WorldWideScience

Sample records for skeletal targeted radiotherapy

  1. Development of targeted radiotherapy systems

    International Nuclear Information System (INIS)

    Ferro, Guillermina; Villarreal, Jose E.; Garcia, Laura; Tendilla, Jose I.; Paredes, Lydia; Murphy, Consuelo A.; Pedraza, Martha

    2001-01-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry

  2. Targeted intraoperative radiotherapy in oncology

    CERN Document Server

    Keshtgar, Mohammed; Wenz, Frederik

    2014-01-01

    Targeted intraoperative radiotherapy is a major advance in the management of cancer patients. With an emphasis on practical aspects, this book offers an ideal introduction to this innovative  technology for clinicians.

  3. Skeletal changes in growing spine following radiotherapy of tumors

    International Nuclear Information System (INIS)

    Spissak, L.; Horniakova, M.

    1987-01-01

    An analysis is given of a group of 20 children after nephrectomy and radiotherapy of Wilms' tumor and of one child following ovariectomy and radiotherapy of a dysgermanoma more than 5 years after the termination of the therapy. Morphological and structural changes were evaluated in the vertebrae as well as axial alterations of the spine. Interrelationships were found between the radiation dose, the patient's age and the degree of the skeletal changes in the spine. The most pronounced morphological, structural and axial changes occurred in children below 4 years treated with radiation doses above 20.0 Gy. (author). 1 tab., 5 figs., 3 refs

  4. Targeting IAP proteins in combination with radiotherapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2015-01-01

    The efficacy of radiotherapy critically depends on the activation of intrinsic cell death programs in cancer cells. This implies that evasion of cell death, a hallmark of human cancers, can contribute to radioresistance. Therefore, novel strategies to reactivate cell death programs in cancer cells are required in order to overcome resistance to radiotherapy. Since Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in multiple cancers and block cell death induction at a central point, therapeutic targeting of IAP proteins represents a promising approach to potentiate the efficacy of radiotherapy. The current review discusses the concept of targeting IAP proteins in combination with radiotherapy

  5. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  6. Radiotherapy of pathologic fractures and skeletal lesions bearing the risk of fracture

    International Nuclear Information System (INIS)

    Rieden, K.; Kober, B.; Mende, U.; Zum Winkel, K.

    1986-01-01

    Radiotherapy is of great importance in the treatment of pathologic fractures and skeletal lesions bearing the risk of fracture which are induced by malignomas, especially if these are in an advanced stage. In dependence on site and extent of skeletal destruction as well as on the general tumor dissemination, it can be distinguished between palliative radiotherapy and curative radiotherapy aiming at analgesia and remineralization. A retrospective analysis of 27 pathologic fractures and 56 skeletal lesions bearing the risk of fracture in malignoma patients showed an analgetic effect obtained by radiotherapy in 67% of pathological fractures and in 80% of skeletal lesions bearing the risk of fracture, whereas a remineralization could be demonstrated for 33% of pathological fractures and 50% of destructions bearing the risk of fracture. A stabilization of destructions progressing before therapy was found in 55% of pathological fractures and 40% of skeletal lesions bearing the risk of fracture. Thus a partial loading, supported by orthopedic prostheses, was possible for more than 50% of all patients. (orig.) [de

  7. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  8. DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: Painful degenerative skeletal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J. [University Hospitals Erlangen, Dept. of Radiation Oncology, Erlangen (Germany); Niewald, Marcus [Saarland University Medical School, Dept. of Radiotherapy and Radiation Oncology, Homburg/Saar (Germany); Weitmann, Hajo-Dirk [Fulda Hospital, Dept. of Radiooncology and Radiotherapy, Fulda (Germany); Jacob, Ingrid [Municipal Hospital Traunstein, Dept. of Radiotherapy, Traunstein (Germany); Adamietz, Irenaeus A. [Marien Hospital Herne/Ruhr University Bochum, Dept. of Radiotherapy and Radiation Oncology, Herne (Germany); Schaefer, Ulrich [Lippe Hospital, Dept. of Radiotherapy, Lemgo (Germany); Keilholz, Ludwig [Bayreuth Hospital, Dept. of Radiotherapy, Bayreuth (Germany); Heyd, Reinhard [Center for Radiosurgery, Frankfurt a. M. (Germany); Muecke, Ralph [Marien Hospital Herne/Ruhr University Bochum, Dept. of Radiotherapy and Radiation Oncology, Herne (Germany); Lippe Hospital, Dept. of Radiotherapy, Lemgo (Germany); Collaboration: German Cooperative Group on Radiotherapy for Benign Diseases (GCG-BD)

    2014-09-20

    The purpose of this article is to summarize the updated DEGRO consensus S2e guideline recommendations for the treatment of benign painful degenerative skeletal disorders with low-dose radiotherapy. This overview reports on the role of low-dose radiotherapy in the treatment of enthesiopathies (shoulder syndrome, trochanteric bursitis, plantar fasciitis, and elbow syndrome) and painful arthrosis (knee, hip, hand, and finger joints). The most relevant aspects of the DEGRO S2e Consensus Guideline Radiation Therapy of Benign Diseases 2014 regarding diagnostics, treatment decision, dose prescription as well as performance of radiotherapy and results are summarized. For all indications mentioned above, retrospective and some prospective analyses have shown remarkable effects in terms of pain relief. Nevertheless, the Level of Evidence (LoE) and the Grade of Recommendation (GR) vary: LoE 1b-4 and GR A-C. Low-dose radiotherapy for painful degenerative skeletal disorders is effective in the majority of the patients and therefore it may be a reasonable therapeutic alternative when simple and non-invasive methods have been used without persistent success. For all discussed entities, single fraction doses of 0.5-1.0 Gy and total doses of 3.0-6.0 Gy/series applied with 2-3 fractions per week are recommended. (orig.) [German] Zusammenfassung der Empfehlungen der DEGRO-S2e-Leitlinie zur Niedrigdosis-Radiotherapie von gutartigen schmerzhaften degenerativen Skeletterkrankungen. Die vorliegende Zusammenfassung berichtet ueber die Bedeutung der Niedrigdosis-Radiotherapie in der Behandlung von Enthesiopathien (Schultersyndrom, Ellenbogensyndrom, Bursitis trochanterica, Fasciitis plantaris) und schmerzhaften Arthrosen (Knie-, Hueft, Hand- und Fingergelenksarthrosen). Die wichtigsten Aspekte der aktuellen DEGRO-S2e-Konsensus-Leitlinie Strahlentherapie gutartiger Erkrankungen bezueglich Diagnostik, Therapieentscheidungen, Dosisempfehlungen und Durchfuehrung einer Radiotherapie werden

  9. DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: Painful degenerative skeletal disorders

    International Nuclear Information System (INIS)

    Ott, Oliver J.; Niewald, Marcus; Weitmann, Hajo-Dirk; Jacob, Ingrid; Adamietz, Irenaeus A.; Schaefer, Ulrich; Keilholz, Ludwig; Heyd, Reinhard; Muecke, Ralph

    2015-01-01

    The purpose of this article is to summarize the updated DEGRO consensus S2e guideline recommendations for the treatment of benign painful degenerative skeletal disorders with low-dose radiotherapy. This overview reports on the role of low-dose radiotherapy in the treatment of enthesiopathies (shoulder syndrome, trochanteric bursitis, plantar fasciitis, and elbow syndrome) and painful arthrosis (knee, hip, hand, and finger joints). The most relevant aspects of the DEGRO S2e Consensus Guideline Radiation Therapy of Benign Diseases 2014 regarding diagnostics, treatment decision, dose prescription as well as performance of radiotherapy and results are summarized. For all indications mentioned above, retrospective and some prospective analyses have shown remarkable effects in terms of pain relief. Nevertheless, the Level of Evidence (LoE) and the Grade of Recommendation (GR) vary: LoE 1b-4 and GR A-C. Low-dose radiotherapy for painful degenerative skeletal disorders is effective in the majority of the patients and therefore it may be a reasonable therapeutic alternative when simple and non-invasive methods have been used without persistent success. For all discussed entities, single fraction doses of 0.5-1.0 Gy and total doses of 3.0-6.0 Gy/series applied with 2-3 fractions per week are recommended. (orig.) [de

  10. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  11. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael

    2006-01-01

    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  12. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  13. Daily targeting of intrahepatic tumors for radiotherapy

    International Nuclear Information System (INIS)

    Balter, James M.; Brock, Kristy K.; Litzenberg, Dale W.; McShan, Daniel L.; Lawrence, Theodore S.; Haken, Randall Ten; McGinn, Cornelius J.; Lam, Kwok L.; Dawson, Laura A.

    2002-01-01

    Introduction: A system has been developed for daily targeting of intrahepatic tumors using a combination of ventilatory immobilization, in-room diagnostic imaging, and on-line setup adjustment. By reducing geometric position uncertainty, as well as organ movement, this system permits reduction of margins and thus potentially higher treatment doses. This paper reports our initial experience treating 8 patients with focal liver tumors using this system. Methods and Materials: The system includes diagnostic X-ray tubes mounted on the wall and ceiling of a treatment room, an active matrix flat panel imager, in-room control for image acquisition and setup adjustment, and a ventilatory immobilization system via active breathing control (ABC). Eight patients participated in the study, two using an early prototype ABC unit, and the remaining six with a commercial ABC system and improved setup measurement tools. Treatment margins were reduced, and dose consequently increased because of increased confidence in target position under this protocol. After daily setup via skin marks, orthogonal radiographs were acquired at suspended ventilation. The images were aligned to the CT model using the diaphragm for inferior-superior (IS) alignment, and the skeleton for left-right (LR) and anterior-posterior (AP) alignment. Adjustments were made for positioning errors greater than a threshold (3 or 5 mm). After treatment, retrospective analysis determined the final setup accuracy, as well as the error in initial setup measurement performed before setup adjustment. Results: Two hundred sixty-two treatment fractions were delivered on eight patients, with 171 treatments requiring repositioning. Typical treatment times were 25-30 min. Patients were able to tolerate ABC throughout the course of treatment. Breath holds up to 35 s long were used for treatment. The use of on-line imaging and setup adjustment reduced setup errors (σ) from 4.0 mm (LR), 6.7 mm (IS), and 3.8 mm (AP) to 2.1 mm (LR

  14. Non-Targeted effects of ionising radiation and radiotherapy

    International Nuclear Information System (INIS)

    Sjostedt, Svetlana; Bezak, Eva

    2010-01-01

    Full text: Modern radiobiology is undergoing rapid change due to new discoveries contradicting the target concept which is currently used to predict dose-response relationships. Thus relatively recently discovered radiation induced bystander effects (RlBEs), that include additional death, mutation and radio-adaptation in non-irradiated cells, change our understanding of the target concept and broadens its boundaries. This can be significant from a radioprotection point of view and also has the potential to reassess radiation damage models currently used in radiotherapy. This article reviews briefly the general concepts of RlBEs such as the proposed underlying mechanisms of signal induction and propagation, experimental approaches and biological end points used to investigate these phenomena. It also summ rises several mathematical models currently proposed in an attempt to quantify RlBE. The main emphasis of this al1icle is to review and highlight the potential impact of the bystander phenomena in radiotherapy.

  15. Targeted radiotherapy: state of the art and perspectives

    International Nuclear Information System (INIS)

    Vuillez, J.P.

    2006-01-01

    Internal targeted radiotherapy (previously called metabolic radiotherapy) consists in an in situ irradiation of small tumour lesions all through the body by mean of a radiolabeled agent. It is a more and more emerging technique of cancer treatment, as clearly demonstrated by theoretical and experimental considerations, but also impressive clinical results. Published results allowed the marketing authorization of several specialities at time. Main clinical results, i.e. these obtained with radiolabel antibodies, somatostatin analogs and bone seeking agents, already are very convincing. However, we must wonder if such conclusive results would remain anecdotal in the treatment of cancer, or take a larger and larger place. Recently published results and works in progress clearly show that there are a lot of possibilities which could be explored and many ways of improvement. These possibilities are related to the mechanisms of action, a better understanding of the relationship between injected activity and efficiency through dedicated dosimetry, new radiopharmaceuticals, new targets and a better definition of indications. The review of these different ways leads to an optimistic view of the future for internal radiotherapy, providing it will be thought through a pluri-disciplinary approach. (author)

  16. Rectal cancer: The radiation basis of radiotherapy, target volume

    International Nuclear Information System (INIS)

    Bosset, J.F.; Servagi-Vernat, S.; Crehange, G.; Azria, D.; Gerard, J.P.; Hennequin, C.

    2011-01-01

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  17. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  18. Automatic definition of targeted biological volumes for the radiotherapy applications

    International Nuclear Information System (INIS)

    Hatt, M.; Visvikis, D.; Cheze-Le-Rest, C.; Pradier, O.

    2009-01-01

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ( 18 F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  19. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  20. Radiotherapy in combination with vascular-targeted therapies

    International Nuclear Information System (INIS)

    Ciric, Eva; Sersa, Gregor

    2010-01-01

    Given the critical role of tumor vasculature in tumor development, considerable efforts have been spent on developing therapeutic strategies targeting the tumor vascular network. A variety of agents have been developed, with two general approaches being pursued. Antiangiogenic agents (AAs) aim to interfere with the process of angiogenesis, preventing new tumor blood vessel formation. Vascular-disrupting agents (VDAs) target existing tumor vessels causing tumor ischemia and necrosis. Despite their great therapeutic potential, it has become clear that their greatest clinical utility may lie in combination with conventional anticancer therapies. Radiotherapy is a widely used treatment modality for cancer with its distinct therapeutic challenges. Thus, combining the two approaches seems reasonable. Strong biological rationale exist for combining vascular-targeted therapies with radiation. AAs and VDAs were shown to alter the tumor microenvironment in such a way as to enhance responses to radiation. The results of preclinical and early clinical studies have confirmed the therapeutic potential of this new treatment strategy in the clinical setting. However, concerns about increased normal tissue toxicity, have been raised

  1. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  2. Combining Targeted Agents With Modern Radiotherapy in Soft Tissue Sarcomas

    Science.gov (United States)

    Wong, Philip; Houghton, Peter; Kirsch, David G.; Finkelstein, Steven E.; Monjazeb, Arta M.; Xu-Welliver, Meng; Dicker, Adam P.; Ahmed, Mansoor; Vikram, Bhadrasain; Teicher, Beverly A.; Coleman, C. Norman; Machtay, Mitchell; Curran, Walter J.

    2014-01-01

    Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes. PMID:25326640

  3. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  4. Biological modelling of fuzzy target volumes in 3D radiotherapy

    International Nuclear Information System (INIS)

    Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.

    1995-01-01

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  5. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  6. Planning target volumes for radiotherapy: how much margin is needed?

    International Nuclear Information System (INIS)

    Antolak, John A.; Rosen, Isaac I.

    1999-01-01

    Purpose: The radiotherapy planning target volume (PTV) encloses the clinical target volume (CTV) with anisotropic margins to account for possible uncertainties in beam alignment, patient positioning, organ motion, and organ deformation. Ideally, the CTV-PTV margin should be determined solely by the magnitudes of the uncertainties involved. In practice, the clinician usually also considers doses to abutting healthy tissues when deciding on the size of the CTV-PTV margin. This study calculates the ideal size of the CTV-PTV margin when only physical position uncertainties are considered. Methods and Materials: The position of the CTV for any treatment is assumed to be described by independent Gaussian distributions in each of the three Cartesian directions. Three strategies for choosing a CTV-PTV margin are analyzed. The CTV-PTV margin can be based on: 1. the probability that the CTV is completely enclosed by the PTV; 2. the probability that the projection of the CTV in the beam's eye view (BEV) is completely enclosed by the projection of the PTV in the BEV; and 3. the probability that a point on the edge of the CTV is within the PTV. Cumulative probability distributions are derived for each of the above strategies. Results: Expansion of the CTV by 1 standard deviation (SD) in each direction results in the CTV being entirely enclosed within the PTV 24% of the time; the BEV projection of the CTV is enclosed within the BEV projection of the PTV 39% of the time; and a point on the edge of the CTV is within the PTV 84% of the time. To have the CTV enclosed entirely within the PTV 95% of the time requires a margin of 2.8 SD. For the BEV projection of the CTV to be within the BEV projection of the PTV 95% of the time requires a margin of 2.45 SD. To have any point on the surface of the CTV be within the PTV 95% of the time requires a margin of 1.65 SD. Conclusion: In the first two strategies for selecting a margin, the probability of finding the CTV within the PTV is

  7. Pacemaker and radiotherapy in breast cancer: is targeted intraoperative radiotherapy the answer in this setting?

    International Nuclear Information System (INIS)

    Keshtgar, Mohammed RS; Eaton, David J; Reynolds, Claire; Pigott, Katharine; Davidson, Tim; Gauter-Fleckenstein, Benjamin; Wenz, Frederik

    2012-01-01

    We present the case of an 83 year old woman with a cardiac pacemaker located close in distance to a subsequently diagnosed invasive ductal carcinoma of the left breast. Short range intraoperative radiotherapy was given following wide local excision and sentinel node biopsy. The challenges of using ionising radiation with pacemakers is also discussed

  8. Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders

    Science.gov (United States)

    Polla, Daniel L.; Cardoso, Maria T. O.; Silva, Mayara C. B.; Cardoso, Isabela C. C.; Medina, Cristina T. N.; Araujo, Rosenelle; Fernandes, Camila C.; Reis, Alessandra M. M.; de Andrade, Rosangela V.; Pereira, Rinaldo W.; Pogue, Robert

    2015-01-01

    Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known. PMID:26380986

  9. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  10. Emergence and present status of Lu-177 in targeted radiotherapy. The Indian scenario

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Das, T.; Chakraborty, S.; Venkatesh, M. [Bhabha Atomic Reseach Centre, Trombay, Mumbai (India). Radiopharmaceuticals Div.

    2012-07-01

    {sup 177}Lu is presently considered to be a potential radionuclide for the development of agents for radionuclide therapy owing to its favorable nuclear decay characteristics [T{sub 1/2} = 6.65 d, E{sub {beta}}{sub (max)} = 0.497 MeV, E{sub {gamma}} = 113 KeV (6.4%) and 208 KeV (11%)]. While the long half-life of this promising radioisotope offers distinct logistic advantage, particularly, in countries having limited reactor facilities, the feasibility of its large-scale production with adequate specific activity and excellent radionuclidic purity in medium flux research reactors constitute yet another desirable feature. Extensive studies have been carried out to optimize the production of this isotope, with high specific activity and radionuclidic purity by the (n,{gamma}) route using the highest available flux and the optimum irradiation time. The gradual evolution of clin ical grade {sup 177}LuCl{sub 3} as a new radiochemical, ready for commercial deployment by Radiopharmaceuticals Division, Bhabha Atomic Research Centre, to nuclear medicine centers all over India was accomplished in 2010 in a stepwise manner with the commencement of the production of high specific activity {sup 177}Lu from enriched target in 2001. Research on {sup 177}Lu has demonstrated its immense potential in radiotherapeutic applications, a direct outcome of which has resulted in indigenous development of two agents viz. {sup 177}Lu-EDTMP and {sup 177}Lu-DOTA-TATE presently being evaluated in human patients for palliative care of bone pain due to skeletal metastases and treatment of malignancies of neuroendocrine origin, respectively. Using locally produced {sup 177}Lu, the radiolabeling of a plethora of other molecules with potential applicability in radiation synovectomy and targeted therapy of malignant tumors have been successfully demonstrated. A few of these agent such as a novel {sup 177}Lu-labeled porphyrin has shown considerable promise in initial studies and is presently evaluated

  11. An evaluation on the impact of national cancer wait targets on a (UK) radiotherapy department

    International Nuclear Information System (INIS)

    Roberts, Neill

    2012-01-01

    The radiotherapy department in this evaluation has been working towards full compliance with national cancer wait targets (CWT) since their implementation. 31 and 62 day targets set a maximum time frame for cancer patients to commence treatment. This evaluation explored the impact of these targets on staff and patients within the radiotherapy department and their overall impact on the radiotherapy service. Methods: This evaluation followed a mixed method approach of sequential triangulation. Qualitative data collection and analysis dominate findings but existing quantitative data, available within the department, was used to support the overall findings. Staff and patient interviews were used to establish attitudes to and experiences of the CWT initiative in relation to radiotherapy treatment. Quantitative data was taken from the local Cancer Centre CWT database that tracks patients referred for radiotherapy. Findings and Conclusion: Qualitative data analysis identified four main themes: pressure, appropriateness of target lengths, quality of treatment provided and efficiency of working practices within the department. Responses within these themes were both positive and negative with patients mainly the former and staff the latter. Quantitative evaluation found an increased monitoring and management burden from the CWT initiative, primarily for administrative, clerical and managerial staff. The main impact of the CWT initiative was an increase in pressure on staff due to reduced time to prepare and deliver treatment. Patients felt the initiative had not impacted negatively on their care and experienced a reduction in anxiety due to a reduction in waiting time.

  12. 18F-fluorodeoxyglucose PET in definition of target volumes and radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Qiao Wenli; Zhao Jinhua

    2007-01-01

    PET is a functional imaging modality, which can give some biological information of tumor. PET is more and more important in the definition of target volumes and radiotherapy treatment planning. Depending on its sensitivity and specificity, 18 F-fluorideoxyglucose 18 F-FDG PET has been shown to influence the selection of target volumes and radiotherapy treatment planning for non-small cell lung cancers, for head and neck squamous cell carcinomas or for esophageal tumors. On the other hand, for tumors such as rectal carcinomas, convincing data on the value of 18 F-FDG PET for target volume selection are still lacking. However, the application of 18 F-FDG PET in many aspects of radiotherapy is still controversy. Further researches in its clinical application are still needed to investigate whether 18 F-FDG PET for treatment planning should be routine because of the lack of prospective studies. (authors)

  13. Hypoxia-targeted suicidal gene therapy system enhances antitumor effects of radiotherapy

    International Nuclear Information System (INIS)

    Liu Junye; Guo Yao; Guo Guozhen

    2006-01-01

    Objective: To explore the effects of hypoxia-targeted suicidal gene therapy system combined with radiotherapy on pancreatic cancer. Methods: The recombinant adenovirus Ad-5HRE/hCMVmp-BCD was constructed by DNA recombinant technique. Western blot was used to detect hypoxia-induced expression of bacterial cytosine deaminase (BCD). Cell growth inhibition assay was used to determine the sensitivity of human pancreatic cancer cells MIA-PACA2 to 5-fluorocytosine (5-FC). Tumor xenograft growth delay assays was used to evaluate the effects of Ad-5HRE/hCMVmp-BCD/5-FC combined with radiotherapy on pancreatic cancer. Results: Western blot analysis demonstrated that hypoxia-induced BCD protein expression was achieved in MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD. With hypoxia treatment, the sensitivity of MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD to 5-FC significantly increased. Administration of either Ad-5HRE/hCMVmp-BCD/5-FC or radiotherapy could inhibit the growth of MIA-PACA2 xenografts in nude mice. Moreover, combination of Ad-5HRE/hCMVmp-BCD/5-FC could significantly enhance suppressing effects of radiotherapy on MIA-PACA2 xenografts. Conclusion: Hypoxia-targeted suicidal gene therapy system Ad-5HRE/hCMVmp-BCD/5-FC could enhance antitumor effects of radiotherapy on pancreatic cancer and can be used as a powerful adjunct to conventional radiotherapy. (authors)

  14. Rectal cancer: The radiation basis of radiotherapy, target volume; Cancers du rectum: volumes cible de la radiotherapie, bases rationnelles

    Energy Technology Data Exchange (ETDEWEB)

    Bosset, J.F.; Servagi-Vernat, S. [Service oncologie-radiotherapie, CHU Jean-Minjoz, 3, boulevard Fleming, 25030 Besancon (France); Crehange, G. [Service oncologie-radiotherapie, centre Georges-Francois-Leclerc, 1, rue du Pr-Marion, 21079 Dijon cedex (France); Azria, D. [Service oncologie-radiotherapie, centre Val-d' Aurelle, rue Croix-Verte, 34298 Montpellier cedex 5 (France); Gerard, J.P. [Service oncologie-radiotherapie, centre Antoine-Lacassagne, 33, avenue Valombrose, 06189 Nice (France); Hennequin, C. [Service oncologie-radiotherapie, hopital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris (France)

    2011-10-15

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  15. Target volume determination in radiotherapy for non-small-cell lung cancer-facts and questions

    International Nuclear Information System (INIS)

    Kepka, L.; Bujko, K.

    2003-01-01

    Although the precise target volume definition in conformal radiotherapy is required by ICRU Report 50 and 62, this task in radiotherapy for non-small-cell lung cancer (NSCLC) is often controversial and strict accordance with ICRU requirements is hard to achieve. The Gross Tumour Volume (GTV) definition depends mainly on the imaging method used. We discuss the use of new imaging modalities, like PET, in GTV definition. The Clinical Target Volume (CTV) definition remains a separate, and still unresolved problem, especially in the part concerning the Elective Nodal Irradiation (ENI). Nowadays, there is no unified attitude among radiation oncologists regarding the necessity and extent of ENI. The common use of combined treatment modalities and the tendency to dose escalation, both increasing the potential toxicity, result in the more frequent use of involved-fields techniques. Problems relating to margins during Planning Target Volume (PTV) of lung cancer irradiation are also discussed. Another issue is the Interclinician variability in target volumes definition, especially when there is data indicating that the GTV, as defined by 3 D-treatment planning in NSCLC radiotherapy, may be highly prognostic for survival. We postulate that special attention should be paid to detailed precision of target volume determination in departmental and trial protocols. Careful analysis of patterns of failures from ongoing protocols will enable us to formulate the guidelines for target volume definition in radiotherapy for lung cancer. (author)

  16. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-01-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested

  17. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  18. Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison

    NARCIS (Netherlands)

    Kalpathy-Cramer, Jayashree; Awan, Musaddiq; Bedrick, Steven; Rasch, Coen R. N.; Rosenthal, David I.; Fuller, Clifton D.

    2014-01-01

    Modern radiotherapy requires accurate region of interest (ROI) inputs for plan optimization and delivery. Target delineation, however, remains operator-dependent and potentially serves as a major source of treatment delivery error. In order to optimize this critical, yet observer-driven process, a

  19. Target volume definition with 18F-FDG PET-CT in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Carson, K. J.; Hanna, G. G.; Hounsell, A. R.

    2011-01-01

    There is considerable interest in using 18F -Fluorodeoxyglucose (FDG) positron emission tomography (PET) images for radiotherapy treatment planning (RTF) purposes, and in particular for defining target volumes. This is a rapidly evolving subject and this review describes the background to this application of PET imaging and discusses the issues involved. (authors)

  20. Target migration from re-inflation of adjacent atelectasis during lung stereotactic body radiotherapy.

    Science.gov (United States)

    Mao, Bijing; Verma, Vivek; Zheng, Dandan; Zhu, Xiaofeng; Bennion, Nathan R; Bhirud, Abhijeet R; Poole, Maria A; Zhen, Weining

    2017-06-10

    Stereotactic body radiotherapy (SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer (NSCLC). Herein, we highlight the importance of interfraction image guidance during SBRT. We describe a case of early-stage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction. The case exemplifies the importance of cross-sectional image-guided radiotherapy that shows the intended target, as opposed to aligning based on rigid anatomy alone, especially in cases associated with potentially "volatile" anatomic areas.

  1. 4D imaging for target definition in stereotactic radiotherapy for lung cancer.

    Science.gov (United States)

    Slotman, Ben J; Lagerwaard, Frank J; Senan, Suresh

    2006-01-01

    Stereotactic radiotherapy of Stage I lung tumors has been reported to result in high local control rates that are far superior to those obtained with conventional radiotherapy techniques, and which approach those achieved with primary surgery. Breathing-induced motion of tumor and target tissues is an important issue in this technique and careful attention should be paid to the contouring and the generation of individualized margins. We describe our experience with the use of 4DCT scanning for this group of patients, the use of post-processing tools and the potential benefits of respiratory gating.

  2. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  3. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  4. Radiotherapy.

    Science.gov (United States)

    Krause, Sonja; Debus, Jürgen; Neuhof, Dirk

    2011-01-01

    Solitary plasmocytoma occurring in bone (solitary plasmocytoma of the bone, SBP) or in soft tissue (extramedullary plasmocytoma, EP) can be treated effectively and with little toxicity by local radiotherapy. Ten-year local control rates of up to 90% can be achieved. Patients with multiple myeloma often suffer from symptoms such as pain or neurological impairments that are amenable to palliative radiotherapy. In a palliative setting, short treatment schedules and lower radiation doses are used to reduce toxicity and duration of hospitalization. In future, low-dose total body irradiation (TBI) may play a role in a potentially curative regimen with nonmyeloablative conditioning followed by allogenic peripheral blood stem cell transplantation.

  5. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  6. Clinical target volume for rectal cancer. Preoperative radiotherapy

    International Nuclear Information System (INIS)

    Lorchel, F.; Bossel, J.F.; Baron, M.H.; Goubard, O.; Bartholomot, B.; Mantion, G.; Pelissier, E.P.; Maingon, P.

    2001-01-01

    The total meso-rectal excision allows the marked increase of the local control rate in rectal cancer. Therefore, the meso-rectal space is the usual field for the spread of rectal cancer cells. It could therefore be considered as the clinical target volume in the preoperative plan by the radiation oncologist. We propose to identify the mesorectum on anatomical structures of a treatment-position CT scan. (authors)

  7. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  8. Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Science.gov (United States)

    Globus, Ruth K.; Tahimic, Candice; Schreurs, Ann-Sofie

    2018-01-01

    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal).

  9. Radiotherapy

    International Nuclear Information System (INIS)

    Pistenma, D.A.

    1980-01-01

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  10. Anti-vascular internal high LET targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J.

    2006-01-01

    Targeted alpha therapy (TAT) is an emerging therapeutic modality, thought to be best suited to cancers such as leukaemia and cancer micrometastases, but not solid tumours. However, several subjects in our phase 1 clinical trial of systemic TAT for melanoma experienced marked regression of subcutaneous and internal tumours. The MCSP receptor is expressed on both tumour capillary pericytes and melanoma cells, and is targeted by the 9.2.27 monoclonal antibody. When this is labelled with the alpha-emitting radioisotope Bi-213, the resulting alpha-immunoconjugate can extravasate through capillary fenestrations and selectively kill these cells, as well as the contiguous endothelial cells in the capillaries, causing capillary closure and subsequent tumour regression. These results suggest that tumours can be regressed by a process called tumour anti-vascular alpha therapy (TAVAT). By analogy, tumour regression in boron neutron capture therapy could be achieved by similar means, where in the alpha and Li-7 ions emitted by boron-10 neutron capture events in cancer cells contiguous to the endothelial cells could shut down tumour capillaries by a process of tumour anti-vascular neutron capture therapy (TAVNCT). (author)

  11. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Directory of Open Access Journals (Sweden)

    Miriam Aza-Carmona

    Full Text Available SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD and Langer mesomelic dysplasia (LMD, while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1 the natriuretic peptide precursor B gene (NPPB involved in the endochondral ossification signalling and directly activated by SHOX; and 2 Aggrecan (ACAN, a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9 via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  12. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Science.gov (United States)

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  13. Long-Term Results of Targeted Intraoperative Radiotherapy (Targit) Boost During Breast-Conserving Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Jayant S., E-mail: jayant.vaidya@ucl.ac.uk [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Baum, Michael [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Tobias, Jeffrey S. [Department of Radiation Oncology, University College London Hospitals, London (United Kingdom); Wenz, Frederik [Radiation Oncology and Gynaecology, University Medical Centre of Mannheim (Germany); Massarut, Samuele [Surgery and Radiation Oncology, Centro di Riferimento Oncologico (CRO), Aviano (Italy); Keshtgar, Mohammed [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Hilaris, Basil [Radiation Oncology, Our Lady of Mercy, New York Medical College, New York (United States); Saunders, Christobel [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Williams, Norman R.; Brew-Graves, Chris [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Corica, Tammy [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Roncadin, Mario [Surgery and Radiation Oncology, Centro di Riferimento Oncologico (CRO), Aviano (Italy); Kraus-Tiefenbacher, Uta; Suetterlin, Marc [Radiation Oncology and Gynaecology, University Medical Centre of Mannheim (Germany); Bulsara, Max [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Joseph, David [Radiation Oncology, Sir Charles Gairdner Hospital and School of Surgery, University of Western Australia, Perth (Australia)

    2011-11-15

    Purpose: We have previously shown that delivering targeted radiotherapy to the tumour bed intraoperatively is feasible and desirable. In this study, we report on the feasibility, safety, and long-term efficacy of TARGeted Intraoperative radioTherapy (Targit), using the Intrabeam system. Methods and Materials: A total of 300 cancers in 299 unselected patients underwent breast-conserving surgery and Targit as a boost to the tumor bed. After lumpectomy, a single dose of 20 Gy was delivered intraoperatively. Postoperative external beam whole-breast radiotherapy excluded the usual boost. We also performed a novel individualized case control (ICC) analysis that computed the expected recurrences for the cohort by estimating the risk of recurrence for each patient using their characteristics and follow-up period. Results: The treatment was well tolerated. The median follow up was 60.5 months (range, 10-122 months). Eight patients have had ipsilateral recurrence: 5-year Kaplan Meier estimate for ipsilateral recurrence is 1.73% (SE 0.77), which compares well with that seen in the boosted patients in the European Organization for Research and Treatment of Cancer study (4.3%) and the UK STAndardisation of breast RadioTherapy study (2.8%). In a novel ICC analysis of 242 of the patients, we estimated that there should be 11.4 recurrences; in this group, only 6 recurrences were observed. Conclusions: Lumpectomy and Targit boost combined with external beam radiotherapy results in a low local recurrence rate in a standard risk patient population. Accurate localization and the immediacy of the treatment that has a favorable effect on tumour microenvironment may contribute to this effect. These long-term data establish the long-term safety and efficacy of the Targit technique and generate the hypothesis that Targit boost might be superior to an external beam boost in its efficacy and justifies a randomized trial.

  14. Targeting Rad50 sensitizes human nasopharyngeal carcinoma cells to radiotherapy

    International Nuclear Information System (INIS)

    Chang, Lihong; Huang, Jiancong; Wang, Kai; Li, Jingjia; Yan, Ruicheng; Zhu, Ling; Ye, Jin; Wu, Xifu; Zhuang, Shimin; Li, Daqing; Zhang, Gehua

    2016-01-01

    The Mre11-Rad50-Nbs1 (MRN) complex is well known for its crucial role in initiating DNA double strand breaks (DSBs) repair pathways to resistant irradiation (IR) injury and thus facilitating radioresistance which severely reduces radiocurability of nasopharyngeal cancer (NPC). Targeting native cellular MRN function would sensitize NPC cells to IR. A recombinant adenovirus containing a mutant Rad50 gene (Ad-RAD50) expressing Rad50 zinc hook domain but lacking the ATPase domain and the Mre11 interaction domain was constructed to disrupt native cellular MRN functions. The effects of Ad-RAD50 on the MRN functions were assessed in NPC cells lines using western blot, co-immunoprecipitation and confocal microscopy analyses. The increased radiosensitivity of transient Ad-RAD50 to IR was examined in NPC cells, including MTT assay, colony formation. The molecular mechanisms of radiosensitization were confirmed by neutral comet assay and western bolts. Nude mice subcutaneous injection, tumor growth curve and TUNEL assay were used to evaluate tumor regression and apoptosis in vivo. Rad50 is remarkably upregulated in NPC cells after IR, implying the critical role of Rad50 in MRN functions. The transient expression of this mutant Rad50 decreased the levels of native cellular Rad50, Mre11 and Nbs1, weakened the interactions among these proteins, abrogated the G2/M arrest induced by DSBs and reduced the DNA repair ability in NPC cells. A combination of IR and mutant RAD50 therapy produced significant tumor cytotoxicity in vitro, with a corresponding increase in DNA damage, prevented proliferation and cell viability. Furthermore, Ad-RAD50 sensitized NPC cells to IR by causing dramatic tumor regression and inducing apoptosis in vivo. Our findings define a novel therapeutic approach to NPC radiosensitization via targeted native cellular Rad50 disruption. The online version of this article (doi:10.1186/s12885-016-2190-8) contains supplementary material, which is available to

  15. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group

    International Nuclear Information System (INIS)

    Poortmans, Philip; Bossi, Alberto; Vandeputte, Katia; Bosset, Mathieu; Miralbell, Raymond; Maingon, Philippe; Boehmer, Dirk; Budiharto, Tom; Symon, Zvi; Bergh, Alfons C.M. van den; Scrase, Christopher; Poppel, Hendrik van; Bolla, Michel

    2007-01-01

    The appropriate application of 3-D conformal radiotherapy, intensity modulated radiotherapy or image guided radiotherapy for patients undergoing post-operative radiotherapy for prostate cancer requires a standardisation of the target volume definition and delineation as well as standardisation of the clinical quality assurance procedures. Recommendations for this are presented on behalf of the European Organisation for Research and Treatment of Cancer (EORTC) Radiation Oncology Group and in addition to the already published guidelines for radiotherapy as the primary treatment

  16. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  17. Intraoperative Boost Radiotherapy during Targeted Oncoplastic Breast Surgery: Overview and Single Center Experiences

    Directory of Open Access Journals (Sweden)

    Wolfram Malter

    2014-01-01

    Full Text Available Breast-conserving surgery followed by whole-breast irradiation is the standard local therapy for early breast cancer. The international discussion of reduced importance of wider tumor-free resection margins than “tumor not touching ink” leads to the development of five principles in targeted oncoplastic breast surgery. IORT improves local recurrence risk and diminishes toxicity since there is less irradiation of healthy tissue. Intraoperative radiotherapy (IORT can be delivered in two settings: an IORT boost followed by a conventional regimen of external beam radiotherapy or a single IORT dose. The data from TARGIT-A and ELIOT reinforce the conviction that intraoperative radiotherapy during breast-conserving surgery is a reliable alternative to conventional postoperative fractionated irradiation, but only in a carefully selected population at low risk of local recurrence. We describe our experiences with IORT boost (50 kV energy X-rays; 20 Gy in combination with targeted oncoplastic breast surgery in a routine clinical setting. Our experiences demonstrate the applicability and reliability of combining IORT boost with targeted oncoplastic breast surgery in breast-conserving therapy of early breast cancer.

  18. Targeted intraoperative radiotherapy (TARGIT) yields very low recurrence rates when given as a boost

    International Nuclear Information System (INIS)

    Vaidya, Jayant S.; Baum, Michael; Tobias, Jeffrey S.; Massarut, Samuele; Wenz, Frederik; Murphy, Olive; Hilaris, Basil; Houghton, Joan B.Sc.; Saunders, Christobel; Corica, Tammy; Roncadin, Mario; Kraus-Tiefenbacher, Uta; Melchaert, Frank; Keshtgar, Mohammed; Sainsbury, Richard; Douek, Michael; Harrison, Elly; Thompson, Alastair; Joseph, David

    2006-01-01

    Purpose: Patients undergoing breast-conserving surgery were offered boost radiotherapy with targeted intraoperative radiotherapy (TARGIT) using the Intrabeam system to test the feasibility, safety, and efficacy of the new approach. Methods and Materials: We treated 302 cancers in 301 unselected patients. This was not a low-risk group. One-third of patients (98/301) were younger than 51 years of age. More than half of the tumors (172, 57%) were between 1 cm and 2 cm, and one-fifth (62, 21%) were >2 cm; 29% (86) had a Grade 3 tumor and, in 29% (87), axillary lymph nodes contained metastasis. After primary surgery, 20 Gy was delivered intraoperatively to the surface of the tumor bed, followed by external-beam radiotherapy (EBRT), but excluding the usual boost. Results: The treatment was well tolerated. The follow-up ranged from 3 to 80 months (164 and 90 patients completed 2 and 3 years follow-up, respectively). Four patients (1.3%) had local recurrence. The Kaplan-Meier estimate of local recurrence is 2.6% (SE = 1.7) at 5 years. This compares favorably with the 4.3% recurrence rate in boosted patients from the EORTC boost study, in which only 8.1% patients were node-positive, as opposed to 29% in our series. Conclusion: Targeted intraoperative radiotherapy combined with EBRT results in a low local recurrence rate. This could be attributed to both accurate targeting and timeliness of the treatment. These data support the need for a randomized trial to test whether the TARGIT boost is superior to conventional external boost, especially in high-risk women

  19. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    Science.gov (United States)

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  1. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  2. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver

    International Nuclear Information System (INIS)

    Wulf, Joern; Haedinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-01-01

    Background and purpose: Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5 mm in axial and 5-10 mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Materials and methods: Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10 mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). Results: A decrease of TC to 3 . Conclusions: Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV ≥95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm 3 are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins

  3. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  4. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    Science.gov (United States)

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to

  5. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  6. The distribution of alternative agents for targeted radiotherapy within human neuroblastoma spheroids

    International Nuclear Information System (INIS)

    Mairs, R.J.; Gaze, M.N.; Murray, T.; Reid, R.; McSharry, C.; Babich, J.W.

    1991-01-01

    This study aims to select the radiopharmaceutical vehicle for targeted radiotherapy of neuroblastoma which is most likely to penetrate readily the centre of micrometastases in vivo. The human neuroblastoma cell line NB1-G, grown as multicellular spheroids provided an in vitro model for micrometastases. The radiopharmaceuticals studied were the catecholamine analogue metaiodobenzyl guanidine (mIBG), a specific neuroectodermal monoclonal antibody (UJ13A) and β nerve growth factor (βNGF). Following incubation of each drug with neuroblastoma spheroids, autoradiographs of frozen sections were prepared to demonstrate their relative distributions. mIBG and βNGF were found to penetrate the centre of spheroids readily although the concentration of mIBG greatly exceeded that of βNGF. In contrast, UJ13A was only bound peripherally. We conclude that mIBG is the best available vehicle for targeted radiotherapy of neuroblastoma cells with active uptake mechanisms for catecholimines. It is suggested that radionuclides with a shorter range of emissions than 131 I may be conjugated to benzyl guanidine to constitute more effective targeting agents with potentially less toxicity to adjacent normal tissues. (author)

  7. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Beadle, Beth M.; Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Schwartz, David L. [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States)

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented

  8. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    Science.gov (United States)

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the

  9. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Yang, Jinzhong; Aristophanous, Michalis; Beadle, Beth M.; Garden, Adam S.; Schwartz, David L.

    2015-01-01

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm"3 (range, 6.6–44.3 cm"3), while the PET segmented GTV was 10.2 cm"3 (range, 2.8–45.1 cm"3). The median physician-defined GTV was 22.1 cm"3 (range, 4.2–38.4 cm"3). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was

  10. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  11. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  12. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    International Nuclear Information System (INIS)

    Missailidis, Sotiris; Perkins, Alan; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario

    2008-01-01

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  13. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  14. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  15. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  16. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    Science.gov (United States)

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  17. The target volume concept at the recording of external beam radiotherapy

    International Nuclear Information System (INIS)

    Quast, U.; Glaeser, L.

