants' opinions of the program were assessed using a questionnaire. There were no differences in ECG interpretation test scores immediately after or 3months after teaching in the lecture or simulator groups. At present therefore, there is insufficient evidence to suggest that ECG simulator programs are superior to traditional teaching. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  1. Computer Simulation of a Hardwood Processing Plant

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  2. Developing a strategy for computational lab skills training through Software and Data Carpentry: Experiences from the ELIXIR Pilot action.

    Science.gov (United States)

    Pawlik, Aleksandra; van Gelder, Celia W G; Nenadic, Aleksandra; Palagi, Patricia M; Korpelainen, Eija; Lijnzaad, Philip; Marek, Diana; Sansone, Susanna-Assunta; Hancock, John; Goble, Carole

    2017-01-01

    Quality training in computational skills for life scientists is essential to allow them to deliver robust, reproducible and cutting-edge research. A pan-European bioinformatics programme, ELIXIR, has adopted a well-established and progressive programme of computational lab and data skills training from Software and Data Carpentry, aimed at increasing the number of skilled life scientists and building a sustainable training community in this field. This article describes the Pilot action, which introduced the Carpentry training model to the ELIXIR community.

  3. Examining the Relationship between Digital Game Preferences and Computational Thinking Skills

    Science.gov (United States)

    Yildiz, Hatice Durak; Yilmaz, Fatma Gizem Karaoglan; Yilmaz, Ramazan

    2017-01-01

    The purpose of this study is to identify whether computational thinking skills among secondary school students differ depending on the type of digital games they play. The participants of this study were 202 secondary school students at 5th, 6th, 7th and 8th grades during 2016-2017 academic year. Correlational survey method was used during this…

  4. Interferences and events on epistemic shifts in physics through computer simulations

    CERN Document Server

    Warnke, Martin

    2017-01-01

    Computer simulations are omnipresent media in today's knowledge production. For scientific endeavors such as the detection of gravitational waves and the exploration of subatomic worlds, simulations are essential; however, the epistemic status of computer simulations is rather controversial as they are neither just theory nor just experiment. Therefore, computer simulations have challenged well-established insights and common scientific practices as well as our very understanding of knowledge. This volume contributes to the ongoing discussion on the epistemic position of computer simulations in a variety of physical disciplines, such as quantum optics, quantum mechanics, and computational physics. Originating from an interdisciplinary event, it shows that accounts of contemporary physics can constructively interfere with media theory, philosophy, and the history of science.

  5. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  6. Parity simulation for nuclear plant analysis

    International Nuclear Information System (INIS)

    Hansen, K.F.; Depiente, E.

    1986-01-01

    The analysis of the transient performance of nuclear plants is sufficiently complex that simulation tools are needed for design and safety studies. The simulation tools are needed for design and safety studies. The simulation tools are normally digital because of the speed, flexibility, generality, and repeatability of digital computers. However, communication with digital computers is an awkward matter, requiring special skill or training. The designer wishing to gain insight into system behavior must expend considerable effort in learning to use computer codes, or else have an intermediary communicate with the machine. There has been a recent development in analog simulation that simplifies the user interface with the simulator, while at the same time improving the performance of analog computers. This development is termed parity simulation and is now in routine use in analyzing power electronic network transients. The authors describe the concept of parity simulation and present some results of using the approach to simulate neutron kinetics problems

  7. Simulation in pediatric anesthesiology.

    Science.gov (United States)

    Fehr, James J; Honkanen, Anita; Murray, David J

    2012-10-01

    Simulation-based training, research and quality initiatives are expanding in pediatric anesthesiology just as in other medical specialties. Various modalities are available, from task trainers to standardized patients, and from computer-based simulations to mannequins. Computer-controlled mannequins can simulate pediatric vital signs with reasonable reliability; however the fidelity of skin temperature and color change, airway reflexes and breath and heart sounds remains rudimentary. Current pediatric mannequins are utilized in simulation centers, throughout hospitals in-situ, at national meetings for continuing medical education and in research into individual and team performance. Ongoing efforts by pediatric anesthesiologists dedicated to using simulation to improve patient care and educational delivery will result in further dissemination of this technology. Health care professionals who provide complex, subspecialty care to children require a curriculum supported by an active learning environment where skills directly relevant to pediatric care can be developed. The approach is not only the most effective method to educate adult learners, but meets calls for education reform and offers the potential to guide efforts toward evaluating competence. Simulation addresses patient safety imperatives by providing a method for trainees to develop skills and experience in various management strategies, without risk to the health and life of a child. A curriculum that provides pediatric anesthesiologists with the range of skills required in clinical practice settings must include a relatively broad range of task-training devises and electromechanical mannequins. Challenges remain in defining the best integration of this modality into training and clinical practice to meet the needs of pediatric patients. © 2012 Blackwell Publishing Ltd.

  8. Computed radiography simulation using the Monte Carlo code MCNPX

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.

    2009-01-01

    Simulating x-ray images has been of great interest in recent years as it makes possible an analysis of how x-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data. (author)

  9. Computed radiography simulation using the Monte Carlo code MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Centro Universitario Estadual da Zona Oeste (CCMAT)/UEZO, Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, 23070-200, Rio de Janeiro, RJ (Brazil); Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.b [PEN/COPPE-DNC/Poli CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Cassiano, D.H. [Instituto de Radioprotecao e Dosimetria/CNEN Av. Salvador Allende, s/n, Recreio, 22780-160, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    Simulating X-ray images has been of great interest in recent years as it makes possible an analysis of how X-ray images are affected owing to relevant operating parameters. In this paper, a procedure for simulating computed radiographic images using the Monte Carlo code MCNPX is proposed. The sensitivity curve of the BaFBr image plate detector as well as the characteristic noise of a 16-bit computed radiography system were considered during the methodology's development. The results obtained confirm that the proposed procedure for simulating computed radiographic images is satisfactory, as it allows obtaining results comparable with experimental data.

  10. A major trauma course based on posters, audio-guides and simulation improves the management skills of medical students: Evaluation via medical simulator.

    Science.gov (United States)

    Cuisinier, Adrien; Schilte, Clotilde; Declety, Philippe; Picard, Julien; Berger, Karine; Bouzat, Pierre; Falcon, Dominique; Bosson, Jean Luc; Payen, Jean-François; Albaladejo, Pierre

    2015-12-01

    Medical competence requires the acquisition of theoretical knowledge and technical skills. Severe trauma management teaching is poorly developed during internship. Nevertheless, the basics of major trauma management should be acquired by every future physician. For this reason, the major trauma course (MTC), an educational course in major traumatology, has been developed for medical students. Our objective was to evaluate, via a high fidelity medical simulator, the impact of the MTC on medical student skills concerning major trauma management. The MTC contains 3 teaching modalities: posters with associated audio-guides, a procedural workshop on airway management and a teaching session using a medical simulator. Skills evaluation was performed 1 month before (step 1) and 1 month after (step 3) the MTC (step 2). Nineteen students were individually evaluated on 2 different major trauma scenarios. The primary endpoint was the difference between steps 1 and 3, in a combined score evaluating: admission, equipment, monitoring and safety (skill set 1) and systematic clinical examinations (skill set 2). After the course, the combined primary outcome score improved by 47% (P<0.01). Scenario choice or the order of use had no significant influence on the skill set evaluations. This study shows improvement in student skills for major trauma management, which we attribute mainly to the major trauma course developed in our institution. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  11. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  12. Computational simulation in architectural and environmental acoustics methods and applications of wave-based computation

    CERN Document Server

    Sakamoto, Shinichi; Otsuru, Toru

    2014-01-01

    This book reviews a variety of methods for wave-based acoustic simulation and recent applications to architectural and environmental acoustic problems. Following an introduction providing an overview of computational simulation of sound environment, the book is in two parts: four chapters on methods and four chapters on applications. The first part explains the fundamentals and advanced techniques for three popular methods, namely, the finite-difference time-domain method, the finite element method, and the boundary element method, as well as alternative time-domain methods. The second part demonstrates various applications to room acoustics simulation, noise propagation simulation, acoustic property simulation for building components, and auralization. This book is a valuable reference that covers the state of the art in computational simulation for architectural and environmental acoustics.  

  13. A computer code to simulate X-ray imaging techniques

    International Nuclear Information System (INIS)

    Duvauchelle, Philippe; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-01-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests

  14. A computer code to simulate X-ray imaging techniques

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, Philippe E-mail: philippe.duvauchelle@insa-lyon.fr; Freud, Nicolas; Kaftandjian, Valerie; Babot, Daniel

    2000-09-01

    A computer code was developed to simulate the operation of radiographic, radioscopic or tomographic devices. The simulation is based on ray-tracing techniques and on the X-ray attenuation law. The use of computer-aided drawing (CAD) models enables simulations to be carried out with complex three-dimensional (3D) objects and the geometry of every component of the imaging chain, from the source to the detector, can be defined. Geometric unsharpness, for example, can be easily taken into account, even in complex configurations. Automatic translations or rotations of the object can be performed to simulate radioscopic or tomographic image acquisition. Simulations can be carried out with monochromatic or polychromatic beam spectra. This feature enables, for example, the beam hardening phenomenon to be dealt with or dual energy imaging techniques to be studied. The simulation principle is completely deterministic and consequently the computed images present no photon noise. Nevertheless, the variance of the signal associated with each pixel of the detector can be determined, which enables contrast-to-noise ratio (CNR) maps to be computed, in order to predict quantitatively the detectability of defects in the inspected object. The CNR is a relevant indicator for optimizing the experimental parameters. This paper provides several examples of simulated images that illustrate some of the rich possibilities offered by our software. Depending on the simulation type, the computation time order of magnitude can vary from 0.1 s (simple radiographic projection) up to several hours (3D tomography) on a PC, with a 400 MHz microprocessor. Our simulation tool proves to be useful in developing new specific applications, in choosing the most suitable components when designing a new testing chain, and in saving time by reducing the number of experimental tests.

  15. Inovation of the computer system for the WWER-440 simulator

    International Nuclear Information System (INIS)

    Schrumpf, L.

    1988-01-01

    The configuration of the WWER-440 simulator computer system consists of four SMEP computers. The basic data processing unit consists of two interlinked SM 52/11.M1 computers with 1 MB of main memory. This part of the computer system of the simulator controls the operation of the entire simulator, processes the programs of technology behavior simulation, of the unit information system and of other special systems, guarantees program support and the operation of the instructor's console. An SM 52/11 computer with 256 kB of main memory is connected to each unit. It is used as a communication unit for data transmission using the DASIO 600 interface. Semigraphic color displays are based on the microprocessor modules of the SM 50/40 and SM 53/10 kit supplemented with a modified TESLA COLOR 110 ST tv receiver. (J.B.). 1 fig

  16. Computeen: A Randomized Trial of a Preventive Computer and Psychosocial Skills Curriculum for At-Risk Adolescents

    Science.gov (United States)

    Lang, Jason M.; Waterman, Jill; Baker, Bruce L.

    2009-01-01

    Computeen, a preventive technology and psychosocial skills development program for at-risk adolescents, was designed to improve computer skills, self-esteem, and school attitudes, and reduce behavior problems, by combining elements of community-based and empirically supported prevention programs. Fifty-five mostly Latino adolescents from 12 to 16…

  17. Computer-assisted surgery simulations and directed practice of total knee arthroplasty: educational benefits to the trainee.

    Science.gov (United States)

    Myden, C A; Anglin, C; Kopp, G D; Hutchison, C R

    2012-01-01

    Orthopaedic residents typically learn to perform total knee arthroplasty (TKA) through an apprenticeship-type model, which is a necessarily slow process. Surgical skills courses, using artificial bones, have been shown to improve technical and cognitive skills significantly within a couple of days. The addition of computer-assisted surgery (CAS) simulations challenges the participants to consider the same task in a different context, promoting cognitive flexibility. We designed a hands-on educational intervention for junior residents with a conventional tibiofemoral TKA station, two different tibiofemoral CAS stations, and a CAS and conventional patellar resection station, including both qualitative and quantitative analyses. Qualitatively, structured interviews before and after the course were analyzed for recurring themes. Quantitatively, subjects were evaluated on their technical skills before and after the course, and on a multiple-choice knowledge test and error detection test after the course, in comparison to senior residents who performed only the testing. Four themes emerged: confidence, awareness, deepening knowledge and changed perspectives. The residents' attitudes to CAS changed from negative before the course to neutral or positive afterwards. The junior resident group completed 23% of tasks in the pre-course skills test and 75% of tasks on the post-test (peducational interventions, promoting cognitive flexibility, would benefit trainees, attending surgeons, the healthcare system and patients.

  18. Information and psychomotor skills knowledge acquisition: A student-customer-centered and computer-supported approach.

    Science.gov (United States)

    Nicholson, Anita; Tobin, Mary

    2006-01-01

    This presentation will discuss coupling commercial and customized computer-supported teaching aids to provide BSN nursing students with a friendly customer-centered self-study approach to psychomotor skill acquisition.

  19. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Use of simulated patients to develop communication skills in nursing education: An integrative review.

    Science.gov (United States)

    MacLean, Sharon; Kelly, Michelle; Geddes, Fiona; Della, Phillip

    2017-01-01

    Registered nurses are expected to communicate effectively with patients. To improve on this skill education programmes in both hospital and tertiary settings are increasingly turning to simulation modalities when training undergraduate and registered nurses. The roles simulated patients (SPs) assume can vary according to training purposes and approach. The first aim is to analyse how SPs are used in nursing education to develop communication skills. The second aim is to evaluate the evidence that is available to support the efficacy of using SPs for training nurses in communication skills and finally to review the SP recruitment and training procedure. An Integrative review. A search was conducted on CINAHL, Psych-info, PubMed, Google Scholar, Scopus, Ovid, Medline, and ProQuest databases. Keywords and inclusion/exclusion criteria were determined and applied to the search strategy. The integrative review included Nineteen studies from 2006-2016. Critical Appraisal Skills Program (CASP) method of evaluation was utilised. Emergent themes were extracted with similar and divergent perspectives. Analysis identified seven clinical contexts for communication skills training (CST) and two SP roles from the eighteen studies. SPs were either directly involved in the teaching of communication (active role) or used in the evaluation of the effectiveness of a communication skills program (passive role). A majority of studies utilised faculty-designed measurement instruments. The evidence presented in the 19 articles indicates that the use of SPs to teach nurse-patient communication skills targets more challenging clinical interactions. Engaging SPs in both CST program facilitation and course evaluation provides nurse educators with a strong foundation to develop further pedagogical and research capacity. Expanding the utilisation of SPs to augment nurses' communication skills and ability to engage with patients in a broader range of clinical contexts with increased

  1. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  2. Computer simulation in cell radiobiology

    International Nuclear Information System (INIS)

    Yakovlev, A.Y.; Zorin, A.V.

    1988-01-01

    This research monograph demonstrates the possible ways of using stochastic simulation for exploring cell kinetics, emphasizing the effects of cell radiobiology. In vitro kinetics of normal and irradiated cells is the main subject, but some approaches to the simulation of controlled cell systems are considered as well: the epithelium of the small intestine in mice taken as a case in point. Of particular interest is the evaluation of simulation modelling as a tool for gaining insight into biological processes and hence the new inferences from concrete experimental data, concerning regularities in cell population response to irradiation. The book is intended to stimulate interest among computer science specialists in developing new, more efficient means for the simulation of cell systems and to help radiobiologists in interpreting the experimental data

  3. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  4. The Effect of Simulation-Based Learning on Prospective Teachers' Inference Skills in Teaching Probability

    Science.gov (United States)

    Koparan, Timur; Yilmaz, Gül Kaleli

    2015-01-01

    The effect of simulation-based probability teaching on the prospective teachers' inference skills has been examined with this research. In line with this purpose, it has been aimed to examine the design, implementation and efficiency of a learning environment for experimental probability. Activities were built on modeling, simulation and the…

  5. Computer simulation of human motion in sports biomechanics.

    Science.gov (United States)

    Vaughan, C L

    1984-01-01

    This chapter has covered some important aspects of the computer simulation of human motion in sports biomechanics. First the definition and the advantages and limitations of computer simulation were discussed; second, research on various sporting activities were reviewed. These activities included basic movements, aquatic sports, track and field athletics, winter sports, gymnastics, and striking sports. This list was not exhaustive and certain material has, of necessity, been omitted. However, it was felt that a sufficiently broad and interesting range of activities was chosen to illustrate both the advantages and the pitfalls of simulation. It is almost a decade since Miller [53] wrote a review chapter similar to this one. One might be tempted to say that things have changed radically since then--that computer simulation is now a widely accepted and readily applied research tool in sports biomechanics. This is simply not true, however. Biomechanics researchers still tend to emphasize the descriptive type of study, often unfortunately, when a little theoretical explanation would have been more helpful [29]. What will the next decade bring? Of one thing we can be certain: The power of computers, particularly the readily accessible and portable microcomputer, will expand beyond all recognition. The memory and storage capacities will increase dramatically on the hardware side, and on the software side the trend will be toward "user-friendliness." It is likely that a number of software simulation packages designed specifically for studying human motion [31, 96] will be extensively tested and could gain wide acceptance in the biomechanics research community. Nevertheless, a familiarity with Newtonian and Lagrangian mechanics, optimization theory, and computers in general, as well as practical biomechanical insight, will still be a prerequisite for successful simulation models of human motion. Above all, the biomechanics researcher will still have to bear in mind that

  6. Simulation-Based Laparoscopic Surgery Crisis Resource Management Training-Predicting Technical and Nontechnical Skills.

