WorldWideScience

Sample records for skeletal targeted radiotherapy

  1. Radiotherapy of pathologic fractures and skeletal lesions bearing the risk of fracture

    International Nuclear Information System (INIS)

    Rieden, K.; Kober, B.; Mende, U.; Zum Winkel, K.

    1986-01-01

    Radiotherapy is of great importance in the treatment of pathologic fractures and skeletal lesions bearing the risk of fracture which are induced by malignomas, especially if these are in an advanced stage. In dependence on site and extent of skeletal destruction as well as on the general tumor dissemination, it can be distinguished between palliative radiotherapy and curative radiotherapy aiming at analgesia and remineralization. A retrospective analysis of 27 pathologic fractures and 56 skeletal lesions bearing the risk of fracture in malignoma patients showed an analgetic effect obtained by radiotherapy in 67% of pathological fractures and in 80% of skeletal lesions bearing the risk of fracture, whereas a remineralization could be demonstrated for 33% of pathological fractures and 50% of destructions bearing the risk of fracture. A stabilization of destructions progressing before therapy was found in 55% of pathological fractures and 40% of skeletal lesions bearing the risk of fracture. Thus a partial loading, supported by orthopedic prostheses, was possible for more than 50% of all patients. (orig.) [de

  2. Skeletal dosimetry models for alpha-particles for use in molecular radiotherapy

    Science.gov (United States)

    Watchman, Christopher J.

    Molecular radiotherapy is a cancer treatment methodology whereby a radionuclide is combined with a biologically active molecule to preferentially target cancer cells. Alpha-particle emitting radionuclides show significant potential for use in molecular radiotherapy due to the short range of the alpha-particles in tissue and their high rates of energy deposition. Current radiation dosimetry models used to assess alpha emitter dose in the skeleton were developed originally for occupational applications. In medical dosimetry, individual variability in uptake, translocation and other biological factors can result in poor correlation of clinical outcome with marrow dose estimates determined using existing skeletal models. Methods presented in this work were developed in response to the need for dosimetry models which account for these biological and patient-specific factors. Dosimetry models are presented for trabecular bone alpha particle dosimetry as well as a model for cortical bone dosimetry. These radiation transport models are the 3D chord-based infinite spongiosa transport model (3D-CBIST) and the chord-based infinite cortical transport model (CBICT), respectively. Absorbed fraction data for several skeletal tissues for several subjects are presented. Each modeling strategy accounts for biological parameters, such as bone marrow cellularity, not previously incorporated into alpha-particle skeletal dosimetry models used in radiation protection. Using these data a study investigating the variability in alpha-particle absorbed fractions in the human skeleton is also presented. Data is also offered relating skeletal tissue masses in individual bone sites for a range of ages. These data are necessary for dose calculations and have previously only been available as whole body tissue masses. A revised 3D-CBIST model is also presented which allows for changes in endosteum thickness to account for revised target cell location of tissues involved in the radiological

  3. Skeletal changes in growing spine following radiotherapy of tumors

    International Nuclear Information System (INIS)

    Spissak, L.; Horniakova, M.

    1987-01-01

    An analysis is given of a group of 20 children after nephrectomy and radiotherapy of Wilms' tumor and of one child following ovariectomy and radiotherapy of a dysgermanoma more than 5 years after the termination of the therapy. Morphological and structural changes were evaluated in the vertebrae as well as axial alterations of the spine. Interrelationships were found between the radiation dose, the patient's age and the degree of the skeletal changes in the spine. The most pronounced morphological, structural and axial changes occurred in children below 4 years treated with radiation doses above 20.0 Gy. (author). 1 tab., 5 figs., 3 refs

  4. Development of targeted radiotherapy systems

    International Nuclear Information System (INIS)

    Ferro, Guillermina; Villarreal, Jose E.; Garcia, Laura; Tendilla, Jose I.; Paredes, Lydia; Murphy, Consuelo A.; Pedraza, Martha

    2001-01-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry

  5. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer

    DEFF Research Database (Denmark)

    Vaidya, Jayant S; Wenz, Frederik; Bulsara, Max

    2014-01-01

    The TARGIT-A trial compared risk-adapted radiotherapy using single-dose targeted intraoperative radiotherapy (TARGIT) versus fractionated external beam radiotherapy (EBRT) for breast cancer. We report 5-year results for local recurrence and the first analysis of overall survival....

  6. DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: Painful degenerative skeletal disorders

    International Nuclear Information System (INIS)

    Ott, Oliver J.; Niewald, Marcus; Weitmann, Hajo-Dirk; Jacob, Ingrid; Adamietz, Irenaeus A.; Schaefer, Ulrich; Keilholz, Ludwig; Heyd, Reinhard; Muecke, Ralph

    2015-01-01

    The purpose of this article is to summarize the updated DEGRO consensus S2e guideline recommendations for the treatment of benign painful degenerative skeletal disorders with low-dose radiotherapy. This overview reports on the role of low-dose radiotherapy in the treatment of enthesiopathies (shoulder syndrome, trochanteric bursitis, plantar fasciitis, and elbow syndrome) and painful arthrosis (knee, hip, hand, and finger joints). The most relevant aspects of the DEGRO S2e Consensus Guideline Radiation Therapy of Benign Diseases 2014 regarding diagnostics, treatment decision, dose prescription as well as performance of radiotherapy and results are summarized. For all indications mentioned above, retrospective and some prospective analyses have shown remarkable effects in terms of pain relief. Nevertheless, the Level of Evidence (LoE) and the Grade of Recommendation (GR) vary: LoE 1b-4 and GR A-C. Low-dose radiotherapy for painful degenerative skeletal disorders is effective in the majority of the patients and therefore it may be a reasonable therapeutic alternative when simple and non-invasive methods have been used without persistent success. For all discussed entities, single fraction doses of 0.5-1.0 Gy and total doses of 3.0-6.0 Gy/series applied with 2-3 fractions per week are recommended. (orig.) [de

  7. Targeting IAP proteins in combination with radiotherapy

    International Nuclear Information System (INIS)

    Fulda, Simone

    2015-01-01

    The efficacy of radiotherapy critically depends on the activation of intrinsic cell death programs in cancer cells. This implies that evasion of cell death, a hallmark of human cancers, can contribute to radioresistance. Therefore, novel strategies to reactivate cell death programs in cancer cells are required in order to overcome resistance to radiotherapy. Since Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in multiple cancers and block cell death induction at a central point, therapeutic targeting of IAP proteins represents a promising approach to potentiate the efficacy of radiotherapy. The current review discusses the concept of targeting IAP proteins in combination with radiotherapy

  8. DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: Painful degenerative skeletal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Oliver J. [University Hospitals Erlangen, Dept. of Radiation Oncology, Erlangen (Germany); Niewald, Marcus [Saarland University Medical School, Dept. of Radiotherapy and Radiation Oncology, Homburg/Saar (Germany); Weitmann, Hajo-Dirk [Fulda Hospital, Dept. of Radiooncology and Radiotherapy, Fulda (Germany); Jacob, Ingrid [Municipal Hospital Traunstein, Dept. of Radiotherapy, Traunstein (Germany); Adamietz, Irenaeus A. [Marien Hospital Herne/Ruhr University Bochum, Dept. of Radiotherapy and Radiation Oncology, Herne (Germany); Schaefer, Ulrich [Lippe Hospital, Dept. of Radiotherapy, Lemgo (Germany); Keilholz, Ludwig [Bayreuth Hospital, Dept. of Radiotherapy, Bayreuth (Germany); Heyd, Reinhard [Center for Radiosurgery, Frankfurt a. M. (Germany); Muecke, Ralph [Marien Hospital Herne/Ruhr University Bochum, Dept. of Radiotherapy and Radiation Oncology, Herne (Germany); Lippe Hospital, Dept. of Radiotherapy, Lemgo (Germany); Collaboration: German Cooperative Group on Radiotherapy for Benign Diseases (GCG-BD)

    2014-09-20

    The purpose of this article is to summarize the updated DEGRO consensus S2e guideline recommendations for the treatment of benign painful degenerative skeletal disorders with low-dose radiotherapy. This overview reports on the role of low-dose radiotherapy in the treatment of enthesiopathies (shoulder syndrome, trochanteric bursitis, plantar fasciitis, and elbow syndrome) and painful arthrosis (knee, hip, hand, and finger joints). The most relevant aspects of the DEGRO S2e Consensus Guideline Radiation Therapy of Benign Diseases 2014 regarding diagnostics, treatment decision, dose prescription as well as performance of radiotherapy and results are summarized. For all indications mentioned above, retrospective and some prospective analyses have shown remarkable effects in terms of pain relief. Nevertheless, the Level of Evidence (LoE) and the Grade of Recommendation (GR) vary: LoE 1b-4 and GR A-C. Low-dose radiotherapy for painful degenerative skeletal disorders is effective in the majority of the patients and therefore it may be a reasonable therapeutic alternative when simple and non-invasive methods have been used without persistent success. For all discussed entities, single fraction doses of 0.5-1.0 Gy and total doses of 3.0-6.0 Gy/series applied with 2-3 fractions per week are recommended. (orig.) [German] Zusammenfassung der Empfehlungen der DEGRO-S2e-Leitlinie zur Niedrigdosis-Radiotherapie von gutartigen schmerzhaften degenerativen Skeletterkrankungen. Die vorliegende Zusammenfassung berichtet ueber die Bedeutung der Niedrigdosis-Radiotherapie in der Behandlung von Enthesiopathien (Schultersyndrom, Ellenbogensyndrom, Bursitis trochanterica, Fasciitis plantaris) und schmerzhaften Arthrosen (Knie-, Hueft, Hand- und Fingergelenksarthrosen). Die wichtigsten Aspekte der aktuellen DEGRO-S2e-Konsensus-Leitlinie Strahlentherapie gutartiger Erkrankungen bezueglich Diagnostik, Therapieentscheidungen, Dosisempfehlungen und Durchfuehrung einer Radiotherapie werden

  9. Targeted intraoperative radiotherapy in oncology

    CERN Document Server

    Keshtgar, Mohammed; Wenz, Frederik

    2014-01-01

    Targeted intraoperative radiotherapy is a major advance in the management of cancer patients. With an emphasis on practical aspects, this book offers an ideal introduction to this innovative  technology for clinicians.

  10. A study of skeletal metastasis of carcinoma of the uterine cervix

    International Nuclear Information System (INIS)

    Tanouchi, Miki; Sui, Osamu; Kashihara, Kenichi

    1990-01-01

    Between January 1980 and December 1988, 373 patients with carcinoma of the uterine cervix were treated at the Department of Radiology, Tokushima University Hospital. Of the 373 patients, 229 were treated by radiotherapy alone, and 144 were treated by post-operative radiotherapy. The incidence of skeletal metastasis was 6.4%, 24 patients out of 373. Ten of these patients were treated with radiotherapy alone, and 14 with radical surgery and radiotherapy. Nineteen patients belonged in the early clinical stage (stage Ia through stage IIb). Lesions of skeletal metastases were usually detected within 2 years after the initial treatment, and the most common site of skeletal metastasis was the pelvic bone, followed by the lumbar spine. Most patients with skeletal metastases were treated by radiotherapy, chemotherapy, and combined radio- and chemotherapy. Severe pain due to skeletal metastasis was relieved by radiotherapy and combined therapy, but no method of treatment could extend the prognosis. (author)

  11. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy

    International Nuclear Information System (INIS)

    Krause, Mechthild; Zips, Daniel; Thames, Howard D.; Kummermehr, Johann; Baumann, Michael

    2006-01-01

    The combination of molecular-targeted agents with irradiation is a highly promising avenue for cancer research and patient care. Molecular-targeted agents are in themselves not curative in solid tumours, whereas radiotherapy is highly efficient in eradicating tumour stem cells. Recurrences after high-dose radiotherapy are caused by only one or few surviving tumour stem cells. Thus, even if a novel agent has the potential to kill only few tumour stem cells, or if it interferes in mechanisms of radioresistance of tumours, combination with radiotherapy may lead to an important improvement in local tumour control and survival. To evaluate the effects of novel agents combined with radiotherapy, it is therefore necessary to use experimental endpoints which reflect the killing of tumour stem cells, in particular tumour control assays. Such endpoints often do not correlate with volume-based parameters of tumour response such as tumour regression and growth delay. This calls for radiotherapy specific research strategies in the preclinical testing of novel anti-cancer drugs, which in many aspects are different from research approaches for medical oncology

  12. Targeted radiotherapy: state of the art and perspectives

    International Nuclear Information System (INIS)

    Vuillez, J.P.

    2006-01-01

    Internal targeted radiotherapy (previously called metabolic radiotherapy) consists in an in situ irradiation of small tumour lesions all through the body by mean of a radiolabeled agent. It is a more and more emerging technique of cancer treatment, as clearly demonstrated by theoretical and experimental considerations, but also impressive clinical results. Published results allowed the marketing authorization of several specialities at time. Main clinical results, i.e. these obtained with radiolabel antibodies, somatostatin analogs and bone seeking agents, already are very convincing. However, we must wonder if such conclusive results would remain anecdotal in the treatment of cancer, or take a larger and larger place. Recently published results and works in progress clearly show that there are a lot of possibilities which could be explored and many ways of improvement. These possibilities are related to the mechanisms of action, a better understanding of the relationship between injected activity and efficiency through dedicated dosimetry, new radiopharmaceuticals, new targets and a better definition of indications. The review of these different ways leads to an optimistic view of the future for internal radiotherapy, providing it will be thought through a pluri-disciplinary approach. (author)

  13. Rectal cancer: The radiation basis of radiotherapy, target volume

    International Nuclear Information System (INIS)

    Bosset, J.F.; Servagi-Vernat, S.; Crehange, G.; Azria, D.; Gerard, J.P.; Hennequin, C.

    2011-01-01

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  14. Hypoxia-targeted suicidal gene therapy system enhances antitumor effects of radiotherapy

    International Nuclear Information System (INIS)

    Liu Junye; Guo Yao; Guo Guozhen

    2006-01-01

    Objective: To explore the effects of hypoxia-targeted suicidal gene therapy system combined with radiotherapy on pancreatic cancer. Methods: The recombinant adenovirus Ad-5HRE/hCMVmp-BCD was constructed by DNA recombinant technique. Western blot was used to detect hypoxia-induced expression of bacterial cytosine deaminase (BCD). Cell growth inhibition assay was used to determine the sensitivity of human pancreatic cancer cells MIA-PACA2 to 5-fluorocytosine (5-FC). Tumor xenograft growth delay assays was used to evaluate the effects of Ad-5HRE/hCMVmp-BCD/5-FC combined with radiotherapy on pancreatic cancer. Results: Western blot analysis demonstrated that hypoxia-induced BCD protein expression was achieved in MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD. With hypoxia treatment, the sensitivity of MIA-PACA2 cells infected with Ad-5HRE/hCMVmp-BCD to 5-FC significantly increased. Administration of either Ad-5HRE/hCMVmp-BCD/5-FC or radiotherapy could inhibit the growth of MIA-PACA2 xenografts in nude mice. Moreover, combination of Ad-5HRE/hCMVmp-BCD/5-FC could significantly enhance suppressing effects of radiotherapy on MIA-PACA2 xenografts. Conclusion: Hypoxia-targeted suicidal gene therapy system Ad-5HRE/hCMVmp-BCD/5-FC could enhance antitumor effects of radiotherapy on pancreatic cancer and can be used as a powerful adjunct to conventional radiotherapy. (authors)

  15. Comparison of the calcium release channel of cardiac and skeletal muscle sarcoplasmic reticulum by target inactivation analysis

    International Nuclear Information System (INIS)

    McGrew, S.G.; Inui, Makoto; Chadwick, C.C.; Boucek, R.J. Jr.; Jung, C.Y.; Fleischer, S.

    1989-01-01

    The calcium release channel of sarcoplasmic reticulum which triggers muscle contraction in excitation-contraction coupling has recently been isolated. The channel has been found to be morphologically identical with the feet structures of the junctional face membrane of terminal cisternae and consists of an oligomer of a unique high molecular weight polypeptide. In this study, the authors compare the target size of the calcium release channel from heart and skeletal muscle using target inactivation analysis. The target molecular weights of the calcium release channel estimated by measuring ryanodine binding after irradiation are similar for heart (139,000) and skeletal muscle (143,000) and are smaller than the monomeric unit (estimated to be about 360,000). The target size, estimated by measuring polypeptide remaining after irradiation, was essentially the same for heart and skeletal muscle, 1,061,000 and 1,070,000, respectively, indicating an oligomeric association of protomers. Thus, the calcium release channel of both cardiac and skeletal muscle reacts uniquely with regard to target inactivation analysis in that (1) the size by ryanodine binding is smaller than the monomeric unit and (2) a single hit leads to destruction of more than one polypeptide, by measuring polypeptide remaining. The target inactivation analysis studies indicate that heart and skeletal muscle receptors are structurally very similar

  16. Non-Targeted effects of ionising radiation and radiotherapy

    International Nuclear Information System (INIS)

    Sjostedt, Svetlana; Bezak, Eva

    2010-01-01

    Full text: Modern radiobiology is undergoing rapid change due to new discoveries contradicting the target concept which is currently used to predict dose-response relationships. Thus relatively recently discovered radiation induced bystander effects (RlBEs), that include additional death, mutation and radio-adaptation in non-irradiated cells, change our understanding of the target concept and broadens its boundaries. This can be significant from a radioprotection point of view and also has the potential to reassess radiation damage models currently used in radiotherapy. This article reviews briefly the general concepts of RlBEs such as the proposed underlying mechanisms of signal induction and propagation, experimental approaches and biological end points used to investigate these phenomena. It also summ rises several mathematical models currently proposed in an attempt to quantify RlBE. The main emphasis of this al1icle is to review and highlight the potential impact of the bystander phenomena in radiotherapy.

  17. Target volume determination in radiotherapy for non-small-cell lung cancer-facts and questions

    International Nuclear Information System (INIS)

    Kepka, L.; Bujko, K.

    2003-01-01

    Although the precise target volume definition in conformal radiotherapy is required by ICRU Report 50 and 62, this task in radiotherapy for non-small-cell lung cancer (NSCLC) is often controversial and strict accordance with ICRU requirements is hard to achieve. The Gross Tumour Volume (GTV) definition depends mainly on the imaging method used. We discuss the use of new imaging modalities, like PET, in GTV definition. The Clinical Target Volume (CTV) definition remains a separate, and still unresolved problem, especially in the part concerning the Elective Nodal Irradiation (ENI). Nowadays, there is no unified attitude among radiation oncologists regarding the necessity and extent of ENI. The common use of combined treatment modalities and the tendency to dose escalation, both increasing the potential toxicity, result in the more frequent use of involved-fields techniques. Problems relating to margins during Planning Target Volume (PTV) of lung cancer irradiation are also discussed. Another issue is the Interclinician variability in target volumes definition, especially when there is data indicating that the GTV, as defined by 3 D-treatment planning in NSCLC radiotherapy, may be highly prognostic for survival. We postulate that special attention should be paid to detailed precision of target volume determination in departmental and trial protocols. Careful analysis of patterns of failures from ongoing protocols will enable us to formulate the guidelines for target volume definition in radiotherapy for lung cancer. (author)

  18. 18F-fluorodeoxyglucose PET in definition of target volumes and radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Qiao Wenli; Zhao Jinhua

    2007-01-01

    PET is a functional imaging modality, which can give some biological information of tumor. PET is more and more important in the definition of target volumes and radiotherapy treatment planning. Depending on its sensitivity and specificity, 18 F-fluorideoxyglucose 18 F-FDG PET has been shown to influence the selection of target volumes and radiotherapy treatment planning for non-small cell lung cancers, for head and neck squamous cell carcinomas or for esophageal tumors. On the other hand, for tumors such as rectal carcinomas, convincing data on the value of 18 F-FDG PET for target volume selection are still lacking. However, the application of 18 F-FDG PET in many aspects of radiotherapy is still controversy. Further researches in its clinical application are still needed to investigate whether 18 F-FDG PET for treatment planning should be routine because of the lack of prospective studies. (authors)

  19. Rectal cancer: The radiation basis of radiotherapy, target volume; Cancers du rectum: volumes cible de la radiotherapie, bases rationnelles

    Energy Technology Data Exchange (ETDEWEB)

    Bosset, J.F.; Servagi-Vernat, S. [Service oncologie-radiotherapie, CHU Jean-Minjoz, 3, boulevard Fleming, 25030 Besancon (France); Crehange, G. [Service oncologie-radiotherapie, centre Georges-Francois-Leclerc, 1, rue du Pr-Marion, 21079 Dijon cedex (France); Azria, D. [Service oncologie-radiotherapie, centre Val-d' Aurelle, rue Croix-Verte, 34298 Montpellier cedex 5 (France); Gerard, J.P. [Service oncologie-radiotherapie, centre Antoine-Lacassagne, 33, avenue Valombrose, 06189 Nice (France); Hennequin, C. [Service oncologie-radiotherapie, hopital Saint-Louis, 1, avenue Claude-Vellefaux, 75475 Paris (France)

    2011-10-15

    Since the implementation of preoperative chemo-radiotherapy and meso-rectal excision, the 5-year rates of locoregional failures in T3-T4 N0-N1M0 rectal cancer fell from 25-30% thirty years ago to 5-8% nowadays. A critical analysis of the locoregional failures sites and mechanisms, as well as the identification of nodal extension, helps the radiation oncologist to optimize the radiotherapy target definition. The upper limit of the clinical target volume is usually set at the top of the third sacral vertebra. The lateral pelvic nodes should be included when the tumor is located in the distal part of the rectum. The anal sphincter and the levator muscles should be spared when a conservative surgery is planned. In case of abdomino-perineal excision, the ischio-rectal fossa and the sphincters should be included in the clinical target volume. A confrontation with radiologist and surgeon is mandatory to improve the definition of the target volumes to be treated. (authors)

  20. Locoregional control after intensity-modulated radiotherapy for nasopharyngeal carcinoma with an anatomy-based target definition

    International Nuclear Information System (INIS)

    Kawashima, Mitsuhiko; Ariji, Takaki; Kameoka, Satoru

    2013-01-01

    The objective of the study was to evaluate locoregional control after intensity-modulated radiotherapy for nasopharyngeal cancer using a target definition along with anatomical boundaries. Forty patients with biopsy-proven squamous cell or non-keratinizing carcinoma of the nasopharynx who underwent intensity-modulated radiotherapy between April 2006 and November 2009 were reviewed. There were 10 females and 30 males with a median age of 48 years (range, 17-74 years). More than half of the patients had T3/4 (n=21) and/or N2/3 (n=24) disease. Intensity-modulated radiotherapy was administered as 70 Gy/33 fractions with or without concomitant chemotherapy. The clinical target volume was contoured along with muscular fascia or periosteum, and the prescribed radiotherapy dose was determined for each anatomical compartment and lymph node level in the head and neck. One local recurrence was observed at Meckel's cave on the periphery of the high-risk clinical target volume receiving a total dose of <63 Gy. Otherwise, six locoregional failures were observed within irradiated volume receiving 70 Gy. Local and nodal control rates at 3 years were 91 and 89%, respectively. Adverse events were acceptable, and 25 (81%) of 31 patients who were alive without recurrence at 2 years had xerostomia of ≤ Grade 1. The overall survival rate at 3 years was 87%. Target definition along with anatomically defined boundaries was feasible without compromise of the therapeutic ratio. It is worth testing this method further to minimize the unnecessary irradiated volume and to standardize the target definition in intensity-modulated radiotherapy for nasopharyngeal cancer. (author)

  1. Predicted allowable doses to normal organs for biologically targeted radiotherapy

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; Wheldon, T.E.; Western Regional Hospital Board, Glasgow

    1988-01-01

    The authors have used Dale's extension to the ''linear quadratic'' (LQ) model (Dale, 1985) to evaluate ''equivalent doses'' in cases involving exponentially decaying dose rates. This analysis indicates that the dose-rate effect will be a significant determinant of allowable doses to organs such as liver, kidney and lung. These organ tolerance doses constitute independent constraints on the therapeutic intensity of biologically targeted radiotherapy in exactly the same way as for conventional external beam radiotherapy. In the context of marrow rescue they will in all likelihood constitute the dose-limiting side-effects and thus be especially important. (author)

  2. Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders

    Science.gov (United States)

    Polla, Daniel L.; Cardoso, Maria T. O.; Silva, Mayara C. B.; Cardoso, Isabela C. C.; Medina, Cristina T. N.; Araujo, Rosenelle; Fernandes, Camila C.; Reis, Alessandra M. M.; de Andrade, Rosangela V.; Pereira, Rinaldo W.; Pogue, Robert

    2015-01-01

    Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known. PMID:26380986

  3. An evaluation on the impact of national cancer wait targets on a (UK) radiotherapy department

    International Nuclear Information System (INIS)

    Roberts, Neill

    2012-01-01

    The radiotherapy department in this evaluation has been working towards full compliance with national cancer wait targets (CWT) since their implementation. 31 and 62 day targets set a maximum time frame for cancer patients to commence treatment. This evaluation explored the impact of these targets on staff and patients within the radiotherapy department and their overall impact on the radiotherapy service. Methods: This evaluation followed a mixed method approach of sequential triangulation. Qualitative data collection and analysis dominate findings but existing quantitative data, available within the department, was used to support the overall findings. Staff and patient interviews were used to establish attitudes to and experiences of the CWT initiative in relation to radiotherapy treatment. Quantitative data was taken from the local Cancer Centre CWT database that tracks patients referred for radiotherapy. Findings and Conclusion: Qualitative data analysis identified four main themes: pressure, appropriateness of target lengths, quality of treatment provided and efficiency of working practices within the department. Responses within these themes were both positive and negative with patients mainly the former and staff the latter. Quantitative evaluation found an increased monitoring and management burden from the CWT initiative, primarily for administrative, clerical and managerial staff. The main impact of the CWT initiative was an increase in pressure on staff due to reduced time to prepare and deliver treatment. Patients felt the initiative had not impacted negatively on their care and experienced a reduction in anxiety due to a reduction in waiting time.

  4. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  5. Intraoperative Boost Radiotherapy during Targeted Oncoplastic Breast Surgery: Overview and Single Center Experiences

    Directory of Open Access Journals (Sweden)

    Wolfram Malter

    2014-01-01

    Full Text Available Breast-conserving surgery followed by whole-breast irradiation is the standard local therapy for early breast cancer. The international discussion of reduced importance of wider tumor-free resection margins than “tumor not touching ink” leads to the development of five principles in targeted oncoplastic breast surgery. IORT improves local recurrence risk and diminishes toxicity since there is less irradiation of healthy tissue. Intraoperative radiotherapy (IORT can be delivered in two settings: an IORT boost followed by a conventional regimen of external beam radiotherapy or a single IORT dose. The data from TARGIT-A and ELIOT reinforce the conviction that intraoperative radiotherapy during breast-conserving surgery is a reliable alternative to conventional postoperative fractionated irradiation, but only in a carefully selected population at low risk of local recurrence. We describe our experiences with IORT boost (50 kV energy X-rays; 20 Gy in combination with targeted oncoplastic breast surgery in a routine clinical setting. Our experiences demonstrate the applicability and reliability of combining IORT boost with targeted oncoplastic breast surgery in breast-conserving therapy of early breast cancer.

  6. Biological evaluation and molecular docking of Rhein as a multi-targeted radiotherapy sensitization agent of nasopharyngeal carcinoma

    Science.gov (United States)

    Su, Zhengying; Tian, Wei; Li, Jing; Wang, Chunmiao; Pan, Zhiyu; Li, Danrong; Hou, Huaxin

    2017-11-01

    Radiation resistance of nasopharyngeal carcinoma (NPC) is a joint effect caused by complex molecular mechanisms. The development of multi-target radiotherapy sensitization agents offered a promising method for the treatment of NPC. In this work, the probability of Rhein to be a multi-target radiotherapy sensitization agent was explored through computer aid virtual screening by inverse docking study. In order to validate the accuracy of the computational results, radiotherapy sensitization of Rhein to NPC cells and its effects on the expression of target proteins were evaluated separately by CCK8 assay and Western blotting analysis. Our result demonstrated that Rhein possessed strong binding affinity with RAC1 and HSP90. No cytotoxic concentration of Rhein had radiosensitization effect on nasopharyngeal carcinoma CNE1 cells. After treatment with Rhein and 2Gy radiation, the expression of RAC1 upregulated and the expression of HSP90 down-regulated in cells. Based on the above data, Rhein is likely to become an attractive lead compound for the future design of multi-target radiotherapy sensitization agents.

  7. Radiation treatment of painful degenerative skeletal conditions

    International Nuclear Information System (INIS)

    Schaefer, U.; Micke, O.; Willich, N.

    1996-01-01

    The study reported was intended to present own experience with irradiation for treatment of painful degenerative skeletal conditions and examine the long-term effects of this treatment. A retrospective study was performed covering the period from 1985 until 1991, examining 157 patients suffering from painful degenerative skeletal conditions who entered information on the success of their radiation treatment in a questionnaire. 94 of the questionnaires could be used for evaluation. Pain anamnesis revealed periods of more than one year in 45% of the cases. 74% of the patients had been treated without success with drug or orthopedic therapy. Immediately after termination of the radiotherapy, 38% of the patients said to be free of pain or to feel essentially relieved, while at the time the questionnaire was distributed, the percentage was 76%. Thus in our patient material, radiotherapy for treatment of painful degenerative skeletal lesions was successful in 76% of the cases and for long post-treatment periods, including those cases whith long pain anamnesis and unsuccessful conventional pre-treatment. (orig./MG) [de

  8. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    International Nuclear Information System (INIS)

    Harris, Emma J.; Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-01-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested

  9. Radiotherapy in combination with vascular-targeted therapies

    International Nuclear Information System (INIS)

    Ciric, Eva; Sersa, Gregor

    2010-01-01

    Given the critical role of tumor vasculature in tumor development, considerable efforts have been spent on developing therapeutic strategies targeting the tumor vascular network. A variety of agents have been developed, with two general approaches being pursued. Antiangiogenic agents (AAs) aim to interfere with the process of angiogenesis, preventing new tumor blood vessel formation. Vascular-disrupting agents (VDAs) target existing tumor vessels causing tumor ischemia and necrosis. Despite their great therapeutic potential, it has become clear that their greatest clinical utility may lie in combination with conventional anticancer therapies. Radiotherapy is a widely used treatment modality for cancer with its distinct therapeutic challenges. Thus, combining the two approaches seems reasonable. Strong biological rationale exist for combining vascular-targeted therapies with radiation. AAs and VDAs were shown to alter the tumor microenvironment in such a way as to enhance responses to radiation. The results of preclinical and early clinical studies have confirmed the therapeutic potential of this new treatment strategy in the clinical setting. However, concerns about increased normal tissue toxicity, have been raised

  10. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  11. 4D imaging for target definition in stereotactic radiotherapy for lung cancer.

    Science.gov (United States)

    Slotman, Ben J; Lagerwaard, Frank J; Senan, Suresh

    2006-01-01

    Stereotactic radiotherapy of Stage I lung tumors has been reported to result in high local control rates that are far superior to those obtained with conventional radiotherapy techniques, and which approach those achieved with primary surgery. Breathing-induced motion of tumor and target tissues is an important issue in this technique and careful attention should be paid to the contouring and the generation of individualized margins. We describe our experience with the use of 4DCT scanning for this group of patients, the use of post-processing tools and the potential benefits of respiratory gating.

  12. The distribution of alternative agents for targeted radiotherapy within human neuroblastoma spheroids

    International Nuclear Information System (INIS)

    Mairs, R.J.; Gaze, M.N.; Murray, T.; Reid, R.; McSharry, C.; Babich, J.W.

    1991-01-01

    This study aims to select the radiopharmaceutical vehicle for targeted radiotherapy of neuroblastoma which is most likely to penetrate readily the centre of micrometastases in vivo. The human neuroblastoma cell line NB1-G, grown as multicellular spheroids provided an in vitro model for micrometastases. The radiopharmaceuticals studied were the catecholamine analogue metaiodobenzyl guanidine (mIBG), a specific neuroectodermal monoclonal antibody (UJ13A) and β nerve growth factor (βNGF). Following incubation of each drug with neuroblastoma spheroids, autoradiographs of frozen sections were prepared to demonstrate their relative distributions. mIBG and βNGF were found to penetrate the centre of spheroids readily although the concentration of mIBG greatly exceeded that of βNGF. In contrast, UJ13A was only bound peripherally. We conclude that mIBG is the best available vehicle for targeted radiotherapy of neuroblastoma cells with active uptake mechanisms for catecholimines. It is suggested that radionuclides with a shorter range of emissions than 131 I may be conjugated to benzyl guanidine to constitute more effective targeting agents with potentially less toxicity to adjacent normal tissues. (author)

  13. Targeted intraoperative radiotherapy (TARGIT) yields very low recurrence rates when given as a boost

    International Nuclear Information System (INIS)

    Vaidya, Jayant S.; Baum, Michael; Tobias, Jeffrey S.; Massarut, Samuele; Wenz, Frederik; Murphy, Olive; Hilaris, Basil; Houghton, Joan B.Sc.; Saunders, Christobel; Corica, Tammy; Roncadin, Mario; Kraus-Tiefenbacher, Uta; Melchaert, Frank; Keshtgar, Mohammed; Sainsbury, Richard; Douek, Michael; Harrison, Elly; Thompson, Alastair; Joseph, David

    2006-01-01

    Purpose: Patients undergoing breast-conserving surgery were offered boost radiotherapy with targeted intraoperative radiotherapy (TARGIT) using the Intrabeam system to test the feasibility, safety, and efficacy of the new approach. Methods and Materials: We treated 302 cancers in 301 unselected patients. This was not a low-risk group. One-third of patients (98/301) were younger than 51 years of age. More than half of the tumors (172, 57%) were between 1 cm and 2 cm, and one-fifth (62, 21%) were >2 cm; 29% (86) had a Grade 3 tumor and, in 29% (87), axillary lymph nodes contained metastasis. After primary surgery, 20 Gy was delivered intraoperatively to the surface of the tumor bed, followed by external-beam radiotherapy (EBRT), but excluding the usual boost. Results: The treatment was well tolerated. The follow-up ranged from 3 to 80 months (164 and 90 patients completed 2 and 3 years follow-up, respectively). Four patients (1.3%) had local recurrence. The Kaplan-Meier estimate of local recurrence is 2.6% (SE = 1.7) at 5 years. This compares favorably with the 4.3% recurrence rate in boosted patients from the EORTC boost study, in which only 8.1% patients were node-positive, as opposed to 29% in our series. Conclusion: Targeted intraoperative radiotherapy combined with EBRT results in a low local recurrence rate. This could be attributed to both accurate targeting and timeliness of the treatment. These data support the need for a randomized trial to test whether the TARGIT boost is superior to conventional external boost, especially in high-risk women

  14. Long-Term Results of Targeted Intraoperative Radiotherapy (Targit) Boost During Breast-Conserving Surgery

    Energy Technology Data Exchange (ETDEWEB)

    Vaidya, Jayant S., E-mail: jayant.vaidya@ucl.ac.uk [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Baum, Michael [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Tobias, Jeffrey S. [Department of Radiation Oncology, University College London Hospitals, London (United Kingdom); Wenz, Frederik [Radiation Oncology and Gynaecology, University Medical Centre of Mannheim (Germany); Massarut, Samuele [Surgery and Radiation Oncology, Centro di Riferimento Oncologico (CRO), Aviano (Italy); Keshtgar, Mohammed [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Hilaris, Basil [Radiation Oncology, Our Lady of Mercy, New York Medical College, New York (United States); Saunders, Christobel [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Williams, Norman R.; Brew-Graves, Chris [Research Department of Surgery, Division of Surgery and Interventional Science, University College London, London (United Kingdom); Corica, Tammy [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Roncadin, Mario [Surgery and Radiation Oncology, Centro di Riferimento Oncologico (CRO), Aviano (Italy); Kraus-Tiefenbacher, Uta; Suetterlin, Marc [Radiation Oncology and Gynaecology, University Medical Centre of Mannheim (Germany); Bulsara, Max [Institute of Health and Rehabilitation Research, University of Notre Dame, Fremantle, Western Australia (Australia); Joseph, David [Radiation Oncology, Sir Charles Gairdner Hospital and School of Surgery, University of Western Australia, Perth (Australia)

    2011-11-15

    Purpose: We have previously shown that delivering targeted radiotherapy to the tumour bed intraoperatively is feasible and desirable. In this study, we report on the feasibility, safety, and long-term efficacy of TARGeted Intraoperative radioTherapy (Targit), using the Intrabeam system. Methods and Materials: A total of 300 cancers in 299 unselected patients underwent breast-conserving surgery and Targit as a boost to the tumor bed. After lumpectomy, a single dose of 20 Gy was delivered intraoperatively. Postoperative external beam whole-breast radiotherapy excluded the usual boost. We also performed a novel individualized case control (ICC) analysis that computed the expected recurrences for the cohort by estimating the risk of recurrence for each patient using their characteristics and follow-up period. Results: The treatment was well tolerated. The median follow up was 60.5 months (range, 10-122 months). Eight patients have had ipsilateral recurrence: 5-year Kaplan Meier estimate for ipsilateral recurrence is 1.73% (SE 0.77), which compares well with that seen in the boosted patients in the European Organization for Research and Treatment of Cancer study (4.3%) and the UK STAndardisation of breast RadioTherapy study (2.8%). In a novel ICC analysis of 242 of the patients, we estimated that there should be 11.4 recurrences; in this group, only 6 recurrences were observed. Conclusions: Lumpectomy and Targit boost combined with external beam radiotherapy results in a low local recurrence rate in a standard risk patient population. Accurate localization and the immediacy of the treatment that has a favorable effect on tumour microenvironment may contribute to this effect. These long-term data establish the long-term safety and efficacy of the Targit technique and generate the hypothesis that Targit boost might be superior to an external beam boost in its efficacy and justifies a randomized trial.

  15. Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC Radiation Oncology Group

    International Nuclear Information System (INIS)

    Poortmans, Philip; Bossi, Alberto; Vandeputte, Katia; Bosset, Mathieu; Miralbell, Raymond; Maingon, Philippe; Boehmer, Dirk; Budiharto, Tom; Symon, Zvi; Bergh, Alfons C.M. van den; Scrase, Christopher; Poppel, Hendrik van; Bolla, Michel

    2007-01-01

    The appropriate application of 3-D conformal radiotherapy, intensity modulated radiotherapy or image guided radiotherapy for patients undergoing post-operative radiotherapy for prostate cancer requires a standardisation of the target volume definition and delineation as well as standardisation of the clinical quality assurance procedures. Recommendations for this are presented on behalf of the European Organisation for Research and Treatment of Cancer (EORTC) Radiation Oncology Group and in addition to the already published guidelines for radiotherapy as the primary treatment

  16. Target migration from re-inflation of adjacent atelectasis during lung stereotactic body radiotherapy.

    Science.gov (United States)

    Mao, Bijing; Verma, Vivek; Zheng, Dandan; Zhu, Xiaofeng; Bennion, Nathan R; Bhirud, Abhijeet R; Poole, Maria A; Zhen, Weining

    2017-06-10

    Stereotactic body radiotherapy (SBRT) is a widely accepted option for the treatment of medically inoperable early-stage non-small cell lung cancer (NSCLC). Herein, we highlight the importance of interfraction image guidance during SBRT. We describe a case of early-stage NSCLC associated with segmental atelectasis that translocated 15 mm anteroinferiorly due to re-expansion of the adjacent segmental atelectasis following the first fraction. The case exemplifies the importance of cross-sectional image-guided radiotherapy that shows the intended target, as opposed to aligning based on rigid anatomy alone, especially in cases associated with potentially "volatile" anatomic areas.

  17. Value of 18F-FDG PET-CT in nasopharyngeal carcinoma target delineation and radiotherapy boost

    International Nuclear Information System (INIS)

    Wang Ying; Feng Yanlin

    2011-01-01

    18 F-FDG PET-CT has widely used in nasopharyngeal carcinoma diagnosis and staging in recent years, it's effecten target volume delineation has received great attention. The article lays stress on the clinical research progress of 18 F-FDG PET-CT in the radiotherapy of nasopharyngeal carcinoma improve the accuracy of target delineation, reduce the difference of target delineation, guide the dose painting and boost. (authors)

  18. A consensus-based guideline defining clinical target volume for primary disease in external beam radiotherapy for intact uterine cervical cancer

    International Nuclear Information System (INIS)

    Toita, Takafumi; Ohno, Tatsuya; Kaneyasu, Yuko

    2011-01-01

    The objective of this study was to develop a consensus-based guideline to define clinical target volume for primary disease (clinical target volume primary) in external beam radiotherapy for intact uterine cervical cancer. The working subgroup of the Japan Clinical Oncology Group (JCOG) Radiation Therapy Study Group began developing a guideline for primary clinical target volume in November 2009. The group consisted of 10 radiation oncologists and 2 gynecologic oncologists. The process started with comparing the contouring on computed tomographic images of actual cervical cancer cases among the members. This was followed by a comprehensive literature review that included primary research articles and textbooks as well as information on surgical procedures. Extensive discussion occurred in face-to-face meetings (three occasions) and frequent e-mail communications until a consensus was reached. The working subgroup reached a consensus on the definition for the clinical target volume primary. The clinical target volume primary consists of the gross tumor volume, uterine cervix, uterine corpus, parametrium, vagina and ovaries. Definitions for these component structures were determined. Anatomical boundaries in all directions were defined for the parametrium. Examples delineating these boundaries were prepared for the posterior border of the parametrium for various clinical situations (id est (i.e.) central tumor bulk, degree of parametrial involvement). A consensus-based guideline defining the clinical target volume primary was developed for external beam radiotherapy for intact uterine cervical cancer. This guideline will serve as a template for radiotherapy protocols in future clinical trials. It may also be used in actual clinical practice in the setting of highly precise external beam radiotherapy, including intensity-modulated radiotherapy. (author)

  19. Strategies for systemic radiotherapy of micrometastases using antibody-targeted 131I.

    Science.gov (United States)

    Wheldon, T E; O'Donoghue, J A; Hilditch, T E; Barrett, A

    1988-02-01

    A simple analysis is developed to evaluate the likely effectiveness of treatment of micrometastases by antibody-targeted 131I. Account is taken of the low levels of tumour uptake of antibody-conjugated 131I presently achievable and of the "energy wastage" in targeting microscopic tumours with a radionuclide whose disintegration energy is widely dissipated. The analysis shows that only modest doses can be delivered to micrometastases when total body dose is restricted to levels which allow recovery of bone marrow. Much higher doses could be delivered to micrometastases when bone marrow rescue is used. A rationale is presented for targeted systemic radiotherapy used in combination with external beam total body irradiation (TBI) and bone marrow rescue. This has some practical advantages. The effect of the targeted component is to impose a biological non-uniformity on the total body dose distribution with regions of high tumour cell density receiving higher doses. Where targeting results in high doses to particular normal organs (e.g. liver, kidney) the total dose to these organs could be kept within tolerable limits by appropriate shielding of the external beam radiation component of the treatment. Greater levels of tumour cell kill should be achievable by the combination regime without any increase in normal tissue damage over that inflicted by conventional TBI. The predicted superiority of the combination regime is especially marked for tumours just below the threshold for detectability (e.g. approximately 1 mm-1 cm diameter). This approach has the advantage that targeted radiotherapy provides only a proportion of the total body dose, most of which is given by a familiar technique. The proportion of dose given by the targeted component could be increased as experience is gained. The predicted superiority of the combination strategy should be experimentally testable using laboratory animals. Clinical applications should be cautiously approached, with due regard to

  20. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    Science.gov (United States)

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  2. Labelling techniques of biomolecules for targeted radiotherapy final report of a co-ordinated research project 1998-2002

    CERN Document Server

    International Atomic Energ Agency. Vienna

    2003-01-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the...

  3. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy

    Directory of Open Access Journals (Sweden)

    Chang WC

    2014-06-01

    Full Text Available Wen-Chung Chang,1,* Chin-Sheng Chen,2,* Hung-Chi Tai,3 Chia-Yuan Liu,4,5 Yu-Jen Chen3 1Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan; 2Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan; 3Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan; 4Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan; 5Department of Medicine, Mackay Medical College, New Taipei City, Taiwan  *These authors contributed equally to this work Abstract: The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US and computed tomography (CT scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy. Keywords: ultrasound, computerized tomography

  4. Severe Late Toxicities Following Concomitant Chemoradiotherapy Compared to Radiotherapy Alone in Cervical Cancer: An Inter-era Analysis

    International Nuclear Information System (INIS)

    Gondi, Vinai; Bentzen, Søren M.; Sklenar, Kathryn L.; Dunn, Emily F.; Petereit, Daniel G.; Tannehill, Scott P.; Straub, Margaret; Bradley, Kristin A.

    2012-01-01

    Purpose: To compare rates of severe late toxicities following concomitant chemoradiotherapy and radiotherapy alone for cervical cancer. Methods and Materials: Patients with cervical cancer were treated at a single institution with radiotherapy alone or concomitant chemoradiotherapy for curative intent. Severe late toxicity was defined as grade ≥3 vaginal, urologic, or gastrointestinal toxicity or any pelvic fracture, using Common Terminology Criteria for Adverse Events version 4.0 (CTCAE), occurring ≥6 months from treatment completion and predating any salvage therapy. Severe late toxicity rates were compared after adjusting for pertinent covariates. Results: At 3 years, probability of vaginal severe late toxicity was 20.2% for radiotherapy alone and 35.1% for concomitant chemoradiotherapy (P=.026). At 3 years, probability of skeletal severe late toxicity was 1.6% for radiotherapy alone and 7.5% for concomitant chemoradiotherapy (P=.010). After adjustment for case mix, concomitant chemoradiotherapy was associated with higher vaginal (hazard ratio [HR] 3.0, 95% confidence interval [CI], 1.7-5.2, P 50 was associated with higher vaginal (HR 1.8, 95% CI 1.1-3.0, P=.013) and skeletal (HR 5.7, 95% CI 1.2-27.0, P=.028) severe late toxicity. Concomitant chemoradiotherapy was not associated with higher gastrointestinal (P=.886) or urologic (unadjusted, P=.053; adjusted, P=.063) severe late toxicity. Conclusion: Compared to radiotherapy alone, concomitant chemoradiotherapy is associated with higher rates of severe vaginal and skeletal late toxicities. Other predictive factors include dilator compliance for severe vaginal late toxicity and age for severe vaginal and skeletal late toxicities.

  5. Target volume definition with 18F-FDG PET-CT in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Carson, K. J.; Hanna, G. G.; Hounsell, A. R.

    2011-01-01

    There is considerable interest in using 18F -Fluorodeoxyglucose (FDG) positron emission tomography (PET) images for radiotherapy treatment planning (RTF) purposes, and in particular for defining target volumes. This is a rapidly evolving subject and this review describes the background to this application of PET imaging and discusses the issues involved. (authors)

  6. Sphere of equivalence--a novel target volume concept for intraoperative radiotherapy using low-energy X rays.

    Science.gov (United States)

    Herskind, Carsten; Griebel, Jürgen; Kraus-Tiefenbacher, Uta; Wenz, Frederik

    2008-12-01

    Accelerated partial breast radiotherapy with low-energy photons from a miniature X-ray machine is undergoing a randomized clinical trial (Targeted Intra-operative Radiation Therapy [TARGIT]) in a selected subgroup of patients treated with breast-conserving surgery. The steep radial dose gradient implies reduced tumor cell control with increasing depth in the tumor bed. The purpose was to compare the expected risk of local recurrence in this nonuniform radiation field with that after conventional external beam radiotherapy. The relative biologic effectiveness of low-energy photons was modeled using the linear-quadratic formalism including repair of sublethal lesions during protracted irradiation. Doses of 50-kV X-rays (Intrabeam) were converted to equivalent fractionated doses, EQD2, as function of depth in the tumor bed. The probability of local control was estimated using a logistic dose-response relationship fitted to clinical data from fractionated radiotherapy. The model calculations show that, for a cohort of patients, the increase in local control in the high-dose region near the applicator partly compensates the reduction of local control at greater distances. Thus a "sphere of equivalence" exists within which the risk of recurrence is equal to that after external fractionated radiotherapy. The spatial distribution of recurrences inside this sphere will be different from that after conventional radiotherapy. A novel target volume concept is presented here. The incidence of recurrences arising in the tumor bed around the excised tumor will test the validity of this concept and the efficacy of the treatment. Recurrences elsewhere will have implications for the rationale of TARGIT.

  7. Emergence and present status of Lu-177 in targeted radiotherapy. The Indian scenario

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Das, T.; Chakraborty, S.; Venkatesh, M. [Bhabha Atomic Reseach Centre, Trombay, Mumbai (India). Radiopharmaceuticals Div.

    2012-07-01

    {sup 177}Lu is presently considered to be a potential radionuclide for the development of agents for radionuclide therapy owing to its favorable nuclear decay characteristics [T{sub 1/2} = 6.65 d, E{sub {beta}}{sub (max)} = 0.497 MeV, E{sub {gamma}} = 113 KeV (6.4%) and 208 KeV (11%)]. While the long half-life of this promising radioisotope offers distinct logistic advantage, particularly, in countries having limited reactor facilities, the feasibility of its large-scale production with adequate specific activity and excellent radionuclidic purity in medium flux research reactors constitute yet another desirable feature. Extensive studies have been carried out to optimize the production of this isotope, with high specific activity and radionuclidic purity by the (n,{gamma}) route using the highest available flux and the optimum irradiation time. The gradual evolution of clin ical grade {sup 177}LuCl{sub 3} as a new radiochemical, ready for commercial deployment by Radiopharmaceuticals Division, Bhabha Atomic Research Centre, to nuclear medicine centers all over India was accomplished in 2010 in a stepwise manner with the commencement of the production of high specific activity {sup 177}Lu from enriched target in 2001. Research on {sup 177}Lu has demonstrated its immense potential in radiotherapeutic applications, a direct outcome of which has resulted in indigenous development of two agents viz. {sup 177}Lu-EDTMP and {sup 177}Lu-DOTA-TATE presently being evaluated in human patients for palliative care of bone pain due to skeletal metastases and treatment of malignancies of neuroendocrine origin, respectively. Using locally produced {sup 177}Lu, the radiolabeling of a plethora of other molecules with potential applicability in radiation synovectomy and targeted therapy of malignant tumors have been successfully demonstrated. A few of these agent such as a novel {sup 177}Lu-labeled porphyrin has shown considerable promise in initial studies and is presently evaluated

  8. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer

    DEFF Research Database (Denmark)

    Rydhog, Jonas Scherman; de Blanck, Steen Riisgaard; Josipovic, Mirjana

    2017-01-01

    Purpose: The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath hold (DISH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients.Methods: Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course...... of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm.Results: A mean...... small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. (C) 2017 Elsevier B.V. All rights reserved....