    1981-01-01

    With the aim of complete, exact and reproducible manual recording and documentation of external beam radiotherapy a concept is proposed providing treatment planning and recording related to space and time for target volumes of different order corresponding to Ist, IInd or IIIrd part of treatment course, regarding all dose limiting organs at risk. The record consists of the dosage plan for medical treatment planning, the treatment plan for physical dose distribution planning and the treatment record of absorbed doses delivered as well as a checklist for patient and machine set-up, and labels for intended actions during treatment development. A clear arrangement of the record form in logical order was found, demanding exact specification of target(s) and beam(s) and their relation in space and time; asking for verbal and graphical description of target volumes, organs at risk, patient positioning, beam portals and dose reference points in terms of patients' anatomy; emphasizing the most important medical data by marked areas and leaving enough empty space for additional data, remarks or comments. During several years of clinical use these record forms proved to be suitable for all cases of external beam therapy, for complex situations of target volumes and treatment-scheduling, for all treatment techniques and radiation qualities and for all ways of physical treatment planning. They can be extended to automatic treatment verification, monitoring and recording as well as to the application of in-vivo-measurements of absorbed doses. (orig.) [de

  18. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  19. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  20. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  1. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  2. Value of 18F-FDG PET-CT in nasopharyngeal carcinoma target delineation and radiotherapy boost

    International Nuclear Information System (INIS)

    Wang Ying; Feng Yanlin

    2011-01-01

    18 F-FDG PET-CT has widely used in nasopharyngeal carcinoma diagnosis and staging in recent years, it's effecten target volume delineation has received great attention. The article lays stress on the clinical research progress of 18 F-FDG PET-CT in the radiotherapy of nasopharyngeal carcinoma improve the accuracy of target delineation, reduce the difference of target delineation, guide the dose painting and boost. (authors)

  3. A treatment planning comparison of four target volume contouring guidelines for locally advanced pancreatic cancer radiotherapy

    International Nuclear Information System (INIS)

    Fokas, Emmanouil; Eccles, Cynthia; Patel, Neel; Chu, Kwun-Ye; Warren, Samantha; McKenna, W. Gillies; Brunner, Thomas B.

    2013-01-01

    Background and purpose: Contouring of target volumes varies significantly in radiotherapy of pancreatic ductal adenocarcinoma (PDAC). There is a lack of consensus as to whether elective lymph nodes (eLN’s) should be included or not in the planning target volume (PTV). In the present study we analyzed the dosimetric coverage of the eLN’s and organs at risk (OAR) by comparing four different contouring guidelines. Methods and materials: PTVs were delineated with (Oxford and RTOG guidelines) or without (Michigan and SCALOP guidelines) including the eLNs in eleven patients with PDAC. eLNs included the peripancreatic, paraaortic, paracaval, celiac trunk, superior mesenteric and portal vein clinical target volumes (CTVs). A 3D-CRT plan (50.40 Gy in 28 fractions) was performed to analyze and compare the dosimetric coverage of all eLNs and OAR between the 4 contouring guidelines. Results: The size of Oxford and RTOG PTVs was comparable and significantly larger than the SCALOP and Michigan PTVs. Interestingly the eLNs received a significant amount of incidental dose irradiation by PTV-based plans that only aimed to treat the tumor without the eLNs. The dosimetric coverage of eLN presented a large variability according to the respective contouring methods. The difference in the size of the 4 PTVs was reflected to the dose distribution at the OAR. Conclusions: Our study provides important information regarding the impact of different contouring guidelines on the dose distribution to the eLNs and the OAR in patients with locally advanced PDAC treated with radiotherapy

  4. Targeted radiotherapy with 177 Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    International Nuclear Information System (INIS)

    Murphy, M. A de; Pedraza L, M.; Rodriguez C, J.; Ferro F, G.; Murphy S, E.

    2006-01-01

    Malignant pancreas tumours induced in athymic mice are a good model for targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses and to evaluate 177 Lu-DOTA-TATE as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells, which over-express somatostatin receptors, were injected in athymic mice and 20 days later the mean tumour size was 3.08 square cm (n=3). A mean of 86.3 MBq 177 Lu-DOTA-TATE, was injected in a tail vein and 19 days after therapy the size of the tumours was 0.81 square cm. There was a partial relapse and after 16 days, when sacrificed, the mean tumour size was 8.28 cubic cm. An epithelial and sarcoma mixed tumour in the kidney of one treated mouse was found. The tumour of the control mouse was 8.61 cubic cm when sacrificed 14 days after tumour induction. Radiotherapy estimates to the tumours was 35.9-39.7 Gy and the tumours might have been completely reduced with a second therapy dose. These preliminary studies justify further therapeutic and dosimetry estimations to ensure that Lu- 177 -DOTA-TATE will act as expected in man, considering kidney radiation. (Author)

  5. True Local Recurrence Rate in the Conserved Breast After Magnetic Resonance Imaging-Targeted Radiotherapy

    International Nuclear Information System (INIS)

    Whipp, Elisabeth; Beresford, Mark; Sawyer, Elinor; Halliwell, Michael

    2010-01-01

    Purpose: Better accuracy of local radiotherapy may substantially improve local control and thus long-term breast cancer survival. Magnetic resonance imaging (MRI) has high resolution and sensitivity in breast tissue and may depict the tumor bed more accurately than conventional planning techniques. A postoperative complex (POCx) comprises all visible changes thought to be related to surgery within the breast and acts as a surrogate for the tumor bed. This study reports on local recurrence rates after MRI-assisted radiotherapy planning to ensure adequate coverage of the POCx. Methods and Materials: Simple opposed tangential fields were defined by surface anatomy in the conventional manner in 221 consecutive patients. After MRI, fields were modified by a single radiation oncologist to ensure encompassment of the POCx with a 10-mm margin. Genetic analysis was performed on all local relapses (LRs) to distinguish true recurrences (TRs) from new primaries (NPs). Results: This was a high risk cohort at 5 years: only 9.5% were classified as low risk (St Gallen): 43.4% were Grade 3 and 19.9% had surgical margins <1 mm; 62.4% of patients received boosts. Adjustments of standard field margins were required in 69%. After a median follow-up of 5 years, there were 3 LRs (1.3%) as the site of first relapse in 221 patients, comprising two TRs (0.9%) and one NP (0.4%). Conclusions: Accurate targeting of the true tumor bed is critical. MRI may better define the tumor bed.

  6. Rule of lymph node metastasis and proper target of postoperative radiotherapy for thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Xiao Zefen; Zhou Zongmei; Lv Jima; Liang Jun; Ou Guangfei; Jin Jing; Song Yongwen; Zhang Shiping; Yin Weibo

    2008-01-01

    Objective: To analyze the rule of lymph node metastasis in thoracic esophageal carcinoma, and to study the proper radiation target. Methods: From September 1986 to December 1997,549 patients with esophageal carcinoma who had undergone radical resection were divided into surgery alone group (S,275 patients) or surgery plus radiotherapy group(S + R,274 patients). Radiotherapy was begun 3 to 4 weeks after operation. The radiation target included both supra-clavicular areas and the entire mediastinum. The total dose was 50 Gy in 25 fractions over 5 weeks for the supra-clavicular areas and 60 Gy in 30 fractions over 6 weeks for the entire mediastinum. Results: The 5-year overall survival of patients with lymph node metastasis in one anatomic site and two anatomic sites was 31.5% and 13.9% (P=0.013), respectively. For patients with > 2 positive nodes metastasis receiving surgery alone, the corresponding 5-year survival was 24.8% and 4.9% (P=0.046), respectively. The median number of dissected lymph nodes of the upper-, middle-and lower-segment esophageal carcinoma was 13, 17 and 20, respectively. The rate of metastatic lymph node in the para-esophagus region was the highest(61.5%-64.9%), which was not different among the different primary sites (P=0.922). The anastomotic stoma recurrence rate of the upper-segment esophageal carcinoma was higher than that of the middle- or lower-segment carcinomas (16.7%, 3.1%, and 7.7%, χ 2 =9.02,P<0.05). Conclusions: For the thoracic esophageal carcinoma, the number of anatomic sites of lymph node metastasis is an important factor affecting the survival. The lower rate of lymph node metastasis of the upper segment esophageal carcinoma may be corrected with the less lymph node dissected. The rate of lymph node metastasis in para-esophageal region is not related with the lesion segment. The anastomotic stoma is an important radiotherapy target for upper segment esophageal carcinoma. (authors)

  7. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  8. Labelling techniques of biomolecules for targeted radiotherapy final report of a co-ordinated research project 1998-2002

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the...

  9. 135La as an auger-electron emitter for targeted internal radiotherapy

    DEFF Research Database (Denmark)

    Fonslet, Jesper; Lee, Boon Quan; Tran, Thuy A.

    2018-01-01

    Introduction: 135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, imaging characteristics, and dosimetry related to 135La therapy. Methods and Results: 135La was produced by 16.5 Me....... The generated Auger spectrum was used to recalculate cellular S-factors. Conclusion: 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy. ....... recovered > 98 % of the 135La with an effective molar activity of 70 ±20 GBq/µmol. To better assess cellular and organ dosimetry of this nuclide, we have recalculated the X-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade...

  10. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    Science.gov (United States)

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  11. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    Directory of Open Access Journals (Sweden)

    Lu Guo

    Full Text Available To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT and tri-modality (MRI/CT/PET image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV, the average distance between surface and centroid (ADSC, and the local standard deviation (SDlocal. Analysis of COV was also performed to evaluate intra-observer volume variation.The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09 and 0.07(± 0.01 for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05 with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm and patient 3 (from 0.42 cm to 0.36 cm with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00 with the tri-modality method as compared with using the dual-modality method.With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  12. Superior target delineation for stereotactic body radiotherapy of bone metastases from renal cell carcinoma on MRI compared to CT

    NARCIS (Netherlands)

    Prins, Fieke M.; Van Der Velden, Joanne M.; Gerlich, Anne S.; Kotte, Alexis N.T.J.; Eppinga, Wietse S.C.; Kasperts, Nicolien; Verlaan, Jorrit J.; Pameijer, Frank A.; Kerkmeijer, Linda G.W.

    2017-01-01

    Background: In metastatic renal cell carcinoma (mRCC) there has been a treatment shift towards targeted therapy, which has resulted in improved overall survival. Therefore, there is a need for better local control of the tumor and its metastases. Image-guided stereotactic body radiotherapy (SBRT) in

  13. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Hoffmann, A.L.; Vogel, W.V.; Dalen, J.A. van; Verstappen, S.M.M.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. MATERIALS AND METHODS: Seventy-eight

  14. Biological evaluation and molecular docking of Rhein as a multi-targeted radiotherapy sensitization agent of nasopharyngeal carcinoma

    Science.gov (United States)

    Su, Zhengying; Tian, Wei; Li, Jing; Wang, Chunmiao; Pan, Zhiyu; Li, Danrong; Hou, Huaxin

    2017-11-01

    Radiation resistance of nasopharyngeal carcinoma (NPC) is a joint effect caused by complex molecular mechanisms. The development of multi-target radiotherapy sensitization agents offered a promising method for the treatment of NPC. In this work, the probability of Rhein to be a multi-target radiotherapy sensitization agent was explored through computer aid virtual screening by inverse docking study. In order to validate the accuracy of the computational results, radiotherapy sensitization of Rhein to NPC cells and its effects on the expression of target proteins were evaluated separately by CCK8 assay and Western blotting analysis. Our result demonstrated that Rhein possessed strong binding affinity with RAC1 and HSP90. No cytotoxic concentration of Rhein had radiosensitization effect on nasopharyngeal carcinoma CNE1 cells. After treatment with Rhein and 2Gy radiation, the expression of RAC1 upregulated and the expression of HSP90 down-regulated in cells. Based on the above data, Rhein is likely to become an attractive lead compound for the future design of multi-target radiotherapy sensitization agents.

  15. A strategy to objectively evaluate the necessity of correcting detected target deviations in image guided radiotherapy

    International Nuclear Information System (INIS)

    Yue, Ning J.; Kim, Sung; Jabbour, Salma; Narra, Venkat; Haffty, Bruce G.

    2007-01-01

    Image guided radiotherapy technologies are being increasingly utilized in the treatment of various cancers. These technologies have enhanced the ability to detect temporal and spatial deviations of the target volume relative to planned radiation beams. Correcting these detected deviations may, in principle, improve the accuracy of dose delivery to the target. However, in many situations, a clinical decision has to be made as to whether it is necessary to correct some of the deviations since the relevant dosimetric impact may or may not be significant, and the corresponding corrective action may be either impractical or time consuming. Ideally this decision should be based on objective and reproducible criteria rather than subjective judgment. In this study, a strategy is proposed for the objective evaluation of the necessity of deviation correction during the treatment verification process. At the treatment stage, without any alteration from the planned beams, the treatment beams should provide the desired dose coverage to the geometric volume identical to the planning target volume (PTV). Given this fact, the planned dose distribution and PTV geometry were used to compute the dose coverage and PTV enclosure of the clinical target volume (CTV) that was detected from imaging during the treatment setup verification. The spatial differences between the detected CTV and the planning CTV are essentially the target deviations. The extent of the PTV enclosure of the detected CTV as well as its dose coverage were used as criteria to evaluate the necessity of correcting any of the target deviations. This strategy, in principle, should be applicable to any type of target deviations, including both target deformable and positional changes and should be independent of how the deviations are detected. The proposed strategy was used on two clinical prostate cancer cases. In both cases, gold markers were implanted inside the prostate for the purpose of treatment setup

  16. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    International Nuclear Information System (INIS)

    Chang, Eric L.; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-01-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r 2 0.0007; p = 0.3). For patients with edema >75 cm 3 , the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm 3 , using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema

  17. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  18. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    Science.gov (United States)

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. Copyright © 2016 the American Physiological Society.

  19. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru

    2013-01-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n=21) and/or N2/3 (n=24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤ Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer. (author)

  20. Targeted Intraoperative Radiotherapy for Breast Cancer in Patients in Whom External Beam Radiation Is Not Possible

    International Nuclear Information System (INIS)

    Keshtgar, Mohammed R.S.; Vaidya, Jayant S.; Tobias, Jeffrey S.; Wenz, Frederik; Joseph, David; Stacey, Chris; Metaxas, Marinos G.; Keller, Anke; Corica, Tammy; Williams, Norman R.; Baum, Michael

    2011-01-01

    Purpose: External beam radiation therapy (EBRT) following wide local excision of the primary tumor is the standard treatment in early breast cancer. In some circumstances this procedure is not possible or is contraindicated or difficult. The purpose of this study was to determine the safety and efficacy of targeted intraoperative radiotherapy (TARGIT) when EBRT is not feasible. Methods and Materials: We report our experience with TARGIT in three centers (Australia, Germany, and the United Kingdom) between 1999 and 2008. Patients at these centers received a single radiation dose of 20 Gy to the breast tissue in contact with the applicator (or 6 Gy at 1-cm distance), as they could not be given EBRT and were keen to avoid mastectomy. Results: Eighty patients were treated with TARGIT. Reasons for using TARGIT were 21 patients had previously received EBRT, and 31 patients had clinical reasons such as systemic lupus erythematosus, motor neuron disease, Parkinson's disease, ankylosing spondylitis, morbid obesity, and cardiovascular or severe respiratory disease. Three of these patients received percutaneous radiotherapy without surgery; 28 patients were included for compelling personal reasons, usually on compassionate grounds. After a median follow-up of 38 months, only two local recurrences were observed, an annual local recurrence rate of 0.75% (95% confidence interval, 0.09%-2.70%). Conclusions: While we await the results of the randomized trial (over 2,000 patients have already been recruited), TARGIT is an acceptable option but only in highly selected cases that cannot be recruited in the trial and in whom EBRT is not feasible/possible.

  1. Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience.

    Science.gov (United States)

    Bates, James E; Youn, Paul; Peterson, Carl R; Usuki, Kenneth Y; Walter, Kevin A; Okunieff, Paul; Milano, Michael T

    2017-10-01

    Radiotherapy remains the standard approach for brain metastases from renal cell carcinoma (RCC). Kinase inhibitors (KI) have become standard of care for metastatic RCC. They also increase the radiosensitivity of various tumor types in preclinical models. Data are lacking regarding the effect of KIs among RCC patients undergoing radiotherapy for brain metastases. We report our experience of radiotherapy for brain metastatic RCC in the era of targeted therapy and analyzed effects of concurrent KI therapy. We retrospectively analyzed 25 consecutive patients who received radiotherapy for brain metastases from RCC with whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or both. Kaplan-Meier rates of overall survival (OS) and brain progression-free survival (BPFS) were calculated and univariate analyses performed. Lower diagnosis-specific graded prognostic assessment (DS-GPA) score and multiple intracranial metastases were associated with decreased OS and BPFS on univariate analysis; DS-GPA is also a prognostic factor on multivariate analysis. There was no significant difference in OS or BPFS for SRS compared with WBRT or WBRT and SRS combined. The concurrent use of KI was not associated with any change in OS or BPFS. This hypothesis-generating analysis suggests among patients with brain metastatic RCC treated with the most current therapies, those selected to undergo SRS did not experience significantly different survival or control outcomes than those selected to undergo WBRT. From our experience to date, limited in patient numbers, there seems to be neither harm nor benefit in using concurrent KI therapy during radiotherapy. Given that most patients progress systemically, we would recommend considering KI use during brain radiotherapy in these patients.

  2. Probe into rational target volume of nasopharyngeal carcinoma having been treated with conventional radiotherapy

    International Nuclear Information System (INIS)

    Zheng Yingjie; Zhao Chong; Lu Lixia; Wu Shaoxiong; Cui Nianji; Chen Fujin

    2006-01-01

    Objective: To analyze the local control rate and the dosimetric patterns of local recurrence in nasopharyngeal carcinoma (NPC) patients having been treated with standardized conventional radiotherapy and to evaluate the delineation of rational target volume. Methods: From Jan. 2000 to Dec. 2000, 476 patients with untreated NPC were treated by standardized conventional radiotherapy alone at the Sun Yat-sen University Cancer Center. The radiation ports were designed on a X-ray simulator. The nasopharyngeal lesion demonstrated by CT scan and the subclinical spread regions adjacent to the nasopharynx were defined as the target volume. Kaplan- Meier method was used to calculate the cumulative local recurrence rate. For patients with local recurrence, the primary and recurrent local tumor volumes(V nx , V recur ) were delineated with three-dimensional treatment planning system(3DTPS), and the dataset of radiation ports and delivered prescription dose to the 3DTPS were transferred according to the first treatment. The dose of radiation received by V recur was calculated and analyzed with dose- volume histogram(DVH). Local recurrence was classified as: 1. 'in-port' with 95% or more of the recurrence volume ( recur V 95 ) was within the 95% isodose; 2. 'marginal' with 20% to 95% of recur V 95 within the 95% isodose; 3. o utside w ith only less than 20% of recur V 95 within the 95% isodose curve. Results: With the median follow- up of 42.5 months (range 8-54 months), 52 patients developed local recurrence. The 1-, 2-, 3 and 4-year cumulative local failure rate was 0.6%, 3.9%, 8.7% and 11.5%, respectively. Among the 42 local recurrent patients who could be analyzed by 3DTPS, 52% were in-port, 40% were marginal and 7% were outside. For most of the marginal recurrence and all the outside recurrence patients, the main reason of recurrence were related to the unreasonable design of the radiation port and inaccuracy in the interpretation image findings. Conclusions: The outcome of

  3. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  4. MRI target delineation may reduce long-term toxicity after prostate radiotherapy.

    Science.gov (United States)

    Sander, Lotte; Langkilde, Niels Christian; Holmberg, Mats; Carl, Jesper

    2014-06-01

    Aiming for minimal toxicity after radical prostate cancer (PC) radiotherapy (RT), magnetic resonance imaging (MRI) target delineation could be a possible benefit knowing that clinical target volumes (CTV) are up to 30% smaller, when CTV delineation on MRI is compared to standard computed tomography (CT). This study compares long-term toxicity using CT or MRI delineation before PC RT. Urinary and rectal toxicity assessments 36 months after image-guided RT (78 Gy) using CTC-AE scores in two groups of PC patients. Peak symptom score values were registered. One group of patients (n=72) had standard CT target delineation and gold markers as fiducials. Another group of patients (n=73) had MRI target delineation and a nickel-titanium stent as fiducial. At 36 months no difference in overall survival (92% in both groups, p=0.29) or in PSA-relapse free survival was found between the groups (MRI=89% and CT=94%, p=0.67). A significantly smaller CTV was found in the MRI group (p=0.02). Urinary retention and frequency were significantly reduced in the MRI group (p=0.03 in the matter of both). The overall urinary and rectal toxicity did not differ between the two groups. MRI delineation leads to a significantly reduced CTV. Significantly lower urinary frequency and urinary retention toxicity scores were observed following MRI delineation. The study did not find significant differences in overall urinary or rectal toxicity between the two groups. PSA-relapse survival did not differ between the two groups at 36 months.

  5. Accuracy verification of PET-CT image fusion and its utilization in target delineation of radiotherapy

    International Nuclear Information System (INIS)

    Wang Xuetao; Yu Jinming; Yang Guoren; Gong Heyi

    2005-01-01

    Objective: Evaluate the accuracy of co-registration of PET and CT (PET-CT) images on line with phantom, and utilize it on patients to provide clinical evidence for target delineation in radiotherapy. Methods: A phantom with markers and different volume cylinders was infused with various concentrations of 18 FDG, and scanned at 4 mm by PET and CT respectively. After having been transmitted into GE eNTEGRA and treatment planning system (TPS) workstations, the images were fused and reconstructed. The distance between the markers and the errors were monitored in PET and CT images respectively. The volume of cylinder in PET and CT images were measured and compared by certain pixel value proportion deduction method. The same procedure was performed on the pulmonary tumor image in ten patients. Results: eNTEGRA and TPS workstations had a good length linearity, but the fusion error of the latter was markedly greater than the former. Tumors in different volume filled by varying concentrations of 18 FDG required different pixel deduction proportion. The cylinder volume of PET and CT images were almost the same, so were the images of pulmonary tumor of ten patients. Conclusions: The accuracy of image co-registration of PET-CT on line may fulfill the clinical demand. Pixel value proportion deduction method can be used for target delineation on PET image. (authors)

  6. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    International Nuclear Information System (INIS)

    Perrot, Y; Donnarieix, D; Maigne, L; Degoul, F; Auzeloux, P; Bonnet, M; Cachin, F; Chezal, J M; Labarre, P; Moins, N; Papon, J; Rbah-Vidal, L; Vidal, A; Miot-Noirault, E

    2014-01-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic. (paper)

  7. Automatic definition of targeted biological volumes for the radiotherapy applications; Definition automatique des volumes biologiques cibles pour les applications de radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, M.; Visvikis, D. [LaTIM, U650 Inserm, 29 - Brest (France); Cheze-Le-Rest, C. [Service de medecine nucleaire, 29 - Brest (France); Pradier, O. [Service de radiotherapie, 29 - Brest (France)

    2009-10-15

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ({sup 18}F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  8. Targeted intraoperative radiotherapy tumour bed boost during breast-conserving surgery after neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, Hans-Christian; Akpolat-Basci, Leyla; Stephanou, Miltiades [Marienhospital Bottrop gGmbH, Department of Gynecology and Obstetrics, Bottrop (Germany); Loevey, Gyoergy [BORAD, Bottrop (Germany); Fasching, Peter A. [University of Erlangen, Erlangen (Germany); Untch, Michael [Helios Klinikum Berlin-Buch, Berlin (Germany); Liedtke, Cornelia [University Hospital Schleswig-Holstein/Campus Luebeck, Luebeck (Germany); Bulsara, Max [University of Notre Dame, Fremantle (Australia); University College, London (United Kingdom); Vaidya, Jayant S. [University College, London (United Kingdom)

    2017-01-15

    The use of targeted intraoperative radiotherapy (TARGIT-IORT) as a tumour bed boost during breast-conserving surgery (BCS) for breast cancer has been reported since 1998. We present its use in patients undergoing breast conservation following neoadjuvant therapy (NACT). In this retrospective study involving 116 patients after NACT we compared outcomes of 61 patients who received a tumour bed boost with IORT during lumpectomy versus 55 patients treated in the previous 13 months with external (EBRT) boost. All patients received whole breast radiotherapy. Local recurrence-free survival (LRFS), disease-free survival (DFS), distant disease-free survival (DDFS), breast cancer mortality (BCM), non-breast cancer mortality (NBCM) and overall mortality (OS) were compared. Median follow up was 49 months. The differences in LRFS, DFS and BCM were not statistically significant. The 5-year Kaplan-Meier estimate of OS was significantly better by 15% with IORT: IORT 2 events (96.7%, 95%CI 87.5-99.2), EBRT 9 events (81.7%, 95%CI 67.6-90.1), hazard ratio (HR) 0.19 (0.04-0.87), log rank p = 0.016, mainly due to a reduction of 10.1% in NBCM: IORT 100%, EBRT 89.9% (77.3-95.7), HR (not calculable), log rank p = 0.015. The DDFS was as follows: IORT 3 events (95.1%, 85.5-98.4), EBRT 12 events (69.0%, 49.1-82.4), HR 0.23 (0.06-0.80), log rank p = 0.012. IORT during lumpectomy after neoadjuvant chemotherapy as a tumour bed boost appears to give results that are not worse than external beam radiotherapy boost. These data give further support to the inclusion of such patients in the TARGIT-B (boost) randomised trial that is testing whether IORT boost is superior to EBRT boost. (orig.) [German] Die intraoperative Radiotherapie (TARGIT-IORT) als vorgezogener Boost im Rahmen der brusterhaltenden Therapie (BET) ist seit 1998 Gegenstand der wissenschaftlichen Diskussion. Wir praesentieren Daten zum Einsatz der IORT bei der BET nach neoadjuvanter Therapie (NACT). In diese retrospektive Analyse

  9. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  10. Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning.

    Science.gov (United States)

    Muirhead, Rebecca; McNee, Stuart G; Featherstone, Carrie; Moore, Karen; Muscat, Sarah

    2008-12-01

    Four-dimensional computed tomography (4DCT) is currently being introduced to radiotherapy centers worldwide, for use in radical radiotherapy planning for non-small cell lung cancer (NSCLC). A significant drawback is the time required to delineate 10 individual CT scans for each patient. Every department will hence ask the question if the single Maximum Intensity Projection (MIP) scan can be used as an alternative. Although the problems regarding the use of the MIP in node-positive disease have been discussed in the literature, a comprehensive study assessing its use has not been published. We compared an internal target volume (ITV) created using the MIP to an ITV created from the composite volume of 10 clinical target volumes (CTVs) delineated on the 10 phases of the 4DCT. 4DCT data was collected from 14 patients with NSCLC. In each patient, the ITV was delineated on the MIP image (ITV_MIP) and a composite ITV created from the 10 CTVs delineated on each of the 10 scans in the dataset. The structures were compared by assessment of volumes of overlap and exclusion. There was a median of 19.0% (range, 5.5-35.4%) of the volume of ITV_10phase not enclosed by the ITV_MIP, demonstrating that the use of the MIP could result in under-treatment of disease. In contrast only a very small amount of the ITV_MIP was not enclosed by the ITV_10phase (median of 2.3%, range, 0.4-9.8%), indicating the ITV_10phase covers almost all of the tumor tissue as identified by MIP. Although there were only two Stage I patients, both demonstrated very similar ITV_10phase and ITV_MIP volumes. These findings suggest that Stage I NSCLC tumors could be outlined on the MIP alone. In Stage II and III tumors the ITV_10phase would be more reliable. To prevent under-treatment of disease, the MIP image can only be used for delineation in Stage I tumors.

  11. Persistent pain after targeted intraoperative radiotherapy (TARGIT) or external breast radiotherapy for breast cancer: A randomized trial

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Gärtner, Rune; Kroman, Niels

    2012-01-01

    for participation, and a total of 244 patients were included and received a detailed questionnaire. The response rate was 98%, leaving 238 patients for the final analysis. Pain prevalence were 33.9% in the EBRT group and 24.6% in the IORT group (p = 0.11). Treatment with IORT may not alter the risk of PPBCT.......Persistent pain after breast cancer treatment (PPBCT) affects between 25 and 60% of patients depending on surgical and adjuvant treatment. External breast radiotherapy (EBRT) has been shown to be a riskfactor for PPBCT, raising the question whether intraoperative radiation therapy (IORT), with its...... smaller radiation field may reduce the development of PPBCT. Using data from the TARGIT-A trial, the aim of this study was to compare these two treatments with regard to development of PPBCT. A total of 281 patients enrolled in the TARGIT-A trial from the Copenhagen University Hospitals was screened...

  12. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... (Thr37/46) (P mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued...

  13. Targeted radiotherapy with 177 Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    International Nuclear Information System (INIS)

    Rodriguez C, J.; Murphy, C.A. de; Pedraza L, M.; Ferro F, G.; Murphy S, E.

    2006-01-01

    Malignant pancreas tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses after administration of 177 Lu-DOTA-TATE in mice as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (n=18) to obtain the 177 Lu-DOTA-TATE biokinetics and dosimetry. To estimate its therapeutic efficacy 87 MBq were injected in a tail vein of 3 mice and 19 days p.i. there were a partial relapse. There was an epithelial and sarcoma mixed tumour in the kidneys of mouse III. The absorbed dose to tumour, kidney and pancreas was 50.5 ± 7.2 Gy, 17.5 ± 2.5 Gy and 12.6 ± 2.3 Gy respectively. These studies justify further therapeutic and dosimetry estimations to ensure that 177 Lu-DOTA-TATE will act as expected in man considering its kidney radiotoxicity. (Author)

  14. 135La as an Auger-electron emitter for targeted internal radiotherapy

    Science.gov (United States)

    Fonslet, J.; Lee, B. Q.; Tran, T. A.; Siragusa, M.; Jensen, M.; Kibédi, T.; E Stuchbery, A.; Severin, G. W.

    2018-01-01

    135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, and dosimetry related to 135La therapy. 135La was produced by 16.5 MeV proton irradiation of metallic natBa on a medical cyclotron, and was isolated and purified by trap-and-release on weak cation-exchange resin. The average production rate was 407  ±  19 MBq µA-1 (saturation activity), and the radionuclidic purity was 98% at 20 h post irradiation. Chemical separation recovered  >  98 % of the 135La with an effective molar activity of 70  ±  20 GBq µmol-1. To better assess cellular and organ dosimetry of this nuclide, we have calculated the x-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade. The generated Auger spectrum was used to calculate cellular S-factors. 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy.

  15. Targeted radiotherapy of osteosarcoma using 153Sm-EDTMP. A new promising approach

    International Nuclear Information System (INIS)

    Bruland, Oe.S.; Skretting, A.; Solheim, Oe.P.; Aas, M.

    1996-01-01

    We report a case where targeted radionuclide therapy using 153 Sm-EDTMP gave substantial palliative effect. A 35-year-old male with a primary osteosarcoma located in the first lumbar vertebra relapsed with progressive back pain after conventional treatment modalities had failed. He became bedridden, and developed paraparesis and impaired bladder function. On a diagnostic bone-scan intense radioactivity was localized in the tumor. He therefore was given 153 Sm-EDTMP treatment twice, 8 weeks apart, 35 and 32 MBq/kg body weight respectively. After a few days the pain was significantly relieved and by the second radionuclide treatment the pareses subsided. For six months he was able to be up and about without any neurological signs or detectable metastases. Eventually, however, he experienced increasing local pain, developed paraparesis, was re-operated but died 4 months later. The dramatic transient improvement observed in this case warrants further exploration using 153 Sm-EDTMP as a boost technique, supplementary to conventiontal external radiotherapy. (orig.)

  16. Targeted radiotherapy of osteosarcoma using {sup 153}Sm-EDTMP. A new promising approach

    Energy Technology Data Exchange (ETDEWEB)

    Bruland, Oe.S. [Dept. of Medical Oncology and Radiotherapy, Norwegian Radium Hospital, Oslo (Norway); Skretting, A. [Dept. of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Solheim, Oe.P. [Dept. of Medical Oncology and Radiotherapy, Norwegian Radium Hospital, Oslo (Norway); Aas, M. [Dept. of Nuclear Medicine, Norwegian Radium Hospital, Oslo (Norway)

    1996-10-01

    We report a case where targeted radionuclide therapy using {sup 153}Sm-EDTMP gave substantial palliative effect. A 35-year-old male with a primary osteosarcoma located in the first lumbar vertebra relapsed with progressive back pain after conventional treatment modalities had failed. He became bedridden, and developed paraparesis and impaired bladder function. On a diagnostic bone-scan intense radioactivity was localized in the tumor. He therefore was given {sup 153}Sm-EDTMP treatment twice, 8 weeks apart, 35 and 32 MBq/kg body weight respectively. After a few days the pain was significantly relieved and by the second radionuclide treatment the pareses subsided. For six months he was able to be up and about without any neurological signs or detectable metastases. Eventually, however, he experienced increasing local pain, developed paraparesis, was re-operated but died 4 months later. The dramatic transient improvement observed in this case warrants further exploration using {sup 153}Sm-EDTMP as a boost technique, supplementary to conventiontal external radiotherapy. (orig.).

  17. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Caravatta Luciana

    2012-06-01

    Full Text Available Abstract Background Radiotherapy (RT is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs.

  18. Preliminary estimation of minimum target dose in intracavitary radiotherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kiyoshi; Oishi-Tanaka, Yumiko; Sugahara, Shinji; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2001-08-01

    In intracavitary radiotherapy (ICRT) for cervical cancer, minimum target dose (D{sub min}) will pertain to local disease control more directly than will reference point A dose (D{sub A}). However, ICRT has been performed traditionally without specifying D{sub min} since the target volume was not identified. We have estimated D{sub min} retrospectively by identifying tumors using magnetic resonance (MR) images. Pre- and posttreatment MR images of 31 patients treated with high-dose-rate ICRT were used. ICRT was performed once weekly at 6.0 Gy D{sub A}, and involved 2-5 insertions for each patient, 119 insertions in total. D{sub min} was calculated arbitrarily simply at the point A level using the tumor width (W{sub A}) to compare with D{sub A}. W{sub A} at each insertion was estimated by regression analysis with pre- and posttreatment W{sub A}. D{sub min} for each insertion varied from 3.0 to 46.0 Gy, a 16-fold difference. The ratio of total D{sub min} to total D{sub A} for each patient varied from 0.5 to 6.5. Intrapatient D{sub min} difference between the initial insertion and final insertion varied from 1.1 to 3.4. Preliminary estimation revealed that D{sub min} varies widely under generic dose prescription. Thorough D{sub min} specification will be realized when ICRT-applicator insertion is performed under MR imaging. (author)

  19. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  20. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    Science.gov (United States)

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  1. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  2. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    International Nuclear Information System (INIS)

    Fuller, Clifton David; Jr, Charles R Thomas; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J

    2006-01-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  3. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  4. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders.

    Science.gov (United States)

    Nishikawa, Atsuko; Mitsuhashi, Satomi; Miyata, Naomasa; Nishino, Ichizo

    2017-02-01

    Inherited skeletal muscle diseases are genetically heterogeneous diseases caused by mutations in more than 150 genes. This has made it challenging to establish a high-throughput screening method for identifying causative gene mutations in clinical practice. In the present study, we developed a useful method for screening gene mutations associated with the pathogenesis of skeletal muscle diseases. We established four target gene panels, each covering all exonic and flanking regions of genes involved in the pathogenesis of the following muscle diseases: (1) muscular dystrophy (MD), (2) congenital myopathy/congenital myasthenic syndrome, (3) metabolic myopathy and (4) myopathy with protein aggregations/rimmed vacuoles. We assigned one panel to each patient based on the results of clinical and histological analyses of biopsied muscle samples and performed high-throughput sequencing by using Ion PGM next-generation sequencer. We also performed protein analysis to confirm defective proteins in patients with major muscular dystrophies. Further, we performed muscle-derived cDNA analysis to identify splice-site mutations. We identified possible causative gene mutations in 33% of patients (62/188) included in this study. Our results showed that the MD panel was the most useful, with a diagnostic rate of 46.2%. Thus, we developed a high-throughput sequencing technique for diagnosing inherited muscle diseases. The use of this technique along with histological and protein analyses may be useful and cost-effective for screening mutations in patients with inherited skeletal muscle diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  5. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  6. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  7. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  8. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  9. Impact of low skeletal muscle mass on non-lung cancer mortality after stereotactic body radiotherapy for patients with stage I non-small cell lung cancer.

    Science.gov (United States)

    Matsuo, Yukinori; Mitsuyoshi, Takamasa; Shintani, Takashi; Iizuka, Yusuke; Mizowaki, Takashi

    2018-05-17

    The purpose of the present study was to retrospectively evaluate impact of pre-treatment skeletal muscle mass (SMM) on overall survival and non-lung cancer mortality after stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). One-hundred and eighty-six patients whose abdominal CT before the treatment was available were enrolled into this study. The patients were divided into two groups of SMM according to gender-specific thresholds for unilateral psoas area. Operability was judged by the treating physician or thoracic surgeon after discussion in a multi-disciplinary tumor board. Patients with low SMM tended to be elderly and underweight in body mass index compared with the high SMM. Overall survival in patients with the low SMM tended to be worse than that in the high SMM (41.1% and 55.9% at 5 years, P = 0.115). Cumulative incidence of non-lung cancer death was significantly worse in the low SMM (31.3% at 5 years compared with 9.7% in the high SMM, P = 0.006). Multivariate analysis identified SMM and operability as significant factors for non-lung cancer mortality. Impact of SMM on lung cancer death was not significant. No difference in rate of severe treatment-related toxicity was observed between the SMM groups. Low SMM is a significant risk factor for non-lung cancer death, which might lead to worse overall survival, after SBRT for stage I NSCLC. However, the low SMM does not increase lung cancer death or severe treatment-related toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The functional imaging in target volume delineation of radiotherapy planning for gliomas

    International Nuclear Information System (INIS)

    Huang Jingxiong; Wu Hua

    2007-01-01

    Radiotherapy is one of important treatments for glioma. Functional imaging, such as PET, SPECT and MRI, may provide more valuable information not only in display of the evasion extent of glioma but also in demonstration of some biological characteristics of the tumor, such as perfusion, metabolism, hypoxia or proliferation. Thus it may play a role in making an individualized and more exact radiotherapy planning. (authors)

  11. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls.

    Science.gov (United States)

    Weihrauch, Martin; Handschin, Christoph

    2018-01-01

    Exercise exerts significant effects on the prevention and treatment of many diseases. However, even though some of the key regulators of training adaptation in skeletal muscle have been identified, this biological program is still poorly understood. Accordingly, exercise-based pharmacological interventions for many muscle wasting diseases and also for pathologies that are triggered by a sedentary lifestyle remain scarce. The most efficacious compounds that induce muscle hypertrophy or endurance are hampered by severe side effects and are classified as doping. In contrast, dietary supplements with a higher safety margin exert milder outcomes. In recent years, the design of pharmacological agents that activate the training program, so-called "exercise mimetics", has been proposed, although the feasibility of such an approach is highly debated. In this review, the most recent insights into key regulatory factors and therapeutic approaches aimed at leveraging exercise adaptations are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: Simulation results

    International Nuclear Information System (INIS)

    Keall, P. J.; Lauve, A. D.; Hagan, M. P.; Siebers, J. V.

    2007-01-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D 5 , D 95 , and D mean were not increased or decreased by more than 5% of the prescription dose for any of the 3600

  13. Multivariate analysis for the estimation of target localization errors in fiducial marker-based radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Masanori [Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan and Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Nakamura, Mitsuhiro, E-mail: m-nkmr@kuhp.kyoto-u.ac.jp; Akimoto, Mami; Ueki, Nami; Yamada, Masahiro; Matsuo, Yukinori; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Tanabe, Hiroaki [Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe 650-0047 (Japan); Kokubo, Masaki [Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe 650-0047, Japan and Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe 650-0047 (Japan); Itoh, Akio [Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2016-04-15

    Purpose: To assess the target localization error (TLE) in terms of the distance between the target and the localization point estimated from the surrogates (|TMD|), the average of respiratory motion for the surrogates and the target (|aRM|), and the number of fiducial markers used for estimating the target (n). Methods: This study enrolled 17 lung cancer patients who subsequently underwent four fractions of real-time tumor tracking irradiation. Four or five fiducial markers were implanted around the lung tumor. The three-dimensional (3D) distance between the tumor and markers was at maximum 58.7 mm. One of the markers was used as the target (P{sub t}), and those markers with a 3D |TMD{sub n}| ≤ 58.7 mm at end-exhalation were then selected. The estimated target position (P{sub e}) was calculated from a localization point consisting of one to three markers except P{sub t}. Respiratory motion for P{sub t} and P{sub e} was defined as the root mean square of each displacement, and |aRM| was calculated from the mean value. TLE was defined as the root mean square of each difference between P{sub t} and P{sub e} during the monitoring of each fraction. These procedures were performed repeatedly using the remaining markers. To provide the best guidance on the answer with n and |TMD|, fiducial markers with a 3D |aRM ≥ 10 mm were selected. Finally, a total of 205, 282, and 76 TLEs that fulfilled the 3D |TMD| and 3D |aRM| criteria were obtained for n = 1, 2, and 3, respectively. Multiple regression analysis (MRA) was used to evaluate TLE as a function of |TMD| and |aRM| in each n. Results: |TMD| for n = 1 was larger than that for n = 3. Moreover, |aRM| was almost constant for all n, indicating a similar scale for the marker’s motion near the lung tumor. MRA showed that |aRM| in the left–right direction was the major cause of TLE; however, the contribution made little difference to the 3D TLE because of the small amount of motion in the left–right direction. The TLE

  14. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells...... (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  15. Impact of external pneumatic compression target inflation pressure on transcriptome-wide RNA expression in skeletal muscle.

    Science.gov (United States)

    Martin, Jeffrey S; Kephart, Wesley C; Haun, Cody T; McCloskey, Anna E; Shake, Joshua J; Mobley, Christopher B; Goodlett, Michael D; Kavazis, Andreas; Pascoe, David D; Zhang, Lee; Roberts, Michael D

    2016-11-01

    Next-generation RNA sequencing was employed to determine the acute and subchronic impact of peristaltic pulse external pneumatic compression (PEPC) of different target inflation pressures on global gene expression in human vastus lateralis skeletal muscle biopsy samples. Eighteen (N = 18) male participants were randomly assigned to one of the three groups: (1) sham (n = 6), 2) EPC at 30-40 mmHg (LP-EPC; n = 6), and 3) EPC at 70-80 mmHg (MP-EPC; n = 6). One hour treatment with sham/EPC occurred for seven consecutive days. Vastus lateralis skeletal muscle biopsies were performed at baseline (before first treatment; PRE), 1 h following the first treatment (POST1), and 24 h following the last (7th) treatment (POST2). Changes from PRE in gene expression were analyzed via paired comparisons within each group. Genes were filtered to include only those that had an RPKM ≥ 1.0, a fold-change of ≥1.5 and a paired t-test value of <0.01. For the sham condition, two genes at POST1 and one gene at POST2 were significantly altered. For the LP-EPC condition, nine genes were up-regulated and 0 genes were down-regulated at POST1 while 39 genes were up-regulated and one gene down-regulated at POST2. For the MP-EPC condition, two genes were significantly up-regulated and 21 genes were down-regulated at POST1 and 0 genes were altered at POST2. Both LP-EPC and MP-EPC acutely alter skeletal muscle gene expression, though only LP-EPC appeared to affect gene expression with subchronic application. Moreover, the transcriptome response to EPC demonstrated marked heterogeneity (i.e., genes and directionality) with different target inflation pressures. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Postoperative Radiotherapy in Prostate Cancer: The Case of the Missing Target

    International Nuclear Information System (INIS)

    Croke, Jennifer; Malone, Shawn; Roustan Delatour, Nicolas; Belanger, Eric; Avruch, Leonard; Morash, Christopher; Kayser, Cathleen; Underhill, Kathryn; Spaans, Johanna

    2012-01-01

    Purpose: Postoperative radiotherapy (XRT) increases survival in high-risk prostate cancer patients. Approximately 50% of patients on long-term follow-up relapse despite adjuvant XRT and the predominant site of failure remains local. Four consensus guidelines define postoperative clinical target volume (CTV) in prostate cancer. We explore the possibility that inadequate CTV coverage is an important cause of local failure. This study evaluates the utility of preoperative magnetic resonance imaging (MRI) in defining prostate bed CTV. Methods and Materials: Twenty prostate cancer patients treated with postoperative XRT who also had preoperative staging MRI were included. The four guidelines were applied and the CTVs were expanded to create planning target volumes (PTVs). Preoperative MRIs were fused with postoperative planning CT scans. MRI-based prostate and gross visible tumors were contoured. Three-dimensional (3D) conformal four- and six-field XRT plans were developed and dose–volume histograms analyzed. Subtraction analysis was conducted to assess the adequacy of prostate/gross tumor coverage. Results: Gross tumor was visible in 18 cases. In all 20 cases, the consensus CTVs did not fully cover the MRI-defined prostate. On average, 35% of the prostate volume and 32% of the gross tumor volume were missed using six-field 3D treatment plans. The entire MRI-defined gross tumor volume was completely covered in only two cases (six-field plans). The expanded PTVs did not cover the entire prostate bed in 50% of cases. Prostate base and mid-zones were the predominant site of inadequate coverage. Conclusions: Current postoperative CTV guidelines do not adequately cover the prostate bed and/or gross tumor based on preoperative MRI imaging. Additionally, expanded PTVs do not fully cover the prostate bed in 50% of cases. Inadequate CTV definition is likely a major contributing factor for the high risk of relapse despite adjuvant XRT. Preoperative imaging may lead to more

  17. Genetically targeted radiotherapy using the sodium-iodide symporter for treatment of head and neck cancer

    International Nuclear Information System (INIS)

    Gaut, A.W.; Niu, G.; Graham, M.M.; Domann, F.E.; Krager, K.J.