    Science.gov (United States)

    Goldenberg, Mitchell G; Fok, Kai H; Ordon, Michael; Pace, Kenneth T; Lee, Jason Y

    2017-12-19

    To develop a unique simulation-based assessment using a laparoscopic inferior vena cava (IVC) injury scenario that allows for the safe assessment of urology resident's technical and nontechnical skills, and investigate the effect of personality traits performance in a surgical crisis. Urology residents from our institution were recruited to participate in a simulation-based training laparoscopic nephrectomy exercise. Residents completed demographic and multidimensional personality questionnaires and were instructed to play the role of staff urologist. A vasovagal response to pneumoperitoneum and an IVC injury event were scripted into the scenario. Technical and nontechnical skills were assessed by expert laparoscopic surgeons using validated tools (task checklist, GOALS, and NOTSS). Ten junior and five senior urology residents participated. Five residents were unable to complete the exercise safely. Senior residents outperformed juniors on technical (checklist score 15.1 vs 9.9, p Technical performance scores correlated with NOTSS scores (p technical performance (p technical score (p = 0.03) and pass/fail rating (p = 0.04). Resident level of training and laparoscopic experience correlated with technical performance during a simulation-based laparoscopic IVC injury crisis management scenario, as well as multiple domains of nontechnical performance. Personality traits of our surgical residents are similar and did not predict technical skill. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  7. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  8. Computational algorithms for simulations in atmospheric optics.

    Science.gov (United States)

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  9. SiMon: Simulation Monitor for Computational Astrophysics

    Science.gov (United States)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  10. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  11. Differences on the Level of Social Skills between Freshman Computer Gamers and Non-Gamers

    OpenAIRE

    Joseph B. Campit

    2015-01-01

    Computer games play a large role in socialization and the consequences of playing them have been a topic of debates. This observation led the researcher to conduct the study about the influence of computer games on the social skills of the BSIT first year students of Pangasinan State University, Bayambang Campus, during school year 2012-2013. This study determined the profile of the 115 BSIT first year students according to: preferred computer games and frequency of playing. It in...

  12. A serious game skills competition increases voluntary usage and proficiency of a virtual reality laparoscopic simulator during first-year surgical residents' simulation curriculum.

    Science.gov (United States)

    El-Beheiry, Mostafa; McCreery, Greig; Schlachta, Christopher M

    2017-04-01

    The objective of this study was to assess the effect of a serious game skills competition on voluntary usage of a laparoscopic simulator among first-year surgical residents' standard simulation curriculum. With research ethics board approval, informed consent was obtained from first-year surgical residents enrolled in an introductory surgical simulation curriculum. The class of 2013 served as a control cohort following the standard curriculum which mandates completion of six laparoscopic simulator skill tasks. For the 2014 competition cohort, the only change introduced was the biweekly and monthly posting of a leader board of the top three and ten fastest peg transfer times. Entry surveys were administered assessing attitudes towards simulation-based training and competition. Cohorts were observed for 5 months. There were 24 and 25 residents in the control and competition cohorts, respectively. The competition cohort overwhelmingly (76 %) stated that they were not motivated to deliberate practice by competition. Median total simulator usage time was 132 min (IQR = 214) in the competition cohort compared to 89 (IQR = 170) in the control cohort. The competition cohort completed their course requirements significantly earlier than the control cohort (χ 2  = 6.5, p = 0.01). There was a significantly greater proportion of residents continuing to use the simulator voluntarily after completing their course requirements in the competition cohort (44 vs. 4 %; p = 0.002). Residents in the competition cohort were significantly faster at peg transfer (194 ± 66 vs. 233 ± 53 s, 95 % CI of difference = 4-74 s; p = 0.03) and significantly decreased their completion time by 33 ± 54 s (95 % CI 10-56 s; paired t test, p = 0.007). A simple serious games skills competition increased voluntary usage and performance on a laparoscopic simulator, despite a majority of participants reporting they were not motivated by competition. Future directions should

  13. Virtual reality simulators: valuable surgical skills trainers or video games?

    Science.gov (United States)

    Willis, Ross E; Gomez, Pedro Pablo; Ivatury, Srinivas J; Mitra, Hari S; Van Sickle, Kent R

    2014-01-01

    Virtual reality (VR) and physical model (PM) simulators differ in terms of whether the trainee is manipulating actual 3-dimensional objects (PM) or computer-generated 3-dimensional objects (VR). Much like video games (VG), VR simulators utilize computer-generated graphics. These differences may have profound effects on the utility of VR and PM training platforms. In this study, we aimed to determine whether a relationship exists between VR, PM, and VG platforms. VR and PM simulators for laparoscopic camera navigation ([LCN], experiment 1) and flexible endoscopy ([FE] experiment 2) were used in this study. In experiment 1, 20 laparoscopic novices played VG and performed 0° and 30° LCN exercises on VR and PM simulators. In experiment 2, 20 FE novices played VG and performed colonoscopy exercises on VR and PM simulators. In both experiments, VG performance was correlated with VR performance but not with PM performance. Performance on VR simulators did not correlate with performance on respective PM models. VR environments may be more like VG than previously thought. © 2013 Published by Association of Program Directors in Surgery on behalf of Association of Program Directors in Surgery.

  14. A Comparative Study of University of Wisconsin-Stout Freshmen and Senior Education Majors Computing and Internet Technology Skills / Knowledge and Associated Learning Experiences

    OpenAIRE

    Sveum, Evan Charles

    2010-01-01

    A study comparing University of Wisconsin-Stout freshmen and senior education majors’ computing and Internet technology skills/knowledge and associated learning experiences was conducted. Instruments used in this study included the IC³® Exam by Certiport, Inc. and the investigator’s Computing and Internet Skills Learning Experiences survey. UW-Stout freshmen education majors participating in the study demonstrated poor computing and Internet technology skills/knowledge. UW-Stout senior educat...

  15. Learning curves of basic laparoscopic psychomotor skills in SINERGIA VR simulator.

    Science.gov (United States)

    Sánchez-Peralta, L F; Sánchez-Margallo, F M; Moyano-Cuevas, J L; Pagador, J B; Enciso, S; Gómez-Aguilera, E J; Usón-Gargallo, J

    2012-11-01

    Surgical simulators are currently essential within any laparoscopic training program because they provide a low-stakes, reproducible and reliable environment to acquire basic skills. The purpose of this study is to determine the training learning curve based on different metrics corresponding to five tasks included in SINERGIA laparoscopic virtual reality simulator. Thirty medical students without surgical experience participated in the study. Five tasks of SINERGIA were included: Coordination, Navigation, Navigation and touch, Accurate grasping and Coordinated pulling. Each participant was trained in SINERGIA. This training consisted of eight sessions (R1-R8) of the five mentioned tasks and was carried out in two consecutive days with four sessions per day. A statistical analysis was made, and the results of R1, R4 and R8 were pair-wise compared with Wilcoxon signed-rank test. Significance is considered at P value psychomotor skills that can be trained in SINERGIA. Therefore, and based on these results together with previous works, SINERGIA could be used as training tool with a properly designed training program.

  16. An "intermediate curriculum" for advanced laparoscopic skills training with virtual reality simulation.

    Science.gov (United States)

    Schreuder, Henk W R; van Hove, P Diederick; Janse, Juliënne A; Verheijen, Rene R M; Stassen, Laurents P S; Dankelman, Jenny

    2011-01-01

    To estimate face and construct validity for a novel curriculum designed for intermediately skilled laparoscopic surgeons on a virtual reality simulator. It consists of 5 exercises that focus on training precision and coordination between both hands. Prospective study (Canadian Task Force II-2). Three university hospitals and 4 teaching hospitals in the Netherlands. Residents, consultants, and laparoscopic experts (n = 69) in the fields of general surgery, gynecology, and urology participated. Participants were divided into 4 groups on the basis of their level of laparoscopic experience: resident, years 1-3 (n = 15); resident, years 4-6 (n = 17); consultant (n = 19); and laparoscopic experts (n = 18). Participants completed 3 runs of 5 exercises. The first run was an introduction, and the second and third runs were used for analysis. The parameters time, path length, collisions, and displacement were compared between groups. Afterward the participants completed a questionnaire to evaluate their laparoscopic experience and identify issues concerning the simulator and exercises. The expert group was significantly faster (p virtual reality curriculum for intermediately skilled laparoscopic surgeons. The results indicate that the curriculum is suitable for training of residents and consultants and to assess and maintain their laparoscopic skills. Copyright © 2011 AAGL. Published by Elsevier Inc. All rights reserved.

  17. A Simulated Clinical Skills Scenario to Teach Interprofessional Teamwork to Health Profession Students

    Directory of Open Access Journals (Sweden)

    Eileen Adel Herge

    2015-01-01

    Full Text Available The Eastern Pennsylvania Delaware Geriatric Education Center developed an Interprofessional Clinical Skills Scenario (CSS to facilitate development of teamwork skills, specifically decision making, communication and collaboration, in health professions students in medicine, nursing, pharmacy, occupational and physical therapy programs. The case scenario provides students with the opportunity to practice communication and collaboration with a team and standardized patient and caregiver in a simulated clinical setting. The CSS was integrated into an existing occupational therapy course in 2011. Students were recruited by faculty from various schools (health professions, pharmacy, nursing, medicine throughout the university to participate in the CSS. The program evaluation included demographic assessment, process, and outcome measures. 166 students have participated in the CSS. Pre- and post-tests measured students' attitude toward healthcare teams. A Team Observation Tool was used by faculty and standardized patients/caregivers to evaluate student teams on communication, information sharing, and team interaction. A satisfaction survey was completed by the learners at the end of the CSS. This simulated Clinical Skills Scenario is a practical, interactive exercise that allows teams of interprofessional students to practice teamwork skills and patient-centered care with standardized patients and caregivers. Following a review of the learning activity and evaluation tools, the authors reflect on the effectiveness of the evaluation process for this CSS.

  18. [Animal experimentation, computer simulation and surgical research].

    Science.gov (United States)

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  19. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    Science.gov (United States)

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  20. THE USE OF COMPUTER-BASED MEANS TO DEVELOP LISTENING AND SPEAKING SKILLS TO BUSINESS STUDENTS

    Directory of Open Access Journals (Sweden)

    Sim Monica Ariana

    2012-07-01

    Full Text Available The aim of this paper is to analyze how business students can achieve communication skills, namely listening and speaking, through computer-based interactive simulations. In today’s foreign language teaching, methods using computer applications and multimedia environments are more and more gaining territory to the detriment of traditional methods. These applications are used successfully in reading, writing, listening and speaking practices both by foreign language teachers and by students throughout the world. Moreover, these means are helpful in practising the four skills of a language: reading, writing, listening and speaking. With the advance of Internet, the computer has been transformed from a tool for information processing and display into a tool for information processing and communication. The instant worldwide connections enabled by the Internet have changed the way teachers and learners work in their teaching and learning of second/foreign language. The Internet provides the opportunity for business students to interact with native speakers and, in the same time, to listen to business people around the world, in this way getting acquainted with different accents and speeches. When students listen to a native speaker, they are automatically emerged in the latter’s world. There are many idioms and phrases used by native speakers of the language but they hardly are included in the traditional lesson materials. Through specific Internet sites, the students become familiar with these idioms and phrases and most important is that they learn how to use them in a context. From a cultural point of view, the students become familiar with the turn taking habits, addressing different people, greetings, invitations and many cultural related issues. What is important to keep in mind is that the teacher must create an appropriate learning environment to suit the situation and conform to the needs of the class. A learning environment

  1. Interactive Real-time Simulation of a Nuclear Reactor Emergency Core Cooling System on a Desktop Computer

    International Nuclear Information System (INIS)

    Muncharoen, C.; Chanyotha, S.; Bereznai, G.

    1998-01-01

    The simulation of the Emergency Core Cooling System for a 900 MW nuclear power plant has been developed by using object oriented programming language. It is capable of generating code that executes in real-time on a PENTIUM 100 or equivalent personal computer. Graphical user interface ECCS screens have been developed using Lab VIEW to allow interactive control of ECCS. The usual simulator functions, such as freeze, run, iterate, have been provided, and a number of malfunctions may be activated. A large pipe break near the reactor inlet header has been simulated to verify the response of the ECCS model. LOCA detection, ECC initiation, injection and recovery phased are all modeled, and give results consistent with safety analysis data for a 100% break. With stand alone ECCS simulation, the changes of flow and pressure in ECCS can be observed. The operator can study operational procedures and get used to LOCA in case of the LOCA. Practicing with malfunction, the operator will improve problem solving skills and gain a deeper comprehension of ECCS

  2. Computer-based laparoscopic and robotic surgical simulators: performance characteristics and perceptions of new users.

    Science.gov (United States)

    Lin, David W; Romanelli, John R; Kuhn, Jay N; Thompson, Renee E; Bush, Ron W; Seymour, Neal E

    2009-01-01

    This study aimed to define perceptions of the need and the value of new simulation devices for laparoscopic and robot-assisted surgery. The initial experience of surgeons using both robotic and nonrobotic laparoscopic simulators to perform an advanced laparoscopic skill was evaluated. At the 2006 Society of American Gastroesophageal Surgeons (SAGES) meeting, 63 Learning Center attendees used a new virtual reality robotic surgery simulator (SEP Robot) and either a computer-enhanced laparoscopic simulator (ProMIS) or a virtual reality simulator (SurgicalSIM). Demographic and training data were collected by an intake survey. Subjects then were assessed during one iteration of laparoscopic suturing and knot-tying on the SEP Robot and either the ProMIS or the SurgicalSIM. A posttask survey determined users' impressions of task realism, interface quality, and educational value. Performance data were collected and comparisons made between user-defined groups, different simulation platforms, and posttask survey responses. The task completion rate was significantly greater for experts than for nonexperts on the virtual reality platforms (SurgicalSIM: 100% vs 36%; SEP Robot: 93% vs 63%; p platforms, whereas simulator metrics best discriminated expertise for the videoscopic platform. Similar comparisons for the virtual reality platforms were not feasible because of the low task completion rate for nonexperts. The added degrees of freedom associated with the robotic surgical simulator instruments facilitated completion of the task by nonexperts. All platforms were perceived as effective training tools.

  3. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    Science.gov (United States)

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. A Computational Framework for Efficient Low Temperature Plasma Simulations

    Science.gov (United States)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  5. Use of computer graphics simulation for teaching of flexible sigmoidoscopy.