  9. Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease

    Science.gov (United States)

    Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina

    2009-01-01

    Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131

  10. Development of a Software for Quantitative Evaluation Radiotherapy Target and Organ-at-Risk Segmentation Comparison

    NARCIS (Netherlands)

    Kalpathy-Cramer, Jayashree; Awan, Musaddiq; Bedrick, Steven; Rasch, Coen R. N.; Rosenthal, David I.; Fuller, Clifton D.

    2014-01-01

    Modern radiotherapy requires accurate region of interest (ROI) inputs for plan optimization and delivery. Target delineation, however, remains operator-dependent and potentially serves as a major source of treatment delivery error. In order to optimize this critical, yet observer-driven process, a

  11. Automatic definition of targeted biological volumes for the radiotherapy applications

    International Nuclear Information System (INIS)

    Hatt, M.; Visvikis, D.; Cheze-Le-Rest, C.; Pradier, O.

    2009-01-01

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ( 18 F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  12. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Beadle, Beth M.; Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Schwartz, David L. [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States)

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented

  13. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy.

    Science.gov (United States)

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis

    2015-09-01

    To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the

  14. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    International Nuclear Information System (INIS)

    Yang, Jinzhong; Aristophanous, Michalis; Beadle, Beth M.; Garden, Adam S.; Schwartz, David L.

    2015-01-01

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm"3 (range, 6.6–44.3 cm"3), while the PET segmented GTV was 10.2 cm"3 (range, 2.8–45.1 cm"3). The median physician-defined GTV was 22.1 cm"3 (range, 4.2–38.4 cm"3). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was

  15. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    Directory of Open Access Journals (Sweden)

    Korevaar Erik W

    2008-01-01

    Full Text Available Abstract Background The shift from conventional two-dimensional (2D to three-dimensional (3D-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT-based breast and boost planning target volumes (PTV, absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Methods Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. Results With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. Conclusion The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on

  16. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Langendijk, Johannes A

    2008-01-01

    The shift from conventional two-dimensional (2D) to three-dimensional (3D)-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT)-based breast and boost planning target volumes (PTV), absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on clinical data confirming tumour control probability and normal

  17. Internal high linear energy transfer (LET) targeted radiotherapy for cancer

    International Nuclear Information System (INIS)

    Allen, Barry J

    2006-01-01

    High linear energy transfer (LET) radiation for internal targeted therapy has been a long time coming on to the medical therapy scene. While fundamental principles were established many decades ago, the clinical implementation has been slow. Localized neutron capture therapy, and more recently systemic targeted alpha therapy, are at the clinical trial stage. What are the attributes of these therapies that have led a band of scientists and clinicians to dedicate so much of their careers? High LET means high energy density, causing double strand breaks in DNA, and short-range radiation, sparing adjacent normal tissues. This targeted approach complements conventional radiotherapy and chemotherapy. Such therapies fail on several fronts. Foremost is the complete lack of progress for the control of primary GBM, the holy grail for cancer therapies. Next is the inability to regress metastatic cancer on a systemic basis. This has been the task of chemotherapy, but palliation is the major application. Finally, there is the inability to inhibit the development of lethal metastatic cancer after successful treatment of the primary cancer. This review charts, from an Australian perspective, the developing role of local and systemic high LET, internal radiation therapy. (review)

  18. Intercomparison of Dosimeters for Non-Target Organ Dose Measurements in Radiotherapy - Activity of EURADOS WG 9: Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Bessieres, I.; Bordy, J.-M.; D'Agostino, E.; d'Errico, F.; di Fulvio, A.; Domingo, C.; Olko, P.; Stolarczyk; Silari, M.; Harrison, R.

    2011-01-01

    It has been known for a long time that patients treated with ionizing radiation carry a risk of developing radiation induced cancer in their lifetimes. It is recognized that cure/survival rates in radiotherapy are increasing, but so are secondary cancers. These occurrences are amplified by the early detection of disease in younger patients. These patients are cured from the primary disease and have long life-expectancies, which increase their chances of developing secondary malignancies. The motivation of the EURADOS Working Group 9 (WG 9) ''Radiation protection dosimetry in medicine'' is to assess undue non-target patient doses in radiotherapy and the related risks of secondary malignancy with the most accredited available methods and with the emphasis on a thorough evaluation of dosimetry methods for the measurements of doses remote from the target volume, in phantom experiments. The development of a unified and comprehensive dosimetry methodology for non-target dose estimation is the key element of the WG9 current work. The first scientific aim is to select and review dosimeters suitable for photon and neutron dosimetry in radiotherapy and to evaluate the characteristics of dosimeters at CEA LIST Saclay in reference clinical LINAC beam. (author)

  19. Gold markers for tumor localization and target volume delineation in radiotherapy for rectal cancer

    International Nuclear Information System (INIS)

    Vorwerk, Hilke; Christiansen, Hans; Hess, Clemens Friedrich; Hermann, Robert Michael; Liersch, Thorsten; Ghadimi, Michael; Rothe, Hilka

    2009-01-01

    In locally advanced rectal cancer, neoadjuvant radiochemotherapy is indicated. To improve target volume definition for radiotherapy planning, the potential of implanted gold markers in the tumor region was evaluated. In nine consecutive patients, two to three gold markers were implanted in the tumor region during rigid rectoscopy. Computed tomography scans were performed during treatment planning. All electronic portal imaging devices (EPIDs) recorded during treatment series were analyzed. All patients underwent complete tumor resection with meticulous histopathologic examination. The gold markers could easily be implanted into the mesorectal tissue at the caudal tumor border without any complications. They were helpful in identifying the inferior border of the planning target volume in order to spare normal tissue (in particular anal structures). No significant shift of the markers was found during the course of therapy. Marker matching of the EPIDs did not improve patient positioning in comparison to bone structure matching. The former position of at least one marker could be identified in all patients during histopathologic examination. The use of gold marker enables a more precise definition of the target volume for radiotherapy in patients with rectal cancer. This could eventually allow a better protection of anal structures of patients with a tumor localization = 5 cm cranial of the anal sphincter. The implantation of the gold markers improved communication between the surgeon, the radiooncologist and the pathologist resulting in intensified exchange of relevant informations. (orig.)

  20. Radiotherapy of benign diseases

    International Nuclear Information System (INIS)

    Haase, W.

    1982-01-01

    Still today radiotherapy is of decisive relevance for several benign diseases. The following ones are briefly described in this introductory article: 1. Certain inflammatory and degenerative diseases as furuncles in the face, acute thrombophlebitis, recurrent sudoriparous abscesses, degenerative skeletal diseases, cervical syndrome and others; 2. rheumatic joint diseases; 3. Bechterew's disease; 4. primary presenile osteoporosis; 5. synringomyelia; 6. endocrine ophthalmopathy; 7. hypertrophic processes of the connective tissue; 8. hemangiomas. A detailed discussion and a profit-risk analysis is provided in the individual chapters of the magazine. (MG) [de

  1. Solitary extra-skeletal sinonasal metastasis from a primary skeletal Ewing's sarcoma.

    Science.gov (United States)

    Hayes, S M; Jani, T N; Rahman, S M; Jogai, S; Harries, P G; Salib, R J

    2011-08-01

    Ewing's sarcoma is a rare, malignant tumour predominantly affecting young adolescent males. We describe a unique case of an isolated extra-skeletal metastasis from a skeletal Ewing's sarcoma primary, arising in the right sinonasal cavity of a young man who presented with severe epistaxis and periorbital cellulitis. Histologically, the lesion comprised closely packed, slightly diffuse, atypical cells with round, hyperchromatic nuclei, scant cytoplasm and occasional mitotic figures, arranged in a sheet-like pattern. Immunohistochemical analysis showed positive staining only for cluster of differentiation 99 glycoprotein. Fluorescent in situ hybridisation identified the Ewing's sarcoma gene, confirming the diagnosis. Complete surgical resection was achieved via a minimally invasive endoscopic transnasal approach; post-operative radiotherapy. Ten months post-operatively, there were no endoscopic or radiological signs of disease. Metastatic Ewing's sarcoma within the head and neck is incredibly rare and can pose significant diagnostic and therapeutic challenges. An awareness of different clinical presentations and distinct histopathological features is important to enable early diagnosis. This case illustrates one potential management strategy, and reinforces the evolving role of endoscopic transnasal approaches in managing sinonasal cavity and anterior skull base tumours.

  2. Clinical variability of target volume description and treatment plans in conformal radiotherapy in muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Logue, John P; Sharrock, Carole L; Cowan, Richard A.; Read, Graham; Marrs, Julie; Mott, David

    1996-01-01

    Purpose/Objective: The delineation of tumor and the production of a treatment plan to encompass this is the prime step in radiotherapy planning. Conformal radiotherapy is developing rapidly and although plentiful research has addressed the implementation of the radiotherapy prescription, scant attention has been made to the fundamental step of production, by the clinician, of an appropriate target volume. As part of an ongoing randomized trial of conformal radiotherapy, in bladder cancer, we have therefore assessed the interphysician variability of radiologists and radiation oncologists (RO) in assessing Gross Tumor Volume(GTV) (ICRU 50) and the adherence of the radiation oncologists to the study protocol of producing a Planning Target Volume (PTV). Materials and Methods: Four patients with T3 carcinoma of bladder who had been entered into the trial were identified. The clinical details, MR scans and CT scans were made available. Eight RO and 3 dedicated diagnostic oncology radiologists were invited to directly outline the GTV onto CT images on a planning computer consul. The RO in addition created a PTV following the trial protocol of 15mm margin around the GTV. Three RO sub-specialized in Urological radiotherapy; all RO had completed training. Volumes were produced, for each clinician, and comparison of these volumes and their isocenters were analyzed. In addition the margins allowed were measured and compared. Results: There was a maximum variation ratio (largest to smallest volume outlined) of the GTV in the four cases of 1.74 among radiologists and 3.74 among oncologists. There was a significant difference (p=0.01) in mean GTV between RO and the radiologists. The mean GTV of the RO exceeded the radiologists by a factor of 1.29 with a mean difference of 13.4 cm 3 The between observer variance within speciality comprised only 9.9% of the total variance in the data having accounted for case and observers speciality. The variation ratio in PTV among oncologists

  3. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver.

    Science.gov (United States)

    Wulf, Jörn; Hädinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-02-01

    Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5mm in axial and 5-10mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). A decrease of TC to or=95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm(3) are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins.

  4. Nanoparticle-guided radiotherapy

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a method and nano-sized particles for image guided radiotherapy (IGRT) of a target tissue. More specifically, the invention relates to nano-sized particles comprising X-ray-imaging contrast agents in solid form with the ability to block x-rays, allowing for simult...... for simultaneous or integrated external beam radiotherapy and imaging, e.g., using computed tomography (CT)....

  5. Impact of target reproducibility on tumor dose in stereotactic radiotherapy of targets in the lung and liver

    International Nuclear Information System (INIS)

    Wulf, Joern; Haedinger, Ulrich; Oppitz, Ulrich; Thiele, Wibke; Flentje, Michael

    2003-01-01

    Background and purpose: Previous analyses of target reproducibility in extracranial stereotactic radiotherapy have revealed standard security margins for planning target volume (PTV) definition of 5 mm in axial and 5-10 mm in longitudinal direction. In this study the reproducibility of the clinical target volume (CTV) of lung and liver tumors within the PTV over the complete course of hypofractionated treatment is evaluated. The impact of target mobility on dose to the CTV is assessed by dose-volume histograms (DVH). Materials and methods: Twenty-two pulmonary and 21 hepatic targets were treated with three stereotactic fractions of 10 Gy to the PTV-enclosing 100%-isodose with normalization to 150% at the isocenter. A conformal dose distribution was related to the PTV, which was defined by margins of 5-10 mm added to the CTV. Prior to each fraction a computed tomography (CT)-simulation over the complete target volume was performed resulting in a total of 60 CT-simulations for lung and 58 CT-simulations for hepatic targets. The CTV from each CT-simulation was segmented and matched with the CT-study used for treatment planning. A DVH of the simulated CTV was calculated for each fraction. The target coverage (TC) of dose to the simulated CTV was defined as the proportion of the CTV receiving at least the reference dose (100%). Results: A decrease of TC to 3 . Conclusions: Target reproducibility was precise within the reference isodose in 91% of lung and 81% of liver tumors with a TC of the complete CTV ≥95% at each fraction of treatment. Pulmonary targets with increased breathing mobility and liver tumors >100 cm 3 are at risk for target deviation exceeding the standard security margins for PTV-definition at least for one fraction and require individual evaluation of sufficient margins

  6. Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents.

    Science.gov (United States)

    Ma, Brigette B Y; Bristow, Robert G; Kim, John; Siu, Lillian L

    2003-07-15

    Molecular targeted agents have been combined with radiotherapy (RT) in recent clinical trials in an effort to optimize the therapeutic index of RT. The appeal of this strategy lies in their potential target specificity and clinically acceptable toxicity. This article integrates the salient, published research findings into the underlying molecular mechanisms, preclinical efficacy, and clinical applicability of combining RT with molecular targeted agents. These agents include inhibitors of intracellular signal transduction molecules, modulators of apoptosis, inhibitors of cell cycle checkpoints control, antiangiogenic agents, and cyclo-oxygenase-2 inhibitors. Molecular targeted agents can have direct effects on the cytoprotective and cytotoxic pathways implicated in the cellular response to ionizing radiation (IR). These pathways involve cellular proliferation, DNA repair, cell cycle progression, nuclear transcription, tumor angiogenesis, and prostanoid-associated inflammation. These pathways can also converge to alter RT-induced apoptosis, terminal growth arrest, and reproductive cell death. Pharmacologic modulation of these pathways may potentially enhance tumor response to RT though inhibition of tumor repopulation, improvement of tumor oxygenation, redistribution during the cell cycle, and alteration of intrinsic tumor radiosensitivity. Combining RT and molecular targeted agents is a rational approach in the treatment of solid tumors. Translation of this approach from promising preclinical data to clinical trials is actively underway.

  7. Rule of lymph node metastasis and proper target of postoperative radiotherapy for thoracic esophageal carcinoma

    International Nuclear Information System (INIS)

    Xiao Zefen; Zhou Zongmei; Lv Jima; Liang Jun; Ou Guangfei; Jin Jing; Song Yongwen; Zhang Shiping; Yin Weibo

    2008-01-01

    Objective: To analyze the rule of lymph node metastasis in thoracic esophageal carcinoma, and to study the proper radiation target. Methods: From September 1986 to December 1997,549 patients with esophageal carcinoma who had undergone radical resection were divided into surgery alone group (S,275 patients) or surgery plus radiotherapy group(S + R,274 patients). Radiotherapy was begun 3 to 4 weeks after operation. The radiation target included both supra-clavicular areas and the entire mediastinum. The total dose was 50 Gy in 25 fractions over 5 weeks for the supra-clavicular areas and 60 Gy in 30 fractions over 6 weeks for the entire mediastinum. Results: The 5-year overall survival of patients with lymph node metastasis in one anatomic site and two anatomic sites was 31.5% and 13.9% (P=0.013), respectively. For patients with > 2 positive nodes metastasis receiving surgery alone, the corresponding 5-year survival was 24.8% and 4.9% (P=0.046), respectively. The median number of dissected lymph nodes of the upper-, middle-and lower-segment esophageal carcinoma was 13, 17 and 20, respectively. The rate of metastatic lymph node in the para-esophagus region was the highest(61.5%-64.9%), which was not different among the different primary sites (P=0.922). The anastomotic stoma recurrence rate of the upper-segment esophageal carcinoma was higher than that of the middle- or lower-segment carcinomas (16.7%, 3.1%, and 7.7%, χ 2 =9.02,P<0.05). Conclusions: For the thoracic esophageal carcinoma, the number of anatomic sites of lymph node metastasis is an important factor affecting the survival. The lower rate of lymph node metastasis of the upper segment esophageal carcinoma may be corrected with the less lymph node dissected. The rate of lymph node metastasis in para-esophageal region is not related with the lesion segment. The anastomotic stoma is an important radiotherapy target for upper segment esophageal carcinoma. (authors)

  8. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Directory of Open Access Journals (Sweden)

    Miriam Aza-Carmona

    Full Text Available SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD and Langer mesomelic dysplasia (LMD, while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1 the natriuretic peptide precursor B gene (NPPB involved in the endochondral ossification signalling and directly activated by SHOX; and 2 Aggrecan (ACAN, a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9 via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  9. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development.

    Science.gov (United States)

    Aza-Carmona, Miriam; Barca-Tierno, Veronica; Hisado-Oliva, Alfonso; Belinchón, Alberta; Gorbenko-del Blanco, Darya; Rodriguez, Jose Ignacio; Benito-Sanz, Sara; Campos-Barros, Angel; Heath, Karen E

    2014-01-01

    SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.

  10. Intensity-Modulated Radiotherapy for Craniospinal Irradiation: Target Volume Considerations, Dose Constraints, and Competing Risks

    International Nuclear Information System (INIS)

    Parker, William; Filion, Edith; Roberge, David; Freeman, Carolyn R.

    2007-01-01

    Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superior for the IMRT plans for V 95% (IMRT, 100%; 3D, 96%; 2D, 98%) and V 107% (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V 10Gy , V 15Gy , and V 20Gy . The 3D plan was superior for V 5Gy and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V 10Gy and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose

  11. PET/CT Based Dose Planning in Radiotherapy

    DEFF Research Database (Denmark)

    Berthelsen, Anne Kiil; Jakobsen, Annika Loft; Sapru, Wendy

    2011-01-01

    radiotherapy planning with PET/CT prior to the treatment. The PET/CT, including the radiotherapy planning process as well as the radiotherapy process, is outlined in detail. The demanding collaboration between mould technicians, nuclear medicine physicians and technologists, radiologists and radiology......This mini-review describes how to perform PET/CT based radiotherapy dose planning and the advantages and possibilities obtained with the technique for radiation therapy. Our own experience since 2002 is briefly summarized from more than 2,500 patients with various malignant diseases undergoing...... technologists, radiation oncologists, physicists, and dosimetrists is emphasized. We strongly believe that PET/CT based radiotherapy planning will improve the therapeutic output in terms of target definition and non-target avoidance and will play an important role in future therapeutic interventions in many...

  12. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  13. Planning magnetic resonance imaging for prostate cancer intensity-modulated radiation therapy: Impact on target volumes, radiotherapy dose and androgen deprivation administration.

    Science.gov (United States)

    Horsley, Patrick J; Aherne, Noel J; Edwards, Grace V; Benjamin, Linus C; Wilcox, Shea W; McLachlan, Craig S; Assareh, Hassan; Welshman, Richard; McKay, Michael J; Shakespeare, Thomas P

    2015-03-01

    Magnetic resonance imaging (MRI) scans are increasingly utilized for radiotherapy planning to contour the primary tumors of patients undergoing intensity-modulated radiation therapy (IMRT). These scans may also demonstrate cancer extent and may affect the treatment plan. We assessed the impact of planning MRI detection of extracapsular extension, seminal vesicle invasion, or adjacent organ invasion on the staging, target volume delineation, doses, and hormonal therapy of patients with prostate cancer undergoing IMRT. The records of 509 consecutive patients with planning MRI scans being treated with IMRT for prostate cancer between January 2010 and July 2012 were retrospectively reviewed. Tumor staging and treatment plans before and after MRI were compared. Of the 509 patients, 103 (20%) were upstaged and 44 (9%) were migrated to a higher risk category as a result of findings at MRI. In 94 of 509 patients (18%), the MRI findings altered management. Ninety-four of 509 patients (18%) had a change to their clinical target volume (CTV) or treatment technique, and in 41 of 509 patients (8%) the duration of hormone therapy was changed because of MRI findings. The use of radiotherapy planning MRI altered CTV design, dose and/or duration of androgen deprivation in 18% of patients in this large, single institution series of men planned for dose-escalated prostate IMRT. This has substantial implications for radiotherapy target volumes and doses, as well as duration of androgen deprivation. Further research is required to investigate whether newer MRI techniques can simultaneously fulfill staging and radiotherapy contouring roles. © 2014 Wiley Publishing Asia Pty Ltd.

  14. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  15. The target volume concept at the recording of external beam radiotherapy

    International Nuclear Information System (INIS)

    Quast, U.; Glaeser, L.

    1981-01-01

    With the aim of complete, exact and reproducible manual recording and documentation of external beam radiotherapy a concept is proposed providing treatment planning and recording related to space and time for target volumes of different order corresponding to Ist, IInd or IIIrd part of treatment course, regarding all dose limiting organs at risk. The record consists of the dosage plan for medical treatment planning, the treatment plan for physical dose distribution planning and the treatment record of absorbed doses delivered as well as a checklist for patient and machine set-up, and labels for intended actions during treatment development. A clear arrangement of the record form in logical order was found, demanding exact specification of target(s) and beam(s) and their relation in space and time; asking for verbal and graphical description of target volumes, organs at risk, patient positioning, beam portals and dose reference points in terms of patients' anatomy; emphasizing the most important medical data by marked areas and leaving enough empty space for additional data, remarks or comments. During several years of clinical use these record forms proved to be suitable for all cases of external beam therapy, for complex situations of target volumes and treatment-scheduling, for all treatment techniques and radiation qualities and for all ways of physical treatment planning. They can be extended to automatic treatment verification, monitoring and recording as well as to the application of in-vivo-measurements of absorbed doses. (orig.) [de

  16. Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience.

    Science.gov (United States)

    Bates, James E; Youn, Paul; Peterson, Carl R; Usuki, Kenneth Y; Walter, Kevin A; Okunieff, Paul; Milano, Michael T

    2017-10-01

    Radiotherapy remains the standard approach for brain metastases from renal cell carcinoma (RCC). Kinase inhibitors (KI) have become standard of care for metastatic RCC. They also increase the radiosensitivity of various tumor types in preclinical models. Data are lacking regarding the effect of KIs among RCC patients undergoing radiotherapy for brain metastases. We report our experience of radiotherapy for brain metastatic RCC in the era of targeted therapy and analyzed effects of concurrent KI therapy. We retrospectively analyzed 25 consecutive patients who received radiotherapy for brain metastases from RCC with whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or both. Kaplan-Meier rates of overall survival (OS) and brain progression-free survival (BPFS) were calculated and univariate analyses performed. Lower diagnosis-specific graded prognostic assessment (DS-GPA) score and multiple intracranial metastases were associated with decreased OS and BPFS on univariate analysis; DS-GPA is also a prognostic factor on multivariate analysis. There was no significant difference in OS or BPFS for SRS compared with WBRT or WBRT and SRS combined. The concurrent use of KI was not associated with any change in OS or BPFS. This hypothesis-generating analysis suggests among patients with brain metastatic RCC treated with the most current therapies, those selected to undergo SRS did not experience significantly different survival or control outcomes than those selected to undergo WBRT. From our experience to date, limited in patient numbers, there seems to be neither harm nor benefit in using concurrent KI therapy during radiotherapy. Given that most patients progress systemically, we would recommend considering KI use during brain radiotherapy in these patients.

  17. Myo/Nog cells: targets for preventing the accumulation of skeletal muscle-like cells in the human lens.

    Directory of Open Access Journals (Sweden)

    Jacquelyn Gerhart

    Full Text Available Posterior capsule opacification (PCO is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.

  18. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  19. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Hoffmann, A.L.; Vogel, W.V.; Dalen, J.A. van; Verstappen, S.M.M.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. MATERIALS AND METHODS: Seventy-eight

  20. Recurrence pattern of squamous cell carcinoma in the midthoracic esophagus: implications for the clinical target volume design of postoperative radiotherapy

    Directory of Open Access Journals (Sweden)

    Wang X

    2016-10-01

    Full Text Available Xiaoli Wang,1,2,* Yijun Luo,1,2,* Minghuan Li,2 Hongjiang Yan,2 Mingping Sun,2 Tingyong Fan2 1School of Medicine and Life Sciences, Jinan University-Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China; 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Background: Postoperative radiotherapy has shown positive efficacy in lowering the recurrence rate and improving the survival rate for patients with esophageal squamous cell carcinoma (ESCC. However, controversies still exist about the postoperative prophylactic radiation target volume. This study was designed to analyze the patterns of recurrence and to provide a reference for determination of the postoperative radiotherapy target volume for patients with midthoracic ESCC.Patients and methods: A total of 338 patients with recurrent or metastatic midthoracic ESCC after radical surgery were retrospectively examined. The patterns of recurrence including locoregional and distant metastasis were analyzed for these patients.Results: The rates of lymph node (LN metastasis were 28.4% supraclavicular, 77.2% upper mediastinal, 32.0% middle mediastinal, 50.0% lower mediastinal, and 19.5% abdominal LNs. In subgroup analyses, the rate of abdominal LN metastasis was significantly higher in patients with histological node-positive than that in patients with histological node-negative (P=0.033. Further analysis in patients with histological node-positive demonstrated that patients with three or more positive nodes are more prone to abdominal LN metastasis, compared with patients with one or two positive nodes (χ2=4.367, P=0.037. The length of tumor and histological differentiation were also the high-risk factors for abdominal LN metastasis.Conclusion: For midthoracic ESCC with histological node-negative, or one or two positive nodes, the supraclavicular and

  1. The Role of Seminal Vesicle Motion in Target Margin Assessment for Online Image-Guided Radiotherapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Liang Jian; Wu Qiuwen; Yan Di

    2009-01-01

    Purpose: For patients with intermediate- and high-risk prostate cancer, the seminal vesicles (SVs) are included in the clinical target volume (CTV). The purposes of this study are to investigate interfraction motion characteristics of the SVs and determine proper margins for online computed tomography image guidance. Methods and Materials: Twenty-four patients, each with 16 daily helical computed tomography scans, were included in this study. A binary image mask was used for image registration to determine daily organ motion. Two online image-guided radiotherapy strategies (prostate only and prostate + SVs) were simulated in a hypofractionated scheme. Three margin designs were studied for both three-dimensional conformal radiotherapy and intensity-modulated radiotherapy (IMRT). In prostate-only guidance, Margin A was uniformly applied to the whole CTV, and Margin B was applied to the SVs with a fixed 3-mm prostate margin. In prostate plus SV guidance, Margin C was uniformly applied to the CTV. The minimum margins were sought to satisfy the criterion that minimum cumulative CTV dose be more than those of the planning target volume in the plan for greater than 95% of patients. Results: The prostate and SVs move significantly more in the anterior-posterior and superior-inferior than right-left directions. The anterior-posterior motion of the prostate and SVs correlated (R 2 = 0.7). The SVs move significantly more than the prostate. The minimum margins found were 2.5 mm for three-dimensional conformal radiotherapy and 4.5, 4.5, and 3.0 mm for Margins A, B, and C for IMRT, respectively. Margins for IMRT were larger, but the irradiated volume and doses to critical structures were smaller. Minimum margins of 4.5 mm to the SVs and 3 mm to the prostate are recommended for IMRT with prostate-only guidance. Conclusions: The SVs move independently from the prostate gland, and additional margins are necessary for image-guided radiotherapy

  2. FDG-PET/CT Imaging for Staging and Target Volume Delineation in Preoperative Conformal Radiotherapy of Rectal Cancer

    International Nuclear Information System (INIS)

    Bassi, Maria Chiara; Turri, Lucia; Sacchetti, Gianmauro; Loi, Gianfranco; Cannillo, Barbara; La Mattina, Pierdaniele; Brambilla, Marco; Inglese, Eugenio; Krengli, Marco

    2008-01-01

    Purpose: To investigate the potential impact of using 18 F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) on staging and target volume delineation for patients affected by rectal cancer and candidates for preoperative conformal radiotherapy. Methods and Materials: Twenty-five patients diagnosed with rectal cancer T3-4 N0-1 M0-1 and candidates for preoperative radiotherapy underwent PET/CT simulation after injection of 5.18 MBq/kg of FDG. Clinical stage was reassessed on the basis of FDG-PET/CT findings. The gross tumor volume (GTV) and the clinical target volume (CTV) were delineated first on CT and then on PET/CT images. The PET/CT-GTV and PET/CT-CTV were analyzed and compared with CT-GTV and CT-CTV, respectively. Results: In 4 of 25 cases (24%), PET/CT affected tumor staging or the treatment purpose. In 3 of 25 cases (12%) staged N0 M0, PET/CT showed FDG uptake in regional lymph nodes and in a case also in the liver. In a patient with a single liver metastasis PET/CT detected multiple lesions, changing the treatment intent from curative to palliative. The PET/CT-GTV and PET/CT-CTV were significantly greater than the CT-GTV (p = 0.00013) and CT-CTV (p = 0.00002), respectively. The mean difference between PET/CT-GTV and CT-GTV was 25.4% and between PET/CT-CTV and CT-CTV was 4.1%. Conclusions: Imaging with PET/CT for preoperative radiotherapy of rectal cancer may lead to a change in staging and target volume delineation. Stage variation was observed in 12% of cases and a change of treatment intent in 4%. The GTV and CTV changed significantly, with a mean increase in size of 25% and 4%, respectively

  3. PET/CT and radiotherapy

    International Nuclear Information System (INIS)

    Messa, C.; CNR, Milano; S. Gerardo Hospital, Monza; Di Muzio, N.; Picchio, M.; Bettinardi, V.; Gilardi, M.C.; CNR, Milano; San Raffaele Scientific Institute, Milano; Fazio, F.; CNR, Milano; San Raffaele Scientific Institute, Milano; San Raffaele Scientific Institute, Milano

    2006-01-01

    This article reviews the state of the art of PET/CT applications in radiotherapy, specifically its use in disease staging, patient selection, treatment planning and treatment evaluation. Diseases for which radiotherapy with radical intent is indicated will be considered, as well as those in which PET/CT may actually change the course of disease. The methodological and technological aspects of PET/CT in radiotherapy are discussed, focusing on the problem of target volume definition with CT and PET functional imaging and the problem of tumor motion with respect to imaging and dose delivery

  4. Automatic definition of targeted biological volumes for the radiotherapy applications; Definition automatique des volumes biologiques cibles pour les applications de radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, M.; Visvikis, D. [LaTIM, U650 Inserm, 29 - Brest (France); Cheze-Le-Rest, C. [Service de medecine nucleaire, 29 - Brest (France); Pradier, O. [Service de radiotherapie, 29 - Brest (France)

    2009-10-15

    The proposed method: Fuzzy locally adaptive Bayesian (F.L.A.B.) showed its reliability and its precision on very complete collection of realistic simulated and real data. Its use in the context of radiotherapy allows to consider easily the studies implementation and scenari of dose painting or dose escalation, including in complex cases of heterogenous fixations. It is conceivable to apply F.L.A.B. on PET images with F.M.I.S.O. ({sup 18}F fluoro misonidazole) or F.L.T. (fluoro-L-thymidine) to complete the definition of the biological target volume. (N.C.)

  5. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  6. Image-guided radiotherapy for effective radiotherapy delivery

    CERN Document Server

    Karlsson, Ulf Lennart

    2016-01-01

    Image-guided radiotherapy (IGRT) is a new radiotherapy technology that combines the rapid dose fall off associated with intensity-modulated radiotherapy (IMRT) and daily tumor imaging allowing for high precision tumor dose delivery and effective sparing of surrounding normal organs. The new radiation technology requires close collaboration between radiologists, nuclear medicine specialists, and radiation oncologists to avoid marginal miss. Modern diagnostic imaging such as positron emission tomography (PET) scans, positron emission tomography with Computed Tomograpgy (PET-CT), and magnetic resonance imaging (MRI) allows the radiation oncologist to target the positive tumor with high accuracy. As the tumor is well visualized during radiation treatment, the margins required to avoid geographic miss can be safely reduced , thus sparing the normal organs from excessive radiation. When the tumor is located close to critical radiosensitive structures such as the spinal cord, IGRT can deliver a high dose of radiatio...

  7. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel

    2011-01-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  8. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    Science.gov (United States)

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (design, patient stability in the SBF should be verified with portal imaging.

  9. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass

    Directory of Open Access Journals (Sweden)

    Mee-Sup Yoon

    2017-10-01

    Full Text Available Maintenance of skeletal muscle mass is regulated by the balance between anabolic and catabolic processes. Mammalian target of rapamycin (mTOR is an evolutionarily conserved serine/threonine kinase, and is known to play vital roles in protein synthesis. Recent findings have continued to refine our understanding of the function of mTOR in maintaining skeletal muscle mass. mTOR controls the anabolic and catabolic signaling of skeletal muscle mass, resulting in the modulation of muscle hypertrophy and muscle wastage. This review will highlight the fundamental role of mTOR in skeletal muscle growth by summarizing the phenotype of skeletal-specific mTOR deficiency. In addition, the evidence that mTOR is a dual regulator of anabolism and catabolism in skeletal muscle mass will be discussed. A full understanding of mTOR signaling in the maintenance of skeletal muscle mass could help to develop mTOR-targeted therapeutics to prevent muscle wasting.

  10. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    International Nuclear Information System (INIS)

    Missailidis, Sotiris; Perkins, Alan; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario

    2008-01-01

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  11. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  12. The skeletal endocannabinoid system: clinical and experimental insights.

    Science.gov (United States)

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  13. Clinical target volume delineation in glioblastomas: pre-operative versus post-operative/pre-radiotherapy MRI

    Science.gov (United States)

    Farace, P; Giri, M G; Meliadò, G; Amelio, D; Widesott, L; Ricciardi, G K; Dall'Oglio, S; Rizzotti, A; Sbarbati, A; Beltramello, A; Maluta, S; Amichetti, M

    2011-01-01

    Objectives Delineation of clinical target volume (CTV) is still controversial in glioblastomas. In order to assess the differences in volume and shape of the radiotherapy target, the use of pre-operative vs post-operative/pre-radiotherapy T1 and T2 weighted MRI was compared. Methods 4 CTVs were delineated in 24 patients pre-operatively and post-operatively using T1 contrast-enhanced (T1PRECTV and T1POSTCTV) and T2 weighted images (T2PRECTV and T2POSTCTV). Pre-operative MRI examinations were performed the day before surgery, whereas post-operative examinations were acquired 1 month after surgery and before chemoradiation. A concordance index (CI) was defined as the ratio between the overlapping and composite volumes. Results The volumes of T1PRECTV and T1POSTCTV were not statistically different (248 ± 88 vs 254 ± 101), although volume differences >100 cm3 were observed in 6 out of 24 patients. A marked increase due to tumour progression was shown in three patients. Three patients showed a decrease because of a reduced mass effect. A significant reduction occurred between pre-operative and post-operative T2 volumes (139 ± 68 vs 78 ± 59). Lack of concordance was observed between T1PRECTV and T1POSTCTV (CI = 0.67 ± 0.09), T2PRECTV and T2POSTCTV (CI = 0.39 ± 0.20) and comparing the portion of the T1PRECTV and T1POSTCTV not covered by that defined on T2PRECTV images (CI = 0.45 ± 0.16 and 0.44 ± 0.17, respectively). Conclusion Using T2 MRI, huge variations can be observed in peritumoural oedema, which are probably due to steroid treatment. Using T1 MRI, brain shifts after surgery and possible progressive enhancing lesions produce substantial differences in CTVs. Our data support the use of post-operative/pre-radiotherapy T1 weighted MRI for planning purposes. PMID:21045069

  14. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    Directory of Open Access Journals (Sweden)

    Lu Guo

    Full Text Available To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT and tri-modality (MRI/CT/PET image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV, the average distance between surface and centroid (ADSC, and the local standard deviation (SDlocal. Analysis of COV was also performed to evaluate intra-observer volume variation.The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09 and 0.07(± 0.01 for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05 with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm and patient 3 (from 0.42 cm to 0.36 cm with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00 with the tri-modality method as compared with using the dual-modality method.With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  15. Change of tumor target volume during waiting time for intensity-modulated radiotherapy (IMRT) in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Chen Bo; Yi Junlin; Gao Li; Xu Guozhen; Huang Xiaodong; Zhang Zhong; Luo Jingwei; Li Suyan

    2007-01-01

    Objective: To determine the influence of change in tumor target volume of nasopharyngeal carcinoma (NPC) while waiting for intensity modulated radiation therapy (IMRT). Methods: From March 2005 to December 2005, 31 patients with nasopharyngeal carcinoma received IMRT as the initial treatment at the Cancer Hospital of Chinese Academic of Medical Sciences. The original simulation CT scan was acquired before IMRT planning. A second CT scan was acquired before the start of radiotherapy. Wait- ing time was defined as the duration between CT simulation and start of radiotherapy. CT-CT fusion was used to minimize the error of delineation between the first tumor target volume (GTV) and the second tumor target volume (sGTV). Tumor target volume was calculated by treatment planning system. T test was carried out to analyse the difference between GTV and sGTV. Pearson correlation and multivariate linear regression was used to analyse the influence factor of the change betweent GTV and sGTV. Results: Median waiting time was 18 days (range, 9-27 days). There were significant differences between GTV and sGTV of both primary tumor (P=0.009) and metastatic lymphoma (P=0.005 ). Both Pearson correlation and multivariate linear regression showed that the change of primary tumor target volume had significant correlation with the first tumor target volume but had no significant correlation with the waiting time, sex, age, T stage and N stage (1992 Chinese Fuzhou Staging Classification). Conclusions: Within the range of the waiting time ob- served in our study, large volume primary tumor would have had a significant increase in volume, but whether the therapeutic effect would be influenced or not would need to be proved by study of large number of cases. Patients with large volume tumor should be considered to reduce the influence of waiting time by enlarging gross target volume and clinical targe volume and by neoadjuveant chemotherapy. For avoiding the unnecessary high-dose to normal

  16. [The need for a paradigm shift in radiotherapy].

    Science.gov (United States)

    Mayer, Árpád; Katona, Csilla; Farkas, Róbert; Póti, Zsuzsa

    2015-11-01

    The status and indications of radiotherapy have significantly changed in the past decade because novel techniques, radiobiological research and major advances in informatics have made better local control possible. Using supplemented marking of the target volume with computer tomography based other image-making methods adapted made it possible to define the tumor and intact surrounding tissues more precisely. With novel radiotherapy techniques the dosage of the homogenity and the covering in the target volume can be raised optimally, especially with intensity modulated arc radiotherapy (volumetric modulated arc therapy) without causing radiation injury or damage to intact surrounding tissues. Furthermore, with novel techniques and target volume marking, new indications have appeared in clinical practice and besides stereotactic radiotherapy for intracranial metastases, the extracranial so-called oligometastic conditions can be maintained close to a curative state (or in remission) for many years. Among these, perhaps the most striking is the stereotactic radiotherapy treatment of liver, lung and spinal cord metastases in one or more fractions, for which the indispensable condition is the image or respiratory guided technique.

  17. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  18. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  19. Evaluation of the role of 18FDG-PET/CT in radiotherapy target definition in patients with head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, Katie L; Partridge, Mike; Cook, Gary; Sharma, Bhupinder; Rhys-Evans, Peter; Harrington, Kevin J; Nutting, Christopher M [The Royal Marsden NHS Foundation Trust, Sutton, Surrey (United Kingdom)

    2008-08-15

    Background and purpose. As techniques for radiotherapy delivery have developed, increasingly accurate localisation of disease is demanded. Functional imaging, particularly PET and its fusion with anatomical modalities, such as PET/CT, promises to improve detection and characterisation of disease. This study evaluated the impact of 18FDG-PET/CT on radiotherapy target volume definition in head and neck cancer (HNC). Materials and methods. The PET/CT scans of patients with HNC were used in a radiotherapy planning (RTP) study. The gross tumour volume (GTV), clinical target volume (CTV) and planning target volume (PTV) were defined conventionally and compared to those defined using the PET/CT. Data were reported as the median value with 95% confidence intervals. Results. Eighteen patients were consented, 9 had known primary tumour site, 9 presented as unknown primary. In nine cases where the primary site was known, the combined primary and nodal GTV (GTVp+n) increased by a median of 6.1cm3 (2.6, 12.2) or 78% (18, 313), p=0.008 with CTV increasing by a median of 10.1cm3 (1.3, 30.6) or 4% (0, 13) p=0.012. In 9 cases of unknown primary the GTVp+n increased by a median 6.3cm3 (0.2, 15.7) or 61% (4, 210), p=0.012, with CTV increasing by a median 155.4cm3 (2.7, 281.7) or 95% (1, 137), p=0.008. Conclusion. 18FDG-PET revealed disease lying outside the conventional target volume, either extending a known area or highlighting a previously unknown area of disease, including the primary tumour in 5 cases. We recommend PET/CT in the RTP of all cases of unknown primary. In patients with a known primary, although the change in volume was statistically significant the clinical impact is less clear. 18FDG-PET can also show areas within the conventional target volume that are hypermetabolic which may be possible biological target volumes for dose escalation studies in the future

  20. Long-term follow-up after modern radical prostate cancer radiotherapy

    DEFF Research Database (Denmark)

    Sander, Lotte

    that clinical target volumes are up to 30% smaller on MRI delineation compared to computer tomography delineation. The overall aim of the thesis was to explore the use of MRI target planning and a Nicle-Titanium prostate stent as fiducial marker for both MR-CT co-registration and image guided radiotherapy....... radiotherapy is a well established treatment modality for prostate cancer. Accuracy and precision are key words with regard to optimal survival and minimal toxicity in modern radiotherapy and are fundamentals in modern radiotherapy. Modern imaging has improved the ability to define radiotherapy target volumes......A significant increase in the prostate cancer incidence has made prostate cancer a major health problem in recent years. Because of the often but unfortunately not always indolent nature of the disease, over-diagnosis and over-treatment are relevant clinical and ethic dilemmas. External beam...

  1. Cone beam CT with zonal filters for simultaneous dose reduction, improved target contrast and automated set-up in radiotherapy

    International Nuclear Information System (INIS)

    Moore, C J; Marchant, T E; Amer, A M

    2006-01-01

    Cone beam CT (CBCT) using a zonal filter is introduced. The aims are reduced concomitant imaging dose to the patient, simultaneous control of body scatter for improved image quality in the tumour target zone and preserved set-up detail for radiotherapy. Aluminium transmission diaphragms added to the CBCT x-ray tube of the Elekta Synergy TM linear accelerator produced an unattenuated beam for a central 'target zone' and a partially attenuated beam for an outer 'set-up zone'. Imaging doses and contrast noise ratios (CNR) were measured in a test phantom for transmission diaphragms 12 and 24 mm thick, for 5 and 10 cm long target zones. The effect on automatic registration of zonal CBCT to conventional CT was assessed relative to full-field and lead-collimated images of an anthropomorphic phantom. Doses along the axis of rotation were reduced by up to 50% in both target and set-up zones, and weighted dose (two thirds surface dose plus one third central dose) was reduced by 10-20% for a 10 cm long target zone. CNR increased by up to 15% in zonally filtered CBCT images compared to full-field images. Automatic image registration remained as robust as that with full-field images and was superior to CBCT coned down using lead-collimation. Zonal CBCT significantly reduces imaging dose and is expected to benefit radiotherapy through improved target contrast, required to assess target coverage, and wide-field edge detail, needed for robust automatic measurement of patient set-up error

  2. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Lorraine [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Cox, Jennifer [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Morgia, Marita [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Atyeo, John [Faculty of Health Sciences, University of Sydney, Sydney, New South Wales (Australia); Lamoury, Gillian [Department of Radiation Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia)

    2015-09-15

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm{sup 3} (4–118) and CT2ch: median 16 cm{sup 3}, (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence.

  3. A clip-based protocol for breast boost radiotherapy provides clear target visualisation and demonstrates significant volume reduction over time

    International Nuclear Information System (INIS)

    Lewis, Lorraine; Cox, Jennifer; Morgia, Marita; Atyeo, John; Lamoury, Gillian

    2015-01-01

    The clinical target volume (CTV) for early stage breast cancer is difficult to clearly identify on planning computed tomography (CT) scans. Surgical clips inserted around the tumour bed should help to identify the CTV, particularly if the seroma has been reabsorbed, and enable tracking of CTV changes over time. A surgical clip-based CTV delineation protocol was introduced. CTV visibility and its post-operative shrinkage pattern were assessed. The subjects were 27 early stage breast cancer patients receiving post-operative radiotherapy alone and 15 receiving post-operative chemotherapy followed by radiotherapy. The radiotherapy alone (RT/alone) group received a CT scan at median 25 days post-operatively (CT1rt) and another at 40 Gy, median 68 days (CT2rt). The chemotherapy/RT group (chemo/RT) received a CT scan at median 18 days post-operatively (CT1ch), a planning CT scan at median 126 days (CT2ch), and another at 40 Gy (CT3ch). There was no significant difference (P = 0.08) between the initial mean CTV for each cohort. The RT/alone cohort showed significant CTV volume reduction of 38.4% (P = 0.01) at 40 Gy. The Chemo/RT cohort had significantly reduced volumes between CT1ch: median 54 cm 3 (4–118) and CT2ch: median 16 cm 3 , (2–99), (P = 0.01), but no significant volume reduction thereafter. Surgical clips enable localisation of the post-surgical seroma for radiotherapy targeting. Most seroma shrinkage occurs early, enabling CT treatment planning to take place at 7 weeks, which is within the 9 weeks recommended to limit disease recurrence

  4. Low-dose prophylactic craniospinal radiotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Schoenfeld, Gordon O.; Amdur, Robert J.; Schmalfuss, Ilona M.; Morris, Christopher G.; Keole, Sameer R.; Mendenhall, William M.; Marcus, Robert B.

    2006-01-01

    Purpose: To report outcomes of patients with localized intracranial germinoma treated with low-dose craniospinal irradiation (CSI) followed by a boost to the ventricular system and primary site. Methods and Materials: Thirty-one patients had pathologically confirmed intracranial germinoma and no spine metastases. Low-dose CSI was administered in 29 patients: usually 21 Gy of CSI, 9.0 Gy of ventricular boost, and a 19.5-Gy tumor boost, all at 1.5 Gy per fraction. Our neuroradiologist recorded three-dimensional tumor size on magnetic resonance images before, during, and after radiotherapy. Results: With a median follow-up of 7.0 years, 29 of 31 patients (94%) are disease free. One failure had nongerminomatous histology; the initial diagnosis was a sampling error. Of 3 patients who did not receive CSI, 1 died. No patient developed myelopathy, visual deficits, dementia, or skeletal growth problems. In locally controlled patients, tumor response according to magnetic resonance scan was nearly complete within 6 months after radiotherapy. Conclusions: Radiotherapy alone with low-dose prophylactic CSI cures almost all patients with localized intracranial germinoma. Complications are rare when the daily dose of radiotherapy is limited to 1.5 Gy and the total CSI dose to 21 Gy. Patients without a near-complete response to radiotherapy should undergo resection to rule out a nongerminomatous element

  5. Scanned proton radiotherapy for mobile targets-the effectiveness of re-scanning in the context of different treatment planning approaches and for different motion characteristics

    NARCIS (Netherlands)

    Knopf, Antje-Christin; Hong, Theodore S; Lomax, Antony

    2011-01-01

    The most advanced delivery technique for proton radiotherapy is active spot scanning. So far, predominantly static targets have been treated with active spot scanning, since mobile targets in combination with dynamic treatment delivery can lead to interplay effects, causing inhomogeneous dose

  6. Superior target delineation for stereotactic body radiotherapy of bone metastases from renal cell carcinoma on MRI compared to CT

    NARCIS (Netherlands)

    Prins, Fieke M.; Van Der Velden, Joanne M.; Gerlich, Anne S.; Kotte, Alexis N.T.J.; Eppinga, Wietse S.C.; Kasperts, Nicolien; Verlaan, Jorrit J.; Pameijer, Frank A.; Kerkmeijer, Linda G.W.

    2017-01-01

    Background: In metastatic renal cell carcinoma (mRCC) there has been a treatment shift towards targeted therapy, which has resulted in improved overall survival. Therefore, there is a need for better local control of the tumor and its metastases. Image-guided stereotactic body radiotherapy (SBRT) in

  7. Impact of external pneumatic compression target inflation pressure on transcriptome-wide RNA expression in skeletal muscle.

    Science.gov (United States)

    Martin, Jeffrey S; Kephart, Wesley C; Haun, Cody T; McCloskey, Anna E; Shake, Joshua J; Mobley, Christopher B; Goodlett, Michael D; Kavazis, Andreas; Pascoe, David D; Zhang, Lee; Roberts, Michael D

    2016-11-01

    Next-generation RNA sequencing was employed to determine the acute and subchronic impact of peristaltic pulse external pneumatic compression (PEPC) of different target inflation pressures on global gene expression in human vastus lateralis skeletal muscle biopsy samples. Eighteen (N = 18) male participants were randomly assigned to one of the three groups: (1) sham (n = 6), 2) EPC at 30-40 mmHg (LP-EPC; n = 6), and 3) EPC at 70-80 mmHg (MP-EPC; n = 6). One hour treatment with sham/EPC occurred for seven consecutive days. Vastus lateralis skeletal muscle biopsies were performed at baseline (before first treatment; PRE), 1 h following the first treatment (POST1), and 24 h following the last (7th) treatment (POST2). Changes from PRE in gene expression were analyzed via paired comparisons within each group. Genes were filtered to include only those that had an RPKM ≥ 1.0, a fold-change of ≥1.5 and a paired t-test value of <0.01. For the sham condition, two genes at POST1 and one gene at POST2 were significantly altered. For the LP-EPC condition, nine genes were up-regulated and 0 genes were down-regulated at POST1 while 39 genes were up-regulated and one gene down-regulated at POST2. For the MP-EPC condition, two genes were significantly up-regulated and 21 genes were down-regulated at POST1 and 0 genes were altered at POST2. Both LP-EPC and MP-EPC acutely alter skeletal muscle gene expression, though only LP-EPC appeared to affect gene expression with subchronic application. Moreover, the transcriptome response to EPC demonstrated marked heterogeneity (i.e., genes and directionality) with different target inflation pressures. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  8. 135La as an auger-electron emitter for targeted internal radiotherapy

    DEFF Research Database (Denmark)

    Fonslet, Jesper; Lee, Boon Quan; Tran, Thuy A.