    2003-01-01

    Attempts at using gene therapy for cancer treatment have achieved limited success. Traditional in vivo gene therapy techniques are limited by relatively inefficient gene transfer, with only a small fraction of tumor cells transfected with the gene of interest. Gene therapy strategies yielding substantial bystander cytotoxicity are preferable and could yield significant clinical effect despite a lack of gene transfer to the entire tumor. We report the successful use of such a strategy in head and neck squamous cell carcinoma (HNSCC) cell lines. The sodium iodide symporter (NIS) gene, expressed primarily in the thyroid, is responsible for physiologic iodide accumulation. Expression of NIS in non-thyroid cell lines has been shown to confer iodide-concentrating ability. Using a recombinant adenovirus-NIS construct (Ad-NIS) delivered to HNSCC cell lines, we demonstrate radioiodide accumulation 15- to 30-fold higher than that of cell lines transduced with a control (Ad-Bgl II) adenovirus. Consistent with NIS-mediated uptake, this accumulation is inhibited by treatment with perchlorate. Using a clonogenic cell survival assay, we demonstrate a statistically significant, dose-dependent decrease in cell survival after delivery of Ad-NIS followed by administration of varying doses of I-131. Compared to a control, Ad-Bgl II-treated group, absolute survival was reduced by 80% at the highest dose of I-131 in Ad-NIS-treated cells. We also demonstrate the ability of NIS gene transfer followed by systemic administration of I-131 to dramatically attenuate tumor formation in nude mice. Three weeks after subcutaneous injection of tumor cells, tumors treated with Ad-NIS had decreased in size by 0.7±0.1 mm, whereas control tumors treated with Ad-Bgl II had increased in size by 7.4±1.7 mm. The relative accessibility of head and neck cancers make them attractive targets for gene therapy. Our data demonstrate the feasibility of genetically targeted radiotherapy using the NIS gene as a

  18. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    Science.gov (United States)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  19. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Lorraine [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Cox, Jennifer [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Morgia, Marita [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Atyeo, John [Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Lamoury, Gillian [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia)

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.

  20. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    International Nuclear Information System (INIS)

    Lewis, Lorraine; Cox, Jennifer; Morgia, Marita; Atyeo, John; Lamoury, Gillian

    2015-01-01

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm 3 (4–118) and CT2ch: median 16 cm 3 , (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence

  1. Method comparison of ultrasound and kilovoltage x-ray fiducial marker imaging for prostate radiotherapy targeting

    Science.gov (United States)

    Fuller, Clifton David; Thomas, Charles R., Jr.; Schwartz, Scott; Golden, Nanalei; Ting, Joe; Wong, Adrian; Erdogmus, Deniz; Scarbrough, Todd J.

    2006-10-01

    Several measurement techniques have been developed to address the capability for target volume reduction via target localization in image-guided radiotherapy; among these have been ultrasound (US) and fiducial marker (FM) software-assisted localization. In order to assess interchangeability between methods, US and FM localization were compared using established techniques for determination of agreement between measurement methods when a 'gold-standard' comparator does not exist, after performing both techniques daily on a sequential series of patients. At least 3 days prior to CT simulation, four gold seeds were placed within the prostate. FM software-assisted localization utilized the ExacTrac X-Ray 6D (BrainLab AG, Germany) kVp x-ray image acquisition system to determine prostate position; US prostate targeting was performed on each patient using the SonArray (Varian, Palo Alto, CA). Patients were aligned daily using laser alignment of skin marks. Directional shifts were then calculated by each respective system in the X, Y and Z dimensions before each daily treatment fraction, previous to any treatment or couch adjustment, as well as a composite vector of displacement. Directional shift agreement in each axis was compared using Altman-Bland limits of agreement, Lin's concordance coefficient with Partik's grading schema, and Deming orthogonal bias-weighted correlation methodology. 1019 software-assisted shifts were suggested by US and FM in 39 patients. The 95% limits of agreement in X, Y and Z axes were ±9.4 mm, ±11.3 mm and ±13.4, respectively. Three-dimensionally, measurements agreed within 13.4 mm in 95% of all paired measures. In all axes, concordance was graded as 'poor' or 'unacceptable'. Deming regression detected proportional bias in both directional axes and three-dimensional vectors. Our data suggest substantial differences between US and FM image-guided measures and subsequent suggested directional shifts. Analysis reveals that the vast majority of

  2. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    Directory of Open Access Journals (Sweden)

    Wang X

    2016-10-01

    Full Text Available Xiaoli Wang,1,2,* Yijun Luo,1,2,* Minghuan Li,2 Hongjiang Yan,2 Mingping Sun,2 Tingyong Fan2 1School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China; 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Background: Postoperative radiotherapy has shown positive efficacy in lowering the recurrence rate and improving the survival rate for patients with esophageal squamous cell carcinoma (ESCC. However, controversies still exist about the postoperative prophylactic radiation target volume. This study was designed to analyze the patterns of recurrence and to provide a reference for determination of the postoperative radiotherapy target volume for patients with midthoracic ESCC.Patients and methods: A total of 338 patients with recurrent or metastatic midthoracic ESCC after radical surgery were retrospectively examined. The patterns of recurrence including locoregional and distant metastasis were analyzed for these patients.Results: The rates of lymph node (LN metastasis were 28.4% supraclavicular, 77.2% upper mediastinal, 32.0% middle mediastinal, 50.0% lower mediastinal, and 19.5% abdominal LNs. In subgroup analyses, the rate of abdominal LN metastasis was significantly higher in patients with histological node-positive than that in patients with histological node-negative (P=0.033. Further analysis in patients with histological node-positive demonstrated that patients with three or more positive nodes are more prone to abdominal LN metastasis, compared with patients with one or two positive nodes (χ2=4.367, P=0.037. The length of tumor and histological differentiation were also the high-risk factors for abdominal LN metastasis.Conclusion: For midthoracic ESCC with histological node-negative, or one or two positive nodes, the supraclavicular and

  3. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  4. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    Directory of Open Access Journals (Sweden)

    Korevaar Erik W

    2008-01-01

    Full Text Available Abstract Background The shift from conventional two-dimensional (2D to three-dimensional (3D-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT-based breast and boost planning target volumes (PTV, absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Methods Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. Results With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. Conclusion The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on

  5. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Langendijk, Johannes A

    2008-01-01

    The shift from conventional two-dimensional (2D) to three-dimensional (3D)-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT)-based breast and boost planning target volumes (PTV), absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on clinical data confirming tumour control probability and normal

  6. Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain.

    Science.gov (United States)

    Gdowski, Andrew S; Ranjan, Amalendu; Sarker, Marjana R; Vishwanatha, Jamboor K

    2017-09-01

    The aim of this study was to develop a novel cabazitaxel bone targeted nanoparticle (NP) system for improved drug delivery to the bone microenvironment. Nanoparticles were developed using poly(D,L-lactic-co-glycolic acid) and cabazitaxel as the core with amino-bisphosphonate surface conjugation. Optimization of nanoparticle physiochemical properties, in vitro evaluation in prostate cancer cell lines and in vivo testing in an intraosseous model of metastatic prostate cancer was performed. This bone targeted cabazitaxel nanocarrier system showed significant reduction in tumor burden, while at the same time maintaining bone structure integrity and reducing pain in the mouse tumor limb. This bone microenvironment targeted nanoparticle system and clinically relevant approach of evaluation represents a promising advancement for treating bone metastatic cancer.

  7. FDG-PET/CT Imaging for Staging and Target Volume Delineation in Preoperative Conformal Radiotherapy of Rectal Cancer

    International Nuclear Information System (INIS)

    Bassi, Maria Chiara; Turri, Lucia; Sacchetti, Gianmauro; Loi, Gianfranco; Cannillo, Barbara; La Mattina, Pierdaniele; Brambilla, Marco; Inglese, Eugenio; Krengli, Marco

    2008-01-01

    Purpose: To investigate the potential impact of using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on staging and target volume delineation for patients affected by rectal cancer and candidates for preoperative conformal radiotherapy. Methods and Materials: Twenty-five patients diagnosed with rectal cancer T3-4 N0-1 M0-1 and candidates for preoperative radiotherapy underwent PET/CT simulation after injection of 5.18 MBq/kg of FDG. Clinical stage was reassessed on the basis of FDG-PET/CT findings. The gross tumor volume (GTV) and the clinical target volume (CTV) were delineated first on CT and then on PET/CT images. The PET/CT-GTV and PET/CT-CTV were analyzed and compared with CT-GTV and CT-CTV, respectively. Results: In 4 of 25 cases (24%), PET/CT affected tumor staging or the treatment purpose. In 3 of 25 cases (12%) staged N0 M0, PET/CT showed FDG uptake in regional lymph nodes and in a case also in the liver. In a patient with a single liver metastasis PET/CT detected multiple lesions, changing the treatment intent from curative to palliative. The PET/CT-GTV and PET/CT-CTV were significantly greater than the CT-GTV (p = 0.00013) and CT-CTV (p = 0.00002), respectively. The mean difference between PET/CT-GTV and CT-GTV was 25.4% and between PET/CT-CTV and CT-CTV was 4.1%. Conclusions: Imaging with PET/CT for preoperative radiotherapy of rectal cancer may lead to a change in staging and target volume delineation. Stage variation was observed in 12% of cases and a change of treatment intent in 4%. The GTV and CTV changed significantly, with a mean increase in size of 25% and 4%, respectively

  8. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Dikomey, Ekkehard; Dittmann, Klaus; Doerr, Wolfgang; Kasten-Pisula, Ulla; Rodemann, H. Peter

    2007-01-01

    Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed

  9. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  10. A critical evaluation of the planning target volume for 3-d conformal radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Tinger, Alfred; Michalski, Jeff M.; Cheng, Abel; Low, Daniel A.; Zhu, Ron; Bosch, Walter R.; Purdy, James A.; Perez, Carlos A.

    1996-01-01

    Purpose: The goal was to determine an adequate planning target volume (PTV) margin for three-dimensional conformal radiotherapy (3D CRT) of prostate cancer. The uncertainty in the internal positions of the prostate and seminal vesicles and the uncertainty in the treatment set-ups for a single group of patients was measured. Methods: Weekly computed tomography (CT) scans of the pelvis (n=38) and daily electronic portal images (n=1225) were reviewed for six patients who received seven-field 3D CRT for prostate cancer. The weekly CT scans were registered in three dimensions to the original treatment planning CT scan using commercially available software. This registration permitted measurement of the motion in the center-of-volume (COV) of the prostate and seminal vesicles throughout the course of therapy. The daily portal images (PI) were registered to the corresponding simulation films to measure the set-up displacement for each of the seven fields. The field displacements were then entered into a matrix program which calculated the isocenter displacement by a least squares method. The uncertainty in the internal positions of the prostate and seminal vesicles (standard deviation of the motions) was added to the uncertainty in the set-up (standard deviation of the isocenter displacements) in quadrature to arrive at a total uncertainty. Positive directions were defined in the left, anterior, and superior directions. A discussion of an adequate PTV was based on these results. Results: The mean magnitude of motion for the COV of the prostate ± the standard deviation was 0 ± 1 mm in the left-right (LR) direction, 0.5 ± 2.8 mm in the anterior-posterior (AP) direction, and 0.5 ± 3.5 mm in the superior-inferior (SI) direction. The mean magnitude of motion for the COV of the seminal vesicles ± the standard deviation was -0.3 ± 1.5 mm in the LR, 0.6 ± 4.1 mm in the AP, and 0.7 ± 2.3 mm in the SI directions, respectively. For all patients the mean isocenter

  11. Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics

    NARCIS (Netherlands)

    Knopf, Antje-Christin; Hong, Theodore S; Lomax, Antony

    2011-01-01

    The most advanced delivery technique for proton radiotherapy is active spot scanning. So far, predominantly static targets have been treated with active spot scanning, since mobile targets in combination with dynamic treatment delivery can lead to interplay effects, causing inhomogeneous dose

  12. Objective assessment of cosmetic outcome after targeted intraoperative radiotherapy in breast cancer

    DEFF Research Database (Denmark)

    Keshtgar, Mohammed R S; Williams, Norman R; Bulsara, Max

    2013-01-01

    and thus impair cosmesis further, so we objectively evaluated the aesthetic outcome of patients within the TARGIT randomised controlled trial. We have used an objective assessment tool for evaluation of cosmetic outcome. Frontal digital photographs were taken at baseline (before TARGIT or EBRT) and yearly...... in a randomised setting, the aesthetic outcome of patients demonstrates that those treated with TARGIT have a superior cosmetic result to those patients who received conventional external beam radiotherapy....

  13. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    Science.gov (United States)

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy

    International Nuclear Information System (INIS)

    Chang, Joe H.; Joon, Daryl Lim; Lee, Sze Ting; Gong, Sylvia J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2011-01-01

    Background and purpose: To evaluate the accuracy of 11 C-choline PET scans in defining dominant intraprostatic lesions (DILs) for radiotherapy target volume definition. Material and methods: Eight men with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy were studied. Several methods were used to contour the DIL on the PET scans: visual, PET Edge, Region Grow, absolute standardised uptake value (SUV) thresholds and percentage of maximum SUV thresholds. Prostatectomy specimens were sliced in the transverse plane and DILs were delineated on these by a pathologist. These were then compared with the PET scans. The accuracy of correlation was assessed by the Dice similarity coefficient (DSC) and the Youden index. Results: The contouring method resulting in both the highest DSC and the highest Youden index was 60% of the maximum SUV (SUV 60% ), with values of 0.64 and 0.51, respectively. However SUV 60% was not statistically significantly better than all of the other methods by either measure. Conclusions: Although not statistically significant, SUV 60% resulted in the best correlation between 11 C-choline PET and pathology amongst all the methods studied. The degree of correlation shown here is consistent with previous studies that have justified using imaging for DIL radiotherapy target volume definition.

  15. External beam radiotherapy of localized prostatic adenocarcinoma. Evaluation of conformal therapy, field number and target margins

    International Nuclear Information System (INIS)

    Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.

    1995-01-01

    The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)

  16. What margins should be added to the clinical target volume in radiotherapy treatment planning of lung cancer?

    International Nuclear Information System (INIS)

    Ekberg, L.; Wittgren, L.; Holmberg, O.

    1995-01-01

    When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV

  17. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  18. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  19. Targeted radiotherapy with {sup 177} Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. A de; Pedraza L, M. [Department of Nuclear Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Rodriguez C, J. [Faculty of Medicine, UAEM, Toluca, Estado de Mexico (Mexico); Ferro F, G. [ININ, 52045 Estado de Mexico (Mexico); Murphy S, E. [Hospital Santelena, Mexico D.F. (Mexico)

    2006-07-01

    Malignant pancreas tumours induced in athymic mice are a good model for targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses and to evaluate {sup 177}Lu-DOTA-TATE as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells, which over-express somatostatin receptors, were injected in athymic mice and 20 days later the mean tumour size was 3.08 square cm (n=3). A mean of 86.3 MBq {sup 177}Lu-DOTA-TATE, was injected in a tail vein and 19 days after therapy the size of the tumours was 0.81 square cm. There was a partial relapse and after 16 days, when sacrificed, the mean tumour size was 8.28 cubic cm. An epithelial and sarcoma mixed tumour in the kidney of one treated mouse was found. The tumour of the control mouse was 8.61 cubic cm when sacrificed 14 days after tumour induction. Radiotherapy estimates to the tumours was 35.9-39.7 Gy and the tumours might have been completely reduced with a second therapy dose. These preliminary studies justify further therapeutic and dosimetry estimations to ensure that Lu-{sup 177}-DOTA-TATE will act as expected in man, considering kidney radiation. (Author)

  20. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  1. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    International Nuclear Information System (INIS)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A.; Schoot, Agustinus J.A.J. van de; Buist, Marrije R.

    2018-01-01

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V 15Gy , V 30Gy , V 45Gy and D mean for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V 15Gy , V 30Gy , V 45Gy and D mean for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V 45Gy for bowel bag was >275 cm 3 and >200 cm 3 , respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [de

  2. Development of a personalized dosimetric tool for radiation protection in case of internal contamination and targeted radiotherapy in nuclear medicine

    International Nuclear Information System (INIS)

    Chiavassa, S.

    2005-12-01

    Current internal dosimetric estimations are based on the M.I.R.D. formalism and used standard mathematical models. These standard models are often far from a given patient morphology and do not allow to perform patient-specific dosimetry. The aim of this study was to develop a personalized dosimetric tool, which takes into account real patient morphology, composition and densities. This tool, called O.E.D.I.P.E., a French acronym of Tool for the Evaluation of Personalized Internal Dose, is a user-friendly graphical interface. O.E.D.I.P.E. allows to create voxel-based patient-specific geometries and associates them with the M.C.N.P.X. Monte Carlo code. Radionuclide distribution and absorbed dose calculation can be performed at the organ and voxel scale. O.E.D.I.P.E. can be used in nuclear medicine for targeted radiotherapy and in radiation protection in case of internal contamination. (author)

  3. Co-targeting androgen receptor and DNA for imaging and molecular radiotherapy of prostate cancer: in vitro studies.

    Science.gov (United States)

    Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina

    2014-12-01

    The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.

  4. EGFR and HER2 expression in primary cervical cancers and corresponding lymph node metastases: Implications for targeted radiotherapy

    International Nuclear Information System (INIS)

    Shen, Li; Shui, Yongjie; Wang, Xiaojia; Sheng, Liming; Yang, Zhengyan; Xue, Danfeng; Wei, Qichun

    2008-01-01

    Proteins overexpressed on the surface of tumor cells can be selectively targeted. Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) are among the most often targeted proteins. The level and stability of expression in both primary tumors and corresponding metastases is crucial in the assessment of a receptor as target for imaging in nuclear medicine and for various forms of therapy. So far, the expression of EGFR and HER2 has only been determined in primary cervical cancers, and we have not found published data regarding the receptor status in corresponding metastatic lesions. The goal of this study was to evaluate whether any of these receptors are suitable as target for clinical diagnosis and therapy. Expression of EGFR and HER2 was investigated immunohistochemically in both lymph node metastases and corresponding primary cervical cancers (n = 53). HER2 and EGFR expression was scored using HercepTest criteria (0, 1+, 2+ or 3+). EGFR overexpression (2+ or 3+) was found in 64% (35/53) of the primary cervical tumors and 60% (32/53) of the corresponding lymph node metastases. There was a good concordance between the primary tumors and the paired metastases regarding EGFR expression. Only four patients who had 2+ or 3+ in the primary tumors changed to 0 or 1+ in lymph node metastases, and another two cases changed the other way around. None of the primary tumors or the lymph node metastases expressed HER2 protein. The EGFR expression seems to be common and stable during cervical cancer metastasis, which is encouraging for testing of EGFR targeted radiotherapy. HER2 appears to be of poor interest as a potential target in the treatment of cervical cancer

  5. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2011-01-01

    The objective of this study was to develop a consensus-based guideline to define clinical target volume for primary disease (clinical target volume primary) in external beam radiotherapy for intact uterine cervical cancer. The working subgroup of the Japan Clinical Oncology Group (JCOG) Radiation Therapy Study Group began developing a guideline for primary clinical target volume in November 2009. The group consisted of 10 radiation oncologists and 2 gynecologic oncologists. The process started with comparing the contouring on computed tomographic images of actual cervical cancer cases among the members. This was followed by a comprehensive literature review that included primary research articles and textbooks as well as information on surgical procedures. Extensive discussion occurred in face-to-face meetings (three occasions) and frequent e-mail communications until a consensus was reached. The working subgroup reached a consensus on the definition for the clinical target volume primary. The clinical target volume primary consists of the gross tumor volume, uterine cervix, uterine corpus, parametrium, vagina and ovaries. Definitions for these component structures were determined. Anatomical boundaries in all directions were defined for the parametrium. Examples delineating these boundaries were prepared for the posterior border of the parametrium for various clinical situations (id est (i.e.) central tumor bulk, degree of parametrial involvement). A consensus-based guideline defining the clinical target volume primary was developed for external beam radiotherapy for intact uterine cervical cancer. This guideline will serve as a template for radiotherapy protocols in future clinical trials. It may also be used in actual clinical practice in the setting of highly precise external beam radiotherapy, including intensity-modulated radiotherapy. (author)

  6. Suggestion for the prostatic fossa clinical target volume in adjuvant or salvage radiotherapy after a radical prostatectomy

    International Nuclear Information System (INIS)

    Park, Jun Su; Park, Won; Pyo, Hong Ryull; Park, Byung Kwan; Park, Sung Yoon; Choi, Han Yong; Lee, Hyun Moo; Jeon, Seong Soo; Seo, Seong Il; Jeong, Byong Chang; Jeon, Hwang Gyun

    2014-01-01

    Background and purpose: To assess the location of recurrent tumors and suggest the optimal target volume in adjuvant or salvage radiotherapy (RT) after a radical prostatectomy (RP). Material and methods: From January 2000 to December 2012, 113 patients had been diagnosed with suspected recurrent prostate cancer by MRI scan and received salvage RT in the Samsung Medical Center. This study assessed the location of the suspected tumor recurrences and used the inferior border of the pubic symphysis as a point of reference. Results: There were 118 suspect tumor recurrences. The most common site of recurrence was the anastomotic site (78.8%), followed by the bladder neck (15.3%) and retrovesical area (5.9%). In the cranial direction, 106 (87.3%) lesions were located within 30 mm of the reference point. In the caudal direction, 12 lesions (10.2%) were located below the reference point. In the transverse plane, 112 lesions (94.9%) were located within 10 mm of the midline. Conclusions: A MRI scan acquired before salvage RT is useful for the localization of recurrent tumors and the delineation of the target volume. We suggest the optimal target volume in adjuvant or salvage RT after RP, which includes 97% of suspected tumor recurrences

  7. The study of target delineation and target movement of whole breast assisted by active breathing control in intensity modulated radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Li Jianbing; Yu Jinming; Ma Zhifang; Lu Jie; Sun Tao; Guo Shoufang; Wang Jingguo

    2009-01-01

    Objective: To explore the influence of different delineators and different delineating time on target determination of the whole breast and to explore intrafraction and interfraction target displacements of the breast on moderate deep inspiration breathing hold (mDIBH) assisted by active breathing control (ABC) alter breast conservative surgery. Methods: Twenty patients received primary CT-simulation assisted by ABC to get five sets of CT image on the three breathing condition which included one set from free breath (FB), two sets from mDIBH and two sets from deep expiration breathing control (DEBH). After radiotherapy with ten to fifteen fractions, the repeat CT-simulation was carried out to get the same five sets of CT image as the primary CT- simulation. The whole breast target were delineated at different time by the same delineator and delineated respectively by five delineators on the first set of CT images got with mDIBH from the primary CT-simulation, and to compare the influence of delineator and delineating time on the whole breast target. The total silver clips in the cavity were marked respectively on the two sets of CT images got with mDIBH from the primary CT-simulation, and to compare the intrafraction displacement of geometric body structured by the total of silver clips. The two ribs near the isocentric plane of the breast target were delineated respectively on two sets of the mDIBH CT image from the primary CT-simulation and on one set of the mDIBH CT image from the repeat CT-simulation, and comparing the movement of the point of interest (POI) of the ribs delineated to get the value of intrafraction and interfraction thoracic expansion. Results: There was not statistically significant between the four volumes of whole breast targets delineated by the same delineator at different time, but with statistics significant between the volumes of whole breast target delineated by the different delineators ( F=19.681, P=0.000). There was not statistically

  8. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  9. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas

    International Nuclear Information System (INIS)

    Li Fangming; Nie Qing; Wang Ruimin; Chang, Susan M.; Zhao Wenrui; Zhu Qi; Liang Yingkui; Yang Ping; Zhang Jun; Jia Haiwei; Fang Henghu

    2012-01-01

    Objective: We explored the clinical values of 11 C-choline ( 11 C-CHO) PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Methods: Sixteen patients with the pathological confirmation of the diagnosis of gliomas prior to receiving radiotherapy (postoperative) were included, and on whom both MRI and CHO PET scans were performed at the same position for comparison of residual tumors with the two techniques. 11 C-CHO was used as the tracer in the PET scan. A plain T1-weighted, T2-weighted and contrast-enhanced T1-weighted imaging scans were performed in the MRI scan sequence. The gliomas' residual tumor volume was defined as the area with CHO-PET high-affinity uptake and metabolism (V CHO ) and one with MRI T1-weighted imaging high signal intensity (V Gd ), and was determined by a group of experienced professionals and clinicians. Results: (1) In CHO-PET images, the tumor target volume, i.e., the highly metabolic area with a high concentration of isotopes (SUV 1.016–4.21) and the corresponding contralateral normal brain tissues (SUV0.1–0.62), was well contrasted, and the boundary between lesions and surrounding normal brain tissues was better defined compared with MRI and 18 F-FDG PET images. (2) For patients with brain gliomas of WHO Grade II, the SUV was 1.016–2.5; for those with WHO Grades III and IV, SUVs were >26–4.2. (3) Both CHO PET and MRI were positive for 10 patients and negative for 2 patients. The residual tumor consistency between these two studies was 75%. Four of the 10 CHO-PET-positive patients were negative on MRI scans. The maximum distance between V Gd and V CHO margins was 1.8 cm. (4) The gross tumor volumes (GTVs) and the ensuing treatment regimens were changed for 31.3% (5/16) of patients based on the CHO-PET high-affinity uptake and metabolism, in which the change rate was 80% (4/5), 14.3 % (1/7) and 0% (0/4) for patients with WHO Grade II III, and IV gliomas

  10. Cone-Beam CT Localization of Internal Target Volumes for Stereotactic Body Radiotherapy of Lung Lesions

    International Nuclear Information System (INIS)

    Wang Zhiheng; Wu, Q. Jackie; Marks, Lawrence B.; Larrier, Nicole; Yin Fangfang

    2007-01-01

    Purpose: In this study, we investigate a technique of matching internal target volumes (ITVs) in four-dimensional (4D) simulation computed tomography (CT) to the composite target volume in free-breathing on-board cone-beam (CB) CT. The technique is illustrated by using both phantom and patient cases. Methods and Materials: A dynamic phantom with a target ball simulating respiratory motion with various amplitude and cycle times was used to verify localization accuracy. The dynamic phantom was scanned using simulation CT with a phase-based retrospective sorting technique. The ITV was then determined based on 10 sets of sorted images. The size and epicenter of the ITV identified from 4D simulation CT images and the composite target volume identified from on-board CBCT images were compared to assess localization accuracy. Similarly, for two clinical cases of patients with lung cancer, ITVs defined from 4D simulation CT images and CBCT images were compared. Results: For the phantom, localization accuracy between the ITV in 4D simulation CT and the composite target volume in CBCT was within 1 mm, and ITV was within 8.7%. For patient cases, ITVs on simulation CT and CBCT were within 8.0%. Conclusion: This study shows that CBCT is a useful tool to localize ITV for targets affected by respiratory motion. Verification of the ITV from 4D simulation CT using on-board free-breathing CBCT is feasible for the target localization of lung tumors

  11. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  12. Target volume definition for external beam partial breast radiotherapy: Clinical, pathological and technical studies informing current approaches

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Coles, Charlotte E.; Yarnold, John R.

    2010-01-01

    Partial breast irradiation (PBI) is currently under investigation in several phase III trials and, following a recent consensus statement, its use off-study may increase despite ongoing uncertainty regarding optimal target volume definition. We review the clinical, pathological and technical evidence for target volume definition in external beam partial breast irradiation (EB-PBI). The optimal method of tumour bed (TB) delineation requires X-ray CT imaging of implanted excision cavity wall markers. The definition of clinical target volume (CTV) as TB plus concentric 15 mm margins is based on the anatomical distribution of multifocal and multicentric disease around the primary tumour in mastectomy specimens, and the clinical locations of local tumour relapse (LR) after breast conservation surgery. If the majority of LR originate from foci of residual invasive and/or intraduct disease in the vicinity of the TB after complete microscopic resection, CTV margin logically takes account of the position of primary tumour within the surgical resection specimen. The uncertain significance of independent primary tumours as sources of preventable LR, and of wound healing responses in stimulating LR, increases the difficulties in defining optimal CTV. These uncertainties may resolve after long-term follow-up of current PBI trials. By contrast, a commonly used 10 mm clinical to planning target volume (PTV) margin has a stronger evidence base, although departmental set-up errors need to be confirmed locally. A CTV-PTV margin >10 mm may be required in women with larger breasts and/or large seromas, whilst the role of image-guided radiotherapy with or without TB markers in reducing CTV-PTV margins needs to be explored.

  13. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Low-energy electron emitters for targeted radiotherapy of small tumours

    International Nuclear Information System (INIS)

    Bernhardt, Peter; Forssell-Aronsson, Eva; Jacobsson, Lars; Skarnemark, Gunnar

    2001-01-01

    The possibility of using electron emitters to cure a cancer with metastatic spread depends on the energy of the emitted electrons. Electrons with high energy will give a high, absorbed dose to large tumours, but the absorbed dose to small tumours or single tumour cells will be low, because the range of the electrons is too long. The fraction of energy absorbed within the tumour decreases with increasing electron energy and decreasing tumour size. For tumours smaller than 1 g, the tumour-to-normal-tissue mean absorbed dose-rate ratio, TND, will be low, e.g. for 131 I and 90 Y, because of the high energy of the emitted electrons. For radiotherapy of small tumours, radionuclides emitting charged particles with short ranges (a few m u m ) are required. A mathematical model was constructed to evaluate the relation between TND and electron energy, photon-to-electron energy ratio, p/e, and tumour size. Criteria for the selection of suitable radionuclides for the treatment of small tumours were defined based on the results of the TND model. In addition, the possibility of producing such radionuclides and their physical and chemical properties were evaluated. Based on the mathematical model, the energy of the emitted electrons should be = 40 keV for small tumours ( 58m Co, 103m Rh, 119 Sb, 161 Ho, and 189m Os. All of these nuclides by internal transition or electron capture, which yields conversion and Auger electrons, and it should be possible to produce most of them in therapeutic amounts. The five low-energy electron-emitting radionuclides identified may be relevant in the radiation treatment of small tumours, especially if bound to internalizing radiopharmaceuticals

  15. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A. [Academic Medical Center, University of Amsterdam, Department of Radiation Oncology, Amsterdam (Netherlands); Schoot, Agustinus J.A.J. van de [The Netherlands Cancer Institute - Antoni van Leeuwenhoek, Department of Radiation Oncology, Amsterdam (Netherlands); Buist, Marrije R. [Academic Medical Center, University of Amsterdam, Department of Gynaecology and Obstetrics, Amsterdam (Netherlands)

    2018-03-15

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V{sub 15Gy}, V{sub 30Gy}, V{sub 45Gy} and D{sub mean} for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V{sub 45Gy} for bowel bag was >275 cm{sup 3} and >200 cm{sup 3}, respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [German] In der vorliegenden Studie wurden die moeglichen klinischen Vorteile einer Zielvolumenpraezisierung durch Ausschluss des tumorfreien proximalen Gebaermutteranteils bei der ''image-guided adaptive radiotherapy

  16. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  17. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Cui, G; Trakul, N; Chang, E; Shiu, A

    2016-01-01

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  18. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Trakul, N; Chang, E; Shiu, A [University Southern California, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  19. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    International Nuclear Information System (INIS)

    Ipsen, S.; Blanck, O.; Rades, D.; Oborn, B.; Bode, F.; Liney, G.; Hunold, P.; Schweikard, A.; Keall, P. J.

    2014-01-01

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  20. Radiotherapy beyond cancer: Target localization in real-time MRI and treatment planning for cardiac radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Ipsen, S. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006, Australia and Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Blanck, O.; Rades, D. [Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Oborn, B. [Illawarra Cancer Care Centre (ICCC), Wollongong, New South Wales 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales 2500 (Australia); Bode, F. [Medical Department II, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Liney, G. [Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, New South Wales 2170 (Australia); Hunold, P. [Department of Radiology and Nuclear Medicine, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck 23562 (Germany); Schweikard, A. [Institute for Robotics and Cognitive Systems, University of Luebeck, Luebeck 23562 (Germany); Keall, P. J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. Methods: For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Results: Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior–inferior), 2.4 mm (anterior–posterior), and 2 mm (left–right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the

  1. Radiotherapy beyond cancer: target localization in real-time MRI and treatment planning for cardiac radiosurgery.

    Science.gov (United States)

    Ipsen, S; Blanck, O; Oborn, B; Bode, F; Liney, G; Hunold, P; Rades, D; Schweikard, A; Keall, P J

    2014-12-01

    Atrial fibrillation (AFib) is the most common cardiac arrhythmia that affects millions of patients world-wide. AFib is usually treated with minimally invasive, time consuming catheter ablation techniques. While recently noninvasive radiosurgery to the pulmonary vein antrum (PVA) in the left atrium has been proposed for AFib treatment, precise target location during treatment is challenging due to complex respiratory and cardiac motion. A MRI linear accelerator (MRI-Linac) could solve the problems of motion tracking and compensation using real-time image guidance. In this study, the authors quantified target motion ranges on cardiac magnetic resonance imaging (MRI) and analyzed the dosimetric benefits of margin reduction assuming real-time motion compensation was applied. For the imaging study, six human subjects underwent real-time cardiac MRI under free breathing. The target motion was analyzed retrospectively using a template matching algorithm. The planning study was conducted on a CT of an AFib patient with a centrally located esophagus undergoing catheter ablation, representing an ideal case for cardiac radiosurgery. The target definition was similar to the ablation lesions at the PVA created during catheter treatment. Safety margins of 0 mm (perfect tracking) to 8 mm (untracked respiratory motion) were added to the target, defining the planning target volume (PTV). For each margin, a 30 Gy single fraction IMRT plan was generated. Additionally, the influence of 1 and 3 T magnetic fields on the treatment beam delivery was simulated using Monte Carlo calculations to determine the dosimetric impact of MRI guidance for two different Linac positions. Real-time cardiac MRI showed mean respiratory target motion of 10.2 mm (superior-inferior), 2.4 mm (anterior-posterior), and 2 mm (left-right). The planning study showed that increasing safety margins to encompass untracked respiratory motion leads to overlapping structures even in the ideal scenario, compromising

  2. Target volume delineation variation in radiotherapy for early stage rectal cancer in the Netherlands

    International Nuclear Information System (INIS)

    Nijkamp, Jasper; Haas-Kock, Danielle F.M. de; Beukema, Jannet C.; Neelis, Karen J.; Woutersen, Dankert; Ceha, Heleen; Rozema, Tom; Slot, Annerie; Vos-Westerman, Hanneke; Intven, Martijn; Spruit, Patty H.; Linden, Yvette van der; Geijsen, Debby; Verschueren, Karijn; Herk, Marcel B. van; Marijnen, Corrie A.M.

    2012-01-01

    Purpose: The aim of this study was to measure and improve the quality of target volume delineation by means of national consensus on target volume definition in early-stage rectal cancer. Methods and materials: The CTV’s for eight patients were delineated by 11 radiation oncologists in 10 institutes according to local guidelines (phase 1). After observer variation analysis a workshop was organized to establish delineation guidelines and a digital atlas, with which the same observers re-delineated the dataset (phase 2). Variation in volume, most caudal and cranial slice and local surface distance variation were analyzed. Results: The average delineated CTV volume decreased from 620 to 460 cc (p < 0.001) in phase 2. Variation in the caudal CTV border was reduced significantly from 1.8 to 1.2 cm SD (p = 0.01), while it remained 0.7 cm SD for the cranial border. The local surface distance variation (cm SD) reduced from 1.02 to 0.74 for anterior, 0.63 to 0.54 for lateral, 0.33 to 0.25 for posterior and 1.22 to 0.46 for the sphincter region, respectively. Conclusions: The large variation in target volume delineation could significantly be reduced by use of consensus guidelines and a digital delineation atlas. Despite the significant reduction there is still a need for further improvement.

  3. Targeted radiotherapy with {sup 177} Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez C, J.; Murphy, C.A. de; Pedraza L, M. [Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, 14000 Mexico D.F. (Mexico); Ferro F, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Murphy S, E. [Hospital Santelena, 06000 Mexico D.F. (Mexico)

    2006-07-01

    Malignant pancreas tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses after administration of {sup 177}Lu-DOTA-TATE in mice as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (n=18) to obtain the {sup 177}Lu-DOTA-TATE biokinetics and dosimetry. To estimate its therapeutic efficacy 87 MBq were injected in a tail vein of 3 mice and 19 days p.i. there were a partial relapse. There was an epithelial and sarcoma mixed tumour in the kidneys of mouse III. The absorbed dose to tumour, kidney and pancreas was 50.5 {+-} 7.2 Gy, 17.5 {+-} 2.5 Gy and 12.6 {+-} 2.3 Gy respectively. These studies justify further therapeutic and dosimetry estimations to ensure that {sup 177}Lu-DOTA-TATE will act as expected in man considering its kidney radiotoxicity. (Author)

  4. Labelling techniques of biomolecules for targeted radiotherapy. Final report of a co-ordinated research project 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the first generation 131I, 89Sr, 32P, 90Y, etc., which are still widely utilized and accepted by the medical community, many other beta emitting radionuclides with relatively short half-lives such as 153Sm, 186Re, 188Re, 166Ho, 165Dy, etc. have also been recently made available for therapy and used with promising good results. In spite of the potential of targeted radiotherapy to treat a wide range of malignant conditions, routine clinical use is mostly confined to therapy of thyroid carcinoma, hyperthyroidism, metastatic bone pain and synovectomy. In most of the cases, the limitation is obviously not the availability of suitable radionuclides but rather the lack of suitable carrier molecules that would adequately concentrate these radionuclides in target tissues of interest. Based on the above considerations, the scope of the Co-ordinated Research Project (CRP) has focused on the synthesis of the required BFCAs for MoAbs and peptide labelling, development and

  5. Labelling techniques of biomolecules for targeted radiotherapy. Final report of a co-ordinated research project 1998-2002

    International Nuclear Information System (INIS)

    2003-07-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the first generation 131I, 89Sr, 32P, 90Y, etc., which are still widely utilized and accepted by the medical community, many other beta emitting radionuclides with relatively short half-lives such as 153Sm, 186Re, 188Re, 166Ho, 165Dy, etc. have also been recently made available for therapy and used with promising good results. In spite of the potential of targeted radiotherapy to treat a wide range of malignant conditions, routine clinical use is mostly confined to therapy of thyroid carcinoma, hyperthyroidism, metastatic bone pain and synovectomy. In most of the cases, the limitation is obviously not the availability of suitable radionuclides but rather the lack of suitable carrier molecules that would adequately concentrate these radionuclides in target tissues of interest. Based on the above considerations, the scope of the Co-ordinated Research Project (CRP) has focused on the synthesis of the required BFCAs for MoAbs and peptide labelling, development and

  6. Target volume for postoperative radiotherapy in non-small cell lung cancer: Results from a prospective trial

    International Nuclear Information System (INIS)

    Kępka, Lucyna; Bujko, Krzysztof; Bujko, Magdalena; Matecka-Nowak, Mirosława; Salata, Andrzej; Janowski, Henryk; Rogowska, Danuta; Cieślak-Żerańska, Ewa; Komosińska, Katarzyna; Zawadzka, Anna

    2013-01-01

    Background and purpose: A previous prospective trial reported that three-dimensional conformal postoperative radiotherapy (PORT) for pN2 NSCLC patients using a limited clinical target volume (CTV) had a late morbidity rate and pulmonary function that did not differ from those observed in pN1 patients treated with surgery without PORT. The aim of this study was to assess locoregional control and localization of failure in patients treated with PORT. Materials and methods: The pattern of locoregional failure was evaluated retrospectively in 151 of 171 patients included in the PORT arm. The CTV included the involved lymph node stations and those with a risk of invasion >10%. Competing risk analysis was used to assess the incidence of locoregional failure and its location outside the CTV. Results: Overall survival at 5 years was 27.1% with a median follow-up of 67 months for 40 living patients. The 5-year cumulative incidence of locoregional failure was 19.4% (95% CI: 18.2–20.5%) including a failure rate of 2% (95% CI: 0–17%) in locations outside or at the border of the CTV. Conclusions: The use of limited CTV was associated with acceptable risk of geographic miss. Overall locoregional control was similar to that reported by other studies using PORT for pN2 patients

  7. How many sets of 4DCT images are sufficient to determine internal target volume for liver radiotherapy?

    International Nuclear Information System (INIS)

    Xi Mian; Liu Mengzhong; Zhang Li; Li Qiaoqiao; Huang Xiaoyan; Liu Hui; Hu Yonghong

    2009-01-01

    Background and purpose: To determine the feasibility of using limited four-dimensional computed tomography (4DCT) images for treatment planning. Materials and methods: The 4DCT scans of 16 patients with hepatocellular carcinoma (HCC) were analyzed. Gross tumor volumes (GTVs) were manually contoured on all 10 respiratory phases, and different internal clinical target volumes (ICTVs) were derived by encompassing volumes of the respective CTVs. Volume, position, and shape of ICTVs were calculated and compared. Results: The ICTV 2phases , ICTV 3phases , ICTV 4phases , and ICTV 6phases all showed excellent agreement with ICTV 10phases , and the ICTV 2phases encompassed ICTV 10phases by 94.1 ± 1.8% on average. The 3D shift between the centers of mass of the ICTVs was only 0.6 mm. The surface distance between ICTV 10phases and ICTV 2phases was 1.7 ± 0.8 mm in the left-right (LR) and anteroposterior (AP) directions. Conclusions: Contouring two extreme phases at end-inhalation and end-exhalation is a reasonably safe and labor-saving method of deriving ITV for liver radiotherapy with low and medium tumor motion amplitude (≤1.6 cm). Whether the larger tumor movement affects the results is the subject of ongoing research.

  8. Planning target volume (PTV) definition and its effects in the radiotherapy

    International Nuclear Information System (INIS)

    Poli, Maria Esmeralda Ramos

    2007-01-01

    Tills work intends to study the margins required to define a planning target volume (PTV) for adequate treatment of the mobile tumors such as prostate or those located in areas with less mobility as the ones in head and neck region, in the absence of daily localization imaging based. It is also intends to evaluate the impact caused by the PTV, in terms of dose, to the critical structures surrounding the PTV and its influence when inverse planning is used in the intensity-modulated radiation therapy (IMRT). Data from 387 prostate patients were analyzed retrospectively. Every patient in the study received daily pre-treatment localization with 2D ultrasound resulting in a total of 10,327 localizations, each comprising of an isocenter displacement in 3 directions: anterior-posterior (AP), right-left lateral (RL), and superior-inferior (SI). The mean displacement and standard deviation (SD) for each direction for each patient was computed from daily treatment records. The uncertainties (SD) in the target position were 4.4 mm (AP), 3.6 mm (RL), and 4.5 mm (SI). A study of the uncertainties in the daily positioning of 78 head and neck patients who used thermoplastic mask to immobilize them, evaluated with electronic portal imaging device (EPID), showed variations (SD) in the isocenter treatment position of 3.1 mm (AP), 1.5 mm (RL), and 4.5 mm (SI). By applying these shifts in an anthropomorphic phantom it was studied the dose-volume histograms resultant of the isocenter displacement in the daily treatment. The result showed the importance of putting margins in the clinical target volume to assure an adequate treatment and also showed that isocenter daily variation can cause an increase to the dose greater than the tolerance level to the critical organs. (author)

  9. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma

    DEFF Research Database (Denmark)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja

    2017-01-01

    the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve...... target definition in glioblastoma (GBM). MATERIAL AND METHODS: Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation...