    Science.gov (United States)

    Baillie, J; Jowell, P; Evangelou, H; Bickel, W; Cotton, P

    1991-05-01

    The concept of simulation training in endoscopy is now well-established. The systems currently under development employ either computer graphics simulation or interactive video technology; each has its strengths and weaknesses. A flexible sigmoidoscopy training device has been designed which uses graphic routines--such as object oriented programming and double buffering--in entirely new ways. These programming techniques compensate for the limitations of currently available desk-top microcomputers. By boosting existing computer 'horsepower' with next generation coprocessors and sophisticated graphics tools such as intensity interpolation (Gouraud shading), the realism of computer simulation of flexible sigmoidoscopy is being greatly enhanced. The computer program has teaching and scoring capabilities, making it a truly interactive system. Use has been made of this ability to record, grade and store each trainee encounter in computer memory as part of a multi-center, prospective trial of simulation training being conducted currently in the USA. A new input device, a dummy endoscope, has been designed that allows application of variable resistance to the insertion tube. This greatly enhances tactile feedback, such as resistance during looping. If carefully designed trials show that computer simulation is an attractive and effective training tool, it is expected that this technology will evolve rapidly and be made widely available to trainee endoscopists.

  6. Using Learner-Centered, Simulation-Based Training to Improve Medical Students’ Procedural Skills

    Directory of Open Access Journals (Sweden)

    Serkan Toy

    2017-03-01

    Full Text Available Purpose: To evaluate the effectiveness of a learner-centered, simulation-based training developed to help medical students improve their procedural skills in intubation, arterial line placement, lumbar puncture, and central line insertion. Method: The study participants were second and third year medical students. Anesthesiology residents provided the training and evaluated students’ procedural skills. Two residents were present at each station to train the medical students who rotated through all 4 stations. Pre/posttraining assessment of confidence, knowledge, and procedural skills was done using a survey, a multiple-choice test, and procedural checklists, respectively. Results: In total, 24 students were trained in six 4-hour sessions. Students reported feeling significantly more confident, after training, in performing all 4 procedures on a real patient ( P < .001. Paired-samples t tests indicated statistically significant improvement in knowledge scores for intubation, t (23 = −2.92, P < .001, and arterial line placement, t (23 = −2.75, P < .001. Procedural performance scores for intubation ( t (23 = −17.29, P < .001, arterial line placement ( t (23 = −19.75, P < .001, lumbar puncture ( t (23 = −16.27, P < .001, and central line placement ( t (23 = −17.25, P < .001 showed significant improvement. Intraclass correlation coefficients indicated high reliability in checklist scores for all procedures. Conclusions: The simulation sessions allowed each medical student to receive individual attention from 2 residents for each procedure. Students’ written comments indicated that this training modality was well received. Results showed that medical students improved their self-confidence, knowledge, and skills in the aforementioned procedures.

  7. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  8. Ostomy Home Skills Program

    Medline Plus

    Full Text Available ... Medical Student Core Curriculum ACS/ASE Medical Student Simulation-Based Surgical Skills Curriculum Cancer Education Cancer Education ... Home Skills Kit supports patients with educational and simulation materials to learn and practice the skills needed ...

  9. Team Culture and Business Strategy Simulation Performance

    Science.gov (United States)

    Ritchie, William J.; Fornaciari, Charles J.; Drew, Stephen A. W.; Marlin, Dan

    2013-01-01

    Many capstone strategic management courses use computer-based simulations as core pedagogical tools. Simulations are touted as assisting students in developing much-valued skills in strategy formation, implementation, and team management in the pursuit of superior strategic performance. However, despite their rich nature, little is known regarding…

  10. The Simulation and Analysis of the Closed Die Hot Forging Process by A Computer Simulation Method

    Directory of Open Access Journals (Sweden)

    Dipakkumar Gohil

    2012-06-01

    Full Text Available The objective of this research work is to study the variation of various parameters such as stress, strain, temperature, force, etc. during the closed die hot forging process. A computer simulation modeling approach has been adopted to transform the theoretical aspects in to a computer algorithm which would be used to simulate and analyze the closed die hot forging process. For the purpose of process study, the entire deformation process has been divided in to finite number of steps appropriately and then the output values have been computed at each deformation step. The results of simulation have been graphically represented and suitable corrective measures are also recommended, if the simulation results do not agree with the theoretical values. This computer simulation approach would significantly improve the productivity and reduce the energy consumption of the overall process for the components which are manufactured by the closed die forging process and contribute towards the efforts in reducing the global warming.

  11. Developing Face-to-Face Argumentation Skills: Does Arguing on the Computer Help?

    Science.gov (United States)

    Iordanou, Kalypso

    2013-01-01

    Arguing on the computer was used as a method to promote development of face-to-face argumentation skills in middle schoolers. In the study presented, sixth graders engaged in electronic dialogues with peers on a controversial topic and in some reflective activities based on transcriptions of the dialogues. Although participants initially exhibited…

  12. Breaking News: Utilizing Video Simulations to Improve Educational Leaders' Public Speaking Skills

    Science.gov (United States)

    Friend, Jennifer; Adams, April; Curry, George

    2011-01-01

    This article examines specific uses of video simulations in one educational leadership preparation program to advance future school and district leaders' skills related to public speaking and participation in televised news interviews. One faculty member and two advanced educational leadership candidates share their perspectives of several…

  13. Prototyping and Simulating Parallel, Distributed Computations with VISA

    National Research Council Canada - National Science Library

    Demeure, Isabelle M; Nutt, Gary J

    1989-01-01

    ...] to support the design, prototyping, and simulation of parallel, distributed computations. In particular, VISA is meant to guide the choice of partitioning and communication strategies for such computations, based on their performance...

  14. Assessment of comparative skills between hand-assisted and straight laparoscopic colorectal training on an augmented reality simulator.

    Science.gov (United States)

    Leblanc, F; Delaney, C P; Neary, P C; Rose, J; Augestad, K M; Senagore, A J; Ellis, C N; Champagne, B J

    2010-09-01

    The aim of this study was to compare skills sets during a hand-assisted and straight laparoscopic colectomy on an augmented reality simulator. Twenty-nine surgeons, assigned randomly in 2 groups, performed laparoscopic sigmoid colectomies on a simulator: group A (n = 15) performed hand-assisted then straight procedures; group B (n = 14) performed straight then hand-assisted procedures. Groups were compared according to prior laparoscopic colorectal experience, performance (time, instrument path length, and instrument velocity changes), technical skills, and operative error. Prior laparoscopic colorectal experience was similar in both groups. Both groups had better performances with the hand-assisted approach, although technical skill scores were similar between approaches. The error rate was higher with the hand-assisted approach in group A, but similar between both approaches in group B. These data define the metrics of performance for hand-assisted and straight laparoscopic colectomy on an augmented reality simulator. The improved scores with the hand-assisted approach suggest that with this simulator a hand-assisted model may be technically easier to perform, although it is associated with increased intraoperative errors.

  15. Learning to consult with computers.

    Science.gov (United States)

    Liaw, S T; Marty, J J

    2001-07-01

    To develop and evaluate a strategy to teach skills and issues associated with computers in the consultation. An overview lecture plus a workshop before and a workshop after practice placements, during the 10-week general practice (GP) term in the 5th year of the University of Melbourne medical course. Pre- and post-intervention study using a mix of qualitative and quantitative methods within a strategic evaluation framework. Self-reported attitudes and skills with clinical applications before, during and after the intervention. Most students had significant general computer experience but little in the medical area. They found the workshops relevant, interesting and easy to follow. The role-play approach facilitated students' learning of relevant communication and consulting skills and an appreciation of issues associated with using the information technology tools in simulated clinical situations to augment and complement their consulting skills. The workshops and exposure to GP systems were associated with an increase in the use of clinical software, more realistic expectations of existing clinical and medical record software and an understanding of the barriers to the use of computers in the consultation. The educational intervention assisted students to develop and express an understanding of the importance of consulting and communication skills in teaching and learning about medical informatics tools, hardware and software design, workplace issues and the impact of clinical computer systems on the consultation and patient care.

  16. Skill of ship-following large-eddy simulations in reproducing MAGIC observations across the northeast Pacific stratocumulus to cumulus transition region

    Science.gov (United States)

    McGibbon, J.; Bretherton, C. S.

    2017-06-01

    measure aspects of the clouds and atmosphere above the ship. We used some of these observations to perform high-resolution computer simulations of the atmosphere in the region around the ship, with the goal of testing how well the simulation produces clouds and atmosphere similar to what was observed. Simulations of 13 one-way cruises to Honolulu, HI, were performed. We see the simulations skillfully produce changes in cloud properties that occur at different times of day and have average properties that match well with the observations. One error is that the air near the surface is slightly too cold in the simulations, meaning more heat is transferred up from the surface. Overall, this result builds confidence and trust in the ability of this type of simulation to produce realistic cloud properties in the northeast Pacific.

  17. Slab cooling system design using computer simulation

    NARCIS (Netherlands)

    Lain, M.; Zmrhal, V.; Drkal, F.; Hensen, J.L.M.

    2007-01-01

    For a new technical library building in Prague computer simulations were carried out to help design of slab cooling system and optimize capacity of chillers. In the paper is presented concept of new technical library HVAC system, the model of the building, results of the energy simulations for

  18. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Using simulation to improve the cognitive and psychomotor skills of novice students in advanced laparoscopic surgery: a meta-analysis.

    Science.gov (United States)

    Al-Kadi, Azzam S; Donnon, Tyrone

    2013-01-01

    Advances in simulation technologies have enhanced the ability to introduce the teaching and learning of laparoscopic surgical skills to novice students. In this meta-analysis, a total of 18 randomized controlled studies were identified that specifically looked at training novices in comparison with a control group as it pertains to knowledge retention, time to completion and suturing and knotting skills. The combined random-effect sizes (ESs) showed that novice students who trained on laparoscopic simulators have considerably developed better laparoscopic suturing and knot tying skills (d = 1.96, p < 0.01), conducted fewer errors (d = 2.13, p < 0.01), retained more knowledge (d = 1.57, p < 0.01) than their respective control groups, and were significantly faster on time to completion (d = 1.98, p < 0.01). As illustrated in corresponding Forest plots, the majority of the primary study outcomes included in this meta-analysis show statistically significant support (p < 0.05) for the use of laparoscopic simulators for novice student training on both knowledge and advanced surgical skill development (28 of 35 outcomes, 80%). The findings of this meta-analysis support strongly the use of simulators for teaching laparoscopic surgery skills to novice students in surgical residency programs.

  20. How Many Times Should One Run a Computational Simulation?

    DEFF Research Database (Denmark)

    Seri, Raffaello; Secchi, Davide

    2017-01-01

    This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces statisti......This chapter is an attempt to answer the question “how many runs of a computational simulation should one do,” and it gives an answer by means of statistical analysis. After defining the nature of the problem and which types of simulation are mostly affected by it, the article introduces...

  1. Crisis management on surgical wards: a simulation-based approach to enhancing technical, teamwork, and patient interaction skills.

    Science.gov (United States)

    Arora, Sonal; Hull, Louise; Fitzpatrick, Maureen; Sevdalis, Nick; Birnbach, David J

    2015-05-01

    To establish the efficacy of simulation-based training for improving residents' management of postoperative complications on a surgical ward. Effective postoperative care is a crucial determinant of patient outcome, yet trainees learn this through the Halstedian approach. Little evidence exists on the efficacy of simulation in this safety-critical environment. A pre-/postintervention design was employed with 185 residents from 5 hospitals. Residents participated in 2 simulated ward-based scenarios consisting of a deteriorating postoperative patient. A debriefing intervention was implemented between scenarios. Resident performance was evaluated by calibrated, blinded assessors using the validated Global Assessment Toolkit for Ward Care. This included an assessment of clinical skills (checklist of 35 tasks), team-working skills (score range 1-6 per skill), and physician-patient interaction skills. Excellent interrater reliability was achieved in all assessments (reliability 0.89-0.99, P pre = 73.7% vs post = 94.8%, P pre = 21.1% vs post = 84.2% P pre = 42.1% vs post = 100%, P pre = 36.8% vs post = 89.8%, P pre = 1.75 vs post = 3.43), leadership (pre = 2.43 vs post = 4.20), and decision-making skills (pre = 2.20 vs post = 3.81, P < 0.001). Finally, residents improved in all elements of interaction with patients: empathy, organization, and verbal and nonverbal expression (Ps < 0.001). The study provides evidence for the efficacy of ward-based team training using simulation. Such exercises should be formally incorporated into training curricula to enhance patient safety in the high-risk surgical ward environment.

  2. Structured training on the da Vinci Skills Simulator leads to improvement in technical performance of robotic novices.

    Science.gov (United States)

    Walliczek-Dworschak, U; Mandapathil, M; Förtsch, A; Teymoortash, A; Dworschak, P; Werner, J A; Güldner, C

    2017-02-01

    The increasing use of minimally invasive techniques such as robotic-assisted devices raises the question of how to acquire robotic surgery skills. The da Vinci Skills Simulator has been demonstrated to be an effective training tool in previous reports. To date, little data are available on how to acquire proficiency through simulator training. We investigated the outcome of a structured training programme for robotic surgical skills by robotic novices. This prospective study was conducted from January to December 2013 using the da Vinci Skills Simulator. Twenty participants, all robotic novices, were enrolled in a 4-week training curriculum. After a brief introduction to the simulator system, three consecutive repetitions of five selected exercises (Match Board 1, 2, 3 and Ring and Rail 1, 2) were performed in a defined order on days 1, 8, 15 and 22. On day 22, one repetition of a previously unpractised more advanced module (Needle Targeting) was also performed. After completion of each study day, the overall performance, time to completion, economy in motion, instrument collisions, excessive instrument force, instruments out of view, master workspace range and number of drops were analysed. Comparing the first and final repetition, overall score and time needed to complete all exercises, economy of motion and instrument collisions were significantly improved in nearly all exercises. Regarding the new exercise, a positive training effect could be demonstrated. While its overall entry score was significantly higher, the time to completion and economy of motion were significantly lower than the scores on the first repetition of the previous 5 exercises. It could be shown that training on the da Vinci Skills Simulator led to an improvement in technical performance of robotic novices. With regard to a new exercise, the training had a positive effect on the technical performance. © 2016 John Wiley & Sons Ltd.

  3. Computer simulation of gear tooth manufacturing processes

    Science.gov (United States)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  4. A computer-based feedback only intervention with and without a moderation skills component

    OpenAIRE

    Weaver, Cameron C.; Leffingwell, Thad R.; Lombardi, Nathaniel J.; Claborn, Kasey R.; Miller, Mary E.; Martens, Matthew P.

    2013-01-01

    Research on the efficacy of computer-delivered feedback-only interventions (FOIs) for college alcohol misuse has been mixed. Limitations to these FOIs include participant engagement and variation in the use of a moderation skills component. The current investigation sought to address these limitations using a novel computer-delivered FOI, the Drinkers Assessment and Feedback Tool for College Students (DrAFT-CS). Heavy drinking college students (N = 176) were randomly assigned to DrAFT-CS, DrA...

  5. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    Science.gov (United States)

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  6. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  7. High educational impact of a national simulation-based urological curriculum including technical and non-technical skills.

    NARCIS (Netherlands)

    Vries, A.H. de; Schout, B.M.A.; Merriënboer, J.J.G. van; Pelger, R.C.M.; Koldewijn, E.L.; Wagner, C.

    2017-01-01

    Background: Although simulation training is increasingly used to meet modern technology and patient safety demands, its successful integration within surgical curricula is still rare. The Dutch Urological Practical Skills (D-UPS) curriculum provides modular simulation-based training of technical

  8. Intravenous catheter training system: computer-based education versus traditional learning methods.

    Science.gov (United States)

    Engum, Scott A; Jeffries, Pamela; Fisher, Lisa

    2003-07-01

    Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors

  9. COMPUTER EVALUATION OF SKILLS FORMATION QUALITY IN THE IMPLEMENTATION OF COMPETENCE-BASED APPROACH TO LEARNING

    Directory of Open Access Journals (Sweden)

    Vitalia A. Zhuravleva

    2014-01-01

    Full Text Available The article deals with the problem of effective organization of skills forming as an important part of the competence approach in education, implemented via educational standards of new generation. The solution of the problem suggests using of computer tools to assess the quality of skills formation and abilities based on the proposed model of the problem. This paper proposes an approach to creating an assessing model of the level of skills formation in knowledge management systems based on mathematical modeling methods. Attention is paid to the evaluation strategy and technology of assessment, which is based on the use of rules of fuzzy mathematics. Algorithmic implementation of the proposed model of evaluation of the quality of skills development is shown as well. 

  10. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.