    2018-01-01

    Introduction: 135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, imaging characteristics, and dosimetry related to 135La therapy. Methods and Results: 135La was produced by 16.5 Me....... The generated Auger spectrum was used to recalculate cellular S-factors. Conclusion: 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy. ....... recovered > 98 % of the 135La with an effective molar activity of 70 ±20 GBq/µmol. To better assess cellular and organ dosimetry of this nuclide, we have recalculated the X-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade...

  9. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei Wei [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006 (China); Tong, Hui Li; Sun, Xiao Feng; Hu, Qian; Yang, Yu; Li, Shu Feng [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Yan, Yun Qin, E-mail: yanyunqin@sohu.com [The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030 (China); Li, Guang Peng [The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021 (China)

    2015-08-07

    MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2′ deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3′ untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation. - Highlights: • miR-2400 is a novel and unique miRNA from bovine. • miR-2400 could promote skeletal muscle satellite cells proliferation. • miR-2400 directly targeted the 3′ untranslated regions of MYOG mRNA. • miR-2400 could be coexpressed together with its host gene WHSC1L1.

  10. Histopathological correlation of 11C-choline PET scans for target volume definition in radical prostate radiotherapy

    International Nuclear Information System (INIS)

    Chang, Joe H.; Joon, Daryl Lim; Lee, Sze Ting; Gong, Sylvia J.; Scott, Andrew M.; Davis, Ian D.; Clouston, David; Bolton, Damien; Hamilton, Christopher S.; Khoo, Vincent

    2011-01-01

    Background and purpose: To evaluate the accuracy of 11 C-choline PET scans in defining dominant intraprostatic lesions (DILs) for radiotherapy target volume definition. Material and methods: Eight men with prostate cancer who had 11 C-choline PET scans prior to radical prostatectomy were studied. Several methods were used to contour the DIL on the PET scans: visual, PET Edge, Region Grow, absolute standardised uptake value (SUV) thresholds and percentage of maximum SUV thresholds. Prostatectomy specimens were sliced in the transverse plane and DILs were delineated on these by a pathologist. These were then compared with the PET scans. The accuracy of correlation was assessed by the Dice similarity coefficient (DSC) and the Youden index. Results: The contouring method resulting in both the highest DSC and the highest Youden index was 60% of the maximum SUV (SUV 60% ), with values of 0.64 and 0.51, respectively. However SUV 60% was not statistically significantly better than all of the other methods by either measure. Conclusions: Although not statistically significant, SUV 60% resulted in the best correlation between 11 C-choline PET and pathology amongst all the methods studied. The degree of correlation shown here is consistent with previous studies that have justified using imaging for DIL radiotherapy target volume definition.

  11. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  12. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. MRI target delineation may reduce long-term toxicity after prostate radiotherapy.

    Science.gov (United States)

    Sander, Lotte; Langkilde, Niels Christian; Holmberg, Mats; Carl, Jesper

    2014-06-01

    Aiming for minimal toxicity after radical prostate cancer (PC) radiotherapy (RT), magnetic resonance imaging (MRI) target delineation could be a possible benefit knowing that clinical target volumes (CTV) are up to 30% smaller, when CTV delineation on MRI is compared to standard computed tomography (CT). This study compares long-term toxicity using CT or MRI delineation before PC RT. Urinary and rectal toxicity assessments 36 months after image-guided RT (78 Gy) using CTC-AE scores in two groups of PC patients. Peak symptom score values were registered. One group of patients (n=72) had standard CT target delineation and gold markers as fiducials. Another group of patients (n=73) had MRI target delineation and a nickel-titanium stent as fiducial. At 36 months no difference in overall survival (92% in both groups, p=0.29) or in PSA-relapse free survival was found between the groups (MRI=89% and CT=94%, p=0.67). A significantly smaller CTV was found in the MRI group (p=0.02). Urinary retention and frequency were significantly reduced in the MRI group (p=0.03 in the matter of both). The overall urinary and rectal toxicity did not differ between the two groups. MRI delineation leads to a significantly reduced CTV. Significantly lower urinary frequency and urinary retention toxicity scores were observed following MRI delineation. The study did not find significant differences in overall urinary or rectal toxicity between the two groups. PSA-relapse survival did not differ between the two groups at 36 months.

  14. Epigenetics in radiotherapy: Where are we heading?

    International Nuclear Information System (INIS)

    Smits, Kim M.; Melotte, Veerle; Niessen, Hanneke E.C.; Dubois, Ludwig; Oberije, Cary; Troost, Esther G.C.; Starmans, Maud H.W.; Boutros, Paul C.; Vooijs, Marc; Engeland, Manon van; Lambin, Philippe

    2014-01-01

    Radiotherapy is an important component of anti-cancer treatment. However, not all cancer patients respond to radiotherapy, and with current knowledge clinicians are unable to predict which patients are at high risk of recurrence after radiotherapy. There is therefore an urgent need for biomarkers to guide clinical decision-making. Although the importance of epigenetic alterations is widely accepted, their application as biomarkers in radiotherapy has not been studied extensively. In addition, it has been suggested that radiotherapy itself introduces epigenetic alterations. As epigenetic alterations can potentially be reversed by drug treatment, they are interesting candidate targets for anticancer therapy or radiotherapy sensitizers. The application of demethylating drugs or histone deacetylase inhibitors to sensitize patients for radiotherapy has been studied in vitro, in vivo as well as in clinical trials with promising results. This review describes the current knowledge on epigenetics in radiotherapy

  15. A treatment planning comparison of four target volume contouring guidelines for locally advanced pancreatic cancer radiotherapy

    International Nuclear Information System (INIS)

    Fokas, Emmanouil; Eccles, Cynthia; Patel, Neel; Chu, Kwun-Ye; Warren, Samantha; McKenna, W. Gillies; Brunner, Thomas B.

    2013-01-01

    Background and purpose: Contouring of target volumes varies significantly in radiotherapy of pancreatic ductal adenocarcinoma (PDAC). There is a lack of consensus as to whether elective lymph nodes (eLN’s) should be included or not in the planning target volume (PTV). In the present study we analyzed the dosimetric coverage of the eLN’s and organs at risk (OAR) by comparing four different contouring guidelines. Methods and materials: PTVs were delineated with (Oxford and RTOG guidelines) or without (Michigan and SCALOP guidelines) including the eLNs in eleven patients with PDAC. eLNs included the peripancreatic, paraaortic, paracaval, celiac trunk, superior mesenteric and portal vein clinical target volumes (CTVs). A 3D-CRT plan (50.40 Gy in 28 fractions) was performed to analyze and compare the dosimetric coverage of all eLNs and OAR between the 4 contouring guidelines. Results: The size of Oxford and RTOG PTVs was comparable and significantly larger than the SCALOP and Michigan PTVs. Interestingly the eLNs received a significant amount of incidental dose irradiation by PTV-based plans that only aimed to treat the tumor without the eLNs. The dosimetric coverage of eLN presented a large variability according to the respective contouring methods. The difference in the size of the 4 PTVs was reflected to the dose distribution at the OAR. Conclusions: Our study provides important information regarding the impact of different contouring guidelines on the dose distribution to the eLNs and the OAR in patients with locally advanced PDAC treated with radiotherapy

  16. Aging and Spaceflight: Catalase Targeted to Mitochondria Alters Skeletal Structure and Responses to Musculoskeletal Disuse

    Science.gov (United States)

    Globus, Ruth K.; Tahimic, Candice; Schreurs, Ann-Sofie

    2018-01-01

    Microgravity and ionizing radiation in the spaceflight environment pose multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration which resembles aging. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment. To accomplish this, we will use both wildtype (WT) mice and a well-established, genetically-engineered animal model (mCAT mice) which displays extended lifespan (Schriner et al. 2005). The animal model selected to test these ideas is engineered to quench ROS in mitochondria by targeted over-expression of the human catalase gene to the mitochondrial matrix. We showed previously that mCAT mice express the catalase transgene in skeletal tissues, bone forming osteoblasts, and bone resorbing osteoclasts. In addition, mCAT mice also display increased catalase activity in bone. Our findings revealed that exposure of adult, male, C57Bl/6J mice to simulated spaceflight (hindlimb unloading and gamma radiation) led to an increase in markers of oxidative damage (malondialdehyde, 4-hydroxynonenol) in skeletal tissue of WT mice but not mCAT mice. To extend our hypothesis to other, spaceflight-relevant tissues, we are performing a ground-based study simulating 30 days of spaceflight by hindlimb unloading to determine potential protective effects of mitochondrial catalase activity on aging of multiple tissues (cardiovascular, nervous and skeletal).

  17. Pathogenesis and pharmacological treatment of bone pain in skeletal metastases

    Energy Technology Data Exchange (ETDEWEB)

    Ripamonti, C. [National Cancer Institute, Rehabilitation, Pain Therapy and Palliative Care Division, Milan (Italy); Fulfaro, F. [Societa' per l' Assistenza al Malato Oncologico Terminale, Palermo (Italy)

    2001-03-01

    Sixty-five percent of patients with advanced cancer present bone metastases and most of them present a rather slow clinical course characterized by pain, mobility deficiencies and skeletal complications such as fractures and spinal cord compression. Metastatic involvement of the bone is one of the most frequent causes of pain in cancer patients and represents one of the firs signs of widespread neoplastic disease. The pain may originate directly from the plastic disease. The pain may originate directly from the bone, from nerve root compression or from muscle spasms in the area of the lesions. The mechanism of metastatic bone pain is mainly somatic (nociceptive) even though, in some cases, neuropathic and visceral stimulations may overlap. The conventional symptomatic treatment of metastatic bone pain requires the use of multidisciplinary therapies such as radiotherapy in association with systemic treatment (hormonotherapy, chemotherapy, radioisotopes) with the support of analgesic therapy. Recently, studies have indicated the use of bisphosphonates in the treatment of pain and in the prevention of skeletal complications in patients with metastatic bone disease. In some patients pharmacological treatment, radiotherapy, radioisotopes administered alone or in association are not able to manage pain adequately. The role of neuroinvasive techniques in treating metastatic bone pain is debated. The clinical conditions of the patient, his life expectancy and quality of life must guide the physician in the choice of the best possible therapy.

  18. Pathogenesis and pharmacological treatment of bone pain in skeletal metastases

    International Nuclear Information System (INIS)

    Ripamonti, C.; Fulfaro, F.

    2001-01-01

    Sixty-five percent of patients with advanced cancer present bone metastases and most of them present a rather slow clinical course characterized by pain, mobility deficiencies and skeletal complications such as fractures and spinal cord compression. Metastatic involvement of the bone is one of the most frequent causes of pain in cancer patients and represents one of the firs signs of widespread neoplastic disease. The pain may originate directly from the plastic disease. The pain may originate directly from the bone, from nerve root compression or from muscle spasms in the area of the lesions. The mechanism of metastatic bone pain is mainly somatic (nociceptive) even though, in some cases, neuropathic and visceral stimulations may overlap. The conventional symptomatic treatment of metastatic bone pain requires the use of multidisciplinary therapies such as radiotherapy in association with systemic treatment (hormonotherapy, chemotherapy, radioisotopes) with the support of analgesic therapy. Recently, studies have indicated the use of bisphosphonates in the treatment of pain and in the prevention of skeletal complications in patients with metastatic bone disease. In some patients pharmacological treatment, radiotherapy, radioisotopes administered alone or in association are not able to manage pain adequately. The role of neuroinvasive techniques in treating metastatic bone pain is debated. The clinical conditions of the patient, his life expectancy and quality of life must guide the physician in the choice of the best possible therapy

  19. Target Coverage in Image-Guided Stereotactic Body Radiotherapy of Liver Tumors

    International Nuclear Information System (INIS)

    Wunderink, Wouter; Romero, Alejandra Mendez; Osorio, Eliana M. Vasquez; Boer, Hans C.J. de; Brandwijk, Rene P.; Levendag, Peter C.; Heijmen, Ben

    2007-01-01

    Purpose: To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. Methods and Materials: By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV + ) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV + , derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Results: Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (≥99%) ITV + coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (≤2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Conclusion: Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging

  20. Computerised tomography in radiotherapy planning

    International Nuclear Information System (INIS)

    Badcock, P.C.

    1983-01-01

    This study evaluates the effectiveness of computed tomography as an adjunct to radiotherapy planning. Until recently, acquisition of accurate data concerning tumour anatomy lagged behind other developments in radiotherapy. With the advent of computer-tomography (CT), these data can be displayed and transmitted to a treatment planning computer. It is concluded that the greatest inaccuracies in the radiation treatment of patients are to be found in both the inadequate delineation of the target volume within the patient and changes in body outline relative to the target volume over the length of the irradiated volume. The technique was useful in various subgroups (pelvic, intra-thoracic and chest-wall tumours) and for those patients being treated palliatively. With an estimated improvement in cure rate of 4.5% and cost-effective factors of between 3.3 and 5, CT-assisted radiotherapy planning appears to be a worthwhile procedure. (orig.)

  1. Standardization of radiotherapy for less radio-curable malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Hiroshi; Yamada, Shogo [Miyagi Prefectural Adult Disease Center, Natori (Japan)

    1982-09-01

    Standardization of radiotherapy for esophageal and gastric cancer was discussed, as the representatives of less radio-curable malignancies. In esophageal carcinoma, it was concluded that radiotherapy should be valuable as a curative procedure. The curative indications for radiotherapy should be the cases of T1-2 N0-1M0 with tumorous or some ulcerous types of carcinoma. Target volume should be defined to the small region, including the primary tumor and the regional lymph node (N1). The dose of 60 to 70 Gy should be optimal and given with the homogeneity of 90%. In gastric carcinoma, it seemed that radiotherapy was a palliative treatment for inoperable carcinoma and should be indicated for the cases of T1-3NxM0 with radio-responsive tumor. Target volume should be localized to the primary lesion and the dose of 50 to 60 Gy should be given as the maximum. Split course radiotherapy was recommended to avoid the serious complications.

  2. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.

    Science.gov (United States)

    Chatterjee, S; Frew, J; Mott, J; McCallum, H; Stevenson, P; Maxwell, R; Wilsdon, J; Kelly, C G

    2012-12-01

    Contrast-enhanced computed tomography (CECT) is the current standard for delineating tumours of the head and neck for radiotherapy. Although metabolic imaging with positron emission tomography (PET) has been used in recent years, the studies were non-confirmatory in establishing its routine role in radiotherapy planning in the modern era. This study explored the difference in gross tumour volume and clinical target volume definitions for the primary and nodal volumes when FDG PET/CT was used as compared with CECT in oropharyngeal cancer cases. Twenty patients with oropharyngeal cancers had a PET/CT scan in the treatment position after consent. Target volumes were defined on CECT scans by a consultant clinical oncologist who was blind to the PET scans. After obtaining inputs from a radiologist, another set of target volumes were outlined on the PET/CT data set. The gross and clinical target volumes as defined on the two data sets were then analysed. The hypothesis of more accurate target delineation, preventing geographical miss and comparative overlap volumes between CECT and PET/CT, was explored. The study also analysed the volumes of intersection and analysed whether there was any TNM stage migration when PET/CT was used as compared with CECT for planning. In 17 of 20 patients, the TNM stage was not altered when adding FDG PET information to CT. PET information prevented geographical miss in two patients and identified distant metastases in one case. PET/CT gross tumour volumes were smaller than CECT volumes (mean ± standard deviation: 25.16 cm(3) ± 35.8 versus 36.56 cm(3) ± 44.14; P standard deviation: CECT versus PET/CT 32.48 cm(3) ± 36.63 versus 32.21 cm(3) ± 37.09; P > 0.86) were not statistically different. Similarity and discordance coefficients were calculated and are reported. PET/CT as compared with CECT could provide more clinically relevant information and prevent geographical miss when used for radiotherapy planning for advanced oropharyngeal

  3. Radiation injury to skeletal muscle

    International Nuclear Information System (INIS)

    Persons, C.C.M.; Wondergem, J.; Leer, J.W.H.

    1997-01-01

    Radiotherapy of neoplasia has increased the mean life expectancy of cancer patients. On the other hand, more reports are published on morbidity of the treatment with regard to normal tissue. Studies on skeletal muscle injury specifically are scarce, but many clinical long term follow-up studies make note of side effects as muscle atrophy, fibrosis and limited function. Furthermore it is suggested that skeletal muscles of children are more prone to radiation injury than those of adult subjects. Effects of radiation on skeletal muscle were studied in rats. On hind limb of young (100 g) and adult (350 g) rats was irradiated with single doses (15-30 Gy), while the other served as control. Follow-up was up to 12 months post treatment. Muscular function in young rats was decreased significantly at 6 months post irradiation, but did not further decrease in the following 6 months. The amount of collagen, on the other hand, was not increased at 6 months, but became highly elevated at 12 months past treatment. This suggests that at 6 months, impaired muscular function may not be explained by increased fibrotic tissues. This is an agreement with results obtained in adult rats, where function was also impaired, without concomitant increase in collagen. In an earlier study, mitochondrial oxygen consumption was dose dependently decreased after irradiation, at 12 months, but not at 6 months post treatment. Furthermore, myosin-actin interaction was measured in skinned fibers. The first results of this study indicate changes in the interaction of contraction proteins, as early as 6 months post treatment. (authors)

  4. Helical tomo-therapy in the anal canal cancer: dosimetric comparison with conformal radiotherapy with intensity modulation and classical conformal radiotherapy

    International Nuclear Information System (INIS)

    Ozsahin, M.; Ugurluer, G.; Ballerini, G.; Letenneur, G.; Zouhair, A.; Mirimanoff, R.O.

    2009-01-01

    A dosimetry comparison was made between helical tomo-therapy, I.M.R.T. and classical conformal three dimensional radiotherapy for twelve first patients that received a image guided radiotherapy, the toxicity was tackled with a minimum follow-up of fourteen months. In conclusion, the CT-guided radiotherapy allows to save organs at risks superior to I.M.R.T. and conformal radiotherapy and a best homogeneity in the target volume. the toxicity is moderated and the break time is limited. (N.C.)

  5. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK...... activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from...... (Thr37/46) (P mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued...

  6. What margins should be added to the clinical target volume in radiotherapy treatment planning of lung cancer?

    International Nuclear Information System (INIS)

    Ekberg, L.; Wittgren, L.; Holmberg, O.

    1995-01-01

    When defining the planning target volume (PTV) in radiotherapy treatment planning, it is vital to add geometrical margins of normal tissue around the clinical target volume (CTV). This is to ensure that the whole CTV will receive the planned absorbed dose taking into account both set-up deviations and target movements as well as other geometrical variations in the treatment chain. The problem is our limited knowledge of how large these margins should be. To assess the size of needed margins around the CTV in conformal radiotherapy of lung cancer, electronic portal imaging was employed in 232 irradiation field set-ups of 14 patients. This was done in order to quantify the uncertainty in the execution of treatment considering patient movement and set-up displacements. For an estimation of the added geometrical variation from target movement during irradiation, fluoroscopy was used at the simulation of the irradiation fields. The set-up study showed an average systematic deviation for all individual fields of 3.1 mm and an average maximal systematic deviation (in either transversal or craniocaudal direction) of 4.8 mm. The random errors can be described by an average standard deviation of 2.8 mm for all fields in either direction. Major gradual displacements as a function of time was also detected in one of the patients. CTV-movements of several millimetres during respiration could be observed. It was also seen that heartbeats could add to CTV-movements during irradiation with an equal magnitude. The combined effect of these factors are considered when making an overall estimation of margins that should be added to the CTV

  7. Radiotherapy and 'new' drugs-new side effects?

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Maihoefer, Cornelius; Krause, Mechthild; Rödel, Claus; Budach, Wilfried; Belka, Claus

    2011-01-01

    Targeted drugs have augmented the cancer treatment armamentarium. Based on the molecular specificity, it was initially believed that these drugs had significantly less side effects. However, currently it is accepted that all of these agents have their specific side effects. Based on the given multimodal approach, special emphasis has to be placed on putative interactions of conventional cytostatic drugs, targeted agents and other modalities. The interaction of targeted drugs with radiation harbours special risks, since the awareness for interactions and even synergistic toxicities is lacking. At present, only limited is data available regarding combinations of targeted drugs and radiotherapy. This review gives an overview on the current knowledge on such combined treatments. Using the following MESH headings and combinations of these terms pubmed database was searched: Radiotherapy AND cetuximab/trastuzumab/panitumumab/nimotuzumab, bevacizumab, sunitinib/sorafenib/lapatinib/gefitinib/erlotinib/sirolimus, thalidomide/lenalidomide as well as erythropoietin. For citation crosscheck the ISI web of science database was used employing the same search terms. Several classes of targeted substances may be distinguished: Small molecules including kinase inhibitors and specific inhibitors, antibodies, and anti-angiogenic agents. Combination of these agents with radiotherapy may lead to specific toxicities or negatively influence the efficacy of RT. Though there is only little information on the interaction of molecular targeted radiation and radiotherapy in clinical settings, several critical incidents are reported. The addition of molecular targeted drugs to conventional radiotherapy outside of approved regimens or clinical trials warrants a careful consideration especially when used in conjunction in hypo-fractionated regimens. Clinical trials are urgently needed in order to address the open question in regard to efficacy, early and late toxicity

  8. Effects of three-dimensional conformal radiotherapy, indensity modulated radiotherapy, and conventional radiotherapy ON treatment of esophageal cancer

    Directory of Open Access Journals (Sweden)

    Jian-Jun Han

    2016-07-01

    Full Text Available Objective: To compare the irradiation volume, short-term and long-term efficacy of conventional radiotherapy (CR, three-dimensional conformal radiotherapy (3D-CRT, and indensity modulated radiotherapy (IMRT in the treatment of esophageal cancer. Methods: A retrospective analysis method was adopted. The patients were divided into CR group (n=42, 3D-CRT group (n=45, and IMRT group (n=40. A follow-up visit was paid to collect the short-term and long-term efficacy, and the occurrence of adverse reactions. The gross tumor voluem (GTV, clinical target volume (CTV, planning target volume (PTV, and irradiation volume of organs (bilateral lungs, spinal cord, and heart at risk (OAR in the three groups were compared. Results: It was found by target volume comparison that the mean values of GTV, CTV, and PTV in the three groups were significantly increased (P0.05. The occurrence rate of adverse reactions in 3D-CRT group and IMRT group was significantly lower than that in CR group (P0.05. The difference of 1-year survival rate among the three groups was not statistically significant (P=0.144, but 3-year and 5-year survival rates in 3D-CRT group and IMRT group were significantly higher than those in CR group (P<0.05. Conclusions: 3D-CRT and IMRT can significantly enhance the short-term and long-term efficacy for esophageal cancer patients, and alleviate the radioactive damage; therefore, they are deserved to be widely recommended in the clinic.

  9. [Use of filgrastim, granulocyte colony stimulating factor (G-CSF), in radiotherapy to reduce drop-outs because of radiogenic leukopenia].

    Science.gov (United States)

    Gava, A; Bertossi, L; Ferrarese, F; Coghetto, F; Marazzato, G; Andrulli, A D; Zorat, P L

    1998-03-01

    Radiotherapy patients are at risk of developing leukopenia, which risk depends on the irradiated volume, the rate of irradiated bone marrow and the radiation dose. Radiogenic leukopenia may cause radiotherapy drop-out, with consequent effects, on local tumor control and clinical outcome. The introduction of granulocyte growth factors, such as filgrastim, has permitted to accelerate normal neutrophil count recovery in irradiation-related neutropenia both in vitro and animal models; clinical experience in humans is still lacking, relative to both indications and scheduling. In the Oncologic Radiotherapy Department of Treviso Hospital, 31 patients irradiated for Hodgkin disease, rectal cancer and other malignancies, who presented leukopenia requiring treatment discontinuation, were given filgrastim to assess its actual effect in avoiding further drop-outs and to compare two administration schedules (2 or 3 vials, 30 MIU, weekly). Filgrastim treatment was continued throughout the radiotherapy cycles, for 1 to 5 weeks. Eighteen patients had received previous chemotherapy and 11 were undergoing concurrent 5-fluorouracil chemotherapy-irradiation. A mean 203% increase in leukocyte count was observed (136% in the patients treated with 2 vials/week and 274% in those receiving 3 vials/week); this increase was more apparent in women that in men (256% versus 91%) and slightly higher in patients 50 years old and with target volumes < 5000 ml. Filgrastin treatment was well tolerated by all patients, with no discontinuations due to adverse effects; 9 patients (29%) reported skeletal pain, which was marked in 2 of them only. Eighty percent of patients completed all the radiotherapy cycles with no discontinuation, while 6 patients dropped out because leukopenia persisted. Biweekly filgrastim administration was effective to prevent unscheduled radiotherapy discontinuation in 75% of patients and triweekly administration was effective in 86% of patients. In our experience, filgrastim

  10. Magnetic Resonance Imaging and conformal radiotherapy: Characterization of MRI alone simulation for conformal radiotherapy. Development and evaluation of an automatic volumes of interest segmentation tool for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Pasquier, David

    2006-01-01

    Radiotherapy is a curative treatment of malignant tumours. Radiotherapy techniques considerably evolved last years with the increasing integration of medical images in conformal radiotherapy. This technique makes it possible to elaborate a complex ballistics conforming to target volume and sparing healthy tissues. The examination currently used to delineate volumes of interest is Computed Tomography (CT), on account of its geometrical precision and the information that it provides on electronic densities needed to dose calculation. Magnetic Resonance Imaging (MRI) ensures a more precise delineation of target volumes in many locations, such as pelvis and brain. For pelvic tumours, the use of MRI needs image registration, which complicates treatment planning and poses the problem of the lack of in vivo standard method of validation. The obstacles in the use of MRI alone in treatment planning were evaluated. Neither geometrical distortion linked with the system and the patient nor the lack of information on electronic densities represent stumbling obstacles. Distortion remained low even in edge of large field of view on modern machines. The assignment of electronic densities to bone structures and soft tissues in MR images permitted to obtain equivalent dosimetry to that carried out on the original CT, with a good reproducibility and homogeneous distribution within target volume. The assignment of electronic densities could not be carried out using 20 MV photons and suitable ballistics. The development of Image Guided Radiotherapy could facilitate the use of MRI alone in treatment planning. Target volumes and organ at risk delineation is a time consuming task in radiotherapy planning. We took part in the development and evaluated a method of automatic and semi automatic delineation of volumes of interest from MRI images for prostate cancer radiotherapy. For prostate and organ at risk automatic delineation an organ model-based method and a seeded region growing method

  11. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    Science.gov (United States)

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. Copyright © 2016 the American Physiological Society.

  12. Reduced rectal toxicity with ultrasound-based image guided radiotherapy using BAT trademark (B-mode acquisition and targeting system) for prostate cancer

    International Nuclear Information System (INIS)

    Bohrer, Markus; Schroeder, Peter; Welzel, Grit; Wertz, Hansjoerg; Lohr, Frank; Wenz, Frederik; Mai, Sabine Kathrin

    2008-01-01

    To evaluate the effect of image guided radiotherapy with stereotactic ultrasound BAT (B-mode acquisition and targeting system) on rectal toxicity in conformal radiotherapy of prostate cancer. Patients and Methods 42 sequential patients with prostate cancer undergoing radiotherapy before and after the introduction of BAT were included. Planning computed tomography (CT) was performed with empty rectum and moderately filled bladder. The planning target volume (PTV) included the prostate and seminal vesicles with a safety margin of 1.5 cm in anterior and lateral direction. In posterior direction the anterior 1/3 of the rectum circumference were included. Total dose was 66 Gy and a boost of 4 Gy excluding the seminal vesicles. 22 patients (BAT group) were treated with daily stereotactic ultrasound positioning, for the other 20 patients (NoBAT group) an EPID (electronic portal imaging device) was performed once a week. Acute and late genito-urinary (GU) and rectal toxicity and PSA values were evaluated after 1.5, 3, 6, 9 and 12 months. The total median follow up of toxicity was 3 years in the BAT group and 4 years in the NoBAT group. Results In the NoBAT group significant more rectal toxicity occurred, while in GU toxicity no difference was seen. Two patients in the NoBAT group showed late rectal toxicity grade 3, no toxicity > grade 2 occurred in the BAT group. There was no significant difference in PSA reduction between the groups. Conclusion Without BAT significant more acute and a trend to more late rectal toxicity was found. With regard to dose escalation this aspect is currently evaluated with a larger number of patients using intensity-modulated radiotherapy (IMRT). (orig.)

  13. Chest wall desmoid tumours treated with definitive radiotherapy: a plan comparison of 3D conformal radiotherapy, intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy

    International Nuclear Information System (INIS)

    Liu, Jia; Ng, Diana; Lee, James; Stalley, Paul; Hong, Angela

    2016-01-01

    Definitive radiotherapy is often used for chest wall desmoid tumours due to size or anatomical location. The delivery of radiotherapy is challenging due to the large size and constraints of normal surrounding structures. We compared the dosimetry of 3D conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc radiotherapy (VMAT) to evaluate the best treatment option. Ten consecutive patients with inoperable chest wall desmoid tumours (PTV range 416–4549 cm 3 ) were selected. For each patient, 3DCRT, IMRT and VMAT plans were generated and the Conformity Index (CI), organ at risk (OAR) doses and monitor unit (MU) were evaluated. The Wilcoxon signed-rank test was used to compare dose delivered to both target and OARs. The mean number of fields for 3DCRT and IMRT were 6.3 ± 2.1, 7.2 ± 1.8. The mean number of arcs for VMAT was 3.7 ± 1.1. The mean conformity index of VMAT (0.98 ± 0.14) was similar to that of IMRT (1.03 ± 0.13), both of which were significantly better than 3DCRT (1.35 ± 0.20; p = 0.005). The mean dose to lung was significantly higher for 3DCRT (11.9Gy ± 7.9) compared to IMRT (9.4Gy ± 5.4, p = 0.014) and VMAT (8.9Gy ± 4.5, p = 0.017). For the 3 females, the low dose regions in the ipsilateral breast for VMAT were generally less with VMAT. IMRT plans required 1427 ± 532 MU per fraction which was almost 4-fold higher than 3DCRT (313 ± 112, P = 0.005). Compared to IMRT, VMAT plans required 60 % less MU (570 ± 285, P = 0.005). For inoperable chest wall desmoid tumours, VMAT delivered equivalent target coverage when compared to IMRT but required 60 % less MU. Both VMAT and IMRT were superior to 3DCRT in terms of better PTV coverage and sparing of lung tissue

  14. Dosimetric comparison of field in field intensity-modulated radiotherapy technique with conformal radiotherapy techniques in breast cancer

    International Nuclear Information System (INIS)

    Ercan, T.; Alco, G.; Zengin, F.; Atilla, S.; Dincer, M.; Igdem, S.; Okkan, S.

    2010-01-01

    The aim of this study was to be able to implement the field-in-field intensity-modulated radiotherapy (FiF) technique in our daily practice for breast radiotherapy. To do this, we performed a dosimetric comparison. Treatment plans were produced for 20 consecutive patients. FiF plans and conformal radiotherapy (CRT) plans were compared for doses in the planning target volume (PTV), the dose homogeneity index (DHI), doses in irradiated soft tissue outside the target volume (SST), ipsilateral lung and heart doses for left breast irradiation, and the monitor unit counts (MU) required for treatment. Averaged values were compared using Student's t-test. With FiF, the DHI is improved 7.0% and 5.7%, respectively (P<0.0001) over the bilateral and lateral wedge CRT techniques. When the targeted volumes received 105% and 110% of the prescribed dose in the PTV were compared, significant decreases are found with the FiF technique. With the 105% dose, the SST, heart, and ipsilateral lung doses and the MU counts were also significantly lower with the FiF technique. The FiF technique, compared to CRT, for breast radiotherapy enables significantly better dose distribution in the PTV. Significant differences are also found for soft tissue volume, the ipsilateral lung dose, and the heart dose. Considering the decreased MUs needed for treatment, the FiF technique is preferred over tangential CRT. (author)

  15. Conformation radiotherapy and conformal radiotherapy

    International Nuclear Information System (INIS)

    Morita, Kozo

    1999-01-01

    In order to coincide the high dose region to the target volume, the 'Conformation Radiotherapy Technique' using the multileaf collimator and the device for 'hollow-out technique' was developed by Prof. S. Takahashi in 1960. This technique can be classified a type of 2D-dynamic conformal RT techniques. By the clinical application of this technique, the late complications of the lens, the intestine and the urinary bladder after radiotherapy for the maxillary cancer and the cervical cancer decreased. Since 1980's the exact position and shape of the tumor and the surrounding normal tissues can be easily obtained by the tremendous development of the CT/MRI imaging technique. As a result, various kinds of new conformal techniques such as the 3D-CRT, the dose intensity modulation, the tomotherapy have been developed since the beginning of 1990'. Several 'dose escalation study with 2D-/3D conformal RT' is now under way to improve the treatment results. (author)

  16. Combining Targeted Agents With Modern Radiotherapy in Soft Tissue Sarcomas

    Science.gov (United States)

    Wong, Philip; Houghton, Peter; Kirsch, David G.; Finkelstein, Steven E.; Monjazeb, Arta M.; Xu-Welliver, Meng; Dicker, Adam P.; Ahmed, Mansoor; Vikram, Bhadrasain; Teicher, Beverly A.; Coleman, C. Norman; Machtay, Mitchell; Curran, Walter J.

    2014-01-01

    Improved understanding of soft-tissue sarcoma (STS) biology has led to better distinction and subtyping of these diseases with the hope of exploiting the molecular characteristics of each subtype to develop appropriately targeted treatment regimens. In the care of patients with extremity STS, adjunctive radiation therapy (RT) is used to facilitate limb and function, preserving surgeries while maintaining five-year local control above 85%. In contrast, for STS originating from nonextremity anatomical sites, the rate of local recurrence is much higher (five-year local control is approximately 50%) and a major cause of death and morbidity in these patients. Incorporating novel technological advancements to administer accurate RT in combination with novel radiosensitizing agents could potentially improve local control and overall survival. RT efficacy in STS can be increased by modulating biological pathways such as angiogenesis, cell cycle regulation, cell survival signaling, and cancer-host immune interactions. Previous experiences, advancements, ongoing research, and current clinical trials combining RT with agents modulating one or more of the above pathways are reviewed. The standard clinical management of patients with STS with pretreatment biopsy, neoadjuvant treatment, and primary surgery provides an opportune disease model for interrogating translational hypotheses. The purpose of this review is to outline a strategic vision for clinical translation of preclinical findings and to identify appropriate targeted agents to combine with radiotherapy in the treatment of STS from different sites and/or different histology subtypes. PMID:25326640

  17. Guidelines for primary radiotherapy of patients with prostate cancer

    International Nuclear Information System (INIS)

    Boehmer, Dirk; Maingon, Philippe; Poortmans, Philip; Baron, Marie-Helene; Miralbell, Raymond; Remouchamps, Vincent; Scrase, Christopher; Bossi, Alberto; Bolla, Michel

    2006-01-01

    Background and purposes: The appropriate application of 3-D conformal radiotherapy, intensity modulated radiotherapy or image guided radiotherapy for patients undergoing radiotherapy for prostate cancer requires a standardisation of target delineation as well as clinical quality assurance procedures. Patients and methods: Pathological and imaging studies provide valuable information on tumour extension. In addition, clinical investigations on patient positioning and immobilisation as well as treatment verification data offer an abundance of information. Results: Target volume definitions for different risk groups of prostate cancer patients based on pathological and imaging studies are provided. Available imaging modalities, patient positioning and treatment preparation studies as well as verification procedures are collected from literature studies. These studies are summarised and recommendations are given where appropriate. Conclusions: On behalf of the European Organisation for Research and Treatment of Cancer (EORTC) Radiation Oncology Group this article presents a common set of recommendations for external beam radiotherapy of patients with prostate cancer

  18. Defining a radiotherapy target with positron emission tomography

    International Nuclear Information System (INIS)

    Black, Quinten C.; Grills, Inga S.; Kestin, Larry L.; Wong, Ching-Yee O.; Wong, John W.; Martinez, Alvaro A.; Yan Di

    2004-01-01

    Purpose: F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) imaging is now considered the most accurate clinical staging study for non-small-cell lung cancer (NSCLC) and is also important in the staging of multiple other malignancies. Gross tumor volume (GTV) definition for radiotherapy, however, is typically based entirely on computed tomographic data. We performed a series of phantom studies to determine an accurate and uniformly applicable method for defining a GTV with FDG-PET. Methods and materials: A model-based method was tested by a phantom study to determine a threshold, or unique cutoff of standardized uptake value based on body weight (standardized uptake value [SUV]) for FDG-PET based GTV definition. The degree to which mean target SUV, background FDG concentration, and target volume influenced that GTV definition were evaluated. A phantom was constructed consisting of a 9.0-L cylindrical tank. Glass spheres with volumes ranging from 12.2 to 291.0 cc were suspended within the tank, with a minimum separation of 4 cm between the edges of the spheres. The sphere volumes were selected based on the range of NSCLC patient tumor volumes seen in our clinic. The tank and spheres were filled with a variety of known concentrations of FDG in several experiments and then scanned using a General Electric Advance PET scanner. In the initial experiment, six spheres with identical volumes were filled with varying concentrations of FDG (mean SUV 1.85 ∼ 9.68) and suspended within a background bath of FDG at a similar concentration to that used in clinical practice (0.144 μCi/mL). The second experiment was identical to the first, but was performed at 0.144 and 0.036 μCi/mL background concentrations to determine the effect of background FDG concentration on sphere definition. In the third experiment, six spheres with volumes of 12.2 to 291.0 cc were filled with equal concentrations of FDG and suspended in a standard background FDG concentration of 0.144

  19. Conformation radiotherapy with eccentric multi-leaves, (1)

    International Nuclear Information System (INIS)

    Obata, Yasunori; Sakuma, Sadayuki.

    1986-01-01

    In order to extend the application of the conformation radiotherapy, the eccentric multi-leaves are equipped with the linear accelerator. The information of the position of the collimators and the dose distribution of the eccentric conformation radiotherapy are calculated by the improved algorism of the treatment planning system. In simple cases, the dose distributions for the distant region from the rotational center are measured and compared with the calculated values. Both distributions are well coincided with the error of about 5 % in the high dose region and 10 % in the low dose region. In eccentric conformation radiotherapy, it is difficult to deliver the planned dose to the lesion. The dose increases with the distance of the target area from the rotational center. And the measured value and the calculated value are well coincided with 1 % error. So after getting the dose ratio of the rotational center to the target area, the calculated dose can be delivered to the rotational center. The advantages of the eccentric conformation radiotherapy are a good coincidence of target area and treated area, a partial shielding and a hollow out technique without absorber. The limitation of the movement of the collimator from center is 5 cm at 1 m SCD. (author)

  20. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Dikomey, Ekkehard; Dittmann, Klaus; Doerr, Wolfgang; Kasten-Pisula, Ulla; Rodemann, H. Peter

    2007-01-01

    Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed

  1. Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand

    International Nuclear Information System (INIS)

    Perrot, Y; Donnarieix, D; Maigne, L; Degoul, F; Auzeloux, P; Bonnet, M; Cachin, F; Chezal, J M; Labarre, P; Moins, N; Papon, J; Rbah-Vidal, L; Vidal, A; Miot-Noirault, E

    2014-01-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is under constant improvement for dosimetric calculations. In this study, we explore its use for the dosimetry of the preclinical targeted radiotherapy of melanoma using a new specific melanin-targeting radiotracer labeled with iodine 131. Calculated absorbed fractions and S values for spheres and murine models (digital and CT-scan-based mouse phantoms) are compared between GATE and EGSnrc Monte Carlo codes considering monoenergetic electrons and the detailed energy spectrum of iodine 131. The behavior of Geant4 standard and low energy models is also tested. Following the different authors’ guidelines concerning the parameterization of electron physics models, this study demonstrates an agreement of 1.2% and 1.5% with EGSnrc, respectively, for the calculation of S values for small spheres and mouse phantoms. S values calculated with GATE are then used to compute the dose distribution in organs of interest using the activity distribution in mouse phantoms. This study gives the dosimetric data required for the translation of the new treatment to the clinic. (paper)

  2. Sequential hemi-body radiotherapy in advanced multiple myeloma

    International Nuclear Information System (INIS)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease

  3. Redox Control of Skeletal Muscle Regeneration.

    Science.gov (United States)

    Le Moal, Emmeran; Pialoux, Vincent; Juban, Gaëtan; Groussard, Carole; Zouhal, Hassane; Chazaud, Bénédicte; Mounier, Rémi

    2017-08-10

    Skeletal muscle shows high plasticity in response to external demand. Moreover, adult skeletal muscle is capable of complete regeneration after injury, due to the properties of muscle stem cells (MuSCs), the satellite cells, which follow a tightly regulated myogenic program to generate both new myofibers and new MuSCs for further needs. Although reactive oxygen species (ROS) and reactive nitrogen species (RNS) have long been associated with skeletal muscle physiology, their implication in the cell and molecular processes at work during muscle regeneration is more recent. This review focuses on redox regulation during skeletal muscle regeneration. An overview of the basics of ROS/RNS and antioxidant chemistry and biology occurring in skeletal muscle is first provided. Then, the comprehensive knowledge on redox regulation of MuSCs and their surrounding cell partners (macrophages, endothelial cells) during skeletal muscle regeneration is presented in normal muscle and in specific physiological (exercise-induced muscle damage, aging) and pathological (muscular dystrophies) contexts. Recent advances in the comprehension of these processes has led to the development of therapeutic assays using antioxidant supplementation, which result in inconsistent efficiency, underlying the need for new tools that are aimed at precisely deciphering and targeting ROS networks. This review should provide an overall insight of the redox regulation of skeletal muscle regeneration while highlighting the limits of the use of nonspecific antioxidants to improve muscle function. Antioxid. Redox Signal. 27, 276-310.

  4. [Novel irradiation techniques in the treatment of solid tumours. Radiotherapy for metastases].

    Science.gov (United States)

    Mayer, Arpád; Póti, Zsuzsa

    2014-02-23

    Novel developments in percutaneous radiotherapy, such as positron emission tomography/computed tomography, adaptive radiation planning, intensity modulation radiotherapy and intensity modulated arc therapy (RapidArc), as well as the newer generation of image control (cone-beam computed tomography) and image guided radiotherapy ensure increased dosages of planning target volume and clinical target volume of solid tumours without damaging surrounding tissues and providing maximal protection. By raising the dosages of planned target volume and clinical target volume, these novel technical developments have created new indications in the treatment of solid tumours. With the aid of the cone-beam computed tomography and image guided radiotherapy the organ metastasis (lung, liver, spinal cord) and the primary tumour can be treated safety and effectively. Hypofractionation, dose escalation and the use of stereotactic devices can probably decrease radiation damage. The authors review the most common forms of evidence-based fractionation schemes used in irradiation therapy.

  5. Rotational radiotherapy for prostate cancer in clinical practice

    DEFF Research Database (Denmark)

    Aznar, Marianne C; Petersen, Peter Meidahl; Logadottir, Ashildur

    2010-01-01

    Radiotherapy is the standard treatment in locally advanced prostate cancer. The latest technological improvement is modulated rotational radiotherapy, where one single rotation of the treatment machine is used to conform the dose delivery to the target and spare organs at risk, requiring less than...

  6. Quality Management in Radiotherapy. Chapter 19

    International Nuclear Information System (INIS)

    Scalliet, P.

    2017-01-01

    Soon after the discovery of X rays and natural radioactivity, the therapeutic use of ionizing radiation grew into what has today become an important oncological specialty, with unmatched cost–benefit features. Radiotherapy is an inexpensive solution to many cancers; it is a reproducible technique with fundamentals that rely both on a large set of evidence based medical data and on high technology equipment that has benefited from the digital revolution in the second half of the twentieth century. One characteristic of radiotherapy is its narrow therapeutic window, with cure being never very far from injury. Therefore, radiotherapy administration requires great accuracy in target volume definition and dose control. Modest underdosage leads to the recurrence of cancer, while overdosage leads to unacceptable toxicity. While more sophisticated treatment techniques have emerged recently (intensity modulation, image guidance, hadrons), equally sophisticated means to control the actual delivery of radiotherapy have been developed. Better control of dose delivery allows for better delineation between target tissue exposed to high doses and normal tissue shielded to the maximum, with steep dose gradients sometimes over a few millimetres. This, in turn, requires better volume definition and better control of patient positioning.

  7. Pregnancy and radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Karasawa, Kumiko

    2013-01-01

    Cancer in pregnancy is relatively uncommon but breast cancer is one of the most common malignancy occur with pregnancy. Prescribed doses of radiotherapy are significantly higher than those of diagnostic procedures. Fetal exposure and damage can occur during radiotherapy within target area. Because of those risks, radiotherapy during pregnancy is basically has to avoid. Even though, feral damage depends on fetal dose and has some threshold dose. Practically, even in stochastic effect, there are some minimal doses. A most important point is careful estimation of fetal dose before radiation. The physician has to inform the patient about risk and benefit of radiotherapy to fetus and to mother and have an ethical balance to help the mother and family to make a final decision. (author)

  8. Approaches to radiotherapy in metastatic spinal cord compression.

    Science.gov (United States)

    Suppl, Morten Hiul

    2018-04-01

    Metastatic spinal cord compression is caused by the progression of metastatic lesions within the vicinity of the spinal cord. The consequences are very severe with loss of neurological function and severe pain. The standard treatment is surgical intervention followed by radiotherapy or radiotherapy alone. However, the majority of patients are treated with radiotherapy only due to contraindications to surgery and technical inoperability. Stereotactic body radiotherapy is a technology to deliver higher radiation dose to the radiotherapy target with the use of spatial coordinates. This modality has shown positive results in treating lesions in brain and lungs. Hence, it could prove beneficial in metastatic spinal cord compression. We designed and planned a trial to investigate this method in patients with metastatic spinal cord compression. The method was usable but the trial was stopped prematurely due to low accrual that made comparison with surgery impossible. Low accrual is a known problem for trials evaluating new approaches in radiotherapy. Target definition in radiotherapy of metastatic spinal cord compression is defined by patient history, examination and imaging. Functional imaging could provide information to guide target definition with the sparring of normal tissue e.g. spinal cord and hematopoietic tissue of the bone marrow. In future trials this may be used for dose escalation of spinal metastases. The trial showed that PET/MRI was feasible in this group of patients but did not change the radiotherapy target in the included patients. Neurological outcome is similar irrespective of course length and therefore single fraction radiotherapy is recommended for the majority of patients. In-field recurrence is a risk factor of both short and long fractionation schemes and re-irradiation have the potential risk of radiation-induced myelopathy. In a retrospective study of re-irradiation, we investigated the incidence of radiation-induced myelopathy. In our study

  9. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  10. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  11. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  12. Moving toward multi-dimensional radiotherapy and the role of radiobiology

    International Nuclear Information System (INIS)

    Oita, Masataka; Uto, Yoshihiro; Aoyama, Hideki

    2014-01-01

    Recent radiotherapy for cancer treatment enable the high-precision irradiation to the target under the computed image guidance. Developments of such radiotherapy has played large role in the improved strategy of cancer treatments. In addition, the molecular mechanistic studies related to proliferations of cancer cell contribute the multidisciplinary fields of clinical radiotherapies. Therefore, the combination of the image guidance and molecular targeting of cancer cells make it possible for individualized cancer treatment. Especially, the use of particle beam or boron neutron capture therapy (BNCT) has been spotlighted, and installations of such devices are planned widely. As the progress and collaborations of radiation biology and engineering physics, establishment of a new style of radiotherapy becomes available in post-genome era. In 2010s, the hi-tech machines controlling the spaciotemporal radiotherapy become in practice. Although, there still remains to be improved, e.g., more precise prediction of radiosensitivity or growth of individual tumors, and adverse outcomes after treatments, multi-dimensional optimizations of the individualized irradiations based on the molecular radiation biologies and medical physics are important for further development of radiotherapy. (author)

  13. Telemedicine in radiotherapy treatment planning: requirements and applications

    International Nuclear Information System (INIS)

    Olsen, D.R.; Bruland, O.S.; Davis, B.J.

    2000-01-01

    Telemedicine facilitates decentralized radiotherapy services by allowing remote treatment planning and quality assurance of treatment delivery. A prerequisite is digital storage of relevant data and an efficient and reliable telecommunication system between satellite units and the main radiotherapy clinic. The requirements of a telemedicine system in radiotherapy is influenced by the level of support needed. In this paper we differentiate between three categories of telemedicine support in radiotherapy. Level 1 features video conferencing and display of radiotherapy images and dose plans. Level 2 involves replication of selected data from the radiotherapy database - facilitating remote treatment planning and evaluation. Level 3 includes real-time, remote operations, e.g. target volume delineation and treatment planning performed by the team at the satellite unit under supervision and guidance from more experienced colleagues at the main clinic. (author)

  14. Secondary effects of radiotherapy on the orofacial sphere

    International Nuclear Information System (INIS)

    Guillaume, Nicolas

    2012-01-01

    The objective of this research is to determine the role of the dental surgeon in the taking into care of patients treated by head and neck radiotherapy. It also aims at giving information to the patient on secondary effects which radiotherapy may induce, and at determining which therapeutic behaviour to adopt to prevent or at least mitigate the appearance of complications. The author first presents some generalities on radiotherapy: presentation of upper aero-digestive tract cancers (surgery, radiotherapy, and chemotherapy), description of the different radiotherapy techniques (external radiotherapy, brachytherapy), discussion of factors influencing local secondary effects of radiotherapy. The second part addresses the specific case of early orofacial secondary effects, discusses their origin, clinic signs and prevention means: cutaneous effect, mucositis, xerostomia, candidiasis, taste disorders, relationship between early local reactions and anti-tumour treatment efficiency. The third part addresses late orofacial secondary effects: cervix sclerosis, limitation of mouth opening, dental effects, periodontal diseases, osteoradionecrosis. The last part discusses the evolution of radiotherapy: intensity modulated conformational radiotherapy, targeted therapeutics [fr

  15. Real-time dynamic MLC tracking for inversely optimized arc radiotherapy

    DEFF Research Database (Denmark)

    Falk, Marianne; af Rosenschöld, Per Munck; Keall, Paul

    2010-01-01

    Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory.......Motion compensation with MLC tracking was tested for inversely optimized arc radiotherapy with special attention to the impact of the size of the target displacements and the angle of the leaf trajectory....