  10. Efficient approach for determining four-dimensional computed tomography-based internal target volume in stereotactic radiotherapy of lung cancer

    International Nuclear Information System (INIS)

    Yeo, Seung Gu; Kim, Eun Seog

    2013-01-01

    This study aimed to investigate efficient approaches for determining internal target volume (ITV) from four-dimensional computed tomography (4D CT) images used in stereotactic body radiotherapy (SBRT) for patients with early-stage non-small cell lung cancer (NSCLC). 4D CT images were analyzed for 15 patients who received SBRT for stage I NSCLC. Three different ITVs were determined as follows: combining clinical target volume (CTV) from all 10 respiratory phases (ITV 10Phases ); combining CTV from four respiratory phases, including two extreme phases (0% and 50%) plus two intermediate phases (20% and 70%) (ITV 4Phases ); and combining CTV from two extreme phases (ITV 2Phases ). The matching index (MI) of ITV 4Phases and ITV 2Phases was defined as the ratio of ITV 4Phases and ITV 2Phases , respectively, to the ITV 10Phases . The tumor motion index (TMI) was defined as the ratio of ITV 10Phases to CTV mean , which was the mean of 10 CTVs delineated on 10 respiratory phases. The ITVs were significantly different in the order of ITV 10Phases , ITV 4Phases , and ITV 2Phases (all p 4Phases was significantly higher than that of ITV 2Phases (p 4Phases was inversely related to TMI (r = -0.569, p = 0.034). In a subgroup with low TMI (n = 7), ITV 4Phases was not statistically different from ITV 10Phases (p = 0.192) and its MI was significantly higher than that of ITV 2Phases (p = 0.016). The ITV 4Phases may be an efficient approach alternative to optimal ITV 10Phases in SBRT for early-stage NSCLC with less tumor motion.

  11. Target volume definition in conformal radiotherapy for prostate cancer: quality assurance in the MRC RT-01 trial

    International Nuclear Information System (INIS)

    Seddon, B.S.; Wilson, J.; Khoo, V.; Dearnaley, D.; Bidmead, M.

    2000-01-01

    Prior to randomization of patients into the UK Medical Research Council multicentre randomized trial (RT-01) of conformal radiotherapy (CFRT) in prostate cancer, clinicians at participating centres were required to complete a quality assurance (QA) clinical planning exercise to enable an investigation of inter-observer variability in gross target volume (GTV) and normal structure outlining. Thirteen participating centres and two investigators completed the clinical planning exercise of three practice planning cases. Clinicians were asked to draw outlines of the GTV, rectum and bladder on hard-copy computerized tomography (CT) films of the pelvis, which were transferred onto the Cadplan computer planning system by a single investigator. Centre, inferior and superior CT levels of GTV, rectum and bladder were noted, and volume calculations performed. Planning target volumes (PTV) were generated using automatic volume expansion of GTVs by a 1 cm margin. Anterior, right and left lateral beam eye views (BEV) of the PTVs were generated. Using a common central point, the BEV PTVs were superimposed for each beam direction of each case. Radial PTV variation was investigated by measurement of a novel parameter, termed the radial line measurement variation (RLMV). GTV central slice and length were defined with reasonable consistency. The RLMV analysis showed that the main part of the prostate gland, bladder and inferior rectum were outlined with good consistency among clinicians. However, the outlining of the prostatic apex, superior aspect of the prostate projecting into the bladder, seminal vesicles, the base of seminal vesicles and superior rectum were more variable. This exercise has demonstrated adequate consistency of GTV definition. The RLMV method of analysis indicates particular regions of clinician uncertainty. Appropriate feedback has been given to all participating clinicians, and the final RT-01 trial protocol has been modified to accommodate these findings

  12. Comparison of the predictions of the LQ and CRE models for normal tissue damage due to biologically targeted radiotherapy with exponentially decaying dose rates

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; West of Schotland Health Boards, Glasgow

    1989-01-01

    For biologically targeted radiotherapy organ dose rates may be complex functions of time, related to the biodistribution kinetics of the delivery vehicle and radiolabel. The simples situation is where dose rates are exponentially decaying functions of time. Two normal tissue isoeffect models enable the effects of exponentially decaying dose rates to be addressed. These are the extension of the linear-quadratic model and the cumulative radiation effect model. This communication will compare the predictions of these models. (author). 14 refs.; 1 fig

  13. Antiproton Radiotherapy Peripheral Dose from Secondary Neutrons produced in the Annihilation of Antiprotons in the Target

    CERN Document Server

    Fahimian, Benjamin P; Keyes, Roy; Bassler, Niels; Iwamoto, Keisuke S; Zankl, Maria; Holzscheiter, Michael H

    2009-01-01

    The AD-4/ACE collaboration studies the biological effects of antiprotons with respect to a possible use of antiprotons in cancer therapy. In vitro experiments performed by the collaboration have shown an enhanced biological effectiveness for antiprotons relative to protons. One concern is the normal tissue dose resulting from secondary neutrons produced in the annihilation of antiprotons on the nucleons of the target atoms. Here we present the first organ specific Monte Carlo calculations of normal tissue equivalent neutron dose in antiproton therapy through the use of a segmented CT-based human phantom. The MCNPX Monte Carlo code was employed to quantify the peripheral dose for a cylindrical spread out Bragg peak representing a treatment volume of 1 cm diameter and 1 cm length in the frontal lobe of a segmented whole-body phantom of a 38 year old male. The secondary neutron organ dose was tallied as a function of energy and organ.

  14. Intercomparison of Dosimeters for Non-Target Organ Dose Measurements in Radiotherapy - Activity of EURADOS WG 9: Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Bessieres, I.; Bordy, J.-M.; D'Agostino, E.; d'Errico, F.; di Fulvio, A.; Domingo, C.; Olko, P.; Stolarczyk; Silari, M.; Harrison, R.

    2011-01-01

    It has been known for a long time that patients treated with ionizing radiation carry a risk of developing radiation induced cancer in their lifetimes. It is recognized that cure/survival rates in radiotherapy are increasing, but so are secondary cancers. These occurrences are amplified by the early detection of disease in younger patients. These patients are cured from the primary disease and have long life-expectancies, which increase their chances of developing secondary malignancies. The motivation of the EURADOS Working Group 9 (WG 9) ''Radiation protection dosimetry in medicine'' is to assess undue non-target patient doses in radiotherapy and the related risks of secondary malignancy with the most accredited available methods and with the emphasis on a thorough evaluation of dosimetry methods for the measurements of doses remote from the target volume, in phantom experiments. The development of a unified and comprehensive dosimetry methodology for non-target dose estimation is the key element of the WG9 current work. The first scientific aim is to select and review dosimeters suitable for photon and neutron dosimetry in radiotherapy and to evaluate the characteristics of dosimeters at CEA LIST Saclay in reference clinical LINAC beam. (author)

  15. Postoperative radiotherapy for glioma: improved delineation of the clinical target volume using the geodesic distance calculation.

    Directory of Open Access Journals (Sweden)

    DanFang Yan

    Full Text Available OBJECTS: To introduce a new method for generating the clinical target volume (CTV from gross tumor volume (GTV using the geodesic distance calculation for glioma. METHODS: One glioblastoma patient was enrolled. The GTV and natural barriers were contoured on each slice of the computer tomography (CT simulation images. Then, a graphic processing unit based on a parallel Euclidean distance transform was used to generate the CTV considering natural barriers. Three-dimensional (3D visualization technique was applied to show the delineation results. Speed of operation and precision were compared between this new delineation method and the traditional method. RESULTS: In considering spatial barriers, the shortest distance from the point sheltered from these barriers equals the sum of the distance along the shortest path between the two points; this consists of several segments and evades the spatial barriers, rather than being the direct Euclidean distance between two points. The CTV was generated irregularly rather than as a spherical shape. The time required to generate the CTV was greatly reduced. Moreover, this new method improved inter- and intra-observer variability in defining the CTV. CONCLUSIONS: Compared with the traditional CTV delineation, this new method using geodesic distance calculation not only greatly shortens the time to modify the CTV, but also has better reproducibility.

  16. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid.

    Science.gov (United States)

    Meckel, M; Bergmann, R; Miederer, M; Roesch, F

    2017-01-01

    Bisphosphonates have a high adsorption on calcified tissues and are commonly used in the treatment of bone disorder diseases. Conjugates of bisphosphonates with macrocyclic chelators open new possibilities in bone targeted radionuclide imaging and therapy. Subsequent to positron emission tomography (PET) examinations utilizing 68 Ga-labelled analogues, endoradiotheraphy with 177 Lu-labelled macrocyclic bisphosphonates may have a great potential in the treatment of painful skeletal metastases. Based on the established pharmaceuticals pamidronate and zoledronate two new DOTA-α-OH-bisphosphonates, DOTA PAM and DOTA ZOL (MM1.MZ) were successfully synthesized. The ligands were labelled with the positron emitting nuclide 68 Ga and the β - emitting nuclide 177 Lu and compared in in vitro studies and in ex vivo biodistribution studies together with small animal PET and single photon emission computed tomography (SPECT) studies against [ 18 F]NaF and a known DOTA-α-H-bisphosphonate conjugate (BPAPD) in healthy Wistar rats. The new DOTA-bisphosphonates can be labelled in high yield of 80 to 95 % in 15 min with post-processed 68 Ga and >98 % with 177 Lu. The tracers showed very low uptake in soft tissue, a fast renal clearance and a high accumulation on bone. The best compound was [ 68 Ga]DOTA ZOL (SUV Femur  = 5.4 ± 0.6) followed by [ 18 F]NaF (SUV Femur  = 4.8 ± 0.2), [ 68 Ga]DOTA PAM (SUV Femur  = 4.5 ± 0.2) and [ 68 Ga]BPAPD (SUV Femur  = 3.2 ± 0.3). [ 177 Lu]DOTA ZOL showed a similar distribution as the diagnostic 68 Ga complex. The 68 Ga labelled compounds showed a promising pharmacokinetics, with similar uptake profile and distribution kinetics. Bone accumulation was highest for [ 68 Ga]DOTA ZOL , which makes this compound probably an interesting bone targeting agent for a therapeutic approach with 177 Lu. The therapeutic compound [ 177 Lu]DOTA ZOL showed a high target-to-background ratio. SPECT experiments showed concordance

  17. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  18. Difference in target definition using three different methods to include respiratory motion in radiotherapy of lung cancer.

    Science.gov (United States)

    Sloth Møller, Ditte; Knap, Marianne Marquard; Nyeng, Tine Bisballe; Khalil, Azza Ahmed; Holt, Marianne Ingerslev; Kandi, Maria; Hoffmann, Lone

    2017-11-01

    Minimizing the planning target volume (PTV) while ensuring sufficient target coverage during the entire respiratory cycle is essential for free-breathing radiotherapy of lung cancer. Different methods are used to incorporate the respiratory motion into the PTV. Fifteen patients were analyzed. Respiration can be included in the target delineation process creating a respiratory GTV, denoted iGTV. Alternatively, the respiratory amplitude (A) can be measured based on the 4D-CT and A can be incorporated in the margin expansion. The GTV expanded by A yielded GTV + resp, which was compared to iGTV in terms of overlap. Three methods for PTV generation were compared. PTV del (delineated iGTV expanded to CTV plus PTV margin), PTV σ (GTV expanded to CTV and A was included as a random uncertainty in the CTV to PTV margin) and PTV ∑ (GTV expanded to CTV, succeeded by CTV linear expansion by A to CTV + resp, which was finally expanded to PTV ∑ ). Deformation of tumor and lymph nodes during respiration resulted in volume changes between the respiratory phases. The overlap between iGTV and GTV + resp showed that on average 7% of iGTV was outside the GTV + resp implying that GTV + resp did not capture the tumor during the full deformable respiration cycle. A comparison of the PTV volumes showed that PTV σ was smallest and PTV Σ largest for all patients. PTV σ was in mean 14% (31 cm 3 ) smaller than PTV del , while PTV del was 7% (20 cm 3 ) smaller than PTV Σ . PTV σ yields the smallest volumes but does not ensure coverage of tumor during the full respiratory motion due to tumor deformation. Incorporating the respiratory motion in the delineation (PTV del ) takes into account the entire respiratory cycle including deformation, but at the cost, however, of larger treatment volumes. PTV Σ should not be used, since it incorporates the disadvantages of both PTV del and PTV σ .

  19. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle.

    Science.gov (United States)

    Liu, Yang; Lai, Yu-Chiang; Hill, Elaine V; Tyteca, Donatienne; Carpentier, Sarah; Ingvaldsen, Ada; Vertommen, Didier; Lantier, Louise; Foretz, Marc; Dequiedt, Franck; Courtoy, Pierre J; Erneux, Christophe; Viollet, Benoît; Shepherd, Peter R; Tavaré, Jeremy M; Jensen, Jørgen; Rider, Mark H

    2013-10-15

    PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.

  20. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    Science.gov (United States)

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  1. Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Kirkby, Charles, E-mail: charles.kirkby@albertahealthservices.ca; Ghasroddashti, Esmaeel [Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta T1J 1W5 (Canada); Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2 (Canada)

    2015-02-15

    enhanced, as these simulations show, this work suggests the potential for both a tool to study the role of mitochondria in cellular response to radiation and a novel avenue for radiation therapy in that the mitochondria may be targeted, rather than the nuclear DNA.

  2. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target

    Energy Technology Data Exchange (ETDEWEB)

    Farace, Paolo; Merigo, Flavia; Galie, Mirco; Sbarbati, Andrea; Marzola, Pasquina [University of Verona, Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, Verona (Italy); D' Ambrosio, Daniela; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano [Policlinico ' S. Orsola-Malpighi' , Department of Nuclear Medicine, Bologna (Italy); Degrassi, Anna [Nerviano Medical Sciences, Milan (Italy); Rubello, Domenico [' S. Maria della Misericordia' Hospital, PET Centre, Department of Nuclear Medicine, Rovigo (Italy)

    2009-04-15

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging. (orig.)

  3. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target.

    Science.gov (United States)

    Farace, Paolo; D'Ambrosio, Daniela; Merigo, Flavia; Galiè, Mirco; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano; Degrassi, Anna; Sbarbati, Andrea; Rubello, Domenico; Marzola, Pasquina

    2009-04-01

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging.

  4. Cancer-associated stroma affects FDG uptake in experimental carcinomas. Implications for FDG-PET delineation of radiotherapy target

    International Nuclear Information System (INIS)

    Farace, Paolo; Merigo, Flavia; Galie, Mirco; Sbarbati, Andrea; Marzola, Pasquina; D'Ambrosio, Daniela; Nanni, Cristina; Spinelli, Antonello; Fanti, Stefano; Degrassi, Anna; Rubello, Domenico

    2009-01-01

    To analyse the influence of cancer-associated stroma on FDG-uptake in two carcinoma models characterized by different stromal degrees. Eight nude mice were subcutaneously injected with DU-145 prostate cancer cells or BXPC-3 pancreatic cancer cells, and underwent FDG-PET imaging about 2 weeks after implantation. After the mice were killed, histology, and CD31 and GLUT1 immunohistochemistry were performed. To further evaluate the highly stromalized carcinoma using perfusion-sensitive imaging, four BXPC-3 tumours underwent two successive albumin-binding (MS-325) MRI scans during tumour growth. FDG uptake was significantly higher in the DU-145 than in the BXPC-3 tumours, which were hardly distinguishable from adjacent normal tissue. In the BXPC-3 tumours, histology confirmed the widespread presence of aberrant infiltrated stroma, embedded with numerous vessels marked by CD31. In both tumour types, the stromal matrix was negative for GLUT1. In DU-145 tumour cells, GLUT1 immunostaining was greater than in BXPC-3 tumour cells, but not homogeneously, since it was less evident in the tumour cells which were nearer to vessels and stroma. Finally, MS-325 MRI always clearly showed areas of enhancement in the BXPC-3 tumours. Cancer-associated stroma has been reported to be capable of aerobic metabolism with low glucose consumption. Furthermore, it has been proposed that regions with high vascular perfusion exhibit a significantly lower FDG uptake, suggesting some vascular/metabolic reciprocity. Since our results are consistent with these recent findings, they signal a risk of tumour volume underestimation in radiotherapy if FDG uptake alone is used for target delineation of carcinomas, which suggests that additional evaluation should be performed using vasculature/perfusion-sensitive imaging. (orig.)

  5. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  6. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  7. A study of skeletal metastasis of carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Tanouchi, Miki; Sui, Osamu; Kashihara, Kenichi

    1990-01-01

    Between January 1980 and December 1988, 373 patients with carcinoma of the uterine cervix were treated at the Department of Radiology, Tokushima University Hospital. Of the 373 patients, 229 were treated by radiotherapy alone, and 144 were treated by post-operative radiotherapy. The incidence of skeletal metastasis was 6.4%, 24 patients out of 373. Ten of these patients were treated with radiotherapy alone, and 14 with radical surgery and radiotherapy. Nineteen patients belonged in the early clinical stage (stage Ia through stage IIb). Lesions of skeletal metastases were usually detected within 2 years after the initial treatment, and the most common site of skeletal metastasis was the pelvic bone, followed by the lumbar spine. Most patients with skeletal metastases were treated by radiotherapy, chemotherapy, and combined radio- and chemotherapy. Severe pain due to skeletal metastasis was relieved by radiotherapy and combined therapy, but no method of treatment could extend the prognosis. (author)

  8. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non–small cell lung cancer patients under abdominal compression

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chunhui, E-mail: chan@coh.org; Sampath, Sagus; Schultheisss, Timothy E.; Wong, Jeffrey Y.C.

    2017-07-01

    We aimed to compare gross tumor volumes (GTV) in 3-dimensional computed tomography (3DCT) simulation and daily cone beam CT (CBCT) with the internal target volume (ITV) in 4-dimensional CT (4DCT) simulation in stereotactic body radiotherapy (SBRT) treatment of patients with early-stage non–small cell lung cancer (NSCLC) under abdominal compression. We retrospectively selected 10 patients with NSCLC who received image-guided SBRT treatments under abdominal compression with daily CBCT imaging. GTVs were contoured as visible gross tumor on the planning 3DCT and daily CBCT, and ITVs were contoured using maximum intensity projection (MIP) images of the planning 4DCT. Daily CBCTs were registered with 3DCT and MIP images by matching of bony landmarks in the thoracic region to evaluate interfractional GTV position variations. Relative to MIP-based ITVs, the average 3DCT-based GTV volume was 66.3 ± 17.1% (range: 37.5% to 92.0%) (p < 0.01 in paired t-test), and the average CBCT-based GTV volume was 90.0 ± 6.7% (daily range: 75.7% to 107.1%) (p = 0.02). Based on bony anatomy matching, the center-of-mass coordinates for CBCT-based GTVs had maximum absolute shift of 2.4 mm (left-right), 7.0 mm (anterior-posterior [AP]), and 5.2 mm (superior-inferior [SI]) relative to the MIP-based ITV. CBCT-based GTVs had average overlapping ratio of 81.3 ± 11.2% (range: 45.1% to 98.9%) with the MIP-based ITV, and 57.7 ± 13.7% (range: 35.1% to 83.2%) with the 3DCT-based GTV. Even with abdominal compression, both 3DCT simulations and daily CBCT scans significantly underestimated the full range of tumor motion. In daily image-guided patient setup corrections, automatic bony anatomy-based image registration could lead to target misalignment. Soft tissue-based image registration should be performed for accurate treatment delivery.

  10. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Hoffmann, Aswin L.; Vogel, Wouter V.; Dalen, Jorn A. van; Verstappen, Suzan M.M.; Oyen, Wim J.G.; Kaanders, Johannes H.A.M.

    2009-01-01

    Background and purpose: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. Materials and methods: Seventy-eight head-and-neck cancer patients underwent coregistered CT- and FDG-PET scans. Lymph nodes were classified as 'enlarged' if the shortest axial diameter on CT was ≥10 mm, and as 'marginally enlarged' if it was 7-10 mm. Subsequently, lymph nodes were assessed on FDG-PET applying eight segmentation methods: visual interpretation (PET VIS ), applying fixed thresholds at a standardized uptake value (SUV) of 2.5 and at 40% and 50% of the maximum signal intensity of the primary tumor (PET SUV , PET 40% , PET 50% ) and applying a variable threshold based on the signal-to-background ratio (PET SBR ). Finally, PET 40%N , PET 50%N and PET SBRN were acquired using the signal of the lymph node as the threshold reference. Results: Of 108 nodes classified as 'enlarged' on CT, 75% were also identified by PET VIS , 59% by PET 40% , 43% by PET 50% and 43% by PET SBR . Of 100 nodes classified as 'marginally enlarged', only a minority were visualized by FDG-PET. The respective numbers were 26%, 10%, 7% and 8% for PET VIS , PET 40% , PET 50% and PET SBR . PET 40%N , PET 50%N and PET SBRN , respectively, identified 66%, 82% and 96% of the PET VIS -positive nodes. Conclusions: Many lymph nodes that are enlarged and considered metastatic by standard CT-based criteria appear to be negative on FDG-PET scan. Alternately, a small proportion of marginally enlarged nodes are positive on FDG-PET scan. However, the results are largely dependent on the PET segmentation tool used, and until proper validation FDG-PET is not recommended for target volume definition of metastatic lymph nodes in routine practice.

  11. Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT trademark (B-mode acquisition and targeting system) for prostate cancer

    International Nuclear Information System (INIS)

    Bohrer, Markus; Schroeder, Peter; Welzel, Grit; Wertz, Hansjoerg; Lohr, Frank; Wenz, Frederik; Mai, Sabine Kathrin

    2008-01-01

    To evaluate the effect of image guided radiotherapy with stereotactic ultrasound BAT (B-mode acquisition and targeting system) on rectal toxicity in conformal radiotherapy of prostate cancer. Patients and Methods 42 sequential patients with prostate cancer undergoing radiotherapy before and after the introduction of BAT were included. Planning computed tomography (CT) was performed with empty rectum and moderately filled bladder. The planning target volume (PTV) included the prostate and seminal vesicles with a safety margin of 1.5 cm in anterior and lateral direction. In posterior direction the anterior 1/3 of the rectum circumference were included. Total dose was 66 Gy and a boost of 4 Gy excluding the seminal vesicles. 22 patients (BAT group) were treated with daily stereotactic ultrasound positioning, for the other 20 patients (NoBAT group) an EPID (electronic portal imaging device) was performed once a week. Acute and late genito-urinary (GU) and rectal toxicity and PSA values were evaluated after 1.5, 3, 6, 9 and 12 months. The total median follow up of toxicity was 3 years in the BAT group and 4 years in the NoBAT group. Results In the NoBAT group significant more rectal toxicity occurred, while in GU toxicity no difference was seen. Two patients in the NoBAT group showed late rectal toxicity grade 3, no toxicity > grade 2 occurred in the BAT group. There was no significant difference in PSA reduction between the groups. Conclusion Without BAT significant more acute and a trend to more late rectal toxicity was found. With regard to dose escalation this aspect is currently evaluated with a larger number of patients using intensity-modulated radiotherapy (IMRT). (orig.)

  12. Internal targeted radiotherapy for bone metastasis: what about underlying physiopathology; Radiotherapie interne vectorisee (metabolique) des metastases osseuses: quid de la physiopathologie sous-jacente?

    Energy Technology Data Exchange (ETDEWEB)

    Vuillez, J.Ph. [Centre Hospitalier Universitaire, Hopital Michallon, Service de Biophysique et Medecine Nucleaire, 38 - Grenoble (France); Laval, G. [Centre Hospitalier Universitaire, Hopital Michallon, Unite de Recherche et de Soutien en Soins Palliatifs, 38 - Grenoble (France)

    2006-03-15

    Once tumours metastasize to bone, they are usually incurable and responsible for several devastating consequences: severe pain, pathologic fractures, life-threatening hypercalcemia, spinal cord compression and other nerve-compression syndromes. Understanding of physiopathological mechanisms responsible for these symptoms is critical for therapeutic approach, especially pain treatments. Three types of pain occur in tumour bone involvement: tonic or background pain, which are deep non-specific ache rising in intensity as the disease progresses; incident pain on movement (allodynia); and spontaneous pain which can be severe. Bone metastases could be osteolytic or osteoblastic. However, this classification actually represents two extremes of a continuum characterized by dys-regulation of the normal bone remodeling process. Biochemical mediators production is crucial as a part of this process. The bone microenvironment plays a critical role in the formation of osteoclasts through the production of macrophage colony-stimulating factor, receptor activator of nuclear factor kB ligand (RANKL)... Many of these mediators of osteolysis also have been shown to activate nociceptors: prostaglandins A and E, IL-1, IL-6, TNF. Thus there is a link between osteolytic destruction, inflammation and pain. It explains that severe pain could occur independently from fractures and in absence of any bone structure alteration and nervous compression. Also, pain is often disproportionate to tumour size or degree of bone involvement. Inflammatory and osteolytic processes depend on number, localization and organization of tumour cells inside bone and bone marrow tissues. All these parameters are crucial to take into account for a good understanding of treatments mechanisms of action, especially anti-inflammatory drugs (corticosteroid and others), bi-phosphonates, internal radiotherapy (strontium 89 or radiolabelled bi-phosphonates), external radiotherapy and chemotherapy or hormonotherapy

  13. An assessment of interfractional uterine and cervical motion: Implications for radiotherapy target volume definition in gynaecological cancer

    International Nuclear Information System (INIS)

    Taylor, Alexandra; Powell, Melanie E.B.

    2008-01-01

    Purpose: To assess interfractional movement of the uterus and cervix in patients with gynaecological cancer to aid selection of the internal margin for radiotherapy target volumes. Methods and materials: Thirty-three patients with gynaecological cancer had an MRI scan performed on two consecutive days. The two sets of T2-weighted axial images were co-registered, and the uterus and cervix outlined on each scan. Points were identified on the anterior uterine body (Point U), posterior cervix (Point C) and upper vagina (Point V). The displacement of each point in the antero-posterior (AP), supero-inferior (SI) and lateral directions between the two scans was measured. The changes in point position and uterine body angle were correlated with bladder volume and rectal diameter. Results: The mean difference (±1SD) in Point U position was 7 mm (±9.0) in the AP direction, 7.1 mm (±6.8) SI and 0.8 mm (±1.3) laterally. Mean Point C displacement was 4.1 mm (±4.4) SI, 2.7 mm (±2.8) AP, 0.3 (±0.8) laterally, and Point V was 2.6 mm (±3.0) AP and 0.3 mm (±1.0) laterally. There was correlation for uterine SI movement in relation to bladder filling, and for cervical and vaginal AP movement in relation to rectal filling. Conclusion: Large movements of the uterus can occur, particularly in the superior-inferior and anterior-posterior directions, but cervical displacement is less marked. Rectal filling may affect cervical position, while bladder filling has more impact on uterine body position, highlighting the need for specific instructions on bladder and rectal filling for treatment. We propose an asymmetrical margin with CTV-PTV expansion of the uterus, cervix and upper vagina of 15 mm AP, 15 mm SI and 7 mm laterally and expansion of the nodal regions and parametria by 7 mm in all directions

  14. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    Science.gov (United States)

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p3D-CRT plans. The doses to the liver and bowel reduced significantly (p3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  15. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  16. Evaluation of the role of 18FDG-PET/CT in radiotherapy target definition in patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, Katie L; Partridge, Mike; Cook, Gary; Sharma, Bhupinder; Rhys-Evans, Peter; Harrington, Kevin J; Nutting, Christopher M [The Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom)

    2008-08-15

    Background and purpose. As techniques for radiotherapy delivery have developed, increasingly accurate localisation of disease is demanded. Functional imaging, particularly PET and its fusion with anatomical modalities, such as PET/CT, promises to improve detection and characterisation of disease. This study evaluated the impact of 18FDG-PET/CT on radiotherapy target volume definition in head and neck cancer (HNC). Materials and methods. The PET/CT scans of patients with HNC were used in a radiotherapy planning (RTP) study. The gross tumour volume (GTV), clinical target volume (CTV) and planning target volume (PTV) were defined conventionally and compared to those defined using the PET/CT. Data were reported as the median value with 95% confidence intervals. Results. Eighteen patients were consented, 9 had known primary tumour site, 9 presented as unknown primary. In nine cases where the primary site was known, the combined primary and nodal GTV (GTVp+n) increased by a median of 6.1cm3 (2.6, 12.2) or 78% (18, 313), p=0.008 with CTV increasing by a median of 10.1cm3 (1.3, 30.6) or 4% (0, 13) p=0.012. In 9 cases of unknown primary the GTVp+n increased by a median 6.3cm3 (0.2, 15.7) or 61% (4, 210), p=0.012, with CTV increasing by a median 155.4cm3 (2.7, 281.7) or 95% (1, 137), p=0.008. Conclusion. 18FDG-PET revealed disease lying outside the conventional target volume, either extending a known area or highlighting a previously unknown area of disease, including the primary tumour in 5 cases. We recommend PET/CT in the RTP of all cases of unknown primary. In patients with a known primary, although the change in volume was statistically significant the clinical impact is less clear. 18FDG-PET can also show areas within the conventional target volume that are hypermetabolic which may be possible biological target volumes for dose escalation studies in the future

  17. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  18. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Rie; Ichikawa, Katsuhiro; Sanada, Sigeru; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Minohara, Shinichi; Kawashima, Hiroki

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ±5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. (author)

  19. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): an international, prospective, randomised, non-inferiority phase 3 trial

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Joseph, David J; Tobias, Jeffrey S

    2010-01-01

    After breast-conserving surgery, 90% of local recurrences occur within the index quadrant despite the presence of multicentric cancers elsewhere in the breast. Thus, restriction of radiation therapy to the tumour bed during surgery might be adequate for selected patients. We compared targeted int...

  20. Development of a personalized dosimetric tool for radiation protection in case of internal contamination and targeted radiotherapy in nuclear medicine; Developpement d'un outil dosimetrique personnalise pour la radioprotection en contamination interne et la radiotherapie vectorisee en medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S

    2005-12-15

    Current internal dosimetric estimations are based on the M.I.R.D. formalism and used standard mathematical models. These standard models are often far from a given patient morphology and do not allow to perform patient-specific dosimetry. The aim of this study was to develop a personalized dosimetric tool, which takes into account real patient morphology, composition and densities. This tool, called O.E.D.I.P.E., a French acronym of Tool for the Evaluation of Personalized Internal Dose, is a user-friendly graphical interface. O.E.D.I.P.E. allows to create voxel-based patient-specific geometries and associates them with the M.C.N.P.X. Monte Carlo code. Radionuclide distribution and absorbed dose calculation can be performed at the organ and voxel scale. O.E.D.I.P.E. can be used in nuclear medicine for targeted radiotherapy and in radiation protection in case of internal contamination. (author)

  1. Pattern of relapse in surgical treated patients with thoracic esophageal squamous cell carcinoma and its possible impact on target delineation for postoperative radiotherapy

    International Nuclear Information System (INIS)

    Cai Wenjie; Xin Peiling

    2010-01-01

    Objective: To provide a reference for determination of the postoperative radiotherapy target volume for thoracic esophageal squamous cell carcinoma. Background data: The irradiation target volume is important for effective postoperative treatment of thoracic esophageal squamous cell carcinoma. Methods: One hundred forty patients with recurrent or metastatic thoracic esophageal squamous cell carcinoma who had been treated with radical surgery but not with postoperative radiotherapy were enrolled in this study. The information of locoregional recurrence and distant metastasis for these patients was analyzed. Results: The median time to progression in the 140 patients with recurrence or metastasis was 18.3 months (range 15.4-21.1 months). Anastomotic recurrence accounted for 13.6% of treatment failures. The supraclavicular and station 1-5 and 7 lymph nodes had high metastasis rates for esophageal squamous cell carcinomas in all locations. The order from highest to lowest metastasis rate for the station 3 and 4 lymph nodes was middle, upper and lower thoracic esophageal regions and the order for upper abdominal lymph nodes was lower, middle, and upper thoracic esophageal regions. Locoregional recurrence was the most common type of recurrence. Conclusions: For upper and middle thoracic esophageal squamous cell carcinomas, the anastomosis, supraclavicular, and station 1-5 and 7 lymph nodes should be delineated as the postoperative prophylactic irradiation target volume with upper abdominal lymph nodes excluded; for lower thoracic esophageal squamous cell carcinomas, anastomosis, supraclavicular, station 1-5 and 7 lymph nodes and upper abdominal lymph nodes should be delineated as the postoperative prophylactic irradiation target volume.

  2. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  3. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  4. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    Energy Technology Data Exchange (ETDEWEB)

    Gwynne, Sarah, E-mail: Sarah.Gwynne2@wales.nhs.uk [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Spezi, Emiliano; Wills, Lucy [Department of Medical Physics, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Nixon, Lisette; Hurt, Chris [Wales Cancer Trials Unit, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom); Joseph, George [Department of Diagnostic Radiology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Evans, Mererid [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Griffiths, Gareth [Wales Cancer Trials Unit, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom); Crosby, Tom [Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, Wales (United Kingdom); Staffurth, John [Division of Cancer, School of Medicine, Cardiff University, Cardiff, Wales (United Kingdom)

    2012-11-15

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard-observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.

  5. Toward Semi-automated Assessment of Target Volume Delineation in Radiotherapy Trials: The SCOPE 1 Pretrial Test Case

    International Nuclear Information System (INIS)

    Gwynne, Sarah; Spezi, Emiliano; Wills, Lucy; Nixon, Lisette; Hurt, Chris; Joseph, George; Evans, Mererid; Griffiths, Gareth; Crosby, Tom; Staffurth, John

    2012-01-01

    Purpose: To evaluate different conformity indices (CIs) for use in the analysis of outlining consistency within the pretrial quality assurance (Radiotherapy Trials Quality Assurance [RTTQA]) program of a multicenter chemoradiation trial of esophageal cancer and to make recommendations for their use in future trials. Methods and Materials: The National Cancer Research Institute SCOPE 1 trial is an ongoing Cancer Research UK-funded phase II/III randomized controlled trial of chemoradiation with capecitabine and cisplatin with or without cetuximab for esophageal cancer. The pretrial RTTQA program included a detailed radiotherapy protocol, an educational package, and a single mid-esophageal tumor test case that were sent to each investigator to outline. Investigator gross tumor volumes (GTVs) were received from 50 investigators in 34 UK centers, and CERR (Computational Environment for Radiotherapy Research) was used to perform an assessment of each investigator GTV against a predefined gold-standard GTV using different CIs. A new metric, the local conformity index (l-CI), that can localize areas of maximal discordance was developed. Results: The median Jaccard conformity index (JCI) was 0.69 (interquartile range, 0.62-0.70), with 14 of 50 investigators (28%) achieving a JCI of 0.7 or greater. The median geographical miss index was 0.09 (interquartile range, 0.06-0.16), and the mean discordance index was 0.27 (95% confidence interval, 0.25-0.30). The l-CI was highest in the middle section of the volume, where the tumor was bulky and more easily definable, and identified 4 slices where fewer than 20% of investigators achieved an l-CI of 0.7 or greater. Conclusions: The available CIs analyze different aspects of a gold standard–observer variation, with JCI being the most useful as a single metric. Additional information is provided by the l-CI and can focus the efforts of the RTTQA team in these areas, possibly leading to semi-automated outlining assessment.

  6. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-01-01

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V 20 values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  7. Experiment study with baculovirus-mediated transfer of the thyroid sodium/iodide symporter gene into thyroid cancer for a targeted radiotherapy

    International Nuclear Information System (INIS)

    Zhang Yifan; Li Biao; Zhao Long; You Bei; Yin Guizhi; Zhu Chengmo

    2004-01-01

    Objective: To explore the feasibility of thyroid cancers for radiotherapy by using baculoviral vector to deliver the NIS gene into the tumor cells. Method: Constructed a recombinant baculovirus encoding the human NIS gene under the control of the cytomegalovirus promoter. Using a mouse monoclonal antibody and a FITC-labeled antimouse antibody to confirm expression of the NIS protein of infected tumor cells by immunofluorescence. In vitro iodide uptake experiments were carded out on BacNIS-infected tumor cells to further characterize the BacNIS virus, and cell killing with 131I and clonogenic assay were performed on BacNIS-infected cell to observe the selective killing effect of 1311 on NIS-expressing cells. Results: Infection of thyroidcancer cells (FTC-133, W3) with BacNIS resulted in perchlorate-sensitive 125I uptake by these cells to a higher level than that in noninfected cells. But 1251 uptake of 8505C is very low. Demonstrating that the BacNIS vector can function in tumor cells. In addition, AdNIS-infected tumor cells were selectively killed by exposure to 1311, as revealed by clonogenicassays, higher than that in nontreated tumors. Conclusions: AdNIS is very efficient in triggering iodide uptake by infected tumor cell, outlining the potential of this novel cancer gene therapy approach for a targeted radiotherapy. (authors)

  8. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target.

    Science.gov (United States)

    Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M

    2014-01-20

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.

  9. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target

    International Nuclear Information System (INIS)

    Budiarto, E; Keijzer, M; Heemink, A W; Storchi, P R M; Breedveld, S; Heijmen, B J M

    2014-01-01

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements. (paper)

  10. Stereotactic Radiotherapy of Primary Lung Cancer and Other Targets: Results of Consultant Meeting of the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    Nagata, Yasushi; Wulf, Joern; Lax, Ingmar; Timmerman, Robert; Zimmermann, Frank; Stojkovski, Igor; Jeremic, Branislav

    2011-01-01

    To evaluate the current status of stereotactic body radiotherapy (SBRT) and identify both advantages and disadvantages of its use in developing countries, a meeting composed of consultants of the International Atomic Energy Agency was held in Vienna in November 2006. Owing to continuous developments in the field, the meeting was extended by subsequent discussions and correspondence (2007-2010), which led to the summary presented here. The advantages and disadvantages of SBRT expected to be encountered in developing countries were identified. The definitions, typical treatment courses, and clinical results were presented. Thereafter, minimal methodology/technology requirements for SBRT were evaluated. Finally, characteristics of SBRT for developing countries were recommended. Patients for SBRT should be carefully selected, because single high-dose radiotherapy may cause serious complications in some serial organs at risk. Clinical experiences have been reported in some populations of lung cancer, lung oligometastases, liver cancer, pancreas cancer, and kidney cancer. Despite the disadvantages expected to be experienced in developing countries, SBRT using fewer fractions may be useful in selected patients with various extracranial cancers with favorable outcome and low toxicity.

  11. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    International Nuclear Information System (INIS)

    Lim, Karen; Small, William; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-01-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  12. Nanoparticle-guided radiotherapy

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method and nano-sized particles for image guided radiotherapy (IGRT) of a target tissue. More specifically, the invention relates to nano-sized particles comprising X-ray-imaging contrast agents in solid form with the ability to block x-rays, allowing for simult...... for simultaneous or integrated external beam radiotherapy and imaging, e.g., using computed tomography (CT)....

  13. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de; Villeirs, G.M.; Delrue, L.J.

    2004-01-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  14. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de [Dept. of Radiation Oncology, Gent Univ. Hospital, Gent (Belgium); Villeirs, G.M.; Delrue, L.J. [Dept. of Radiology, Gent Univ. Hospital, Gent (Belgium)

    2004-09-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  15. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    Science.gov (United States)

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Health economics of targeted intraoperative radiotherapy (TARGIT-IORT) for early breast cancer: a cost-effectiveness analysis in the United Kingdom.

    Science.gov (United States)

    Vaidya, Anil; Vaidya, Param; Both, Brigitte; Brew-Graves, Chris; Bulsara, Max; Vaidya, Jayant S

    2017-08-17

    The clinical effectiveness of targeted intraoperative radiotherapy (TARGIT-IORT) has been confirmed in the randomised TARGIT-A (targeted intraoperative radiotherapy-alone) trial to be similar to a several weeks' course of whole-breast external-beam radiation therapy (EBRT) in patients with early breast cancer. This study aims to determine the cost-effectiveness of TARGIT-IORT to inform policy decisions about its wider implementation. TARGIT-A randomised clinical trial (ISRCTN34086741) which compared TARGIT with traditional EBRT and found similar breast cancer control, particularly when TARGIT was given simultaneously with lumpectomy. Cost-utility analysis using decision analytic modelling by a Markov model. A cost-effectiveness Markov model was developed using TreeAge Pro V.2015. The decision analytic model compared two strategies of radiotherapy for breast cancer in a hypothetical cohort of patients with early breast cancer based on the published health state transition probability data from the TARGIT-A trial. Analysis was performed for UK setting and National Health Service (NHS) healthcare payer's perspective using NHS cost data and treatment outcomes were simulated for both strategies for a time horizon of 10 years. Model health state utilities were drawn from the published literature. Future costs and effects were discounted at the rate of 3.5%. To address uncertainty, one-way and probabilistic sensitivity analyses were performed. Quality-adjusted life-years (QALYs). In the base case analysis, TARGIT-IORT was a highly cost-effective strategy yielding health gain at a lower cost than its comparator EBRT. Discounted TARGIT-IORT and EBRT costs for the time horizon of 10 years were £12 455 and £13 280, respectively. TARGIT-IORT gained 0.18 incremental QALY as the discounted QALYs gained by TARGIT-IORT were 8.15 and by EBRT were 7.97 showing TARGIT-IORT as a dominant strategy over EBRT. Model outputs were robust to one-way and probabilistic sensitivity analyses

  17. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: Multi-observer and image multi-modality study

    International Nuclear Information System (INIS)

    Luetgendorf-Caucig, Carola; Fotina, Irina; Stock, Markus; Poetter, Richard; Goldner, Gregor; Georg, Dietmar

    2011-01-01

    Background and purpose: In-room cone-beam CT (CBCT) imaging and adaptive treatment strategies are promising methods to decrease target volumes and to spare organs at risk. The aim of this work was to analyze the inter-observer contouring uncertainties of target volumes and organs at risks (oars) in localized prostate cancer radiotherapy using CBCT images. Furthermore, CBCT contouring was benchmarked against other image modalities (CT, MR) and the influence of subjective image quality perception on inter-observer variability was assessed. Methods and materials: Eight prostate cancer patients were selected. Seven radiation oncologists contoured target volumes and oars on CT, MRI and CBCT. Volumes, coefficient of variation (COV), conformity index (cigen), and coordinates of center-of-mass (COM) were calculated for each patient and image modality. Reliability analysis was performed for the support of the reported findings. Subjective perception of image quality was assessed via a ten-scored visual analog scale (VAS). Results: The median volume for prostate was larger on CT compared to MRI and CBCT images. The inter-observer variation for prostate was larger on CBCT (CIgen = 0.57 ± 0.09, 0.61 reliability) compared to CT (CIgen = 0.72 ± 0.07, 0.83 reliability) and MRI (CIgen = 0.66 ± 0.12, 0.87 reliability). On all image modalities values of the intra-observer reliability coefficient (0.97 for CT, 0.99 for MR and 0.94 for CBCT) indicated high reproducibility of results. For all patients the root mean square (RMS) of the inter-observer standard deviation (σ) of the COM was largest on CBCT with σ(x) = 0.4 mm, σ(y) = 1.1 mm, and σ(z) = 1.7 mm. The concordance in delineating OARs was much stronger than for target volumes, with average CIgen > 0.70 for rectum and CIgen > 0.80 for bladder. Positive correlations between CIgen and VAS score of the image quality were observed for the prostate, seminal vesicles and rectum. Conclusions: Inter-observer variability for target

  18. The need for rotational margins in intensity-modulated radiotherapy and a new method for planning target volume design

    International Nuclear Information System (INIS)

    Langer, Mark Peter; Papiez, Lech; Spirydovich, Siarhei; Thai, Van

    2005-01-01

    Purpose: The effect of rotational errors on the coverage of clinical target volumes (CTVs) is examined. A new planning target volume (PTV) construction that considers the individual paths traced by movements of the target boundary points is developed. Methods and Materials: A standard uniform margin expansion was compared with a PTV constructed from the space swept out by a concave moving target. A new method formed the PTV by aggregating the separate convex hulls taken of the positions of the individual target boundary points in a sampling of CTV displacements. Results: A 0.5-cm uniform margin adequate for translations was inadequate given CTV rotation about a fixed off-center axis. A PTV formed of the target's swept-out area was 22% smaller than needed for coverage by a uniform margin, but computationally is not readily extended to translations combined with rotations about a shifting axis. Forming instead the union of convex hulls of the boundary points in a sampling of CTV displacements represented these movements in the PTV design and retained the target's concave shape. Conclusions: Planning target volumes should accommodate target rotation. The union of convex hulls of the boundary point positions in a sampling of displacements can effectively represent multiple sources of deviations while preserving target concavities

  19. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  20. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins

    International Nuclear Information System (INIS)

    Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus

    2009-01-01

    Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.