    Science.gov (United States)

    Dubin, Ariel K; Smith, Roger; Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia

    To answer the question of whether there is a difference between robotic virtual reality simulator performance assessment and validated human reviewers. Current surgical education relies heavily on simulation. Several assessment tools are available to the trainee, including the actual robotic simulator assessment metrics and the Global Evaluative Assessment of Robotic Skills (GEARS) metrics, both of which have been independently validated. GEARS is a rating scale through which human evaluators can score trainees' performances on 6 domains: depth perception, bimanual dexterity, efficiency, force sensitivity, autonomy, and robotic control. Each domain is scored on a 5-point Likert scale with anchors. We used 2 common robotic simulators, the dV-Trainer (dVT; Mimic Technologies Inc., Seattle, WA) and the da Vinci Skills Simulator (dVSS; Intuitive Surgical, Sunnyvale, CA), to compare the performance metrics of robotic surgical simulators with the GEARS for a basic robotic task on each simulator. A prospective single-blinded randomized study. A surgical education and training center. Surgeons and surgeons in training. Demographic information was collected including sex, age, level of training, specialty, and previous surgical and simulator experience. Subjects performed 2 trials of ring and rail 1 (RR1) on each of the 2 simulators (dVSS and dVT) after undergoing randomization and warm-up exercises. The second RR1 trial simulator performance was recorded, and the deidentified videos were sent to human reviewers using GEARS. Eight different simulator assessment metrics were identified and paired with a similar performance metric in the GEARS tool. The GEARS evaluation scores and simulator assessment scores were paired and a Spearman rho calculated for their level of correlation. Seventy-four subjects were enrolled in this randomized study with 9 subjects excluded for missing or incomplete data. There was a strong correlation between the GEARS score and the simulator metric

  11. A large-scale mass casualty simulation to develop the non-technical skills medical students require for collaborative teamwork.

    Science.gov (United States)

    Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam

    2016-03-08

    There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.

  12. The visual simulators for architecture and computer organization learning

    OpenAIRE

    Nikolić Boško; Grbanović Nenad; Đorđević Jovan

    2009-01-01

    The paper proposes a method of an effective distance learning of architecture and computer organization. The proposed method is based on a software system that is possible to be applied in any course in this field. Within this system students are enabled to observe simulation of already created computer systems. The system provides creation and simulation of switch systems, too.

  13. Fundamental arthroscopic skill differentiation with virtual reality simulation.

    Science.gov (United States)

    Rose, Kelsey; Pedowitz, Robert

    2015-02-01

    The purpose of this study was to investigate the use and validity of virtual reality modules as part of the educational approach to mastering arthroscopy in a safe environment by assessing the ability to distinguish between experience levels. Additionally, the study aimed to evaluate whether experts have greater ambidexterity than do novices. Three virtual reality modules (Swemac/Augmented Reality Systems, Linkoping, Sweden) were created to test fundamental arthroscopic skills. Thirty participants-10 experts consisting of faculty, 10 intermediate participants consisting of orthopaedic residents, and 10 novices consisting of medical students-performed each exercise. Steady and Telescope was designed to train centering and image stability. Steady and Probe was designed to train basic triangulation. Track and Moving Target was designed to train coordinated motions of arthroscope and probe. Metrics reflecting speed, accuracy, and efficiency of motion were used to measure construct validity. Steady and Probe and Track a Moving Target both exhibited construct validity, with better performance by experts and intermediate participants than by novices (P virtual reality modules developed through task deconstruction. Participants with the most arthroscopic experience performed better and were more consistent than novices on all 3 virtual reality modules. Greater arthroscopic experience correlates with more symmetry of ambidextrous performance. However, further adjustment of the modules may better simulate fundamental arthroscopic skills and discriminate between experience levels. Arthroscopy training is a critical element of orthopaedic surgery resident training. Developing techniques to safely and effectively train these skills is critical for patient safety and resident education. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Programme for the simulation of the TPA-i 1001 computer on the CDC-1604-A computer

    International Nuclear Information System (INIS)

    Belyaev, A.V.

    1976-01-01

    The basic features and capacities of the program simulating the 1001 TPA-i computer with the help of CDC-1604-A are described. The program is essentially aimed at translation of programs in the SLAHG language for the TPA-type computers. The basic part of the program simulates the work of the central TPA processor. This subprogram consequently performs the actions changing in the necessary manner the registers and memory states of the TPA computer. The simulated TPA computer has subprograms-analogous of external devices, i.e. the ASR-33 teletype, the FS 1501 tape reader, and the FACIT perforator. Work according to the program takes 1.65 - 2 times less time as against the work with TPA with the minimum set of external equipment [ru

  15. Large scale particle simulations in a virtual memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Million, R.; Wagner, J.S.; Tajima, T.

    1983-01-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceeds the computer core size. The required address space is automatically mapped onto slow disc memory the the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Assesses to slow memory significantly reduce the excecution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time. (orig.)

  16. Large-scale particle simulations in a virtual-memory computer

    International Nuclear Information System (INIS)

    Gray, P.C.; Wagner, J.S.; Tajima, T.; Million, R.

    1982-08-01

    Virtual memory computers are capable of executing large-scale particle simulations even when the memory requirements exceed the computer core size. The required address space is automatically mapped onto slow disc memory by the operating system. When the simulation size is very large, frequent random accesses to slow memory occur during the charge accumulation and particle pushing processes. Accesses to slow memory significantly reduce the execution rate of the simulation. We demonstrate in this paper that with the proper choice of sorting algorithm, a nominal amount of sorting to keep physically adjacent particles near particles with neighboring array indices can reduce random access to slow memory, increase the efficiency of the I/O system, and hence, reduce the required computing time

  17. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    Science.gov (United States)

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  18. Advanced Simulation and Computing FY17 Implementation Plan, Version 0

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Michel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Archer, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hendrickson, Bruce [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wade, Doug [National Nuclear Security Administration (NNSA), Washington, DC (United States). Office of Advanced Simulation and Computing and Institutional Research and Development; Hoang, Thuc [National Nuclear Security Administration (NNSA), Washington, DC (United States). Computational Systems and Software Environment

    2016-08-29

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.

  19. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    Science.gov (United States)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  20. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    Science.gov (United States)

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  1. Helping Mothers Survive Bleeding After Birth: retention of knowledge, skills, and confidence nine months after obstetric simulation-based training.

    Science.gov (United States)

    Nelissen, Ellen; Ersdal, Hege; Mduma, Estomih; Evjen-Olsen, Bjørg; Broerse, Jacqueline; van Roosmalen, Jos; Stekelenburg, Jelle

    2015-08-25

    It is important to know the decay of knowledge, skills, and confidence over time to provide evidence-based guidance on timing of follow-up training. Studies addressing retention of simulation-based education reveal mixed results. The aim of this study was to measure the level of knowledge, skills, and confidence before, immediately after, and nine months after simulation-based training in obstetric care in order to understand the impact of training on these components. An educational intervention study was carried out in 2012 in a rural referral hospital in Northern Tanzania. Eighty-nine healthcare workers of different cadres were trained in "Helping Mothers Survive Bleeding After Birth", which addresses basic delivery skills including active management of third stage of labour and management of postpartum haemorrhage (PPH). Knowledge, skills, and confidence were tested before, immediately after, and nine months after training amongst 38 healthcare workers. Knowledge was tested by completing a written 26-item multiple-choice questionnaire. Skills were tested in two simulated scenarios "basic delivery" and "management of PPH". Confidence in active management of third stage of labour, management of PPH, determination of completeness of the placenta, bimanual uterine compression, and accessing advanced care was self-assessed using a written 5-item questionnaire. Mean knowledge scores increased immediately after training from 70 % to 77 %, but decreased close to pre-training levels (72 %) at nine-month follow-up (p = 0.386) (all p-levels are compared to pre-training). The mean score in basic delivery skills increased after training from 43 % to 51 %, and was 49 % after nine months (p = 0.165). Mean scores of management of PPH increased from 39 % to 51 % and were sustained at 50 % at nine months (p = 0.003). Bimanual uterine compression skills increased from 19 % before, to 43 % immediately after, to 48 % nine months after training (p = 0

  2. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  3. Simulators in catheter-based interventional radiology: training or computer games?

    International Nuclear Information System (INIS)

    Gould, D.A.; Kessel, D.O.; Healey, A.E.; Johnson, S.J.; Lewandowski, W.E.

    2006-01-01

    Training in interventional radiology (IR) relies on a traditional apprenticeship; to protect patients, expert supervision is mandatory until knowledge, attitudes and practical skills have been certified as satisfactory. However, the current quality of IR training is threatened by reduced time for trainees to learn, as well as a loss of basic diagnostic, training cases to non-invasive imaging. At the same time, IR techniques are becoming a focus of interest to a range of other clinical specialities. To address this training shortfall there is a need to develop novel training alternatives such as simulator models. Few simulator models in any medical field have been successfully validated to show improved clinical skills in treating patients. To date no endovascular simulator has met this standard. A good simulator must be based around key performance measures (metrics) derived from careful analysis of the procedure to be replicated. Metrics can be determined by trained psychologists from a direct analysis of the content of the job or task to be tested. The identification of these critical measures of performance is a complex process which must be tailored to a training curriculum to be effective. Simulators based on flawed metrics will invariably lead to unsatisfactory assessment. It follows that simulator development must involve the statutory licensing authorities. Equally it is essential that we do not assume that training on a particular simulator will correlate with the ability to perform the task in the real world. This 'transfer of training' must be rigorously proven by validation studies

  4. Simulation as a tool for improving acquisition of neonatal resuscitation skills for obstetric residents.

    Science.gov (United States)

    Bruno, C J; Angert, R; Rosen, O; Lee, C; Vega, M; Kim, M; Yu, Y; Bernstein, P S; Goffman, D

    2016-01-01

    Our goal was to compare the confidence, knowledge, and performance of obstetric residents taught initial neonatal resuscitation steps in a simulation-based versus lecture-based format. Our study was a prospective randomized controlled trial of 33 obstetric residents. Baseline confidence, knowledge, and clinical skills assessments were performed. Subjects were randomized to traditional lecture (n = 14) or simulation-based (n = 19) neonatal resuscitation curriculum with a focus on initial steps. Follow-up assessments were performed at 3 and 6 months. Total confidence, knowledge, and clinical performance scores and change from baseline in these scores were calculated and compared between groups. Both the lecture-based and simulated-based groups demonstrated significant improvement in confidence, knowledge, and performance over time. However, compared with the lecture group, the magnitude of the mean change from baseline in performance scores was significantly greater in the simulation group at 3 months (2.9 versus 10.1; p < 0.001), but not at 6 months (7.0 versus 9.3; p = 0.11). Our study demonstrates the superiority of simulation in teaching obstetric residents initial neonatal resuscitation steps compared with a traditional lecture format. Skills are retained for upwards of 3-6 months. Refresher instruction by 6 months post-instruction may be beneficial.

  5. Parallel Monte Carlo simulations on an ARC-enabled computing grid

    International Nuclear Information System (INIS)

    Nilsen, Jon K; Samset, Bjørn H

    2011-01-01

    Grid computing opens new possibilities for running heavy Monte Carlo simulations of physical systems in parallel. The presentation gives an overview of GaMPI, a system for running an MPI-based random walker simulation on grid resources. Integrating the ARC middleware and the new storage system Chelonia with the Ganga grid job submission and control system, we show that MPI jobs can be run on a world-wide computing grid with good performance and promising scaling properties. Results for relatively communication-heavy Monte Carlo simulations run on multiple heterogeneous, ARC-enabled computing clusters in several countries are presented.

  6. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  7. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  8. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  9. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  10. Simulation-guided cardiac auscultation improves medical students' clinical skills: the Pavia pilot experience.

    Science.gov (United States)

    Perlini, Stefano; Salinaro, Francesco; Santalucia, Paola; Musca, Francesco

    2014-03-01

    Clinical evaluation is the cornerstone of any cardiac diagnosis, although excessive over-specialisation often leads students to disregard the value of clinical skills, and to overemphasize the approach to instrumental cardiac diagnosis. Time restraints, low availability of "typical" cardiac patients on whom to perform effective bedside teaching, patients' respect and the underscoring of the value of clinical skills all lead to a progressive decay in teaching. Simulation-guided cardiac auscultation may improve clinical training in medical students and residents. Harvey(©) is a mannequin encompassing more than 50 cardiac diagnoses that was designed and developed at the University of Miami (Florida, USA). One of the advantages of Harvey(©) simulation resides in the possibility of listening, comparing and discussing "real" murmurs. To objectively assess its teaching performance, the capability to identify five different cardiac diagnoses (atrial septal defect, normal young subject, mitral stenosis with tricuspid regurgitation, chronic mitral regurgitation, and pericarditis) out of more than 50 diagnostic possibilities was assessed in 523 III-year medical students (i.e. at the very beginning of their clinical experience), in 92 VI-year students, and in 42 residents before and after a formal 10-h teaching session with Harvey(©). None of them had previously experienced simulation-based cardiac auscultation in addition to formal lecturing (all three groups) and bedside teaching (VI-year students and residents). In order to assess the "persistence" of the acquired knowledge over time, the test was repeated after 3 years in 85 students, who did not repeat the formal 10-h teaching session with Harvey(©) after the III year. As expected, the overall response was poor in the "beginners" who correctly identified 11.0 % of the administered cardiac murmurs. After simulation-guided training, the ability to recognise the correct cardiac diagnoses was much better (72.0 %; p

  11. [The effect of a scenario-based simulation communication course on improving the communication skills of nurses].

    Science.gov (United States)

    Huang, Ya-Hsuan; Hsieh, Suh-Ing; Hsu, Li-Ling

    2014-04-01

    Limited disease knowledge is frequently the cause of disease-related anxiety in myocardial infarction patients. The ability to communicate effectively serves multiple purposes in the professional nursing practice. By communicating effectively with myocardial infarction patients, nurses may help reduce their anxiety by keeping them well informed about their disease and teaching them self-care strategies. This research evaluates the communication skills of nurses following scenario-based simulation education in the context of communication with myocardial infarction patients. This study used an experimental design and an educational intervention. The target population comprised nurses of medicine (clinical qualified level N to N2 for nursing) working at a municipal hospital in Taipei City, Taiwan. A total 122 participants were enrolled. Stratified block randomization divided participants into an experimental group and a control group. The experimental group received clinical scenario-based simulation education for communication. The control group received traditional class-based education for communication. Both groups received a pre-test and a Communication Skills Checklist post-test assessment. Results were analyzed using SPSS 17.0 for Windows software. A t-test showed significant increases in communication skills (p skills following the education intervention. The results indicate that clinical scenario-based simulation education for communication is significantly more effective than traditional class-based education in enhancing the ability of nurses to communicate effectively with myocardial infarction patients.

  12. A tool for assessing case history and feedback skills in audiology students working with simulated patients.

    Science.gov (United States)

    Hughes, Jane; Wilson, Wayne J; MacBean, Naomi; Hill, Anne E

    2016-12-01

    To develop a tool for assessing audiology students taking a case history and giving feedback with simulated patients (SP). Single observation, single group design. Twenty-four first-year audiology students, five simulated patients, two clinical educators, and three evaluators. The Audiology Simulated Patient Interview Rating Scale (ASPIRS) was developed consisting of six items assessing specific clinical skills, non-verbal communication, verbal communication, interpersonal skills, interviewing skills, and professional practice skills. These items are applied once for taking a case history and again for giving feedback. The ASPIRS showed very high internal consistency (α = 0.91-0.97; mean inter-item r = 0.64-0.85) and fair-to-moderate agreement between evaluators (29.2-54.2% exact and 79.2-100% near agreement; κ weighted up to 0.60). It also showed fair-to-moderate absolute agreement amongst evaluators for single evaluator scores (intraclass correlation coefficient [ICC] r = 0.35-0.59) and substantial consistency of agreement amongst evaluators for three-evaluator averaged scores (ICC r = 0.62-0.81). Factor analysis showed the ASPIRS' 12 items fell into two components, one containing all feedback items and one containing all case history items. The ASPIRS shows promise as the first published tool for assessing audiology students taking a case history and giving feedback with an SP.