  16. Carbon-ion radiotherapy for marginal lymph node recurrences of cervical cancer after definitive radiotherapy: a case report

    International Nuclear Information System (INIS)

    Tamaki, Tomoaki; Nakano, Takashi; Ohno, Tatsuya; Kiyohara, Hiroki; Noda, Shin-ei; Ohkubo, Yu; Ando, Ken; Wakatsuki, Masaru; Kato, Shingo; Kamada, Tadashi

    2013-01-01

    Recurrences of cervical cancer after definitive radiotherapy often occur at common iliac or para-aortic lymph nodes as marginal lymph node recurrences. Patients with these recurrences have a chance of long-term survival by optimal re-treatment with radiotherapy. However, the re-irradiation often overlaps the initial and the secondary radiotherapy fields and can result in increased normal tissue toxicities in the bowels or the stomach. Carbon-ion radiotherapy, a form of particle beam radiotherapy using accelerated carbon ions, offers more conformal and sharp dose distribution than X-ray radiotherapy. Therefore, this approach enables the delivery of high radiation doses to the target while sparing its surrounding normal tissues. Marginal lymph node recurrences in common iliac lymph nodes after radiotherapy were treated successfully by carbon-ion radiotherapy in two patients. These two patients were initially treated with a combination of external beam radiotherapy and intracavitary and interstitial brachytherapy. However, the diseases recurred in the lymph nodes near the border of the initial radiotherapy fields after 22 months and 23 months. Because re-irradiation with X-ray radiotherapy may deliver high doses to a section of the bowels, carbon-ion radiotherapy was selected to treat the lymph node recurrences. A total dose of 48 Gy (RBE) in 12 fractions over 3 weeks was given to the lymph node recurrences, and the tumors disappeared completely with no severe acute toxicities. The two patients showed no evidence of disease for 75 months and 63 months after the initial radiotherapy and for 50 months and 37 months after the carbon-ion radiotherapy, respectively. No severe late adverse effects are observed in these patients. The two presented cases suggest that the highly conformal dose distribution of carbon-ion radiotherapy may be beneficial in the treatment of marginal lymph node recurrences after radiotherapy. In addition, the higher biological effect of carbon

  17. Individualized planning target volumes for intrafraction motion during hypofractionated intensity-modulated radiotherapy boost for prostate cancer

    International Nuclear Information System (INIS)

    Cheung, Patrick; Sixel, Katharina; Morton, Gerard; Loblaw, D. Andrew; Tirona, Romeo; Pang, Geordi; Choo, Richard; Szumacher, Ewa; DeBoer, Gerrit; Pignol, Jean-Philippe

    2005-01-01

    Purpose: The objective of the study was to access toxicities of delivering a hypofractionated intensity-modulated radiotherapy (IMRT) boost with individualized intrafraction planning target volume (PTV) margins and daily online correction for prostate position. Methods and materials: Phase I involved delivering 42 Gy in 21 fractions using three-dimensional conformal radiotherapy, followed by a Phase II IMRT boost of 30 Gy in 10 fractions. Digital fluoroscopy was used to measure respiratory-induced motion of implanted fiducial markers within the prostate. Electronic portal images were taken of fiducial marker positions before and after each fraction of radiotherapy during the first 9 days of treatment to calculate intrafraction motion. A uniform 10-mm PTV margin was used for the first phase of treatment. PTV margins for Phase II were patient-specific and were calculated from the respiratory and intrafraction motion data obtained from Phase I. The IMRT boost was delivered with daily online correction of fiducial marker position. Acute toxicity was measured using National Cancer Institute Common Toxicity Criteria, version 2.0. Results: In 33 patients who had completed treatment, the average PTV margin used during the hypofractionated IMRT boost was 3 mm in the lateral direction, 3 mm in the superior-inferior direction, and 4 mm in the anteroposterior direction. No patients developed acute Grade 3 rectal toxicity. Three patients developed acute Grade 3 urinary frequency and urgency. Conclusions: PTV margins can be reduced significantly with daily online correction of prostate position. Delivering a hypofractionated boost with this high-precision IMRT technique resulted in acceptable acute toxicity

  18. The functional imaging in target volume delineation of radiotherapy planning for gliomas

    International Nuclear Information System (INIS)

    Huang Jingxiong; Wu Hua

    2007-01-01

    Radiotherapy is one of important treatments for glioma. Functional imaging, such as PET, SPECT and MRI, may provide more valuable information not only in display of the evasion extent of glioma but also in demonstration of some biological characteristics of the tumor, such as perfusion, metabolism, hypoxia or proliferation. Thus it may play a role in making an individualized and more exact radiotherapy planning. (authors)

  19. X-ray volume imaging in bladder radiotherapy verification

    International Nuclear Information System (INIS)

    Henry, Ann M.; Stratford, Julia; McCarthy, Claire; Davies, Julie; Sykes, Jonathan R.; Amer, Ali; Marchant, Tom; Cowan, Richard; Wylie, James; Logue, John; Livsey, Jacqueline; Khoo, Vincent S.; Moore, Chris; Price, Pat

    2006-01-01

    Purpose: To assess the clinical utility of X-ray volume imaging (XVI) for verification of bladder radiotherapy and to quantify geometric error in bladder radiotherapy delivery. Methods and Materials: Twenty subjects undergoing conformal bladder radiotherapy were recruited. X-ray volume images and electronic portal images (EPIs) were acquired for the first 5 fractions and then once weekly. X-ray volume images were co-registered with the planning computed tomography scan and clinical target volume coverage assessed in three dimensions (3D). Interfraction bladder volume change was described by quantifying changes in bladder volume with time. Bony setup errors were compared from both XVI and EPI. Results: The bladder boundary was clearly visible on coronal XVI views in nearly all images, allowing accurate 3D treatment verification. In 93.5% of imaged fractions, the clinical target volume was within the planning target volume. Most subjects displayed consistent bladder volumes, but 25% displayed changes that could be predicted from the first three XVIs. Bony setup errors were similar whether calculated from XVI or EPI. Conclusions: Coronal XVI can be used to verify 3D bladder radiotherapy delivery. Image-guided interventions to reduce geographic miss and normal tissue toxicity are feasible with this technology

  20. Targeted radiotherapy with 177 Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    International Nuclear Information System (INIS)

    Murphy, M. A de; Pedraza L, M.; Rodriguez C, J.; Ferro F, G.; Murphy S, E.

    2006-01-01

    Malignant pancreas tumours induced in athymic mice are a good model for targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses and to evaluate 177 Lu-DOTA-TATE as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells, which over-express somatostatin receptors, were injected in athymic mice and 20 days later the mean tumour size was 3.08 square cm (n=3). A mean of 86.3 MBq 177 Lu-DOTA-TATE, was injected in a tail vein and 19 days after therapy the size of the tumours was 0.81 square cm. There was a partial relapse and after 16 days, when sacrificed, the mean tumour size was 8.28 cubic cm. An epithelial and sarcoma mixed tumour in the kidney of one treated mouse was found. The tumour of the control mouse was 8.61 cubic cm when sacrificed 14 days after tumour induction. Radiotherapy estimates to the tumours was 35.9-39.7 Gy and the tumours might have been completely reduced with a second therapy dose. These preliminary studies justify further therapeutic and dosimetry estimations to ensure that Lu- 177 -DOTA-TATE will act as expected in man, considering kidney radiation. (Author)

  1. Bone-seeking radiopharmaceuticals in skeletal malignancy: evolution, not revolution

    International Nuclear Information System (INIS)

    MacFarlane, D.

    2003-01-01

    Many advanced malignancies are complicated by skeletal metastases, with attendant pain and disability. External beam radiotherapy is still the most effective treatment for isolated lesions. Bone-seeking radiopharmaceuticals were perceived as a means of delivering radiation to multiple lesions simultaneously. A wide variety of radioisotopes have been used in this endeavor, with myelosuppression being the most significant potential adverse effect. Benefits of treatment are modest, including a transient improvement in pain control and perhaps prolongation of the treatment-free period. This is best demonstrated in prostate cancer with lower responses by skeletal metastases from breast and lung cancers. However, the treatment is yet to produce any improvement in patient survival. Experimental approaches to improve treatment efficacy include combination with cytotoxic therapy, and administration earlier in the course of the disease. Bone seeking radiopharmaceuticals have been used in treatment of advanced osteosarcoma in humans and canines and achieved effective palliation. The myelosuppressive effects of these agents have been exploited in patients with multiple myeloma to assist in attaining myeloablation prior to stem cell transplantation. Development of more potent non-radiolabelled bisphosphonates and recognition of their antitumour effect against several tumours has sparked a recrudescence of interest in their use for bone metastases. Set against these developments, the role of bone-seeking radiopharmaceuticals in skeletal metastases may need to be redefined

  2. Dosimetric Feasibility of Hypofractionated Proton Radiotherapy for Neoadjuvant Pancreatic Cancer Treatment

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Kachnic, Lisa A.; Adams, Judith C; Crowley, Elizabeth M.; Alexander, Brian M.; Mamon, Harvey J.; Fernandez-Del Castillo, Carlos; Ryan, David P.; DeLaney, Thomas F.; Hong, Theodore S.

    2007-01-01

    Purpose: To evaluate tumor and normal tissue dosimetry of a 5 cobalt gray equivalent (CGE) x 5 fraction proton radiotherapy schedule, before initiating a clinical trial of neoadjuvant, short-course proton radiotherapy for pancreatic adenocarcinoma. Methods and Materials: The first 9 pancreatic cancer patients treated with neoadjuvant intensity-modulated radiotherapy (1.8 Gy x 28) at the Massachusetts General Hospital had treatment plans generated using a 5 CGE x 5 fraction proton regimen. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Hypofractionated proton and conventionally fractionated intensity-modulated radiotherapy plans both provided acceptable target volume coverage and dose homogeneity. Improved dose conformality provided by the hypofractionated proton regimen resulted in significant sparing of kidneys, liver, and small bowel, evidenced by significant reductions in the mean doses, expressed as percentage prescribed dose, to these structures. Kidney and liver sparing was most evident in low-dose regions (≤20% prescribed dose for both kidneys and ≤60% prescribed dose for liver). Improvements in small-bowel dosimetry were observed in high- and low-dose regions. Mean stomach and duodenum doses, expressed as percentage prescribed dose, were similar for the two techniques. Conclusions: A proton radiotherapy schedule consisting of 5 fractions of 5 CGE as part of neoadjuvant therapy for adenocarcinoma of the pancreas seems dosimetrically feasible, providing excellent target volume coverage, dose homogeneity, and normal tissue sparing. Hypofractionated proton radiotherapy in this setting merits Phase I clinical trial investigation

  3. A multi-modality concept for radiotherapy planning with imaging techniques

    International Nuclear Information System (INIS)

    Schultze, J.

    1993-01-01

    The reported multi-modality concept of radiotherapy planning in the LAN can be realised in any hospital with standard equipment, although in some cases by way of auxiliary configurations. A software is currently developed as a tool for reducing the entire planning work. The heart of any radiotherapy planning is the therapy simulator, which has to be abreast with the requirements of modern radiotherapy. Integration of tomograpy, digitalisation, and electronic data processing has added important modalities to therapy planning which allow more precise target volume definition, and better biophysical planning. This is what is needed in order to achieve well differentiated radiotherapy for treatment of the manifold tumors, and the quality standards expected by the supervisory quality assurance regime and the population. At present, the CT data still are transferred indirect, on storage media, to the EDP processing system of the radiotherapy planning system. Based on the tomographic slices given by the imaging data, the contours and technical problem solutions are derived automatically, either for multi-field radiotherapy or moving field irradiation, depending on the anatomy or the targets to be protected from ionizing radiation. (orig./VHE) [de

  4. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    Science.gov (United States)

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  5. Patient Radiation Protection in Radiotherapy

    International Nuclear Information System (INIS)

    Hegazy, M.

    2010-01-01

    The Role of Radiotherapy is treatment modalities for cancer which is generally assumed that 50 to 60% of cancer patients will benefit from radiotherapy. It constitutes a peaceful application of ionizing radiation and an essential part of cancer management. The two aims of radiation protection Prevention is of deterministic effect and Reduction of the probability of stochastic effects. The Shielding fundamentals is to limit radiation exposure of staff, patients, visitors and the public to acceptable levels it also optimize protection of patients, staff and the public. Diagnosis is important for target design and the dose required for cure or palliation while Simulator is often used twice in the radiotherapy process where Patient data acquisition - target localization, contours, outlines and Verification. The Prescription is the responsibility of individual clinicians, depending on the patient’s condition, equipment available, experience and training. An ultimate check of the actual treatment given can only be made by using in vivo dosimetry. Treatment records must be kept of all relevant aspects of the treatment – including Session and Summary Record information, Records all treatment parameters, Dose Calculations and Dose Measurements

  6. Head and neck cancers: clinical benefits of three-dimensional conformal radiotherapy and of intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Giraud, P.; Jaulerry, C.; Brunin, F.; Zefkili, S.; Helfre, S.; Chauvet, I.; Rosenwald, J.C.; Cosset, J.M.

    2002-01-01

    The conformal radiotherapy approach, three-dimensional conformal radiotherapy (3DCRT) or intensity-modulated radiotherapy (IMRT), is based on modern imaging modalities, efficient 3-D treatment planning systems, sophisticated immobilization systems and rigorous quality assurance and treatment verification. The central objective of conformal radiotherapy is to ensure a high dose distribution tailored to the limits of the target volume while reducing exposure of normal tissues. These techniques would then allow further tumor dose escalation. Head-and-neck tumors are some of the most attractive localizations to test conformal radiotherapy. They combine ballistic difficulties due to particularly complex shapes (nasopharynx, ethmoid) and problems due to the number and low tolerance of neighbouring organs like parotids, eyes, brainstem and spinal cord. The therapeutic irradiation of head-and-neck tumors thus remains a challenge for the radiation oncologist. Conformal radiotherapy does have a significant potential for improving local control and reducing toxicity when compared to standard radiotherapy. However, in the absence of prospective randomized trials, it is somewhat difficult at present to evaluate the real benefits drawn from 3DCRT and IMRT. The published clinical reports on the use of conformal radiotherapy are essentially dealing with dosimetric comparisons on relatively small numbers of patients. Recently, a few publications have emphasized the clinical experience several precursor teams with a suitable follow-up. This paper describes the current state-of-the-art of 3DCRT and IMRT in order to evaluate the impact of these techniques on head-and-neck cancers irradiation. (authors)

  7. Targeted radiotherapy of osteosarcoma using 153Sm-EDTMP. A new promising approach

    International Nuclear Information System (INIS)

    Bruland, Oe.S.; Skretting, A.; Solheim, Oe.P.; Aas, M.

    1996-01-01

    We report a case where targeted radionuclide therapy using 153 Sm-EDTMP gave substantial palliative effect. A 35-year-old male with a primary osteosarcoma located in the first lumbar vertebra relapsed with progressive back pain after conventional treatment modalities had failed. He became bedridden, and developed paraparesis and impaired bladder function. On a diagnostic bone-scan intense radioactivity was localized in the tumor. He therefore was given 153 Sm-EDTMP treatment twice, 8 weeks apart, 35 and 32 MBq/kg body weight respectively. After a few days the pain was significantly relieved and by the second radionuclide treatment the pareses subsided. For six months he was able to be up and about without any neurological signs or detectable metastases. Eventually, however, he experienced increasing local pain, developed paraparesis, was re-operated but died 4 months later. The dramatic transient improvement observed in this case warrants further exploration using 153 Sm-EDTMP as a boost technique, supplementary to conventiontal external radiotherapy. (orig.)

  8. A Comparative Dosimetric Study of Adjuvant 3D Conformal Radiotherapy for Operable Stomach Cancer Versus AP-PA Conventional Radiotherapy in NCI-Cairo

    International Nuclear Information System (INIS)

    El-Hossiny, H.A.; Diab, N.A.; El-Taher, M.M.

    2009-01-01

    This study was to compare this multiple field conformal technique to the AP-PA technique with respect to target volume coverage and dose to normal tissues. Materials and Methods: Seventeen patients with stages II-III denocarcinoma of the stomach were treated with adjuvant postoperative chemoradiotherapy presented to radiotherapy department in National Cancer Institute, Cairo in period between February 2009 to March 2010 using 3D conformal radiotherapy technique that consisted of a mono isocentric arrangement employing 4-6 radiation fields. For each patient, a second radiotherapy treatment plan was done using an antroposterior (AP-PA) fields, the two techniques were then compared using dose volume histogram (DVH) analysis. Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both (3D and 2D) plans while the left kidney and spinal cord demonstrate lower radiation doses on using the conformal technique. The liver doses is higher in the 3D tecq, but still well below liver tolerance. Conclusions: Both 3D conformal radiotherapy and AP-PA conventional techniques doses are within range of normal tissues tolerance. Regarding the left kidney and spinal cord the 3D conformal radiotherapy is superior than the AP-PA conventional techniques but with higher doses to the liver in the 3D conformal radiotherapy compared to the AP-PA conventional techniques

  9. Pacemaker and radiotherapy in breast cancer: is targeted intraoperative radiotherapy the answer in this setting?

    International Nuclear Information System (INIS)

    Keshtgar, Mohammed RS; Eaton, David J; Reynolds, Claire; Pigott, Katharine; Davidson, Tim; Gauter-Fleckenstein, Benjamin; Wenz, Frederik

    2012-01-01

    We present the case of an 83 year old woman with a cardiac pacemaker located close in distance to a subsequently diagnosed invasive ductal carcinoma of the left breast. Short range intraoperative radiotherapy was given following wide local excision and sentinel node biopsy. The challenges of using ionising radiation with pacemakers is also discussed

  10. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  11. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  12. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    International Nuclear Information System (INIS)

    Leonard, Charles E.; Tallhamer, Michael M.S.; Johnson, Tim; Hunter, Kari C.M.D.; Howell, Kathryn; Kercher, Jane; Widener, Jodi; Kaske, Terese; Paul, Devchand; Sedlacek, Scot; Carter, Dennis L.

    2010-01-01

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  13. Skeletal stem cells and their contribution to skeletal fragility

    DEFF Research Database (Denmark)

    Aldahmash, A.

    2016-01-01

    Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment....... This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence...

  14. Clinicopathologic Analysis of Microscopic Extension in Lung Adenocarcinoma: Defining Clinical Target Volume for Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Fitch, Dwight L.; Goldstein, Neal S.; Yan Di; Chmielewski, Gary W.; Welsh, Robert J.; Kestin, Larry L.

    2007-01-01

    Purpose: To determine the gross tumor volume (GTV) to clinical target volume margin for non-small-cell lung cancer treatment planning. Methods: A total of 35 patients with Stage T1N0 adenocarcinoma underwent wedge resection plus immediate lobectomy. The gross tumor size and microscopic extension distance beyond the gross tumor were measured. The nuclear grade and percentage of bronchoalveolar features were analyzed for association with microscopic extension. The gross tumor dimensions were measured on a computed tomography (CT) scan (lung and mediastinal windows) and compared with the pathologic dimensions. The potential coverage of microscopic extension for two different lung stereotactic radiotherapy regimens was evaluated. Results: The mean microscopic extension distance beyond the gross tumor was 7.2 mm and varied according to grade (10.1, 7.0, and 3.5 mm for Grade 1 to 3, respectively, p < 0.01). The 90th percentile for microscopic extension was 12.0 mm (13.0, 9.7, and 4.4 mm for Grade 1 to 3, respectively). The CT lung windows correlated better with the pathologic size than did the mediastinal windows (gross pathologic size overestimated by a mean of 5.8 mm; composite size [gross plus microscopic extension] underestimated by a mean of 1.2 mm). For a GTV contoured on the CT lung windows, the margin required to cover microscopic extension for 90% of the cases would be 9 mm (9, 7, and 4 mm for Grade 1 to 3, respectively). The potential microscopic extension dosimetric coverage (55 Gy) varied substantially between the stereotactic radiotherapy schedules. Conclusion: For lung adenocarcinomas, the GTV should be contoured using CT lung windows. Although a GTV based on the CT lung windows would underestimate the gross tumor size plus microscopic extension by only 1.2 mm for the average case, the clinical target volume expansion required to cover the microscopic extension in 90% of cases could be as large as 9 mm, although considerably smaller for high-grade tumors

  15. Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning.

    Science.gov (United States)

    Muirhead, Rebecca; McNee, Stuart G; Featherstone, Carrie; Moore, Karen; Muscat, Sarah

    2008-12-01

    Four-dimensional computed tomography (4DCT) is currently being introduced to radiotherapy centers worldwide, for use in radical radiotherapy planning for non-small cell lung cancer (NSCLC). A significant drawback is the time required to delineate 10 individual CT scans for each patient. Every department will hence ask the question if the single Maximum Intensity Projection (MIP) scan can be used as an alternative. Although the problems regarding the use of the MIP in node-positive disease have been discussed in the literature, a comprehensive study assessing its use has not been published. We compared an internal target volume (ITV) created using the MIP to an ITV created from the composite volume of 10 clinical target volumes (CTVs) delineated on the 10 phases of the 4DCT. 4DCT data was collected from 14 patients with NSCLC. In each patient, the ITV was delineated on the MIP image (ITV_MIP) and a composite ITV created from the 10 CTVs delineated on each of the 10 scans in the dataset. The structures were compared by assessment of volumes of overlap and exclusion. There was a median of 19.0% (range, 5.5-35.4%) of the volume of ITV_10phase not enclosed by the ITV_MIP, demonstrating that the use of the MIP could result in under-treatment of disease. In contrast only a very small amount of the ITV_MIP was not enclosed by the ITV_10phase (median of 2.3%, range, 0.4-9.8%), indicating the ITV_10phase covers almost all of the tumor tissue as identified by MIP. Although there were only two Stage I patients, both demonstrated very similar ITV_10phase and ITV_MIP volumes. These findings suggest that Stage I NSCLC tumors could be outlined on the MIP alone. In Stage II and III tumors the ITV_10phase would be more reliable. To prevent under-treatment of disease, the MIP image can only be used for delineation in Stage I tumors.

  16. True Local Recurrence Rate in the Conserved Breast After Magnetic Resonance Imaging-Targeted Radiotherapy

    International Nuclear Information System (INIS)

    Whipp, Elisabeth; Beresford, Mark; Sawyer, Elinor; Halliwell, Michael

    2010-01-01

    Purpose: Better accuracy of local radiotherapy may substantially improve local control and thus long-term breast cancer survival. Magnetic resonance imaging (MRI) has high resolution and sensitivity in breast tissue and may depict the tumor bed more accurately than conventional planning techniques. A postoperative complex (POCx) comprises all visible changes thought to be related to surgery within the breast and acts as a surrogate for the tumor bed. This study reports on local recurrence rates after MRI-assisted radiotherapy planning to ensure adequate coverage of the POCx. Methods and Materials: Simple opposed tangential fields were defined by surface anatomy in the conventional manner in 221 consecutive patients. After MRI, fields were modified by a single radiation oncologist to ensure encompassment of the POCx with a 10-mm margin. Genetic analysis was performed on all local relapses (LRs) to distinguish true recurrences (TRs) from new primaries (NPs). Results: This was a high risk cohort at 5 years: only 9.5% were classified as low risk (St Gallen): 43.4% were Grade 3 and 19.9% had surgical margins <1 mm; 62.4% of patients received boosts. Adjustments of standard field margins were required in 69%. After a median follow-up of 5 years, there were 3 LRs (1.3%) as the site of first relapse in 221 patients, comprising two TRs (0.9%) and one NP (0.4%). Conclusions: Accurate targeting of the true tumor bed is critical. MRI may better define the tumor bed.

  17. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders.

    Science.gov (United States)

    Nishikawa, Atsuko; Mitsuhashi, Satomi; Miyata, Naomasa; Nishino, Ichizo

    2017-02-01

    Inherited skeletal muscle diseases are genetically heterogeneous diseases caused by mutations in more than 150 genes. This has made it challenging to establish a high-throughput screening method for identifying causative gene mutations in clinical practice. In the present study, we developed a useful method for screening gene mutations associated with the pathogenesis of skeletal muscle diseases. We established four target gene panels, each covering all exonic and flanking regions of genes involved in the pathogenesis of the following muscle diseases: (1) muscular dystrophy (MD), (2) congenital myopathy/congenital myasthenic syndrome, (3) metabolic myopathy and (4) myopathy with protein aggregations/rimmed vacuoles. We assigned one panel to each patient based on the results of clinical and histological analyses of biopsied muscle samples and performed high-throughput sequencing by using Ion PGM next-generation sequencer. We also performed protein analysis to confirm defective proteins in patients with major muscular dystrophies. Further, we performed muscle-derived cDNA analysis to identify splice-site mutations. We identified possible causative gene mutations in 33% of patients (62/188) included in this study. Our results showed that the MD panel was the most useful, with a diagnostic rate of 46.2%. Thus, we developed a high-throughput sequencing technique for diagnosing inherited muscle diseases. The use of this technique along with histological and protein analyses may be useful and cost-effective for screening mutations in patients with inherited skeletal muscle diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Biological modelling of fuzzy target volumes in 3D radiotherapy

    International Nuclear Information System (INIS)

    Levegruen, S.; Kampen, M. van; Waschek, T.; Engenhart, R.; Schlegel, W.

    1995-01-01

    Purpose/Objective: The outcome of each radiotherapy depends critically on the optimal choice of the target volume. The goal of the radiotherapist is to include all tumor spread at the same time as saving as much healthy tissue as possible. Even when the information of all imaging modalities is combined, the diagnostic techniques are not sensitive and specific enough to visualize all microscopic tumor cell spread. Due to this lack of information there is room for different interpretations concerning the extend of the target volume, leading to a fuzzy target volume. The aim of this work is to develop a model to score different target volume boundaries within the region of diagnostic uncertainty in terms of tumor control probability (TCP) and normal tissue complication probabilities (NTCP). Materials and Methods: In order to assess the region of diagnostic uncertainty, the radiotherapist defines interactively a minimal planning target volume that absolutely must be irradiated according to the diagnostic information available and a maximal planning target volume outside which no tumor cell spread is expected. For the NTCP calculation we use the Lyman 4 parameter model to estimate the response of an organ at risk to a uniform partial volume irradiation. The TCP calculation is based on the Poisson model of cell killing. The TCP estimation depends not only on volume, dose, clonogenic cell density and the α parameter of the linear quadratic model but also on the probability to find clonogenic cells in the considered volume. Inside the minimal PTV this probability is 1, outside the maximal PTV it is 0. Therefore all voxels inside the minimal PTV are assigned the value of 1 with respect to the target volume, all voxels outside the maximal PTV the value of 0. For voxels in the region of uncertainty in between, a 3D linear interpolation is performed. Here we assume the probability to follow the interpolated values. Starting with the minimal PTV, the expected gain in TCP and

  19. Prostatic cancer: intolerance and morbidity of external radiotherapy

    International Nuclear Information System (INIS)

    Douchez, J.; Fregevu, Y.; Allain, Y.M.; Cellier, P.; Fenton, J.; Hay, M.; Le Bourgeois, J.P.; Vincent, F.

    1985-01-01

    The pertherapeutic intolerance and morbidity are analyzed in a groupe of 597 patients with localized prostatic carcinoma treated by definitive radiotherapy between 1975 and 1982. Minimum follow-up is 2 years, median is 46 months. The results are compared to following parameters: associated diseases, associated surgical treatments, doses and irradiated target volumes. Pertherapeutic intolerance manifestations were found in 73% of patients and lead to complications. Urinary incontinence and chronic cystitis were more frequent after transurethral resection or prostatic target volume and by split course irradiation. Chronic diarrhea was more frequent when using large target volume. Leg edema was closely associated with pelvic lymphadenectomy. The control of pertherapeutic manifestations and the prevention of complications should improve survival in patients treated by external radiotherapy [fr

  20. Probe into rational target volume of nasopharyngeal carcinoma having been treated with conventional radiotherapy

    International Nuclear Information System (INIS)

    Zheng Yingjie; Zhao Chong; Lu Lixia; Wu Shaoxiong; Cui Nianji; Chen Fujin

    2006-01-01

    Objective: To analyze the local control rate and the dosimetric patterns of local recurrence in nasopharyngeal carcinoma (NPC) patients having been treated with standardized conventional radiotherapy and to evaluate the delineation of rational target volume. Methods: From Jan. 2000 to Dec. 2000, 476 patients with untreated NPC were treated by standardized conventional radiotherapy alone at the Sun Yat-sen University Cancer Center. The radiation ports were designed on a X-ray simulator. The nasopharyngeal lesion demonstrated by CT scan and the subclinical spread regions adjacent to the nasopharynx were defined as the target volume. Kaplan- Meier method was used to calculate the cumulative local recurrence rate. For patients with local recurrence, the primary and recurrent local tumor volumes(V nx , V recur ) were delineated with three-dimensional treatment planning system(3DTPS), and the dataset of radiation ports and delivered prescription dose to the 3DTPS were transferred according to the first treatment. The dose of radiation received by V recur was calculated and analyzed with dose- volume histogram(DVH). Local recurrence was classified as: 1. 'in-port' with 95% or more of the recurrence volume ( recur V 95 ) was within the 95% isodose; 2. 'marginal' with 20% to 95% of recur V 95 within the 95% isodose; 3. o utside w ith only less than 20% of recur V 95 within the 95% isodose curve. Results: With the median follow- up of 42.5 months (range 8-54 months), 52 patients developed local recurrence. The 1-, 2-, 3 and 4-year cumulative local failure rate was 0.6%, 3.9%, 8.7% and 11.5%, respectively. Among the 42 local recurrent patients who could be analyzed by 3DTPS, 52% were in-port, 40% were marginal and 7% were outside. For most of the marginal recurrence and all the outside recurrence patients, the main reason of recurrence were related to the unreasonable design of the radiation port and inaccuracy in the interpretation image findings. Conclusions: The outcome of

  1. Skeletal metastases from hepatoma: frequency, distribution, and radiographic features

    International Nuclear Information System (INIS)

    Kuhlman, J.E.; Fishman, E.K.; Leichner, P.K.; Magid, D.; Order, S.E.; Siegelman, S.S.

    1986-01-01

    Over the past 6 years, the authors evaluated 300 patients with hepatoma as part of phase 1 and 2 treatment protocol trials. Analysis of the available clinical data and radiographic studies revealed 22 patients (7.3%) with skeletal metastases demonstrated by radiography, computed tomography (CT), and/or nuclear scintigraphy. The plain film appearance of skeletal metastases from hepatoma was osteolytic in all cases. CT scanning best demonstrated the expansile, destructive nature of these metastases, which were often associated with large, bulky soft-tissue masses. Skeletal metastases from hepatomas demonstrated increased radiotracer uptake on standard bone scans and were gallium avid, similar to the hepatoma itself. In addition, they could be targeted therapeutically with I-131 antiferritin immunoglobulin. The most frequent sites of skeletal metastases were the ribs, spine, femur, pelvis, and humerus. An initial symptom in ten patients was skeletal pain corresponding to the osseous metastases. In five patients, pathologic fractures of the proximal femur or humerus developed and required total hip replacement or open-reduction internal fixation. Patients with long-standing cirrhosis or known hepatocellular carcinoma who also have skeletal symptoms should be evaluated for possible osseous metastases

  2. Genetic engineering for skeletal regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Phillips, Jennifer E; García, Andrés J

    2007-01-01

    The clinical challenges of skeletal regenerative medicine have motivated significant advances in cellular and tissue engineering in recent years. In particular, advances in molecular biology have provided the tools necessary for the design of gene-based strategies for skeletal tissue repair. Consequently, genetic engineering has emerged as a promising method to address the need for sustained and robust cellular differentiation and extracellular matrix production. As a result, gene therapy has been established as a conventional approach to enhance cellular activities for skeletal tissue repair. Recent literature clearly demonstrates that genetic engineering is a principal factor in constructing effective methods for tissue engineering approaches to bone, cartilage, and connective tissue regeneration. This review highlights this literature, including advances in the development of efficacious gene carriers, novel cell sources, successful delivery strategies, and optimal target genes. The current status of the field and the challenges impeding the clinical realization of these approaches are also discussed.

  3. [A rare extra-skeletal myxoid chondrosarcoma of the lower leg - is amputation absolutely necessary].

    Science.gov (United States)

    Mroczkowski, P; Evert, M; Tautenhahn, J; Meyer, F; Lippert, H

    2010-02-01

    Sarcomas represent less than 2 % of all malignancies. Special challenges are bone sarcomas in extra-skeletal localisation. The aim of this case report is to show the management of an extraordinary extra-skeletal myxoid chondrosarcoma based on a case report with references from the literature. After a delay in diagnostics for 1.5 years, an MRI scan taken in a 42-year-old male patient with progressive swelling of the left calf showed a soft-tissue tumour in the proximal part of the muscle. Histopathological investigation of a percutaneous biopsy revealed a chondrosarcoma. En-bloc-resection (R 0) of the rear superficial compartment was performed (specimen weight 1 370 g; tumour size 11.5 x 9.5 x 8 cm) leading to the definitive diagnosis of an extra-skeletal myxoid chondrosarcoma. The patient was discharged with a bland wound 8 days after surgery. At 4 weeks postoperatively, the patient received adjuvant radiotherapy with a 56-Gy boost. During the follow-up period of 28 months, there have been neither signs of local tumour recurrence nor distant metastases. The myxoid chondrosarcoma is a rare tumour lesion, and according to the literature, only 2 % occur outside of the skeleton. The accurate diagnostic and therapeutic algorithm allowed a precise preparation for surgery and made amputation obsolete. Compartment resection preserving the main neurovascular bundles as well as enabling an early mobilisation resulted in both sufficient radical resection status and adequate postoperative motor function. Intraoperative clip-marking of the former tumour bed is considered a key point for the focused radiotherapy. Each persistent soft tissue swelling must be appropriately diagnosed using adequate imaging and even biopsy (in case of a doubtful finding), which should be performed with definitive surgery in mind. Georg Thieme Verlag Stuttgart, New York.

  4. Review of potential improvements using MRI in the radiotherapy workflow

    International Nuclear Information System (INIS)

    Torresin, Alberto; Brambilla, Maria Grazia; Monti, Angelo F.; Moscato, Alessio; Brockmann, Marc A.; University Medical Center Mannheim; Schad, Lothar; Attenberger, Ulrike I.; Lohr, Frank

    2015-01-01

    The goal of modern radiotherapy is to deliver a lethal amount of dose to tissue volumes that contain a significant amount of tumour cells while sparing surrounding unaffected or healthy tissue. Online image guided radiotherapy with stereotactic ultrasound, fiducial-based planar X-ray imaging or helical/conebeam CT has dramatically improved the precision of radiotherapy, with moving targets still posing some methodical problems regarding positioning. Therefore, requirements for precise target delineation and identification of functional body structures to be spared by high doses become more evident. The identification of areas of relatively radioresistant cells or areas of high tumor cell density is currently under development. This review outlines the state of the art of MRI integration into treatment planning and its importance in follow up and the quantification of biological effects. Finally the current state of the art of online imaging for patient positioning will be outlined and indications will be given what the potential of integrated radiotherapy/online MRI systems is.

  5. Evaluation of dose coverage to target volume and normal tissue sparing in the adjuvant radiotherapy of gastric cancers: 3D-CRT compared with dynamic IMRT.

    Science.gov (United States)

    Murthy, Kk; Shukeili, Ka; Kumar, Ss; Davis, Ca; Chandran, Rr; Namrata, S

    2010-01-01

    To assess the potential advantage of intensity-modulated radiotherapy (IMRT) over 3D-conformal radiotherapy (3D-CRT) planning in postoperative adjuvant radiotherapy for patients with gastric carcinoma. In a retrospective study, for plan comparison, dose distribution was recalculated in 15 patients treated with 3D-CRT on the contoured structures of same CT images using an IMRT technique. 3D-conformal plans with three fields and four-fields were compared with seven-field dynamic IMRT plans. The different plans were compared by analyzing the dose coverage of planning target volume using TV(95), D(mean), uniformity index, conformity index and homogeneity index parameters. To assess critical organ sparing, D(mean), D(max), dose to one-third and two-third volumes of the OARs and percentage of volumes receiving more than their tolerance doses were compared. The average dose coverage values of PTV with 3F-CRT and 4F-CRT plans were comparable, where as IMRT plans achieved better target coverage(p3D-CRT plans. The doses to the liver and bowel reduced significantly (p3D-CRT plans. For all OARs the percentage of volumes receiving more than their tolerance doses were reduced with the IMRT plans. This study showed that a better target coverage and significant dose reduction to OARs could be achieved with the IMRT plans. The IMRT can be preferred with caution for organ motion. The authors are currently studying organ motion in the upper abdomen to use IMRT for patient treatment.

  6. Targeted radiotherapy with {sup 177} Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. A de; Pedraza L, M. [Department of Nuclear Medicine, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico D.F. (Mexico); Rodriguez C, J. [Faculty of Medicine, UAEM, Toluca, Estado de Mexico (Mexico); Ferro F, G. [ININ, 52045 Estado de Mexico (Mexico); Murphy S, E. [Hospital Santelena, Mexico D.F. (Mexico)

    2006-07-01

    Malignant pancreas tumours induced in athymic mice are a good model for targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses and to evaluate {sup 177}Lu-DOTA-TATE as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells, which over-express somatostatin receptors, were injected in athymic mice and 20 days later the mean tumour size was 3.08 square cm (n=3). A mean of 86.3 MBq {sup 177}Lu-DOTA-TATE, was injected in a tail vein and 19 days after therapy the size of the tumours was 0.81 square cm. There was a partial relapse and after 16 days, when sacrificed, the mean tumour size was 8.28 cubic cm. An epithelial and sarcoma mixed tumour in the kidney of one treated mouse was found. The tumour of the control mouse was 8.61 cubic cm when sacrificed 14 days after tumour induction. Radiotherapy estimates to the tumours was 35.9-39.7 Gy and the tumours might have been completely reduced with a second therapy dose. These preliminary studies justify further therapeutic and dosimetry estimations to ensure that Lu-{sup 177}-DOTA-TATE will act as expected in man, considering kidney radiation. (Author)

  7. [Radiotherapy of oropharynx carcinoma].

    Science.gov (United States)

    Servagi Vernat, S; Tochet, F; Vieillevigne, L; Pointreau, Y; Maingon, P; Giraud, P

    2016-09-01

    Indication, doses, technique of radiotherapy and concomitant chemotherapy for oropharynx carcinoma are presented. The recommendations for delineation of the target volumes and organs at risk are detailed. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. 11C-CHO PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas

    International Nuclear Information System (INIS)

    Li Fangming; Nie Qing; Wang Ruimin; Chang, Susan M.; Zhao Wenrui; Zhu Qi; Liang Yingkui; Yang Ping; Zhang Jun; Jia Haiwei; Fang Henghu

    2012-01-01

    Objective: We explored the clinical values of 11 C-choline ( 11 C-CHO) PET in optimization of target volume delineation and treatment regimens in postoperative radiotherapy for brain gliomas. Methods: Sixteen patients with the pathological confirmation of the diagnosis of gliomas prior to receiving radiotherapy (postoperative) were included, and on whom both MRI and CHO PET scans were performed at the same position for comparison of residual tumors with the two techniques. 11 C-CHO was used as the tracer in the PET scan. A plain T1-weighted, T2-weighted and contrast-enhanced T1-weighted imaging scans were performed in the MRI scan sequence. The gliomas' residual tumor volume was defined as the area with CHO-PET high-affinity uptake and metabolism (V CHO ) and one with MRI T1-weighted imaging high signal intensity (V Gd ), and was determined by a group of experienced professionals and clinicians. Results: (1) In CHO-PET images, the tumor target volume, i.e., the highly metabolic area with a high concentration of isotopes (SUV 1.016–4.21) and the corresponding contralateral normal brain tissues (SUV0.1–0.62), was well contrasted, and the boundary between lesions and surrounding normal brain tissues was better defined compared with MRI and 18 F-FDG PET images. (2) For patients with brain gliomas of WHO Grade II, the SUV was 1.016–2.5; for those with WHO Grades III and IV, SUVs were >26–4.2. (3) Both CHO PET and MRI were positive for 10 patients and negative for 2 patients. The residual tumor consistency between these two studies was 75%. Four of the 10 CHO-PET-positive patients were negative on MRI scans. The maximum distance between V Gd and V CHO margins was 1.8 cm. (4) The gross tumor volumes (GTVs) and the ensuing treatment regimens were changed for 31.3% (5/16) of patients based on the CHO-PET high-affinity uptake and metabolism, in which the change rate was 80% (4/5), 14.3 % (1/7) and 0% (0/4) for patients with WHO Grade II III, and IV gliomas

  9. TEAD1-dependent expression of the FoxO3a gene in mouse skeletal muscle

    Directory of Open Access Journals (Sweden)

    Xu Xuewen

    2011-01-01

    Full Text Available Abstract Background TEAD1 (TEA domain family member 1 is constitutively expressed in cardiac and skeletal muscles. It acts as a key molecule of muscle development, and trans-activates multiple target genes involved in cell proliferation and differentiation pathways. However, its target genes in skeletal muscles, regulatory mechanisms and networks are unknown. Results In this paper, we have identified 136 target genes regulated directly by TEAD1 in skeletal muscle using integrated analyses of ChIP-on-chip. Most of the targets take part in the cell process, physiology process, biological regulation metabolism and development process. The targets also play an important role in MAPK, mTOR, T cell receptor, JAK-STAT, calcineurin and insulin signaling pathways. TEAD1 regulates foxo3a transcription through binding to the M-CAT element in foxo3a promoter, demonstrated with independent ChIP-PCR, EMSA and luciferase reporter system assay. In addition, results of over-expression and inhibition experiments suggest that foxo3a is positively regulated by TEAD1. Conclusions Our present data suggests that TEAD1 plays an important role in the regulation of gene expression and different signaling pathways may co-operate with each other mediated by TEAD1. We have preliminarily concluded that TEAD1 may regulate FoxO3a expression through calcineurin/MEF2/NFAT and IGF-1/PI3K/AKT signaling pathways in skeletal muscles. These findings provide important clues for further analysis of the role of FoxO3a gene in the formation and transformation of skeletal muscle fiber types.

  10. 135La as an Auger-electron emitter for targeted internal radiotherapy

    Science.gov (United States)

    Fonslet, J.; Lee, B. Q.; Tran, T. A.; Siragusa, M.; Jensen, M.; Kibédi, T.; E Stuchbery, A.; Severin, G. W.

    2018-01-01

    135La has favorable nuclear and chemical properties for Auger-based targeted internal radiotherapy. Here we present detailed investigations of the production, emissions, and dosimetry related to 135La therapy. 135La was produced by 16.5 MeV proton irradiation of metallic natBa on a medical cyclotron, and was isolated and purified by trap-and-release on weak cation-exchange resin. The average production rate was 407  ±  19 MBq µA-1 (saturation activity), and the radionuclidic purity was 98% at 20 h post irradiation. Chemical separation recovered  >  98 % of the 135La with an effective molar activity of 70  ±  20 GBq µmol-1. To better assess cellular and organ dosimetry of this nuclide, we have calculated the x-ray and Auger emission spectra using a Monte Carlo model accounting for effects of multiple vacancies during the Auger cascade. The generated Auger spectrum was used to calculate cellular S-factors. 135La was produced with high specific activity, reactivity, radionuclidic purity, and yield. The emission spectrum and the dosimetry are favorable for internal radionuclide therapy.

  11. The value of serial quantitative technetium-99 m methylene diphosphonate in assessment of the response of metastatic skeletal lesions to different types of treatment modalities.

    Energy Technology Data Exchange (ETDEWEB)

    Moustafa, H; Elhaddad, SH; Ziada, G; Fawzi, A [Nuclear medicine department, faculty of medicine, cairo university, Cairo, (Egypt)

    1995-10-01

    The study included 95 patients having metastatic bone lesions, subjected to serial quantitative skeletal scintigraphy before and after treatment every 3 months for 6 months. To study the fate of metastatic bone lesions the effect of different treatment modalities, an objective index was used. This index was introduced in 1985 by Israel et al. (1), and was designated TF. A significant drop in TF ratio was observed 6 months following therapy in the groups who received combined localized radiotherapy together with systemic therapy and those who received half body irradiation. In contrast, a marked increase in TF ratio was observed in the patients who did not receive any specific treatment. The response of metastatic skeletal lesions was nearly similar whatever the site of involvement whether in the spine, flat or long bones except for an initial response in the long bones with drop of TF ratio after localized radiotherapy. 1 fig., 3 tabs.

  12. The value of serial quantitative technetium-99 m methylene diphosphonate in assessment of the response of metastatic skeletal lesions to different types of treatment modalities

    International Nuclear Information System (INIS)

    Moustafa, H.; Elhaddad, SH.; Ziada, G.; Fawzi, A.

    1995-01-01

    The study included 95 patients having metastatic bone lesions, subjected to serial quantitative skeletal scintigraphy before and after treatment every 3 months for 6 months. To study the fate of metastatic bone lesions the effect of different treatment modalities, an objective index was used. This index was introduced in 1985 by Israel et al. (1), and was designated TF. A significant drop in TF ratio was observed 6 months following therapy in the groups who received combined localized radiotherapy together with systemic therapy and those who received half body irradiation. In contrast, a marked increase in TF ratio was observed in the patients who did not receive any specific treatment. The response of metastatic skeletal lesions was nearly similar whatever the site of involvement whether in the spine, flat or long bones except for an initial response in the long bones with drop of TF ratio after localized radiotherapy. 1 fig., 3 tabs

  13. Poster - 36: Effect of Planning Target Volume Coverage on the Dose Delivered in Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dekker, Chris; Wierzbicki, Marcin [McMaster University, Juravinski Cancer Centre (Canada)

    2016-08-15

    Purpose: In lung radiotherapy, breathing motion may be encompassed by contouring the internal target volume (ITV). Remaining uncertainties are included in a geometrical expansion to the planning target volume (PTV). In IMRT, the treatment is then optimized until a desired PTV fraction is covered by the appropriate dose. The resulting beams often carry high fluence in the PTV margin to overcome low lung density and to generate steep dose gradients. During treatment, the high density tumour can enter the PTV margin, potentially increasing target dose. Thus, planning lung IMRT with a reduced PTV dose may still achieve the desired ITV dose during treatment. Methods: A retrospective analysis was carried out with 25 IMRT plans prescribed to 63 Gy in 30 fractions. The plans were re-normalized to cover various fractions of the PTV by different isodose lines. For each case, the isocentre was moved using 125 shifts derived from all 3D combinations of 0 mm, (PTV margin - 1 mm), and PTV margin. After each shift, the dose was recomputed to approximate the delivered dose. Results and Conclusion: Our plans typically cover 95% of the PTV by 95% of the dose. Reducing the PTV covered to 94% did not significantly reduce the delivered ITV doses for (PTV margin - 1 mm) shifts. Target doses were reduced significantly for all other shifts and planning goals studied. Thus, a reduced planning goal will likely deliver the desired target dose as long as the ITV rarely enters the last mm of the PTV margin.

  14. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    DEFF Research Database (Denmark)

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D

    2013-01-01

    Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells...... (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3'UTR of Prdm16. Antagonism...... of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels...

  15. Voluntary Deep Inspiration Breath-hold Reduces the Heart Dose Without Compromising the Target Volume Coverage During Radiotherapy for Left-sided Breast Cancer.

    Science.gov (United States)

    Al-Hammadi, Noora; Caparrotti, Palmira; Naim, Carole; Hayes, Jillian; Rebecca Benson, Katherine; Vasic, Ana; Al-Abdulla, Hissa; Hammoud, Rabih; Divakar, Saju; Petric, Primoz

    2018-03-01

    During radiotherapy of left-sided breast cancer, parts of the heart are irradiated, which may lead to late toxicity. We report on the experience of single institution with cardiac-sparing radiotherapy using voluntary deep inspiration breath hold (V-DIBH) and compare its dosimetric outcome with free breathing (FB) technique. Left-sided breast cancer patients, treated at our department with postoperative radiotherapy of breast/chest wall +/- regional lymph nodes between May 2015 and January 2017, were considered for inclusion. FB-computed tomography (CT) was obtained and dose-planning performed. Cases with cardiac V25Gy ≥ 5% or risk factors for heart disease were coached for V-DIBH. Compliant patients were included. They underwent additional CT in V-DIBH for planning, followed by V-DIBH radiotherapy. Dose volume histogram parameters for heart, lung and optimized planning target volume (OPTV) were compared between FB and BH. Treatment setup shifts and systematic and random errors for V-DIBH technique were compared with FB historic control. Sixty-three patients were considered for V-DIBH. Nine (14.3%) were non-compliant at coaching, leaving 54 cases for analysis. When compared with FB, V-DIBH resulted in a significant reduction of mean cardiac dose from 6.1 +/- 2.5 to 3.2 +/- 1.4 Gy (p FB and V-DIBH, respectively (p FB- and V-DIBH-derived mean lung dose (11.3 +/- 3.2 vs. 10.6 +/- 2.6 Gy), lung V20Gy (20.5 +/- 7 vs. 19.5 +/- 5.1 Gy) and V95% for the OPTV (95.6 +/- 4.1 vs. 95.2 +/- 6.3%) were non-significant. V-DIBH-derived mean shifts for initial patient setup were ≤ 2.7 mm. Random and systematic errors were ≤ 2.1 mm. These results did not differ significantly from historic FB controls. When compared with FB, V-DIBH demonstrated high setup accuracy and enabled significant reduction of cardiac doses without compromising the target volume coverage. Differences in lung doses were non-significant.

  16. New Language and Old Problems in Breast Cancer Radiotherapy.

    Science.gov (United States)

    Chiricuţă, Ion Christian

    2017-01-01

    New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.