  1. Radiotherapy of benign diseases

    International Nuclear Information System (INIS)

    Haase, W.

    1982-01-01

    Still today radiotherapy is of decisive relevance for several benign diseases. The following ones are briefly described in this introductory article: 1. Certain inflammatory and degenerative diseases as furuncles in the face, acute thrombophlebitis, recurrent sudoriparous abscesses, degenerative skeletal diseases, cervical syndrome and others; 2. rheumatic joint diseases; 3. Bechterew's disease; 4. primary presenile osteoporosis; 5. synringomyelia; 6. endocrine ophthalmopathy; 7. hypertrophic processes of the connective tissue; 8. hemangiomas. A detailed discussion and a profit-risk analysis is provided in the individual chapters of the magazine. (MG) [de

  2. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  3. Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Thörnqvist, Sara; Hysing, Liv B.; Zolnay, Andras G.; Söhn, Matthias; Hoogeman, Mischa S.; Muren, Ludvig P.; Bentzen, Lise; Heijmen, Ben J.M.

    2013-01-01

    Background and purpose: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). Material and methods: The 19 patients included in this study, all had 7–10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D 99 ) for various CTV–PTV expansions in the planning-CTs. Results: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D 99 >95% of the prescribed dose for CTV-p expansions of 3 mm, 4 mm and 5 mm, respectively. For CTV-sv and CTV-ln, expansions of 3 mm, 5 mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D 99 >95% of the prescription. Conclusions: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable

  4. A consensus-based guideline defining the clinical target volume for pelvic lymph nodes in external beam radiotherapy for uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2010-01-01

    The objective of this study was to develop a consensus-based guideline as well as an atlas defining pelvic nodal clinical target volumes in external beam radiotherapy for uterine cervical cancer. A working subgroup to establish the consensus-based guideline on clinical target volumes for uterine cervical cancer was formulated by the Radiation Therapy Study Group of the Japan Clinical Oncology Group in July 2008. The working subgroup consisted of seven radiation oncologists. The process resulting in the consensus included a comparison of contouring on CT images among the members, reviewing of published textbooks and the relevant literature and a distribution analysis of metastatic nodes on computed tomography/magnetic resonance imaging of actual patients. The working subgroup defined the pelvic nodal clinical target volumes for cervical cancer and developed an associated atlas. As a basic criterion, the lymph node clinical target volume was defined as the area encompassed by a 7 mm margin around the applicable pelvic vessels. Modifications were made in each nodal area to cover adjacent adipose tissues at risk of microscopic nodal metastases. Although the bones and muscles were excluded, the bowel was not routinely excluded in the definition. Each of the following pelvic node regions was defined: common iliac, external iliac, internal iliac, obturator and presacral. Anatomical structures bordering each lymph node region were defined for six directions; anterior, posterior, lateral, medial, cranial and caudal. Drafts of the definition and the atlas were reviewed by members of the JCOG Gynecologic Cancer Study Group (GCSG). We developed a consensus-based guideline defining the pelvic node clinical target volumes that included an atlas. The guideline will be continuously updated to reflect the ongoing changes in the field. (author)

  5. Engineering brown fat into skeletal muscle using ultrasound-targeted microbubble destruction gene delivery in obese Zucker rats: Proof of concept design.

    Science.gov (United States)

    Bastarrachea, Raul A; Chen, Jiaxi; Kent, Jack W; Nava-Gonzalez, Edna J; Rodriguez-Ayala, Ernesto; Daadi, Marcel M; Jorge, Barbara; Laviada-Molina, Hugo; Comuzzie, Anthony G; Chen, Shuyuan; Grayburn, Paul A

    2017-09-01

    Ultrasound-targeted microbubble destruction (UTMD) is a novel means of tissue-specific gene delivery. This approach systemically infuses transgenes precoupled to gas-filled lipid microbubbles that are burst within the microvasculature of target tissues via an ultrasound signal resulting in release of DNA and transfection of neighboring cells within the tissue. Previous work has shown that adenovirus containing cDNA of UCP-1, injected into the epididymal fat pads in mice, induced localized fat depletion, improving glucose tolerance, and decreasing food intake in obese diabetic mice. Our group recently demonstrated that gene therapy by UTMD achieved beta cell regeneration in streptozotocin (STZ)-treated mice and baboons. We hypothesized that gene therapy with BMP7/PRDM16/PPARGC1A in skeletal muscle (SKM) of obese Zucker diabetic fatty (fa/fa) rats using UTMD technology would produce a brown adipose tissue (BAT) phenotype with UCP-1 overexpression. This study was designed as a proof of concept (POC) project. Obese Zucker rats were administered plasmid cDNA contructs encoding a gene cocktail with BMP7/PRDM16/PPARGC1A incorporated within microbubbles and intravenously delivered into their left thigh. Controls received UTMD with plasmids driving a DsRed reporter gene. An ultrasound transducer was directed to the thigh to disrupt the microbubbles within the microcirculation. Blood samples were drawn at baseline, and after treatment to measure glucose, insulin, and free fatty acids levels. SKM was harvested for immunohistochemistry (IHC). Our IHC results showed a reliable pattern of effective UTMD-based gene delivery in enhancing SKM overexpression of the UCP-1 gene. This clearly indicates that our plasmid DNA construct encoding the gene combination of PRDM16, PPARGC1A, and BMP7 reprogrammed adult SKM tissue into brown adipose cells in vivo. Our pilot established POC showing that the administration of the gene cocktail to SKM in this rat model of genetic obesity using UTMD

  6. Reducing dose to the lungs through loosing target dose homogeneity requirement for radiotherapy of non small cell lung cancer.

    Science.gov (United States)

    Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong

    2017-11-01

    It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  7. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E; Bamber, J [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  8. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    International Nuclear Information System (INIS)

    Juneja, P; Harris, E; Bamber, J

    2014-01-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  9. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning.

    Science.gov (United States)

    Hanna, G G; Van Sörnsen De Koste, J R; Carson, K J; O'Sullivan, J M; Hounsell, A R; Senan, S

    2011-10-01

    Positron emission tomography (PET)/CT scans can improve target definition in radiotherapy for non-small cell lung cancer (NSCLC). As staging PET/CT scans are increasingly available, we evaluated different methods for co-registration of staging PET/CT data to radiotherapy simulation (RTP) scans. 10 patients underwent staging PET/CT followed by RTP PET/CT. On both scans, gross tumour volumes (GTVs) were delineated using CT (GTV(CT)) and PET display settings. Four PET-based contours (manual delineation, two threshold methods and a source-to-background ratio method) were delineated. The CT component of the staging scan was co-registered using both rigid and deformable techniques to the CT component of RTP PET/CT. Subsequently rigid registration and deformation warps were used to transfer PET and CT contours from the staging scan to the RTP scan. Dice's similarity coefficient (DSC) was used to assess the registration accuracy of staging-based GTVs following both registration methods with the GTVs delineated on the RTP PET/CT scan. When the GTV(CT) delineated on the staging scan after both rigid registration and deformation was compared with the GTV(CT)on the RTP scan, a significant improvement in overlap (registration) using deformation was observed (mean DSC 0.66 for rigid registration and 0.82 for deformable registration, p = 0.008). A similar comparison for PET contours revealed no significant improvement in overlap with the use of deformable registration. No consistent improvements in similarity measures were observed when deformable registration was used for transferring PET-based contours from a staging PET/CT. This suggests that currently the use of rigid registration remains the most appropriate method for RTP in NSCLC.

  10. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Watt, Sandie Carolyn, E-mail: sandie.watt@sswahs.gov.au [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); Vinod, Shalini K. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Dimigen, Marion [Department of Radiology, Liverpool Hospital, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Descallar, Joseph [Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia); South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW (Australia); Zogovic, Branimere [Department of Radiation Oncology, Prince of Wales Hospital, NSW (Australia); Atyeo, John [University of Sydney, Sydney, NSW (Australia); Wallis, Sian [University of Western Sydney, NSW (Australia); Holloway, Lois C. [Liverpool and Macarthur Cancer Therapy Centres, NSW (Australia); University of Sydney, Sydney, NSW (Australia); Institute of Medical Physics, University of Sydney, Sydney, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia. (Australia); Ingham Institute for Applied Medical Research, Liverpool, NSW (Australia)

    2016-04-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  11. A comparison between radiation therapists and medical specialists in the use of kilovoltage cone-beam computed tomography scans for potential lung cancer radiotherapy target verification and adaptation

    International Nuclear Information System (INIS)

    Watt, Sandie Carolyn; Vinod, Shalini K.; Dimigen, Marion; Descallar, Joseph; Zogovic, Branimere; Atyeo, John; Wallis, Sian; Holloway, Lois C.

    2016-01-01

    Target volume matching using cone-beam computed tomography (CBCT) is the preferred treatment verification method for lung cancer in many centers. However, radiation therapists (RTs) are trained in bony matching and not soft tissue matching. The purpose of this study was to determine whether RTs were equivalent to radiation oncologists (ROs) and radiologists (RDs) in alignment of the treatment CBCT with the gross tumor volume (GTV) defined at planning and in delineating the GTV on the treatment CBCT, as may be necessary for adaptive radiotherapy. In this study, 10 RTs, 1 RO, and 1 RD performed a manual tumor alignment and correction of the planning GTV to a treatment CBCT to generate an isocenter correction distance for 15 patient data sets. Participants also contoured the GTV on the same data sets. The isocenter correction distance and the contoured GTVs from the RTs were compared with the RD and RO. The mean difference in isocenter correction distances was 0.40 cm between the RO and RD, 0.51 cm between the RTs, and RO and 0.42 cm between the RTs and RD. The 95% CIs were smaller than the equivalence limit of 0.5 cm, indicating that the RTs were equivalent to the RO and RD. For GTV delineation comparisons, the RTs were not found to be equivalent to the RD or RO. The alignment of the planning defined GTV and treatment CBCT using soft tissue matching by the RTs has been shown to be equivalent to those by the RO and RD. However, tumor delineation by the RTs on the treatment CBCT was not equivalent to that of the RO and RD. Thus, it may be appropriate for RTs to undertake soft tissue alignment based on CBCT; however, further investigation may be necessary before RTs undertake delineation for adaptive radiotherapy purposes.

  12. On-line image guidance for frameless stereotactic radiotherapy of lung malignancies by cone beam CT: Comparison between target localization and alignment on bony anatomy

    International Nuclear Information System (INIS)

    Masi, Laura; Casamassima, Franco; Menichelli, Claudia; Pasciuti, Katia; Doro, Raffaela; Polli, Caterina; D'imporzano, Elena; Bonucci, Ivano

    2008-01-01

    Introduction. Free-breathing stereotactic radiotherapy for lung malignancies requires reliable prediction of respiratory motion and accurate target localization. A protocol was adopted for reproducibility and reduction of respiratory motion and for target localization by CBCT image guidance. Tumor respiratory displacements and tumor positioning errors relative to bony anatomy alignment are analyzed. Materials and method. Image guided SRT was performed for 99 lung malignancies. Two groups of patients were considered: group A did not perform any breathing control; group B controlled visually their respiratory cycle and volumes on an Active Breathing Coordinator (ABC) monitor during the acquisition of simulation CT and CBCT, and treatment delivery. GTV on end inhale and exhale CT data sets were fused in an ITV and the extent of tumor motion evaluated between these 2 phases. A pre-treatment CBCT was acquired and aligned to the reference CT using bony anatomy; for tumor positioning the ITV contour on the reference CT was matched to the visible tumor on CBCT. Interobserver variability of tumor positioning was evaluated. ITV and CBCT tumor dimensions were compared. Results. 3D tumor breathing displacement (mean±SD) was significantly higher for group A (14.7±9.9 mm) than for group B (4.7±3.1 mm). The detected differences between tumor and bony structure alignment below 3 mm were 68% for group B and 45% for group A, reaching statistical significance. Interobserver variability was 1.7±1.1 mm (mean±SD). Dimensions of tumor image on CBCT were consistent with ITV dimensions for group B (max difference 14%). Conclusions. The adopted protocol seems effective in reducing respiratory internal movements and margin. Tumor positioning errors relative to bony anatomy are also reduced. However bony anatomy as a surrogate of the target may still lead to some relevant positioning errors. Target visualization on CBCT is essential for an accurate localization in lung SRT

  13. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment.

    Science.gov (United States)

    Paluska, Petr; Hanus, Josef; Sefrova, Jana; Rouskova, Lucie; Grepl, Jakub; Jansa, Jan; Kasaova, Linda; Hodek, Miroslav; Zouhar, Milan; Vosmik, Milan; Petera, Jiri

    2012-01-01

    To assess target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment and to assess possibility of safety margin reduction. Implementation of IGRT should influence safety margins. Utilization of cone-beam CT provides current 3D anatomic information directly in irradiation position. Such information enables reconstruction of the actual dose distribution. Seventeen prostate patients were treated with daily bony anatomy image-guidance. Cone-beam CT (CBCT) scans were acquired once a week immediately after bony anatomy alignment. After the prostate, seminal vesicles, rectum and bladder were contoured, the delivered dose distribution was reconstructed. Target dose coverage was evaluated by the proportion of the CTV encompassed by the 95% isodose. Original plans employed a 1 cm safety margin. Alternative plans assuming a smaller 7 mm margin between CTV and PTV were evaluated in the same way. Rectal and bladder volumes were compared with the initial ones. Rectal and bladder volumes irradiated with doses higher than 75 Gy, 70 Gy, 60 Gy, 50 Gy and 40 Gy were analyzed. In 12% of reconstructed plans the prostate coverage was not sufficient. The prostate underdosage was observed in 5 patients. Coverage of seminal vesicles was not satisfactory in 3% of plans. Most of the target underdosage corresponded to excessive rectal or bladder filling. Evaluation of alternative plans assuming a smaller 7 mm margin revealed 22% and 11% of plans where prostate and seminal vesicles coverage, respectively, was compromised. These were distributed over 8 and 7 patients, respectively. Sufficient dose coverage of target volumes was not achieved for all patients. Reducing of safety margin is not acceptable. Initial rectal and bladder volumes cannot be considered representative for subsequent treatment.

  14. Target volume geometric change and/or deviation from the cranium during fractionated stereotactic radiotherapy for brain metastases: potential pitfalls in image guidance based on bony anatomy alignment.

    Science.gov (United States)

    Ohtakara, Kazuhiro; Hoshi, Hiroaki

    2014-12-01

    This study sought to evaluate the potential geometrical change and/or displacement of the target relative to the cranium during fractionated stereotactic radiotherapy (FSRT) for treating newly developed brain metastases. For 16 patients with 21 lesions treated with image-guided frameless FSRT in 5 or 10 fractions using a 6-degree-of-freedom image guidance system-integrated platform, the unenhanced computed tomography or T2-weighted magnetic resonance images acquired until the completion of FSRT were fused to the planning image datasets for comparison. Significant change was defined as ≥3-mm change in the tumour diameter or displacement of the tumour centroid. FSRT was started 1 day after planning image acquisition. Tumour shrinkage, deviation and both were observed in 2, 1 and 1 of the 21 lesions, respectively, over a period of 7-13 days. Tumour shrinkage or deviation resulted in an increase or decrease in the marginal dose to the tumour, respectively, and a substantial increase in the irradiated volume for the surrounding tissue irrespective of the pattern of alteration. No obvious differences in the clinical and treatment characteristics were noted among the populations with or without significant changes in tumour volume or position. Target deformity and/or deviation can unexpectedly occur even during relatively short-course FSRT, inevitably leading to a gradual discrepancy between the planned and actually delivered doses to the tumour and surrounding tissue. To appropriately weigh the treatment outcome against the planned dose distribution, target deformity and/or deviation should also be considered in addition to the immobilisation accuracy, as image guidance with bony anatomy alignment does not necessarily guarantee accurate target localisation until completion of FSRT. © 2014 The Royal Australian and New Zealand College of Radiologists.

  15. Necrosis targeted radiotherapy with iodine-131-labeled hypericin to improve anticancer efficacy of vascular disrupting treatment in rabbit VX2 tumor models.

    Science.gov (United States)

    Shao, Haibo; Zhang, Jian; Sun, Ziping; Chen, Feng; Dai, Xu; Li, Yaming; Ni, Yicheng; Xu, Ke

    2015-06-10

    A viable rim of tumor cells surrounding central necrosis always exists and leads to tumor recurrence after vascular disrupting treatment (VDT). A novel necrosis targeted radiotherapy (NTRT) using iodine-131-labeled hypericin (131I-Hyp) was specifically designed to treat viable tumor rim and improve tumor control after VDT in rabbit models of multifocal VX2 tumors. NTRT was administered 24 hours after VDT. Tumor growth was significantly slowed down by NTRT with a smaller tumor volume and a prolonged tumor doubling time (14.4 vs. 5.7 days), as followed by in vivo magnetic resonance imaging over 12 days. The viable tumor rims were well inhibited in NTRT group compared with single VDT control group, as showed on tumor cross sections at day 12 (1 vs. 3.7 in area). High targetability of 131I-Hyp to tumor necrosis was demonstrated by in vivo SPECT as high uptake in tumor regions lasting over 9 days with 4.26 to 98 times higher radioactivity for necrosis versus the viable tumor and other organs by gamma counting, and with ratios of 7.7-11.7 and 10.5-13.7 for necrosis over peri-tumor tissue by autoradiography and fluorescence microscopy, respectively. In conclusion, NTRT improved the anticancer efficacy of VDT in rabbits with VX2 tumors.

  16. Design, construction and performance evaluation of the target tissue thickness measurement system in intraoperative radiotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Mohammad Reza, E-mail: myazdani@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir [Faculty of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Arabalibeik, Hossein, E-mail: arabalibeik@tums.ac.ir [Research Center for Biomedical Technology and Robotics (RCBTR), Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Akbari, Mohammad Esmaeil [Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2017-05-21

    Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.

  17. Comparison of target volumes in radiotherapy defined on scanner and on PET-T.D.M. with {sup 18}F-F.D.G. in the frame of head and neck cancers; Comparaison des volumes cibles en radiotherapie definis sur scanner et sur TEP-TDM au 18F FDG dans le cadre des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Henriques De Figueiredo, B.; Barret, O.; Allard, M.; Fernandez, P. [Service de medecine nucleaire, CHU de Pellegrin, Bordeaux, (France); Demeaux, H.; Maire, J.P.; Lagarde, P. [service de radiotherapie, hopital Saint-Andre, Bordeaux, (France); Kantor, G.; Richau, P. [departement de radiotherapie, institut Bergonie, Bordeaux, (France); De Mones Del Pujol, E. [service d' ORL, hopital Pellegrin, Bordeaux, (France)

    2009-05-15

    The objective is to study in a prospective way, in the frame of head and neck cancers, the impact of the positron computed tomography with {sup 18}F fluorodeoxyglucose (PET-F.D.G.) on the limitation of target volumes in radiotherapy. In conclusions, the gross tumor volume (G.T.V.) defined on PET is smaller than this one defined on scanner, that could be interesting in radiotherapy, in the perspective of a dose escalation. In addition, areas of discordance exist between the clinical target volumes (C.T.V.70 and C.T.V.50) defined on PET and on scanner. These discordances, synonyms of under or over estimation of target volumes, could have important clinical consequences in term of local control and toxicity. (N.C.)

  18. Multimodality imaging with CT, MR and FDG-PET for radiotherapy target volume delineation in oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Bird, David; Scarsbrook, Andrew F.; Sykes, Jonathan; Ramasamy, Satiavani; Subesinghe, Manil; Carey, Brendan; Wilson, Daniel J.; Roberts, Neil; McDermott, Gary; Karakaya, Ebru; Bayman, Evrim; Sen, Mehmet; Speight, Richard; Prestwich, Robin J.D.

    2015-01-01

    This study aimed to quantify the variation in oropharyngeal squamous cell carcinoma gross tumour volume (GTV) delineation between CT, MR and FDG PET-CT imaging. A prospective, single centre, pilot study was undertaken where 11 patients with locally advanced oropharyngeal cancers (2 tonsil, 9 base of tongue primaries) underwent pre-treatment, contrast enhanced, FDG PET-CT and MR imaging, all performed in a radiotherapy treatment mask. CT, MR and CT-MR GTVs were contoured by 5 clinicians (2 radiologists and 3 radiation oncologists). A semi-automated segmentation algorithm was used to contour PET GTVs. Volume and positional analyses were undertaken, accounting for inter-observer variation, using linear mixed effects models and contour comparison metrics respectively. Significant differences in mean GTV volume were found between CT (11.9 cm 3 ) and CT-MR (14.1 cm 3 ), p < 0.006, CT-MR and PET (9.5 cm 3 ), p < 0.0009, and MR (12.7 cm 3 ) and PET, p < 0.016. Substantial differences in GTV position were found between all modalities with the exception of CT-MR and MR GTVs. A mean of 64 %, 74 % and 77 % of the PET GTVs were included within the CT, MR and CT-MR GTVs respectively. A mean of 57 % of the MR GTVs were included within the CT GTV; conversely a mean of 63 % of the CT GTVs were included within the MR GTV. CT inter-observer variability was found to be significantly higher in terms of position and/or volume than both MR and CT-MR (p < 0.05). Significant differences in GTV volume were found between GTV volumes delineated by radiologists (9.7 cm 3 ) and oncologists (14.6 cm 3 ) for all modalities (p = 0.001). The use of different imaging modalities produced significantly different GTVs, with no single imaging technique encompassing all potential GTV regions. The use of MR reduced inter-observer variability. These data suggest delineation based on multimodality imaging has the potential to improve accuracy of GTV definition. ISRCTN Registry: ISRCTN34165059. Registered 2

  19. Low-dose external beam radiotherapy for greater trochanteric pain syndrome. Target volume definition and treatment outcome

    International Nuclear Information System (INIS)

    Kaltenborn, Alexander; Carl, Ulrich Martin; Hinsche, Tanja; Nitsche, Mirko; Hermann, Robert Michael

    2017-01-01

    Low-dose external beam radiotherapy (ED-EBRT) is frequently used in the therapy of refractory greater trochanteric pain syndrome (GTPS). As studies reporting treatment results are scarce, we retrospectively analyzed our own patient collectives. In all, 60 patients (74 hips) received LD-EBRT (6 x 0.5 Gy in 29 hips, 6 x 1 Gy in 45). The endpoint was the patient's reported subjective response to treatment. The influence of different patient and treatment characteristics on treatment outcome was investigated. At the end of LD-EBRT, 69% reported partial remission, 4% complete remission, no change 28%. A total of 3 months later (n = 52 hips), the results were 37, 33, and 30% and 18 months after LD-EBRT (n = 47) 21, 51, and 28%. In univariate analysis ''inclusion of the total femoral head into the PTV'' and ''night pain before LD-EBRT'' were correlated with symptom remission at the end of LD-EBRT, while ''initial increase in pain during LD-EBRT'' was significantly associated with treatment failure. In multivariable modeling ''initial increase in pain'' was identified as a risk factor for treatment failure (p = 0.007; odds ratio [OR] 0.209; 95% confidence interval [CI] 0.048-0.957), while ''night pain'' was an independent factor for remission (p = 0.038; OR 3.484; 95% CI 1.004-12.6). Three months after LD-EBRT ''night pain'' and ''inclusion of the complete femoral neck circumference into the PTV'' were predictive for remission. LD-EBRT represents a useful treatment option for patients suffering from GTPS. Three months after therapy two-thirds of the patients reported a partial or complete symptom remission. Especially patients who suffered from nocturnal pain seemed to benefit. Treatment appeared to be more effective when the entire circumference of the femoral neck was encompassed. (orig.) [de

  20. The impact of rectal and bladder variability on target coverage during post-prostatectomy intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Bell, Linda J.; Cox, Jennifer; Eade, Thomas; Rinks, Marianne; Kneebone, Andrew

    2014-01-01

    Background and purpose: Accuracy when delivering post-prostatectomy intensity modulated radiotherapy (IMRT) is crucial. The aims of this study were to quantify prostate bed movement and determine what amount of bladder or rectum size variation creates the potential for geographic miss. Methods and materials: The Cone Beam CT (CBCT) images (n = 377) of forty patients who received post-prostatectomy IMRT with daily on-line alignment to bony anatomy were reviewed. Prostate bed movement was estimated using the location of surgical clips in the upper and lower sections of the PTV and correlated with rectal and bladder filling (defined as changes in the cross sectional diameter at defined levels). The number of potential geographic misses caused by bladder and rectum variation was calculated assuming a uniform CTV to PTV expansion of 1 cm except 0.5 cm posteriorly. Results: Variations in bladder filling of >2 cm larger, ±1 cm, or >2 cm smaller occurred in 3.4%, 56.2%, and 15.1% of images respectively with potential geographic misses in the upper prostate bed of 61.5%, 9.9% and 26.3% respectively. Variations in rectal filling in the upper prostate bed of >1.5 cm larger, 1.5 cm larger to 1 cm smaller, and >1 cm smaller occurred in 17.2%, 75.6%, and 7.2% of images respectively. These variations resulted in geographic misses in the upper prostate bed in 29.2%, 12.3%, and 63.0% of images respectively. Variations in bladder and rectal filling in the lower prostate bed region had minimal impact on geographic misses. Conclusions: Bladder and rectal size changes at treatment affect prostate bed coverage, especially in the upper aspect of the prostate bed. The greatest potential for geographic miss occurred when either the bladder increased in size or when the rectum became smaller. Ensuring a full bladder and empty rectum at simulation will minimise this risk. Our data also support anisotropic PTV margins with larger margins superiorly than inferiorly

  1. The planning target volume margins detected by cone-beam CT in head and neck cancer patients treated by image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li

    2011-01-01

    Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)

  2. Targeting the AKT/GSK3β/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-01-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3β-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3β/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor eradication in

  3. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer: A comparison between two modalities.

    Science.gov (United States)

    Seppälä, Tiina; Visapää, Harri; Collan, Juhani; Kapanen, Mika; Beule, Annette; Kouri, Mauri; Tenhunen, Mikko; Saarilahti, Kauko

    2015-11-01

    To investigate the conversion of prostate cancer radiotherapy (RT) target definition from CT-based planning into an MRI-only-based planning procedure. Using the CT- and MRI-only-based RT planning protocols, 30 prostate cancer patients were imaged in the RT fixation position. Two physicians delineated the prostate in both CT and T2-weighted MRI images. The CT and MRI images were coregistered based on gold seeds and anatomic borders of the prostate. The uncertainty of the coregistration, as well as differences in target volumes and uncertainty of contour delineation were investigated. Conversion of margins and dose constraints from CT- to MRI-only-based treatment planning was assessed. On average, the uncertainty of image coregistration was 0.4 ± 0.5 mm (one standard deviation, SD), 0.9 ± 0.8 mm and 0.9 ± 0.9 mm in the lateral, anterior-posterior and base-apex direction, respectively. The average ratio of the prostate volume between CT and MRI was 1.20 ± 0.15 (one SD). Compared to the CT-based contours, the MRI-based contours were on average 2-7 mm smaller in the apex, 0-1 mm smaller in the rectal direction and 1-4 mm smaller elsewhere. When converting from a CT-based planning procedure to an MRI-based one, the overall planning target volumes (PTV) are prominently reduced only in the apex. The prostate margins and dose constraints can be retained by this conversion.

  4. TU-A-12A-06: Intra-Observer Variability in Delineation of Target Volumes in Breast Radiotherapy and Its Effect On Accuracy of Deformation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, Sutton (United Kingdom); Bonora, M [University of Milan, Milan (Italy); Evans, P [University of Surrey, Guildford (United Kingdom)

    2014-06-15

    Purpose: In breast radiotherapy, the target volume may change during treatment and need adaptation of the treatment plan. This is possible for both tumour bed (TB) and whole breast (WB) target volumes. Delineation of the target (to detect changes) is also subject to uncertainty due to intra- and inter-observer variability. This work measured the uncertainty, due to intraobserver variability, in the quantification of tissue deformation. Methods: Datasets consisting of paired prone and supine CT scans of three patients were used. Significant deformation in target volumes is expected between prone and supine patient positions. The selected cases had 1) no seroma, 2) some seroma, and 3) large seroma. The TB and WB were outlined on each dataset three times by one clinician. Delineation variability was defined as the standard deviations of the distances between observer outlines. For each target volume and each case, tissue deformation between prone and supine delineations was quantified using the Dice similarity coefficient (DSC) and the average surface distance (ASD). The uncertainty in the tissue deformation (due to delineation variability) was quantified by measuring the ranges of DSC and ASD using all combinations of pairs of outlines (9 pairs). Results: For the TB, the range of delineation variability was 0.44-1.16 mm. The deformation, DSC and ASD, (and uncertainty in measurement) of the TB between prone and supine position of the cases were: 1) 0.21 (0.17-0.28) and 12.4 mm (11.8-13 mm); 2) 0.54 (0.51-0.57) and 3.3 mm (3.1-3.5 mm); 3) 0.62 (0.61-0.64) and 4.9 mm (4.6-5.2 mm). WB deformation measurements were subject to less uncertainty due to delineation variability than TB deformation measurements. Conclusion: For the first time, the uncertainty, due to observer variability, in the measurement of the deformation of breast target volumes was investigated. Deformations in these ranges would be difficult to detect. This work was supported in part by Cancer Research

  5. Whither radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W M

    1987-03-01

    The 1986 Glyn Evans Memorial Lecture, given at the Joint Provincial Meeting of the Royal College of Radiologists, Sheffield, September 1986, sketches an outline of the history of radiotherapy and discusses the future development of the art. Topics included are siting of centres, training needs, the relationship of radiotherapy to other medical specialities, and the advantages and disadvantages of radiotherapy practitioners forming a separate medical College. (U.K.)

  6. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Xu, Q [MD Anderson Cancer Center at Cooper Mt Laurel, NJ (United States)

    2016-06-15

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.

  7. MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

    International Nuclear Information System (INIS)

    Fan, J; Lin, T; Jin, L; Chen, L; Veltchev, I; Wang, L; Eldib, A; Chibani, O; Wang, B; Price, R; Ma, C; Xu, Q

    2016-01-01

    Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor

  8. [Radiotherapy of oropharynx carcinoma].

    Science.gov (United States)

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  9. Defining the target volume for post-operative radiotherapy after D2 dissection in gastric cancer by CT-based vessel-guided delineation

    International Nuclear Information System (INIS)

    Yoon, Hong In; Chang, Jee Suk; Lim, Joon Seok; Noh, Sung Hoon; Hyung, Woo Jin; An, Ji Yeong; Lee, Yong Chan; Rha, Sun Young; Kim, Kyung Hwan; Koom, Woong Sub

    2013-01-01

    Purpose: To determine the recurrent nodal gross tumor volume (rnGTV) based on CT-guided vascular structure to refine the clinical target volume (CTV) delineation in postoperative radiotherapy for advanced gastric cancer following radical gastrectomy with D2 dissection. Materials and methods: We retrospectively reviewed follow-up images from 91 patients with their first regional recurrence after D2 dissection in stage III gastric cancer with N3 disease. We defined rnGTV as recurrent nodes shown in follow-up CT images, in which one diagnostic radiologist with specialty of gastrointestinal tract investigated. We drew rnGTVs at the equivalent location based on the same vessels of reference comparing CT images to recurrence CT images. Results: We propose vessel-based locations of rnGTVs on CT images with axial and coronal views. We show different patterns of regional recurrence according to the location of primary gastric cancer using CT and digitally reconstructed radiograph (DRR) images. Frequently recurred sites, overlapped by more than five rnGTVs, are depicted in a DRR image. Conclusions: This study suggests vessel-based delineations of rnGTVs on CT images depending on nodal recurrence sites from follow-up images after D2 lymphadenectomy. Our results could help reduce the inter-observer variation of CTV delineation after D2 dissection in gastric cancer

  10. Consequences of additional use of PET information for target volume delineation and radiotherapy dose distribution for esophageal cancer

    International Nuclear Information System (INIS)

    Muijs, Christina T.; Schreurs, Liesbeth M.; Busz, Dianne M.; Beukema, Jannet C.; Borden, Arnout J. van der; Pruim, Jan; Van der Jagt, Eric J.; Plukker, John Th.; Langendijk, Johannes A.

    2009-01-01

    Background and purpose: To determine the consequences of target volume (TV) modifications, based on the additional use of PET information, on radiation planning, assuming PET/CT-imaging represents the true extent of the tumour. Materials and methods: For 21 patients with esophageal cancer, two separate TV's were retrospectively defined based on CT (CT-TV) and co-registered PET/CT images (PET/CT-TV). Two 3D-CRT plans (prescribed dose 50.4 Gy) were constructed to cover the corresponding TV's. Subsequently, these plans were compared for target coverage, normal tissue dose-volume histograms and the corresponding normal tissue complication probability (NTCP) values. Results: The addition of PET led to the modification of CT-TV with at least 10% in 12 of 21 patients (57%) (reduction in 9, enlargement in 3). PET/CT-TV was inadequately covered by the CT-based treatment plan in 8 patients (36%). Treatment plan modifications resulted in significant changes (p < 0.05) in dose distributions to heart and lungs. Corresponding changes in NTCP values ranged from -3% to +2% for radiation pneumonitis and from -0.2% to +1.2% for cardiac mortality. Conclusions: This study demonstrated that TV's based on CT might exclude PET-avid disease. Consequences are under dosing and thereby possibly ineffective treatment. Moreover, the addition of PET in radiation planning might result in clinical important changes in NTCP.

  11. Daily Isocenter Correction With Electromagnetic-Based Localization Improves Target Coverage and Rectal Sparing During Prostate Radiotherapy

    International Nuclear Information System (INIS)

    Rajendran, Ramji Ramaswamy; Plastaras, John P.; Mick, Rosemarie; McMichael Kohler, Diane; Kassaee, Alireza; Vapiwala, Neha

    2010-01-01

    Purpose: To evaluate dosimetric consequences of daily isocenter correction during prostate cancer radiation therapy using the Calypso 4D localization system. Methods and Materials: Data were analyzed from 28 patients with electromagnetic transponders implanted in their prostates for daily target localization and tracking. Treatment planning isocenters were recorded based on the values of the vertical, longitudinal, and lateral axes. Isocenter location obtained via alignment with skin tattoos was compared with that obtained via the electromagnetic localization system. Daily isocenter shifts, based on the isocenter location differences between the two alignment methods in each spatial axis, were calculated for each patient over their entire course. The mean isocenter shifts were used to determine dosimetric consequences of treatment based on skin tattoo alignments alone. Results: The mean += SD of the percentages of treatment days with shifts beyond += 0.5 cm for vertical, longitudinal and lateral shifts were 62% += 28%, 35% += 26%, and 38% +=21%, respectively. If daily electromagnetic localization was not used, the excess in prescribed dose delivered to 70% of the rectum was 10 Gy and the deficit in prescribed dose delivered to 95% of the planning target volume was 10 Gy. The mean isocenter shift was not associated with the volumes of the prostate, rectum, or bladder, or with patient body mass index. Conclusions: Daily isocenter localization can reduce the treatment dose to the rectum. Correcting for this variability could lead to improved dose delivery, reduced side effects, and potentially improved treatment outcomes.

  12. Comparative evaluation of respiratory-gated and ungated FDG-PET for target volume definition in radiotherapy treatment planning for pancreatic cancer.

    Science.gov (United States)

    Kishi, Takahiro; Matsuo, Yukinori; Nakamura, Akira; Nakamoto, Yuji; Itasaka, Satoshi; Mizowaki, Takashi; Togashi, Kaori; Hiraoka, Masahiro

    2016-08-01

    The purpose of this study was to evaluate the usefulness of respiratory-gated positron emission tomography (4D-PET) in pancreatic cancer radiotherapy treatment planning (RTTP). Fourteen patients with 18F-fluorodeoxyglucose (FDG)-avid pancreatic tumours were evaluated between December 2013 and March 2015. Two sets of volumes were contoured for the pancreatic tumour of each patient. The biological target volume in three-dimensional RTTP (BTV3D) was contoured using conventional respiratory un-gated PET. The BTV3D was then expanded using population-based margins to generate a series of internal target volume 3D (ITV3D) values. The ITV 4D (ITV4D) was contoured using 4D-PET. Each of the five phases of 4D-PET was used for 4D contouring, and the ITV4D was constructed by summing the volumes defined on the five individual 4D-PET images. The relative volumes and normalized volumetric overlap were computed between ITV3D and ITV4D. On average, the FDG-avid tumour volumes were 1.6 (range: 0.8-2.3) fold greater in the ITV4D than in the BTV3D. On average, the ITV3D values were 2.0 (range: 1.1-3.4) fold larger than the corresponding ITV4D values. The ITV generated from 4D-PET can be used to improve the accuracy or reduce normal tissue irradiation compared with conventional un-gated PET-based ITV. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Postoperative Intensity-Modulated Radiotherapy for Squamous Cell Carcinoma of the External Auditory Canal and Middle Ear: Treatment Outcomes, Marginal Misses, and Perspective on Target Delineation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wan-Yu [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Kuo, Sung-Hsin [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (China); Chen, Yu-Hsuan; Lu, Szu-Huai; Tsai, Chiao-Ling [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Chia-Hsien Cheng, Jason [Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan (China); Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan (China); Hong, Ruey-Long [Division of Medical Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan (China); Chen, Ya-Fang [Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan (China); Hsu, Chuan-Jen; Lin, Kai-Nan; Ko, Jenq-Yuh; Lou, Pei-Jen; Wang, Cheng-Ping [Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan (China); Chong, Fok-Ching [Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China); Wang, Chun-Wei, E-mail: cwwang@ntuh.gov.tw [Graduate Institute of Electrical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2012-03-15

    Purpose: To report outcomes of the rare disease of squamous cell carcinoma (SCC) of the external auditory canal (EAC) and middle ear treated with surgery and postoperative intensity-modulated radiotherapy (IMRT). Failure patterns related to spatial dose distribution were also analyzed to provide insight into target delineation. Methods and Materials: A retrospective review was conducted of the records of 11 consecutive patients with SCC of the EAC and middle ear who were treated with curative surgery and postoperative IMRT at one institution between January 2007 and February 2010. The prescribed IMRT dose was 60 to 66 Gy at 2 Gy per fraction. Three patients also received concurrent cisplatin-based chemotherapy, and 1 patient received concurrent oral tegafur/uracil. The median follow-up time was 19 months (range, 6-33 months). Results: Four patients had locoregional recurrence, yielding an estimated 2-year locoregional control rate of 70.7%. Among them, 1 patient had persistent disease after treatment, and 3 had marginal recurrence. Distant metastasis occurred in 1 patient after extensive locoregional recurrence, yielding an estimated 2-year distant control rate of 85.7%. The estimated 2-year overall survival was 67.5%. The three cases of marginal recurrence were near the preauricular space and glenoid fossa of the temporomandibular joint, adjacent to the apex of the ear canal and glenoid fossa of the temporomandibular joint, and in the postauricular subcutaneous area and ipsilateral parotid nodes, respectively. Conclusions: Marginal misses should be recognized to improve target delineation. When treating SCC of the EAC and middle ear, care should be taken to cover the glenoid fossa of the temporomandibular joint and periauricular soft tissue. Elective ipsilateral parotid irradiation should be considered. The treatment planning procedure should also be refined to balance subcutaneous soft-tissue dosimetry and toxicity.

  14. Postoperative Intensity-Modulated Radiotherapy for Squamous Cell Carcinoma of the External Auditory Canal and Middle Ear: Treatment Outcomes, Marginal Misses, and Perspective on Target Delineation

    International Nuclear Information System (INIS)

    Chen, Wan-Yu; Kuo, Sung-Hsin; Chen, Yu-Hsuan; Lu, Szu-Huai; Tsai, Chiao-Ling; Chia-Hsien Cheng, Jason; Hong, Ruey-Long; Chen, Ya-Fang; Hsu, Chuan-Jen; Lin, Kai-Nan; Ko, Jenq-Yuh; Lou, Pei-Jen; Wang, Cheng-Ping; Chong, Fok-Ching; Wang, Chun-Wei

    2012-01-01

    Purpose: To report outcomes of the rare disease of squamous cell carcinoma (SCC) of the external auditory canal (EAC) and middle ear treated with surgery and postoperative intensity-modulated radiotherapy (IMRT). Failure patterns related to spatial dose distribution were also analyzed to provide insight into target delineation. Methods and Materials: A retrospective review was conducted of the records of 11 consecutive patients with SCC of the EAC and middle ear who were treated with curative surgery and postoperative IMRT at one institution between January 2007 and February 2010. The prescribed IMRT dose was 60 to 66 Gy at 2 Gy per fraction. Three patients also received concurrent cisplatin-based chemotherapy, and 1 patient received concurrent oral tegafur/uracil. The median follow-up time was 19 months (range, 6–33 months). Results: Four patients had locoregional recurrence, yielding an estimated 2-year locoregional control rate of 70.7%. Among them, 1 patient had persistent disease after treatment, and 3 had marginal recurrence. Distant metastasis occurred in 1 patient after extensive locoregional recurrence, yielding an estimated 2-year distant control rate of 85.7%. The estimated 2-year overall survival was 67.5%. The three cases of marginal recurrence were near the preauricular space and glenoid fossa of the temporomandibular joint, adjacent to the apex of the ear canal and glenoid fossa of the temporomandibular joint, and in the postauricular subcutaneous area and ipsilateral parotid nodes, respectively. Conclusions: Marginal misses should be recognized to improve target delineation. When treating SCC of the EAC and middle ear, care should be taken to cover the glenoid fossa of the temporomandibular joint and periauricular soft tissue. Elective ipsilateral parotid irradiation should be considered. The treatment planning procedure should also be refined to balance subcutaneous soft-tissue dosimetry and toxicity.