  13. Computer simulation as representation of knowledge in education

    International Nuclear Information System (INIS)

    Krekic, Valerija Pinter; Namestovski, Zolt

    2009-01-01

    According to Aebli's operative method (1963) and Bruner's (1974) theory of representation the development of the process of thinking in teaching has the following phases - levels of abstraction: manipulation with specific things (specific phase), iconic representation (figural phase), symbolic representation (symbolic phase). Modern information technology has contributed to the enrichment of teaching and learning processes, especially in the fields of natural sciences and mathematics and those of production and technology. Simulation appears as a new possibility in the representation of knowledge. According to Guetzkow (1972) simulation is an operative representation of reality from a relevant aspect. It is about a model of an objective system, which is dynamic in itself. If that model is material it is a simple simulation, if it is abstract it is a reflective experiment, that is a computer simulation. This present work deals with the systematization and classification of simulation methods in the teaching of natural sciences and mathematics and of production and technology with special retrospective view on computer simulations and exemplar representation of the place and the role of this modern method of cognition. Key words: Representation of knowledge, modeling, simulation, education

  14. Effects of nursing process-based simulation for maternal child emergency nursing care on knowledge, attitude, and skills in clinical nurses.

    Science.gov (United States)

    Kim, Sunghee; Shin, Gisoo

    2016-02-01

    Since previous studies on simulation-based education have been focused on fundamental nursing skills for nursing students in South Korea, there is little research available that focuses on clinical nurses in simulation-based training. Further, there is a paucity of research literature related to the integration of the nursing process into simulation training particularly in the emergency nursing care of high-risk maternal and neonatal patients. The purpose of this study was to identify the effects of nursing process-based simulation on knowledge, attitudes, and skills for maternal and child emergency nursing care in clinical nurses in South Korea. Data were collected from 49 nurses, 25 in the experimental group and 24 in the control group, from August 13 to 14, 2013. This study was an equivalent control group pre- and post-test experimental design to compare the differences in knowledge, attitudes, and skills for maternal and child emergency nursing care between the experimental group and the control group. The experimental group was trained by the nursing process-based simulation training program, while the control group received traditional methods of training for maternal and child emergency nursing care. The experimental group was more likely to improve knowledge, attitudes, and skills required for clinical judgment about maternal and child emergency nursing care than the control group. Among five stages of nursing process in simulation, the experimental group was more likely to improve clinical skills required for nursing diagnosis and nursing evaluation than the control group. These results will provide valuable information on developing nursing process-based simulation training to improve clinical competency in nurses. Further research should be conducted to verify the effectiveness of nursing process-based simulation with more diverse nurse groups on more diverse subjects in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of simulation-based emergency cardiac arrest education on nursing students' self-efficacy and critical thinking skills: Roleplay versus lecture.

    Science.gov (United States)

    Kim, Eunsook

    2018-02-01

    Simulation education is a learning method for improving self-efficacy and critical thinking skills. However, not much study has been done on how to use it for education on emergency cardiac arrest situations, for which a multidisciplinary team approach is required. This study investigated the effects of simulation education on nursing students' self-efficacy and critical thinking skills in emergency cardiac arrest situations. A quasi-experimental research approach with a crossover design was used to compare two types of simulation instruction methods. This study was conducted with 76 nursing students divided into two groups by order of instruction methods, in November and December 2016. Both groups of participants experienced a simulation lesson based on the same emergency scenario. Group A first completed a roleplay of an emergency cardiac arrest situation in a clinical setting, while Group B first listened to a lecture on the procedure. After ten days, Group A repeated the simulation exercise after listening to the lecture, while Group B completed the simulation exercise after the roleplay. The students' self-efficacy and critical thinking skills were measured using a questionnaire before and after each session. In the first session, self-efficacy and critical thinking skills scores increased greatly from pretest to posttest for Group A in comparison to Group B; no statistically significant difference was found between the two groups. In the second session, Group B showed a significant increase between pretest and posttest, while Group A showed no significant difference. Conducting the simulation exercise after the roleplay was a more effective teaching method than conducting it after the lecture. Moreover, having the nursing students assume various roles in realistic roleplay situations combined with simulation exercises led to a deeper understanding of clinical situations and improved their self-efficacy and critical thinking skills. Copyright © 2017 Elsevier

  16. Improving Nurses' Peripheral Intravenous Catheter Insertion Knowledge, Confidence, and Skills Using a Simulation-Based Blended Learning Program: A Randomized Trial.

    Science.gov (United States)

    Keleekai, Nowai L; Schuster, Catherine A; Murray, Connie L; King, Mary Anne; Stahl, Brian R; Labrozzi, Laura J; Gallucci, Susan; LeClair, Matthew W; Glover, Kevin R

    2016-12-01

    Peripheral intravenous catheter (PIVC) insertion is one of the most common invasive procedures performed in a hospital, but most nurses receive little formal training in this area. Blended PIVC insertion training programs that incorporate deliberate simulated practice have the potential to improve clinical practice and patient care. The study was a randomized, wait-list control group with crossover using nurses on three medical/surgical units. Baseline PIVC knowledge, confidence, and skills assessments were completed for both groups. The intervention group then received a 2-hour PIVC online course, followed by an 8-hour live training course using a synergistic mix of three simulation tools. Both groups were then reassessed. After crossover, the wait-list group received the same intervention and both groups were reassessed. At baseline, both groups were similar for knowledge, confidence, and skills. Compared with the wait-list group, the intervention group had significantly higher scores for knowledge, confidence, and skills upon completing the training program. After crossover, the wait-list group had similarly higher scores for knowledge, confidence, and skills than the intervention group. Between the immediate preintervention and postintervention periods, the intervention group improved scores for knowledge by 31%, skills by 24%, and decreased confidence by 0.5%, whereas the wait-list group improved scores for knowledge by 28%, confidence by 16%, and skills by 15%. Results demonstrate significant improvements in nurses' knowledge, confidence, and skills with the use of a simulation-based blended learning program for PIVC insertion. Transferability of these findings from a simulated environment into clinical practice should be further explored.

  17. Computer simulations of shear thickening of concentrated dispersions

    NARCIS (Netherlands)

    Boersma, W.H.; Laven, J.; Stein, H.N.

    1995-01-01

    Stokesian dynamics computer simulations were performed on monolayers of equally sized spheres. The influence of repulsive and attractive forces on the rheological behavior and on the microstructure were studied. Under specific conditions shear thickening could be observed in the simulations, usually

  18. Computational fluid dynamics simulations and validations of results

    CSIR Research Space (South Africa)

    Sitek, MA

    2013-09-01

    Full Text Available Wind flow influence on a high-rise building is analyzed. The research covers full-scale tests, wind-tunnel experiments and numerical simulations. In the present paper computational model used in simulations is described and the results, which were...

  19. Augmented Reality Simulations on Handheld Computers

    Science.gov (United States)

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  20. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  1. Implementing simulated learning modules to improve students’ pharmacy practice skills and professionalism

    Directory of Open Access Journals (Sweden)

    Fejzic J

    2015-09-01

    Full Text Available Background: Effective communication enables healthcare professionals and students to practise their disciplines in a professional and competent manner. Simulated-based education (SBE has been increasingly used to improve students’ communication and practice skills in Health Education. Objective: Simulated learning modules (SLMs were developed using practice-based scenarios grounded in effective communication competencies. The effect of the SLMs on Pharmacy students’ (i Practice skills and (ii Professionalism were evaluated. Methods: SLMs integrating EXCELL competencies were applied in the classroom to study their effect on a number of learning outcomes. EXcellence in Cultural Experiential Learning and Leadership (EXCELL Program is a schematic, evidence-based professional development resource centred around developing participants’ self-efficacy and generic communication competencies. Students (N=95 completed three hours of preliminary lectures and eight hours of SLM workshops including six scenarios focused on Pharmacy Practice and Experiential Placements. Each SLM included briefing, role-plays with actors, facilitation, and debriefing on EXCELL social interaction maps (SIMs. Evaluations comprised quantitative and qualitative survey responsed by students before and post-workshops, and post-placements, and teachers’ reflections. Surveys examine specific learning outcomes by using pharmacy professionalism and pharmacy practice effectiveness scales. Responses were measured prior to the commencement of SLMs, after completion of the two workshops and after students completed their block placement. Self-report measures enabled students to self-assess whether any improvements occurred. Results: Student responses were overwhelmingly positive and indicated significant improvements in their Pharmacy practice and professionalism skills, and commitment to professional ethics. Qualitative feedback strongly supported students’ improved communication

  2. Innovative approach using interprofessional simulation to educate surgical residents in technical and nontechnical skills in high-risk clinical scenarios.

    Science.gov (United States)

    Nicksa, Grace A; Anderson, Cristan; Fidler, Richard; Stewart, Lygia

    2015-03-01

    The Accreditation Council for Graduate Medical Education core competencies stress nontechnical skills that can be difficult to evaluate and teach to surgical residents. During emergencies, surgeons work in interprofessional teams and are required to perform certain procedures. To obtain proficiency in these skills, residents must be trained. To educate surgical residents in leadership, teamwork, effective communication, and infrequently performed emergency surgical procedures with the use of interprofessional simulations. SimMan 3GS was used to simulate high-risk clinical scenarios (15-20 minutes), followed by debriefings with real-time feedback (30 minutes). A modified Oxford Non-Technical Skills scale (score range, 1-4) was used to assess surgical resident performance during the first half of the academic year (July-December 2012) and the second half of the academic year (January-June 2013). Anonymous online surveys were used to solicit participant feedback. Simulations were conducted in the operating room, intensive care unit, emergency department, ward, and simulation center. A total of 43 surgical residents (postgraduate years [PGYs] 1 and 2) participated in interdisciplinary clinical scenarios, with other health care professionals (nursing, anesthesia, critical care, medicine, respiratory therapy, and pharmacy; mean number of nonsurgical participants/session: 4, range 0-9). Thirty seven surgical residents responded to the survey. Simulation of high-risk clinical scenarios: postoperative pulmonary embolus, pneumothorax, myocardial infarction, gastrointestinal bleeding, anaphylaxis with a difficult airway, and pulseless electrical activity arrest. Evaluation of resident skills: communication, leadership, teamwork, problem solving, situation awareness, and confidence in performing emergency procedures (eg, cricothyroidotomy). A total of 31 of 35 (89%) of the residents responding found the sessions useful. Additionally, 28 of 33 (85%) reported improved confidence

  3. Using EDUCache Simulator for the Computer Architecture and Organization Course

    Directory of Open Access Journals (Sweden)

    Sasko Ristov

    2013-07-01

    Full Text Available The computer architecture and organization course is essential in all computer science and engineering programs, and the most selected and liked elective course for related engineering disciplines. However, the attractiveness brings a new challenge, it requires a lot of effort by the instructor, to explain rather complicated concepts to beginners or to those who study related disciplines. The usage of visual simulators can improve both the teaching and learning processes. The overall goal is twofold: 1~to enable a visual environment to explain the basic concepts and 2~to increase the student's willingness and ability to learn the material.A lot of visual simulators have been used for the computer architecture and organization course. However, due to the lack of visual simulators for simulation of the cache memory concepts, we have developed a new visual simulator EDUCache simulator. In this paper we present that it can be effectively and efficiently used as a supporting tool in the learning process of modern multi-layer, multi-cache and multi-core multi-processors.EDUCache's features enable an environment for performance evaluation and engineering of software systems, i.e. the students will also understand the importance of computer architecture building parts and hopefully, will increase their curiosity for hardware courses in general.

  4. Construct validity for eye-hand coordination skill on a virtual reality laparoscopic surgical simulator.

    Science.gov (United States)

    Yamaguchi, Shohei; Konishi, Kozo; Yasunaga, Takefumi; Yoshida, Daisuke; Kinjo, Nao; Kobayashi, Kiichiro; Ieiri, Satoshi; Okazaki, Ken; Nakashima, Hideaki; Tanoue, Kazuo; Maehara, Yoshihiko; Hashizume, Makoto

    2007-12-01

    This study was carried out to investigate whether eye-hand coordination skill on a virtual reality laparoscopic surgical simulator (the LAP Mentor) was able to differentiate among subjects with different laparoscopic experience and thus confirm its construct validity. A total of 31 surgeons, who were all right-handed, were divided into the following two groups according to their experience as an operator in laparoscopic surgery: experienced surgeons (more than 50 laparoscopic procedures) and novice surgeons (fewer than 10 laparoscopic procedures). The subjects were tested using the eye-hand coordination task of the LAP Mentor, and performance was compared between the two groups. Assessment of the laparoscopic skills was based on parameters measured by the simulator. The experienced surgeons completed the task significantly faster than the novice surgeons. The experienced surgeons also achieved a lower number of movements (NOM), better economy of movement (EOM) and faster average speed of the left instrument than the novice surgeons, whereas there were no significant differences between the two groups for the NOM, EOM and average speed of the right instrument. Eye-hand coordination skill of the nondominant hand, but not the dominant hand, measured using the LAP Mentor was able to differentiate between subjects with different laparoscopic experience. This study also provides evidence of construct validity for eye-hand coordination skill on the LAP Mentor.

  5. NeuroManager: A workflow analysis based simulation management engine for computational neuroscience

    Directory of Open Access Journals (Sweden)

    David Bruce Stockton

    2015-10-01

    Full Text Available We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach 1 provides flexibility to adapt to a variety of neuroscience simulators, 2 simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and 3 improves tracking of simulator/simulation evolution. We implemented NeuroManager in Matlab, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in twenty-two stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to Matlab's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  6. Effects of Computer-Based Practice on the Acquisition and Maintenance of Basic Academic Skills for Children with Moderate to Intensive Educational Needs

    Science.gov (United States)

    Everhart, Julie M.; Alber-Morgan, Sheila R.; Park, Ju Hee

    2011-01-01

    This study investigated the effects of computer-based practice on the acquisition and maintenance of basic academic skills for two children with moderate to intensive disabilities. The special education teacher created individualized computer games that enabled the participants to independently practice academic skills that corresponded with their…

  7. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  8. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  9. Arthroscopic Shoulder Surgical Simulation Training Curriculum: Transfer Reliability and Maintenance of Skill Over Time.

    Science.gov (United States)

    Dunn, John C; Belmont, Philip J; Lanzi, Joseph; Martin, Kevin; Bader, Julia; Owens, Brett; Waterman, Brian R

    2015-01-01

    Surgical education is evolving as work hour constraints limit the exposure of residents to the operating room. Potential consequences may include erosion of resident education and decreased quality of patient care. Surgical simulation training has become a focus of study in an effort to counter these challenges. Previous studies have validated the use of arthroscopic surgical simulation programs both in vitro and in vivo. However, no study has examined if the gains made by residents after a simulation program are retained after a period away from training. In all, 17 orthopedic surgery residents were randomized into simulation or standard practice groups. All subjects were oriented to the arthroscopic simulator, a 14-point anatomic checklist, and Arthroscopic Surgery Skill Evaluation Tool (ASSET). The experimental group received 1 hour of simulation training whereas the control group had no additional training. All subjects performed a recorded, diagnostic arthroscopy intraoperatively. These videos were scored by 2 blinded, fellowship-trained orthopedic surgeons and outcome measures were compared within and between the groups. After 1 year in which neither group had exposure to surgical simulation training, all residents were retested intraoperatively and scored in the exact same fashion. Individual surgical case logs were reviewed and surgical case volume was documented. There was no difference between the 2 groups after initial simulation testing and there was no correlation between case volume and initial scores. After training, the simulation group improved as compared with baseline in mean ASSET (p = 0.023) and mean time to completion (p = 0.01). After 1 year, there was no difference between the groups in any outcome measurements. Although individual technical skills can be cultivated with surgical simulation training, these advancements can be lost without continued education. It is imperative that residency programs implement a simulation curriculum and

  10. Influence of carbohydrate supplementation on skill performance during a soccer match simulation.

    Science.gov (United States)

    Russell, Mark; Benton, David; Kingsley, Michael

    2012-07-01

    This study investigated the influence of carbohydrate supplementation on skill performance throughout exercise that replicates soccer match-play. Experimentation was conducted in a randomised, double-blind and cross-over study design. After familiarization, 15 professional academy soccer players completed a soccer match simulation incorporating passing, dribbling and shooting on two separate occasions. Participants received a 6% carbohydrate-electrolyte solution (CHO) or electrolyte solution (PL). Precision, success rate, ball speed and an overall index (speed-precision-success; SPS) were determined for all skills. Blood samples were taken at rest, immediately before exercise, every 15 min during exercise (first half: 15, 30 and 45 min; second half: 60, 75 and 90 min), and 10 min into the half time (half-time). Carbohydrate supplementation influenced shooting (time×treatment interaction: pinteraction: pCarbohydrate supplementation attenuated decrements in shooting performance during simulated soccer match-play; however, further research is warranted to optimise carbohydrate supplementation regimes for high-intensity intermittent sports. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  11. The effect of high-fidelity patient simulation on the critical thinking and clinical decision-making skills of new graduate nurses.