  17. Design of planning target volume margin using an active breathing control and Varian image-guided radiotherapy (IGRT) system in unresectable liver tumor

    International Nuclear Information System (INIS)

    Yue Jinbo; Yu Jinming; Liu Jing; Liu Tonghai; Yin Yong; Shi Xuetao; Song Jinlong

    2007-01-01

    Objective: To define the planning target volume(PTV) margin with an active breathing control (ABC) and the Varian image-guided radiotherapy (IGRT) system. Methods: Thirteen patients with liver cancer were treated with radiotherapy from May 2006 to September 2006. Prior to radiotherapy, all patients had undergone transarterial chemoembolization (TACE) by infusing a mixture of iodized oil contrast medium and chemotherapeutic agents, kV fluoroscopy was used to measure the potential motion of lipiodol spot positions during ABC breath-holds. ABC was used for planning CT scan and radiation delivery, with the breath held at the same phase of the respiratory cycle (near end-exhalation). Cone beam CT (CBCT) was taken using Varian IGRT system, which was then compared online with planning CT using a 3 D-3 D matching tool. Analysis relied on lipiodol spots on planning CT and CBCT manually. The treatment table was moved to produce acceptable setup before treatment delivery. Repeated CBCT image and another analysis were obtained after irradiation. Results: No motion of the intrahepatic tumor was observed on fluoroscopy during ABC breath-holds. The estimated required PTV margins, calculated according to the Stroom formula, were 4.4 mm, 5.3 mm and 7.8 mm in the x, y and z axis directions before radiotherapy. The corresponding parameters were 2.5m, 2.6 mm and 3.9 mm after radiotherapy. Conclusions: We have adopted a PTV margin of 5 mm, 6 mm and 8 mm in the x, y and z axis directions with ABC, and 3,3 and 4 mm with ABC and on-line kilovoltage CBCT. (authors)

  18. Signalling role of skeletal muscle during exercise

    NARCIS (Netherlands)

    Catoire, M.

    2014-01-01

    Abstract

    Upon acute exercise skeletal muscle is immediately and heavily recruited, while other organs appear to play only a minor role during exercise. These other organs show significant changes and improvements in function, although they are not directly targeted by

  19. Preliminary estimation of minimum target dose in intracavitary radiotherapy for cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kiyoshi; Oishi-Tanaka, Yumiko; Sugahara, Shinji; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2001-08-01

    In intracavitary radiotherapy (ICRT) for cervical cancer, minimum target dose (D{sub min}) will pertain to local disease control more directly than will reference point A dose (D{sub A}). However, ICRT has been performed traditionally without specifying D{sub min} since the target volume was not identified. We have estimated D{sub min} retrospectively by identifying tumors using magnetic resonance (MR) images. Pre- and posttreatment MR images of 31 patients treated with high-dose-rate ICRT were used. ICRT was performed once weekly at 6.0 Gy D{sub A}, and involved 2-5 insertions for each patient, 119 insertions in total. D{sub min} was calculated arbitrarily simply at the point A level using the tumor width (W{sub A}) to compare with D{sub A}. W{sub A} at each insertion was estimated by regression analysis with pre- and posttreatment W{sub A}. D{sub min} for each insertion varied from 3.0 to 46.0 Gy, a 16-fold difference. The ratio of total D{sub min} to total D{sub A} for each patient varied from 0.5 to 6.5. Intrapatient D{sub min} difference between the initial insertion and final insertion varied from 1.1 to 3.4. Preliminary estimation revealed that D{sub min} varies widely under generic dose prescription. Thorough D{sub min} specification will be realized when ICRT-applicator insertion is performed under MR imaging. (author)

  20. Dosimetric Study of Current Treatment Options for Radiotherapy in Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Eldebawy, Eman [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Department of Radiation Oncology, Children' s Cancer Hospital, Cairo (Egypt); Parker, William, E-mail: william.parker@mcgill.ca [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec (Canada); Abdel Rahman, Wamied [Department of Medical Physics, McGill University Health Centre, Montreal, Quebec (Canada); Freeman, Carolyn R. [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)

    2012-03-01

    Purpose: To determine the best treatment technique for patients with retinoblastoma requiring radiotherapy to the whole eye. Methods and Materials: Treatment plans for 3 patients with retinoblastoma were developed using 10 radiotherapy techniques including electron beams, photon beam wedge pair (WP), photon beam three-dimensional conformal radiotherapy (3D-CRT), fixed gantry intensity-modulated radiotherapy (IMRT), photon volumetric arc therapy (VMAT), fractionated stereotactic radiotherapy, and helical tomotherapy (HT). Dose-volume analyses were carried out for each technique. Results: All techniques provided similar target coverage; conformity was highest for VMAT, nine-field (9F) IMRT, and HT (conformity index [CI] = 1.3) and lowest for the WP and two electron techniques (CI = 1.8). The electron techniques had the highest planning target volume dose gradient (131% of maximum dose received [D{sub max}]), and the CRT techniques had the lowest (103% D{sub max}) gradient. The volume receiving at least 20 Gy (V{sub 20Gy}) for the ipsilateral bony orbit was lowest for the VMAT and HT techniques (56%) and highest for the CRT techniques (90%). Generally, the electron beam techniques were superior in terms of brain sparing and delivered approximately one-third of the integral dose of the photon techniques. Conclusions: Inverse planned image-guided radiotherapy delivered using HT or VMAT gives better conformity index, improved orbital bone and brain sparing, and a lower integral dose than other techniques.

  1. Skeletal Muscle Metastasis as an Initial Presentation of Follicular Thyroid Carcinoma: A Case Report and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mutahir A. Tunio

    2013-01-01

    Full Text Available Introduction. Follicular thyroid carcinoma (FTC frequently metastasizes to the lungs and bones. However, metastasis to the skeletal muscles is an extremely rare manifestation of FTC. To date, only seven cases of FTC have been reported in the literature. Skeletal muscle metastases from FTC usually remain asymptomatic or manifest as swelling and are associated with dismal prognosis. Case Presentation. A 45-year-old Saudi woman presented with right buttock swelling since 8 months. Physical examination revealed right gluteal mass of size  cm and right thyroid lobe nodule. The rest of examination was unremarkable. Magnetic resonance imaging (MRI showed  cm lobulated mass arising from the gluteus medius muscle, and tru-cut biopsy confirmed the metastatic papillary carcinoma of thyroid origin. The patient subsequently underwent palliative radiotherapy followed by total thyroidectomy and radioactive iodine ablation. At the time of publication, the patient was alive with partial response in gluteal mass. Conclusion. Skeletal muscles metastases are a rare manifestation of FTC, and searching for the primary focus in a patient with skeletal muscle metastasis, thyroid cancer should be considered as differential diagnosis.

  2. Evaluation of Peritumoral Edema in the Delineation of Radiotherapy Clinical Target Volumes for Glioblastoma

    International Nuclear Information System (INIS)

    Chang, Eric L.; Akyurek, Serap; Avalos, Tedde C; Rebueno, Neal C; Spicer, Chris C; Garcia, John C; Famiglietti, Robin; Allen, Pamela K.; Chao, K.S. Clifford; Mahajan, Anita; Woo, Shiao Y.; Maor, Moshe H.

    2007-01-01

    Purpose: To evaluate the spatial relationship between peritumoral edema and recurrence pattern in patients with glioblastoma (GBM). Methods and Materials: Forty-eight primary GBM patients received three-dimensional conformal radiotherapy that did not intentionally include peritumoral edema within the clinical target volume between July 2000 and June 2001. All 48 patients have subsequently recurred, and their original treatment planning parameters were used for this study. New theoretical radiation treatment plans were created for the same 48 patients, based on Radiation Therapy Oncology Group (RTOG) target delineation guidelines that specify inclusion of peritumoral edema. Target volume and recurrent tumor coverage, as well as percent volume of normal brain irradiated, were assessed for both methods of target delineation using dose-volume histograms. Results: A comparison between the location of recurrent tumor and peritumoral edema volumes from all 48 cases failed to show correlation by linear regression modeling (r 2 0.0007; p = 0.3). For patients with edema >75 cm 3 , the percent volume of brain irradiated to 46 Gy was significantly greater in treatment plans that intentionally included peritumoral edema compared with those that did not (38% vs. 31%; p = 0.003). The pattern of failure was identical between the two sets of plans (40 central, 3 in-field, 3 marginal, and 2 distant recurrence). Conclusion: Clinical target volume delineation based on a 2-cm margin rather than on peritumoral edema did not seem to alter the central pattern of failure for patients with GBM. For patients with peritumoral edema >75 cm 3 , using a constant 2-cm margin resulted in a smaller median percent volume of brain being irradiated to 30 Gy, 46 Gy, and 50 Gy compared with corresponding theoretical RTOG plans that deliberately included peritumoral edema

  3. Targeted radiotherapy of osteosarcoma using {sup 153}Sm-EDTMP. A new promising approach

    Energy Technology Data Exchange (ETDEWEB)

    Bruland, Oe.S. [Dept. of Medical Oncology and Radiotherapy, Norwegian Radium Hospital, Oslo (Norway); Skretting, A. [Dept. of Medical Physics and Technology, Norwegian Radium Hospital, Oslo (Norway); Solheim, Oe.P. [Dept. of Medical Oncology and Radiotherapy, Norwegian Radium Hospital, Oslo (Norway); Aas, M. [Dept. of Nuclear Medicine, Norwegian Radium Hospital, Oslo (Norway)

    1996-10-01

    We report a case where targeted radionuclide therapy using {sup 153}Sm-EDTMP gave substantial palliative effect. A 35-year-old male with a primary osteosarcoma located in the first lumbar vertebra relapsed with progressive back pain after conventional treatment modalities had failed. He became bedridden, and developed paraparesis and impaired bladder function. On a diagnostic bone-scan intense radioactivity was localized in the tumor. He therefore was given {sup 153}Sm-EDTMP treatment twice, 8 weeks apart, 35 and 32 MBq/kg body weight respectively. After a few days the pain was significantly relieved and by the second radionuclide treatment the pareses subsided. For six months he was able to be up and about without any neurological signs or detectable metastases. Eventually, however, he experienced increasing local pain, developed paraparesis, was re-operated but died 4 months later. The dramatic transient improvement observed in this case warrants further exploration using {sup 153}Sm-EDTMP as a boost technique, supplementary to conventiontal external radiotherapy. (orig.).

  4. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target.

    Science.gov (United States)

    Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M

    2014-01-20

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.

  5. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target

    International Nuclear Information System (INIS)

    Budiarto, E; Keijzer, M; Heemink, A W; Storchi, P R M; Breedveld, S; Heijmen, B J M

    2014-01-01

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements. (paper)

  6. Proceedings of 19. symposium on experimental radiotherapy and clinical radiobiology

    International Nuclear Information System (INIS)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H. Peter; Zips, Daniel

    2010-01-01

    The proceedings include review contributions on radio-oncology, and new radiation technologies and molecular prediction; and poster sessions on the following topics: hypoxia; molecular mechanisms of radiation resistance; molecular targeting; DNA repair; biological imaging; biology of experimental radiations; normal tissue toxicity; modern radiotherapy; tumor hypoxia and metabolic micro milieu; immune system and radiotherapy.

  7. Targeting the bone marrow: applications in stem cell transplantation

    International Nuclear Information System (INIS)

    Orchard, K.; Cooper, M.

    2004-01-01

    Therapeutic doses of radiation cab be selectively directed to the bone marrow either directly using vectors that bind to myeloid and/or lymphoid specific antigens or indirectly by targeting bone matrix. The combination of an accessible target tissue and relatively radiation sensitive malignant cells favours the use of targeted radiotherapy in the treatment of haematopoietic malignancies. Dose escalation of targeted radiation can increase tumour cell destruction and has led to the use of myelosuppressive and possibly myeloablative doses of targeted radiation. A natural development has been the use of targeted radiation in conditioning prior to haematopoietic stem cell transplantation (HSCT). Several groups are actively exploring the use of targeted radiotherapy in the context of HSCT as treatment for haematological malignancies. Although no randomised trials using targeted radiotherapy in HSCT have been published, phase I and II trials have shown very encouraging results stimulating further clinical research in this field. After more than a decade of translational research the optimal combination of therapeutic radioisotope and vector has not been determined. This review summarises the clinical experience of targeted radiotherapy in HSCT and discusses the problems that still need to be solved to maximise the potential of this new treatment modality in HSCT

  8. TAK1 regulates skeletal muscle mass and mitochondrial function

    Science.gov (United States)

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  9. The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting.

    Science.gov (United States)

    Bhatnagar, S; Kumar, A

    2012-01-01

    The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cytokine, tumor necrosis factor (TNF)- like weak inducer of apoptosis (TWEAK), has recently been identified as a potent inducer of skeletal muscle wasting. TWEAK activates various proteolytic pathways and stimulates the degradation of myofibril protein both in vitro and in vivo. Moreover, TWEAK mediates the loss of skeletal muscle mass and function in response to denervation, a model of disuse atrophy. Adult skeletal muscle express very low to minimal levels of TWEAK receptor, Fn14. Specific catabolic conditions such as denervation, immobilization, or unloading rapidly increase the expression of Fn14 in skeletal muscle which in turn stimulates the TWEAK activation of various catabolic pathways leading to muscle atrophy. In this article, we have discussed the emerging roles and the mechanisms of action of TWEAK-Fn14 system in skeletal muscle with particular reference to different models of muscle atrophy and injury and its potential to be used as a therapeutic target for prevention of muscle loss.

  10. Intra-fraction motion of larynx radiotherapy

    Science.gov (United States)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  11. Rationale and development of image-guided intensity-modulated radiotherapy post-prostatectomy: the present standard of care?

    Directory of Open Access Journals (Sweden)

    Murray JR

    2015-11-01

    Full Text Available Julia R Murray,1,2 Helen A McNair,2 David P Dearnaley1,2 1Academic Urology Unit, Institute of Cancer Research, London, 2Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, Sutton, UK Abstract: The indications for post-prostatectomy radiotherapy have evolved over the last decade, although the optimal timing, dose, and target volume remain to be well defined. The target volume is susceptible to anatomical variations with its borders interfacing with the rectum and bladder. Image-guided intensity-modulated radiotherapy has become the gold standard for radical prostate radiotherapy. Here we review the current evidence for image-guided techniques with intensity-modulated radiotherapy to the prostate bed and describe current strategies to reduce or account for interfraction and intrafraction motion. Keywords: radiotherapy, prostate cancer, post-prostatectomy, image-guided radiation therapy

  12. Quantitative skeletal scintiscanning

    International Nuclear Information System (INIS)

    Haushofer, R.

    1982-01-01

    330 patients were examined by skeletal scintiscanning with sup(99m)Tc pyrophosphate and sup(99m)methylene diphosphonate in the years between 1977 and 1979. Course control examinations were carried out in 12 patients. The collective of patients presented with primary skeletal tumours, metastases, inflammatory and degenerative skeletal diseases. Bone scintiscanning combined with the ''region of interest'' technique was found to be an objective and reproducible technique for quantitative measurement of skeletal radioactivity concentrations. The validity of nuclear skeletal examinations can thus be enhanced as far as diagnosis, course control, and differential diagnosis are concerned. Quantitative skeletal scintiscanning by means of the ''region of interest'' technique has opened up a new era in skeletal diagnosis by nuclear methods. (orig./MG) [de

  13. MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle.

    Science.gov (United States)

    McCormick, Rachel; Goljanek-Whysall, Katarzyna

    2017-01-01

    Skeletal muscle is one of the biggest organs of the body with important mechanistic and metabolic functions. Muscle homeostasis is controlled by environmental, genetic, and epigenetic factors. Indeed, MiRNAs, small noncoding RNAs robust regulators of gene expression, have and have been shown to regulate muscle homeostasis on several levels: through controlling myogenesis, muscle growth (hypertrophy) and atrophy, as well as interactions of muscle with other tissues. Given the large number of MiRNA target genes and the important role of MiRNAs in most physiological processes and various diseases, MiRNAs may have an enormous potential as therapeutic targets against numerous disorders, including pathologies of muscle. The purpose of this review is to present the current knowledge of the role of MiRNAs in skeletal muscle homeostasis and pathologies and the potential of MiRNAs as therapeutics for skeletal muscle wasting, with particular focus on the age- and disease-related loss of muscle mass and function. © 2017 Elsevier Inc. All rights reserved.

  14. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy

    International Nuclear Information System (INIS)

    Tanaka, Rie; Ichikawa, Katsuhiro; Sanada, Sigeru; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Minohara, Shinichi; Kawashima, Hiroki

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ±5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. (author)

  15. Interleukin-6 myokine signaling in skeletal muscle

    DEFF Research Database (Denmark)

    Muñoz-Cánoves, Pura; Scheele, Camilla; Pedersen, Bente K

    2013-01-01

    Interleukin (IL)-6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL-6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL-6 signaling has b...

  16. Challenges of radiotherapy: report on the 4D treatment planning workshop 2013

    NARCIS (Netherlands)

    Knopf, Antje; Nill, Simeon; Yohannes, Indra; Graeff, Christian; Dowdell, Stephen; Kurz, Christopher; Sonke, Jan-Jakob; Biegun, Aleksandra K; Lang, Stephanie; McClelland, Jamie R.; Champion, Benjamin; Fast, Martin; Wölfelschneider, Jens; Gianoli, Chiara; Rucinski, Antoni; Baroni, Guido; Richter, Christian; van de Water, Steven; Grassberger, Clemens; Weber, Damien; Poulsen, Per; Shimizu, Shinichi; Bert, Christoph

    2014-01-01

    This report, compiled by experts on the treatment of mobile targets with advanced radiotherapy, summarizes the main conclusions and innovations achieved during the 4D treatment planning workshop 2013. This annual workshop focuses on research aiming to advance 4D radiotherapy treatments, including

  17. Neurovascular bundle–sparing radiotherapy for prostate cancer using MRI-CT registration: A dosimetric feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, R.J., E-mail: richardjcassidy@emory.edu [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA (United States); Yang, X.; Liu, T.; Thomas, M. [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA (United States); Nour, S.G. [Department of Radiology, Emory University, Atlanta, GA (United States); Jani, A.B. [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA (United States)

    2016-01-01

    Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dose of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.

  18. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  19. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    International Nuclear Information System (INIS)

    De Wagter, C.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions

  20. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    Science.gov (United States)

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  1. Experimental radiotherapy and clinical radiobiology. Vol. 20. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 20. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemannn, Hans-Peter; Zips, Daniel (eds.)

    2011-07-01

    The proceedings include contributions on the following issues: laser driven proton accelerators on the way for radiotherapy, radiobiological evaluation of new radiations; molecular factors of radiation response; biological targeting; EGFR epidermal growth factor receptor/targeting - combined internal and external irradiation, radiobiology of normal tissues; dose-volume histograms for the radiotherapy: curves without radiobiological relevance or important information for the therapy planning; HPV (human papilloma virus) and radiation sensitivity of HNSCC (head and neck squamous cell carcinomas): evidence, radiobiological mechanism, clinical consequences and perspectives; mechanisms of action and intertumoral heterogeneity of response to EGFR inhibition in radiotherapy of solid tumors; evaluation of biomarkers for radiotherapy.

  2. Spatial aspects of combined modality radiotherapy

    International Nuclear Information System (INIS)

    Bodey, Rachel K.; Evans, Phil M.; Flux, Glenn D.

    2005-01-01

    Background and purpose: A combined modality radiotherapy (CMRT) incorporates both external beam radiotherapy (EBT) and targeted radionuclide therapy (TRT) components. The spatial aspects of this combination were explored by utilising intensity modulated radiotherapy (IMRT) to provide a non-uniform EBT dose distribution. Patients and methods: Three methods of prescribing the required non-uniform distribution of EBT dose are described, based on both physical and biological criteria according to the distribution of TRT uptake. The results and consequences of these prescriptions are explored by application to three examples of patient data. Results: The planning procedure adopted allowed IMRT plans to be produced that met the prescription requirements. However, when the treatment was planned as a CMRT, compared with the use of EBT alone, more satisfactory target doses could be achieved with lower doses to normal tissues. The effects of errors in EBT delivery and in the functional data were found to cause a non-uniform prescription to tend towards the uniform case. Conclusions: The methods and results are relevant for more general biological treatment planning, in which IMRT may be used to produce dose distributions prescribed according to tumour function. The effects of delivery and dose calculation errors can have a significant impact on how such treatments should be planned

  3. Multileaf collimator in radiotherapy

    International Nuclear Information System (INIS)

    Jeraj, M.; Robar, V.

    2004-01-01

    Background. Basic goal of radiotherapy treatment is the irradiation of a target volume while minimizing the amount of radiation absorbed in healthy tissue. Shaping the beam is an important way of minimizing the absorbed dose in healthy tissue and critical structures. Conventional collimator jaws are used for shaping a rectangular treatment field; but, as usually treatment volume is not rectangular, additional shaping is required. On a linear accelerator, lead blocks or individually made Cerroben TM blocks are attached onto the treatment head under standard collimating system. Another option is the use of multileaf collimator (MLC). Conclusions. Multileaf collimator is becoming the main tool for beam shaping on the linear accelerator. It is a simple and useful system in the preparation and performance of radiotherapy treatment. Multileaf collimators are reliable, as their manufacturers developed various mechanisms for their precision, control and reliability, together with reduction of leakage and transmission of radiation between and through the leaves. Multileaf collimator is known today as a very useful clinical system for simple field shaping, but its use is getting even more important in dynamic radiotherapy, with the leaves moving during irradiation. This enables a precise dose delivery on any part of a treated volume. Intensity modulated radiotherapy (IMRT), the therapy of the future, is based on the dynamic use of MLC. (author)

  4. Pattern of relapse in surgical treated patients with thoracic esophageal squamous cell carcinoma and its possible impact on target delineation for postoperative radiotherapy

    International Nuclear Information System (INIS)

    Cai Wenjie; Xin Peiling

    2010-01-01

    Objective: To provide a reference for determination of the postoperative radiotherapy target volume for thoracic esophageal squamous cell carcinoma. Background data: The irradiation target volume is important for effective postoperative treatment of thoracic esophageal squamous cell carcinoma. Methods: One hundred forty patients with recurrent or metastatic thoracic esophageal squamous cell carcinoma who had been treated with radical surgery but not with postoperative radiotherapy were enrolled in this study. The information of locoregional recurrence and distant metastasis for these patients was analyzed. Results: The median time to progression in the 140 patients with recurrence or metastasis was 18.3 months (range 15.4-21.1 months). Anastomotic recurrence accounted for 13.6% of treatment failures. The supraclavicular and station 1-5 and 7 lymph nodes had high metastasis rates for esophageal squamous cell carcinomas in all locations. The order from highest to lowest metastasis rate for the station 3 and 4 lymph nodes was middle, upper and lower thoracic esophageal regions and the order for upper abdominal lymph nodes was lower, middle, and upper thoracic esophageal regions. Locoregional recurrence was the most common type of recurrence. Conclusions: For upper and middle thoracic esophageal squamous cell carcinomas, the anastomosis, supraclavicular, and station 1-5 and 7 lymph nodes should be delineated as the postoperative prophylactic irradiation target volume with upper abdominal lymph nodes excluded; for lower thoracic esophageal squamous cell carcinomas, anastomosis, supraclavicular, station 1-5 and 7 lymph nodes and upper abdominal lymph nodes should be delineated as the postoperative prophylactic irradiation target volume.

  5. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  6. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  7. Co-targeting androgen receptor and DNA for imaging and molecular radiotherapy of prostate cancer: in vitro studies.

    Science.gov (United States)

    Han, Guang; Kortylewicz, Zbigniew P; Enke, Thomas; Baranowska-Kortylewicz, Janina

    2014-12-01

    The androgen receptor (AR) axis, the key growth and survival pathway in prostate cancer, remains a prime target for drug development. 5-Radioiodo-3'-O-(17β-succinyl-5α-androstan-3-one)-2'-deoxyuridin-5'-yl phosphate (RISAD-P) is the AR-seeking reagent developed for noninvasive assessment of AR and proliferative status, and for molecular radiotherapy of prostate cancer with Auger electron-emitting radionuclides. RISAD-P radiolabeled with 123I, 124I, and 125I were synthesized using a common stannylated precursor. The cellular uptake, subcellular distribution, and radiotoxicity of 123I-, 124I-, and (125) IRISAD-P were measured in LNCaP, DU145, and PC-3 cell lines expressing various levels of AR. The uptake of RISAD-P by prostate cancer cells is proportional to AR levels and independent of the radionuclide. The intracellular accumulation of radioactivity is directly proportional to the extracellular concentration of RISAD-P and the duration of exposure. Initially, RISAD-P is trapped in the cytoplasm. Within 24 hr, radioactivity is associated exclusively with DNA. The RISAD-P radiotoxicity is determined by the radionuclide; however, the cellular responses are directly proportional to the AR expression levels. LNCaP cells expressing high levels of AR are killed at the rate of up to 60% per day after a brief 1 hr RISAD-P treatment. For the first time, the AR expression in PC-3 and DU 145 cells, generally reported as AR-negative, was quantitated by the ultra sensitive RISAD-P-based method. RISAD-P is a theranostic drug, which targets AR. Its subcellular metabolite participates in DNA synthesis. RISAD-P is a promising candidate for imaging of the AR expression and tumor proliferation as well as molecular radiotherapy of prostate cancer. © 2014 Wiley Periodicals, Inc.

  8. Cardiac dose estimates from Danish and Swedish breast cancer radiotherapy during 1977-2001

    International Nuclear Information System (INIS)

    Taylor, Carolyn W.; Bronnum, Dorthe; Darby, Sarah C.; Gagliardi, Giovanna; Hall, Per; Jensen, Maj-Britt; McGale, Paul; Nisbet, Andrew; Ewertz, Marianne

    2011-01-01

    Background and purpose: To estimate target and cardiac doses from breast cancer radiotherapy in Denmark and in the Stockholm and Umea areas of Sweden during 1977-2001. Methods: Representative samples of irradiated women were identified from the databases of the Danish Breast Cancer Cooperative Group and the Swedish Nationwide Cancer Registry. Virtual simulation, computed tomography planning and manual planning were used to reconstruct radiotherapy regimens on a typical woman. Estimates of target dose and various measures of cardiac dose were derived from individual radiotherapy charts. Results: Doses were estimated in 681 Danish and 130 Swedish women. Mean heart dose for individual women varied from 1.6 to 14.9 Gray in Denmark and from 1.2 to 22.1 Gray in Sweden. In Denmark, mean target doses averaged across women increased from 40.6 to 53.8 Gray during 1977-2001 but, despite this, mean heart dose averaged across women remained around 6 Gy for left-sided and 2-3 Gray for right-sided radiotherapy. In Sweden mean target dose averaged across women increased from 38.7 to 46.6 Gray during 1977-2001, while mean heart dose averaged across women decreased from 12.0 to 7.3 Gray for left-sided and from 3.6 to 3.2 Gray for right-sided radiotherapy. Temporal trends for mean biologically effective dose [BED] to the heart, mean dose to the left anterior descending coronary artery, the right coronary artery and the circumflex coronary artery were broadly similar. Conclusions: Cardiac doses in Denmark were low relative to those in Sweden. In both countries, target dose increased during 1977-2001. Despite this, cardiac doses remained constant in Denmark and decreased in Sweden.

  9. The potential advantages of (18)FDG PET/CT-based target volume delineation in radiotherapy planning of head and neck cancer.

    Science.gov (United States)

    Moule, Russell N; Kayani, Irfan; Moinuddin, Syed A; Meer, Khalda; Lemon, Catherine; Goodchild, Kathleen; Saunders, Michele I

    2010-11-01

    This study investigated two fixed threshold methods to delineate the target volume using (18)FDG PET/CT before and during a course of radical radiotherapy in locally advanced squamous cell carcinoma of the head and neck. Patients were enrolled into the study between March 2006 and May 2008. (18)FDG PET/CT scans were carried out 72h prior to the start of radiotherapy and then at 10, 44 and 66Gy. Functional volumes were delineated according to the SUV Cut Off (SUVCO) (2.5, 3.0, 3.5, and 4.0bwg/ml) and percentage of the SUVmax (30%, 35%, 40%, 45%, and 50%) thresholds. The background (18)FDG uptake and the SUVmax within the volumes were also assessed. Primary and lymph node volumes for the eight patients significantly reduced with each increase in the delineation threshold (for example 2.5-3.0bwg/ml SUVCO) compared to the baseline threshold at each imaging point. There was a significant reduction in the volume (p⩽0.0001-0.01) after 36Gy compared to the 0Gy by the SUVCO method. There was a negative correlation between the SUVmax within the primary and lymph node volumes and delivered radiation dose (p⩽0.0001-0.011) but no difference in the SUV within the background reference region. The volumes delineated by the PTSUVmax method increased with the increase in the delivered radiation dose after 36Gy because the SUVmax within the region of interest used to define the edge of the volume was equal or less than the background (18)FDG uptake and the software was unable to effectively differentiate between tumour and background uptake. The changes in the target volumes delineated by the SUVCO method were less susceptible to background (18)FDG uptake compared to those delineated by the PTSUVmax and may be more helpful in radiotherapy planning. The best method and threshold have still to be determined within institutions, both nationally and internationally. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Recurrence in skeletal muscle from squamous cell carcinoma of the uterine cervix: a case report and review of the literature

    International Nuclear Information System (INIS)

    Ferrandina, Gabriella; Salutari, Vanda; Testa, Antonia; Zannoni, Gian Franco; Petrillo, Marco; Scambia, Giovanni

    2006-01-01

    The occurrence of skeletal muscle metastases is a very rare event. Only two cases of late skeletal muscle recurrence from cervical cancer have been documented until now. A 38-year old patient, submitted to radical hysterectomy and pelvic lymphadenectomy for a squamous FIGO stage IB1 cervical carcinoma, presented after 76 months with a palpable, and painless swelling on the left hemithorax. MRI showed a nodule located in the context of the intercostal muscles. Pathology revealed the presence of metastasis of squamous cell carcinoma of similar morphology as the primary. On the basis of FDG-PET findings, which excluded other sites of disease, surgical excision of the lesion was performed. The patient was triaged to chemotherapy plus external radiotherapy. A case of skeletal muscle recurrence from cervical cancer after a very long interval from primary diagnosis is reported. Muscular pain or weakness, or just a palpable mass in a patient with a history of cancer has always to raise the suspicion of muscle metastasis

  11. Proteomics of Skeletal Muscle: Focus on Insulin Resistance and Exercise Biology

    Directory of Open Access Journals (Sweden)

    Atul S. Deshmukh

    2016-02-01

    Full Text Available Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence, of altered protein expressions profiles and/or their posttranslational modifications (PTMs. Mass spectrometry (MS-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle proteomics are challenging. This review describes the technical limitations of skeletal muscle proteomics as well as emerging developments in proteomics workflow with respect to samples preparation, liquid chromatography (LC, MS and computational analysis. These technologies have not yet been fully exploited in the field of skeletal muscle proteomics. Future studies that involve state-of-the-art proteomics technology will broaden our understanding of exercise-induced adaptations as well as molecular pathogenesis of insulin resistance. This could lead to the identification of new therapeutic targets.

  12. Small animal radiotherapy research platforms

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, Frank; Granton, Patrick [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Tryggestad, Erik, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 (United States)

    2011-06-21

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  13. Small animal radiotherapy research platforms

    Science.gov (United States)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  14. Small animal radiotherapy research platforms

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-01-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  15. Targeting radiation to tumours

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Greater Glasgow Health Board, Glasgow

    1994-01-01

    Biologically targeted radiotherapy entails the preferential delivery of radiation to solid tumours or individual tumour cells by means of tumour-seeking delivery vehicles to which radionuclides can be conjugated. Monoclonal antibodies have attracted attention for some years as potentially selective targeting agents, but advances in tumour and molecular biology are now providing a much wider choice of molecular species. General radiobiological principles may be derived which are applicable to most forms of targeted radiotherapy. These principles provide guidelines for the appropriate choice of radionuclide in specific treatment situations and its optimal combination with other treatment modalities. In future, the availability of gene targeting agents will focus attention on the use of Auger electron emitters whose high potency and short range selectivity makes them attractive choices for specific killing of cancer cells whose genetic peculiarities are known. (author)

  16. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    Science.gov (United States)

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    Science.gov (United States)

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  18. Target volume definition for {sup 18}F-FDG PET-positive lymph nodes in radiotherapy of patients with non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Ursula; Schaefer-Schuler, Andrea; Hellwig, Dirk; Kirsch, Carl-Martin [Saarland University Medical Centre, Department of Nuclear Medicine, Homburg/Saar (Germany); Kremp, Stephanie; Ruebe, Christian [Saarland University Medical Centre, Department of Radio-oncology, Homburg/Saar (Germany); Groeschel, Andreas [Saarland University Medical Centre, Department of Pneumology, Homburg/Saar (Germany)

    2007-04-15

    FDG PET is increasingly used in radiotherapy planning. Recently, we demonstrated substantial differences in target volumes when applying different methods of FDG-based contouring in primary lung tumours (Nestle et al., J Nucl Med 2005;46:1342-8). This paper focusses on FDG-positive mediastinal lymph nodes (LN{sub PET}). In our institution, 51 NSCLC patients who were candidates for radiotherapy prospectively underwent staging FDG PET followed by a thoracic PET scan in the treatment position and a planning CT. Eleven of them had 32 distinguishable non-confluent mediastinal or hilar nodal FDG accumulations (LN{sub PET}). For these, sets of gross tumour volumes (GTVs) were generated at both acquisition times by four different PET-based contouring methods (visual: GTV{sub vis}; 40% SUV{sub max}: GTV{sub 40}; SUV=2.5: GTV{sub 2.5}; target/background (T/B) algorithm: GTV{sub bg}). All differences concerning GTV sizes were within the range of the resolution of the PET system. The detectability and technical delineability of the GTVs were significantly better in the late scans (e.g. p = 0.02 for diagnostic application of SUV{sub max} = 2.5; p = 0.0001 for technical delineability by GTV{sub 2.5}; p = 0.003 by GTV{sub 40}), favouring the GTV{sub bg} method owing to satisfactory overall applicability and independence of GTVs from acquisition time. Compared with CT, the majority of PET-based GTVs were larger, probably owing to resolution effects, with a possible influence of lesion movements. For nodal GTVs, different methods of contouring did not lead to clinically relevant differences in volumes. However, there were significant differences in technical delineability, especially after early acquisition. Overall, our data favour a late acquisition of FDG PET scans for radiotherapy planning, and the use of a T/B algorithm for GTV contouring. (orig.)

  19. Quality assurance in radiotherapy

    International Nuclear Information System (INIS)

    2003-03-01

    Good radiotherapy results and safety of treatment require the radiation to be optimally applied to a specified target area and the correct dose. According to international recommendations, the average uncertainty in therapeutic dose should not exceed 5%. The need for high precision in therapeutic dose requires quality assurance covering the entire radiotherapy process. Besides the physical and technical characteristics of the therapy equipment, quality assurance must include all radiotherapy equipment and procedures that are significant for the correct magnitude and precision of application of the therapeutic dose. The duties and responsibilities pertaining to various stages of treatment must also be precisely defined. These requirements may be best implemented through a quality system. The general requirements for supervision and quality assurance of medical radiation apparatus are prescribed in section 40 of the Radiation Act (592/1991, amendment 1142/1998) and in sections 18 and 32 of the Decree of the Ministry of Social Affairs and Health on the medical use of radiation (423/2000). Guide ST 2.2 imposes requirements on structural radiation shielding of radiotherapy equipment and the premises in which it is used, and on warning and safety arrangements. Guide ST 1.1 sets out the general safety principles for radiation practices and regulatory control procedure for the use of radiation. Guide ST 1.6 provides general requirements for operational measures in the use of radiation. This Guide sets out the duties of responsible parties (the party running a radiation practice) in respect of arranging and maintaining radiotherapy quality assurance. The principles set out in this Guide and Guide ST 6.3 may be applied to radionuclide therapy

  20. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    International Nuclear Information System (INIS)

    Grills, Inga S.; Hugo, Geoffrey; Kestin, Larry L.; Galerani, Ana Paula; Chao, K. Kenneth; Wloch, Jennifer; Yan Di

    2008-01-01

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was ≥5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were ≤2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic (Σ) and random errors (σ) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation

  1. Influence of the electron energy and number of beams on the absorbed dose distributions in radiotherapy of deep seated targets.

    Science.gov (United States)

    Garnica-Garza, H M

    2014-12-01

    With the advent of compact laser-based electron accelerators, there has been some renewed interest on the use of such charged particles for radiotherapy purposes. Traditionally, electrons have been used for the treatment of fairly superficial lesions located at depths of no more than 4cm inside the patient, but lately it has been proposed that by using very high energy electrons, i.e. those with an energy in the order of 200-250MeV it should be possible to safely reach deeper targets. In this paper, we used a realistic patient model coupled with detailed Monte Carlo simulations of the electron transport in such a patient model to examine the characteristics of the resultant absorbed dose distributions as a function of both the electron beam energy as well as the number of beams for a particular type of treatment, namely, a prostate radiotherapy treatment. Each treatment is modeled as consisting of nine, five or three beam ports isocentrically distributed around the patient. An optimization algorithm is then applied to obtain the beam weights in each treatment plan. It is shown that for this particularly challenging case, both excellent target coverage and critical structure sparing can be obtained for energies in the order of 150MeV and for as few as three treatment ports, while significantly reducing the total energy absorbed by the patient with respect to a conventional megavoltage x-ray treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Interest of FDG-PET for lung cancer radiotherapy; Interet de la TEP au FDG pour la radiotherapie des cancers bronchiques

    Energy Technology Data Exchange (ETDEWEB)

    Thureau, S.; Mezzani-Saillard, S.; Dubray, B. [Departement de radiotherapie et de physique medicale et QuantIF - Litis, EA 4108, CRLCC Henri-Becquerel, 1, rue d' Amiens, 76038 Rouen (France); Modzelewski, R.; Edet-Sanson, A.; Vera, P. [Departement de medecine nucleaire et QuantIF - Litis, EA 4108, CRLCC Henri-Becquerel, 1, rue d' Amiens, 76038 Rouen (France)

    2011-10-15

    The recent advances in medical imaging have profoundly altered the radiotherapy of non-small cell lung cancers (NSCLC). A meta-analysis has confirmed the superiority of FDG PET-CT over CT for initial staging. FDG PET-CT improves the reproducibility of target volume delineation, especially close to the mediastinum or in the presence of atelectasis. Although not formally validated by a randomized trial, the reduction of the mediastinal target volume, by restricting the irradiation to FDG-avid nodes, is widely accepted. The optimal method of delineation still remains to be defined. The role of FDGPET-CT in monitoring tumor response during radiotherapy is under investigation, potentially opening the way to adapting the treatment modalities to tumor radiation sensitivity. Other tracers, such as F-miso (hypoxia), are also under clinical investigation. To avoid excessive delays, the integration of PET-CT in routine practice requires quick access to the imaging equipment, technical support (fusion and image processing) and multidisciplinary delineation of target volumes. (authors)

  3. The Role Of Semaphorin 3A In The Skeletal System.

    Science.gov (United States)

    Tang, Peifu; Yin, Pengbin; Lv, Houchen; Zhang, Licheng; Zhang, Lihai

    2015-01-01

    Semaphorin 3A (Sema3A), characterized by a conserved N-terminal "Sema" domain, was originally described as an axon guidance molecule. Recent research indicates that it performs a critical function in the skeletal system. This review highlights recent advances in understanding of the role of Sema3A in the skeletal system as a regulator of bone metabolism and as a potential drug target for bone disease therapy. We summarize Sema3A functions in osteoblastogenesis and osteoclastogenesis, as well as in innervation, and we discuss its multifunctional role in various bone diseases such as osteoporosis and low back pain. Despite limited research in this field, our aim is to promote further understanding of the function of Sema3A in the skeletal system.

  4. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  5. Tissue-specific Role of the Na,K-ATPase α2 Isozyme in Skeletal Muscle*

    Science.gov (United States)

    Radzyukevich, Tatiana L.; Neumann, Jonathon C.; Rindler, Tara N.; Oshiro, Naomi; Goldhamer, David J.; Lingrel, Jerry B.; Heiny, Judith A.

    2013-01-01

    The Na,K-ATPase α2 isozyme is the major Na,K-ATPase of mammalian skeletal muscle. This distribution is unique compared with most other cells, which express mainly the Na,K-ATPase α1 isoform, but its functional significance is not known. We developed a gene-targeted mouse (skα2−/−) in which the α2 gene (Atp1a2) is knocked out in the skeletal muscles, and examined the consequences for exercise performance, membrane potentials, contractility, and muscle fatigue. Targeted knockout was confirmed by genotyping, Western blot, and immunohistochemistry. Skeletal muscle cells of skα2−/− mice completely lack α2 protein and have no α2 in the transverse tubules, where its expression is normally enhanced. The α1 isoform, which is normally enhanced on the outer sarcolemma, is up-regulated 2.5-fold without change in subcellular targeting. skα2−/− mice are apparently normal under basal conditions but show significantly reduced exercise capacity when challenged to run. Their skeletal muscles produce less force, are unable to increase force to match demand, and show significantly increased susceptibility to fatigue. The impairments affect both fast and slow muscle types. The subcellular targeting of α2 to the transverse tubules is important for this role. Increasing Na,K-ATPase α1 content cannot fully compensate for the loss of α2. The increased fatigability of skα2−/− muscles is reproduced in control extensor digitorum longus muscles by selectively inhibiting α2 enzyme activity with ouabain. These results demonstrate that the Na,K-ATPase α2 isoform performs an acute, isoform-specific role in skeletal muscle. Its activity is regulated by muscle use and enables working muscles to maintain contraction and resist fatigue. PMID:23192345

  6. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality

    International Nuclear Information System (INIS)

    Ling, C. Clifton; Humm, John; Larson, Steven; Amols, Howard; Fuks, Zvi; Leibel, Steven; Koutcher, Jason A.

    2000-01-01

    Purpose: The goals of this study were to survey and summarize the advances in imaging that have potential applications in radiation oncology, and to explore the concept of integrating physical and biological conformality in multidimensional conformal radiotherapy (MD-CRT). Methods and Materials: The advances in three-dimensional conformal radiotherapy (3D-CRT) have greatly improved the physical conformality of treatment planning and delivery. The development of intensity-modulated radiotherapy (IMRT) has provided the 'dose painting' or 'dose sculpting' ability to further customize the delivered dose distribution. The improved capabilities of nuclear magnetic resonance imaging and spectroscopy, and of positron emission tomography, are beginning to provide physiological and functional information about the tumor and its surroundings. In addition, molecular imaging promises to reveal tumor biology at the genotype and phenotype level. These developments converge to provide significant opportunities for enhancing the success of radiotherapy. Results: The ability of IMRT to deliver nonuniform dose patterns by design brings to fore the question of how to 'dose paint' and 'dose sculpt', leading to the suggestion that 'biological' images may be of assistance. In contrast to the conventional radiological images that primarily provide anatomical information, biological images reveal metabolic, functional, physiological, genotypic, and phenotypic data. Important for radiotherapy, the new and noninvasive imaging methods may yield three-dimensional radiobiological information. Studies are urgently needed to identify genotypes and phenotypes that affect radiosensitivity, and to devise methods to image them noninvasively. Incremental to the concept of gross, clinical, and planning target volumes (GTV, CTV, and PTV), we propose the concept of 'biological target volume' (BTV) and hypothesize that BTV can be derived from biological images and that their use may incrementally improve

  7. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: Multi-observer and image multi-modality study

    International Nuclear Information System (INIS)

    Luetgendorf-Caucig, Carola; Fotina, Irina; Stock, Markus; Poetter, Richard; Goldner, Gregor; Georg, Dietmar

    2011-01-01

    Background and purpose: In-room cone-beam CT (CBCT) imaging and adaptive treatment strategies are promising methods to decrease target volumes and to spare organs at risk. The aim of this work was to analyze the inter-observer contouring uncertainties of target volumes and organs at risks (oars) in localized prostate cancer radiotherapy using CBCT images. Furthermore, CBCT contouring was benchmarked against other image modalities (CT, MR) and the influence of subjective image quality perception on inter-observer variability was assessed. Methods and materials: Eight prostate cancer patients were selected. Seven radiation oncologists contoured target volumes and oars on CT, MRI and CBCT. Volumes, coefficient of variation (COV), conformity index (cigen), and coordinates of center-of-mass (COM) were calculated for each patient and image modality. Reliability analysis was performed for the support of the reported findings. Subjective perception of image quality was assessed via a ten-scored visual analog scale (VAS). Results: The median volume for prostate was larger on CT compared to MRI and CBCT images. The inter-observer variation for prostate was larger on CBCT (CIgen = 0.57 ± 0.09, 0.61 reliability) compared to CT (CIgen = 0.72 ± 0.07, 0.83 reliability) and MRI (CIgen = 0.66 ± 0.12, 0.87 reliability). On all image modalities values of the intra-observer reliability coefficient (0.97 for CT, 0.99 for MR and 0.94 for CBCT) indicated high reproducibility of results. For all patients the root mean square (RMS) of the inter-observer standard deviation (σ) of the COM was largest on CBCT with σ(x) = 0.4 mm, σ(y) = 1.1 mm, and σ(z) = 1.7 mm. The concordance in delineating OARs was much stronger than for target volumes, with average CIgen > 0.70 for rectum and CIgen > 0.80 for bladder. Positive correlations between CIgen and VAS score of the image quality were observed for the prostate, seminal vesicles and rectum. Conclusions: Inter-observer variability for target

  8. Comparison of target volumes in radiotherapy defined on scanner and on PET-T.D.M. with {sup 18}F-F.D.G. in the frame of head and neck cancers; Comparaison des volumes cibles en radiotherapie definis sur scanner et sur TEP-TDM au 18F FDG dans le cadre des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Henriques De Figueiredo, B.; Barret, O.; Allard, M.; Fernandez, P. [Service de medecine nucleaire, CHU de Pellegrin, Bordeaux, (France); Demeaux, H.; Maire, J.P.; Lagarde, P. [service de radiotherapie, hopital Saint-Andre, Bordeaux, (France); Kantor, G.; Richau, P. [departement de radiotherapie, institut Bergonie, Bordeaux, (France); De Mones Del Pujol, E. [service d' ORL, hopital Pellegrin, Bordeaux, (France)

    2009-05-15

    The objective is to study in a prospective way, in the frame of head and neck cancers, the impact of the positron computed tomography with {sup 18}F fluorodeoxyglucose (PET-F.D.G.) on the limitation of target volumes in radiotherapy. In conclusions, the gross tumor volume (G.T.V.) defined on PET is smaller than this one defined on scanner, that could be interesting in radiotherapy, in the perspective of a dose escalation. In addition, areas of discordance exist between the clinical target volumes (C.T.V.70 and C.T.V.50) defined on PET and on scanner. These discordances, synonyms of under or over estimation of target volumes, could have important clinical consequences in term of local control and toxicity. (N.C.)

  9. Effects of increasing doses of samarium-153-ethylenediaminetetramethylene phosphonate on axial and appendicular skeletal growth in juvenile rabbits

    International Nuclear Information System (INIS)

    Essman, Stephanie C.; Lewis, Michael R.; Fox, Derek B.

    2008-01-01

    Introduction: Targeted radiotherapy using samarium-153-ethylenediaminetetramethylene phosphonate ( 153 Sm-EDTMP) is currently under investigation for treatment of osteosarcoma. Osteosarcoma often occurs in children, and previous studies on a juvenile rabbit model demonstrated that clinically significant damage to developing physeal cartilage may occur as a result of systemic 153 Sm-EDTMP therapy. The aim of this study was to evaluate the late effects of 153 Sm-EDTMP on skeletal structures during growth to maturity and to determine if there is a dose response of 153 Sm-EDTMP on growth of long bones. Methods: Female 8-week-old New Zealand white rabbits were divided into three treatment groups plus controls. Each rabbit was intravenously administered a predetermined dose of 153 Sm-EDTMP. Multiple bones of each rabbit were radiographed every 2 months until physeal closure, with subsequent measurements made to assess for abbreviated bone growth. Statistical analyses were performed to determine the differences in bone length between groups, with significance set at P 153 Sm-EDTMP. Further investigation regarding the effects of bone-seeking radiopharmaceuticals on bone growth and physeal cartilage is warranted

  10. Credentialing of radiotherapy centres for a clinical trial of adaptive radiotherapy for bladder cancer (TROG 10.01)

    International Nuclear Information System (INIS)

    Kron, Tomas; Pham, Daniel; Roxby, Paul; Rolfo, Aldo; Foroudi, Farshad

    2012-01-01

    Background: Daily variations in bladder filling make conformal treatment of bladder cancer challenging. On-line adaptive radiotherapy with a choice of plans has been demonstrated to reduce small bowel irradiation in single institution trials. In order to support a multicentre feasibility clinical trial on adaptive radiotherapy for bladder cancer (TROG 10.01) a credentialing programme was developed for centres wishing to participate. Methods: The credentialing programme entails three components: a facility questionnaire; a planning exercise which tests the ability of centres to create three adaptive plans based on a planning and five cone beam CTs; and a site visit during which image quality, imaging dose and image guidance procedures are assessed. Image quality and decision making were tested using customised inserts for a Perspex phantom (Modus QUASAR) that mimic different bladder sizes. Dose was assessed in the same phantom using thermoluminescence dosimetry (TLD). Results: All 12 centres participating in the full credentialing programme were able to generate appropriate target volumes in the planning exercise and identify the correct target volume and position the bladder phantom in the phantom within 3 mm accuracy. None of the imaging doses exceeded the limit of 5 cGy with a CT on rails system having the lowest overall dose. Conclusion: A phantom mimicking the decision making process for adaptive radiotherapy was found to be well suited during site visits for credentialing of centres participating in a clinical trial of adaptive radiotherapy for bladder cancer. Combined with a planning exercise the site visit allowed testing the ability of centres to create adaptive treatment plans and make appropriate decisions based on the volumetric images acquired at treatment.

  11. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry.

    Science.gov (United States)

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won; Kim, Su-Jung

    2017-05-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries.