  15. Epigenetics in radiotherapy: Where are we heading?

    International Nuclear Information System (INIS)

    Smits, Kim M.; Melotte, Veerle; Niessen, Hanneke E.C.; Dubois, Ludwig; Oberije, Cary; Troost, Esther G.C.; Starmans, Maud H.W.; Boutros, Paul C.; Vooijs, Marc; Engeland, Manon van; Lambin, Philippe

    2014-01-01

    Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy

  16. Low-dose external beam radiotherapy for greater trochanteric pain syndrome. Target volume definition and treatment outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenborn, Alexander [Federal Armed Forces Hospital Westerstede, Department of Orthopedic and Trauma Surgery, Westerstede (Germany); Hannover Medical School, Core Facility Quality Management and Health Technology Assessment in Transplantation, Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover (Germany); Carl, Ulrich Martin; Hinsche, Tanja [Center for Radiotherapy and Radiooncology Bremen and Westerstede, Westerstede (Germany); Nitsche, Mirko [Center for Radiotherapy and Radiooncology Bremen and Westerstede, Westerstede (Germany); University of Schleswig Holstein, Campus Kiel, Department of Radiotherapy, Karl-Lennert Cancer Center, Kiel (Germany); Hermann, Robert Michael [Center for Radiotherapy and Radiooncology Bremen and Westerstede, Westerstede (Germany); Hannover Medical School, Department of Radiotherapy and Special Oncology, Hannover (Germany)

    2017-04-15

    Low-dose external beam radiotherapy (ED-EBRT) is frequently used in the therapy of refractory greater trochanteric pain syndrome (GTPS). As studies reporting treatment results are scarce, we retrospectively analyzed our own patient collectives. In all, 60 patients (74 hips) received LD-EBRT (6 x 0.5 Gy in 29 hips, 6 x 1 Gy in 45). The endpoint was the patient's reported subjective response to treatment. The influence of different patient and treatment characteristics on treatment outcome was investigated. At the end of LD-EBRT, 69% reported partial remission, 4% complete remission, no change 28%. A total of 3 months later (n = 52 hips), the results were 37, 33, and 30% and 18 months after LD-EBRT (n = 47) 21, 51, and 28%. In univariate analysis ''inclusion of the total femoral head into the PTV'' and ''night pain before LD-EBRT'' were correlated with symptom remission at the end of LD-EBRT, while ''initial increase in pain during LD-EBRT'' was significantly associated with treatment failure. In multivariable modeling ''initial increase in pain'' was identified as a risk factor for treatment failure (p = 0.007; odds ratio [OR] 0.209; 95% confidence interval [CI] 0.048-0.957), while ''night pain'' was an independent factor for remission (p = 0.038; OR 3.484; 95% CI 1.004-12.6). Three months after LD-EBRT ''night pain'' and ''inclusion of the complete femoral neck circumference into the PTV'' were predictive for remission. LD-EBRT represents a useful treatment option for patients suffering from GTPS. Three months after therapy two-thirds of the patients reported a partial or complete symptom remission. Especially patients who suffered from nocturnal pain seemed to benefit. Treatment appeared to be more effective when the entire circumference of the femoral neck was encompassed. (orig.) [German] In der Behandlung des

  17. Stereographic Targeting in Prostate Radiotherapy: Speed and Precision by Daily Automatic Positioning Corrections Using Kilovoltage/Megavoltage Image Pairs

    International Nuclear Information System (INIS)

    Mutanga, Theodore F.; Boer, Hans C.J. de; Wielen, Gerard J. van der; Wentzler, Davy; Barnhoorn, Jaco; Incrocci, Luca; Heijmen, Ben J.M.

    2008-01-01

    Purpose: A fully automated, fast, on-line prostate repositioning scheme using implanted markers, kilovoltage/megavoltage imaging, and remote couch movements has been developed and clinically applied. The initial clinical results of this stereographic targeting (SGT) method, as well as phantom evaluations, are presented. Methods and Materials: Using the SGT method, portal megavoltage images are acquired with the first two to six monitor units of a treatment beam, immediately followed by acquisition of an orthogonal kilovoltage image without gantry motion. The image pair is automatically analyzed to obtain the marker positions and three-dimensional prostate displacement and rotation. Remote control couch shifts are applied to correct for the displacement. The SGT performance was measured using both phantom images and images from 10 prostate cancer patients treated using SGT. Results: With phantom measurements, the accuracy of SGT was 0.5, 0.2, and 0.3 mm (standard deviation [SD]) for the left-right, craniocaudal, and anteroposterior directions, respectively, for translations and 0.5 o (SD) for the rotations around all axes. Clinically, the success rate for automatic marker detection was 99.5%, and the accuracy was 0.3, 0.5 and 0.8 mm (SD) in the left-right, craniocaudal, and anteroposterior axes. The SDs of the systematic center-of-mass positioning errors (Σ) were reduced from 4.0 mm to <0.5 mm for all axes. The corresponding SD of the random (σ) errors was reduced from 3.0 to <0.8 mm. These small residual errors were achieved with a treatment time extension of <1 min. Conclusion: Stereographic targeting yields systematic and random prostate positioning errors of <1 mm with <1 min of added treatment time

  18. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Weber, Wolfgang A.; Astner, Sabrina T.; Adam, Markus; Krause, Bernd J.; Schwaiger, Markus; Molls, Michael; Nieder, Carsten

    2006-01-01

    Purpose: To evaluate the role of 11 C-methionine positron emission tomography (MET-PET) in target volume delineation for meningiomas and to determine the interobserver variability. Methods and Materials: Two independent observers performed treatment planning in 10 patients according to a prospective written protocol. In the first step, they used coregistered computed tomography (CT) and magnetic resonance imaging (MRI). In the second step, MET-PET was added to CT/MRI (image fusion based on mutual information). Results: The correlation between gross tumor volume (GTVs) delineated by the two observers based on CT/MRI was r = 0.855 (Spearman's correlation coefficient, p = 0.002) and r = 0.988 (p = 0.000) when MET-PET/CT/MRI were used. The number of patients with agreement in more then 80% of the outlined volume increased with the availability of MET-PET from 1 in 10 to 5 in 10. The median volume of intersection between the regions delineated by two observers increased significantly from 69% (from the composite volume) to 79%, by the addition of MET-PET (p = 0.005). The information of MET-PET was useful to delineate GTV in the area of cavernous sinus, orbit, and base of the skull. Conclusions: The hypothesis-generating findings of potential normal tissue sparing and reduced interobserver variability provide arguments for invasive studies of the correlation between MET-PET images and histologic tumor extension and for prospective trials of target volume delineation with CT/MRI/MET-PET image fusion

  19. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-01-01

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method

  20. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  1. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  2. Prone versus supine positioning for whole and partial-breast radiotherapy: A comparison of non-target tissue dosimetry

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Donovan, Ellen M.; Convery, Helen M.; Haviland, Joanna S.; Yarnold, John R.

    2010-01-01

    Purpose: To compare non-target tissue (including left-anterior-descending coronary-artery (LAD)) dosimetry of prone versus supine whole (WBI) and partial-breast irradiation (PBI). Methods and materials: Sixty-five post-lumpectomy breast cancer patients underwent CT-imaging supine and prone. On each dataset, the whole-breast clinical-target-volume (WB-CTV), partial-breast CTV (tumour-bed + 15 mm), ipsilateral-lung and chest-wall were outlined. Heart and LAD were outlined in left-sided cases (n = 30). Tangential-field WBI and PBI plans were generated for each position. Mean LAD, heart, and ipsilateral-lung doses (x mean ), maximum LAD (LAD max ) doses, and the volume of chest-wall receiving 50 Gy (V 50Gy ) were compared. Results: Two-hundred and sixty plans were generated. Prone positioning reduced heart and LAD doses in 19/30 WBI cases (median reduction in LAD mean = 6.2 Gy) and 7/30 PBI cases (median reduction in LAD max = 29.3 Gy) (no difference in 4/30 cases). However, prone positioning increased cardiac doses in 8/30 WBI (median increase in LAD mean = 9.5 Gy) and 19/30 PBI cases (median increase in LAD max = 22.9 Gy) (no difference in 3/30 cases). WB-CTV > 1000cm 3 was associated with improved cardiac dosimetry in the prone position for WBI (p = 0.04) and PBI (p = 0.04). Prone positioning reduced ipsilateral-lung mean in 65/65 WBI and 61/65 PBI cases, and chest-wall V 50Gy in all WBI cases. PBI reduced normal-tissue doses compared to WBI in all cases, regardless of the treatment position. Conclusions: In the context of tangential-field WBI and PBI, prone positioning is likely to benefit left-breast-affected women of larger breast volume, but to be detrimental in left-breast-affected women of smaller breast volume. Right-breast-affected women are likely to benefit from prone positioning regardless of breast volume.

  3. Chemical and biological evaluation of 153Sm and 46/47Sc complexes of indazolebisphosphonates for targeted radiotherapy

    International Nuclear Information System (INIS)

    Neves, Maria; Teixeira, Fatima C.; Antunes, Ines; Majkowska, Agnieszka; Gano, Lurdes; Santos, Ana Cristina

    2011-01-01

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides 46 Sc and 153 Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides 46 Sc and 153 Sm were obtained by neutron irradiation of natural Sc 2 O 3 and enriched 152 Sm 2 O 3 (98.4%) targets at the neutron flux of 3x10 14 n cm -2 s -1 . The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides 46 Sc and 153 Sm were produced with specific activities of 100 and 430 MBq mg -1 , respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  4. Chemical and biological evaluation of {sup 153}Sm and {sup 46/47}Sc complexes of indazolebisphosphonates for targeted radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Maria, E-mail: mneves@itn.p [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Teixeira, Fatima C.; Antunes, Ines [INETI-Departamento de Tecnologia de Industrias Quimicas, Lisboa (Portugal); Majkowska, Agnieszka [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Gano, Lurdes [Instituto Tecnologico e Nuclear, Sacavem (Portugal); Santos, Ana Cristina [IBB-Instituto de Biofisica e Biomatematica, Coimbra (Portugal)

    2011-01-15

    Introduction: Novel 1-hydroxy-1,1-bisphosphonates derived from indazole and substituted at the C-3 position were labeled with the radionuclides {sup 46}Sc and {sup 153}Sm. Several parameters such as molar ligand concentration, pH, reaction time and temperature were studied. The radiolabelling yield, reaction kinetics and stability were assessed and radiocomplexes were evaluated by in vitro and in vivo experiments. Methods: The radionuclides {sup 46}Sc and {sup 153}Sm were obtained by neutron irradiation of natural Sc{sub 2}O{sub 3} and enriched {sup 152}Sm{sub 2}O{sub 3} (98.4%) targets at the neutron flux of 3x10{sup 14} n cm{sup -2} s{sup -1}. The radiolabelling yield, reaction kinetics and stability were accomplished by ascending instant thin layer chromatography. The radiocomplexes were submitted to in vitro experiments (hydroxyapatite binding and lipophilicity) and biodistribution studies in animal models. Results: The radionuclides {sup 46}Sc and {sup 153}Sm were produced with specific activities of 100 and 430 MBq mg{sup -1}, respectively. High radiochemical yields were achieved and the hydrophilic radiocomplexes have shown high degree of binding to hydroxyapatite. Biodistribution studies at 1, 3 and 24 h of the 4 radiocomplexes under study, have showed a similar biodistribution profile with a relatively high bone uptake, slow clearance from blood and a very slow rate of total radioactivity excretion from the whole animal body. Conclusion: We have developed a new class of indazolebisphosphonates complexes with radioisotopes of samarium and scandium. All complexes have shown high degree of binding to hydroxyapatite, which could be attributed to the ionized phosphonate groups. The bone uptake and the bone-to-muscle ratios were relatively low.

  5. Feasibility of omitting clinical target volume for limited-disease small cell lung cancer treated with chemotherapy and intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Cai, Shuhua; Shi, Anhui; Yu, Rong; Zhu, Guangying

    2014-01-01

    To analyze the feasibility of omitting clinical target volume (CTV) for limited small cell lung cancer treated with chemotherapy and intensity modulated radiotherapy. 89 patients were treated from January 1, 2008 to August 31, 2011, 54 cases were irradiated with target volume without CTV, and 35 cases were irradiated with CTV. Both arms were irradiated post chemotherapy tumor extent and omitted elective nodal irradiation; dose prescription was 95% PTV56-63 Gy/28-35 F/5.6-7 weeks. In the arm without CTV and arm with CTV, the local relapse rates were 16.7% and 17.1% (p = 0.586) respectively. In the arm without CTV, of the 9 patients with local relapse, 6 recurred in-field, 2 recurred in margin, 1 recurred out of field. In the arm with CTV, of the 6 patients with local relapse, 4 recurred in-field, 1 recurred in margin, 1 recurred out of field. The distant metastases rates were 42.6% and 51.4% (p = 0.274) respectively. Grade 3-4 hematological toxicity and radiation esophagitis had no statistically significant, but grade 3-4 radiation pneumonia was observed in only 7.4% in the arm without CTV, compared 22.9% in the arm with CTV (p = 0.040). The median survival in the arm without CTV had not reached, compared with 38 months in the with CTV arm. The l- years, 2- years, 3- years survival rates of the arm without CTV and the arm with CTV were 81.0%, 66.2%, 61.5% and 88.6%, 61.7%, 56.6% (p = 0.517). The multivariate analysis indicated that the distant metastases (p = 0.000) and PCI factor (p = 0.004) were significantly related to overall survival. Target delineation omitting CTV for limited-disease small cell lung cancer received IMRT was feasible. The distant metastases and PCI factor were significantly related to overall survival

  6. WE-G-BRE-09: Targeted Radiotherapy Enhancement During Accelerated Partial Breast Irradiation (ABPI) Using Controlled Release of Gold Nanoparticles (GNPs)

    International Nuclear Information System (INIS)

    Cifter, G; Ngwa, W; Chin, J; Cifter, F; Sajo, E; Sinha, N; Bellon, J

    2014-01-01

    Purpose: Several studies have demonstrated low rates of local recurrence with brachytherapy-based accelerated partial breast irradiation (APBI). However, long-term outcomes on toxicity (e.g. telangiectasia), and cosmesis remain a major concern. The purpose of this study is to investigate the dosimetric feasibility of using targeted non-toxic radiosensitizing gold nanoparticles (GNPs) for localized dose enhancement to the planning target volume (PTV) during APBI while reducing dose to normal tissue. Methods: Two approaches for administering the GNPs were considered. In one approach, GNPs are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators, for sustained controlled in-situ release, and subsequent treatment using 50-kVp Xoft devices. In case two, GNPs are administered directly into the lumpectomy cavity e.g. via injection or using fiducials coated with the GNP-loaded polymer film. Recent studies have validated the use of fiducials for reducing the PTV margin during APBI with 6 MV beams. An experimentally determined diffusion coefficient was used to determine space-time customizable distribution of GNPs for feasible in-vivo concentrations of 43 mg/g. An analytic calculational approach from previously published work was employed to estimate the dose enhancement due to GNPs (2 and 10 nm) as a function of distance up to 1 cm from lumpectomy cavity. Results: Dose enhancement due to GNP was found to be about 130% for 50-kVp x-rays, and 110% for 6-MV external beam radiotherapy, 1 cm away from the lumpectomy cavity wall. Higher customizable dose enhancement could be achieved at other distances as a function of nanoparticle size. Conclusion: Our preliminary results suggest that significant dose enhancement can be achieved to residual tumor cells targeted with GNPs during APBI with electronic brachytherapy or external beam therapy. The findings provide a useful basis for developing nanoparticle

  7. SU-E-J-75: Importance of 4DCT for Target Volume Definition in Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Goksel, E; Cone, D; Kucucuk, H; Senkesen, O; Yilmaz, M; Aslay, I; Tezcanli, E; Garipagaoglu, M; Sengoz, M

    2014-01-01

    Purpose: We aimed to investigate the importance of 4DCT for lung tumors treated with SBRT and whether maximum intensity projection (MIP) and free breathing (FB) images can compansate for tumor movement. Methods: Six patients with primary lung cancer and 2 patients with lung metastasis with a median age of 69.5 (42–86) were included. Patients were positioned supine on a vacuum bag. In addition to FB planning CT images, 4DCT images were obtained at 3 mm intervals using Varian RPM system with (Siemens Somatom Sensetion 64). MIP series were reconstructed using 4DCT images. PTV-FB and PTV-MIP (GTV+5mm) volumes were contoured using FB and MIP series, respectively. GTVs were defined on each of eight different breathing phase images and were merged to create the ITV. PTV-4D was generated with a 5 mm margin to ITV. PTV-MIP and PTV-4D contours were copied to FB CT series and treatment plans for PTV-MIP and PTV-FB were generated using RapidArc (2 partial arc) technique in Eclipse (version 11, AAA algorithm). The prescription dose was 5600cGy in 7 fractions. ITV volumes receiving prescription dose (%) and V95 for ITV were calculated for each treatment plan. Results: The mean PTV-4B, PTV-MIP and PTV-FB volumes were 23.2 cc, 15.4cc ve 11cc respectively. Median volume of ITV receiving the prescription dose was 34.6% (16.4–70 %) and median V95 dose for ITV was 1699cGy (232cGy-5117cGy) in the plan optimized for PTV-FB as the reference. When the plan was optimized for PTV-MIP, median ITV volume receiving the prescription dose was 67.15% (26–86%) and median V95 dose for ITV was 4231cGy (1735cGy-5290cGy). Conclusion: Images used in lung SBRT are critical for treatment quality; FB and MIP images did not compensate target movement, therefore 4DCT images should be obtained for all patients undergoing lung SBRT or the safety margins should be adjusted

  8. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.

    2013-01-01

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden “lung” inserts with embedded Perspex “lesions” were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to

  9. The effect of irregular breathing patterns on internal target volumes in four-dimensional CT and cone-beam CT images in the context of stereotactic lung radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Clements, N. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002, Australia and Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Kron, T.; Roxby, P. [Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Franich, R.; Dunn, L. [Department of Applied Sciences, RMIT University, Melbourne 3001 (Australia); Aarons, Y.; Chesson, B. [Department of Radiation Therapy, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia); Siva, S.; Duplan, D.; Ball, D. [Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)

    2013-02-15

    Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when

  10. Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, H. Helen; Balter, Peter; Tutt, Teresa; Choi, Bum; Zhang, Joy; Wang, Catherine; Chi, Melinda; Luo Dershan; Pan Tinsu; Hunjan, Sandeep; Starkschall, George; Rosen, Isaac; Prado, Karl; Liao Zhongxing; Chang, Joe; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe; Dong Lei

    2007-01-01

    Purpose: To assess three-dimensional tumor motion caused by respiration and internal target volume (ITV) for radiotherapy of lung cancer. Methods and Materials: Respiration-induced tumor motion was analyzed for 166 tumors from 152 lung cancer patients, 57.2% of whom had Stage III or IV non-small-cell lung cancer. All patients underwent four-dimensional computed tomography (4DCT) during normal breathing before treatment. The expiratory phase of 4DCT images was used as the reference set to delineate gross tumor volume (GTV). Gross tumor volumes on other respiratory phases and resulting ITVs were determined using rigid-body registration of 4DCT images. The association of GTV motion with various clinical and anatomic factors was analyzed statistically. Results: The proportions of tumors that moved >0.5 cm along the superior-inferior (SI), lateral, and anterior-posterior (AP) axes during normal breathing were 39.2%, 1.8%, and 5.4%, respectively. For 95% of the tumors, the magnitude of motion was less than 1.34 cm, 0.40 cm, and 0.59 cm along the SI, lateral, and AP directions. The principal component of tumor motion was in the SI direction, with only 10.8% of tumors moving >1.0 cm. The tumor motion was found to be associated with diaphragm motion, the SI tumor location in the lung, size of the GTV, and disease T stage. Conclusions: Lung tumor motion is primarily driven by diaphragm motion. The motion of locally advanced lung tumors is unlikely to exceed 1.0 cm during quiet normal breathing except for small lesions located in the lower half of the lung

  11. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?

    International Nuclear Information System (INIS)

    Giraud, Philippe; De Rycke, Yann; Lavole, Armelle; Milleron, Bernard; Cosset, Jean-Marc; Rosenzweig, Kenneth E.

    2006-01-01

    Purpose: Conformal irradiation (3D-CRT) of non-small-cell lung carcinoma (NSCLC) is largely based on precise definition of the nodal clinical target volume (CTVn). A reduction of the number of nodal stations to be irradiated would facilitate tumor dose escalation. The aim of this study was to design a mathematical tool based on documented data to predict the risk of metastatic involvement for each nodal station. Methods and Materials: We reviewed the large surgical series published in the literature to identify the main pretreatment parameters that modify the risk of nodal invasion. The probability of involvement for the 17 nodal stations described by the American Thoracic Society (ATS) was computed from all these publications. Starting with the primary site of the tumor as the main characteristic, we built a probabilistic tree for each nodal station representing the risk distribution as a function of each tumor feature. Statistical analysis used the inversion of probability trees method described by Weinstein and Feinberg. Validation of the software based on 134 patients from two different populations was performed by receiver operator characteristic (ROC) curves and multivariate logistic regression. Results: Analysis of all of the various parameters of pretreatment staging relative to each level of the ATS map results in 20,000 different combinations. The first parameters included in the tree, depending on tumor site, were histologic classification, metastatic stage, nodal stage weighted as a function of the sensitivity and specificity of the diagnostic examination used (positron emission tomography scan, computed tomography scan), and tumor stage. Software is proposed to compute a predicted probability of involvement of each nodal station for any given clinical presentation. Double cross validation confirmed the methodology. A 10% cutoff point was calculated from ROC and logistic model giving the best prediction of mediastinal lymph node involvement. Conclusion

  12. Refinement of Treatment Setup and Target Localization Accuracy Using Three-Dimensional Cone-Beam Computed Tomography for Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Wang Zhiheng; Nelson, John W.; Yoo, Sua; Wu, Q. Jackie; Kirkpatrick, John P.; Marks, Lawrence B.; Yin Fangfang

    2009-01-01

    Purposes: To quantitatively compare two-dimensional (2D) orthogonal kV with three-dimensional (3D) cone-beam CT (CBCT) for target localization; and to assess intrafraction motion with kV images in patients undergoing stereotactic body radiotherapy (SBRT). Methods and Materials: A total of 50 patients with 58 lesions received 178 fractions of SBRT. After clinical setup using in-room lasers and skin/cradle marks placed at simulation, patients were imaged and repositioned according to orthogonal kV/MV registration of bony landmarks to digitally reconstructed radiographs from the planning CT. A subsequent CBCT was registered to the planning CT using soft tissue information, and the resultant 'residual error' was measured and corrected before treatment. Posttreatment 2D kV and/or 3D CBCT images were compared with pretreatment images to determine any intrafractional position changes. Absolute averages, statistical means, standard deviations, and root mean square (RMS) values of observed setup error were calculated. Results: After initial setup to external marks with laser guidance, 2D kV images revealed vector mean setup deviations of 0.67 cm (RMS). Cone-beam CT detected residual setup deviations of 0.41 cm (RMS). Posttreatment imaging demonstrated intrafractional variations of 0.15 cm (RMS). The individual shifts in three standard orthogonal planes showed no obvious directional biases. Conclusions: After localization based on superficial markings in patients undergoing SBRT, orthogonal kV imaging detects setup variations of approximately 3 to 4 mm in each direction. Cone-beam CT detects residual setup variations of approximately 2 to 3 mm

  13. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    Science.gov (United States)

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural

  14. PET CT Thresholds for Radiotherapy Target Definition in Non-Small-Cell Lung Cancer: How Close are we to the Pathologic Findings?

    International Nuclear Information System (INIS)

    Wu Kailiang; Ung, Yee C.; Hornby, Jennifer

    2010-01-01

    Purpose: Optimal target delineation threshold values for positron emission tomography (PET) and computed tomography (CT) radiotherapy planning is controversial. In this present study, different PET CT threshold values were used for target delineation and then compared pathologically. Methods and Materials: A total of 31 non-small-cell lung cancer patients underwent PET CT before surgery. The maximal diameter (MD) of the pathologic primary tumor was obtained. The CT-based gross tumor volumes (GTV CT ) were delineated for CT window-level thresholds at 1,600 and -300 Hounsfield units (HU) (GTV CT1 ); 1,600 and -400 (GTV CT2 ); 1,600 and -450 HU (GTV CT3 ); 1,600 and -600 HU (GTV CT4 ); 1,200 and -700 HU (GTV CT5 ); 900 and -450 HU (GTV CT6 ); and 700 and -450 HU (GTV CT7 ). The PET-based GTVs (GTV PET ) were autocontoured at 20% (GTV 20 ), 30% (GTV 30 ), 40% (GTV 40 ), 45% (GTV 45 ), 50% (GTV 50 ), and 55% (GTV 55 ) of the maximal intensity level. The MD of each image-based GTV in three-dimensional orientation was determined. The MD of the GTV PET and GTV CT were compared with the pathologically determined MD. Results: The median MD of the GTV CT changed from 2.89 (GTV CT2 ) to 4.46 (GTV CT7 ) as the CT thresholds were varied. The correlation coefficient of the GTV CT compared with the pathologically determined MD ranged from 0.76 to 0.87. The correlation coefficient of the GTV CT1 was the best (r = 0.87). The median MD of GTV PET changed from 5.72cm to 2.67cm as the PET thresholds increased. The correlation coefficient of the GTV PET compared with the pathologic finding ranged from 0.51 to 0.77. The correlation coefficient of GTV 50 was the best (r = 0.77). Conclusion: Compared with the MD of GTV PET , the MD of GTV CT had better correlation with the pathologic MD. The GTV CT1 and GTV 50 had the best correlation with the pathologic results.

  15. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  16. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    Energy Technology Data Exchange (ETDEWEB)

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2016-06-15

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin: 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical

  17. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  18. PET/CT and radiotherapy

    International Nuclear Information System (INIS)

    Messa, C.; CNR, Milano; S. Gerardo Hospital, Monza; Di Muzio, N.; Picchio, M.; Bettinardi, V.; Gilardi, M.C.; CNR, Milano; San Raffaele Scientific Institute, Milano; Fazio, F.; CNR, Milano; San Raffaele Scientific Institute, Milano; San Raffaele Scientific Institute, Milano

    2006-01-01

    This article reviews the state of the art of PET/CT applications in radiotherapy, specifically its use in disease staging, patient selection, treatment planning and treatment evaluation. Diseases for which radiotherapy with radical intent is indicated will be considered, as well as those in which PET/CT may actually change the course of disease. The methodological and technological aspects of PET/CT in radiotherapy are discussed, focusing on the problem of target volume definition with CT and PET functional imaging and the problem of tumor motion with respect to imaging and dose delivery

  19. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications.

    Science.gov (United States)

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A

    2013-11-01

    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  20. The skeletal endocannabinoid system: clinical and experimental insights.

    Science.gov (United States)

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  1. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. A comparison between two modalities

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Tiina; Visapaeae, Harri; Collan, Juhani; Kapanen, Mika; Kouri, Mauri; Tenhunen, Mikko; Saarilahti, Kauko [University of Helsinki and Helsinki University Hospital, Comprehensive Cancer Center, POB 180, Helsinki (Finland); Beule, Annette [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 180, Helsinki (Finland)

    2015-11-15

    To investigate the conversion of prostate cancer radiotherapy (RT) target definition from CT-based planning into an MRI-only-based planning procedure. Using the CT- and MRI-only-based RT planning protocols, 30 prostate cancer patients were imaged in the RT fixation position. Two physicians delineated the prostate in both CT and T2-weighted MRI images. The CT and MRI images were coregistered based on gold seeds and anatomic borders of the prostate. The uncertainty of the coregistration, as well as differences in target volumes and uncertainty of contour delineation were investigated. Conversion of margins and dose constraints from CT- to MRI-only-based treatment planning was assessed. On average, the uncertainty of image coregistration was 0.4 ± 0.5 mm (one standard deviation, SD), 0.9 ± 0.8 mm and 0.9 ± 0.9 mm in the lateral, anterior-posterior and base-apex direction, respectively. The average ratio of the prostate volume between CT and MRI was 1.20 ± 0.15 (one SD). Compared to the CT-based contours, the MRI-based contours were on average 2-7 mm smaller in the apex, 0-1 mm smaller in the rectal direction and 1-4 mm smaller elsewhere. When converting from a CT-based planning procedure to an MRI-based one, the overall planning target volumes (PTV) are prominently reduced only in the apex. The prostate margins and dose constraints can be retained by this conversion. (orig.) [German] Ziel unserer Studie war es, die Umstellung der Strahlentherapieplanung des Prostatakarzinoms von CT-gestuetzter in ausschliesslich MR-gestuetzte Zieldefinition zu untersuchen. Bei 30 Patienten mit Prostatakarzinom wurden eine CT und eine MRT unter Planungsbedingungen durchgefuehrt. Zwei Untersucher konturierten die Prostata in CT- und T2-gewichteten MR-Bildern. Mit Hilfe der Position von Goldstiften und der anatomischen Grenzen der Prostata wurden die CT- und MR-Bilder koregistriert. Es wurden die Genauigkeit der Koregistrierung sowie die Unterschiede der Zielvolumina und der

  2. Patterns of failure after postoperative radiotherapy for incompletely resected (R1) non-small cell lung cancer: implications for radiation target volume design.

    Science.gov (United States)

    Olszyna-Serementa, Marta; Socha, Joanna; Wierzchowski, Marek; Kępka, Lucyna

    2013-05-01

    Overall survival (OS) and pattern of failure in R1-resected non-small cell lung cancer (NSCLC) patients treated with 3D-planned postoperative radiotherapy (PORT) was retrospectively evaluated. The outcomes and patterns of failure in patients with (+) and without (-) extracapsular nodal extension (ECE) were compared and analyzed with respect to the radiation target volume design. Eighty R1-resected (37 ECE+ and 43 ECE-) patients received PORT (60Gy, 2Gy daily) between 2002 and 2011. Patients with N2 disease received limited elective nodal irradiation (ENI); for pN0-1 disease the use of ENI was optional. Among ECE- (extranodal-R1) patients there were 35 pN0-1 and eight pN2 cases; in pN0-1 patients, patterns of failure and outcomes were analyzed with respect to the use of ENI. Loco-regional failure (LRF) was defined as in-field relapse; isolated nodal failure (INF) was defined as out-of-field regional nodal recurrence occurring without LRF, irrespective of distant metastases. The actuarial 3-year OS rate was 36.3% (median: 30 months). Three-year OS rates in the ECE- and ECE+ group were 40.4% and 31.4%, with median OS of 31 and 24 months, respectively (p=0.43). In multivariate analysis, the presence of ECE was correlated with OS (HR=3.02; 95% CI: 1.00-9.16; p=0.05). Three-year cumulative incidence of LRF (CILRF) was 14.5% and 15.5% in the ECE- and ECE+ groups, respectively (p=0.98). Three-year cumulative incidence of INF (CIINF) was 14.1% in the ECE- group and 11.1% in the ECE+ group (p=0.76). For pN0-1 patients treated with and without ENI (13 and 22 patients) 3-year CILRF rates were 7.7% and 20.8%, respectively (p=0.20); 3-year CIINF rates were 9.1% and 16.3%, respectively (p=0.65). PORT resulted in a relatively good survival of R1-resected NSCLC patients. Relatively high incidence of INF was found in both ECE+ and ECE- patients. For ECE+ patients, treated with limited ENI, distant failure remains a major concern, so the design of ENI fields seems of lesser

  3. Multileaf collimator in radiotherapy

    International Nuclear Information System (INIS)

    Jeraj, M.; Robar, V.

    2004-01-01

    Background. Basic goal of radiotherapy treatment is the irradiation of a target volume while minimizing the amount of radiation absorbed in healthy tissue. Shaping the beam is an important way of minimizing the absorbed dose in healthy tissue and critical structures. Conventional collimator jaws are used for shaping a rectangular treatment field; but, as usually treatment volume is not rectangular, additional shaping is required. On a linear accelerator, lead blocks or individually made Cerroben TM blocks are attached onto the treatment head under standard collimating system. Another option is the use of multileaf collimator (MLC). Conclusions. Multileaf collimator is becoming the main tool for beam shaping on the linear accelerator. It is a simple and useful system in the preparation and performance of radiotherapy treatment. Multileaf collimators are reliable, as their manufacturers developed various mechanisms for their precision, control and reliability, together with reduction of leakage and transmission of radiation between and through the leaves. Multileaf collimator is known today as a very useful clinical system for simple field shaping, but its use is getting even more important in dynamic radiotherapy, with the leaves moving during irradiation. This enables a precise dose delivery on any part of a treated volume. Intensity modulated radiotherapy (IMRT), the therapy of the future, is based on the dynamic use of MLC. (author)

  4. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate...

  5. Radiotherapy; Strahlentherapie

    Energy Technology Data Exchange (ETDEWEB)

    Wannenmacher, M. [Heidelberg Univ., Mannheim (Germany). Abt. fuer Klinische Radiologie; Debus, J. [Univ. Heidelberg (Germany). Abt. Radioonkologie und Strahlentherapie; Wenz, F. (eds.) [Universitaetsklinikum Mannheim (Germany). Klinik fuer Strahlentherapie und Radioonkologie

    2006-07-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy.

  6. Radiation treatment of painful degenerative skeletal conditions

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Willich, N.

    1996-01-01

    The study reported was intended to present own experience with irradiation for treatment of painful degenerative skeletal conditions and examine the long-term effects of this treatment. A retrospective study was performed covering the period from 1985 until 1991, examining 157 patients suffering from painful degenerative skeletal conditions who entered information on the success of their radiation treatment in a questionnaire. 94 of the questionnaires could be used for evaluation. Pain anamnesis revealed periods of more than one year in 45% of the cases. 74% of the patients had been treated without success with drug or orthopedic therapy. Immediately after termination of the radiotherapy, 38% of the patients said to be free of pain or to feel essentially relieved, while at the time the questionnaire was distributed, the percentage was 76%. Thus in our patient material, radiotherapy for treatment of painful degenerative skeletal lesions was successful in 76% of the cases and for long post-treatment periods, including those cases whith long pain anamnesis and unsuccessful conventional pre-treatment. (orig./MG) [de

  7. Radiotherapy apparatus

    International Nuclear Information System (INIS)

    Leung, P.M.; Webb, H.P.J.

    1985-01-01

    This invention relates to apparatus for applying intracavitary radiotherapy. In previously-known systems radioactive material is conveyed to a desired location within a patient by transporting a chain of balls pneumatically to and from an appropriately inserted applicator. According to this invention a ball chain for such a purpose comprises several radioactive balls separated by non-radioactive tracer balls of radiographically transparent material of lower density and surface hardness than the radioactive balls. The invention also extends to radiotherapy treatment apparatus comprising a storage, sorting and assembly system

  8. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  9. Radiation injury to skeletal muscle

    International Nuclear Information System (INIS)

    Persons, C.C.M.; Wondergem, J.; Leer, J.W.H.

    1997-01-01

    Radiotherapy of neoplasia has increased the mean life expectancy of cancer patients. On the other hand, more reports are published on morbidity of the treatment with regard to normal tissue. Studies on skeletal muscle injury specifically are scarce, but many clinical long term follow-up studies make note of side effects as muscle atrophy, fibrosis and limited function. Furthermore it is suggested that skeletal muscles of children are more prone to radiation injury than those of adult subjects. Effects of radiation on skeletal muscle were studied in rats. On hind limb of young (100 g) and adult (350 g) rats was irradiated with single doses (15-30 Gy), while the other served as control. Follow-up was up to 12 months post treatment. Muscular function in young rats was decreased significantly at 6 months post irradiation, but did not further decrease in the following 6 months. The amount of collagen, on the other hand, was not increased at 6 months, but became highly elevated at 12 months past treatment. This suggests that at 6 months, impaired muscular function may not be explained by increased fibrotic tissues. This is an agreement with results obtained in adult rats, where function was also impaired, without concomitant increase in collagen. In an earlier study, mitochondrial oxygen consumption was dose dependently decreased after irradiation, at 12 months, but not at 6 months post treatment. Furthermore, myosin-actin interaction was measured in skinned fibers. The first results of this study indicate changes in the interaction of contraction proteins, as early as 6 months post treatment. (authors)

  10. Quantitative skeletal scintiscanning

    International Nuclear Information System (INIS)

    Haushofer, R.

    1982-01-01

    330 patients were examined by skeletal scintiscanning with sup(99m)Tc pyrophosphate and sup(99m)methylene diphosphonate in the years between 1977 and 1979. Course control examinations were carried out in 12 patients. The collective of patients presented with primary skeletal tumours, metastases, inflammatory and degenerative skeletal diseases. Bone scintiscanning combined with the ''region of interest'' technique was found to be an objective and reproducible technique for quantitative measurement of skeletal radioactivity concentrations. The validity of nuclear skeletal examinations can thus be enhanced as far as diagnosis, course control, and differential diagnosis are concerned. Quantitative skeletal scintiscanning by means of the ''region of interest'' technique has opened up a new era in skeletal diagnosis by nuclear methods. (orig./MG) [de

  11. Quality assurance in radiotherapy

    International Nuclear Information System (INIS)

    2003-03-01

    Good radiotherapy results and safety of treatment require the radiation to be optimally applied to a specified target area and the correct dose. According to international recommendations, the average uncertainty in therapeutic dose should not exceed 5%. The need for high precision in therapeutic dose requires quality assurance covering the entire radiotherapy process. Besides the physical and technical characteristics of the therapy equipment, quality assurance must include all radiotherapy equipment and procedures that are significant for the correct magnitude and precision of application of the therapeutic dose. The duties and responsibilities pertaining to various stages of treatment must also be precisely defined. These requirements may be best implemented through a quality system. The general requirements for supervision and quality assurance of medical radiation apparatus are prescribed in section 40 of the Radiation Act (592/1991, amendment 1142/1998) and in sections 18 and 32 of the Decree of the Ministry of Social Affairs and Health on the medical use of radiation (423/2000). Guide ST 2.2 imposes requirements on structural radiation shielding of radiotherapy equipment and the premises in which it is used, and on warning and safety arrangements. Guide ST 1.1 sets out the general safety principles for radiation practices and regulatory control procedure for the use of radiation. Guide ST 1.6 provides general requirements for operational measures in the use of radiation. This Guide sets out the duties of responsible parties (the party running a radiation practice) in respect of arranging and maintaining radiotherapy quality assurance. The principles set out in this Guide and Guide ST 6.3 may be applied to radionuclide therapy

  12. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  13. The impact of respiratory motion and active breathing control on the displacement of target area in patients with gastric cancer treated with post-operative radiotherapy

    International Nuclear Information System (INIS)

    Yu Xiaoli; Zhang Zhen; Gu Weilie; Hu Weigang; Zhu Ji; Cai Gang; Li Guichao; He Shaoqin

    2010-01-01

    Objective: To assess the impact of respiratory motion on the displacement of target area and to analyze the discrimination between free breathing and active breathing control (ABC) in patients with gastric cancer treated with post-operative radiotherapy. Methods: From January 2005 to November 2006, 22 patients with post-operatively confirmed gastric cancer were enrolled in this study. All diseases were T 3 / N +, staging II - IV. Patients were CT scanned and treated by radiation with the use of ABC. Image J software was used in image processing, motion measurement and data analysis. Surgical clips were implanted as fiducial marks in the tumor bed and lymphatic drainage area. The motion range of each clip was measured in the resultant-projection image. Motions of the clips in superior-inferior (S-I), right-left (R-L) and anterior-posterior (A-P) directions were determined from fluoroscopy movies obtained in the treatment position. Results: The motion ranges in S-I, R-L and A-P directions were 11.1 mam, 1.9 mm and 2.5 mm (F = 85.15, P = 0. 000) under free breathing, with 2.2 mm, 1.1 mm and 1.7 nun under ABC (F = 17.64, P = 0. 000), and the reduction of motion ranges was significant in both S-I and A-P directions (t = 4.36, P = 0. 000;t = 3.73,P = 0.000). When compared with under free-breathing, the motion ranges under ABC were kept unchanged in the same breathing phase of the same treatment fraction, while significant increased in different breathing phase in all three directions (t = - 4.36, P = 0. 000; t = - 3.52, P = 0.000; t =-3.79, P = 0. 000), with a numerical value of 3.7 mm, 1.6 mm and 2.8 mm, respectively (F = 19.46, P = 0. 000) . With ABC between different treatment fractions , the maximum displacements were 2.7 mm, 1.7 mm and 2.5 mm for the centre of the clip cluster (F =4.07,P =0. 019), and were 4.6 mm, 3.1 mm and 4.2 mm for the clips (F =5.17 ,P =0.007). The motion ranges were significant increased in all the three directions (t = - 4.09, P=0.000 ; t =-4

  14. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  15. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    International Nuclear Information System (INIS)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S.

    2012-01-01

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II–IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  16. Computerised tomography in radiotherapy planning

    International Nuclear Information System (INIS)

    Badcock, P.C.

    1983-01-01

    This study evaluates the effectiveness of computed tomography as an adjunct to radiotherapy planning. Until recently, acquisition of accurate data concerning tumour anatomy lagged behind other developments in radiotherapy. With the advent of computer-tomography (CT), these data can be displayed and transmitted to a treatment planning computer. It is concluded that the greatest inaccuracies in the radiation treatment of patients are to be found in both the inadequate delineation of the target volume within the patient and changes in body outline relative to the target volume over the length of the irradiated volume. The technique was useful in various subgroups (pelvic, intra-thoracic and chest-wall tumours) and for those patients being treated palliatively. With an estimated improvement in cure rate of 4.5% and cost-effective factors of between 3.3 and 5, CT-assisted radiotherapy planning appears to be a worthwhile procedure. (orig.)

  17. Interstitial radiotherapy

    International Nuclear Information System (INIS)

    Scardino, P.T.; Bretas, F.

    1987-01-01

    The authors now have 20 years of experience with modern techniques of brachytherapy. The large number of patients treated in medical centers around the world and the widespread use of this type of radiotherapy have provided us with substantial information about the indications and contraindications, advantages and disadvantages, pitfalls and complications, as well as the results of these techniques. Although the focus of this review is the experience at Baylor using the combined technique of gold seed implantation plus external beam irradiation, the alternative forms of brachytherapy will be described and compared. The authors' intention is to provide the busy clinician with a succinct and informative review indicating the status of modern interstitial radiotherapy and describing day-to-day approach and results

  18. Palliative Radiotherapy

    International Nuclear Information System (INIS)

    Salinas, J.

    2003-01-01

    Palliative care does not attempt to prolong survival but to the achieve the highest quality of life both for the patient and their family covering their physical, psychological, social and spiritual needs. Radiotherapy (RT), one of the most important therapeutic modalities, has a great significance in palliative medicine for cancer since it attempts to reduce as much as possible the acute reaction associated with the treatment for the patient. (Author)

  19. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  20. Radiotherapy in Cancer Management

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.

    2015-01-01

    Radiotherapy has been used for curative or palliative treatment of cancer, either alone or increasingly as part of a multimodality approach in conjunction with chemotherapy, immunotherapy or surgery. Radiation must be delivered in the safest and most effective way. The use of radiologic and nuclear medicine diagnostic techniques, e.g., the use of CT (Computerized Tomography) and PET/CT allow better detection and staging of diseases by displaying both morphological and functional abnormalities within the affected organs and are essential in the process of radiotherapy planning. Technical advances in radiotherapy have allowed better targeting of tumors, sparing of normal tissue and, in the case of radiosurgery, a decrease in the number of treatments. The IAEA Programme in Human Health aims to enhance the capabilities in Member States to address needs related to the treatment of diseases, including cancer, through the application of nuclear techniques. The Programme supports quality assurance in radiation medicine; DIRAC, the only radiation oncology-specific resource database world-wide; significant, innovative education and training programmes through telemedicine and e-learning accessible via the human health campus website. Technical expertise for country– and region–specific technical cooperation radiation-medicine projects is provided to establish or enhance radiation medicine worldwide. (author)

  1. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids.

    Science.gov (United States)

    Dickinson, Jared M; Fry, Christopher S; Drummond, Micah J; Gundermann, David M; Walker, Dillon K; Glynn, Erin L; Timmerman, Kyle L; Dhanani, Shaheen; Volpi, Elena; Rasmussen, Blake B

    2011-05-01

    The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.

  2. Postmastectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shikama, Naoto; Koguchi, Masahiko; Sasaki, Shigeru; Kaneko, Tomoki; Shinoda, Atsunori; Nishikawa, Atsushi [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-10-01

    Since there have been few reports on postmastectomy radiotherapy having a high evidence level in Japan, the significance of postoperative radiotherapy and the irradiation techniques were reviewed based on reports from Western countries. Authors focused on the indications for postoperative irradiation, irradiation methods (irradiation sites, irradiation techniques; prosthetics, methods of irradiating the chest wall and lymph nodes, timing of irradiation), and complications, and discuss them. The factors thought to be adaptable to postmastectomy radiotherapy have been listed. Axillary lymph node metastasis and the size of the primary focus are thought to be important factors in locoregional recurrence. The chest wall and the supraclavicular lymph nodes are the usual sites of irradiation after mastectomy. The irradiation method consists of tangential irradiation of the chest wall and single-field irradiation of the supraclavicular lymph nodes, with 46-50 Gy in fractional doses of 1.8-2 Gy x 5/w is administered for 4.5-5.5 weeks. The timing of irradiation in the West is generally after chemotherapy. Adverse radiation effects include ischemic heart disease, pneumonitis, arm edema, rib fractures, and brachial plexus paralysis. The frequency of these complications is increased by the combined use of chemotherapy or surgery. The breast cancer cure rate in Japan is generally better than in the West. It remains to be determined whether the clinical data from Europe and America are applicable to the treatment of breast cancer in Japan. To address this issue, a clinical investigation should be performed in Japan with close cooperation between surgeons, physicians, pathologists, and radiotherapists. (K.H.)