    Science.gov (United States)

    Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia

    2012-03-01

    This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.

  12. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  13. The adaptation method in the Monte Carlo simulation for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Gun; Yoon, Chang Yeon; Lee, Won Ho [Dept. of Bio-convergence Engineering, Korea University, Seoul (Korea, Republic of); Cho, Seung Ryong [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sung Ho [Dept. of Neurosurgery, Ulsan University Hospital, Ulsan (Korea, Republic of)

    2015-06-15

    The patient dose incurred from diagnostic procedures during advanced radiotherapy has become an important issue. Many researchers in medical physics are using computational simulations to calculate complex parameters in experiments. However, extended computation times make it difficult for personal computers to run the conventional Monte Carlo method to simulate radiological images with high-flux photons such as images produced by computed tomography (CT). To minimize the computation time without degrading imaging quality, we applied a deterministic adaptation to the Monte Carlo calculation and verified its effectiveness by simulating CT image reconstruction for an image evaluation phantom (Catphan; Phantom Laboratory, New York NY, USA) and a human-like voxel phantom (KTMAN-2) (Los Alamos National Laboratory, Los Alamos, NM, USA). For the deterministic adaptation, the relationship between iteration numbers and the simulations was estimated and the option to simulate scattered radiation was evaluated. The processing times of simulations using the adaptive method were at least 500 times faster than those using a conventional statistical process. In addition, compared with the conventional statistical method, the adaptive method provided images that were more similar to the experimental images, which proved that the adaptive method was highly effective for a simulation that requires a large number of iterations-assuming no radiation scattering in the vicinity of detectors minimized artifacts in the reconstructed image.

  14. Battle of the bots: a comparison of the standard da Vinci and the da Vinci Surgical Skills Simulator in surgical skills acquisition.

    Science.gov (United States)

    Brown, Kevin; Mosley, Natalie; Tierney, James

    2017-06-01

    Virtual reality simulators are increasingly used to gain robotic surgical skills. This study compared use of the da Vinci Surgical Skills Simulator (dVSSS) to the standard da Vinci (SdV) robot for skills acquisition in a prospective randomized study. Residents from urology, gynecology, and general surgery programs performed three virtual reality tasks (thread the ring, ring rail, and tubes) on the dvSSS. Participants were then randomized to one of the two study groups (dVSSS and SdV). Each participant then practiced on either the dVSSS or the SdV (depending on randomization) for 30 min per week over a 4-week time period. The dVSSS arm was not permitted to practice ring rail (due to no similar practice scenario available for the SdV group). Following 4 weeks of practice, participants performed the same three virtual reality tasks and the results were recorded and compared to baseline. Overall and percent improvement were recorded for all participants from pre-test to post-test. Two-way ANOVA analyses were used to compare the dVSSS and SdV groups and three tasks. Initially, 30 participants were identified and enrolled in the study. Randomization resulted in 15 participants in each arm. During the course of the study, four participants were unable to complete all tasks and practice sessions and were, therefore, excluded. This resulted in a total of 26 participants (15 in the dVSSS group and 11 in the SdV group) who completed the study. Overall total improvement score was found to be 23.23 and 23.48 for the SdV and dVSSS groups, respectively (p = 0.9245). The percent improvement was 60 and 47 % for the SdV and dVSSS groups respectively, which was a statistically significant difference between the two groups and three tasks. Practicing on the standard da Vinci is comparable to practicing on the da Vinci simulator for acquiring robotic surgical skills. In spite of several potential advantages, the dVSSS arm performed no better than the SdV arm in the final

  15. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    Science.gov (United States)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  16. Using computer simulations to probe the structure and dynamics of biopolymers

    International Nuclear Information System (INIS)

    Levy, R.M.; Hirata, F.; Kim, K.; Zhang, P.

    1987-01-01

    The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper the authors review recent work in their laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized: (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper the authors review a more analytical approach they developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations

  17. Digital control computer upgrade at the Cernavoda NPP simulator

    International Nuclear Information System (INIS)

    Ionescu, T.

    2006-01-01

    The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection

  18. Computer Simulation Model to Train Medical Personnel on Glucose Clamp Procedures.

    Science.gov (United States)

    Maghoul, Pooya; Boulet, Benoit; Tardif, Annie; Haidar, Ahmad

    2017-10-01

    A glucose clamp procedure is the most reliable way to quantify insulin pharmacokinetics and pharmacodynamics, but skilled and trained research personnel are required to frequently adjust the glucose infusion rate. A computer environment that simulates glucose clamp experiments can be used for efficient personnel training and development and testing of algorithms for automated glucose clamps. We built 17 virtual healthy subjects (mean age, 25±6 years; mean body mass index, 22.2±3 kg/m 2 ), each comprising a mathematical model of glucose regulation and a unique set of parameters. Each virtual subject simulates plasma glucose and insulin concentrations in response to intravenous insulin and glucose infusions. Each virtual subject provides a unique response, and its parameters were estimated from combined intravenous glucose tolerance test-hyperinsulinemic-euglycemic clamp data using the Bayesian approach. The virtual subjects were validated by comparing their simulated predictions against data from 12 healthy individuals who underwent a hyperglycemic glucose clamp procedure. Plasma glucose and insulin concentrations were predicted by the virtual subjects in response to glucose infusions determined by a trained research staff performing a simulated hyperglycemic clamp experiment. The total amount of glucose infusion was indifferent between the simulated and the real subjects (85±18 g vs. 83±23 g; p=NS) as well as plasma insulin levels (63±20 mU/L vs. 58±16 mU/L; p=NS). The virtual subjects can reliably predict glucose needs and plasma insulin profiles during hyperglycemic glucose clamp conditions. These virtual subjects can be used to train personnel to make glucose infusion adjustments during clamp experiments. Copyright © 2017 Diabetes Canada. Published by Elsevier Inc. All rights reserved.

  19. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  20. Early acquisition of non-technical skills using a blended approach to simulation-based medical education.

    Science.gov (United States)

    Coggins, Andrew; Desai, Mihir; Nguyen, Khanh; Moore, Nathan

    2017-01-01

    Non-technical skills are emerging as an important component of postgraduate medical education. Between 2013 and 2016, a new blended training program incorporating non-technical skills was introduced at an Australian university affiliated hospital. Program participants were medical officers in years 1 and 2 of postgraduate training. An interdisciplinary faculty trained in simulation-based education led the program. The blended approach combined open access online resources with multiple opportunities to participate in simulation-based learning. The aim of the study was to examine the value of the program to the participants and the effects on the wider hospital system. The mixed methods evaluation included data from simulation centre records, hospital quality improvement data, and a post-hoc reflective survey of the enrolled participants ( n  = 68). Over 30 months, 283 junior doctors were invited to participate in the program. Enrolment in a designated simulation-based course was completed by 169 doctors (59.7%). Supplementary revision sessions were made available to the cohort with a median weekly attendance of five participants. 56/68 (82.4%) of survey respondents reported increased confidence in managing deteriorating patients. During the period of implementation, the overall rate of hospital cardiac arrests declined by 42.3%. Future objectives requested by participants included training in graded assertiveness and neurological emergencies. Implementation of a non-technical skills program was achieved with limited simulation resources and was associated with observable improvements in clinical performance. The participants surveyed reported increased confidence in managing deteriorating patients, and the program introduction coincided with a significant reduction in the rate of in-hospital cardiac arrests.

  1. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    Science.gov (United States)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  2. A note on simulated annealing to computer laboratory scheduling ...

    African Journals Online (AJOL)

    The concepts, principles and implementation of simulated Annealing as a modem heuristic technique is presented. Simulated Annealing algorithm is used in solving real life problem of Computer Laboratory scheduling in order to maximize the use of scarce and insufficient resources. KEY WORDS: Simulated Annealing ...

  3. Time reversibility, computer simulation, algorithms, chaos

    CERN Document Server

    Hoover, William Graham

    2012-01-01

    A small army of physicists, chemists, mathematicians, and engineers has joined forces to attack a classic problem, the "reversibility paradox", with modern tools. This book describes their work from the perspective of computer simulation, emphasizing the author's approach to the problem of understanding the compatibility, and even inevitability, of the irreversible second law of thermodynamics with an underlying time-reversible mechanics. Computer simulation has made it possible to probe reversibility from a variety of directions and "chaos theory" or "nonlinear dynamics" has supplied a useful vocabulary and a set of concepts, which allow a fuller explanation of irreversibility than that available to Boltzmann or to Green, Kubo and Onsager. Clear illustration of concepts is emphasized throughout, and reinforced with a glossary of technical terms from the specialized fields which have been combined here to focus on a common theme. The book begins with a discussion, contrasting the idealized reversibility of ba...

  4. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    Science.gov (United States)

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  5. Computer simulations of long-time tails: what's new?

    NARCIS (Netherlands)

    Hoef, van der M.A.; Frenkel, D.

    1995-01-01

    Twenty five years ago Alder and Wainwright discovered, by simulation, the 'long-time tails' in the velocity autocorrelation function of a single particle in fluid [1]. Since then, few qualitatively new results on long-time tails have been obtained by computer simulations. However, within the

  6. Developing Leadership Skills in a Virtual Simulation: Coaching the Affiliative Style Leader

    Science.gov (United States)

    Gurley, Kathy; Wilson, Dawn

    2011-01-01

    This study looked at the use of a business simulation that focused on improving the leadership skills of students in an MBA class at an HBCU in North Carolina. The students were asked to complete a questionnaire that identified their dominant leadership style. The study then compared the students who had an affiliative style of management against…

  7. Faster quantum chemistry simulation on fault-tolerant quantum computers

    International Nuclear Information System (INIS)

    Cody Jones, N; McMahon, Peter L; Yamamoto, Yoshihisa; Whitfield, James D; Yung, Man-Hong; Aspuru-Guzik, Alán; Van Meter, Rodney

    2012-01-01

    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)

  8. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Science.gov (United States)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  9. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    Science.gov (United States)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  10. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    International Nuclear Information System (INIS)

    Wang, Henry; Ma Yunzhi; Pratx, Guillem; Xing Lei

    2011-01-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  11. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henry [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Ma Yunzhi; Pratx, Guillem; Xing Lei, E-mail: hwang41@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305-5847 (United States)

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47x speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. (note)

  12. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  13. The advanced computational testing and simulation toolkit (ACTS)

    International Nuclear Information System (INIS)

    Drummond, L.A.; Marques, O.

    2002-01-01

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  14. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.

    2002-05-21

    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  15. The Use of Computer Simulation Gaming in Teaching Broadcast Economics.

    Science.gov (United States)

    Mancuso, Louis C.

    The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…

  16. SPINET: A Parallel Computing Approach to Spine Simulations

    Directory of Open Access Journals (Sweden)

    Peter G. Kropf

    1996-01-01

    Full Text Available Research in scientitic programming enables us to realize more and more complex applications, and on the other hand, application-driven demands on computing methods and power are continuously growing. Therefore, interdisciplinary approaches become more widely used. The interdisciplinary SPINET project presented in this article applies modern scientific computing tools to biomechanical simulations: parallel computing and symbolic and modern functional programming. The target application is the human spine. Simulations of the spine help us to investigate and better understand the mechanisms of back pain and spinal injury. Two approaches have been used: the first uses the finite element method for high-performance simulations of static biomechanical models, and the second generates a simulation developmenttool for experimenting with different dynamic models. A finite element program for static analysis has been parallelized for the MUSIC machine. To solve the sparse system of linear equations, a conjugate gradient solver (iterative method and a frontal solver (direct method have been implemented. The preprocessor required for the frontal solver is written in the modern functional programming language SML, the solver itself in C, thus exploiting the characteristic advantages of both functional and imperative programming. The speedup analysis of both solvers show very satisfactory results for this irregular problem. A mixed symbolic-numeric environment for rigid body system simulations is presented. It automatically generates C code from a problem specification expressed by the Lagrange formalism using Maple.

  17. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  18. Computer simulation of molecular sorption in zeolites

    International Nuclear Information System (INIS)

    Calmiano, Mark Daniel

    2001-01-01

    The work presented in this thesis encompasses the computer simulation of molecular sorption. In Chapter 1 we outline the aims and objectives of this work. Chapter 2 follows in which an introduction to sorption in zeolites is presented, with discussion of structure and properties of the main zeolites studied. Chapter 2 concludes with a description of the principles and theories of adsorption. In Chapter 3 we describe the methodology behind the work carried out in this thesis. In Chapter 4 we present our first computational study, that of the sorption of krypton in silicalite. We describe work carried out to investigate low energy sorption sites of krypton in silicalite where we observe krypton to preferentially sorb into straight and sinusoidal channels over channel intersections. We simulate single step type I adsorption isotherms and use molecular dynamics to study the diffusion of krypton and obtain division coefficients and the activation energy. We compare our results to previous experimental and computational studies where we show our work to be in good agreement. In Chapter 5 we present a systematic study of the sorption of oxygen and nitrogen in five lithium substituted zeolites using a transferable interatomic potential that we have developed from ab initio calculations. We show increased loading of nitrogen compared to oxygen in all five zeolites studied as expected and simulate adsorption isotherms, which we compare to experimental and simulated data in the literature. In Chapter 6 we present work on the sorption of ferrocene in the zeolite NaY. We show that a simulated, low energy sorption site for ferrocene is correctly located by comparing to X-ray powder diffraction results for this same system. The thesis concludes with some overall conclusions and discussion of opportunities for future work. (author)

  19. Surgical ergonomics. Analysis of technical skills, simulation models and assessment methods.

    Science.gov (United States)

    Papaspyros, Sotiris C; Kar, Ashok; O'Regan, David

    2015-06-01

    Over the past two centuries the surgical profession has undergone a profound evolution in terms of efficiency and outcomes. Societal concerns in relation to quality assurance, patient safety and cost reduction have highlighted the issue of training expert surgeons. The core elements of a training model build on the basic foundations of gross and fine motor skills. In this paper we provide an analysis of the ergonomic principles involved and propose relevant training techniques. We have endeavored to provide both the trainer and trainee perspectives. This paper is structured into four sections: 1) Pre-operative preparation issues, 2) technical skills and instrument handling, 3) low fidelity simulation models and 4) discussion of current concepts in crew resource management, deliberate practice and assessment. Rehearsal, warm-up and motivation-enhancing techniques aid concentration and focus. Appropriate posture, comprehension of ergonomic principles in relation to surgical instruments and utilisation of the non-dominant hand are essential skills to master. Low fidelity models can be used to achieve significant progress through the early stages of the learning curve. Deliberate practice and innate ability are complementary to each other and may be considered useful adjuncts to surgical skills development. Safe medical care requires that complex patient interventions be performed by highly skilled operators supported by reliable teams. Surgical ergonomics lie at the heart of any training model that aims to produce professionals able to function as leaders of a patient safety oriented culture. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  20. Factors cost effectively improved using computer simulations of ...

    African Journals Online (AJOL)

    LPhidza

    effectively managed using computer simulations in semi-arid conditions pertinent to much of sub-Saharan Africa. ... small scale farmers to obtain optimal crop yields thus ensuring their food security and livelihood is ... those that simultaneously incorporate and simulate processes involved throughout the course of crop ...