  12. Extracranial stereotactic radiotherapy: preliminary results with the CyberKnife.

    Science.gov (United States)

    Lartigau, Eric; Mirabel, Xavier; Prevost, Bernard; Lacornerie, Thomas; Dubus, Francois; Sarrazin, Thierry

    2009-04-01

    In the field of radiation oncology, equipment for fractionated radiotherapy and single-dose radiosurgery has become increasingly accurate, together with the introduction of robotized treatments. A robot is a device that can be programmed to carry out accurate, repeated and adjusted tasks in a given environment. Treatment of extracranial lesions involves taking into account organ mobility (tumor and healthy tissue) whilst retaining the ability to stereotactically locate the target. New imaging techniques (single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), positron emission tomography (PET)) provide further relevant information to slice images (computed tomography (CT) scans, MRI) for target definition. Hypo-fractionated treatments can only be used for curative treatment if the target is accurately defined and tracked during treatment. The CyberKnife is a non-invasive system of radiosurgery and fractionated stereotactic radiotherapy. For intracranial lesions treated by single-dose radiosurgery, it has been used to treat meningioma, acoustic neuromas, pituitary adenoma, metastases, arteriovenous malformations and refractory pain (trigeminal neuralgia). More than 10,000 patients have been treated worldwide. Currently, the most significant developments are in the field of extracranial stereotactic radiotherapy (lung, liver, reirradiation, prostate, etc.). Clinical results obtained in the CyberKnife Nord-Ouest program after 1 year of experience are presented. Copyright 2009 S. Karger AG, Basel.

  13. Parotid gland sparing radiotherapy technique using 3-D conformal radiotherapy for nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lim, Ji Hoon; Kim, Gwi Eon; Keum, Ki Chang; Suh, Chang Ok; Lee, Sang Wook; Park, Hee Chul; Cho, Jae Ho; Chang, Sei Kyung; Loh, Juhn Kyu

    2000-01-01

    Although using the high energy photon beam with conventional parallel-opposed beams radio-therapy for nasopgaryngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-DCRT) in an effort to prevent the radiation-induced xerostomia. We performed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator, shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was performed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, D05, V95, V05, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69% for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96-100%, 79-99%, 51

  14. Signalling and the control of skeletal muscle size

    International Nuclear Information System (INIS)

    Otto, Anthony; Patel, Ketan

    2010-01-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  15. Signalling and the control of skeletal muscle size

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Anthony [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom); Patel, Ketan, E-mail: ketan.patel@reading.ac.uk [School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, RG6 6UB (United Kingdom)

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this review we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.

  16. Samarium-153 EDTMP therapy of disseminated skeletal metastasis

    International Nuclear Information System (INIS)

    Turner, J.H.; Martindale, A.A.; Fleay, R.F.; Hoffman, R.F.; Claringbold, P.G.

    1989-01-01

    153 Sm-EDTMP (ethylenediaminetetramethylene phosphonate), prepared from a kit, was administered to 28 patients in a clinical trial of therapy for painful skeletal metastases unresponsive to all conventional treatment. The 103 keV gamma emission of 153 Sm was utilized for prospective individual estimation of beta radiation absorbed dose to red marrow to minimize myelotoxicity and provide optimum internal radiotherapy to skeletal metastases in each patient. Pain relief occurred within 14 days of administration of 153 Sm-EDTMP in 15 of 19 patients (79%) who could vie evaluated at 6 weeks, when clinical response was maximal. Duration of response ranged from 4 to 35 weeks. Recurrence of pain responded to retreatment with 153 Sm-EDTMP in five of eight cases. No dose-response relationship was apparent for pain relief but reversible myelotoxicity was frequently observed at radiation absorbed doses to bone marrow ≥270 cGy. Dosimetry calculation was based on pharmacokinetic studies of a tracer administration of 153 Sm-EDTMP in each patient. Assumptions inherent in this prospective method of predicting dose to bone marrow were validated experimentally. Biodistribution studies in rats demonstrated rapid skeletal uptake and long term retention of 153 Sm-EDTMP in bone over 5 days. Urinary clearance accounted for 40% of injected dose, and less than 0.5% of administered activity was retained in non osseous tissue. Microdensitometry of autoradiographs of sheep vertebra and femur confirmed surface uptake of 153 Sm-EDTMP in cortical bone and demonstrated relatively high trabecular bone activity which is the major component of radiation absorbed dose to bone marrow. Haematological studies in rabbits showed 153 Sm-EDTMP-induced myelotoxicity to be transient and no histopathological abnormalities were demonstrable with doses ten times greater than those administered to patients. (orig.)

  17. Radiotherapy

    International Nuclear Information System (INIS)

    Prosnitz, L.R.; Kapp, D.S.; Weissberg, J.B.

    1983-01-01

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  18. Suggestion for the prostatic fossa clinical target volume in adjuvant or salvage radiotherapy after a radical prostatectomy

    International Nuclear Information System (INIS)

    Park, Jun Su; Park, Won; Pyo, Hong Ryull; Park, Byung Kwan; Park, Sung Yoon; Choi, Han Yong; Lee, Hyun Moo; Jeon, Seong Soo; Seo, Seong Il; Jeong, Byong Chang; Jeon, Hwang Gyun

    2014-01-01

    Background and purpose: To assess the location of recurrent tumors and suggest the optimal target volume in adjuvant or salvage radiotherapy (RT) after a radical prostatectomy (RP). Material and methods: From January 2000 to December 2012, 113 patients had been diagnosed with suspected recurrent prostate cancer by MRI scan and received salvage RT in the Samsung Medical Center. This study assessed the location of the suspected tumor recurrences and used the inferior border of the pubic symphysis as a point of reference. Results: There were 118 suspect tumor recurrences. The most common site of recurrence was the anastomotic site (78.8%), followed by the bladder neck (15.3%) and retrovesical area (5.9%). In the cranial direction, 106 (87.3%) lesions were located within 30 mm of the reference point. In the caudal direction, 12 lesions (10.2%) were located below the reference point. In the transverse plane, 112 lesions (94.9%) were located within 10 mm of the midline. Conclusions: A MRI scan acquired before salvage RT is useful for the localization of recurrent tumors and the delineation of the target volume. We suggest the optimal target volume in adjuvant or salvage RT after RP, which includes 97% of suspected tumor recurrences

  19. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  20. [Extra skeletal Ewing's sarcoma. Report of two cases. Ultrastructural study of one case (author's transl)].

    Science.gov (United States)

    Krulik, M; Brechot, J M; de Saint-Maur, P; Lecomte, D; Mougeot-Martin, M; Audebert, A A; Zylberait, D; Debray, J

    The authors report two cases of extra skeletal Ewing's sarcoma. The first case concerns a 26 years old woman presenting a tumor at the level of the sacrum area, locally recurrent, metastazing to the lungs and the lumbar column, despite of radiotherapy and chemotherapy and leading to death after a course of 18 months. The second one is that of a 30 years old man bearing a tumor of the shoulder area probably already metastazed to bones, rapidly recurrent and metastazing to the lungs and cause of death after 9 months in spite of intensive therapy. About these 2 observations a review of the literature of the cases of extra skeletal Ewing's sarcoma is done. Whatever nosologic discussion it seems that Ewing's sarcoma may present essentially as a tumor of soft tissues. An ultrastructural study has been performed in the second case. The findings are similar to those reported in Ewing's sarcoma.

  1. Targeted intraoperative radiotherapy tumour bed boost during breast-conserving surgery after neoadjuvant chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolberg, Hans-Christian; Akpolat-Basci, Leyla; Stephanou, Miltiades [Marienhospital Bottrop gGmbH, Department of Gynecology and Obstetrics, Bottrop (Germany); Loevey, Gyoergy [BORAD, Bottrop (Germany); Fasching, Peter A. [University of Erlangen, Erlangen (Germany); Untch, Michael [Helios Klinikum Berlin-Buch, Berlin (Germany); Liedtke, Cornelia [University Hospital Schleswig-Holstein/Campus Luebeck, Luebeck (Germany); Bulsara, Max [University of Notre Dame, Fremantle (Australia); University College, London (United Kingdom); Vaidya, Jayant S. [University College, London (United Kingdom)

    2017-01-15

    The use of targeted intraoperative radiotherapy (TARGIT-IORT) as a tumour bed boost during breast-conserving surgery (BCS) for breast cancer has been reported since 1998. We present its use in patients undergoing breast conservation following neoadjuvant therapy (NACT). In this retrospective study involving 116 patients after NACT we compared outcomes of 61 patients who received a tumour bed boost with IORT during lumpectomy versus 55 patients treated in the previous 13 months with external (EBRT) boost. All patients received whole breast radiotherapy. Local recurrence-free survival (LRFS), disease-free survival (DFS), distant disease-free survival (DDFS), breast cancer mortality (BCM), non-breast cancer mortality (NBCM) and overall mortality (OS) were compared. Median follow up was 49 months. The differences in LRFS, DFS and BCM were not statistically significant. The 5-year Kaplan-Meier estimate of OS was significantly better by 15% with IORT: IORT 2 events (96.7%, 95%CI 87.5-99.2), EBRT 9 events (81.7%, 95%CI 67.6-90.1), hazard ratio (HR) 0.19 (0.04-0.87), log rank p = 0.016, mainly due to a reduction of 10.1% in NBCM: IORT 100%, EBRT 89.9% (77.3-95.7), HR (not calculable), log rank p = 0.015. The DDFS was as follows: IORT 3 events (95.1%, 85.5-98.4), EBRT 12 events (69.0%, 49.1-82.4), HR 0.23 (0.06-0.80), log rank p = 0.012. IORT during lumpectomy after neoadjuvant chemotherapy as a tumour bed boost appears to give results that are not worse than external beam radiotherapy boost. These data give further support to the inclusion of such patients in the TARGIT-B (boost) randomised trial that is testing whether IORT boost is superior to EBRT boost. (orig.) [German] Die intraoperative Radiotherapie (TARGIT-IORT) als vorgezogener Boost im Rahmen der brusterhaltenden Therapie (BET) ist seit 1998 Gegenstand der wissenschaftlichen Diskussion. Wir praesentieren Daten zum Einsatz der IORT bei der BET nach neoadjuvanter Therapie (NACT). In diese retrospektive Analyse

  2. Improving external beam radiotherapy by combination with internal irradiation.

    Science.gov (United States)

    Dietrich, A; Koi, L; Zöphel, K; Sihver, W; Kotzerke, J; Baumann, M; Krause, M

    2015-07-01

    The efficacy of external beam radiotherapy (EBRT) is dose dependent, but the dose that can be applied to solid tumour lesions is limited by the sensitivity of the surrounding tissue. The combination of EBRT with systemically applied radioimmunotherapy (RIT) is a promising approach to increase efficacy of radiotherapy. Toxicities of both treatment modalities of this combination of internal and external radiotherapy (CIERT) are not additive, as different organs at risk are in target. However, advantages of both single treatments are combined, for example, precise high dose delivery to the bulk tumour via standard EBRT, which can be increased by addition of RIT, and potential targeting of micrometastases by RIT. Eventually, theragnostic radionuclide pairs can be used to predict uptake of the radiotherapeutic drug prior to and during therapy and find individual patients who may benefit from this treatment. This review aims to highlight the outcome of pre-clinical studies on CIERT and resultant questions for translation into the clinic. Few clinical data are available until now and reasons as well as challenges for clinical implementation are discussed.

  3. Radiotherapy in metastatic diseases of the cervical spine and the craniospinal region

    International Nuclear Information System (INIS)

    Mende, U.; Braun, A.; Reiden, K.; Voth, D.; Glees, P.

    1987-01-01

    The results of large autopsy studies indicate that 20 to 30% of all patients with carcinoma will develop sooner or later bone metastases. According to the incidence of the primary tumor itself as well as to its tendency to metastasize into the skeletal system more than 80% of all bone metastases are due to neoplasms of the breast, prostate, bronchus, kidney and thyroid. Most of the metastases are found in the red marrow with an unequivocal preference to the axial skeleton. This article discusses radiotherapy in metastatic diseases of the cervical spine and the craniospinal region

  4. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    International Nuclear Information System (INIS)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko; Harauchi, Hajime; Inamura, Kiyonari

    1999-01-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  5. 3D Conformal radiotherapy for gastric cancer-results of a comparative planning study

    International Nuclear Information System (INIS)

    Leong, Trevor; Willis, David; Joon, Daryl Lim; Condron, Sara; Hui, Andrew; Ngan, Samuel Y.K.

    2005-01-01

    Background and purpose: Many radiation oncologists are reluctant to use anteroposterior-posteroanterior (AP-PA) field arrangements when treating gastric cancer with adjuvant postoperative radiotherapy due to concerns about normal tissue toxicity, particularly in relation to the kidneys and spinal cord. In this report, we describe a multiple-field conformal radiotherapy technique, and compare this technique to the more commonly used AP-PA technique that was used in the recently reported Intergroup study (INT0116). Materials and methods: Fifteen patients with stages II-IV adenocarcinoma of the stomach were treated with adjuvant postoperative chemoradiotherapy using a standardised 3D conformal radiotherapy technique that consisted of a 'split-field', mono-isocentric arrangement employing 6 radiation fields. For each patient, a second radiotherapy treatment plan was generated utilising AP-PA fields. The two techniques were then compared for target volume coverage and dose to normal tissues using dose volume histogram (DVH) analysis. Results: The conformal technique provides more adequate coverage of the target volume with 99% of the planning target volume (PTV) receiving 95% of the prescribed dose, compared to 93% using AP-PA fields. Comparative DVHs for the right kidney, left kidney and spinal cord demonstrate lower radiation doses using the conformal technique, and although the liver dose is higher, it is still well below liver tolerance. Conclusions: 3D conformal radiotherapy produces superior dose distributions and reduced radiation doses to the kidneys and spinal cord compared to AP-PA techniques, with the potential to reduce treatment toxicity

  6. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  7. Feasibility of tomotherapy for Graves' ophthalmopathy. Dosimetry comparison with conventional radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Nam P.; Krafft, Shane P. [Arizona Univ., Tucson, AZ (United States). Dept. of Radiation Oncology; Vos, Paul [East Carolina Univ., Greenville, NC (US). Dept. of Biostatistics] (and others)

    2011-09-15

    To compare the dosimetry of tomotherapy and the conventional half-beam technique (HBT) or non-split beam technique (NSBT) for target coverage and radiation dose to the lacrimal glands and lens. A retrospective review of 7 patients with Graves' ophthalmopathy who had radiotherapy because of disease progression on high steroid dose is reported: 3 patients were treated with tomotherapy and 4 patients with HBT. Compared to HBT, tomotherapy may provide better target coverage and significant reduction of radiation dose to the lacrimal glands and a higher dose to the lens. The NSBT improved target coverage but resulted in significantly higher doses to the lens and lacrimal glands. Tomotherapy may provide better coverage of the target volume and may be more effective in reducing severe exophthalmos compared to the conventional radiotherapy technique. (orig.)

  8. Radiotherapy

    Directory of Open Access Journals (Sweden)

    Rema Jyothirmayi

    1999-01-01

    Full Text Available Purpose. Conservative treatment in the form of limited surgery and post-operative radiotherapy is controversial in hand and foot sarcomas, both due to poor radiation tolerance of the palm and sole, and due to technical difficulties in achieving adequate margins.This paper describes the local control and survival of 41 patients with soft tissue sarcoma of the hand or foot treated with conservative surgery and radiotherapy. The acute and late toxicity of megavoltage radiotherapy to the hand and foot are described. The technical issues and details of treatment delivery are discussed. The factors influencing local control after radiotherapy are analysed.

  9. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  10. SU-E-J-199: Evaluation of Motion Tracking Effects On Stereotactic Body Radiotherapy of Abdominal Targets

    Energy Technology Data Exchange (ETDEWEB)

    Monterroso, M; Dogan, N; Yang, Y [University Miami, Miami, FL (United States)

    2014-06-01

    Purpose: To evaluate the effects of respiratory motion on the delivered dose distribution of CyberKnife motion tracking-based stereotactic body radiotherapy (SBRT) of abdominal targets. Methods: Four patients (two pancreas and two liver, and all with 4DCT scans) were retrospectively evaluated. A plan (3D plan) using CyberKnife Synchrony was optimized on the end-exhale phase in the CyberKnife's MultiPlan treatment planning system (TPS), with 40Gy prescribed in 5 fractions. A 4D plan was then created following the 4D planning utility in the MultiPlan TPS, by recalculating dose from the 3D plan beams on all 4DCT phases, with the same prescribed isodose line. The other seven phases of the 4DCT were then deformably registered to the end-exhale phase for 4D dose summation. Doses to the target and organs at risk (OAR) were compared between 3D and 4D plans for each patient. The mean and maximum doses to duodenum, liver, spinal cord and kidneys, and doses to 5cc of duodenum, 700cc of liver, 0.25cc of spinal cord and 200cc of kidneys were used. Results: Target coverage in the 4D plans was about 1% higher for two patients and about 9% lower in the other two. OAR dose differences between 3D and 4D varied among structures, with doses as much as 8.26Gy lower or as much as 5.41Gy higher observed in the 4D plans. Conclusion: The delivered dose can be significantly different from the planned dose for both the target and OAR close to the target, which is caused by the relative geometry change while the beams chase the moving target. Studies will be performed on more patients in the future. The differences of motion tracking versus passive motion management with the use of internal target volumes will also be investigated.

  11. Conformal radiotherapy by intensity modulation of pediatrics tumors; Radiotherapie conformationnelle par modulation d'intensite des tumeurs pediatriques

    Energy Technology Data Exchange (ETDEWEB)

    Leseur, J.; Le Prise, E. [Centre Eugene-Marquis, 35 - Rennes (France); Carrie, C. [Centre Leon Berard, 69 - Lyon (France); Bernier, V. [Centre Alexis-Vautrin, 54 - Nancy (France); Beneyton, V. [Centre Paul-Strauss, 67 - Strasbourg (France); Mahe, M.A.; Supiot, S. [Centre Rene-Gauducheau, 44 - Nantes (France)

    2009-10-15

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  12. Processing and evaluation of image matching tools in radiotherapy; Mise en oeuvre et evaluation d'outils de fusion d'image en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Bondiau, P Y

    2004-11-15

    Cancer is a major problem of public health. Treatment can be done in a general or loco-regional way, in this last case medical images are important as they specify the localization of the tumour. The objective of the radiotherapy is to deliver a curative dose of radiation in the target volume while sparing the organs at risks (O.A.R.). The determination of the accurate localization of the targets volume as well as O.A.R. make it possible to define the ballistic of irradiation beams. After the description of the principles of radiotherapy and cancers treatment, we specify the clinical stakes of ocular, cerebral and prostatic tumours. We present a state of the art of image matching, the various techniques reviewed with an aim of being didactic with respect to the medical community. The results of matching are presented within the framework of the planning of the cerebral and prostatic radiotherapy in order to specify the types of applicable matching in oncology and more particularly in radiotherapy. Then, we present the prospects for this type of application according to various anatomical areas. Applications of automatic segmentation and the evaluation of the results in the framework of brain tumour are described after a review of the various segmentation methods according to anatomical localizations. We will see an original application: the digital simulation of the virtual tumoral growth and the comparison with the real growth of a cerebral tumour presented by a patient. Lastly, we will expose the future developments possible of the tools for image processing in radiotherapy as well as the tracks of research to be explored in oncology. (author)

  13. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-01-01

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V 20 values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  14. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.; Tewatia, Dinesh; Rowley, Howard; Kuo, John S.; Khuntia, Deepak; Tome, Wolfgang A.

    2010-01-01

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume was 3.3 cm 3 , occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy 2 using helical tomotherapy and by 81% to 0.73 Gy 2 using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.

  15. Health economics of targeted intraoperative radiotherapy (TARGIT-IORT) for early breast cancer: a cost-effectiveness analysis in the United Kingdom.

    Science.gov (United States)

    Vaidya, Anil; Vaidya, Param; Both, Brigitte; Brew-Graves, Chris; Bulsara, Max; Vaidya, Jayant S

    2017-08-17

    The clinical effectiveness of targeted intraoperative radiotherapy (TARGIT-IORT) has been confirmed in the randomised TARGIT-A (targeted intraoperative radiotherapy-alone) trial to be similar to a several weeks' course of whole-breast external-beam radiation therapy (EBRT) in patients with early breast cancer. This study aims to determine the cost-effectiveness of TARGIT-IORT to inform policy decisions about its wider implementation. TARGIT-A randomised clinical trial (ISRCTN34086741) which compared TARGIT with traditional EBRT and found similar breast cancer control, particularly when TARGIT was given simultaneously with lumpectomy. Cost-utility analysis using decision analytic modelling by a Markov model. A cost-effectiveness Markov model was developed using TreeAge Pro V.2015. The decision analytic model compared two strategies of radiotherapy for breast cancer in a hypothetical cohort of patients with early breast cancer based on the published health state transition probability data from the TARGIT-A trial. Analysis was performed for UK setting and National Health Service (NHS) healthcare payer's perspective using NHS cost data and treatment outcomes were simulated for both strategies for a time horizon of 10 years. Model health state utilities were drawn from the published literature. Future costs and effects were discounted at the rate of 3.5%. To address uncertainty, one-way and probabilistic sensitivity analyses were performed. Quality-adjusted life-years (QALYs). In the base case analysis, TARGIT-IORT was a highly cost-effective strategy yielding health gain at a lower cost than its comparator EBRT. Discounted TARGIT-IORT and EBRT costs for the time horizon of 10 years were £12 455 and £13 280, respectively. TARGIT-IORT gained 0.18 incremental QALY as the discounted QALYs gained by TARGIT-IORT were 8.15 and by EBRT were 7.97 showing TARGIT-IORT as a dominant strategy over EBRT. Model outputs were robust to one-way and probabilistic sensitivity analyses

  16. Emerging techniques for the discovery and validation of therapeutic targets for skeletal diseases.

    Science.gov (United States)

    Cho, Christine H; Nuttall, Mark E

    2002-12-01

    Advances in genomics and proteomics have revolutionised the drug discovery process and target validation. Identification of novel therapeutic targets for chronic skeletal diseases is an extremely challenging process based on the difficulty of obtaining high-quality human diseased versus normal tissue samples. The quality of tissue and genomic information obtained from the sample is critical to identifying disease-related genes. Using a genomics-based approach, novel genes or genes with similar homology to existing genes can be identified from cDNA libraries generated from normal versus diseased tissue. High-quality cDNA libraries are prepared from uncontaminated homogeneous cell populations harvested from tissue sections of interest. Localised gene expression analysis and confirmation are obtained through in situ hybridisation or immunohistochemical studies. Cells overexpressing the recombinant protein are subsequently designed for primary cell-based high-throughput assays that are capable of screening large compound banks for potential hits. Afterwards, secondary functional assays are used to test promising compounds. The same overexpressing cells are used in the secondary assay to test protein activity and functionality as well as screen for small-molecule agonists or antagonists. Once a hit is generated, a structure-activity relationship of the compound is optimised for better oral bioavailability and pharmacokinetics allowing the compound to progress into development. Parallel efforts from proteomics, as well as genetics/transgenics, bioinformatics and combinatorial chemistry, and improvements in high-throughput automation technologies, allow the drug discovery process to meet the demands of the medicinal market. This review discusses and illustrates how different approaches are incorporated into the discovery and validation of novel targets and, consequently, the development of potentially therapeutic agents in the areas of osteoporosis and osteoarthritis

  17. Targeted Intraoperative Radiotherapy for Breast Cancer in Patients in Whom External Beam Radiation Is Not Possible

    International Nuclear Information System (INIS)

    Keshtgar, Mohammed R.S.; Vaidya, Jayant S.; Tobias, Jeffrey S.; Wenz, Frederik; Joseph, David; Stacey, Chris; Metaxas, Marinos G.; Keller, Anke; Corica, Tammy; Williams, Norman R.; Baum, Michael

    2011-01-01

    Purpose: External beam radiation therapy (EBRT) following wide local excision of the primary tumor is the standard treatment in early breast cancer. In some circumstances this procedure is not possible or is contraindicated or difficult. The purpose of this study was to determine the safety and efficacy of targeted intraoperative radiotherapy (TARGIT) when EBRT is not feasible. Methods and Materials: We report our experience with TARGIT in three centers (Australia, Germany, and the United Kingdom) between 1999 and 2008. Patients at these centers received a single radiation dose of 20 Gy to the breast tissue in contact with the applicator (or 6 Gy at 1-cm distance), as they could not be given EBRT and were keen to avoid mastectomy. Results: Eighty patients were treated with TARGIT. Reasons for using TARGIT were 21 patients had previously received EBRT, and 31 patients had clinical reasons such as systemic lupus erythematosus, motor neuron disease, Parkinson's disease, ankylosing spondylitis, morbid obesity, and cardiovascular or severe respiratory disease. Three of these patients received percutaneous radiotherapy without surgery; 28 patients were included for compelling personal reasons, usually on compassionate grounds. After a median follow-up of 38 months, only two local recurrences were observed, an annual local recurrence rate of 0.75% (95% confidence interval, 0.09%-2.70%). Conclusions: While we await the results of the randomized trial (over 2,000 patients have already been recruited), TARGIT is an acceptable option but only in highly selected cases that cannot be recruited in the trial and in whom EBRT is not feasible/possible.

  18. How to use PET/CT in the evaluation of response to radiotherapy.

    Science.gov (United States)

    Decazes, Pierre; Thureau, Sébastien; Dubray, Bernard; Vera, Pierre

    2017-11-28

    Radiotherapy is a major treatment modality for many cancers. Tumor response after radiotherapy determines the subsequent steps of the patient's management (surveillance, adjuvant or salvage treatment and palliative care). Tumor response assessed during radiotherapy offers a promising opportunity to adapt the treatment plan to reduced / increased target volume, to specifically target sub-volumes with relevant biological characteristics (metabolism, hypoxia, proliferation ...) and to further spare the organs at risk. In addition to its role in the diagnosis and the initial staging, Positron Emission Tomography combined with a Computed Tomography (PET/CT) provides functional information and is therefore attractive to evaluate tumor response. To review the published data addressing PET/CT as an evaluation tool in irradiated tumors. Reports on PET/CT acquired at various times (during radiotherapy, after initial (chemo-)radiotherapy, after definitive radiotherapy and during posttreatment follow-up) in solid tumors (lung, head-and-neck, cervix, esophagus, prostate and rectum) were collected and reviewed. Various tracers and technical are also discussed. 18F-FDG PET/CT has a well-established role in clinical routine after definitive chemo-radiotherapy for locally advanced head-and-neck cancers. 18F-choline PET/CT is indicated in prostate cancer patients with biochemical failure. 18F-FDG PET/CT is optional in many others circumstances and the clinical benefits of assessing tumor response with PET/CT remain a field of very active research. The combination of PET with Magnetic Resonance Imaging (PET/MRI) may prove to be valuable in irradiated rectal and cervix cancers. Tumor response can be evaluated by PET/CT with clinical consequences in multiple situations, notably in head and neck and prostate cancers, after radiotherapy. Further clinical evaluation for most cancers is still needed, possibly in association to MRI.

  19. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, J; Okuda, T [Toyota memorial hospital, Toyota, Aichi (Japan); Sakaino, S; Yokota, N [Suzukake central hospital, Hamamatsu, Shizuoka (Japan)

    2015-06-15

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  20. SU-E-J-159: Analysis of Total Imaging Uncertainty in Respiratory-Gated Radiotherapy

    International Nuclear Information System (INIS)

    Suzuki, J; Okuda, T; Sakaino, S; Yokota, N

    2015-01-01

    Purpose: In respiratory-gated radiotherapy, the gating phase during treatment delivery needs to coincide with the corresponding phase determined during the treatment plan. However, because radiotherapy is performed based on the image obtained for the treatment plan, the time delay, motion artifact, volume effect, and resolution in the images are uncertain. Thus, imaging uncertainty is the most basic factor that affects the localization accuracy. Therefore, these uncertainties should be analyzed. This study aims to analyze the total imaging uncertainty in respiratory-gated radiotherapy. Methods: Two factors of imaging uncertainties related to respiratory-gated radiotherapy were analyzed. First, CT image was used to determine the target volume and 4D treatment planning for the Varian Realtime Position Management (RPM) system. Second, an X-ray image was acquired for image-guided radiotherapy (IGRT) for the BrainLAB ExacTrac system. These factors were measured using a respiratory gating phantom. The conditions applied during phantom operation were as follows: respiratory wave form, sine curve; respiratory cycle, 4 s; phantom target motion amplitude, 10, 20, and 29 mm (which is maximum phantom longitudinal motion). The target and cylindrical marker implanted in the phantom coverage of the CT images was measured and compared with the theoretically calculated coverage from the phantom motion. The theoretical position of the cylindrical marker implanted in the phantom was compared with that acquired from the X-ray image. The total imaging uncertainty was analyzed from these two factors. Results: In the CT image, the uncertainty between the target and cylindrical marker’s actual coverage and the coverage of CT images was 1.19 mm and 2.50mm, respectively. In the Xray image, the uncertainty was 0.39 mm. The total imaging uncertainty from the two factors was 1.62mm. Conclusion: The total imaging uncertainty in respiratory-gated radiotherapy was clinically acceptable. However

  1. Radium-223 in treatment of castration-resistant prostate cancer with skeletal metastases

    Directory of Open Access Journals (Sweden)

    V. B. Matveev

    2017-01-01

    Full Text Available More than 90 % of patients with metastatic castration-resistant prostate cancer (CRPC have radiologically confirmed skeletal metastases. Traditional treatment methods such as administration of painkillers, external beam therapy, bisphosphonates or denosumab, as well as injections of strontium-89 or samarium-153 radionuclides, have only palliative effect and in some cases can postpone development of skeletal complications. Alpha-emitter radium-223 dichloride (Ra-223; alpharadin previously is currently one of the known drugs with proven effectiveness in relation to increasing overall survival of patients with CRPC. Ra-223 was developed specifically for patients with CRPC and symptomatic skeletal metastases. The drug targets the areas of skeletal tissue remodeling. Ra-223 is the therapy of choice in patients with CRPC and skeletal metastases and without confirmed visceral metastases before and after docetaxel chemotherapy. Chemotherapy after treatment with Ra-223 is a possible and satisfactory tolerable treatment option. Combination of Ra-223 with abiraterone, enzalutamide, or denosumab is, apparently, effective and safe, but further studies are necessary.

  2. Recurrence in skeletal muscle from squamous cell carcinoma of the uterine cervix: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Zannoni Gian

    2006-06-01

    Full Text Available Abstract Background The occurrence of skeletal muscle metastases is a very rare event. Only two cases of late skeletal muscle recurrence from cervical cancer have been documented until now. Case presentation A 38-year old patient, submitted to radical hysterectomy and pelvic lymphadenectomy for a squamous FIGO stage IB1 cervical carcinoma, presented after 76 months with a palpable, and painless swelling on the left hemithorax. MRI showed a nodule located in the context of the intercostal muscles. Pathology revealed the presence of metastasis of squamous cell carcinoma of similar morphology as the primary. On the basis of FDG-PET findings, which excluded other sites of disease, surgical excision of the lesion was performed. The patient was triaged to chemotherapy plus external radiotherapy. Conclusion A case of skeletal muscle recurrence from cervical cancer after a very long interval from primary diagnosis is reported. Muscular pain or weakness, or just a palpable mass in a patient with a history of cancer has always to raise the suspicion of muscle metastasis.

  3. Lung cancer: Value of computed tomography in radiotherapy planning and evaluation of tumour remission

    International Nuclear Information System (INIS)

    Feyerabend, T.; Schmitt, R.; Richter, E.; Bohndorf, W.

    1990-01-01

    434 CT examinations of 133 patients with histologically proven bronchogenic carcinoma (22 out of 133 with small cell lung cancer) were analysed before and after radiotherapy. The study evaluates the use of CT for determining target volume, tumour volume and remission rate: 1. Concerning determination of target volume conventional roentgendiagnostic simulator methods are much inferior to CT aided planning; as for our patients changes of the target volume were necessary in 50%, in 22% the changes were crucial. This happened more often in non-small cell lung cancer than in small cell carcinomas. 2. The response rate (CR + PR) after radiotherapy (based on the calculated tumour volumes by CT) was 70 to 80%. The rate of CR of the primary was 45% (non-small cell carcinoma) and 67% (small cell carcinoma). 3. The crucial point for the evaluation of tumour remission after radiotherapy is the point of time. One to three months and four to nine months after irradiation we found complete remissions in 19% and 62%, respectively. Hence, the evaluation of treatment results earlier than three months after radiotherapy may be incorrect. We deem it indispensable to use CT for determination of target, calculation of dose distribution and accurate evaluation of tumour remission and side effects during and after irradiation of patients with bronchogenic carcinoma. (orig.) [de

  4. Radiotherapy in Cancer Management

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.

    2015-01-01

    Radiotherapy has been used for curative or palliative treatment of cancer, either alone or increasingly as part of a multimodality approach in conjunction with chemotherapy, immunotherapy or surgery. Radiation must be delivered in the safest and most effective way. The use of radiologic and nuclear medicine diagnostic techniques, e.g., the use of CT (Computerized Tomography) and PET/CT allow better detection and staging of diseases by displaying both morphological and functional abnormalities within the affected organs and are essential in the process of radiotherapy planning. Technical advances in radiotherapy have allowed better targeting of tumors, sparing of normal tissue and, in the case of radiosurgery, a decrease in the number of treatments. The IAEA Programme in Human Health aims to enhance the capabilities in Member States to address needs related to the treatment of diseases, including cancer, through the application of nuclear techniques. The Programme supports quality assurance in radiation medicine; DIRAC, the only radiation oncology-specific resource database world-wide; significant, innovative education and training programmes through telemedicine and e-learning accessible via the human health campus website. Technical expertise for country– and region–specific technical cooperation radiation-medicine projects is provided to establish or enhance radiation medicine worldwide. (author)

  5. Stereotactic intracranial radiotherapy: Dose prescription

    International Nuclear Information System (INIS)

    Schlienger, M.; Lartigau, E.; Nataf, F.; Mornex, F.; Latorzeff, I.; Lisbona, A.; Mahe, M.

    2012-01-01

    The aim of this article was the study of the successive steps permitting the prescription of dose in stereotactic intracranial radiotherapy, which includes radiosurgery and fractionated stereotactic radiotherapy. The successive steps studied are: the choice of stereotactic intracranial radiotherapy among the therapeutic options, based on curative or palliative treatment intent, then the selection of lesions according to size/volume, pathological type and their number permitting the choice between radiosurgery or fractionated stereotactic radiotherapy, which have the same methodological basis. Clinical experience has determined the level of dose to treat the lesions and limit the irradiation of healthy adjacent tissues and organs at risk structures. The last step is the optimization of the different parameters to obtain a safe compromise between the lesion dose and healthy adjacent structures. Study of dose-volume histograms, coverage indices and 3D imaging permit the optimization of irradiation. For lesions close to or included in a critical area, the prescribed dose is planned using the inverse planing method. Implementation of the successively described steps is mandatory to insure the prescription of an optimized dose. The whole procedure is based on the delineation of the lesion and adjacent healthy tissues. There are sometimes difficulties to assess the delineation and the volume of the target, however improvement of local control rates and reduction of secondary effects are the proof that the totality of the successive procedures are progressively improved. In practice, stereotactic intracranial radiotherapy is a continually improved treatment method, which constantly benefits from improvements in the choice of indications, imaging, techniques of irradiation, planing/optimization methodology and irradiation technique and from data collected from prolonged follow-up. (authors)

  6. Postoperative Radiotherapy in Prostate Cancer: The Case of the Missing Target

    International Nuclear Information System (INIS)

    Croke, Jennifer; Malone, Shawn; Roustan Delatour, Nicolas; Belanger, Eric; Avruch, Leonard; Morash, Christopher; Kayser, Cathleen; Underhill, Kathryn; Spaans, Johanna

    2012-01-01

    Purpose: Postoperative radiotherapy (XRT) increases survival in high-risk prostate cancer patients. Approximately 50% of patients on long-term follow-up relapse despite adjuvant XRT and the predominant site of failure remains local. Four consensus guidelines define postoperative clinical target volume (CTV) in prostate cancer. We explore the possibility that inadequate CTV coverage is an important cause of local failure. This study evaluates the utility of preoperative magnetic resonance imaging (MRI) in defining prostate bed CTV. Methods and Materials: Twenty prostate cancer patients treated with postoperative XRT who also had preoperative staging MRI were included. The four guidelines were applied and the CTVs were expanded to create planning target volumes (PTVs). Preoperative MRIs were fused with postoperative planning CT scans. MRI-based prostate and gross visible tumors were contoured. Three-dimensional (3D) conformal four- and six-field XRT plans were developed and dose–volume histograms analyzed. Subtraction analysis was conducted to assess the adequacy of prostate/gross tumor coverage. Results: Gross tumor was visible in 18 cases. In all 20 cases, the consensus CTVs did not fully cover the MRI-defined prostate. On average, 35% of the prostate volume and 32% of the gross tumor volume were missed using six-field 3D treatment plans. The entire MRI-defined gross tumor volume was completely covered in only two cases (six-field plans). The expanded PTVs did not cover the entire prostate bed in 50% of cases. Prostate base and mid-zones were the predominant site of inadequate coverage. Conclusions: Current postoperative CTV guidelines do not adequately cover the prostate bed and/or gross tumor based on preoperative MRI imaging. Additionally, expanded PTVs do not fully cover the prostate bed in 50% of cases. Inadequate CTV definition is likely a major contributing factor for the high risk of relapse despite adjuvant XRT. Preoperative imaging may lead to more

  7. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  8. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  9. Development of radiation oncology learning system combined with multi-institutional radiotherapy database (ROGAD)

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Akihiro; Iinuma, Masahiro; Kou, Hiroko [Kanazawa Univ. (Japan). School of Medicine; Harauchi, Hajime; Inamura, Kiyonari

    1999-09-01

    We have constructed and are operating a multi-institutional radiotherapy database ROGAD (Radiation Oncology Greater Area Database) since 1992. One of it's purpose is 'to optimize individual radiotherapy plans'. We developed Radiation oncology learning system combined with ROGAD' which conforms to that purpose. Several medical doctors evaluated our system. According to those evaluations, we are now confident that our system is able to contribute to improvement of radiotherapy results. Our final target is to generate a good cyclic relationship among three components: radiotherapy results according to ''Radiation oncology learning system combined with ROGAD.'; The growth of ROGAD; and radiation oncology learning system. (author)

  10. Processing and evaluation of image matching tools in radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.

    2004-11-01

    Cancer is a major problem of public health. Treatment can be done in a general or loco-regional way, in this last case medical images are important as they specify the localization of the tumour. The objective of the radiotherapy is to deliver a curative dose of radiation in the target volume while sparing the organs at risks (O.A.R.). The determination of the accurate localization of the targets volume as well as O.A.R. make it possible to define the ballistic of irradiation beams. After the description of the principles of radiotherapy and cancers treatment, we specify the clinical stakes of ocular, cerebral and prostatic tumours. We present a state of the art of image matching, the various techniques reviewed with an aim of being didactic with respect to the medical community. The results of matching are presented within the framework of the planning of the cerebral and prostatic radiotherapy in order to specify the types of applicable matching in oncology and more particularly in radiotherapy. Then, we present the prospects for this type of application according to various anatomical areas. Applications of automatic segmentation and the evaluation of the results in the framework of brain tumour are described after a review of the various segmentation methods according to anatomical localizations. We will see an original application: the digital simulation of the virtual tumoral growth and the comparison with the real growth of a cerebral tumour presented by a patient. Lastly, we will expose the future developments possible of the tools for image processing in radiotherapy as well as the tracks of research to be explored in oncology. (author)

  11. Dosimetric comparison of standard bi-dimensional radiotherapy, mono-isocentric three-dimensional and arc-therapy for a bilateral breast cancer case with ganglionary attack; Comparaison dosimetrique pour un cas de cancer du sein bilateral avec atteinte ganglionnaire de la radiotherapie bidimensionnelle standard, la radiotherapie tridimensionnelle mono-isocentrique et l'arctherapie

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, A. [Centre Leon-Berard, Lyon (France); Bodez, V.; Alric, K.; Chastel, D.; Mege, A. [Institut Sainte-Catherine, Avignon (France)

    2011-10-15

    The authors report a study which aimed at determining the optimal radiotherapy technique for a patient operated from a bilateral breast cancer with ganglionary attack and peculiar thoracic conformation. A dosimetric study has been performed. Target volumes and lung and heart coverages have been compared for three techniques: bi-dimensional and three-dimensional radiotherapy, and arc-therapy. It appears that arc-therapy would allow a dosimetric and therapeutic duration gain without improving the target volume coverage while increasing doses delivered to organs at risk. Short communication

  12. Insulin Increases Ceramide Synthesis in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    M. E. Hansen

    2014-01-01

    Full Text Available Aims. The purpose of this study was to determine the effect of insulin on ceramide metabolism in skeletal muscle. Methods. Skeletal muscle cells were treated with insulin with or without palmitate for various time periods. Lipids (ceramides and TAG were isolated and gene expression of multiple biosynthetic enzymes were quantified. Additionally, adult male mice received daily insulin injections for 14 days, followed by muscle ceramide analysis. Results. In muscle cells, insulin elicited an increase in ceramides comparable to palmitate alone. This is likely partly due to an insulin-induced increase in expression of multiple enzymes, particularly SPT2, which, when knocked down, prevented the increase in ceramides. In mice, 14 days of insulin injection resulted in increased soleus ceramides, but not TAG. However, insulin injections did significantly increase hepatic TAG compared with vehicle-injected animals. Conclusions. This study suggests that insulin elicits an anabolic effect on sphingolipid metabolism in skeletal muscle, resulting in increased ceramide accumulation. These findings reveal a potential mechanism of the deleterious consequences of the hyperinsulinemia that accompanies insulin resistance and suggest a possible novel therapeutic target to mitigate its effects.

  13. WEE1 inhibition sensitizes osteosarcoma to radiotherapy

    International Nuclear Information System (INIS)

    PosthumaDeBoer, Jantine; Würdinger, Thomas; Graat, Harm CA; Beusechem, Victor W van; Helder, Marco N; Royen, Barend J van; Kaspers, Gertjan JL

    2011-01-01

    The use of radiotherapy in osteosarcoma (OS) is controversial due to its radioresistance. OS patients currently treated with radiotherapy generally are inoperable, have painful skeletal metastases, refuse surgery or have undergone an intralesional resection of the primary tumor. After irradiation-induced DNA damage, OS cells sustain a prolonged G 2 cell cycle checkpoint arrest allowing DNA repair and evasion of cell death. Inhibition of WEE1 kinase leads to abrogation of the G 2 arrest and could sensitize OS cells to irradiation induced cell death. WEE1 expression in OS was investigated by gene-expression data analysis and immunohistochemistry of tumor samples. WEE1 expression in OS cell lines and human osteoblasts was investigated by Western blot. The effect of WEE1 inhibition on the radiosensitivity of OS cells was assessed by cell viability and caspase activation analyses after combination treatment. The presence of DNA damage was visualized using immunofluorescence microscopy. Cell cycle effects were investigated by flow cytometry and WEE1 kinase regulation was analyzed by Western blot. WEE1 expression is found in the majority of tested OS tissue samples. Small molecule drug PD0166285 inhibits WEE1 kinase activity. In the presence of WEE1-inhibitor, irradiated cells fail to repair their damaged DNA, and show higher levels of caspase activation. The inhibition of WEE1 effectively abrogates the irradiation-induced G 2 arrest in OS cells, forcing the cells into premature, catastrophic mitosis, thus enhancing cell death after irradiation treatment. We show that PD0166285, a small molecule WEE1 kinase inhibitor, can abrogate the G 2 checkpoint in OS cells, pushing them into mitotic catastrophe and thus sensitizing OS cells to irradiation-induced cell death. This suggests that WEE1 inhibition may be a promising strategy to enhance the radiotherapy effect in patients with OS

  14. DEGRO practical guidelines: radiotherapy of breast cancer III - radiotherapy of the lymphatic pathways

    International Nuclear Information System (INIS)

    Sautter-Bihl, M.L.; Sedlmayer, F.; Fussl, C.; Budach, W.; Dunst, J.; Feyer, P.; Fietkau, R.; Sauer, R.; Harms, W.; Piroth, M.D.; Souchon, R.; Wenz, F.; Haase, W.

    2014-01-01

    The purpose of this work is to update the practical guidelines for adjuvant radiotherapy of the regional lymphatics of breast cancer published in 2008 by the breast cancer expert panel of the German Society of Radiation Oncology (DEGRO). A comprehensive survey of the literature concerning regional nodal irradiation (RNI) was performed using the following search terms: ''breast cancer'', ''radiotherapy'', ''regional node irradiation''. Recent randomized trials were analyzed for outcome as well as for differences in target definition. Field arrangements in the different studies were reproduced and superimposed on CT slices with individually contoured node areas. Moreover, data from recently published meta-analyses and guidelines of international breast cancer societies, yielding new aspects compared to 2008, provided the basis for defining recommendations according to the criteria of evidence-based medicine. In addition to the more general statements of the German interdisciplinary S3 guidelines updated in 2012, this paper addresses indications, targeting, and techniques of radiotherapy of the lymphatic pathways after surgery for breast cancer. International guidelines reveal substantial differences regarding indications for RNI. Patients with 1-3 positive nodes seem to profit from RNI compared to whole breast (WBI) or chest wall irradiation alone, both with regard to locoregional control and disease-free survival. Irradiation of the regional lymphatics including axillary, supraclavicular, and internal mammary nodes provided a small but significant survival benefit in recent randomized trials and one meta-analysis. Lymph node irradiation yields comparable tumor control in comparison to axillary lymph node dissection (ALND), while reducing the rate of lymph edema. Data concerning the impact of 1-2 macroscopically affected sentinel node (SN) or microscopic metastases on prognosis are conflicting. Recent data suggest that the current restrictive use of RNI should be

  15. Accuracy verification of PET-CT image fusion and its utilization in target delineation of radiotherapy

    International Nuclear Information System (INIS)

    Wang Xuetao; Yu Jinming; Yang Guoren; Gong Heyi

    2005-01-01

    Objective: Evaluate the accuracy of co-registration of PET and CT (PET-CT) images on line with phantom, and utilize it on patients to provide clinical evidence for target delineation in radiotherapy. Methods: A phantom with markers and different volume cylinders was infused with various concentrations of 18 FDG, and scanned at 4 mm by PET and CT respectively. After having been transmitted into GE eNTEGRA and treatment planning system (TPS) workstations, the images were fused and reconstructed. The distance between the markers and the errors were monitored in PET and CT images respectively. The volume of cylinder in PET and CT images were measured and compared by certain pixel value proportion deduction method. The same procedure was performed on the pulmonary tumor image in ten patients. Results: eNTEGRA and TPS workstations had a good length linearity, but the fusion error of the latter was markedly greater than the former. Tumors in different volume filled by varying concentrations of 18 FDG required different pixel deduction proportion. The cylinder volume of PET and CT images were almost the same, so were the images of pulmonary tumor of ten patients. Conclusions: The accuracy of image co-registration of PET-CT on line may fulfill the clinical demand. Pixel value proportion deduction method can be used for target delineation on PET image. (authors)

  16. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    Science.gov (United States)

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  17. Akt1 deficiency diminishes skeletal muscle hypertrophy by reducing satellite cell proliferation.

    Science.gov (United States)

    Moriya, Nobuki; Miyazaki, Mitsunori

    2018-02-14

    Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.

  18. Sequential hemi-body radiotherapy in advanced multiple myeloma. [Side effects of indicated x-ray therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, J.P.; Bosch, A.; Raich, P.C.

    1979-01-01

    Eleven patients with advanced multiple myeloma refractory to standard chemotherapy were treated with a regimen of sequential hemi-body radiotherapy consisting of 800 rad midplane in a single dose to each half. 9/10 patients experienced significant relief of skeletal pain and there were 5/11 objective tumor responses with one complete remission. Treatment-related morbidity was significant and consisted primarily of nausea and emesis, bone marrow suppression, and pneumonitis. This therapy is helpful in the management of advanced myeloma, and should be studied earlier in the course of the disease.

  19. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications.

    Science.gov (United States)

    Ostrovidov, Serge; Hosseini, Vahid; Ahadian, Samad; Fujie, Toshinori; Parthiban, Selvakumar Prakash; Ramalingam, Murugan; Bae, Hojae; Kaji, Hirokazu; Khademhosseini, Ali

    2014-10-01

    Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.

  20. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy.

    Science.gov (United States)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-02-27

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  1. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    International Nuclear Information System (INIS)

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV

  2. Effect of radiotherapy on immunity function of cancer patients receiving radiotherapy

    International Nuclear Information System (INIS)

    Li Xinli; Zhu Shentao; Xu Jiuhong

    2003-01-01

    Objective: In order to observe the effect of radiotherapy on immunity function of cancer patients receiving radiotherapy. Methods: Cellular immunity is determined by APAAP; Humoral immunity is determined by transmission method. Results: The items of cellular immunity is lower than the control after radiotherapy. These items decrease continually. The difference between before and after radiotherapy has statistic significance. Of all Humoral immunity items, IgA, IgM decreased after radiotherapy and the difference has statistic significance. Conclusions: Radiotherapy can damage patients' immunity function

  3. Clinical Applications of 3-D Conformal Radiotherapy

    Science.gov (United States)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  4. A strategy to objectively evaluate the necessity of correcting detected target deviations in image guided radiotherapy

    International Nuclear Information System (INIS)

    Yue, Ning J.; Kim, Sung; Jabbour, Salma; Narra, Venkat; Haffty, Bruce G.

    2007-01-01

    Image guided radiotherapy technologies are being increasingly utilized in the treatment of various cancers. These technologies have enhanced the ability to detect temporal and spatial deviations of the target volume relative to planned radiation beams. Correcting these detected deviations may, in principle, improve the accuracy of dose delivery to the target. However, in many situations, a clinical decision has to be made as to whether it is necessary to correct some of the deviations since the relevant dosimetric impact may or may not be significant, and the corresponding corrective action may be either impractical or time consuming. Ideally this decision should be based on objective and reproducible criteria rather than subjective judgment. In this study, a strategy is proposed for the objective evaluation of the necessity of deviation correction during the treatment verification process. At the treatment stage, without any alteration from the planned beams, the treatment beams should provide the desired dose coverage to the geometric volume identical to the planning target volume (PTV). Given this fact, the planned dose distribution and PTV geometry were used to compute the dose coverage and PTV enclosure of the clinical target volume (CTV) that was detected from imaging during the treatment setup verification. The spatial differences between the detected CTV and the planning CTV are essentially the target deviations. The extent of the PTV enclosure of the detected CTV as well as its dose coverage were used as criteria to evaluate the necessity of correcting any of the target deviations. This strategy, in principle, should be applicable to any type of target deviations, including both target deformable and positional changes and should be independent of how the deviations are detected. The proposed strategy was used on two clinical prostate cancer cases. In both cases, gold markers were implanted inside the prostate for the purpose of treatment setup

  5. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

    Science.gov (United States)

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghreli...