  3. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  4. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  5. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  6. Development of a personalized dosimetric tool for radiation protection in case of internal contamination and targeted radiotherapy in nuclear medicine; Developpement d'un outil dosimetrique personnalise pour la radioprotection en contamination interne et la radiotherapie vectorisee en medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Chiavassa, S

    2005-12-15

    Current internal dosimetric estimations are based on the M.I.R.D. formalism and used standard mathematical models. These standard models are often far from a given patient morphology and do not allow to perform patient-specific dosimetry. The aim of this study was to develop a personalized dosimetric tool, which takes into account real patient morphology, composition and densities. This tool, called O.E.D.I.P.E., a French acronym of Tool for the Evaluation of Personalized Internal Dose, is a user-friendly graphical interface. O.E.D.I.P.E. allows to create voxel-based patient-specific geometries and associates them with the M.C.N.P.X. Monte Carlo code. Radionuclide distribution and absorbed dose calculation can be performed at the organ and voxel scale. O.E.D.I.P.E. can be used in nuclear medicine for targeted radiotherapy and in radiation protection in case of internal contamination. (author)

  7. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  8. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract

    Upon acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  9. Small animal radiotherapy research platforms

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, Frank; Granton, Patrick [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Tryggestad, Erik, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 (United States)

    2011-06-21

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  10. Small animal radiotherapy research platforms

    Science.gov (United States)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  11. Small animal radiotherapy research platforms

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-01-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  12. Radiotherapy in bladder cancer

    International Nuclear Information System (INIS)

    Rozan, R.

    1992-01-01

    In 1992, the problem of the vesical radiotherapy is not resolved. The author presents the situation and the different techniques of radiotherapy in bladder cancers: external radiotherapy, only and associated with surgery, interstitial curietherapy and non-classical techniques as per operative radiotherapy, neutron therapy and concurrent radiotherapy with chemotherapy. In order to compare their efficiency, the five-year survival are given in all cases.(10 tabs)

  13. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  14. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  15. The co registration of initial PET on the CT-radiotherapy reduces significantly the variabilities of anatomo-clinical target volume in the child hodgkin disease

    International Nuclear Information System (INIS)

    Metwally, H.; Blouet, A.; David, I.; Rives, M.; Izar, F.; Courbon, F.; Filleron, T.; Laprie, A.; Plat, G.; Vial, J.

    2009-01-01

    It exists a great interobserver variability for the anatomo-clinical target volume (C.T.V.) definition in children suffering of Hodgkin disease. In this study, the co-registration of the PET with F.D.G. on the planning computed tomography has significantly lead to a greater coherence in the clinical target volume definition. (N.C.)

  16. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    International Nuclear Information System (INIS)

    Worm, Esben S.; Høyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.

    2012-01-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 ± 0.50 pixels (mean ± SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing (≤21 mm) that induced an absolute three-dimensional setup error of 1.6 ± 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  17. A study on the precise examination needed to decide an optimal planning target volume for carbon ion radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kato, Hirotoshi; Tsujii, Hirohiko; Mizoe, Junetsu; Kandatsu, Susumu; Ezawa, Hidefumi; Kishimoto, Riwa; Minohara, Shinichi; Ohto, Masao

    2005-01-01

    The purpose of this study was to make two pictures of the randomly-selected cross section of the hepatocellular carcinoma (HCC) lesion using three dimensional (3D) image data obtained from the three dimensional computed tomography (CT) and the three dimensional ultrasonography (US), and to prove their identity as an image of the same cross section. Using the measurement system of three inclined angles of a cross section from the three planes, a horizontal plane and two vertical planes in the three dimensional space, we obtained two images of the same cross section of the HCC lesion originating from 3D-US and 3D-CT image data (US-CT 3D-dual image). To prove the identity of the two images of the US-CT 3D-dual image, 3D-US and 3D-CT images, we compared the two images to the original cross section of the resected HCC specimen. We could visually prove the identity of the two images consisting in the US-CT 3D-dual image originating from the 3D-US image data and 3D-CT image data. The US-CT 3D-dual image seems to be effective to make an exact treatment plan of carbon ion radiotherapy for HCC. (author)

  18. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  19. SU-E-J-44: A Novel Approach to Quantify Patient Setup and Target Motion for Real-Time Image-Guided Radiotherapy (IGRT)

    Energy Technology Data Exchange (ETDEWEB)

    Li, S; Charpentier, P; Sayler, E; Micaily, B; Miyamoto, C [Temple University Hospital, Phila., PA (United States); Geng, J [Xigen LLC, Gaithersburg, MD (United States)

    2015-06-15

    Purpose Isocenter shifts and rotations to correct patient setup errors and organ motion cannot remedy some shape changes of large targets. We are investigating new methods in quantification of target deformation for realtime IGRT of breast and chest wall cancer. Methods Ninety-five patients of breast or chest wall cancer were accrued in an IRB-approved clinical trial of IGRT using 3D surface images acquired at daily setup and beam-on time via an in-room camera. Shifts and rotations relating to the planned reference surface were determined using iterative-closest-point alignment. Local surface displacements and target deformation are measured via a ray-surface intersection and principal component analysis (PCA) of external surface, respectively. Isocenter shift, upper-abdominal displacement, and vectors of the surface projected onto the two principal components, PC1 and PC2, were evaluated for sensitivity and accuracy in detection of target deformation. Setup errors for some deformed targets were estimated by superlatively registering target volume, inner surface, or external surface in weekly CBCT or these outlines on weekly EPI. Results Setup difference according to the inner-surface, external surface, or target volume could be 1.5 cm. Video surface-guided setup agreed with EPI results to within < 0.5 cm while CBCT results were sometimes (∼20%) different from that of EPI (>0.5 cm) due to target deformation for some large breasts and some chest walls undergoing deep-breath-hold irradiation. Square root of PC1 and PC2 is very sensitive to external surface deformation and irregular breathing. Conclusion PCA of external surfaces is quick and simple way to detect target deformation in IGRT of breast and chest wall cancer. Setup corrections based on the target volume, inner surface, and external surface could be significant different. Thus, checking of target shape changes is essential for accurate image-guided patient setup and motion tracking of large deformable

  20. Radiotherapy of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Heilmann, H.P.

    1982-01-01

    Radiotherapy of branchogenic carcinoma comprises; palliative treatment, postoperative or pre-operative radiotherapy, radiotherapy as part of a combination of chemotherapy and radiotherapy of small cell carcinoma and curative radiotherapy of non-operable non-small cell carcinoma. Atelectasis and obstruction are indications for palliative radiotherapy. Postoperative radiotherapy is given only in cases of incomplete resection or mediastinal metastases. In the treatment of small cell carcinoma by combined irradiation and chemotherapy the mediastinum and primary tumour are irradiated, generally after chemotherapy, and the C.N.S. receives prophylactic radiotherapy. Curative radiotherapy is indicated in cases of non-operable small cell carcinoma. Irradiation with doses of 60-70 Gy produced 5-years-survival rates of 10-14% in cases classified as T 1 -T 2 N 0 M 0 . (orig.) [de

  1. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  2. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  3. Interobserver variability in target volume delineation of hepatocellular carcinoma : An analysis of the working group "Stereotactic Radiotherapy" of the German Society for Radiation Oncology (DEGRO).

    Science.gov (United States)

    Gkika, E; Tanadini-Lang, S; Kirste, S; Holzner, P A; Neeff, H P; Rischke, H C; Reese, T; Lohaus, F; Duma, M N; Dieckmann, K; Semrau, R; Stockinger, M; Imhoff, D; Kremers, N; Häfner, M F; Andratschke, N; Nestle, U; Grosu, A L; Guckenberger, M; Brunner, T B

    2017-10-01

    Definition of gross tumor volume (GTV) in hepatocellular carcinoma (HCC) requires dedicated imaging in multiple contrast medium phases. The aim of this study was to evaluate the interobserver agreement (IOA) in gross tumor delineation of HCC in a multicenter panel. The analysis was performed within the "Stereotactic Radiotherapy" working group of the German Society for Radiation Oncology (DEGRO). The GTVs of three anonymized HCC cases were delineated by 16 physicians from nine centers using multiphasic CT scans. In the first case the tumor was well defined. The second patient had multifocal HCC (one conglomerate and one peripheral tumor) and was previously treated with transarterial chemoembolization (TACE). The peripheral lesion was adjacent to the previous TACE site. The last patient had an extensive HCC with a portal vein thrombosis (PVT) and an inhomogeneous liver parenchyma due to cirrhosis. The IOA was evaluated according to Landis and Koch. The IOA for the first case was excellent (kappa: 0.85); for the second case moderate (kappa: 0.48) for the peripheral tumor and substantial (kappa: 0.73) for the conglomerate. In the case of the peripheral tumor the inconsistency is most likely explained by the necrotic tumor cavity after TACE caudal to the viable tumor. In the last case the IOA was fair, with a kappa of 0.34, with significant heterogeneity concerning the borders of the tumor and the PVT. The IOA was very good among the cases were the tumor was well defined. In complex cases, where the tumor did not show the typical characteristics, or in cases with Lipiodol (Guerbet, Paris, France) deposits, IOA agreement was compromised.

  4. Targeted radiotherapy potentiates the cytotoxicity of a novel anti-human DR5 monoclonal antibody and the adenovirus encoding soluble TRAIL in prostate cancer

    International Nuclear Information System (INIS)

    Arafat, W.; Arafat, W.; Zhou, T.; Naoum, G.E.; Buchsbaum, D.J.

    2015-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces a death signal following binding to death receptors (DR4, DR5). We have developed a novel anti-human DR-5 monoclonal antibody (TRA-8) and adenoviral encoding TRAIL (Ad/TRAIL). Herein, we are testing the combined effect of radiotherapy and TRA-8 or Ad TRAIL in prostate cancer cells. Human prostate cancer cell lines LnCap, PC-3 and DU145 were used in this study. Cells were treated either with TRA-8 alone or Ad/TRAIL, radiation alone, or a combination of each at different doses and intervals. Cell survival using the MTS assay and colony forming assay were used to determine radiosensitization. Immunohistochemistry was used to detect bax and bcl-2. Real-time PCR was performed on mRNA of treated prostate cancer cell lines. Finally, a murine model of subcutaneous prostate cancer was used to evaluate the in vivo effect. Cell survival assays detected by MTS assay showed that prostate cell lines treated with a combination of radiation and TRA-8 showed significantly lower survival than cells treated with either radiation or TRA-8 alone. Colony forming assay and cell proliferation assays showed increased killing after combination treatment with TRA-8 or Ad/TRAIL and radiation, than either single agent alone. Mechanistic studies showed that the killing effect was due to induction of apoptosis mostly by increased expression of bax in TRA-8 or Ad/TRAIL treated cells. Additionally, RT-PCR showed an increased copy number of bax in most cells treated with TRA-8 and radiation. It is concluded that radiation and TRA-8 or Ad/ TRAIL produced a synergistic effect in refractory prostrate cancer.

  5. National arrangements for radiotherapy

    International Nuclear Information System (INIS)

    2007-01-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee

  6. Radiotherapy of malignant lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Kujawska, J [Instytut Onkologii, Krakow (Poland)

    1979-01-01

    The paper discusses current views on the role of radiotherapy in the treatment of patients with malignant lymphomas. Principles of radiotherapy employed in the Institute of Oncology in Cracow in case of patients with malignant lymphomas are also presented.

  7. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications

    NARCIS (Netherlands)

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2017-01-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV,

  8. Dosimetric impact of inter-observer variability for 3D conformal radiotherapy and volumetric modulated arc therapy: the rectal tumor target definition case

    International Nuclear Information System (INIS)

    Lobefalo, Francesca; Cozzi, Luca; Scorsetti, Marta; Mancosu, Pietro; Bignardi, Mario; Reggiori, Giacomo; Tozzi, Angelo; Tomatis, Stefano; Alongi, Filippo; Fogliata, Antonella; Gaudino, Anna; Navarria, Piera

    2013-01-01

    To assess the dosimetric effect induced by inter-observer variability in target definition for 3D-conformal RT (3DCRT) and volumetric modulated arc therapy by RapidArc (RA) techniques for rectal cancer treatment. Ten patients with rectal cancer subjected to neo-adjuvant RT were randomly selected from the internal database. Four radiation oncologists independently contoured the clinical target volume (CTV) in blind mode. Planning target volume (PTV) was defined as CTV + 7 mm in the three directions. Afterwards, shared guidelines between radiation oncologists were introduced to give general criteria for the contouring of rectal target and the four radiation oncologists defined new CTV following the guidelines. For each patient, six intersections (I) and unions (U) volumes were calculated coupling the contours of the various oncologists. This was repeated for the contours drawn after the guidelines. Agreement Index (AI = I/U) was calculated pre and post guidelines. Two RT plans (one with 3DCRT technique using 3–4 fields and one with RA using a single modulated arc) were optimized on each radiation oncologist’s PTV. For each plan the PTV volume receiving at least 95% of the prescribed dose (PTV V95%) was calculated for both target and non-target PTVs. The inter-operator AI pre-guidelines was 0.57 and was increased up to 0.69 post-guidelines. The maximum volume difference between the various CTV couples, drawn for each patient, passed from 380 ± 147 cm 3 to 137 ± 83 cm 3 after the introduction of guidelines. The mean percentage for the non-target PTV V95% was 93.7 ± 9.2% before and 96.6 ± 4.9%after the introduction of guidelines for the 3DCRT, for RA the increase was more relevant, passing from 86.5 ± 13.8% (pre) to 94.5 ± 7.5% (post). The OARs were maximally spared with VMAT technique while the variability between pre and post guidelines was not relevant in both techniques. The contouring inter-observer variability has dosimetric effects in the PTV coverage

  9. Exploring Radiotherapy Targeting Strategy and Dose: A Pooled Analysis of Cooperative Group Trials of Combined Modality Therapy for Stage III Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Schild, Steven E; Fan, Wen; Stinchcombe, Thomas E; Vokes, Everett E; Ramalingam, Suresh S; Bradley, Jeffrey D; Kelly, Karen; Pang, Herbert H; Wang, Xiaofei

    2018-04-21

    Concurrent chemoradiotherapy(CRT) is standard therapy for locally-advanced non-small-cell lung cancer(LA-NSCLC)patients. This study was performed to examine thoracic radiotherapy(TRT) parameters and their impact on patient survival. We collected Individual patient data(IPD) from 3600LA-NSCLC patients participating in 16 cooperative group trials of concurrent CRT. The primary TRT parameters examined included field design strategy(elective nodal irradiation(ENI) compared to involved field TRT(IF-TRT)), total dose, and biologically effective dose(BED). Hazard ratios(HRs) for overall survival were calculated with univariable and multivariable Cox models. TRT doses ranged from 60 to 74 Gy with most treatments administered once-daily. ENI was associated with poorer survival than IF-TRT(univariable HR,1.37;95%CI,1.24-1.51,pENI patients were 24 and 16 months, respectively. Patients were divided into 3 dose groups: low total dose(60 Gy), medium total dose(>60Gy-66Gy) and high total dose(>66Gy-74 Gy). With reference to the low dose group, the multivariable HR's were 1.08 for the medium dose group(95%CI=0.93-1.25) and 1.12 for the high dose group(CI=0.97-1.30).The univariate p=0.054 and multivariable p=0.17. BED was grouped as follows: low(55.5 Gy 10 ). With reference to the low BED group, the HR was 1.00(95%CI=0.85-1.18) for the medium BED group and 1.10(95%CI=0.93-1.31) for the high BED group. The univariable p=0.076 and multivariable p=0.16. For LA-NSCLC patients treated with concurrent CRT, IF-TRT was associated with significantly better survival than ENI-TRT. TRT total and BED dose levels were not significantly associated with patient survival. Future progress will require research focusing on better systemic therapy and TRT. Copyright © 2018. Published by Elsevier Inc.

  10. Target localization of 3D versus 4D cone beam computed tomography in lipiodol-guided stereotactic radiotherapy of hepatocellular carcinomas.

    Science.gov (United States)

    Chan, Mark; Chiang, Chi Leung; Lee, Venus; Cheung, Steven; Leung, Ronnie; Wong, Matthew; Lee, Frankle; Blanck, Oliver

    2017-01-01

    Aim of this study was to comparatively evaluate the accuracy of respiration-correlated (4D) and uncorrelated (3D) cone beam computed tomography (CBCT) in localizing lipiodolized hepatocellular carcinomas during stereotactic body radiotherapy (SBRT). 4D-CBCT scans of eighteen HCCs were acquired during free-breathing SBRT following trans-arterial chemo-embolization (TACE) with lipiodol. Approximately 1320 x-ray projections per 4D-CBCT were collected and phase-sorted into ten bins. A 4D registration workflow was followed to register the reconstructed time-weighted average CBCT with the planning mid-ventilation (MidV) CT by an initial bone registration of the vertebrae and then tissue registration of the lipiodol. For comparison, projections of each 4D-CBCT were combined to synthesize 3D-CBCT without phase-sorting. Using the lipiodolized tumor, uncertainties of the treatment setup estimated from the absolute and relative lipiodol position to bone were analyzed separately for 4D- and 3D-CBCT. Qualitatively, 3D-CBCT showed better lipiodol contrast than 4D-CBCT primarily because of a tenfold increase of projections used for reconstruction. Motion artifact was observed to subside in 4D-CBCT compared to 3D-CBCT. Group mean, systematic and random errors estimated from 4D- and 3D-CBCT agreed to within 1 mm in the cranio-caudal (CC) and 0.5 mm in the anterior-posterior (AP) and left-right (LR) directions. Systematic and random errors are largest in the CC direction, amounting to 4.7 mm and 3.7 mm from 3D-CBCT and 5.6 mm and 3.8 mm from 4D-CBCT, respectively. Safety margin calculated from 3D-CBCT and 4D-CBCT differed by 2.1, 0.1 and 0.0 mm in the CC, AP, and LR directions. 3D-CBCT is an adequate alternative to 4D-CBCT when lipoid is used for localizing HCC during free-breathing SBRT. Similar margins are anticipated with 3D- and 4D-CBCT.

  11. Variations in CT determination of target volume with active breath co-ordinate in radiotherapy for post-operative gastric cancer.

    Science.gov (United States)

    Li, Gui-Chao; Zhang, Zhen; Ma, Xue-Jun; Yu, Xiao-Li; Hu, Wei-Gang; Wang, Jia-Zhou; Li, Qi-Wen; Liang, Li-Ping; Shen, Li-Jun; Zhang, Hui; Fan, Ming

    2016-01-01

    To investigate interobserver and inter-CT variations in using the active breath co-ordinate technique in the determination of clinical tumour volume (CTV) and normal organs in post-operative gastric cancer radiotherapy. Ten gastric cancer patients were enrolled in our study, and four radiation oncologists independently determined the CTVs and organs at risk based on the CT simulation data. To determine interobserver and inter-CT variation, we evaluated the maximum dimensions, derived volume and distance between the centres of mass (CMs) of the CTVs. We assessed the reliability in CTV determination among the observers by conformity index (CI). The average volumes ± standard deviation (cm(3)) of the CTV, liver, left kidney and right kidney were 674 ± 138 (range, 332-969), 1000 ± 138 (range, 714-1320), 149 ± 13 (range, 104-183) and 141 ± 21 (range, 110-186) cm(3), respectively. The average inter-CT distances between the CMs of the CTV, liver, left kidney and right kidney were 0.40, 0.56, 0.65 and 0.6 cm, respectively; the interobserver values were 0.98, 0.53, 0.16 and 0.15 cm, respectively. In the volume size of CTV for post-operative gastric cancer, there were significant variations among multiple observers, whereas there was no variation between different CTs. The slices in which variations more likely occur were the slices of the lower verge of the hilum of the spleen and porta hepatis, then the paraoesophageal lymph nodes region and abdominal aorta, and the inferior vena cava, and the variation in the craniocaudal orientation from the interobserver was more predominant than that from inter-CT. First, this is the first study to evaluate the interobserver and inter-CT variations in the determination of the CTV and normal organs in gastric cancer with the use of the active breath co-ordinate technique. Second, we analysed the region where variations most likely occur. Third, we investigated the influence of interobserver variation on

  12. Hyperthermia and radiotherapy

    International Nuclear Information System (INIS)

    Fitspatrick, C.

    1990-01-01

    Hyperthermia and radiotherapy have for long been used to assist in the control of tumours, either as separate entities, or, in a combined treatment scheme. This paper outlines why hyperthermia works, thermal dose and the considerations required in the timing when hyperthermia is combined with radiotherapy. Previously reported results for hyperthermia and radiotherapy used together are also presented. 8 refs., 8 tabs

  13. A new three-dimensional conformal radiotherapy (3DCRT) technique for large breast and/or high body mass index patients: evaluation of a novel fields assessment aimed to reduce extra–target-tissue irradiation

    Science.gov (United States)

    Stimato, Gerardina; Ippolito, Edy; Silipigni, Sonia; Venanzio, Cristina Di; Gaudino, Diego; Fiore, Michele; Trodella, Lucio; D'Angelillo, Rolando Maria; Ramella, Sara

    2016-01-01

    Objective: To develop an alternative three-dimensional treatment plan with standardized fields class solution for whole-breast radiotherapy in patients with large/pendulous breast and/or high body mass index (BMI). Methods: Two treatment plans [tangential fields and standardized five-fields technique (S5F)] for a total dose of 50 Gy/25 fractions were generated for patients with large breasts [planning target volume (PTV) >1000 cm3 and/or BMI >25 kg m−2], supine positioned. S5F plans consist of two wedged tangential beams, anteroposterior: 20° for the right breast and 340° for the left breast, and posteroanterior: 181° for the right breast and 179° for the left breast. A field in field in medial–lateral beam and additional fields were added to reduce hot spot areas and extra–target-tissue irradiation and to improve dose distribution. The percentage of PTV receiving 95% of the prescribed dose (PTV V95%), percentage of PTV receiving 105% of the prescribed dose (PTV V105%), maximal dose to PTV (PTV Dmax), homogeneity index (HI) and conformity index were recorded. V10%, V20%, V105% and V107% of a “proper” normal tissue structure (body-PTV healthy tissue) were recorded. Statistical analyses were performed using SYSTAT v.12.0 (SPSS, Chicago, IL). Results: In 38 patients included, S5F improved HI (8.4 vs 10.1; p ≤ 0.001) and significantly reduced PTV Dmax and PTV V105%. The extra–target-tissue irradiation was significantly reduced using S5F for V105% (cm3) and V107% (cm3) with a very high difference in tissue irradiation (46.6 vs 3.0 cm3, p ≤ 0.001 for V105% and 12.2 vs 0.0 cm3, p ≤ 0.001 for V107% for tangential field and S5F plans, respectively). Only a slight increase in low-dose extra–target-tissue irradiation (V10%) was observed (2.2719 vs 1.8261 cm3, p = 0.002). Conclusion: The S5F technique in patients with large breast or high BMI increases HI and decreases hot spots in extra-target-tissues and can therefore be

  14. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  15. Pregnancy and radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Karasawa, Kumiko

    2013-01-01

    Cancer in pregnancy is relatively uncommon but breast cancer is one of the most common malignancy occur with pregnancy. Prescribed doses of radiotherapy are significantly higher than those of diagnostic procedures. Fetal exposure and damage can occur during radiotherapy within target area. Because of those risks, radiotherapy during pregnancy is basically has to avoid. Even though, feral damage depends on fetal dose and has some threshold dose. Practically, even in stochastic effect, there are some minimal doses. A most important point is careful estimation of fetal dose before radiation. The physician has to inform the patient about risk and benefit of radiotherapy to fetus and to mother and have an ethical balance to help the mother and family to make a final decision. (author)

  16. Traumatic skeletal changes

    International Nuclear Information System (INIS)

    Troeger, J.; Schofer, O.

    1985-01-01

    Skeleton scintiscanning is indicated in the following cases: (1) Suspected bone injury after clinical examination, the radiograph of the skeletal region in question contributing findings that either do not confirm suspision, or make not clear whether the changes observed are traumatic. (2) Polytrauma. (3) When the accident scenario reported by the persons taking care of the child does not sufficiently explain the skeletal changes observed, or when these persons expressly deny the possibility of a trauma being the cause of findings observed. (4) Suspected or proven battered-child syndrome. (orig./MG) [de

  17. Randomized phase II – study evaluating EGFR targeting therapy with Cetuximab in combination with radiotherapy and chemotherapy for patients with locally advanced pancreatic cancer – PARC: study protocol [ISRCTN56652283

    Directory of Open Access Journals (Sweden)

    Heeger S

    2005-10-01

    Full Text Available Abstract Background Pancreatic cancer is the fourth commonest cause of death from cancer in men and women. Advantages in surgical techniques, radiation therapy techniques, chemotherapeutic regimes, and different combined-modality approaches have yielded only a modest impact on the prognosis of patients with pancreatic cancer. Thus there is clearly a need for additional strategies. One approach involves using the identification of a number of molecular targets that may be responsible for the resistance of cancer cells to radiation or to other cytotoxic agents. As such, these molecular determinants may serve as targets for augmentation of the radiotherapy or chemotherapy response. Of these, the epidermal growth factor receptor (EGFR has been a molecular target of considerable interest and investigation, and there has been a tremendous surge of interest in pursuing targeted therapy of cancers via inhibition of the EGFR. Methods/design The PARC study is designed as an open, controlled, prospective, randomized phase II trial. Patients in study arm A will be treated with chemoradiation using intensity modulated radiation therapy (IMRT combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine infusions weekly over 4 weeks. Patients in study arm B will be treated with chemoradiation using intensity modulated radiation therapy (IMRT combined with gemcitabine and simultaneous cetuximab infusions. After chemoradiation the patients receive gemcitabine weekly over 4 weeks and cetuximab infusions over 12 weeks. A total of 66 patients with locally advanced adenocarcinoma of the pancreas will be enrolled. An interim analysis for patient safety reasons will be done one year after start of recruitment. Evaluation of the primary endpoint will be performed two years after the last patient's enrolment. Discussion The primary objective of this study is to evaluate the feasibility and the toxicity profile of

  18. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  19. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  20. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  1. Skeletal MR imaging: Correlation with skeletal scintigraphy

    International Nuclear Information System (INIS)

    Colletti, P.M.; Raval, J.K.; Ford, P.V.; Benson, R.C.; Kerr, R.M.; Boswell, W.D.; Siegel, M.E.; Ralls, P.W.

    1987-01-01

    Skeletal MR images bone marrow while skeletal scintigraphy uses bone metabolism to demonstrate abnormalities. The purpose of this paper is to correlate these MR and scintigraphic findings. T1 and T2 MR images at 0.5 T were correlated with planar bone scintigraphy (RN) using Tc-99m MDP in 56 patients. Of 23 cases with suspected spinal metastases, 19 were positive by MR imaging, 16 by RN. Individual lesions were shown better by MR imaging in five and by RN in two. These two cases had scoliosis, a potential difficulty with MR imaging. In 14 cases of suspected avascular necrosis (AVN), MR imaging was positive in 13 while RN was positive in ten. One negative case by RN had bilateral AVN by MR imaging. Four skull lesions shown easily by RN were seen only in retrospect on MR images. MR imaging is advantageous in evaluating bones with predominant marrow such as vertebrae or the femoral head, while RN is superior in areas primarily composed of cortical bone such as the skull

  2. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  3. Multiple myeloma: Results of radiotherapy in skeletal lesions

    International Nuclear Information System (INIS)

    Budach, V.; Hueltenschmidt, B.; Stuschke, M.; Stueben, G.; Sack, H.; Bamberg, M.

    1991-01-01

    In this retrospective study the records of 157 patients with the diagnosis of multiple myeloma were evaluated with regard to subjective pain relief after a series of radiation therapy at 389 local sites. The most frequently treated region was the spine (50.2%), followed by the thoracic wall (17.9%) and the upper and lower extremities (17.8%). The median survival after diagnosis of all patients was 36 months. 88.4% of all treated sites showed good to moderate response in terms of pain remission after irradiation. It is shown that pain relief is significantly dependent on the total dose but independent of the dose per fraction. A total dose of 30 Gy in two weeks (5x3 Gy/week) is recommended as a well tolerated and reasonable treatment option to achieve maximum palliation and minimum hospitalization time for patients in whom multiple myeloma is diagnosed. (orig.) [de

  4. Rotational radiotherapy for prostate cancer in clinical practice

    DEFF Research Database (Denmark)

    Aznar, Marianne C; Petersen, Peter Meidahl; Logadottir, Ashildur

    2010-01-01

    Radiotherapy is the standard treatment in locally advanced prostate cancer. The latest technological improvement is modulated rotational radiotherapy, where one single rotation of the treatment machine is used to conform the dose delivery to the target and spare organs at risk, requiring less than...

  5. Proceedings of 19. symposium on experimental radiotherapy and clinical radiobiology

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel

    2010-01-01

    The proceedings include review contributions on radio-oncology, and new radiation technologies and molecular prediction; and poster sessions on the following topics: hypoxia; molecular mechanisms of radiation resistance; molecular targeting; DNA repair; biological imaging; biology of experimental radiations; normal tissue toxicity; modern radiotherapy; tumor hypoxia and metabolic micro milieu; immune system and radiotherapy.

  6. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  7. Advances in radiotherapy

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2005-01-01

    computer optimization to determine optimal beam delivery intensity maps in order to maximize the target coverage and spare critical tissues as much as possible. The intensity modulated beams are delivered by conventional multileaf collimators or binary collimators modulating fan beams delivered rotationally. IMRT can enable higher doses to be delivered to the tumor and/or reduce the complications of sensitive tissues. Variability in the setup of the patient and movement of organs has likely limited the success of radiation therapy in the past but has become critical with the newfound ability of IMRT to put high dose gradients between the tumor and critical tissues. These issues are now being addressed with imaging systems present in the treatment room. Image-guided radiation therapy (IGRT) includes methods, such as transabdominal ultrasound and in-room CT scanners to image the patient just before treatment to improve setup accuracy and methods such as electronic x-ray imaging systems viewing implanted markers during treatment to minimize the effect of organ motion. 18 Excluding proton radiotherapy, equipment costs of modern radiotherapy are only marginally greater than for conventional radiotherapy. In the developed world the cost of radiotherapy equipment is about 15-20% of the total to deliver the treatment. Moreover, the cost of radiation therapy delivery represents only about 10-15% of the budget of a comprehensive cancer center and so it is a bargain as compared to other therapy forms such as surgery and chemotherapy. (author)

  8. Patient Radiation Protection in Radiotherapy

    International Nuclear Information System (INIS)

    Hegazy, M.

    2010-01-01

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  9. SU-F-P-27: The Study of Actual DVH for Target and OARs During the Radiotherapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C; Yin, Y [Shandong Cancer Hospital and Institute, Jinan, Shandong (China)

    2016-06-15

    Purpose: To analyze the changes of the volume and dosimetry of target and organs at risk (OARs) by comparing the daily CBCT images and planning CT images of the patients with Non-Small Cell Lung Cancer (NSCLC) and analyze the difference between planned dose and accumulated dose. Methods: This study retrospectively analyzed eight cases of non-small cell lung cancer patients who accepted CRT or IMRT treatment and KV-CBCT. For each patient, the prescription dose was 60Gy and the fraction dose was 2Gy. Deform the daily CBCT images to planning CT images by the mapping of registration to compare the planning dose with cumulative dose of targets and organs at risk in RayStation. Results: The average volume of GTV of 8 patients with CBCT was 88.26% of the original volume. The average plan dose of GTV was 64.49±2.40Gy. The accumulated dose of GTV was 60.13±2.70Gy (P≤0.05). The average volume of PTV to reach the prescription dose was 95.59% for original plan and 81.47% for accumulated plan (P≤0.05). The volume changes of the left and right lung of the original volume was 88.95% and 80.32%, respectively. The average dose of the left and right lung of original plan was 9.31±1.75Gy and 4.33±1.10Gy, respectively(P≥0.05). The average accumulated dose was 9.63±1.96Gy and 4.63±1.36Gy, respectively(P≥0.05). The average plan dose and accumulated dose of heart was 6.88±1.70Gy and 6.38±0.91Gy, respectively (P≥0.05). The average plan maximum dose and accumulated dose for spinal cord was 24.62±5.91Gy and 26.00±5.14Gy, respectively (P≥0.05). Conclusion: The changes of target anatomical structure with NSCLC make difference between the planned dose and cumulative dose. With the dose deformation method, the dose gap can be found between planning dose and delivery dose.

  10. The skeletal system

    NARCIS (Netherlands)

    Nikkels, PGJ

    2015-01-01

    Skeletal dysplasias are a group of disorders with a disturbance in development and/or growth of cartilage and/or bone. Epiphysis, metaphysis, and diaphysis of long bones are affected in a generalized manner with or without involvement of membranous bone of the skull. A dysostosis affects one or some

  11. Lipolysis in Skeletal Muscle

    DEFF Research Database (Denmark)

    Serup, Annette Karen Lundbeck

    chemical structure of DAG. We took advantage of the fact that insulin sensitivity is increased after exercise, and that mice knocked out (KO) of HSL accumulate DAG after exercise, and measured insulin stimulated glucose uptake after treadmill running in skeletal muscle from HSL KO mice and wildtype control...

  12. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  13. Proton minibeam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Girst, Stefanie

    2016-03-08

    The risk of developing adverse side effects in the normal tissue after radiotherapy is often limiting for the dose that can be applied to the tumor. Proton minibeam radiotherapy, a spatially fractionated radiotherapy method using sub-millimeter proton beams, similar to grid therapy or microbeam radiation radiotherapy (MRT) using X-rays, has recently been invented at the ion microprobe SNAKE in Munich. The aim of this new concept is to minimize normal tissue injuries in the entrance channel and especially in the skin by irradiating only a small percentage of the cells in the total irradiation field, while maintaining tumor control via a homogeneous dose in the tumor, just like in conventional broad beam radiotherapy. This can be achieved by optimizing minibeam sizes and distances according to the prevailing tumor size and depth such that after widening of the minibeams due to proton interactions in the tissue, the overlapping minibeams produce a homogeneous dose distribution throughout the tumor. The aim of this work was to elucidate the prospects of minibeam radiation therapy compared to conventional homogeneous broad beam radiotherapy in theory and in experimental studies at the ion microprobe SNAKE. Treatment plans for model tumors of different sizes and depths were created using the planning software LAPCERR, to elaborate suitable minibeam sizes and distances for the individual tumors. Radiotherapy-relevant inter-beam distances required to obtain a homogeneous dose in the target volume were found to be in the millimeter range. First experiments using proton minibeams of only 10 μm and 50 μm size (termed microchannels in the corresponding publication Zlobinskaya et al. 2013) and therapy-conform larger dimensions of 100 μm and 180 μm were performed in the artificial human in-vitro skin model EpiDermFT trademark (MatTek). The corresponding inter-beam distances were 500 μm, 1mm and 1.8 mm, respectively, leading to irradiation of only a few percent of the cells

  14. CT-guided intracavitary radiotherapy for cervical cancer: Comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose-volume parameters

    International Nuclear Information System (INIS)

    Shin, Kyung Hwan; Kim, Tae Hyun; Cho, Jung Keun; Kim, Joo-Young; Park, Sung Yong; Park, Sang-Yoon; Kim, Dae Yong; Chie, Eui Kyu; Pyo, Hong Ryull; Cho, Kwan Ho

    2006-01-01

    Purpose: To perform an intracavitary radiotherapy (ICR) plan comparison between the conventional point A plan (conventional plan) and computed tomography (CT)-guided clinical target volume-based plan (CTV plan) by analysis of the quantitative dose-volume parameters and irradiated volumes of organs at risk in patients with cervical cancer. Methods and Materials: Thirty plans for 192 Ir high-dose-rate ICR after 30-40-Gy external beam radiotherapy were investigated. CT images were acquired at the first ICR session with artifact-free applicators in place. The gross tumor volume, clinical target volume (CTV), point A, and International Commission on Radiation Units and Measurements Report 38 rectal and bladder points were defined on reconstructed CT images. A fractional 100% dose was prescribed to point A in the conventional plan and to the outermost point to cover all CTVs in the CTV plan. The reference volume receiving 100% of the prescribed dose (V ref ), and the dose-volume parameters of the coverage index, conformal index, and external volume index were calculated from the dose-volume histogram. The bladder, rectal point doses, and percentage of volumes receiving 50%, 80%, and 100% of the prescribed dose were also analyzed. Results: Conventional plans were performed, and patients were categorized on the basis of whether the 100% isodose line of point A prescription dose fully encompassed the CTV (Group 1, n = 20) or not (Group 2, n = 10). The mean gross tumor volume (11.6 cm 3 ) and CTV (24.9 cm 3 ) of Group 1 were smaller than the corresponding values (23.7 and 44.7 cm 3 , respectively) for Group 2 (p = 0.003). The mean V ref for all patients was 129.6 cm 3 for the conventional plan and 97.0 cm 3 for the CTV plan (p = 0.003). The mean V ref in Group 1 decreased markedly with the CTV plan (p < 0.001). For the conventional and CTV plans in all patients, the mean coverage index, conformal index, and external volume index were 0.98 and 1.0, 0.23 and 0.34, and 3.86 and

  15. Quantitative assessment of inter-observer variability in target volume delineation on stereotactic radiotherapy treatment for pituitary adenoma and meningioma near optic tract

    International Nuclear Information System (INIS)

    Yamazaki, Hideya; Ogita, Mikio; Yamashita, Koichi; Kotsuma, Tadayuki; Shiomi, Hiroya; Tsubokura, Takuji; Kodani, Naohiro; Nishimura, Takuya; Aibe, Norihiro; Udono, Hiroki; Nishikata, Manabu; Baba, Yoshimi

    2011-01-01

    To assess inter-observer variability in delineating target volume and organs at risk in benign tumor adjacent to optic tract as a quality assurance exercise. We quantitatively analyzed 21 plans made by 11 clinicians in seven CyberKnife centers. The clinicians were provided with a raw data set (pituitary adenoma and meningioma) including clinical information, and were asked to delineate the lesions and create a treatment plan. Their contouring and plans (10 adenoma and 11 meningioma plans), were then compared. In addition, we estimated the influence of differences in contouring by superimposing the respective contours onto a default plan. The median planning target volume (PTV) and the ratio of the largest to the smallest contoured volume were 9.22 cm 3 (range, 7.17 - 14.3 cm 3 ) and 1.99 for pituitary adenoma, and 6.86 cm 3 (range 6.05 - 14.6 cm 3 ) and 2.41 for meningioma. PTV volume was 10.1 ± 1.74 cm 3 for group 1 with a margin of 1 -2 mm around the CTV (n = 3) and 9.28 ± 1.8 cm 3 (p = 0.51) for group 2 with no margin (n = 7) in pituitary adenoma. In meningioma, group 1 showed larger PTV volume (10.1 ± 3.26 cm 3 ) than group 2 (6.91 ± 0.7 cm 3 , p = 0.03). All submitted plan keep the irradiated dose to optic tract within the range of 50 Gy (equivalent total doses in 2 Gy fractionation). However, contours superimposed onto the dose distribution of the default plan indicated that an excessive dose 23.64 Gy (up to 268% of the default plan) in pituitary adenoma and 24.84 Gy (131% of the default plan) in meningioma to the optic nerve in the contours from different contouring. Quality assurance revealed inter-observer variability in contour delineation and their influences on planning for pituitary adenoma and meningioma near optic tract

  16. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    Science.gov (United States)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81

  17. Decision logics in radiotherapy

    International Nuclear Information System (INIS)

    Gauwerky, F.

    1979-01-01

    Decisions in planning procedures can generally, at least for beam therapy to deep seated tumors, be based on a self-consistent system of criteria of optimization, namely: 1. The absorbed dose to the target volume must be applied as uniformly as possible. 2. Absorbed doses to organs (volumes) at risk must be as low as possible, at least below an accepted limit. 3. Radiation effects to outside volumes must be kept as low as possible. Whereas these criteria, as being reduced to the simplest possible requirements, have to be regarded as the stable elements, the radiotherapy parameters, such as geometric arrangements, special techniques, absorbed dose contributions to reference points or systems, have to be taken as the variables within decision processes. The properties of the criteria which have widely proved to be valuable in routine clinical practice, have been investigated in relation to the theoretical system of axioms as it is e.g. offered by Karl Popper's general logics of scientific research. An axiomatic system, as it is demanded (after Popper) must be a) free of discrepancies, i.e. self-consistent (not any sentence can be derived), b) independent, that is, one axiom cannot be derived from another one within the system, c) sufficient for deduction of statements needed, d) necessary, that is complete. All these requirements are fitting also to the offered system of radiotherapy optimization criteria. It has been demonstrated, that Popper's axiomatic system can be regarded as to be the general case for all scientific fields of application, the set of optimization criteria being a special system for radiation therapy, which would have been derivable from Popper's theory. Also practical use could be demonstrated. (orig./ORU) [de

  18. Human/murine chimeric 81C6 F(ab')2 fragment: preclinical evaluation of a potential construct for the targeted radiotherapy of malignant glioma

    International Nuclear Information System (INIS)

    Boskovitz, Abraham; Akabani, Gamal H.; Pegram, Charles N.; Bigner, Darrell D.; Zalutsky, Michael R.

    2004-01-01

    We have obtained encouraging responses in recent Phase I studies evaluating 131 I-labeled human/murine chimeric 81C6 anti-tenascin monoclonal antibody (ch81C6) administered into surgically-created tumor resection cavities in brain tumor patients. However, because the blood clearance is slow, hematologic toxicity has been higher than seen with murine 81C6 (mu81C6). In the current study, a series of paired-label experiments were performed in athymic mice bearing subcutaneous D-245 MG human glioma xenografts to compare the biodistribution of the fragment ch81C6 F(ab') 2 labeled using Iodogen to a) intact ch81C6, b) mu81C6, and c) ch81C6 F(ab') 2 labeled using N-succinimidyl 3-[ 131 I]iodobenzoate. Tumor retention of radioiodine activity for the F(ab') 2 fragment was comparable to that for intact ch81C6 for the first 24 h and to that for mu81C6 for the first 48 h; as expected, blood and other normal tissue levels declined faster for ch81C6 F(ab') 2. Radiation dosimetry calculations suggest that 131 I-labeled ch81C6 F(ab') 2 may warrant further evaluation as a targeted radiotherapeutic for the treatment of brain tumors

  19. Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. proposal for standardizing terminology and procedure based on the surgical experience

    International Nuclear Information System (INIS)

    Gregoire, V.; Coche, E.; Cosnard, G.; Hamoir, M.; Reychler, H.

    2000-01-01

    The increasing use of 3D treatment planning in head and neck radiation oncology has created an urgent need for new guidelines for the selection and the delineation of the neck node areas to be included in the clinical target volume. Surgical literature has provided us with valuable information on the extent of pathological nodal involvement in the neck as a function of the primary tumor site. In addition, few clinical series have also reported information on radiological nodal involvement in those areas not commonly included in radical neck dissection. Taking all these data together, guidelines for the selection of the node levels to be irradiated for the major head and neck sites could be proposed. To fill the missing link between these Guidelines and the 3D treatment planning, recommendations for the delineation of these node levels (levels I-VI and retropharyngeal) on CT (or MRI) slices have been proposed using the guidelines outlined by the Committee for Head and Neck Surgery and Oncology of the American Academy for Otolarynology-Head and Neck Surgery. These guidelines were adapted to take into account specific radiological landmarks more easily identified on CT or MRI slices than in the operating field. (author)

  20. MO-FG-BRC-02: Low-Z Switching Linear Accelerator Targets: New Options for Image Guidance and Dose Enhancement in Radiotherapy

    International Nuclear Information System (INIS)

    Robar, J.