  1. Teaching effective problem solving skills to radiation protection students

    International Nuclear Information System (INIS)

    Waller, Edward

    2008-01-01

    Full text: Problem solving skills are essential for all radiation protection personnel. Although some students have more natural problem solving skills than others, all students require practice to become comfortable using these skills. At the University of Ontario Institute of Technology (UOIT), a unique one-semester course was developed as part of the core curriculum to teach students problem solving skills and elements of modelling and simulation. The underlying emphasis of the course was to allow students to develop their own problem solving strategies, both individually and in groups. Direction was provided on how to examine problems from different perspectives, and how to determine the proper root problem statement. A five-point problem solving strategy was presented as: 1) Problem definition; 2) Solution generation; 3) Decision; 4) Implementation; 5) Evaluation. Within the strategy, problem solving techniques were integrated from diverse areas such as: De Bono 's six thinking hats, Kepner-Tregoe decision analysis, Covey's seven habits of highly effective people, Reason's swiss cheese theory of complex failure, and Howlett's common failure modes. As part of the evaluation step, students critically explore areas such as ethics and environmental responsibility. In addition to exploring problem solving methods, students learn the usefulness of simulation methods, and how to model and simulate complex phenomena of relevance to radiation protection. Computational aspects of problem solving are explored using the commercially available MATLAB computer code. A number of case studies are presented as both examples and problems to the students. Emphasis was placed on solutions to problems of interest to radiation protection, health physics and nuclear engineering. A group project, pertaining to an accident or event related to the nuclear industry is a course requirement. Students learn to utilize common time and project management tools such as flowcharting, Pareto

  2. Self vs expert assessment of technical and non-technical skills in high fidelity simulation.

    Science.gov (United States)

    Arora, Sonal; Miskovic, Danilo; Hull, Louise; Moorthy, Krishna; Aggarwal, Rajesh; Johannsson, Helgi; Gautama, Sanjay; Kneebone, Roger; Sevdalis, Nick

    2011-10-01

    Accurate assessment is imperative for learning, feedback and progression. The aim of this study was to examine whether surgeons can accurately self-assess their technical and nontechnical skills compared with expert faculty members' assessments. Twenty-five surgeons performed a laparoscopic cholecystectomy (LC) in a simulated operating room. Technical and nontechnical performance was assessed by participants and faculty members using the validated Objective Structured Assessment of Technical Skills (OSATS) and the Non-Technical Skills for Surgeons scale (NOTSS). Assessment of technical performance correlated between self and faculty members' ratings for experienced (median score, 30.0 vs 31.0; ρ = .831; P = .001) and inexperienced (median score, 22.0 vs 28.0; ρ = .761; P = .003) surgeons. Assessment of nontechnical skills between self and faculty members did not correlate for experienced surgeons (median score, 8.0 vs 10.5; ρ = -.375; P = .229) or their more inexperienced counterparts (median score, 9.0 vs 7.0; ρ = -.018; P = .953). Surgeons can accurately self-assess their technical skills in virtual reality LC. Conversely, formal assessment with faculty members' input is required for nontechnical skills, for which surgeons lack insight into their behaviours. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Impact of simulation training on Jordanian nurses' performance of basic life support skills: A pilot study.

    Science.gov (United States)

    Toubasi, Samar; Alosta, Mohammed R; Darawad, Muhammad W; Demeh, Waddah

    2015-09-01

    Providing efficient basic life support (BLS) training is crucial for practicing nurses who provide direct patient care. Nevertheless, data addressing the impact of BLS courses on the skills and performance of Jordanian nurses are scarce. This study aimed to assess the effectiveness of a BLS simulation training on Jordanian nurses' skill improvement in cardiopulmonary resuscitation. A prospective quasi-experimental, single group pretest-posttest design was used to study the effect of BLS simulation; using a 9-item checklist; on the spot training; American Heart Association, on a group of Jordanian nurses. A pre-test was conducted following a CPR scenario to test the skills using 9-item checklist extrapolated from the American Heart Association guidelines. After debriefing, an interactive on spot training was provided. Later, participants undertook an unscheduled post-test after four weeks that included the same nine items. Thirty registered nurses with a mean clinical experience of 6.1years participated in the study. Comparing pre-test (M=4.6, SD=2.9, range=0 to 9) with post-test results (M=7.5, SD=1.7, range=4 to 9) showed an overall improvement in skills and BLS scores after the simulation training program (t=7.4, df=29, pskills and performance among Jordanian nurses. A refreshment BLS training session for nurses is highly recommended to guarantee nurses' preparedness in actual CPR scenarios. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  5. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  6. A real-time computer simulation of nuclear simulator software using standard PC hardware and linux environments

    International Nuclear Information System (INIS)

    Cha, K. H.; Kweon, K. C.

    2001-01-01

    A feasibility study, which standard PC hardware and Real-Time Linux are applied to real-time computer simulation of software for a nuclear simulator, is presented in this paper. The feasibility prototype was established with the existing software in the Compact Nuclear Simulator (CNS). Throughout the real-time implementation in the feasibility prototype, we has identified that the approach can enable the computer-based predictive simulation to be approached, due to both the remarkable improvement in real-time performance and the less efforts for real-time implementation under standard PC hardware and Real-Time Linux envrionments

  7. Validation study of a computer-based open surgical trainer: SimPraxis® simulation platform

    Directory of Open Access Journals (Sweden)

    Tran LN

    2013-03-01

    Full Text Available Linh N Tran,1 Priyanka Gupta,2 Lauren H Poniatowski,2 Shaheen Alanee,3 Marc A Dall’Era,4 Robert M Sweet21Department of Internal Medicine, Loma Linda University, Loma Linda, CA, 2Department of Urology, University of Minnesota, Minneapolis, MN, 3Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, 4Department of Urology, University of California, Davis, CA, USABackground: Technological advances have dramatically changed medical education, particularly in the era of work-hour restrictions, which increasingly highlights a need for novel methods to teach surgical skills. The purpose of this study was to evaluate the validity of a novel, computer-based, interactive, cognitive simulator for training surgeons to perform pelvic lymph node dissection (PLND.Methods: Eight prostate cancer experts evaluated the content of the simulator. Contextual aspects of the simulator were rated on a five-point Likert scale. The experts and nine first-year residents completed a simulated PLND. Time and deviations were logged, and the results were compared between experts and novices using the Mann–Whitney test.Results: Before training, 88% of the experts felt that a validated simulator would be useful for PLND training. After testing, 100% of the experts felt that it would be more useful than standard video training. Eighty-eight percent stated that they would like to see the simulator in the curriculum of residency programs and 56% thought it would be useful for accreditation purposes. The experts felt that the simulator aided in overall understanding, training indications, concepts and steps of the procedure, training how to use an assistant, and enhanced the knowledge of anatomy. Median performance times taken by experts and interns to complete a PLND procedure on the simulator were 12.62 and 23.97 minutes, respectively. Median deviation from the incorporated procedure pathway for experts was 24.5 and was 89 for novices

  8. A novel virtual reality simulation for hemostasis in a brain surgical cavity: perceived utility for visuomotor skills in current and aspiring neurosurgery residents.

    Science.gov (United States)

    Gasco, Jaime; Patel, Achal; Luciano, Cristian; Holbrook, Thomas; Ortega-Barnett, Juan; Kuo, Yong-Fang; Rizzi, Silvio; Kania, Patrick; Banerjee, Pat; Roitberg, Ben Z

    2013-12-01

    To understand the perceived utility of a novel simulator to improve operative skill, eye-hand coordination, and depth perception. We used the ImmersiveTouch simulation platform (ImmersiveTouch, Inc., Chicago, Illinois, USA) in two U.S. Accreditation Council for Graduate Medical Education-accredited neurosurgical training programs: the University of Chicago and the University of Texas Medical Branch. A total of 54 trainees participated in the study, which consisted of 14 residents (group A), 20 senior medical students who were neurosurgery candidates (group B), and 20 junior medical students (group C). The participants performed a simulation task that established bipolar hemostasis in a virtual brain cavity and provided qualitative feedback regarding perceived benefits in eye-hand coordination, depth perception, and potential to assist in improving operating skills. The perceived ability of the simulator to positively influence skills judged by the three groups: group A, residents; group B, senior medical students; and group C, junior medical students was, respectively, 86%, 100%, and 100% for eye-hand coordination; 86%, 100%, and 95% for depth perception; and 79%, 100%, and 100% for surgical skills in the operating room. From all groups, 96.2% found the simulation somewhat or very useful to improve eye-hand coordination, and 94% considered it beneficial to improve depth perception and operating room skills. This simulation module may be suitable for resident training, as well as for the development of career interest and skill acquisition; however, validation for this type of simulation needs to be further developed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Social Skills Instruction for Urban Learners with Emotional and Behavioral Disorders: A Culturally Responsive and Computer-Based Intervention

    Science.gov (United States)

    Robinson-Ervin, Porsha; Cartledge, Gwendolyn; Musti-Rao, Shobana; Gibson, Lenwood, Jr.; Keyes, Starr E.

    2016-01-01

    This study examined the effects of culturally relevant/responsive, computer-based social skills instruction on the social skill acquisition and generalization of 6 urban African American sixth graders with emotional and behavioral disorders (EBD). A multiple-probe across participants design was used to evaluate the effects of the social skills…

  10. Understanding the impact of simulated patients on health care learners' communication skills: a systematic review.

    Science.gov (United States)

    Kaplonyi, Jessica; Bowles, Kelly-Ann; Nestel, Debra; Kiegaldie, Debra; Maloney, Stephen; Haines, Terry; Williams, Cylie

    2017-12-01

    Effective communication skills are at the core of good health care. Simulated patients (SPs) are increasingly engaged as an interactive means of teaching, applying and practising communication skills with immediate feedback. There is a large body of research into the use of manikin-based simulation but a gap exists in the body of research on the effectiveness of SP-based education to teach communication skills that impact patient outcomes. The aim of this systematic review was to critically analyse the existing research, investigating whether SP-based communication skills training improves learner-patient communication, how communication skill improvement is measured, and who measures these improvements. The databases Medline, ProQuest (Health & Medical Complete, Nursing and Allied Health Source) and CINAHL (EBSCOhost) Education Resources Information Centre (ERIC) were searched for articles that investigated the effects of SP-based education on the communication skills of medical, nursing and allied health learners. There were 60 studies included in the review. Only two studies reported direct patient outcomes, one reporting some negative impact, and no studies included an economic analysis. Many studies reported statistically significant third-party ratings of improved communication effectiveness following SP-based education; however, studies were unable to be pooled for meta-analysis because of the outcome collection methods. There were a small number of studies comparing SP with no training at all and there were no differences between communication skills, contradicting the results from studies reporting benefits. Of the 60 studies included for analysis, 54 (90%) met the minimum quality score of 7/11, with four articles (7%) scoring 11/11. SP-based education is widely accepted as a valuable and effective means of teaching communication skills but there is limited evidence of how this translates to patient outcomes and no indication of economic benefit for this

  11. Even Buddhist Monks Use a Gong: A Mindfulness Skills Programme for Young People Delivered through the "Mindful Gnats" Computer Game and App

    Science.gov (United States)

    O'Reilly, Gary; Coyle, David; Tunney, Conall

    2016-01-01

    Mindful Gnats is a computer game and App that introduces mindfulness and relaxation skills to young people aged nine years and older. In this paper the authors describe their model for using technology to support children with the development of psychological skills. This model combines a computer game to introduce and practice psychological…

  12. Formal Analysis of Dynamics Within Philosophy of Mind by Computer Simulation

    NARCIS (Netherlands)

    Bosse, T.; Schut, M.C.; Treur, J.

    2009-01-01

    Computer simulations can be useful tools to support philosophers in validating their theories, especially when these theories concern phenomena showing nontrivial dynamics. Such theories are usually informal, whilst for computer simulation a formally described model is needed. In this paper, a

  13. Fast Simulation of Large-Scale Floods Based on GPU Parallel Computing

    OpenAIRE

    Qiang Liu; Yi Qin; Guodong Li

    2018-01-01

    Computing speed is a significant issue of large-scale flood simulations for real-time response to disaster prevention and mitigation. Even today, most of the large-scale flood simulations are generally run on supercomputers due to the massive amounts of data and computations necessary. In this work, a two-dimensional shallow water model based on an unstructured Godunov-type finite volume scheme was proposed for flood simulation. To realize a fast simulation of large-scale floods on a personal...

  14. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  15. A compositional reservoir simulator on distributed memory parallel computers

    International Nuclear Information System (INIS)

    Rame, M.; Delshad, M.

    1995-01-01

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. A portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented

  16. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    Science.gov (United States)

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Computer simulation of ultrasonic waves in solids

    International Nuclear Information System (INIS)

    Thibault, G.A.; Chaplin, K.

    1992-01-01

    A computer model that simulates the propagation of ultrasonic waves has been developed at AECL Research, Chalk River Laboratories. This program is called EWE, short for Elastic Wave Equations, the mathematics governing the propagation of ultrasonic waves. This report contains a brief summary of the use of ultrasonic waves in non-destructive testing techniques, a discussion of the EWE simulation code explaining the implementation of the equations and the types of output received from the model, and an example simulation showing the abilities of the model. (author). 2 refs., 2 figs

  18. COMPUTER MODEL AND SIMULATION OF A GLOVE BOX PROCESS

    International Nuclear Information System (INIS)

    Foster, C.

    2001-01-01

    The development of facilities to deal with the disposition of nuclear materials at an acceptable level of Occupational Radiation Exposure (ORE) is a significant issue facing the nuclear community. One solution is to minimize the worker's exposure though the use of automated systems. However, the adoption of automated systems for these tasks is hampered by the challenging requirements that these systems must meet in order to be cost effective solutions in the hazardous nuclear materials processing environment. Retrofitting current glove box technologies with automation systems represents potential near-term technology that can be applied to reduce worker ORE associated with work in nuclear materials processing facilities. Successful deployment of automation systems for these applications requires the development of testing and deployment strategies to ensure the highest level of safety and effectiveness. Historically, safety tests are conducted with glove box mock-ups around the finished design. This late detection of problems leads to expensive redesigns and costly deployment delays. With wide spread availability of computers and cost effective simulation software it is possible to discover and fix problems early in the design stages. Computer simulators can easily create a complete model of the system allowing a safe medium for testing potential failures and design shortcomings. The majority of design specification is now done on computer and moving that information to a model is relatively straightforward. With a complete model and results from a Failure Mode Effect Analysis (FMEA), redesigns can be worked early. Additional issues such as user accessibility, component replacement, and alignment problems can be tackled early in the virtual environment provided by computer simulation. In this case, a commercial simulation package is used to simulate a lathe process operation at the Los Alamos National Laboratory (LANL). The Lathe process operation is indicative of

  19. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    Science.gov (United States)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  20. Computer simulation for sodium-concrete reactions

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou

    2006-01-01

    In the liquid metal cooled fast breeder reactors (LMFBRs), direct contacts between sodium and concrete is unavoidable. Due to sodium's high chemical reactivity, sodium would react with concrete violently. Lots of hydrogen gas and heat would be released then. This would harm the ignorantly of the containment. This paper developed a program to simualte sodium-conrete reactions across-the-board. It could give the reaction zone temperature, pool temperature, penetration depth, penetration rate, hydrogen flux and reaction heat and so on. Concrete was considered to be composed of silica and water only in this paper. The variable, the quitient of sodium hydroxide, was introduced in the continuity equation to simulate the chemical reactions more realistically. The product of the net gas flux and boundary depth was ably transformed to that of penetration rate and boundary depth. The complex chemical kinetics equations was simplified under some hypothesises. All the technique applied above simplified the computer simulation consumedly. In other words, they made the computer simulation feasible. Theoretics models that applied in the program and the calculation procedure were expatiated in detail. Good agreements of an overall transient behavior were obtained in the series of sodium-concrete reaction experiment analysis. The comparison between the analytical and experimental results showed the program presented in this paper was creditable and reasonable for simulating the sodium-concrete reactions. This program could be used for nuclear safety judgement. (authors)

  1. A review of computer-based simulators for ultrasound training.

    Science.gov (United States)

    Blum, Tobias; Rieger, Andreas; Navab, Nassir; Friess, Helmut; Martignoni, Marc

    2013-04-01

    Computer-based simulators for ultrasound training are a topic of recent interest. During the last 15 years, many different systems and methods have been proposed. This article provides an overview and classification of systems in this domain and a discussion of their advantages. Systems are classified and discussed according to the image simulation method, user interactions and medical applications. Computer simulation of ultrasound has one key advantage over traditional training. It enables novel training concepts, for example, through advanced visualization, case databases, and automatically generated feedback. Qualitative evaluations have mainly shown positive learning effects. However, few quantitative evaluations have been performed and long-term effects have to be examined.