  6. Effects of radiotherapy in the treatment of multiple myeloma

    International Nuclear Information System (INIS)

    Ochtrop, Thomas Alexander

    2015-01-01

    Palliative irradiation of osteolytic lesions is a considerable component in the treatment for patients with multiple myeloma. In this study, we analyzed the efficacy of irradiation in these patients. Patients and methods: We retrospectively analyzed 153 patients with multiple myeloma who were admitted to our department between 1989 and 2013. According to the staging system of Durie and Salmon 116 patients were classified as stage III. 107/153 patients were treated with radiotherapy of at least one and up to 6 bony lesions at different times. In order to evaluate the effect of local radiotherapy on pain relief and bone recalcification a uni- and multivariate analysis was performed using a binary logistic regression model to correct for multiple measurements. Complete information on dose, fractionation and volume of radiotherapy was available from 81 patients treated in 136 target volumes for pain relief, and from 69 patients treated in 108 target volumes for recalcification. Total radiation doses varied between 8 Gy to 50 Gy (median dose 25 Gy in 2.5 Gy fractions, 5 times a week). Results: Radiotherapy resulted in complete local pain relief in 31% and partial local pain relief in 54% of the patients. In the univariate analysis, higher total radiation doses (p = 0.023) and higher age (p = 0.014) at the time of radiotherapy were significantly associated with a higher likelihood of pain relief, whereas no significant association was detected for concurrent systemic treatment, type and stage of myeloma and location of bone lesions. The same variables were independent predictors for pain relief in the multivariate analysis. Recalcification was observed in 48% of irradiated bone lesions. In the uni- and multivariate analysis higher radiation doses were significantly associated (p = 0.048) with an increased likelihood of recalcification. Side effects of radiotherapy were generally mild. Conclusions: Higher total biological radiation doses were associated with better pain

  7. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    Science.gov (United States)

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  8. Planning target volumes for radiotherapy: how much margin is needed?

    International Nuclear Information System (INIS)

    Antolak, John A.; Rosen, Isaac I.

    1999-01-01

    Purpose: The radiotherapy planning target volume (PTV) encloses the clinical target volume (CTV) with anisotropic margins to account for possible uncertainties in beam alignment, patient positioning, organ motion, and organ deformation. Ideally, the CTV-PTV margin should be determined solely by the magnitudes of the uncertainties involved. In practice, the clinician usually also considers doses to abutting healthy tissues when deciding on the size of the CTV-PTV margin. This study calculates the ideal size of the CTV-PTV margin when only physical position uncertainties are considered. Methods and Materials: The position of the CTV for any treatment is assumed to be described by independent Gaussian distributions in each of the three Cartesian directions. Three strategies for choosing a CTV-PTV margin are analyzed. The CTV-PTV margin can be based on: 1. the probability that the CTV is completely enclosed by the PTV; 2. the probability that the projection of the CTV in the beam's eye view (BEV) is completely enclosed by the projection of the PTV in the BEV; and 3. the probability that a point on the edge of the CTV is within the PTV. Cumulative probability distributions are derived for each of the above strategies. Results: Expansion of the CTV by 1 standard deviation (SD) in each direction results in the CTV being entirely enclosed within the PTV 24% of the time; the BEV projection of the CTV is enclosed within the BEV projection of the PTV 39% of the time; and a point on the edge of the CTV is within the PTV 84% of the time. To have the CTV enclosed entirely within the PTV 95% of the time requires a margin of 2.8 SD. For the BEV projection of the CTV to be within the BEV projection of the PTV 95% of the time requires a margin of 2.45 SD. To have any point on the surface of the CTV be within the PTV 95% of the time requires a margin of 1.65 SD. Conclusion: In the first two strategies for selecting a margin, the probability of finding the CTV within the PTV is

  9. Radiotherapy in desmoid tumors. Treatment response, local control, and analysis of local failures

    Energy Technology Data Exchange (ETDEWEB)

    Santti, Kirsi; Beule, Annette; Tuomikoski, Laura; Jaeaeskelaeinen, Anna-Stina; Saarilahti, Kauko; Tarkkanen, Maija; Blomqvist, Carl [Helsinki University Hospital and University of Helsinki, Comprehensive Cancer Center, Helsinki (Finland); Roenty, Mikko [HUSLAB and University of Helsinki, Department of Pathology, Helsinki (Finland); Ihalainen, Hanna [Helsinki University Hospital and University of Helsinki, Department of Plastic Surgery, Helsinki (Finland)

    2017-04-15

    Desmoid tumors (aggressive fibromatosis) are rare soft tissue tumors which frequently recur after surgery. Desmoid tumors arise from musculoaponeurotic tissue in the extremities, head and neck, abdominal wall, or intra-abdominally. Our aim was to examine the outcome of radiotherapy of desmoid tumors in a single institution series. We evaluated 41 patients with desmoid tumors treated with 49 radiotherapies between 1987 and 2012. Radiologic images for response evaluation were reassessed and responses to treatment registered according to RECIST criteria 1.1. For patients with local failures radiation dose distribution was determined in each local failure volume using image co-registration. Recurrences were classified as in-target, marginal, or out-of-target. Prognostic factors for radiotherapy treatment failure were evaluated. Radiotherapy doses varied from 20-63 Gy (median 50 Gy) with a median fraction size of 2 Gy. The objective response rate to definitive radiotherapy was 55% (12/22 patients). Median time to response was 14 months. A statistically significant dose-response relation for definitive and postoperative radiotherapy was observed both in univariate (p-value 0.002) and in multivariate analysis (p-value 0.02) adjusted for potential confounding factors. Surgery before radiotherapy or surgical margin had no significant effect on time to progression. Nine of 11 (82%) local failures were classified as marginal and two of 11 (18%) in-target. None of the recurrences occurred totally out-of-target. Radiotherapy is a valuable option for treating desmoid tumors. Radiotherapy dose appears to be significantly associated to local control. (orig.) [German] Desmoide (aggressive Fibromatosen) sind seltene Weichteiltumore der muskulaeren Membranen von Kopf, Hals, Extremitaeten und Bauchwand. Ziel war es, die Wirksamkeit der Strahlentherapie bei aggressiver Fibromatose an einer einzelnen Klinik zu untersuchen. Ausgewertet wurden 41 Patienten mit aggressiver Fibromatose, die

  10. Processing and evaluation of image matching tools in radiotherapy; Mise en oeuvre et evaluation d'outils de fusion d'image en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Bondiau, P.Y

    2004-11-15

    Cancer is a major problem of public health. Treatment can be done in a general or loco-regional way, in this last case medical images are important as they specify the localization of the tumour. The objective of the radiotherapy is to deliver a curative dose of radiation in the target volume while sparing the organs at risks (O.A.R.). The determination of the accurate localization of the targets volume as well as O.A.R. make it possible to define the ballistic of irradiation beams. After the description of the principles of radiotherapy and cancers treatment, we specify the clinical stakes of ocular, cerebral and prostatic tumours. We present a state of the art of image matching, the various techniques reviewed with an aim of being didactic with respect to the medical community. The results of matching are presented within the framework of the planning of the cerebral and prostatic radiotherapy in order to specify the types of applicable matching in oncology and more particularly in radiotherapy. Then, we present the prospects for this type of application according to various anatomical areas. Applications of automatic segmentation and the evaluation of the results in the framework of brain tumour are described after a review of the various segmentation methods according to anatomical localizations. We will see an original application: the digital simulation of the virtual tumoral growth and the comparison with the real growth of a cerebral tumour presented by a patient. Lastly, we will expose the future developments possible of the tools for image processing in radiotherapy as well as the tracks of research to be explored in oncology. (author)

  11. Changes in skeletal muscle gene expression following clenbuterol administration

    Directory of Open Access Journals (Sweden)

    McIntyre Lauren M

    2006-12-01

    Full Text Available Abstract Background Beta-adrenergic receptor agonists (BA induce skeletal muscle hypertrophy, yet specific mechanisms that lead to this effect are not well understood. The objective of this research was to identify novel genes and physiological pathways that potentially facilitate BA induced skeletal muscle growth. The Affymetrix platform was utilized to identify gene expression changes in mouse skeletal muscle 24 hours and 10 days after administration of the BA clenbuterol. Results Administration of clenbuterol stimulated anabolic activity, as indicated by decreased blood urea nitrogen (BUN; P P Conclusion Global evaluation of gene expression after administration of clenbuterol identified changes in gene expression and overrepresented functional categories of genes that may regulate BA-induced muscle hypertrophy. Changes in mRNA abundance of multiple genes associated with myogenic differentiation may indicate an important effect of BA on proliferation, differentiation, and/or recruitment of satellite cells into muscle fibers to promote muscle hypertrophy. Increased mRNA abundance of genes involved in the initiation of translation suggests that increased levels of protein synthesis often associated with BA administration may result from a general up-regulation of translational initiators. Additionally, numerous other genes and physiological pathways were identified that will be important targets for further investigations of the hypertrophic effect of BA on skeletal muscle.

  12. Dosimetry applied to radiology and radiotherapy

    International Nuclear Information System (INIS)

    Yoshimura, Elisabeth Mateus

    2010-01-01

    Full text. The uses of ionizing radiation in medicine are increasing worldwide, and the population doses increase as well. The actual radiation protection philosophy is based on the balance of risks and benefits related to the practices, and patient dosimetry has an important role in the implementation of this point of view. In radiology the goal is to obtain an image with diagnostic quality with the minimum patient dose. In modern Radiotherapy the cure indexes are higher, giving rise to longer survival times to the patients. Dosimetry in radiotherapy helps the treatment planning systems to get a better protection to critical organs, with higher doses to the tumor, with a guarantee of better life quality to the patient. We will talk about the new trends in dosimetry of medical procedures, including experimental techniques and calculation tools developed to increase reliability and precision of dose determination. In radiology the main concerns of dosimetry are: the transition from film- radiography to digital image, the pediatric patient doses, and the choice of dosimetric quantities to quantify fluoroscopy and tomography patient doses. As far as Radiotherapy is concerned, there is a search for good experimental techniques to quantify doses to tissues adjacent to the target volumes in patients treated with new radiotherapy techniques, as IMRT and heavy particle therapy. (author)

  13. Phantom study of radiation doses outside the target volume brachytherapy versus external radiotherapy of early breast cancer

    International Nuclear Information System (INIS)

    Johansson, Bengt; Persson, Essie; Westman, Gunnar; Persliden, Jan

    2003-01-01

    Background and purpose: Brachytherapy is sometimes suggested as an adjuvant treatment after surgery of some tumours. When introducing this, it would be useful to have an estimate of the dose distribution to different body sites, both near and distant to target, comparing conventional external irradiation to brachytherapy. The aim of the present study was to determine radiation doses with both methods at different body sites, near and distant to target, in an experimental situation on an operated left sided breast cancer on a female Alderson phantom. Methods: Five external beam treatments with isocentric tangential fields were given by a linear accelerator. A specified dose of 1.0 Gy was given to the whole left sided breast volume. Five interstitial brachytherapy treatments were given to the upper, lateral quadrant of the left breast by a two plane, 10 needles implant. A dose of 1.0 Gy specified according to the Paris system was administered by a pulsed dose rate afterloading machine. Absorbed dose in different fixed dose points were measured by thermoluminescence dosimeters. Results: Both methods yielded an absorbed dose of the same size to the bone marrow and internal organs distant to target, 1.0-1.4% of the prescribed dose. There was a trend of lower doses to the lower half of the trunk and higher doses to the upper half of the trunk, respectively, by brachytherapy. A 90% reduction of absorbed dose with brachytherapy compared to external irradiation was found in the near-target region within 5 cm from target boundary where parts of the left lung and the heart are situated. If an adjuvant dose of 50 Gy is given with the external radiotherapy and brachytherapy, the absorbed dose in a part of the myocardium could be reduced from 31.8 to 2.1 Gy. Conclusions: Near target, brachytherapy yielded a considerably lower absorbed dose which is of special importance when considering radiation effects on the myocard and lungs. We could not demonstrate any difference of

  14. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling.

    Science.gov (United States)

    Cai, Hongchen; Liu, Aimin

    2016-12-20

    Indian Hedgehog (Ihh) regulates chondrocyte and osteoblast differentiation through the Glioma-associated oncogene homolog (Gli) transcription factors. Previous in vitro studies suggested that Speckle-type POZ protein (Spop), part of the Cullin-3 (Cul3) ubiquitin ligase complex, targets Gli2 and Gli3 for degradation and negatively regulates Hedgehog (Hh) signaling. In this study, we found defects in chondrocyte and osteoblast differentiation in Spop-null mutant mice. Strikingly, both the full-length and repressor forms of Gli3, but not Gli2, were up-regulated in Spop mutants, and Ihh target genes Patched 1 (Ptch1) and parathyroid hormone-like peptide (Pthlh) were down-regulated, indicating compromised Hh signaling. Consistent with this finding, reducing Gli3 dosage greatly rescued the Spop mutant skeletal defects. We further show that Spop directly targets the Gli3 repressor for ubiquitination and degradation. Finally, we demonstrate in a conditional mutant that loss of Spop results in brachydactyly and osteopenia, which can be rescued by reducing the dosage of Gli3. In summary, Spop is an important positive regulator of Ihh signaling and skeletal development.

  15. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  16. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  17. Extracranial stereotactic radiotherapy: Evaluation of PTV coverage and dose conformity

    International Nuclear Information System (INIS)

    Haedinger, U.; Thiele, W.; Wulf, J.

    2002-01-01

    During the past few years the concept of cranial sterotactic radiotherapy has been successfully extended to extracranial tumoral targets. In our department, hypofractionated treatment of tumours in lung, liver, abdomen, and pelvis is performed in the Stereotactic Body Frame (ELEKTA Instrument AB) since 1997. We present the evaluation of 63 consecutively treated targets (22 lung, 21 liver, 20 abdomen/pelvis) in 58 patients with respect to dose coverage of the planning target volume (PTV) as well as conformity of the dose distribution. The mean PTV coverage was found to be 96.3%±2.3% (lung), 95.0%±4.5% (liver), and 92.1%±5.2% (abdomen/pelvis). For the so-called conformation number we obtained values of 0.73±0.09 (lung), 0.77±0.10 (liver), and 0.70±0.08 (abdomen/pelvis). The results show that highly conformal treatment techniques can be applied also in extracranial stereotactic radiotherapy. This is primarily due to the relatively simple geometrical shape of most of the targets. Especially lung and liver targets turned out to be approximately spherically/cylindrically shaped, so that the dose distribution can be easily tailored by rotational fields. (orig.) [de

  18. A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy.

    Science.gov (United States)

    Palmer, Antony L; Nash, David; Kearton, John R; Jafari, Shakardokht M; Muscat, Sarah

    2017-12-01

    External dosimetry audit is valuable for the assurance of radiotherapy quality. However, motion management has not been rigorously audited, despite its complexity and importance for accuracy. We describe the first end-to-end dosimetry audit for non-SABR (stereotactic ablative body radiotherapy) lung treatments, measuring dose accumulation in a moving target, and assessing adequacy of target dose coverage. A respiratory motion lung-phantom with custom-designed insert was used. Dose was measured with radiochromic film, employing triple-channel dosimetry and uncertainty reduction. The host's 4DCT scan, outlining and planning techniques were used. Measurements with the phantom static and then moving at treatment delivery separated inherent treatment uncertainties from motion effects. Calculated and measured dose distributions were compared by isodose overlay, gamma analysis, and we introduce the concept of 'dose plane histograms' for clinically relevant interpretation of film dosimetry. 12 radiotherapy centres and 19 plans were audited: conformal, IMRT (intensity modulated radiotherapy) and VMAT (volumetric modulated radiotherapy). Excellent agreement between planned and static-phantom results were seen (mean gamma pass 98.7% at 3% 2 mm). Dose blurring was evident in the moving-phantom measurements (mean gamma pass 88.2% at 3% 2 mm). Planning techniques for motion management were adequate to deliver the intended moving-target dose coverage. A novel, clinically-relevant, end-to-end dosimetry audit of motion management strategies in radiotherapy is reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Simple Carotid-Sparing Intensity-Modulated Radiotherapy Technique and Preliminary Experience for T1-2 Glottic Cancer

    International Nuclear Information System (INIS)

    Rosenthal, David I.; Fuller, Clifton D.; Barker, Jerry L.; Mason, Bryan M.S.; Garcia, John A. C.; Lewin, Jan S.; Holsinger, F. Christopher; Stasney, C. Richard; Frank, Steven J.; Schwartz, David L.; Morrison, William H.; Garden, Adam S.; Ang, K. Kian

    2010-01-01

    Purpose: To investigate the dosimetry and feasibility of carotid-sparing intensity-modulated radiotherapy (IMRT) for early glottic cancer and to report preliminary clinical experience. Methods and Materials: Digital Imaging and Communications in Medicine radiotherapy (DICOM-RT) datasets from 6 T1-2 conventionally treated glottic cancer patients were used to create both conventional IMRT plans. We developed a simplified IMRT planning algorithm with three fields and limited segments. Conventional and IMRT plans were compared using generalized equivalent uniform dose and dose-volume parameters for in-field carotid arteries, target volumes, and organs at risk. We have treated 11 patients with this simplified IMRT technique. Results: Intensity-modulated radiotherapy consistently reduced radiation dose to the carotid arteries (p < 0.05) while maintaining the clinical target volume coverage. With conventional planning, median carotid V35, V50, and V63 were 100%, 100%, and 69.0%, respectively. With IMRT planning these decreased to 2%, 0%, and 0%, respectively (p < 0.01). Radiation planning and treatment times were similar for conventional radiotherapy and IMRT. Treatment results have been excellent thus far. Conclusions: Intensity-modulated radiotherapy significantly reduced unnecessary radiation dose to the carotid arteries compared with conventional lateral fields while maintaining clinical target volume coverage. Further experience and longer follow-up will be required to demonstrate outcomes for cancer control and carotid artery effects.

  20. Integration of molecular imaging in treatment planning and delivery of modern radiotherapy

    International Nuclear Information System (INIS)

    Jacob, V.; Wilkens, J.J.

    2011-01-01

    Among various imaging modalities currently available, positron emission tomography (PET) has the potential to visualize processes on a molecular level. Molecular imaging, often also referred to as functional or biological imaging, brought a new dimension to diagnostics and therapy of cancer by providing images of metabolism and other processes in the human body and in tumours. PET was first applied for diagnostics and staging of various tumours with high diagnostic precision. Modern radiotherapy asks increasingly for individualized treatment strategies, taking molecular imaging into account. Technical developments over the last years, in particular methods to register various imaging modalities within software packages for treatment planning and target delineation, facilitated the use of PET imaging in radiotherapy. In order to exploit the full potential of modern high-precision radiotherapy, exact imaging procedures are necessary, for example for precise target volume definition. In the long run, concepts employing an inhomogeneous dose prescription based on biological imaging may become routine in clinical applications, leading to individualized, biologically adaptive therapy. (orig.)

  1. Comparison of Heart and Coronary Artery Doses Associated With Intensity-Modulated Radiotherapy Versus Three-Dimensional Conformal Radiotherapy for Distal Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Yorke, Ellen D. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Goodman, Karyn A., E-mail: goodmank@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2012-08-01

    Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D

  2. Neural Stem Cell-Preserving External-Beam Radiotherapy of Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Barani, Igor J.; Cuttino, Laurie W.; Benedict, Stanley H.; Todor, Dorin; Bump, Edward A.; Wu Yan; Chung, Theodore D.; Broaddus, William C.; Lin, Peck-Sun

    2007-01-01

    Purpose: Recent discoveries have implicated neural stem cells (NSC) as the source of plasticity and repair in the mature mammalian brain. Treatment-induced NSC dysfunction may lead to observed toxicity. This study evaluates the feasibility of NSC-preserving external beam radiotherapy. Methods and Materials: A single computed tomography (CT) dataset depicting a right periventricular lesion was used in this study as this location reflects the most problematic geometric arrangement with respect to NSC preservation. Conventional and NSC preserving radiotherapy (RT) plans were generated for the same lesion using two clinical scenarios: cerebral metastatic disease and primary high-grade glioma. Disease-specific target volumes were used. Metastatic disease was conventionally treated with whole-brain radiotherapy (WBRT) to 3,750 cGy (15 fractions) followed by a single stereotactic radiosurgery (SRS) boost of 1,800 cGy to gross disease only. High-grade glioma was treated with conventional opposed lateral and anterior superior oblique beams to 4,600 cGy (23 fractions) followed by a 1,400 cGy (7 fractions) boost. NSC preservation was achieved in both scenarios with inverse-planned intensity modulated radiotherapy (IMRT). Results: Cumulative dose reductions of 65% (metastatic disease) and 25% (high-grade glioma) to the total volume of the intracranial NSC compartments were achieved with NSC-preserving IMRT plans. The reduction of entry and exit dose to NSC niches located contralateral to the target contributed most to NSC preservation. Conclusions: Neural stem cells preservation with current external beam radiotherapy techniques is achievable in context of both metastatic brain disease and high-grade glioma, even when the target is located adjacent to a stem cell compartment. Further investigation with clinical trials is warranted to evaluate whether NSC preservation will result in reduced toxicity

  3. An investigation of anxiety about radiotherapy deploying the radiotherapy categorical anxiety scale

    International Nuclear Information System (INIS)

    Shimotsu, Sakie; Karasawa, Kumiko; Ito, Kana; Saito, Anneyuko I.; Izawa, Hiromi; Kawase, Eri; Horikawa, Naoshi

    2010-01-01

    Radiotherapy is one of the major methods for treating cancer, but many patients undergoing radiotherapy have deep concerns about receiving radiation treatment. This problem is not generally appreciated and has not been adequately studied. The objective of this investigation was to empirically investigate the anxieties that cancer patients feel towards radiotherapy by using questionnaires to classify and quantitatively measure their concerns. A preliminary interview to develop a questionnaire was carried out with 48 patients receiving radiotherapy to discover their anxieties about on-going treatments. Subsequently, a main study was performed using a questionnaire with 185 patients to classify their types of anxiety and to ascertain the reliability and validity of the responses. Confirmatory factor analysis was then carried out with a 17-item Radiotherapy Categorical Anxiety Scale. Three anxiety factors were abstracted by factor analysis: adverse effects of radiotherapy, environment of radiotherapy, and treatment effects of radiotherapy. Reliability, content validity, and concurrent validity were obtained. The adequacy of the three-factor model of anxiety concerning radiotherapy was confirmed. A 17-item Radiotherapy Categorical Anxiety Scale was formulated to quantitatively measure the specific types of anxiety among cancer patients receiving radiotherapy. (author)

  4. Labelling techniques of biomolecules for targeted radiotherapy. Final report of a co-ordinated research project 1998-2002

    International Nuclear Information System (INIS)

    2003-07-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the first generation 131I, 89Sr, 32P, 90Y, etc., which are still widely utilized and accepted by the medical community, many other beta emitting radionuclides with relatively short half-lives such as 153Sm, 186Re, 188Re, 166Ho, 165Dy, etc. have also been recently made available for therapy and used with promising good results. In spite of the potential of targeted radiotherapy to treat a wide range of malignant conditions, routine clinical use is mostly confined to therapy of thyroid carcinoma, hyperthyroidism, metastatic bone pain and synovectomy. In most of the cases, the limitation is obviously not the availability of suitable radionuclides but rather the lack of suitable carrier molecules that would adequately concentrate these radionuclides in target tissues of interest. Based on the above considerations, the scope of the Co-ordinated Research Project (CRP) has focused on the synthesis of the required BFCAs for MoAbs and peptide labelling, development and

  5. Labelling techniques of biomolecules for targeted radiotherapy. Final report of a co-ordinated research project 1998-2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Malignant tumour disease accounts for approximately one third of deaths worldwide. Gastrointestinal adenocarcinomas, prostate and breast cancers are among the most frequently appearing tumours. Radiotherapy is an essential mode of treatment of all cancer patients either alone or in conjunction with other modalities like surgery and chemotherapy. In most cases radiotherapy is given using external radiation sources. It is also possible to administer radiotherapy by specifically localizing radioisotopes emitting particulate radiation in the tumour tissue. This targeted therapy has proved to have several advantages over external beam therapy, notably the possibility of selectively delivering higher radiation doses to the targeted tumour cells and treating multiple metastases. Procedures for therapy of thyroid carcinoma and hyper-thyroidism using radioiodine (131I) introduced about five decades ago, have stood the test of time and are still widely used the world over. In addition to the therapeutic nuclides of the first generation 131I, 89Sr, 32P, 90Y, etc., which are still widely utilized and accepted by the medical community, many other beta emitting radionuclides with relatively short half-lives such as 153Sm, 186Re, 188Re, 166Ho, 165Dy, etc. have also been recently made available for therapy and used with promising good results. In spite of the potential of targeted radiotherapy to treat a wide range of malignant conditions, routine clinical use is mostly confined to therapy of thyroid carcinoma, hyperthyroidism, metastatic bone pain and synovectomy. In most of the cases, the limitation is obviously not the availability of suitable radionuclides but rather the lack of suitable carrier molecules that would adequately concentrate these radionuclides in target tissues of interest. Based on the above considerations, the scope of the Co-ordinated Research Project (CRP) has focused on the synthesis of the required BFCAs for MoAbs and peptide labelling, development and

  6. Skeletal-related events in urological cancer patients with bone metastasis. A multicenter study in Japan

    International Nuclear Information System (INIS)

    Yokomizo, Akira; Koga, Hirofumi; Shinohara, Nobuo

    2010-01-01

    The objective of this study was to investigate the incidence of skeletal-related events (SRE) in urological cancer patients with bone metastases in Japan. Five hundred eleven patients with urological cancer and documented bone metastases treated from January 2003 to April 2008 in ten Japanese institutions were included in a retrospective analysis. Type and incidence of SRE (fracture, radiotherapy, spinal cord compression, surgery, hypercalcemia, and bone pain) were determined from patient medical records. The overall incidence of SRE, including 'pain', was 61%. The most common event was radiotherapy for bone metastases, with an incidence of 31%. The overall incidence of events seemed to be similar among Japanese and Western patients with prostate cancer and renal cell carcinoma when comparing data with previously published reports. Nevertheless, a much lower incidence of fracture (19.1%) was observed in Japanese renal cell carcinoma patients. The overall incidence of SRE in Japanese urological cancer patients with bone metastasis was similar to that in Western patients, but the incidence of fracture was lower in Japanese renal cancer patients. (author)

  7. Quality of radiotherapy reporting in randomized controlled trials of prostate cancer.

    Science.gov (United States)

    Soon, Yu Yang; Chen, Desiree; Tan, Teng Hwee; Tey, Jeremy

    2018-06-07

    Good radiotherapy reporting in clinical trials of prostate radiotherapy is important because it will allow accurate reproducibility of radiotherapy treatment and minimize treatment variations that can affect patient outcomes. The aim of our study is to assess the quality of prostate radiotherapy (RT) treatment reporting in randomized controlled trials in prostate cancer. We searched MEDLINE for randomized trials of prostate cancer, published from 1996 to 2016 and included prostate RT as one of the intervention arms. We assessed if the investigators reported the ten criteria adequately in the trial reports: RT dose prescription method; RT dose-planning procedures; organs at risk (OAR) dose constraints; target volume definition, simulation procedures; treatment verification procedures; total RT dose; fractionation schedule; conduct of quality assurance (QA) as well as presence or absence of deviations in RT treatment planning and delivery. We performed multivariate logistic regression to determine the factors that may influence the quality of reporting. We found 59 eligible trials. There was significant variability in the quality of reporting. Target volume definition, total RT dose and fractionation schedule were reported adequately in 97% of included trials. OAR constraints, simulation procedures and presence or absence of deviations in RT treatment planning and delivery were reported adequately in 30% of included trials. Twenty-four trials (40%) reported seven criteria or more adequately. Multivariable logistic analysis showed that trials that published their quality assurance results and cooperative group trials were more likely to have adequate quality in reporting in at least seven criteria. There is significant variability in the quality of reporting on prostate radiotherapy treatment in randomized trials of prostate cancer. We need to have consensus guidelines to standardize the reporting of radiotherapy treatment in randomized trials.

  8. EGFR and HER2 expression in primary cervical cancers and corresponding lymph node metastases: Implications for targeted radiotherapy

    International Nuclear Information System (INIS)

    Shen, Li; Shui, Yongjie; Wang, Xiaojia; Sheng, Liming; Yang, Zhengyan; Xue, Danfeng; Wei, Qichun

    2008-01-01

    Proteins overexpressed on the surface of tumor cells can be selectively targeted. Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) are among the most often targeted proteins. The level and stability of expression in both primary tumors and corresponding metastases is crucial in the assessment of a receptor as target for imaging in nuclear medicine and for various forms of therapy. So far, the expression of EGFR and HER2 has only been determined in primary cervical cancers, and we have not found published data regarding the receptor status in corresponding metastatic lesions. The goal of this study was to evaluate whether any of these receptors are suitable as target for clinical diagnosis and therapy. Expression of EGFR and HER2 was investigated immunohistochemically in both lymph node metastases and corresponding primary cervical cancers (n = 53). HER2 and EGFR expression was scored using HercepTest criteria (0, 1+, 2+ or 3+). EGFR overexpression (2+ or 3+) was found in 64% (35/53) of the primary cervical tumors and 60% (32/53) of the corresponding lymph node metastases. There was a good concordance between the primary tumors and the paired metastases regarding EGFR expression. Only four patients who had 2+ or 3+ in the primary tumors changed to 0 or 1+ in lymph node metastases, and another two cases changed the other way around. None of the primary tumors or the lymph node metastases expressed HER2 protein. The EGFR expression seems to be common and stable during cervical cancer metastasis, which is encouraging for testing of EGFR targeted radiotherapy. HER2 appears to be of poor interest as a potential target in the treatment of cervical cancer

  9. Advances in Radiotherapy for Head and Neck Cancer

    NARCIS (Netherlands)

    Gregoire, Vincent; Langendijk, Johannes A.; Nuyts, Sandra

    2015-01-01

    Over the last few decades, significant improvements have been made in the radiotherapy (RT) treatment of head and neck malignancies. The progressive introduction of intensity-modulated RT and the use of multimodality imaging for target volume and organs at risk delineation, together with the use of

  10. The role of primary radiotherapy in acromegaly (abstract)

    International Nuclear Information System (INIS)

    Ali, M.; Knob, G.

    1998-01-01

    The aim of the study was to evaluate the role of primary radiotherapy in acromegaly. Fifteen cases were randomly included in this study from 1989 to 1998. The patients were given external radiotherapy using Co/sup 60/ source and 200 cGy/F, 5F/week up to 5000 cGy, Tumor dose (TD). The target volume was irradiated by opposite parallel lateral field. The field size ranged from 4.5 to 6.5 cm. depending upon the tumor size and its extensions. These patients were continuously followed up for variable period depending upon the history of the patient and compliance by serial Growth Hormone (GH) assay and Clinical and Radiological evaluation. Out of these fifteen patients one died of cardiac sequelae. In the remaining treated patients majority has normal or continuously decreasing GH levels. The treatment of Acromegaly includes surgery, radiotherapy, medical treatment or the combination of these with variable success and non is perfect. We used radiotherapy as the primary modality, due to medical contraindication or refusal of patient for surgery and found that this is an effective modality in the treatment of acromegaly even in patients with extra sellar extension of the tumor. (author)

  11. Conformal radiotherapy: principles and classification

    International Nuclear Information System (INIS)

    Rosenwald, J.C.; Gaboriaud, G.; Pontvert, D.

    1999-01-01

    'Conformal radiotherapy' is the name fixed by usage and given to a new form of radiotherapy resulting from the technological improvements observed during the last ten years. While this terminology is now widely used, no precise definition can be found in the literature. Conformal radiotherapy refers to an approach in which the dose distribution is more closely 'conformed' or adapted to the actual shape of the target volume. However, the achievement of a consensus on a more specific definition is hampered by various difficulties, namely in characterizing the degree of 'conformality'. We have therefore suggested a classification scheme be established on the basis of the tools and the procedures actually used for all steps of the process, i.e., from prescription to treatment completion. Our classification consists of four levels: schematically, at level 0, there is no conformation (rectangular fields); at level 1, a simple conformation takes place, on the basis of conventional 2D imaging; at level 2, a 3D reconstruction of the structures is used for a more accurate conformation; and level 3 includes research and advanced dynamic techniques. We have used our personal experience, contacts with colleagues and data from the literature to analyze all the steps of the planning process, and to define the tools and procedures relevant to a given level. The corresponding tables have been discussed and approved at the European level within the Dynarad concerted action. It is proposed that the term 'conformal radiotherapy' be restricted to procedures where all steps are at least at level 2. (author)

  12. Conformal radiotherapy by intensity modulation of pediatrics tumors

    International Nuclear Information System (INIS)

    Leseur, J.; Le Prise, E.; Carrie, C.; Bernier, V.; Beneyton, V.; Mahe, M.A.; Supiot, S.

    2009-01-01

    The objective of this study is to take stock on the validated and potential indications of the conformal radiotherapy with intensity modulation ( intensity modulated radiotherapy I.M.R.T.) in pediatrics and to propose recommendations for its use as well as the adapted dose constraints. About 40 to 50% of children treated for a cancer are irradiated. The I.M.R.T., by linear accelerator or helical tomo-therapy has for aim to give a homogenous dose to the target volume and to save organs at risk. Its use in pediatrics seems particularly interesting because of the complexity of target volumes and the closeness of organs at risk. In compensation for these positive elements, the importance of low doses irradiation given in big volumes makes fear event consequences on growth and an increased incidence of secondary cancers in children suffering from tumors with high cure rates and long life expectancy. (N.C.)

  13. An intra-patient dose-escalation study of disodium pamidronate plus radiotherapy versus radiotherapy alone for the treatment of osteolytic metastases. Monitoring of recalcification using image-processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vassilis Kouloulias, E. [Dept. of Radiology, Aretaieion Univ. Hospital, Athens (Greece); Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece); John Kouvaris, R.; Antypas, C.; Mystakidou, K.; Moulopoulos, A.; Lambros Vlahos, J. [Dept. of Radiology, Aretaieion Univ. Hospital, Athens (Greece); Matsopoulos, G.; Nikolaos Uzunoglu, C. [Dept. of Electrical and Computer Engineering, Inst. of Communication and Computer Systems, National Technical Univ. of Athens (Greece)

    2003-07-01

    Objective: To evaluate the clinical benefit and mainly to monitor quantitatively the recalcification of osteolytic lesions after radiotherapy with or without intravenous infusion of disodium pamidronate (DP) in different doses. Patients and Methods: 42 patients with solitary lytic metastasis in weight-bearing bones were studied. Primary endpoints were the mean value and energy of gray-level histogram in plain radiographs (MVGLH and EGLH) and relative electron density (RED) of CT scans in bone lesions. In eleven patients (group A) the DP dose was increased stepwise from 90 up to 180 mg (flat dose), while in other 15 patients (group B) a flat dose of 180 mg was administered intravenously in 2 h. In both groups, the first session of DP was given concurrently with local radiotherapy (30 Gy in ten fractions, 5 days a week). Another 16 patients (group C) underwent radiotherapy only. Results: Morbidity related to pamidronate was mild. Significant differences from the baseline (p < 0.05, Wilcoxon test) were recorded for MVGLH, EGLH and RED values, regarding all groups. Improvement was significantly higher in patients of group B versus A, while the results of pamidronate groups (A and B) were superior to group C, concerning the above indices (p < 0.05, Mann-Whitney test). Additionally, pamidronate groups had significantly lower skeletal morbidity than group C. Conclusion: The 2-h infusional flat dose of 180 mg every 4 weeks seems to be tolerable and superior to 90 mg regarding palliation and mainly recalcification of osteolytic lesions. Radiotherapy alone is effective but inferior to the combined treatment. Last but not least, the findings of MVGLH, EGLH and RED indicate an important increase in bone mass and bone formation, which was difficult to be identified visually by the experts. (orig.)

  14. Comparison of the predictions of the LQ and CRE models for normal tissue damage due to biologically targeted radiotherapy with exponentially decaying dose rates

    International Nuclear Information System (INIS)

    O'Donoghue, J.A.; West of Schotland Health Boards, Glasgow

    1989-01-01

    For biologically targeted radiotherapy organ dose rates may be complex functions of time, related to the biodistribution kinetics of the delivery vehicle and radiolabel. The simples situation is where dose rates are exponentially decaying functions of time. Two normal tissue isoeffect models enable the effects of exponentially decaying dose rates to be addressed. These are the extension of the linear-quadratic model and the cumulative radiation effect model. This communication will compare the predictions of these models. (author). 14 refs.; 1 fig

  15. Radiotherapy of bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Heilmann, H.P.

    1982-01-01

    Radiotherapy of branchogenic carcinoma comprises; palliative treatment, postoperative or pre-operative radiotherapy, radiotherapy as part of a combination of chemotherapy and radiotherapy of small cell carcinoma and curative radiotherapy of non-operable non-small cell carcinoma. Atelectasis and obstruction are indications for palliative radiotherapy. Postoperative radiotherapy is given only in cases of incomplete resection or mediastinal metastases. In the treatment of small cell carcinoma by combined irradiation and chemotherapy the mediastinum and primary tumour are irradiated, generally after chemotherapy, and the C.N.S. receives prophylactic radiotherapy. Curative radiotherapy is indicated in cases of non-operable small cell carcinoma. Irradiation with doses of 60-70 Gy produced 5-years-survival rates of 10-14% in cases classified as T 1 -T 2 N 0 M 0 . (orig.) [de

  16. An Investigation of Methods for CT Synthesis in MR-only Radiotherapy

    DEFF Research Database (Denmark)

    Andreasen, Daniel

    In recent years, the interest in using magnetic resonance (MR) imaging in radiotherapy (RT) has increased. This is because MR has a superior soft tissue contrast compared to computed tomography (CT), which makes it a better modality for delineating the target volume (tumor) and possible organs...... at risk (OARs). In an MR/CT work-flow, independent MR and CT scans are acquired. The target and possible OARs are delineated on the MR and then transferred to CT by aligning the data using a registration. This introduces the risk of systematic registration errors especially in non-rigid body structures......, the consequence being a systematic miss of target or increased dose to healthy tissue. Radiotherapy based on MR as the only modality removes this uncertainty and simplifies the clinical work-flow. However, the information on electron density which is usually contained in the CT must now be derived from the MR...

  17. Targeted radiotherapy with 177 Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    International Nuclear Information System (INIS)

    Rodriguez C, J.; Murphy, C.A. de; Pedraza L, M.; Ferro F, G.; Murphy S, E.

    2006-01-01

    Malignant pancreas tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses after administration of 177 Lu-DOTA-TATE in mice as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (n=18) to obtain the 177 Lu-DOTA-TATE biokinetics and dosimetry. To estimate its therapeutic efficacy 87 MBq were injected in a tail vein of 3 mice and 19 days p.i. there were a partial relapse. There was an epithelial and sarcoma mixed tumour in the kidneys of mouse III. The absorbed dose to tumour, kidney and pancreas was 50.5 ± 7.2 Gy, 17.5 ± 2.5 Gy and 12.6 ± 2.3 Gy respectively. These studies justify further therapeutic and dosimetry estimations to ensure that 177 Lu-DOTA-TATE will act as expected in man considering its kidney radiotoxicity. (Author)

  18. The skeletal vascular system - Breathing life into bone tissue.

    Science.gov (United States)

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Target volume definition for external beam partial breast radiotherapy: Clinical, pathological and technical studies informing current approaches

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Coles, Charlotte E.; Yarnold, John R.

    2010-01-01

    Partial breast irradiation (PBI) is currently under investigation in several phase III trials and, following a recent consensus statement, its use off-study may increase despite ongoing uncertainty regarding optimal target volume definition. We review the clinical, pathological and technical evidence for target volume definition in external beam partial breast irradiation (EB-PBI). The optimal method of tumour bed (TB) delineation requires X-ray CT imaging of implanted excision cavity wall markers. The definition of clinical target volume (CTV) as TB plus concentric 15 mm margins is based on the anatomical distribution of multifocal and multicentric disease around the primary tumour in mastectomy specimens, and the clinical locations of local tumour relapse (LR) after breast conservation surgery. If the majority of LR originate from foci of residual invasive and/or intraduct disease in the vicinity of the TB after complete microscopic resection, CTV margin logically takes account of the position of primary tumour within the surgical resection specimen. The uncertain significance of independent primary tumours as sources of preventable LR, and of wound healing responses in stimulating LR, increases the difficulties in defining optimal CTV. These uncertainties may resolve after long-term follow-up of current PBI trials. By contrast, a commonly used 10 mm clinical to planning target volume (PTV) margin has a stronger evidence base, although departmental set-up errors need to be confirmed locally. A CTV-PTV margin >10 mm may be required in women with larger breasts and/or large seromas, whilst the role of image-guided radiotherapy with or without TB markers in reducing CTV-PTV margins needs to be explored.

  20. Radiotherapy physics

    International Nuclear Information System (INIS)

    Chen, G.T.Y.; Collier, J.M.; Lyman, J.T.; Pitluck, S.

    1982-01-01

    The Radiotherapy Physics Group works on the physical and biophysical aspects of charged particle radiotherapy. Our activities include the development of isosurvival beams (beams of uniform biological effect), computerized treatment planning development for charged particle radiotherapy, design of compensation to shape dose distributions, and development of dosimetry techniques to verify planned irradiations in both phantoms and patients

  1. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul

    2016-01-01

    , of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle......Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence...

  2. Development and clinical application of In Vivo dosimetry for radiotherapy

    International Nuclear Information System (INIS)

    Honda, Hirofumi; Oita, Masataka; Tominaga, Masahide; Oto, Yoshihiro

    2016-01-01

    In practical radiotherapy, it is important to deliver radiation to the target correctly and safely according to the treatment planning. The control of radiation dose delivered to each patient in radiotherapy mainly relies on the prediction based on the result of pre-treatment verification and irradiation accuracy of treatment machines. In Vivo dosimetry in radiotherapy is the procedure of quality assurance by the way of direct measurement for the patient whether the calculated prescribed dose in the treatment planning is delivered precisely. The history of In Vivo dosimetry is relatively long, and the TLD dosimetry for clinical radiotherapy started in early 1970's. After 1980's, owing to the development of semiconductor devices such as diode detectors, semiconductor arrays, the clinical applications for the dosimetry and diagnostic radiation imaging devices which contributed to the development of electric portal imaging devices and 2D semiconductor detectors were introduced. In recent years, these radiation measurement devices and non-invasive methods have been developed, they are becoming widespread as clinical practice. In this paper, we reviewed the In Vivo dosimetry devices and their characteristics, and technical application for radiotherapy. (author)

  3. Preclinical evaluation of intraoperative low-energy photon radiotherapy using sphericalapplicators in locally advanced prostate cancer

    Directory of Open Access Journals (Sweden)

    François eBuge

    2015-09-01

    Full Text Available Background: Surgery plus adjuvant radiotherapy is standard care for locally advanced prostatecancer (stage pT3R1. Intraoperative low-energy photon radiotherapy offers several advantages overexternal beam radiotherapy, and several systems are now available for its delivery, using sphericalapplicators which require only limited shielding. The aim of this study was to evaluate the feasibilityof this technique for the prostate bed.Materials & Methods: Applicators were assessed using MRI image data and cadavericdissection. In cadavers, targeted tissues, defined as a urethral section, both neurovascular bundlesections, the bladder neck and the beds of the seminal vesicles, were marked with metallic surgicalclips. Distances between clips and applicator were measured using CT. A dosimetric study of theapplication of 12 Gy at 5mm depth was performed using CT images of prostatectomized cadavers.Results: Using MRI images from 34 prostate cancer patients, we showed that the ideal applicatordiameter ranges from 45 to 70 mm. Using applicators of different sizes to encompass the prostate bedin nine cadavers, we showed that the distance between target tissues and applicator was less than 2mm for all target tissues except the upper extremity of the seminal vesicles (19 mm. Dosimetric studyshowed a good dose distribution in all target tissues in contact with the applicator, with a lowprobability of rectum and bladder complication.Conclusions: Intraoperative radiotherapy of the prostate bed is feasible, with good coverage oftargeted tissues. Clinical study of safety and efficacy is now required.

  4. Consideration of margins for hypo fractionated radiotherapy

    International Nuclear Information System (INIS)

    Herschtal, A.; Foroudi, F.; Kron, T.

    2010-01-01

    Full text: Geographical misses of the tumour are of concern in radiotherapy and are typically accommodated by introducing margins around the target. However, there is a trade-off between ensuring the target receives sufficient dose and minimising the dose to surrounding normal structures. Several methods of determining margin width have been developed with the most commonly used one proposed by M. VanHerk (VanHerk UROBP 52: 1407, 2002). VanHerk's model sets margins to achieve 95% of dose coverage for the target in 90% of patients. However, this model was derived assuming an infinite number of fractions. The aim of the present work is to estimate the modifications necessary to the model if a finite number of fractions are given. Software simulations were used to determine the true probability of a patient achieving 95% target coverage if different fraction numbers are used for a given margin width. Model parameters were informed by a large data set recently acquired at our institution using daily image guidance for prostate cancer patients with implanted fiducial markers. Assuming a 3 mm penumbral width it was found that using the VanHerk model only 74 or 54% of patients receive 95% of the prescription dose if 20 or 6 fractions are given, respectively. The steep dose gradients afforded by IMRT are likely to make consideration of the effects of hypofractionation more important. It is necessary to increase the margins around the target to ensure adequate tumour coverage if hypofractionated radiotherapy is to be used for cancer treatment. (author)

  5. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    in second-line treatment of non-small cell lung cancer ... receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell ... were divided into two groups: 106 patients were treated with conformal ... Conformal radiotherapy, Targeted therapy, Survival rate .... regression model was used for survival.

  6. A new methodological approach for PET implementation in radiotherapy treatment planning.

    Science.gov (United States)

    Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello

    2012-05-01

    In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.

  7. Dosimetric Evaluation of Intensity Modulated Radiotherapy and 4-Field 3-D Conformal Radiotherapy in Prostate Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Bora Uysal

    2013-03-01

    Full Text Available Objective: The purpose of this dosimetric study is the targeted dose homogeneity and critical organ dose comparison of 7-field Intensity Modulated Radiotherapy (IMRT and 3-D 4-field conformal radiotherapy. Study Design: Cross sectional study. Material and Methods: Twenty patients with low and moderate risk prostate cancer treated at Gülhane Military Medical School Radiation Oncology Department between January 2009 and December 2009 are included in this study. Two seperate dosimetric plans both for 7-field IMRT and 3D-CRT have been generated for each patient to comparatively evaluate the dosimetric status of both techniques and all the patients received 7-field IMRT. Results: Dose-comparative evaluation of two techniques revealed the superiority of IMRT technique with statistically significantly lower femoral head doses along with reduced critical organ dose-volume parameters of bladder V60 (the volume receiving 60 Gy and rectal V40 (the volume receiving 40 Gy and V60. Conclusion: It can be concluded that IMRT is an effective definitive management tool for prostate cancer with improved critical organ sparing and excellent dose homogenization in target organs of prostate and seminal vesicles.

  8. Skeletal surveys in multiple myeloma

    International Nuclear Information System (INIS)

    Sebes, J.I.; Niell, H.B.; Palmieri, G.M.A.; Reidy, T.J.

    1986-01-01

    Thirty-three patients with multiple myeloma were studied with serial skeletal surveys, serum immunoglobulin levels, and postabsorptive urinary hydroxyproline (Spot-HYPRO) determinations. Twenty receiving chemotherapy were also followed with skeletal surveys in order to evaluate bone response to treatment. A close association was found between skeletal findings and changes in immunoglubulin levels with positive correlation in 71% of the patients. A similar association was found between skeletal disease and Spot-HYPRO level changes in 65%. Five of 12 patients (42%) with partial or complete clinical response to chemotherapy, demonstrated improvement in the appearance of skeletal lesions. Positive correlation between the roentgenographic changes and clinical markers of myeloma as well as therapeutic response, indicates that skeletal surveys are useful and effective in monitoring patients with multiple myeloma. (orig.)

  9. Target tailoring and proton beam therapy to reduce small bowel dose in cervical cancer radiotherapy. A comparison of benefits

    International Nuclear Information System (INIS)

    Boer, Peter de; Westerveld, Henrike; Smit, Mark; Bel, Arjan; Rasch, Coen R.N.; Stalpers, Lukas J.A.; Schoot, Agustinus J.A.J. van de; Buist, Marrije R.