    2016-01-01

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and the implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.

  1. MO-FG-BRC-02: Low-Z Switching Linear Accelerator Targets: New Options for Image Guidance and Dose Enhancement in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Robar, J. [Capital District Health Authority (Canada)

    2016-06-15

    Experimental research in medical physics has expanded the limits of our knowledge and provided novel imaging and therapy technologies for patients around the world. However, experimental efforts are challenging due to constraints in funding, space, time and other forms of institutional support. In this joint ESTRO-AAPM symposium, four exciting experimental projects from four different countries are highlighted. Each project is focused on a different aspect of radiation therapy. From the USA, we will hear about a new linear accelerator concept for more compact and efficient therapy devices. From Canada, we will learn about novel linear accelerator target design and the implications for imaging and therapy. From France, we will discover a mature translational effort to incorporate theranostic nanoparticles in MR-guided radiation therapy. From Germany, we will find out about a novel in-treatment imaging modality for particle therapy. These examples of high impact, experimental medical physics research are representative of the diversity of such efforts that are on-going around the globe. J. Robar, Research is supported through collaboration with Varian Medical Systems and Brainlab AGD. Westerly, This work is supported by the Department of Radiation Oncology at the University of Colorado School of Medicine. COI: NONEK. Parodi, Part of the presented work is supported by the DFG (German Research Foundation) Cluster of Excellence MAP (Munich-Centre for Advanced Photonics) and has been carried out in collaboration with IBA.

  2. The metabolic radiotherapy. La radiotherapie metabolique

    Energy Technology Data Exchange (ETDEWEB)

    Begon, F.; Gaci, M. (Centre Hospitalier Universitaire, 86 - Poitiers (France))

    In this article, the authors recall the principles of the metabolic radiotherapy and present these main applications in the treatment of thyroid cancers, hyperthyroidism, polycythemia, arthritis, bone metastases, adrenergic neoplasms. They also present the radioimmunotherapy.

  3. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example

    International Nuclear Information System (INIS)

    Rosewall, Tara; Alasti, Hamideh; Bayley, Andrew; Yan, Jing

    2017-01-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2 = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were −0.4 to 1.8 mm (LR), −1.2 to 5.2 mm (SI) and −1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer.

  4. 'Compromise position' image alignment to accommodate independent motion of multiple clinical target volumes during radiotherapy: A high risk prostate cancer example.

    Science.gov (United States)

    Rosewall, Tara; Yan, Jing; Alasti, Hamideh; Cerase, Carla; Bayley, Andrew

    2017-04-01

    Inclusion of multiple independently moving clinical target volumes (CTVs) in the irradiated volume causes an image guidance conundrum. The purpose of this research was to use high risk prostate cancer as a clinical example to evaluate a 'compromise' image alignment strategy. The daily pre-treatment orthogonal EPI for 14 consecutive patients were included in this analysis. Image matching was performed by aligning to the prostate only, the bony pelvis only and using the 'compromise' strategy. Residual CTV surrogate displacements were quantified for each of the alignment strategies. Analysis of the 388 daily fractions indicated surrogate displacements were well-correlated in all directions (r 2  = 0.95 (LR), 0.67 (AP) and 0.59 (SI). Differences between the surrogates displacements (95% range) were -0.4 to 1.8 mm (LR), -1.2 to 5.2 mm (SI) and -1.2 to 5.2 mm (AP). The distribution of the residual displacements was significantly smaller using the 'compromise' strategy, compared to the other strategies (p 0.005). The 'compromise' strategy ensured the CTV was encompassed by the PTV in all fractions, compared to 47 PTV violations when aligned to prostate only. This study demonstrated the feasibility of a compromise position image guidance strategy to accommodate simultaneous displacements of two independently moving CTVs. Application of this strategy was facilitated by correlation between the CTV displacements and resulted in no geometric excursions of the CTVs beyond standard sized PTVs. This simple image guidance strategy may also be applicable to other disease sites that concurrently irradiate multiple CTVs, such as head and neck, lung and cervix cancer. © 2016 The Royal Australian and New Zealand College of Radiologists.

  5. Guidelines for primary radiotherapy of patients with prostate cancer

    International Nuclear Information System (INIS)

    Boehmer, Dirk; Maingon, Philippe; Poortmans, Philip; Baron, Marie-Helene; Miralbell, Raymond; Remouchamps, Vincent; Scrase, Christopher; Bossi, Alberto; Bolla, Michel

    2006-01-01

    Background and purposes: The appropriate application of 3-D conformal radiotherapy, intensity modulated radiotherapy or image guided radiotherapy for patients undergoing radiotherapy for prostate cancer requires a standardisation of target delineation as well as clinical quality assurance procedures. Patients and methods: Pathological and imaging studies provide valuable information on tumour extension. In addition, clinical investigations on patient positioning and immobilisation as well as treatment verification data offer an abundance of information. Results: Target volume definitions for different risk groups of prostate cancer patients based on pathological and imaging studies are provided. Available imaging modalities, patient positioning and treatment preparation studies as well as verification procedures are collected from literature studies. These studies are summarised and recommendations are given where appropriate. Conclusions: On behalf of the European Organisation for Research and Treatment of Cancer (EORTC) Radiation Oncology Group this article presents a common set of recommendations for external beam radiotherapy of patients with prostate cancer

  6. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  7. 166Ho and 90Y labeled 6D2 monoclonal antibody for targeted radiotherapy of melanoma: Comparison with 188Re radiolabel

    International Nuclear Information System (INIS)

    Thompson, S.; Ballard, B.; Jiang, Z.; Revskaya, E.; Sisay, N.; Miller, W.H.; Cutler, C.S.; Dadachova, E.; Francesconi, L.C.

    2014-01-01

    Introduction: An approach to radioimmunotherapy (RIT) of metastatic melanoma is the targeting of melanin pigment with monoclonal antibodies (mAbs) to melanin radiolabeled with therapeutic radionuclides. The proof of principle experiments were performed using a melanin-binding antibody 6D2 of IgM isotype radiolabeled with a β emitter 188 Re and demonstrated the inhibition of tumor growth. In this study we investigated the efficacy of 6D2 antibody radiolabeled with two other longer lived β emitters 90 Y and 166 Ho in treatment of experimental melanoma, with the objective to find a possible correlation between the efficacy and half-life of the radioisotopes which possess high energy β (E max > 1.5 MeV) emission properties. Methods: 6D2 was radiolabeled with longer lived β emitters 90 Y and 166 Ho in treatment of experimental melanoma in A2058 melanoma tumor-bearing nude mice. The immunoreactivity of the radiolabeled 6D2 mAb, its in vitro binding to the MNT1 human melanoma cells, the biodistribution and therapy in A2058 human melanoma bearing nude mice as well as dosimetry calculations were performed. Results: When labeled with the longer lived 90 Y radionuclide, the 6D2 mAb did not produce any therapeutic effect in tumor bearing mice while the reduction of the tumor growth by 166 Ho-6D2 was very similar to the previously reported therapy results for 188 Re-6D2. In addition, 166 Ho-labeled mAb produced the therapeutic effect on the tumor without any toxic effects while the administration of the 90 Y-labeled radioconjugate was toxic to mice with no appreciable anti-tumor effect. Conclusions: 166 Ho-labeled mAb to melanin produced some therapeutic effect on the tumor without any toxic effects while the administration of the 90 Y-labeled radioconjugate was toxic to mice with no appreciable anti-tumor effect. We concluded that the serum half-life of the 6D2 carrier antibody matched well the physical half-life of 166 Ho to deliver the tumoricidal absorbed dose to the

  8. How does knowledge of three-dimensional excision margins following breast conservation surgery impact upon clinical target volume definition for partial-breast radiotherapy?

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Nerurkar, Ashutosh Y.; Desai, Saral S.; Krupa, Jaroslaw; Devalia, Haresh; Rovere, Guidubaldo Querci della; Harris, Emma J.; Kyriakidou, Julia; Yarnold, John R.

    2010-01-01

    Background and purpose: To compare partial-breast clinical target volumes generated using a standard 15 mm margin (CTV standard ) with those generated using three-dimensional surgical excision margins (CTV tailored30 ) in women who have undergone wide local excision (WLE) for breast cancer. Material and methods: Thirty-five women underwent WLE with placement of clips in the anterior, deep and coronal excision cavity walls. Distances from tumour to each of six margins were measured microscopically. Tumour bed was defined on kV-CT images using clips. CTV standard was generated by adding a uniform three-dimensional 15 mm margin, and CTV tailored30 was generated by adding 30 mm minus the excision margin in three-dimensions. Concordance between CTV standard and CTV tailored30 was quantified using conformity (CoI), geographical-miss (GMI) and normal-tissue (NTI) indices. An external-beam partial-breast irradiation (PBI) plan was generated to cover 95% of CTV standard with the 95% isodose. Percentage-volume coverage of CTV tailored30 by the 95% isodose was measured. Results: Median (range) coronal, superficial and deep excision margins were 15.0 (0.5-76.0) mm, 4.0 (0.0-60.0) mm and 4.0 (0.5-35.0) mm, respectively. Median CoI, GMI and NTI were 0.62, 0.16 and 0.20, respectively. Median coverage of CTV tailored30 by the PBI-plan was 97.7% (range 84.9-100.0%). CTV tailored30 was inadequately covered by the 95% isodose in 4/29 cases. In three cases, the excision margin in the direction of inadequate coverage was ≤2 mm. Conclusions: CTVs based on 3D excision margin data are discordant with those defined using a standard uniform 15 mm TB-CTV margin. In women with narrow excision margins, the standard TB-CTV margin could result in a geographical miss. Therefore, wider TB-CTV margins should be considered where re-excision does not occur.

  9. Radiotherapy gel dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.

    2002-01-01

    In radiotherapy, the primary objective is to deliver a prescribed dose of radiation to a tumour or lesion within a patient while minimising the dose delivered to the surrounding healthy tissue. Traditional radiotherapy treatments usually involve simple external or internal irradiations of a tumour. External irradiations are normally achieved in the clinic with photon or electron beams produced by high energy linear accelerators. The photon or electron beams are collimated into regular shapes as they emerge from the treatment head of the unit which is supported by a gantry that can be rotated isocentrically to any position. A discrete number of photon or electron beams with different angles of incidence that intersect at the iso-centre are used to produce a region of high dose around the tumour volume (positioned at the iso-centre). Internal irradiations are normally achieved in the clinic by implanting radioactive sources in and around the tumour or lesion. Such irradiations are characterised by very high doses local to the tumour. Radioactive sources are also used to prevent post-angioplasty restenosis by inserting sources into arteries. Usually when treating a tumour, a compromise is made between tumour control and complications arising from normal tissue damage. One measure of this compromise, the therapeutic ratio, is defined as the radiation dose producing complications in 50% of patients divided by the dose providing tumour control in 50% of the patients. The therapeutic ratio depends on the radiobiological characteristics of the cancerous tissue and surrounding healthy tissues and on the radiation dose distribution achieved by the radiotherapy treatment. It is generally believed that the therapeutic ratio can be minimised by optimising the conformation of the radiation dose distribution to the target volume. This is difficult with traditional radiotherapy techniques since they do not produce dose distributions that adequately cover tumour volumes of complex

  10. The use of fused PET/CT images for patient selection and radical radiotherapy target volume definition in patients with non-small cell lung cancer: Results of a prospective study with mature survival data

    International Nuclear Information System (INIS)

    Mac Manus, Michael P.; Everitt, Sarah; Bayne, Mike; Ball, David; Plumridge, Nikki; Binns, David; Herschtal, Alan; Cruickshank, Deborah; Bressel, Mathias; Hicks, Rodney J.

    2013-01-01

    Background and purpose: This prospective study investigated the impact of radiotherapy (RT)-planning FDG-PET/CT on management of non-small cell lung cancer (NSCLC). Materials and methods: Patients still eligible for radical RT after conventional staging underwent RT-planning PET/CT and, if disease was still treatable to 60 Gy, they entered our planning study, where visually-contoured tumour volumes derived with and without PET information were compared. If PET/CT detected advanced disease, palliative therapy was given. Overall survival (OS) for palliative and curative patients was compared. Results: Of 76 eligible patients, only 50 (66%) received radical chemoRT after PET/CT while 26 (34%) received palliative therapies because PET/CT detected advanced disease. Without PET, FDG-avid tumour would reside outside the planning target volume (PTV) in 36% of radical cases and in 25% 95% prescribed dose. OS for all patients was 56.8% and 24.9% at 1 and 4 years, respectively. OS for patients given chemoRT was 77.5% and 35.6% at 1 and 4 years, respectively and was 32% for stage IIIA patients at 4 years. OS for patients treated palliatively was inferior (P < 0.001); 16.3% and 4.1% at 1 and 4 years, respectively. Conclusions: Planning PET/CT frequently changed management and was associated with excellent survival. Survival data from this study were presented in part at the 2011 World Lung Cancer Conference, Amsterdam and planning data at the 2010 Annual Scientific Meeting of the American Society for Therapeutic Radiology and Oncology, Chicago

  11. Intensity Modulated Radiotherapy Improves Target Coverage and Parotid Gland Sparing When Delivering Total Mucosal Irradiation in Patients With Squamous Cell Carcinoma of Head and Neck of Unknown Primary Site

    International Nuclear Information System (INIS)

    Bhide, Shreerang; Clark, Catherine; Harrington, Kevin; Nutting, Christopher M.

    2007-01-01

    Head and neck squamous cell carcinoma with occult primary site represents a controversial clinical problem. Conventional total mucosal irradiation (TMI) maximizes local control, but at the expense of xerostomia. IMRT has been shown to spare salivary tissue in head and cancer patients. This study has been performed to investigate the potential of IMRT to perform nodal and TMI and also allow parotid gland sparing in this patient group. Conventional radiotherapy (CRT) and IMRT plans were produced for six patients to treat the ipsilateral (involved) post-operative neck (PTV1) and the un-operated contralateral neck and mucosal axis (PTV2). Plans were produced with and without the inclusion of nasopharynx in the PTV2. The potential to improve target coverage and spare the parotid glands was investigated for the IMRT plans. There was no significant difference in the mean doses to the PTV1 using CRT and IMRT (59.7 and 60.0 respectively, p = 0.5). The maximum doses to PTV1 and PTV2 were lower for the IMRT technique as compared to CRT (P = 0.008 and P < 0.0001), respectively, and the minimum doses to PTV1 and PTV2 were significantly higher for IMRT as compared to CRT (P = 0.001 and P = 0.001), respectively, illustrating better dose homogeneity with IMRT. The mean dose to the parotid gland contralateral to PTV1 was significantly lower for IMRT (23.21 ± 0.7) as compared to CRT (50.5 ± 5.8) (P < 0.0001). There was a significant difference in parotid dose between plans with and without the inclusion of the nasopharynx. IMRT offers improved dose homogeneity in PTV1 and PTV2 and allows for parotid sparing

  12. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Radiotherapy Target Volume Definition in Non-Small-Cell Lung Cancer: Delineation by Radiation Oncologists vs. Joint Outlining With a PET Radiologist?

    International Nuclear Information System (INIS)

    Hanna, Gerard G.; Carson, Kathryn J.; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P.; Eakin, Ruth L.; Stewart, David P.; Zatari, Ashraf; O'Sullivan, Joe M.; Hounsell, Alan R.

    2010-01-01

    Purpose: 18 F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. Methods and Materials: RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV CT ) and on fused PET/CT images (GTV PETCT ). The mean percentage volume change (PVC) between GTV CT and GTV PETCT for the radiation oncologists and the PVC between GTV CT and GTV PETCT for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV CT and GTV PETCT in a single measurement. Results: For all patients, a significant difference in PVC from GTV CT to GTV PETCT exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV CT and GTV FUSED for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Conclusions: Percentage volume changes from GTV CT to GTV PETCT were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP.

  13. 18F-fluorodeoxyglucose positron emission tomography/computed tomography-based radiotherapy target volume definition in non-small-cell lung cancer: delineation by radiation oncologists vs. joint outlining with a PET radiologist?

    Science.gov (United States)

    Hanna, Gerard G; Carson, Kathryn J; Lynch, Tom; McAleese, Jonathan; Cosgrove, Vivian P; Eakin, Ruth L; Stewart, David P; Zatari, Ashraf; O'Sullivan, Joe M; Hounsell, Alan R

    2010-11-15

    (18)F-Fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) has benefits in target volume (TV) definition in radiotherapy treatment planning (RTP) for non-small-cell lung cancer (NSCLC); however, an optimal protocol for TV delineation has not been determined. We investigate volumetric and positional variation in gross tumor volume (GTV) delineation using a planning PET/CT among three radiation oncologists and a PET radiologist. RTP PET/CT scans were performed on 28 NSCLC patients (Stage IA-IIIB) of which 14 patients received prior induction chemotherapy. Three radiation oncologists and one PET radiologist working with a fourth radiation oncologist independently delineated the GTV on CT alone (GTV(CT)) and on fused PET/CT images (GTV(PETCT)). The mean percentage volume change (PVC) between GTV(CT) and GTV(PETCT) for the radiation oncologists and the PVC between GTV(CT) and GTV(PETCT) for the PET radiologist were compared using the Wilcoxon signed-rank test. Concordance index (CI) was used to assess both positional and volume change between GTV(CT) and GTV(PETCT) in a single measurement. For all patients, a significant difference in PVC from GTV(CT) to GTV(PETCT) exists between the radiation oncologist (median, 5.9%), and the PET radiologist (median, -0.4%, p = 0.001). However, no significant difference in median concordance index (comparing GTV(CT) and GTV(FUSED) for individual cases) was observed (PET radiologist = 0.73; radiation oncologists = 0.66; p = 0.088). Percentage volume changes from GTV(CT) to GTV(PETCT) were lower for the PET radiologist than for the radiation oncologists, suggesting a lower impact of PET/CT in TV delineation for the PET radiologist than for the oncologists. Guidelines are needed to standardize the use of PET/CT for TV delineation in RTP. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Radiotherapy in small countries.

    Science.gov (United States)

    Barton, Michael B; Zubizarreta, Eduardo H; Polo Rubio, J Alfredo

    2017-10-01

    To examine the availability of radiotherapy in small countries. A small country was defined as a country with a population less than one million persons. The economic status of each country was defined using the World Bank Classification. The number of cancers in each country was obtained from GLOBOCAN 2012. The number of cancer cases with an indication or radiotherapy was calculated using the CCORE model. There were 41 countries with a population of under 1 million; 15 were classified as High Income, 15 Upper Middle Income, 10 Lower Middle Income and one Low Income. 28 countries were islands. Populations ranged from 799 (Holy See) to 886450 (Fiji) and the total number of cancer cases occurring in small countries was 21,043 (range by country from 4 to 2476). Overall the total number of radiotherapy cases in small countries was 10982 (range by country from 2 to 1239). Radiotherapy was available in all HIC islands with 80 or more new cases of cancer in 2012 but was not available in any LMIC island. Fiji was the only LMIC island with a large radiotherapy caseload. Similar caseloads in non-island LMIC all had radiotherapy services. Most non-island HIC did not have radiotherapy services presumably because of the easy access to radiotherapy in neighbouring countries. There are no radiotherapy services in any LMIC islands. Copyright © 2017. Published by Elsevier Ltd.

  15. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  16. Antiproton radiotherapy

    CERN Document Server

    Bassler, Niels; Beyer, Gerd; DeMarco, John J.; Doser, Michael; Hajdukovic, Dragan; Hartley, Oliver; Iwamoto, Keisuke S.; Jakel, Oliver; Knudsen, Helge V.; Kovacevic, Sandra; Møller, Søren Pape; Overgaard, Jens; Petersen, Jørgen B.à; Solberg, Timothy D.; Sørensen, Brita S.; Vranjes, Sanja; Wouters, Bradly G.; Holzscheiter, Michael H.

    2008-01-01

    Antiprotons are interesting as a possible future modality in radiation therapy for the following reasons: When fast antiprotons penetrate matter, protons and antiprotons have near identical stopping powers and exhibit equal radiobiology well before the Bragg-peak. But when the antiprotons come to rest at the Bragg-peak, they annihilate, releasing almost 2 GeV per antiproton–proton annihilation. Most of this energy is carried away by energetic pions, but the Bragg-peak of the antiprotons is still locally augmented with ∼20–30 MeV per antiproton. Apart from the gain in physical dose, an increased relative biological effect also has been observed, which can be explained by the fact that some of the secondary particles from the antiproton annihilation exhibit high-LET properties. Finally, the weakly interacting energetic pions, which are leaving the target volume, may provide a real time feedback on the exact location of the annihilation peak. We have performed dosimetry experiments and investigated the rad...

  17. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  18. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  19. Stereotactic radiotherapy in oligometastatic cancer.

    Science.gov (United States)

    Kennedy, Thomas A C; Corkum, Mark T; Louie, Alexander V

    2017-09-01

    Oligometastatic cancer describes a disease state somewhere between localized and metastatic cancer. Proposed definitions of oligometastatic disease have typically used a cut-off of five or fewer sites of disease. Treatment of oligometastatic disease should have the goal of long-term local control, and in selected cases, disease remission. While several retrospective cohorts argue for surgical excision of limited metastases (metastasectomy) as the preferred treatment option for several clinical indications, limited randomized data exists for treating oligometastases. Alternatively, stereotactic ablative radiotherapy (SABR) is a radiotherapy technique that combines high radiation doses per fraction with precision targeting with the goal of achieving long-term local control of treated sites. Published cohort studies of SABR have demonstrated excellent local control rates of 70-90% in oligometastatic disease, with long-term survival in some series approaching 20-40%. A recent randomized phase 2 clinical trial by Gomez et al. demonstrated significantly improved progression free survival with aggressive consolidative therapy (surgery, radiotherapy ± chemotherapy or SABR) in oli-gometastatic non-small cell lung cancer (NSCLC). As additional randomized controlled trials are ongoing to determine the efficacy of SABR in oligometastatic disease, SABR is increasingly being used within routine clinical practice. This review article aims to sum-marize the history and current paradigm of the oligometastatic state, review recently pub-lished literature of SABR in oligometastatic cancer and discuss ongoing trials and future directions in this context.

  20. Skeletal sarcoidosis; Skelettsarkoidose

    Energy Technology Data Exchange (ETDEWEB)

    Freyschmidt, J. [Klinikum Bremen-Mitte, Beratungsstelle und Referenzzentrum fuer Osteoradiologie, Bremen (Germany); Freyschmidt, P. [Dermatologische Gemeinschaftspraxis, Schwalmstadt (Germany)

    2016-10-15

    Presentation of the etiology, pathology, clinical course, radiology and differential diagnostics of skeletal sarcoidosis. Noncaseating epithelioid cell granulomas can trigger solitary, multiple or disseminated osteolysis, reactive osteosclerosis and/or granulomatous synovitis. The incidence of sarcoidosis is 10-12 per 100,000 inhabitants per year. Skeletal involvement is approximately 14 %. Skeletal involvement occurs almost exclusively in the stage of lymph node and pulmonary manifestation. Most cases of skeletal involvement are clinically asymptomatic. In the case of synovial involvement, unspecific joint complaints (arthralgia) or less commonly arthritis can occur. Typical skin alterations can be diagnostically significant. Punch out lesions osteolysis, coarse destruction and osteosclerosis can occur, which are best visualized with projection radiography and/or computed tomography. Pure bone marrow foci without interaction with the bone can only be detected with magnetic resonance imaging (MRI) and more recently with positron emission tomography (PET), mostly as incidental findings. There is a predeliction for the hand and trunk skeleton. Skeletal tuberculosis, metastases, multiple myeloma, Langerhans cell histiocytosis and sarcoid-like reactions in solid tumors must be differentiated. The key factors for correct diagnosis are thorax radiography, thorax CT and dermatological manifestations. (orig.) [German] Darstellung von Aetiologie, Pathologie, Klinik, Radiologie und Differenzialdiagnose der Skelettsarkoidose. Nichtverkaesende Epitheloidzellgranulome koennen solitaere, multiple oder disseminierte Osteolysen, reaktive Osteosklerosen und/oder eine granulomatoese Synovialitis ausloesen. Inzidenz der Sarkoidose: 10-12/100.000 Einwohner/Jahr. Skelettbeteiligung ca. 14 %. Skelettbeteiligungen kommen fast ausschliesslich im Stadium einer Lymphknoten- und pulmonalen Manifestation vor. Die meisten Skelettbeteiligungen verlaufen klinisch stumm. Bei synovialer

  1. Secondary effects of radiotherapy on the orofacial sphere

    International Nuclear Information System (INIS)

    Guillaume, Nicolas

    2012-01-01

    The objective of this research is to determine the role of the dental surgeon in the taking into care of patients treated by head and neck radiotherapy. It also aims at giving information to the patient on secondary effects which radiotherapy may induce, and at determining which therapeutic behaviour to adopt to prevent or at least mitigate the appearance of complications. The author first presents some generalities on radiotherapy: presentation of upper aero-digestive tract cancers (surgery, radiotherapy, and chemotherapy), description of the different radiotherapy techniques (external radiotherapy, brachytherapy), discussion of factors influencing local secondary effects of radiotherapy. The second part addresses the specific case of early orofacial secondary effects, discusses their origin, clinic signs and prevention means: cutaneous effect, mucositis, xerostomia, candidiasis, taste disorders, relationship between early local reactions and anti-tumour treatment efficiency. The third part addresses late orofacial secondary effects: cervix sclerosis, limitation of mouth opening, dental effects, periodontal diseases, osteoradionecrosis. The last part discusses the evolution of radiotherapy: intensity modulated conformational radiotherapy, targeted therapeutics [fr

  2. Skeletal surveys in multiple myeloma

    International Nuclear Information System (INIS)

    Sebes, J.I.; Niell, H.B.; Palmieri, G.M.A.; Reidy, T.J.

    1986-01-01

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  3. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    International Nuclear Information System (INIS)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L

    2016-01-01

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  4. TU-AB-BRA-09: A Novel Method of Generating Ultrafast Volumetric Cine MRI (VC-MRI) Using Prior 4D-MRI and On-Board Phase-Skipped Encoding Acquisition for Radiotherapy Target Localization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C; Yin, F; Harris, W; Cai, J; Chang, Z; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: To develop a technique generating ultrafast on-board VC-MRI using prior 4D-MRI and on-board phase-skipped encoding k-space acquisition for real-time 3D target tracking of liver and lung radiotherapy. Methods: The end-of-expiration (EOE) volume in 4D-MRI acquired during the simulation was selected as the prior volume. 3 major respiratory deformation patterns were extracted through the principal component analysis of the deformation field maps (DFMs) generated between EOE and all other phases. The on-board VC-MRI at each instant was considered as a deformation of the prior volume, and the deformation was modeled as a linear combination of the extracted 3 major deformation patterns. To solve the weighting coefficients of the 3 major patterns, a 2D slice was extracted from VC-MRI volume to match with the 2D on-board sampling data, which was generated by 8-fold phase skipped-encoding k-space acquisition (i.e., sample 1 phase-encoding line out of every 8 lines) to achieve an ultrafast 16–24 volumes/s frame rate. The method was evaluated using XCAT digital phantom to simulate lung cancer patients. The 3D volume of end-ofinhalation (EOI) phase at the treatment day was used as ground-truth onboard VC-MRI with simulated changes in 1) breathing amplitude and 2) breathing amplitude/phase change from the simulation day. A liver cancer patient case was evaluated for in-vivo feasibility demonstration. Results: The comparison between ground truth and estimated on-board VC-MRI shows good agreements. In XCAT study with changed breathing amplitude, the volume-percent-difference(VPD) between ground-truth and estimated tumor volumes at EOI was 6.28% and the Center-of-Mass-Shift(COMS) was 0.82mm; with changed breathing amplitude and phase, the VPD was 8.50% and the COMS was 0.54mm. The study of liver patient case also demonstrated a promising in vivo feasibility of the proposed method Conclusion: Preliminary results suggest the feasibility to estimate ultrafast VC-MRI for on

  5. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  6. PLANNING NATIONAL RADIOTHERAPY SERVICES

    Directory of Open Access Journals (Sweden)

    Eduardo eRosenblatt

    2014-11-01

    Full Text Available Countries, states and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centres are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment.This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centres, equipment, staff, education pr

  7. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  8. To understand radiotherapy

    International Nuclear Information System (INIS)

    2009-01-01

    Dealing with the use of radiotherapy for adults, this guide indicates when a radiotherapy is suggested, how it acts, how the treatment is chosen, which are the professionals involved. It describes how an external radiotherapy takes place and its various techniques, the different types of side effects (general, specific to the treated zone, late effects). It indicates which organs can be treated by curie-therapy, the different curie-therapy treatment modalities, how a curie-therapy takes place and which are its side effects. It outlines how to better cope with radiotherapy (how to be supported, the important role of relatives, everyday life questions, rights). It indicates and comments the different measures adopted for the safety and quality of radiotherapy

  9. Development of labelled biomolecules for targeted radiotherapy

    International Nuclear Information System (INIS)

    Arteaga de Murphy, C.

    2000-01-01

    The scope of the co-ordinated research project (Dec 15 1997) included the following activities: 1) develop coupling techniques using bifunctional chelating agents for monoclonal antibodies and peptides, 2) optimised radiolabelling procedures and reaction parameters using Sm-153 and Re-188, 3) investigate direct methods of labelling monoclonal antibodies and peptides with Re-188. 4) initiate animal distribution studies. The modifications specified for the period 1999/02/15 to 2000/02/14 are as follows: a) continue with the optimisation of Re-188-peptide labelling, b) continue with the work to prepare a kit, c) in-vivo and in-vitro studies, d) lanreotide labelling. The group formed by researchers from several Mexican Institutions have worked together and in different aspects of the CRP in order to fulfil the proposed aims (our published work listed)

  10. Development of labelled biomolecules for targeted radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga de Murphy, C [Instituto Nacional de la Nutricion Salvador Zubiran, Departmento de Medicina Nuclear, Mexico D.F. (Mexico). E-mail: cmurphy at data.net.mx

    2000-07-01

    The scope of the co-ordinated research project (Dec 15 1997) included the following activities: 1) develop coupling techniques using bifunctional chelating agents for monoclonal antibodies and peptides, 2) optimised radiolabelling procedures and reaction parameters using Sm-153 and Re-188, 3) investigate direct methods of labelling monoclonal antibodies and peptides with Re-188. 4) initiate animal distribution studies. The modifications specified for the period 1999/02/15 to 2000/02/14 are as follows: a) continue with the optimisation of Re-188-peptide labelling, b) continue with the work to prepare a kit, c) in-vivo and in-vitro studies, d) lanreotide labelling. The group formed by researchers from several Mexican Institutions have worked together and in different aspects of the CRP in order to fulfil the proposed aims (our published work listed)

  11. Skeletal adaptations to bipedalism

    Directory of Open Access Journals (Sweden)

    Vasiljević Perica

    2014-01-01

    Full Text Available Bipedalism is the main characteristic of humans. During evolutin bipedalism emerged probably as an adaptation to a changing environment. Major changes in skeletal system included femur, pelvis, skull and spine. The significance of bipedal locomotion: Bipedalism freed the forelimbs for carrying objects, creation and usage of tools. In the upright position animals have a broader view of the environment and the early detection of predators is crucial for survival. Bipedal locomotion makes larger distances easier to pass, which is very important in the migration of hominids.

  12. Solitary extra-skeletal sinonasal metastasis from a primary skeletal Ewing's sarcoma.

    Science.gov (United States)

    Hayes, S M; Jani, T N; Rahman, S M; Jogai, S; Harries, P G; Salib, R J

    2011-08-01

    Ewing's sarcoma is a rare, malignant tumour predominantly affecting young adolescent males. We describe a unique case of an isolated extra-skeletal metastasis from a skeletal Ewing's sarcoma primary, arising in the right sinonasal cavity of a young man who presented with severe epistaxis and periorbital cellulitis. Histologically, the lesion comprised closely packed, slightly diffuse, atypical cells with round, hyperchromatic nuclei, scant cytoplasm and occasional mitotic figures, arranged in a sheet-like pattern. Immunohistochemical analysis showed positive staining only for cluster of differentiation 99 glycoprotein. Fluorescent in situ hybridisation identified the Ewing's sarcoma gene, confirming the diagnosis. Complete surgical resection was achieved via a minimally invasive endoscopic transnasal approach; post-operative radiotherapy. Ten months post-operatively, there were no endoscopic or radiological signs of disease. Metastatic Ewing's sarcoma within the head and neck is incredibly rare and can pose significant diagnostic and therapeutic challenges. An awareness of different clinical presentations and distinct histopathological features is important to enable early diagnosis. This case illustrates one potential management strategy, and reinforces the evolving role of endoscopic transnasal approaches in managing sinonasal cavity and anterior skull base tumours.

  13. X-ray radiotherapy

    International Nuclear Information System (INIS)

    Tronc, D.

    1995-01-01

    Full text: The most common form of radio therapy is X-ray therapy, where a beam of photons or their parent electrons break down hydrogen bonds within the body's cells and remove certain DNA information necessary for cell multiplication. This process can eradicate malignant cells leading to complete recovery, to the remission of some cancers, or at least to a degree of pain relief. The radiotherapy instrument is usually an electron linac, and the electrons are used either directly in 'electrotherapy' for some 10% of patients, or the electrons bombard a conversion target creating a broad beam of high energy photons or 'penetration X-rays'. The simplest machine consists of several accelerating sections at around 3 GHz, accelerating electrons to 6 MeV; a cooled tungsten target is used to produce a 4 Gray/min X-ray field which can be collimated into a rectangular shape at the patient position. This tiny linac is mounted inside a rotating isocentric gantry above the patient who must remain perfectly still. Several convergent beams can also be used to increase the delivered dose. More sophisticated accelerators operate at up to 18 MeV to increase penetration depths and decrease skin exposure. Alternatively, electrotherapy can be used with different energies for lower and variable penetration depths - approximately 0.5 cm per MeV. In this way surface tissue may be treated without affecting deeper and more critical anatomical regions. This type of linac, 1 to 2 metres long, is mounted parallel to the patient with a bending magnet to direct the beam to the radiotherapy system, which includes the target, thick movable collimator jaws, a beam field equalizer, dose rate and optical field simulation and energy controls. There are over 2000 acceleratorbased X-ray treatment units worldwide. Western countries have up to two units per million population, whereas in developing countries such as Bangladesh, the density is only one per 100 million. Several

  14. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  15. TAK1 regulates skeletal muscle mass and mitochondrial function

    Science.gov (United States)

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  16. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-01-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element

  17. Persistently better treatment planning results of intensity-modulated (IMRT) over conformal radiotherapy (3D-CRT) in prostate cancer patients with significant variation of clinical target volume and/or organs-at-risk

    International Nuclear Information System (INIS)

    Fenoglietto, Pascal; Laliberte, Benoit; Allaw, Ali; Ailleres, Norbert; Idri, Katia; Hay, Meng Huor; Moscardo, Carmen Llacer; Gourgou, Sophie; Dubois, Jean-Bernard; Azria, David

    2008-01-01

    Purpose: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. Methods and materials: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ('CT planning'). The plans were then also applied to a verification CT scan ('CT verify') obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving ≥95 or 90% of the dose) and D50 (dose to 50% of the volume). Results: Mean V95 of the PTV for 'CT planning' was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p = 0.005), respectively. Mean V95 of the CTV for 'CT verify' was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for 'CT planning' was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p = 0.0002), respectively. For 'CT verify', this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p = 0.006), respectively. V95 of the rectum was 0% for both plans for 'CT planning', and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for 'CT verify' (p = non-sig.). Conclusion: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes

  18. Radioprotectors in Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Parida, D.K.; Nomura, Taisei

    2001-03-01

    This review article focuses on clinically relevant radioprotectors and their mechanisms of radioprotection. Radiotherapy is the most common modality of human cancer therapy. Obtaining optimal results requires a judicious balance between the total dose of radiotherapy delivered and the threshold limit of critical surrounding normal tissues, and the normal tissues need to be protected against radiation injury to obtain better tumor control by using a higher dose. For this reason, radiation-protective agents play an important role in clinical radiotherapy. Radiation-protective agents can be classified into three groups: radioprotectors, adaptogens, and absorbents. The first group generally consists of sulfhydryl compounds and other antioxidants. They include several myelo-, entero-, and cerebro-protectors. Adaptogens act as promotors of radioresistance. They are natural protectors that offer chemical protection against low levels of ionizing radiation. Absorbents protect organs from internal radiation and chemicals. They include drugs that prevent incorporation of radioiodine by the thyroid gland and absorption of radionuclides. This article thoroughly describes the properties, mechanisms of action, and perspectives on clinical application of the following categories of radioprotectors: sulfhydryl compounds (e.g., cysteine, cysteamine, glutathione, AET, WR 2127, and other WR-compounds), antioxidants (e.g., tempace, Hoechst 33342, vitamin A, E, and C, TMG, melatonin), angiotensin-converting enzyme (ACE) inhibitors (e.g., captopril, elanopril, penicillamine, pentoxifylline, L-158, 809), cytoprotective agents (mesna, dexrazoxane, and amifostin), metalloelements (e.g., manganese chloride, cadmium salts, bismuth subnitrate), immunomodulators (gamma-interferon, polysaccharides AM5, AM218, heat-killed lactobacillus cells, broncho-vaxom, trehalose dicorynomycolate, and AS101), lipopolysaccharides and prostaglandins, plant extracts and compounds isolated from plants (curcmin

  19. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  20. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  1. Radiological incidents in radiotherapy

    International Nuclear Information System (INIS)

    Hobzova, L.; Novotny, J.

    2008-01-01

    In many countries a reporting system of radiological incidents to national regulatory body exists and providers of radiotherapy treatment are obliged to report all major and/or in some countries all incidents occurring in institution. State Office for Nuclear Safety (SONS) is providing a systematic guidance for radiotherapy departments from 1997 by requiring inclusion of radiation safety problems into Quality assurance manual, which is the basic document for obtaining a license of SONS for handling with sources of ionizing radiation. For that purpose SONS also issued the recommendation 'Introduction of QA system for important sources in radiotherapy-radiological incidents' in which the radiological incidents are defined and the basic guidance for their classification (category A, B, C, D), investigation and reporting are given. At regular periods the SONS in co-operation with radiotherapy centers is making a survey of all radiological incidents occurring in institutions and it is presenting obtained information in synoptic communication (2003 Motolske dny, 2005 Novy Jicin). This presentation is another summary report of radiological incidents that occurred in our radiotherapy institutions during last 3 years. Emphasis is given not only to survey and statistics, but also to analysis of reasons of the radiological incidents and to their detection and prevention. Analyses of incidents in radiotherapy have led to a much broader understanding of incident causation. Information about the error should be shared as early as possible during or after investigation by all radiotherapy centers. Learning from incidents, errors and near misses should be a part of improvement of the QA system in institutions. Generally, it is recommended that all radiotherapy facilities should participate in the reporting, analyzing and learning system to facilitate the dissemination of knowledge throughout the whole country to prevent errors in radiotherapy.(authors)

  2. Pathogenesis and pharmacological treatment of bone pain in skeletal metastases

    International Nuclear Information System (INIS)

    Ripamonti, C.; Fulfaro, F.

    2001-01-01

    Sixty-five percent of patients with advanced cancer present bone metastases and most of them present a rather slow clinical course characterized by pain, mobility deficiencies and skeletal complications such as fractures and spinal cord compression. Metastatic involvement of the bone is one of the most frequent causes of pain in cancer patients and represents one of the firs signs of widespread neoplastic disease. The pain may originate directly from the plastic disease. The pain may originate directly from the bone, from nerve root compression or from muscle spasms in the area of the lesions. The mechanism of metastatic bone pain is mainly somatic (nociceptive) even though, in some cases, neuropathic and visceral stimulations may overlap. The conventional symptomatic treatment of metastatic bone pain requires the use of multidisciplinary therapies such as radiotherapy in association with systemic treatment (hormonotherapy, chemotherapy, radioisotopes) with the support of analgesic therapy. Recently, studies have indicated the use of bisphosphonates in the treatment of pain and in the prevention of skeletal complications in patients with metastatic bone disease. In some patients pharmacological treatment, radiotherapy, radioisotopes administered alone or in association are not able to manage pain adequately. The role of neuroinvasive techniques in treating metastatic bone pain is debated. The clinical conditions of the patient, his life expectancy and quality of life must guide the physician in the choice of the best possible therapy

  3. Pathogenesis and pharmacological treatment of bone pain in skeletal metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ripamonti, C. [National Cancer Institute, Rehabilitation, Pain Therapy and Palliative Care Division, Milan (Italy); Fulfaro, F. [Societa' per l' Assistenza al Malato Oncologico Terminale, Palermo (Italy)

    2001-03-01

    Sixty-five percent of patients with advanced cancer present bone metastases and most of them present a rather slow clinical course characterized by pain, mobility deficiencies and skeletal complications such as fractures and spinal cord compression. Metastatic involvement of the bone is one of the most frequent causes of pain in cancer patients and represents one of the firs signs of widespread neoplastic disease. The pain may originate directly from the plastic disease. The pain may originate directly from the bone, from nerve root compression or from muscle spasms in the area of the lesions. The mechanism of metastatic bone pain is mainly somatic (nociceptive) even though, in some cases, neuropathic and visceral stimulations may overlap. The conventional symptomatic treatment of metastatic bone pain requires the use of multidisciplinary therapies such as radiotherapy in association with systemic treatment (hormonotherapy, chemotherapy, radioisotopes) with the support of analgesic therapy. Recently, studies have indicated the use of bisphosphonates in the treatment of pain and in the prevention of skeletal complications in patients with metastatic bone disease. In some patients pharmacological treatment, radiotherapy, radioisotopes administered alone or in association are not able to manage pain adequately. The role of neuroinvasive techniques in treating metastatic bone pain is debated. The clinical conditions of the patient, his life expectancy and quality of life must guide the physician in the choice of the best possible therapy.

  4. Radiotherapy indications - rectum cancer

    International Nuclear Information System (INIS)

    2009-05-01

    This document is addressed to oncologists radiotherapists and to any health professional concerned by rectum cancer treatment. Rectum cancer therapy is based on various technical procedures including surgery, radiotherapy and systemic treatments defined for each patient according to his clinical situation. This document precises the specific situations where radiotherapy can be employed. However, the radiotherapy decision must be taken with respect to other therapeutic alternatives. Such a decision must be validated and must be the object of a discussion in the framework of a pluri-disciplinary consultation. (J.S.)

  5. [Use of filgrastim, granulocyte colony stimulating factor (G-CSF), in radiotherapy to reduce drop-outs because of radiogenic leukopenia].

    Science.gov (United States)

    Gava, A; Bertossi, L; Ferrarese, F; Coghetto, F; Marazzato, G; Andrulli, A D; Zorat, P L

    1998-03-01

    Radiotherapy patients are at risk of developing leukopenia, which risk depends on the irradiated volume, the rate of irradiated bone marrow and the radiation dose. Radiogenic leukopenia may cause radiotherapy drop-out, with consequent effects, on local tumor control and clinical outcome. The introduction of granulocyte growth factors, such as filgrastim, has permitted to accelerate normal neutrophil count recovery in irradiation-related neutropenia both in vitro and animal models; clinical experience in humans is still lacking, relative to both indications and scheduling. In the Oncologic Radiotherapy Department of Treviso Hospital, 31 patients irradiated for Hodgkin disease, rectal cancer and other malignancies, who presented leukopenia requiring treatment discontinuation, were given filgrastim to assess its actual effect in avoiding further drop-outs and to compare two administration schedules (2 or 3 vials, 30 MIU, weekly). Filgrastim treatment was continued throughout the radiotherapy cycles, for 1 to 5 weeks. Eighteen patients had received previous chemotherapy and 11 were und