  2. Computer Graphics Simulations of Sampling Distributions.

    Science.gov (United States)

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  3. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  4. Building an adiabatic quantum computer simulation in the classroom

    Science.gov (United States)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  5. Educational Game Design as Gateway for Operationalizing Computational Thinking Skills among Middle School Students

    Science.gov (United States)

    Wu, Min Lun

    2018-01-01

    This qualitative case study reports descriptive findings of digital game-based learning involving 15 Taiwanese middle school students' use of computational thinking skills elicited through programmed activities in a game design workshop. Situated learning theory is utilized as framework to evaluate novice game designers' individual advancement in…

  6. Simulation-based end-of-life care training during surgical clerkship: assessment of skills and perceptions.

    Science.gov (United States)

    Parikh, Priti P; Brown, Ronald; White, Mary; Markert, Ronald J; Eustace, Rosemary; Tchorz, Kathryn

    2015-06-15

    Assessment of interpersonal and psychosocial competencies during end-of-life care training is essential. This study reports the relationship between simulation-based end-of-life care Objective Structured Clinical Examination ratings and communication skills, trust, and self-assessed empathy along with the perceptions of students regarding their training experiences. Medical students underwent simulation-based end-of-life care OSCE training that involved standardized patients who evaluated students' communication skills and physician trust with the Kalamazoo Essential Elements Communication Checklist and the Wake Forest Physician Trust Scale. Students also completed the Jefferson Scale of Physician Empathy. Pearson correlation was used to examine the relationship between OSCE performance grades and communication, trust, and empathy scores. Student comments were analyzed using the constant comparative method of analysis to identify dominant themes. The 389 students (mean age 26.6 ± 2.8 y; 54.5% female) had OSCE grades that were positively correlated with physician trust scores (r = 0.325, P training to be a valuable learning experience and appreciated its placement early in clinical training. We found that simulation-based OSCE training in palliative and end-of-life care can be effectively conducted during a surgery clerkship. Moreover, the standardized patient encounters combined with the formal assessment of communication skills, physician trust, and empathy provide feedback to students at an early phase of their professional life. The positive and appreciative comments of students regarding the opportunity to practice difficult patient conversations suggest that attention to these professional characteristics and skills is a valued element of clinical training and conceivably a step toward better patient outcomes and satisfaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The effect of using in computer skills on teachers’ perceived self-efficacy beliefs towards technology integration, attitudes and performance

    Directory of Open Access Journals (Sweden)

    Badrie Mohammad Nour ELDaou

    2016-10-01

    Full Text Available The current study analyzesthe relationship between the apparentteacher’s Self-efficacyand attitudes towardsintegrating technology into classroom teaching, self-evaluation reportsand computer performance results. Pre-post measurement of the Computer Technology Integration Survey (CTIS (Wang et al, 2004 was used to determine theconfidence level with of 60 science teachers and 12 mixed-major teachers enrolled at the Lebanese University, Faculty of Education in the academic year 2011-2012. Pre –post measurement onteachers’attitudes towards usingtechnologywas examined using an opened and a closed questionnaire.Teachers’ performance was measured by means of their Activeinspire projects results using active boards after their third practice of training in computer skills and Activeinspire program. To accumulate data on teachers’ self-report, this study uses Robert Reasoner's five components: feeling of security, feeling of belonging, feeling of identity, feeling of goal, and self-actualization which teachers used to rate themselves (Reasoner,1983. The study acknowledged probable impacts of computer training skills on teachers ‘self-evaluation report, effectiveness of computer technology skills, and evaluations of self-efficacy attitudes toward technology integration. Pearson correlation revealed a strong relationship r= 0.99 between the perceived self-efficacy towards technology incorporation and teachers’ self-evaluation report. Also, the findings of this research revealed that 82.7% of teachers earned high computer technology scores on their Activeinspire projects and 33.3% received excellent grades on computer performance test. Recommendations and potential research were discussed

  8. The Effect of Using in Computer Skills on Teachers’ Perceived Self-Efficacy Beliefs Towards Technology Integration, Attitudes and Performance

    Directory of Open Access Journals (Sweden)

    Badrie Mohammad Nour EL-Daou

    2016-07-01

    Full Text Available The current study analyzes the relationship between the apparent teacher’s Self-efficacy and attitudes towards integrating technology into classroom teaching, self- evaluation reports and computer performance results. Pre-post measurement of the Computer Technology Integration Survey (CTIS (Wang et al,2004 was used to determine the confidence level with of 60 science teachers and 12 mixed-major teachers enrolled at the Lebanese University, Faculty of Education in the academic year 2011-2012. Pre –post measurement on teachers’ attitudes towards using technology was examined using an opened and a closed questionnaire. Teachers’ performance was measured by means of their Activeinspire projects results using active boards after their third practice of training in computer skills and Activeinspire program. To accumulate data on teachers’ self-report, this study uses Robert Reasoner's five components: feeling of security, feeling of belonging, feeling of identity, feeling of goal, and self-actualization which teachers used to rate themselves (Reasoner,1983. The study acknowledged probable impacts of computer training skills on teachers ‘self-evaluation report, effectiveness of computer technology skills, and evaluations of self-efficacy attitudes toward technology integration. Pearson correlation revealed a strong relationship r = 0.99 between the perceived self-efficacy towards technology incorporation and teachers’ self-evaluation report. Also, the findings of this research revealed that 82.7% of teachers earned high computer technology scores on their Activeinspire projects and 33.3% received excellent grades on computer performance test. Recommendations and potential research were discussed.

  9. Quantum computer gate simulations | Dada | Journal of the Nigerian ...

    African Journals Online (AJOL)

    A new interactive simulator for Quantum Computation has been developed for simulation of the universal set of quantum gates and for construction of new gates of up to 3 qubits. The simulator also automatically generates an equivalent quantum circuit for any arbitrary unitary transformation on a qubit. Available quantum ...

  10. A Comparative Study of University of Wisconsin-Stout Freshmen and Senior Education Major's Computing and Internet Technology Skills/Knowledge and Associated Learning Experiences

    Science.gov (United States)

    Sveum, Evan Charles

    2010-01-01

    A study comparing University of Wisconsin-Stout freshmen and senior education majors' computing and Internet technology skills/knowledge and associated learning experiences was conducted. Instruments used in this study included the IC[superscript 3][R] Exam by Certiport, Inc. and the investigator's Computing and Internet Skills Learning…

  11. Computer Skills and Digital Media Uses among Young Students in Rio de Janeiro

    Science.gov (United States)

    Duarte, Rosalia; Cazelli, Sibele; Migliora, Rita; Coimbra, Carlos

    2013-01-01

    The main purpose of this paper is provide information relevant for the formulation of new policies for the integration of technology in education from the discussion of research results that analyse computer skills and digital media uses among students (between 12 to 18 years old) from schools in the city of Rio de Janeiro, Brazil. The schools…

  12. The contributions of digital technologies in the teaching of nursing skills: an integrative review.

    Science.gov (United States)

    Silveira, Maurício de Souza; Cogo, Ana Luísa Petersen

    2017-07-13

    To analyze the contributions of digital educational technologies used in teaching nursing skills. Integrative literature review, search in five databases, from 2006 to 2015 combining the descriptors 'education, nursing', 'educational technology', 'computer-assisted instruction' or related terms in English. Sample of 30 articles grouped in the thematic categories 'technology in the simulation with manikin', 'incentive to learning' and 'teaching of nursing skills'. It was identified different formats of digital educational technologies used in teaching Nursing skills such as videos, learning management system, applications, hypertext, games, virtual reality simulators. These digital materials collaborated in the acquisition of theoretical references that subsidize the practices, enhancing the teaching and enable the use of active learning methods, breaking with the traditional teaching of demonstrating and repeating procedures.

  13. Systematic Review of Voluntary Participation in Simulation-Based Laparoscopic Skills Training: Motivators and Barriers for Surgical Trainee Attendance.

    Science.gov (United States)

    Gostlow, Hannah; Marlow, Nicholas; Babidge, Wendy; Maddern, Guy

    To examine and report on evidence relating to surgical trainees' voluntary participation in simulation-based laparoscopic skills training. Specifically, the underlying motivators, enablers, and barriers faced by surgical trainees with regard to attending training sessions on a regular basis. A systematic search of the literature (PubMed; CINAHL; EMBASE; Cochrane Collaboration) was conducted between May and July 2015. Studies were included on whether they reported on surgical trainee attendance at voluntary, simulation-based laparoscopic skills training sessions, in addition to qualitative data regarding participant's perceived barriers and motivators influencing their decision to attend such training. Factors affecting a trainee's motivation were categorized as either intrinsic (internal) or extrinsic (external). Two randomised control trials and 7 case series' met our inclusion criteria. Included studies were small and generally poor quality. Overall, voluntary simulation-based laparoscopic skills training was not well attended. Intrinsic motivators included clearly defined personal performance goals and relevance to clinical practice. Extrinsic motivators included clinical responsibilities and available free time, simulator location close to clinical training, and setting obligatory assessments or mandated training sessions. The effect of each of these factors was variable, and largely dependent on the individual trainee. The greatest reported barrier to attending voluntary training was the lack of available free time. Although data quality is limited, it can be seen that providing unrestricted access to simulator equipment is not effective in motivating surgical trainees to voluntarily participate in simulation-based laparoscopic skills training. To successfully encourage participation, consideration needs to be given to the factors influencing motivation to attend training. Further research, including better designed randomised control trials and large

  14. Virtual reality skills training for health care professionals in alcohol screening and brief intervention.

    Science.gov (United States)

    Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan

    2009-01-01

    Educating physicians and other health care professionals about the identification and treatment of patients who drink more than recommended limits is an ongoing challenge. An educational randomized controlled trial was conducted to test the ability of a stand-alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The "virtual reality simulation" combined video, voice recognition, and nonbranching logic to create an interactive environment that allowed trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation included 707 questions and statements and 1207 simulated patient responses. A sample of 102 health care professionals (10 physicians; 30 physician assistants or nurse practitioners; 36 medical students; 26 pharmacy, physican assistant, or nurse practitioner students) were randomly assigned to a no training group (n = 51) or a computer-based virtual reality intervention (n = 51). Professionals in both groups had similar pretest standardized patient alcohol screening skill scores: 53.2 (experimental) vs 54.4 (controls), 52.2 vs 53.7 alcohol brief intervention skills, and 42.9 vs 43.5 alcohol referral skills. After repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months after randomization compared with the control group for the screening (67.7 vs 58.1; P virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals.

  15. A Novel Clinical-Simulated Suture Education for Basic Surgical Skill: Suture on the Biological Tissue Fixed on Standardized Patient Evaluated with Objective Structured Assessment of Technical Skill (OSATS) Tools.

    Science.gov (United States)

    Shen, Zhanlong; Yang, Fan; Gao, Pengji; Zeng, Li; Jiang, Guanchao; Wang, Shan; Ye, Yingjiang; Zhu, Fengxue

    2017-06-21

    Clinical-simulated training has shown benefit in the education of medical students. However, the role of clinical simulation for surgical basic skill training such as suturing techniques remains unclear. Forty-two medical students were asked to perform specific suturing tasks at three stations with the different settings within four minutes (Station 1: Synthetic suture pad fixed on the bench, Station 2: Synthetic suture pad fixed on the standardized patient, Station 3: Pig skin fixed on the standardized patient); the OSATS (Objective Structured Assessment of Technical Skill) tool was used to evaluate the performance of students. A questionnaire was distributed to the students following the examination. Mean performance score of Station 3 was significant lower than that of Station 1 and 2 in the general performance including tissue handling, time, and motion. The suturing techniques of students at Station 2 and 3 were not as accurate as that at Station 1. Inappropriate tension was applied to the knot at Station 2 compared with Station 1 and 3. On the questionnaire, 93% of students considered clinical-simulated training of basic surgical skills was necessary and may increase their confidence in future clinical work as surgeons; 98% of students thought the assessment was more objective when OSATS tool was used for evaluation. Clinical simulation examination assessed with OSATS might throw a novel light on the education of basic surgical skills and may be worthy of wider adoption in the surgical education of medical students.

  16. Application of parallel computing techniques to a large-scale reservoir simulation

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

    2001-01-01

    Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance

  17. Advanced computational simulations of water waves interacting with wave energy converters

    Science.gov (United States)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  18. Secrets to Success: Business Skills and Knowledge That Students Find Most Useful in Succeeding in a Capstone Course Simulation

    Science.gov (United States)

    Gresch, Eric; Rawls, Janita

    2017-01-01

    This exploratory research examines students' perceptions of a capstone business simulation game by identifying (a) courses that were most useful in preparing students for the simulation and (b) interpersonal skills students found most helpful when working with teammates on the simulation. Also identified are the simulation's impact on student…

  19. Cluster computing for lattice QCD simulations

    International Nuclear Information System (INIS)

    Coddington, P.D.; Williams, A.G.

    2000-01-01

    Full text: Simulations of lattice quantum chromodynamics (QCD) require enormous amounts of compute power. In the past, this has usually involved sharing time on large, expensive machines at supercomputing centres. Over the past few years, clusters of networked computers have become very popular as a low-cost alternative to traditional supercomputers. The dramatic improvements in performance (and more importantly, the ratio of price/performance) of commodity PCs, workstations, and networks have made clusters of off-the-shelf computers an attractive option for low-cost, high-performance computing. A major advantage of clusters is that since they can have any number of processors, they can be purchased using any sized budget, allowing research groups to install a cluster for their own dedicated use, and to scale up to more processors if additional funds become available. Clusters are now being built for high-energy physics simulations. Wuppertal has recently installed ALiCE, a cluster of 128 Alpha workstations running Linux, with a peak performance of 158 G flops. The Jefferson Laboratory in the US has a 16 node Alpha cluster and plans to upgrade to a 256 processor machine. In Australia, several large clusters have recently been installed. Swinburne University of Technology has a cluster of 64 Compaq Alpha workstations used for astrophysics simulations. Early this year our DHPC group constructed a cluster of 116 dual Pentium PCs (i.e. 232 processors) connected by a Fast Ethernet network, which is used by chemists at Adelaide University and Flinders University to run computational chemistry codes. The Australian National University has recently installed a similar PC cluster with 192 processors. The Centre for the Subatomic Structure of Matter (CSSM) undertakes large-scale high-energy physics calculations, mainly lattice QCD simulations. The choice of the computer and network hardware for a cluster depends on the particular applications to be run on the machine. Our

  20. Local and national laparoscopic skill competitions: residents' opinions and impact on adoption of simulation-based training.

    Science.gov (United States)

    McCreery, Greig L; El-Beheiry, Mostafa; Schlachta, Christopher M

    2017-11-01

    Dedicated practice using laparoscopic simulators improves operative performance. Yet, voluntary utilization is minimal. We hypothesized that skill competition between peers, at the local and national level, positively influences residents' use of laparoscopic simulators. A web-based survey evaluated the relationship between Canadian General Surgery residents' use of laparoscopic simulation and participation in competition. Secondary outcomes assessed attitudes regarding simulation training, factors limiting use, and associations between competition level and usage. One hundred ninety (23%) of 826 potential participants responded. Eighty-three percent rated their laparoscopic abilities as novice or intermediate. More than 70% agreed that use of simulation practice improves intra-operative performance, and should be a mandatory component of training. However, 58% employed simulator practice less than once per month, and 18% never used a simulator. Sixty-five percent engaged in simulator training for 5 h or less over the preceding 6 months. Seventy-three percent had participated in laparoscopic skill competition. Of those, 51% agreed that competition was a motivation for simulation practice. No association was found between those with competition experience and simulator use. However, 83% of those who had competed nationally reported >5 h of simulator use in the previous 6 months compared to those with no competition experience (26%), local competition (40%), and local national-qualifying competition (23%) (p simulation-based training, with only the minority of individuals competing at the national level demonstrated significantly higher simulation use. However, simulation training was perceived as a valuable exercise. Lack of time and access to simulators, as opposed to lack of interest, were the most commonly reported to limited use.