    2018-01-01

    The aim of the study was to investigate the potential clinical benefit from both target tailoring by excluding the tumour-free proximal part of the uterus during image-guided adaptive radiotherapy (IGART) and improved dose conformity based on intensity-modulated proton therapy (IMPT). The study included planning CTs from 11 previously treated patients with cervical cancer with a >4-cm tumour-free part of the proximal uterus on diagnostic magnetic resonance imaging (MRI). IGART and robustly optimised IMPT plans were generated for both conventional target volumes and for MRI-based target tailoring (where the non-invaded proximal part of the uterus was excluded), yielding four treatment plans per patient. For each plan, the V 15Gy , V 30Gy , V 45Gy and D mean for bladder, sigmoid, rectum and bowel bag were compared, and the normal tissue complication probability (NTCP) for ≥grade 2 acute small bowel toxicity was calculated. Both IMPT and MRI-based target tailoring resulted in significant reductions in V 15Gy , V 30Gy , V 45Gy and D mean for bladder and small bowel. IMPT reduced the NTCP for small bowel toxicity from 25% to 18%; this was further reduced to 9% when combined with MRI-based target tailoring. In four of the 11 patients (36%), NTCP reductions of >10% were estimated by IMPT, and in six of the 11 patients (55%) when combined with MRI-based target tailoring. This >10% NTCP reduction was expected if the V 45Gy for bowel bag was >275 cm 3 and >200 cm 3 , respectively, during standard IGART alone. In patients with cervical cancer, both proton therapy and MRI-based target tailoring lead to a significant reduction in the dose to surrounding organs at risk and small bowel toxicity. (orig.) [de

  10. Alterations of cAMP-dependent signaling in dystrophic skeletal muscle

    Directory of Open Access Journals (Sweden)

    Rüdiger eRudolf

    2013-10-01

    Full Text Available Autonomic regulation processes in striated muscles are largely mediated by cAMP/PKA-signaling. In order to achieve specificity of signaling its spatial-temporal compartmentation plays a critical role. We discuss here how specificity of cAMP/PKA-signaling can be achieved in skeletal muscle by spatio-temporal compartmentation. While a microdomain containing PKA type I in the region of the neuromuscular junction is important for post-synaptic, activity-dependent stabilization of the nicotinic acetylcholine receptor, PKA type I and II microdomains in the sarcomeric part of skeletal muscle are likely to play different roles, including the regulation of muscle homeostasis. These microdomains are due to specific A-kinase anchoring proteins, like rapsyn and myospryn. Importantly, recent evidence indicates that compartmentation of the cAMP/PKA-dependent signaling pathway and pharmacological activation of cAMP production are aberrant in different skeletal muscles disorders. Thus, we discuss here their potential as targets for palliative treatment of certain forms of dystrophy and myasthenia. Under physiological conditions, the neuropeptide, α-calcitonin-related peptide, as well as beta-adrenergic agonists are the most-mentioned natural triggers for activating cAMP/PKA signaling in skeletal muscle. While the precise domains and functions of these first messengers are still under investigation, agonists of β2-adrenoceptors clearly exhibit anabolic activity under normal conditions and reduce protein degradation during atrophic periods. Past and recent studies suggest direct sympathetic innervation of skeletal muscle fibers. In summary, the organization and roles of cAMP-dependent signaling in skeletal muscle are increasingly understood, revealing crucial functions in processes like nerve-muscle interaction and muscle trophicity.

  11. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT)

    International Nuclear Information System (INIS)

    Wang, Xin; Li, Guangjun; Zhang, Yingjie; Bai, Sen; Xu, Feng; Wei, Yuquan; Gong, Youling

    2013-01-01

    To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMAT plans successfully achieved better target dose conformity, reduced the V 20/30 , and mean dose of the left kidney, as well as the V 20/30 of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V 20 of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future

  12. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    International Nuclear Information System (INIS)

    Geinitz, Hans

    2015-01-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  13. Radiotherapy for cancer patients aged 85 or older

    International Nuclear Information System (INIS)

    Kan, Tomoko; Kodani, Kazuhiko; Michimoto, Koichi; Ogawa, Toshihide

    2009-01-01

    The purpose of this study was to investigate the clinical efficacy and problems of radiotherapy for cancer patients aged 85 or older. Fifty-three patients (26 men, 27 women) who underwent radiotherapy were analyzed retrospectively. Median age was 87 years (range; 85-99). Treatment policy was classified into curative, semi-curative (treatment field or total dose were limited due to performance status) and palliative therapy. Head-and-neck, bladder and skin cancer were the most common primary disease. The treatment was deemed curative in 27%, semi-curative in 13%, and palliative in 49%. Total dose of semi-curative therapy was almost same compared with curative therapy. The rate of treatment completion and effectiveness were not significantly different in curative therapy and semi-curative therapy. We should consider to reduce the field size to gross target volume, but to treat with substantial dose to make radiotherapy safe and effective. We must be aware that elderly patients have basically low tolerability. (author)

  14. Conformal Radiotherapy in the Treatment of Advanced Juvenile Nasopharyngeal Angiofibroma With Intracranial Extension: An Institutional Experience

    International Nuclear Information System (INIS)

    Chakraborty, Santam; Ghoshal, Sushmita; Patil, Vijay Maruti; Oinam, Arun Singh; Sharma, Suresh C.

    2011-01-01

    Purpose: To describe the results of conformal radiotherapy in advanced juvenile nasopharyngeal angiofibroma in a tertiary care institution. Methods and Materials: Retrospective chart review was conducted for 8 patients treated with conformal radiotherapy between 2006 and 2009. The median follow-up was 17 months. All patients had Stage IIIB disease with intracranial extension. Radiotherapy was considered as treatment because patients were deemed inoperable owing to extensive intracranial/intraorbital extension or proximity to optic nerve. All but 1 patient were treated with intensity-modulated radiotherapy using seven coplanar fields. Median (range) dose prescribed was 39.6 (30-46) Gy. Actuarial analysis of local control and descriptive analysis of toxicity profile was conducted. Results: Despite the large and complex target volume (median planning target volume, 292 cm 3 ), intensity-modulated radiotherapy achieved conformal dose distributions (median van't Reit index, 0.66). Significant sparing of the surrounding organs at risk was obtained. No significant Grade 3/4 toxicities were experienced during or after treatment. Actual local control at 2 years was 87.5%. One patient died 1 month after radiotherapy secondary to massive epistaxis. The remaining 7 patients had progressive resolution of disease and were symptom-free at last follow-up. Persistent rhinitis was the only significant toxicity, seen in 1 patient. Conclusions: Conformal radiotherapy results in good local control with minimal acute and late side effects in juvenile nasopharyngeal angiofibromas, even in the presence of advanced disease.

  15. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles.

    Science.gov (United States)

    Marrelli, Mauro Toledo; Brotto, Marco

    2016-11-02

    Malaria remains one of the most important infectious diseases in the world, being a significant public health problem associated with poverty and it is one of the main obstacles to the economy of an endemic country. Among the several complications, the effects of malaria seem to target the skeletal muscle system, leading to symptoms, such as muscle aches, muscle contractures, muscle fatigue, muscle pain, and muscle weakness. Malaria cause also parasitic coronary artery occlusion. This article reviews the current knowledge regarding the effect of malaria disease and the anti-malarial drugs on skeletal and cardiac muscles. Research articles and case report publications that addressed aspects that are important for understanding the involvement of malaria parasites and anti-malarial therapies affecting skeletal and cardiac muscles were analysed and their findings summarized. Sequestration of red blood cells, increased levels of serum creatine kinase and reduced muscle content of essential contractile proteins are some of the potential biomarkers of the damage levels of skeletal and cardiac muscles. These biomarkers might be useful for prevention of complications and determining the effectiveness of interventions designed to protect cardiac and skeletal muscles from malaria-induced damage.

  16. Patient positioning and immobilization in static and dynamic adaptive radiotherapy: an integral part of IGRT

    International Nuclear Information System (INIS)

    Oinam, Arun S.

    2016-01-01

    Radiotherapy treatment deals with different varieties of treatment procedures depending on type and stages of tumors. These treatments are grossly classified into palliative curative treatment. Immobilizations used in this treatment are designed with respect to this classification as well as the techniques. With the improvements in imaging technology used in Radiotherapy, patient position set up margin can be reduced as compared to the conventional radiotherapy. Still immobilization in patient position setup has been an integral part of Image Guided Radiotherapy (lGRT) and Stereotactic Radio Surgery (SRS) and Radiotherapy (SRT). Immobilization used in this technique should produce a minimum attenuation of radiation beam as well as positioning comfort and this will enhance the reproducibility for the daily position setup and immobilize the patient during the treatment. Advanced dose delivery technique like Intensity Modulated Radiotherapy (IMRT) and Volumetric Modulated Arc Radiotherapy (VMAT) can do differential dose sculpting around and inside the irregular shape different target volumes while minimizing the dose to the surrounding organs at risk. A small positional error may produce the mistreatment of target and exposure of organs at risk beyond the acceptable dose limits. Such a potential positional error can be reduced if different varieties of good immobilizing devices are properly utilized. The immobilization used in the treatment of Head and Neck and Cranial tumor can produce better immobilization as compared to abdominal and pelvic tumors which are forced to move by the inability to control movements of lung and heart as well as the very large flabby tissues which are attached skeleton bones

  17. Radiotherapy

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kulikov, V.A.; Mardynskij, Yu.S.

    1984-01-01

    The technique for roentgenotopometric and medicamentous preparation of patients for radiotherapy has been reported in detail. The features of planning and performing of remote, intracavitary and combined therapy in urinary bladder cancer are considered. The more effective methods of radiotherapy have been proposed taking into account own experience as well as literature data. The comparative evaluation of treatment results and prognosis are given. Radiation pathomorphism of tumors and tissues of urinary bladder is considered in detail. The problems of diagnosis, prophylaxis and treatment of complications following radiodiagnosis and radiotherapy in patients with urinary bladder cancer are illustrated widely

  18. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  19. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Unkelbach, Jan; Dittmann, Florian; Le, Matthieu; Shih, Helen A; Menze, Bjoern H; Ayache, Nicholas; Konukoglu, Ender

    2014-01-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  20. MRI-based treatment plan simulation and adaptation for ion radiotherapy using a classification-based approach

    International Nuclear Information System (INIS)

    Rank, Christopher M; Tremmel, Christoph; Hünemohr, Nora; Nagel, Armin M; Jäkel, Oliver; Greilich, Steffen

    2013-01-01

    In order to benefit from the highly conformal irradiation of tumors in ion radiotherapy, sophisticated treatment planning and simulation are required. The purpose of this study was to investigate the potential of MRI for ion radiotherapy treatment plan simulation and adaptation using a classification-based approach. Firstly, a voxelwise tissue classification was applied to derive pseudo CT numbers from MR images using up to 8 contrasts. Appropriate MR sequences and parameters were evaluated in cross-validation studies of three phantoms. Secondly, ion radiotherapy treatment plans were optimized using both MRI-based pseudo CT and reference CT and recalculated on reference CT. Finally, a target shift was simulated and a treatment plan adapted to the shift was optimized on a pseudo CT and compared to reference CT optimizations without plan adaptation. The derivation of pseudo CT values led to mean absolute errors in the range of 81 - 95 HU. Most significant deviations appeared at borders between air and different tissue classes and originated from partial volume effects. Simulations of ion radiotherapy treatment plans using pseudo CT for optimization revealed only small underdosages in distal regions of a target volume with deviations of the mean dose of PTV between 1.4 - 3.1% compared to reference CT optimizations. A plan adapted to the target volume shift and optimized on the pseudo CT exhibited a comparable target dose coverage as a non-adapted plan optimized on a reference CT. We were able to show that a MRI-based derivation of pseudo CT values using a purely statistical classification approach is feasible although no physical relationship exists. Large errors appeared at compact bone classes and came from an imperfect distinction of bones and other tissue types in MRI. In simulations of treatment plans, it was demonstrated that these deviations are comparable to uncertainties of a target volume shift of 2 mm in two directions indicating that especially

  1. DEGRO practical guidelines. Radiotherapy of breast cancer I. Radiotherapy following breast conserving therapy for invasive breast cancer

    International Nuclear Information System (INIS)

    Sedlmayer, F.

    2013-01-01

    Background and purpose: The aim of the present paper is to update the practical guidelines for postoperative adjuvant radiotherapy of breast cancer published in 2007 by the breast cancer expert panel of the German Society for Radiooncology (Deutsche Gesellschaft fuer Radioonkologie, DEGRO). The present recommendations are based on a revision of the German interdisciplinary S-3 guidelines published in July 2012. Methods: A comprehensive survey of the literature concerning radiotherapy following breast conserving therapy (BCT) was performed using the search terms 'breast cancer', 'radiotherapy', and 'breast conserving therapy'. Data from lately published meta-analyses, recent randomized trials, and guidelines of international breast cancer societies, yielding new aspects compared to 2007, provided the basis for defining recommendations according to the criteria of evidence-based medicine. In addition to the more general statements of the DKG (Deutsche Krebsgesellschaft), this paper addresses indications, target definition, dosage, and technique of radiotherapy of the breast after conservative surgery for invasive breast cancer. Results: Among numerous reports on the effect of radiotherapy during BCT published since the last recommendations, the recent EBCTCG report builds the largest meta-analysis so far available. In a 15 year follow-up on 10,801 patients, whole breast irradiation (WBI) halves the average annual rate of disease recurrence (RR 0.52, 0.48-0.56) and reduces the annual breast cancer death rate by about one sixth (RR 0.82, 0.75-0.90), with a similar proportional, but different absolute benefit in prognostic subgroups (EBCTCG 2011). Furthermore, there is growing evidence that risk-adapted dose augmentation strategies to the tumor bed as well as the implementation of high precision RT techniques (e.g., intraoperative radiotherapy) contribute substantially to a further reduction of local relapse rates. A main focus of ongoing research lies in partial breast

  2. Whole-body MRI in comparison to skeletal scintigraphy for detection of skeletal metastases in patients with solid tumors

    International Nuclear Information System (INIS)

    Ghanem, N.; Altehoefer, C.; Winterer, J.; Schaefer, O.; Bley, T.A.; Langer, M.; Kelly, T.; Moser, E.

    2004-01-01

    The aim of this study was to compare the diagnostic efficacy of whole-body magnetic resonance imaging (WB-MRI) as a new and rapid examination technique with skeletal scintigraphy for detection of skeletal metastases from solid tumors. In 129 patients with solid malignant tumors, WB-MRI was performed for individual comparison with skeletal scintigraphy. Examinations were performed with the innovative AngioSURF trademark rolling table with integrated phased array surface coil and coronary TIRM sequences for different body regions. The results for WB-MRI and skeletal scintigraphy were concordant in 81% of the cases, whereby both procedures excluded skeletal metastases in 43%. WB-MRI and skeletal scintigraphy demonstrated skeletal metastases in 38% of the cases, whereby WB-MRI provided more comprehensive findings in 45%. In 12% of the cases, skeletal scintigraphy was superior to WB-MRI and in 19% the findings were discordant, whereby WB-MRI detected skeletal metastases in 15 cases which had not been found on skeletal scintigraphy. In nine cases, skeletal scintigraphy was positive when the WB-MRI was negative. In 60% of the cases, WB-MRI evidenced tumor-associated findings. WB-MRI represents a promising new staging technique for detection of skeletal metastases, which is more sensitive in many cases than skeletal scintigraphy in detecting and assessing the extent of skeletal metastases - and tumor-associated findings that are relevant for treatment strategy. (orig.) [de

  3. Consensus Guidelines for Delineation of Clinical Target Volume for Intensity-Modulated Pelvic Radiotherapy for the Definitive Treatment of Cervix Cancer

    International Nuclear Information System (INIS)

    Lim, Karen; Small, William; Portelance, Lorraine; Creutzberg, Carien; Juergenliemk-Schulz, Ina M.; Mundt, Arno; Mell, Loren K.; Mayr, Nina; Viswanathan, Akila; Jhingran, Anuja; Erickson, Beth; De Los Santos, Jennifer; Gaffney, David; Yashar, Catheryn; Beriwal, Sushil; Wolfson, Aaron

    2011-01-01

    Purpose: Accurate target definition is vitally important for definitive treatment of cervix cancer with intensity-modulated radiotherapy (IMRT), yet a definition of clinical target volume (CTV) remains variable within the literature. The aim of this study was to develop a consensus CTV definition in preparation for a Phase 2 clinical trial being planned by the Radiation Therapy Oncology Group. Methods and Materials: A guidelines consensus working group meeting was convened in June 2008 for the purposes of developing target definition guidelines for IMRT for the intact cervix. A draft document of recommendations for CTV definition was created and used to aid in contouring a clinical case. The clinical case was then analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with kappa statistics as a measure of agreement between participants. Results: Nineteen experts in gynecological radiation oncology generated contours on axial magnetic resonance images of the pelvis. Substantial STAPLE agreement sensitivity and specificity values were seen for gross tumor volume (GTV) delineation (0.84 and 0.96, respectively) with a kappa statistic of 0.68 (p < 0.0001). Agreement for delineation of cervix, uterus, vagina, and parametria was moderate. Conclusions: This report provides guidelines for CTV definition in the definitive cervix cancer setting for the purposes of IMRT, building on previously published guidelines for IMRT in the postoperative setting.

  4. Results of patient specific quality assurance for patients undergoing stereotactic ablative radiotherapy for lung lesions

    International Nuclear Information System (INIS)

    Hardcastle, Nicholas; Clements, Natalie; Cramb, Jim; Wanigaratne, Derrick M.; Chesson, Brent; Aarons, Yolanda; Siva, Shankar; Ball, David; Kron, Tomas

    2014-01-01

    Hypofractionated image guided radiotherapy of extracranial targets has become increasingly popular as a treatment modality for inoperable patients with one or more small lesions, often referred to as stereotactic ablative body radiotherapy (SABR). This report details the results of the physical quality assurance (QA) program used for the first 33 lung cancer SABR radiotherapy 3D conformal treatment plans in our centre. SABR involves one or few fractions of high radiation dose delivered in many small fields or arcs with tight margins to mobile targets often delivered through heterogeneous media with non-coplanar beams. We have conducted patient-specific QA similar to the more common intensity modulated radiotherapy QA with particular reference to motion management. Individual patient QA was performed in a Perspex phantom using point dose verification with an ionisation chamber and radiochromic film for verification of the dose distribution both with static and moving detectors to verify motion management strategies. While individual beams could vary by up to 7 %, the total dose in the target was found to be within ±2 % of the prescribed dose for all 33 plans. Film measurements showed qualitative and quantitative agreement between planned and measured isodose line shapes and dimensions. The QA process highlighted the need to account for couch transmission and demonstrated that the ITV construction was appropriate for the treatment technique used. QA is essential for complex radiotherapy deliveries such as SABR. We found individual patient QA helpful in setting up the technique and understanding potential weaknesses in SABR workflow, thus providing confidence in SABR delivery.

  5. Planning Target Margin Calculations for Prostate Radiotherapy Based on Intrafraction and Interfraction Motion Using Four Localization Methods

    International Nuclear Information System (INIS)

    Beltran, Chris; Herman, Michael G.; Davis, Brian J.

    2008-01-01

    Purpose: To determine planning target volume (PTV) margins for prostate radiotherapy based on the internal margin (IM) (intrafractional motion) and the setup margin (SM) (interfractional motion) for four daily localization methods: skin marks (tattoo), pelvic bony anatomy (bone), intraprostatic gold seeds using a 5-mm action threshold, and using no threshold. Methods and Materials: Forty prostate cancer patients were treated with external radiotherapy according to an online localization protocol using four intraprostatic gold seeds and electronic portal images (EPIs). Daily localization and treatment EPIs were obtained. These data allowed inter- and intrafractional analysis of prostate motion. The SM for the four daily localization methods and the IM were determined. Results: A total of 1532 fractions were analyzed. Tattoo localization requires a SM of 6.8 mm left-right (LR), 7.2 mm inferior-superior (IS), and 9.8 mm anterior-posterior (AP). Bone localization requires 3.1, 8.9, and 10.7 mm, respectively. The 5-mm threshold localization requires 4.0, 3.9, and 3.7 mm. No threshold localization requires 3.4, 3.2, and 3.2 mm. The intrafractional prostate motion requires an IM of 2.4 mm LR, 3.4 mm IS and AP. The PTV margin using the 5-mm threshold, including interobserver uncertainty, IM, and SM, is 4.8 mm LR, 5.4 mm IS, and 5.2 mm AP. Conclusions: Localization based on EPI with implanted gold seeds allows a large PTV margin reduction when compared with tattoo localization. Except for the LR direction, bony anatomy localization does not decrease the margins compared with tattoo localization. Intrafractional prostate motion is a limiting factor on margin reduction

  6. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    International Nuclear Information System (INIS)

    Cui, G; Trakul, N; Chang, E; Shiu, A

    2016-01-01

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  7. SU-F-T-644: Reproducibility of Target Position Using Moderate Voluntary Breath- Hold During Liver Stereotactic Ablative Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Cui, G; Trakul, N; Chang, E; Shiu, A [University Southern California, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To evaluate the reproducibility of target position using moderate voluntary breath-hold during liver stereotactic ablative radiotherapy (SABR). Methods: Two patients who underwent liver SABR on a Varian TrueBeam STx linac were used for this study. Fiducial markers were placed in and around the target in the liver as surrogates for the target position and motion. GTVs were contoured by assessing tumor extent on contrast enhanced CT. The PTV was created from the GTV by adding 2 mm margins to account for the residual motion during breath-holds. A portable biofeedback system was used to facilitate the breath-hold to a reproducible position. The Varian RPM system was used for gating the linac. Proceeding each treatment, orthogonal kV pairs were taken, and alignment to nearby bony anatomy was performed. Then the breath-hold CBCT was acquired to align the fiducial markers. On-line fluoroscopy was used to fine-tune the breath-hold gating thresholds to correlate with the positions of the fiducial markers. The inter-fraction reproducibility of the target was evaluated by the offsets of the daily breath-hold CBCTs from the paired kV matches as a direct measure of the target position relative to the bony anatomy. The intra-fraction reproducibility of the target position was assessed by the gated window of the RPM marker block for each fraction. Results: The absolute mean offsets between the CBCT and paired kV matches in the vertical, longitudinal, and lateral directions were 0.06 cm, 0.10 cm, and 0.06 cm for patient 1, and 0.37 cm, 0.62 cm, and 0.09 cm for patient 2. The gated window of the RPM marker block for the breath-hold for each fraction was within 0.63 ± 0.16 cm and 0.59 ± 0.12 cm for patients 1 and 2, respectively. Conclusion: Moderate voluntary breath-hold showed good inter- and intra-fraction reproducibility of target position during liver SABR.

  8. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  9. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok

    2013-01-01

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  10. A New Cancer Radiotherapy System Using Multi Robotic Manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Lee, Nam Ho; Lee, Byung Chul; Jeung, Kyung Min; Lee, Seong Uk; Bae, Yeong Geol; Na, Hyun Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The CyberKnife system is state-of-the-art cancer treatment equipment that combines an image tracking technique, artificial intelligence software, robot technology, accelerator technology, and treatment simulation technology. The current CyberKnife System has significant shortcomings. The biggest problem is that it takes a longer time to treat a tumor. A long treatment time gives stress to patients. Furthermore it makes the patients uncomfortable with radiation and thus it is difficult to measure the exact radiation dose rate to the tumor in the processing. Linear accelerators for radiation treatment are dependent on imports, and demand high maintenance cost. This also makes the treatment cost higher and prevents the popularization of radiation. To solve the disadvantages of the existing CyberKnife, a radiation treatment robot system applied to several articulated robots is suggested. Essential element techniques for new radiotherapy robot system are investigated and some problems of similar existing systems are analyzed. This paper presents a general configuration of a new radiation robot treatment system including with a quantitative goal of the requirement techniques. This paper described a new radiotherapy robot system to track the tumor using multiple articulated robots in real time. The existing CyberKnife system using a single robot arm has disadvantages of a long radiotherapy time, high medical fee, and inaccurate measurement of the radiotherapy dose. So a new radiotherapy robot system for tumors has been proposed to solve the above problems of conventional CyberKnife systems. Necessary technologies to configure new the radiotherapy robot system have been identified. Quantitative targets of each technology have been established. Multiple robot arms are adopted to decrease the radiotherapy time. The results of this research are provided as a requisite technology for a domestic radiotherapy system and are expected to be the foundation of new technology. The

  11. Lyophilized skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.

    1983-01-01

    This invention encompasses a process for producing a dry-powder skeletal imaging kit. An aqueous solution of a diphosphonate, a stannous reductant, and, optionally, a stabilizer is prepared. The solution is adjusted to a pH within the range 4.2 to 4.8 and the pH-adjusted solution is then lyophilized. The adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This improved performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent

  12. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis.

    Science.gov (United States)

    Kumar, Avinash; Davuluri, Gangarao; Silva, Rafaella Nascimento E; Engelen, Marielle P K J; Ten Have, Gabrie A M; Prayson, Richard; Deutz, Nicolaas E P; Dasarathy, Srinivasan

    2017-06-01

    Sarcopenia or skeletal muscle loss is a frequent, potentially reversible complication in cirrhosis that adversely affects clinical outcomes. Hyperammonemia is a consistent abnormality in cirrhosis that results in impaired skeletal muscle protein synthesis and breakdown (proteostasis). Despite the availability of effective ammonia-lowering therapies, whether lowering ammonia restores proteostasis and increases muscle mass is unknown. Myotube diameter, protein synthesis, and molecular responses in C2C12 murine myotubes to withdrawal of ammonium acetate following 24-hour exposure to 10 mM ammonium acetate were complemented by in vivo studies in the hyperammonemic portacaval anastomosis rat and sham-operated, pair-fed Sprague-Dawley rats treated with ammonia-lowering therapy by l-ornithine l-aspartate and rifaximin orally for 4 weeks. We observed reduced myotube diameter, impaired protein synthesis, and increased autophagy flux in response to hyperammonemia, which were partially reversed following 24-hour and 48-hour withdrawal of ammonium acetate. Consistently, 4 weeks of ammonia-lowering therapy resulted in significant lowering of blood and skeletal muscle ammonia, increase in lean body mass, improved grip strength, higher skeletal muscle mass and diameter, and an increase in type 2 fibers in treated compared to untreated portacaval anastomosis rats. The increased skeletal muscle myostatin expression, reduced mammalian target of rapamycin complex 1 function, and hyperammonemic stress response including autophagy markers normally found in portacaval anastomosis rats were reversed by treatment with ammonia-lowering therapy. Despite significant improvement, molecular and functional readouts were not completely reversed by ammonia-lowering measures. Ammonia-lowering therapy results in improvement in skeletal muscle phenotype and function and molecular perturbations of hyperammonemia; these preclinical studies complement previous studies on ammonia-induced skeletal muscle

  13. National arrangements for radiotherapy

    International Nuclear Information System (INIS)

    2007-01-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee

  14. Whither radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W M

    1987-03-01

    The 1986 Glyn Evans Memorial Lecture, given at the Joint Provincial Meeting of the Royal College of Radiologists, Sheffield, September 1986, sketches an outline of the history of radiotherapy and discusses the future development of the art. Topics included are siting of centres, training needs, the relationship of radiotherapy to other medical specialities, and the advantages and disadvantages of radiotherapy practitioners forming a separate medical College. (U.K.)

  15. Radiotherapy in bladder cancer

    International Nuclear Information System (INIS)

    Rozan, R.

    1992-01-01

    In 1992, the problem of the vesical radiotherapy is not resolved. The author presents the situation and the different techniques of radiotherapy in bladder cancers: external radiotherapy, only and associated with surgery, interstitial curietherapy and non-classical techniques as per operative radiotherapy, neutron therapy and concurrent radiotherapy with chemotherapy. In order to compare their efficiency, the five-year survival are given in all cases.(10 tabs)

  16. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  17. Experiment study with baculovirus-mediated transfer of the thyroid sodium/iodide symporter gene into thyroid cancer for a targeted radiotherapy

    International Nuclear Information System (INIS)

    Zhang Yifan; Li Biao; Zhao Long; You Bei; Yin Guizhi; Zhu Chengmo

    2004-01-01

    Objective: To explore the feasibility of thyroid cancers for radiotherapy by using baculoviral vector to deliver the NIS gene into the tumor cells. Method: Constructed a recombinant baculovirus encoding the human NIS gene under the control of the cytomegalovirus promoter. Using a mouse monoclonal antibody and a FITC-labeled antimouse antibody to confirm expression of the NIS protein of infected tumor cells by immunofluorescence. In vitro iodide uptake experiments were carded out on BacNIS-infected tumor cells to further characterize the BacNIS virus, and cell killing with 131I and clonogenic assay were performed on BacNIS-infected cell to observe the selective killing effect of 1311 on NIS-expressing cells. Results: Infection of thyroidcancer cells (FTC-133, W3) with BacNIS resulted in perchlorate-sensitive 125I uptake by these cells to a higher level than that in noninfected cells. But 1251 uptake of 8505C is very low. Demonstrating that the BacNIS vector can function in tumor cells. In addition, AdNIS-infected tumor cells were selectively killed by exposure to 1311, as revealed by clonogenicassays, higher than that in nontreated tumors. Conclusions: AdNIS is very efficient in triggering iodide uptake by infected tumor cell, outlining the potential of this novel cancer gene therapy approach for a targeted radiotherapy. (authors)

  18. 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: Comparison with a conventional technique using individual margins

    International Nuclear Information System (INIS)

    Hof, Holger; Rhein, Bernhard; Haering, Peter; Kopp-Schneider, Annette; Debus, Juergen; Herfarth, Klaus

    2009-01-01

    Purpose: To investigate the dosimetric benefit of integration of 4D-CT in the planning target volume (PTV) definition process compared to conventional PTV definition using individual margins in stereotactic body radiotherapy (SBRT) of lung tumours. Material and methods: Two different PTVs were defined: PTV conv consisting of the helical-CT-based clinical target volume (CTV) enlarged isotropically for each spatial direction by the individually measured amount of motion in the 4D-CT, and PTV 4D encompassing the CTVs defined in the 4D-CT phases displaying the extremes of the tumour position. Tumour motion as well as volumetric and dosimetric differences and relations of both PTVs were evaluated. Results: Volumetric examinations revealed a significant reduction of the mean PTV by 4D-CT from 57.7 to 40.7 cm 3 (31%) (p 4D in PTV conv (r = -0.69, 90% confidence limits: -0.87 and -0.34, p = 0.007). Mean lung dose (MLD) was decreased significantly by 17% (p < 0.001). Conclusions: In SBRT of lung tumours the mere use of individual margins for target volume definition cannot compensate for the additional effects that the implementation of 4D-CT phases can offer.

  19. Experimental radiotherapy and clinical radiobiology. Vol. 19. Proceedings; Experimentelle Strahlentherapie und Klinische Strahlenbiologie. Bd. 19. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Michael; Dahm-Daphi, Jochen; Dikomey, Ekkehard; Petersen, Cordula; Rodemann, H Peter; Zips, Daniel [eds.

    2010-12-18

    The proceedings include review contributions on radio-oncology, and new radiation technologies and molecular prediction; and poster sessions on the following topics: hypoxia; molecular mechanisms of radiation resistance; molecular targeting; DNA repair; biological imaging; biology of experimental radiations; normal tissue toxicity; modern radiotherapy; tumor hypoxia and metabolic micro milieu; immune system and radiotherapy.

  20. Skeletal imaging composition

    International Nuclear Information System (INIS)

    Vanduzee, B.F.; Degenhardt, C.R.

    1983-01-01

    This invention is based on the discovery that the adjustment of pH, within a particular range, during the process of manufacturing lyophilized diphosphonate-containing skeletal imaging kits yields a kit which produces a technetium skeletal imaging agent with superior imaging properties. This increased performance is manifested through faster blood clearance and higher skeletal uptake of the technetium imaging agent. The process for producing a dry-powder imaging kit comprises the steps of: preparing a solution of a diphosphonate carrier, stannous reductant, and a stabilizer in water; adjusting the pH to between 5.5 and 6.5; and lyophilizing the solution

  1. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance.

    Science.gov (United States)

    Bassett, J H Duncan; Williams, Graham R

    2016-04-01

    The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.

  2. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Munzenrider, J.E.; Liebsch, N.J.; O'Farrell, D.; Efird, J.; Daly, W.; Suit, H.D.

    1996-01-01

    Purpose/Objective: Brainstem tolerance to inhomogenous radiation doses applied by modern conformal radiotherapy has not yet been examined. The aim of this study was to analyse the incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Materials and Methods: Between 1974 and 1995, 367 patients with chordomas (n=195) and chondrosarcomas (n=172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. All patients had previously undergone biopsy, subtotal or total tumor removal. 104 patients had two or more surgical procedures before radiotherapy. Following 3D treatment planning with delineation of target volumes and critical non-target structures, dose distributions and dose volume histograms were calculated [at the time of treatment delivery]. Radiotherapy was given once a day, 1.8 Gy or CGE (Cobalt Gy Equivalent: Proton Gy X 1.1) per fraction, 5 fractions per week, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Dose distributions were developed to limit dose to brainstem surface and center; current plans limit dose to surface and center to ≤64 CGE and ≤53 CGE, respectively. Brainstem toxicity was scored according to the RTOG grading system. Results: Follow-up ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem symptoms, attributable to the treatment, developed in 17 of 282 patients with local tumor control (6.0%), resulting in death of three patients. The mean time to onset of symptoms was 17 months (range: 4.5 to 177 months). These symptoms appeared in 89.5% within 3 years. Grading of the brainstem toxicity is listed in table 1. Actuarial rates of 5 and 10 year toxicity free survival were 87% and 82% respectively. Increased risk of brainstem toxicity was significantly associated with maximum brainstem dose

  3. The study of target delineation and target movement of whole breast assisted by active breathing control in intensity modulated radiotherapy after breast conservative surgery

    International Nuclear Information System (INIS)

    Li Jianbing; Yu Jinming; Ma Zhifang; Lu Jie; Sun Tao; Guo Shoufang; Wang Jingguo

    2009-01-01

    Objective: To explore the influence of different delineators and different delineating time on target determination of the whole breast and to explore intrafraction and interfraction target displacements of the breast on moderate deep inspiration breathing hold (mDIBH) assisted by active breathing control (ABC) alter breast conservative surgery. Methods: Twenty patients received primary CT-simulation assisted by ABC to get five sets of CT image on the three breathing condition which included one set from free breath (FB), two sets from mDIBH and two sets from deep expiration breathing control (DEBH). After radiotherapy with ten to fifteen fractions, the repeat CT-simulation was carried out to get the same five sets of CT image as the primary CT- simulation. The whole breast target were delineated at different time by the same delineator and delineated respectively by five delineators on the first set of CT images got with mDIBH from the primary CT-simulation, and to compare the influence of delineator and delineating time on the whole breast target. The total silver clips in the cavity were marked respectively on the two sets of CT images got with mDIBH from the primary CT-simulation, and to compare the intrafraction displacement of geometric body structured by the total of silver clips. The two ribs near the isocentric plane of the breast target were delineated respectively on two sets of the mDIBH CT image from the primary CT-simulation and on one set of the mDIBH CT image from the repeat CT-simulation, and comparing the movement of the point of interest (POI) of the ribs delineated to get the value of intrafraction and interfraction thoracic expansion. Results: There was not statistically significant between the four volumes of whole breast targets delineated by the same delineator at different time, but with statistics significant between the volumes of whole breast target delineated by the different delineators ( F=19.681, P=0.000). There was not statistically

  4. National arrangements for radiotherapy; Mesures nationales pour la radiotherapie. Travail collectif des missions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    After a presentation of several letters exchanged between the French health ministry and public agencies in charge of public health or nuclear safety after a radiotherapy accident in Epinal, this report comments the evolution of needs in cancerology care and the place given to radiotherapy. It outlines the technological and organisational evolution of radiotherapy and presents the distribution of radiotherapy equipment, of radio-therapists and other radiotherapy professionals in France. Within the context of radiotherapy accidents which occurred in 2007, it presents the regulatory arrangements which aimed at improving the safety, short term and middle term arrangements which are needed to support and structure radiotherapy practice quality. It stresses the fact that the system will deeply evolve by implementing a radiotherapy vigilance arrangement and a permanent follow-on and adaptation plan based on surveys and the creation of a national committee.

  5. Development of new microencapsulated beta emitters for internal radiotherapy

    International Nuclear Information System (INIS)

    Perdrisot, R.; Monteil, J.; Le Jeune, J.J.; Pouliquen, D.; Jallet, P.; Beau, P.; Lepape, A.

    1993-01-01

    We have developed new microencapsulated beta emitter radiotracers which could be used in nuclear medicine for selective internal radiotherapy. Their efficacy was evaluated on B16 melanoma tumor model in mice, using phosphorus 31 spectroscopy. This kind of tracer would allow a precise targetting of beta irradiation

  6. Comparison between conventional and three-dimensional conformal treatment planning for radiotherapy of cerebral tumors

    International Nuclear Information System (INIS)

    Caudrelier, J.M.; Auliard, A.; Sarrazin, T.; Gibon, D.; Coche-Dequeant, B.; Castelain, B.

    2001-01-01

    Comparison between conventional and three-dimensional conformal treatment planning for radiotherapy of cerebral tumors. Purpose. - We prospectively compared a conventional treatment planning (PT2D) and 3-dimensional conformal treatment planning (PT3D) for radiotherapy of cerebral tumours. Patients and methods.- Patients treated between 1/10/98 and 1/4/99 by irradiation for cerebral tumours were analysed. For each case, we planned PT2D using conventional orthogonal x-ray films, and afterward, PT3D using CT scan. Gross tumor volume, planning target volume and normal tissue volumes were defined. Dose was prescribed according to report 50 of the International Commission on Radiation Units and Measurements (ICRU). We compared surfaces of sagittal view targets defined on PT2D and PT3D and called them S2D and S3D, respectively. Irradiated volumes by 90% isodoses (VE-90%) and normal tissue volumes irradiated by 20, 50, 90% isodoses were calculated and compared using Student's paired t-test. Results. -There was a concordance of 84% of target surfaces defined on PT2D and PT3D. Percentages of target surface under- or-over defined by PT2D were 16 and 13% respectively. VE-90% was decreased by 15% (p = 0.07) with PT3D. Normal brain volume irradiated by 90% isodose was decreased by 27% with PT3D (p = 0.04). Conclusion.- For radiotherapy of cerebral tumors using only coplanar beams, PT3D leads to a reduction of normal brain tissue irradiated. We recommend PT3D for radiotherapy of cerebral tumors, particularly for low-grade or benign tumors (meningiomas, neuromas, etc.). (authors)

  7. To understand radiotherapy

    International Nuclear Information System (INIS)

    2009-01-01

    Dealing with the use of radiotherapy for adults, this guide indicates when a radiotherapy is suggested, how it acts, how the treatment is chosen, which are the professionals involved. It describes how an external radiotherapy takes place and its various techniques, the different types of side effects (general, specific to the treated zone, late effects). It indicates which organs can be treated by curie-therapy, the different curie-therapy treatment modalities, how a curie-therapy takes place and which are its side effects. It outlines how to better cope with radiotherapy (how to be supported, the important role of relatives, everyday life questions, rights). It indicates and comments the different measures adopted for the safety and quality of radiotherapy

  8. Role of radiotherapy in the treatment of meningiomas; Role de la radiotherapie dans le traitement des meningiomes cerebraux

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G. [Centre de protontherapie, 91 - Orsay (France); Renard, A.; Mazeron, J.J. [Groupe Hospitalier la Pitie-Salpetriere, Service de Radiotherapie, AP-HP, 75 - Paris (France); Valery, C. [Groupe Hospitalier la Pitie-Salpetriere, Service de Neurochirurgie, AP-HP, 75 - Paris (France); Mokhtari, K. [Groupe Hospitalier la Pitie-Salpetriere, Lab. de Neuropathologie Raymond-Escourolle, AP-HP, 75 - Paris (France)

    2001-06-01

    Role of radiotherapy in the treatment of meningiomas. Cerebral meningiomas account for 15-20% of all cerebral tumours. Although seldom malignant, they frequently recur in spite of complete surgery, which remains the cornerstone of the treatment. In order to decrease the probability of local recurrence, radiotherapy has often been recommended in atypical or malignant meningioma as well as in benign meningioma which was incompletely resected. However, this treatment never was the subject of prospective studies, randomized or not. The purpose of this review of the literature was to give a progress report on the results of different published series in the field of methodology as well as in the techniques of radiotherapy. Proposals for a therapeutic choice are made according to this analysis. For grade I or grade II-III meningiomas, limits of gross tumor volume (GTV) include the tumour in place or the residual tumour after surgery; clinical target volume (CTV) limits include gross tumour volume before surgery with a GTV-CTV distance of 1 and 2 cm respectively. Delivered doses are 55 Gy into CTV and 55-60 Gy and 70 Gy into GTV for grade I and grade II-III meningiomas respectively. (authors)

  9. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de; Villeirs, G.M.; Delrue, L.J.

    2004-01-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  10. The incidence of inclusion of the sigmoid colon and small bowel in the planning target volume in radiotherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meerleer, G.O. de; Vakaet, L.; Neve, W.J. de [Dept. of Radiation Oncology, Gent Univ. Hospital, Gent (Belgium); Villeirs, G.M.; Delrue, L.J. [Dept. of Radiology, Gent Univ. Hospital, Gent (Belgium)

    2004-09-01

    Background and purpose: in radiotherapy for prostate cancer, the rectum is considered the dose-limiting organ. The incidence of overlap between the sigmoid colon and/or small bowel and the planning target volume (PTV) as well as the dose to sigmoid colon and small bowel were investigated. Patients and methods: the CT data of 75 prostate cancer patients were analyzed. The clinical target volume (CTV) consisted of prostate and seminal vesicles. The PTV was defined as a three-dimensional expansion of the CTV with a 10-mm margin in craniocaudal and a 7-mm margin in the other directions. All patients were planned to a mean CTV dose of at least 76 Gy. Minimum CTV dose was set at 70 Gy. Dose inhomogeneity within the CTV was kept between 12% and 17%. Sigmoid colon was defined upward from the level where the rectum turned in a transverse plane. Contrast-filled small bowel was contoured on all slices where it was visible. The presence of sigmoid colon and/or small bowel in close vicinity to or overlapping with the PTV was recorded. For each case, the dose to the sigmoid colon and small bowel was calculated. Results: the PTV was found to overlap with the sigmoid colon in 60% and with the small bowel in 19% of the cases. In these patients, mean maximum dose to the sigmoid colon was 76.2 Gy (5th-95th percentile: 70.0-80.7 Gy). Mean maximum dose to the small bowel was 74.9 Gy (5th-95th percentile: 68.0-80.0 Gy). Conclusion: when systematically investigating the anatomic position of sigmoid colon and small bowel in patients accepted for prostate irradiation, parts of both organs were often observed in close vicinity to the PTV. Apart from the rectum, these organs may be dose-limiting in prostate radiotherapy. (orig.)

  11. Evaluation of Functional Marrow Irradiation Based on Skeletal Marrow Composition Obtained Using Dual-Energy Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Magome, Taiki [Department of Radiological Sciences, Faculty of Health Sciences, Komazawa University, Tokyo (Japan); Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Froelich, Jerry [Department of Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Takahashi, Yutaka [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Osaka University, Osaka (Japan); Arentsen, Luke [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Holtan, Shernan; Verneris, Michael R. [Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, Minnesota (United States); Brown, Keenan [Mindways Software Inc, Austin, Texas (United States); Haga, Akihiro; Nakagawa, Keiichi [Department of Radiology, The University of Tokyo Hospital, Tokyo (Japan); Holter Chakrabarty, Jennifer L. [College of Medicine, Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Giebel, Sebastian [Department of Bone Marrow Transplantation, Comprehensive Cancer Center M. Curie-Sklodowska Memorial Institute, Gliwice (Poland); Wong, Jeffrey [Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States); Dusenbery, Kathryn [Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Storme, Guy [Department of Radiotherapy, Universitair Ziekenhuis Brussel, Brussels (Belgium); Hui, Susanta K., E-mail: shui@coh.org [Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota (United States); Department of Therapeutic Radiology, University of Minnesota, Minneapolis, Minnesota (United States); Department of Radiation Oncology, Beckman Research Institute, City of Hope, Duarte, California (United States)

    2016-11-01

    Purpose: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. Methods and Materials: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. Results: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). Conclusions: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.

  12. Radiotherapy in prostate cancer. Innovative techniques and current controversies

    Energy Technology Data Exchange (ETDEWEB)

    Geinitz, Hans [Krankenhaus der Barmherzigen Schwestern, Linz (Austria). Dept. of Radiation Oncology; Linz Univ. (Austria). Medical Faculty; Roach, Mack III [California Univ., San Francisco, CA (United States). Dept. of Radiation Oncology; Van As, Nicholas (ed.) [The Institute of Cancer Research, Sutton Surrey (United Kingdom)

    2015-04-01

    Examines in detail the role of innovative radiation techniques in the management of prostate cancer, including IMRT, IGRT, BART, and modern brachytherapy. Explores a range of current controversies in patient treatment. Intended for both radiation oncologists and urologists. Radiation treatment is rapidly evolving owing to the coordinated research of physicists, engineers, computer and imaging specialists, and physicians. Today, the arsenal of ''high-precision'' or ''targeted'' radiotherapy includes multimodal imaging, in vivo dosimetry, Monte Carlo techniques for dose planning, patient immobilization techniques, intensity-modulated radiotherapy (IMRT), image-guided radiotherapy (IGRT), biologically adapted radiotherapy (BART), quality assurance methods, novel methods of brachytherapy, and, at the far end of the scale, particle beam radiotherapy using protons and carbon ions. These approaches are like pieces of a puzzle that need to be put together to provide the prostate cancer patient with high-level optimized radiation treatment. This book examines in detail the role of the above-mentioned innovative radiation techniques in the management of prostate cancer. In addition, a variety of current controversies regarding treatment are carefully explored, including whether prophylactic treatment of the pelvic lymphatics is essential, the magnitude of the effect of dose escalation, whether a benefit accrues from hypofractionation, and what evidence exists for the superiority of protons or heavy ions. Radiotherapy in Prostate Cancer: Innovative Techniques and Current Controversies is intended for both radiation oncologists and urologists with an interest in the up-to-date capabilities of modern radiation oncology for the treatment of prostate cancer.

  13. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  14. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  15. Radiation dose in radiotherapy from prescription to delivery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs.

  16. Radiation dose in radiotherapy from prescription to delivery

    International Nuclear Information System (INIS)

    1996-08-01

    Cancer incidence is increasing in developed as well as in developing countries. Cancer may be expected to become a prominent problem and this will result in public pressure for higher priorities on cancer care. In some relatively advanced developing countries radiation therapy is applied in about 50% of all detected cancer cases. Approximately half of these treatments have curative intent. Surgery and radiotherapy applied individually or combined result in the cure of about 40% of all patients. The application of chemotherapy alone has curative effects only on a small percentage of cancer patients. It is encouraging to note that the results achieved by radiation therapy show continuous improvement. This can be traced back to a number of developments: increased knowledge regarding tumour and normal tissue response to radiation, early diagnosis with improved tumour localisation, improved dosimetry and dose planning. The introduction of modern equipment has been crucial in these developments and makes possible a more accurate target delineation, better treatment planning resulting in irradiation of the Planning Target Volume (PTV) with a highly uniform dose and, simultaneously, a reduction in dose to healthy tissues outside the PTV. Experience shows that high quality radiotherapy can only be achieved if its conducted by a skilled team working closely together with good communication between various categories of staff. Therefore, seminars and training courses covering all aspects of radiotherapy and dosimetry are of great importance and should be held regionally or nationally on a regular basis. Refs, figs, tabs

  17. An electromechanical, patient positioning system for head and neck radiotherapy

    Science.gov (United States)

    Ostyn, Mark; Dwyer, Thomas; Miller, Matthew; King, Paden; Sacks, Rachel; Cruikshank, Ross; Rosario, Melvin; Martinez, Daniel; Kim, Siyong; Yeo, Woon-Hong

    2017-09-01

    In cancer treatment with radiation, accurate patient setup is critical for proper dose delivery. Improper arrangement can lead to disease recurrence, permanent organ damage, or lack of disease control. While current immobilization equipment often helps for patient positioning, manual adjustment is required, involving iterative, time-consuming steps. Here, we present an electromechanical robotic system for improving patient setup in radiotherapy, specifically targeting head and neck cancer. This positioning system offers six degrees of freedom for a variety of applications in radiation oncology. An analytical calculation of inverse kinematics serves as fundamental criteria to design the system. Computational mechanical modeling and experimental study of radiotherapy compatibility and x-ray-based imaging demonstrates the device feasibility and reliability to be used in radiotherapy. An absolute positioning accuracy test in a clinical treatment room supports the clinical feasibility of the system.

  18. Intra-operative radiotherapy of malignant tumors: Past, present and perspectives

    International Nuclear Information System (INIS)

    Mazeron, J.J.; Le Bourgeois, J.P.; Ganem, G.

    1986-01-01

    Intra-operative radiotherapy consists of electron or photon radiation which is used during the operative procedure. The treatment field is arranged very precisely after critical organs have been previously arranged out of the field. The target volume includes the remaining tumor which could not be removed surgically, and the surrounding tumor bed which is also felt to be high risk for recurrence. It is preferable to have as little tumor remaining as possible before the intra-operative treatment radiation is given. Intra-operative radiotherapy was developed less than a quarter century ago in Japon, and it was later used in U.S.A. The accumulated experience in Japan and U.S.A. is rewieved here. Intra-operative radiotherapy has only recently been introduced to France. The biology, physics and medical and technical problems of intra-operative therapy are discussed [fr

  19. Reirradiation for recurrent head and neck cancers using charged particle or photon radiotherapy.

    Science.gov (United States)

    Yamazaki, Hideya; Demizu, Yusuke; Okimoto, Tomoaki; Ogita, Mikio; Himei, Kengo; Nakamura, Satoaki; Suzuki, Gen; Yoshida, Ken; Kotsuma, Tadayuki; Yoshioka, Yasuo; Oh, Ryoongjin

    2017-07-01

    To examine the outcomes of reirradiation for recurrent head and neck cancers using different modalities. This retrospective study included 26 patients who received charged particle radiotherapy (CP) and 150 who received photon radiotherapy (117 CyberKnife radiotherapy [CK] and 36 intensity-modulated radiotherapy [IMRT]). Inverse probability of treatment weighting (IPTW) involving propensity scores was used to reduce background selection bias. Higher prescribed doses were used in CP than photon radiotherapy. The 1‑year overall survival (OS) rates were 67.9% for CP and 54.1% for photon radiotherapy (p = 0.15; 55% for CK and 51% for IMRT). In multivariate Cox regression, the significant prognostic factors for better survival were nasopharyngeal cancer, higher prescribed dose, and lower tumor volume. IPTW showed a statistically significant difference between CP and photon radiotherapy (p = 0.04). The local control rates for patients treated with CP and photon radiotherapy at 1 year were 66.9% (range 46.3-87.5%) and 67.1% (range 58.3-75.9%), respectively. A total of 48 patients (27%) experienced toxicity grade ≥3 (24% in the photon radiotherapy group and 46% in the CP group), including 17 patients with grade 5 toxicity. Multivariate analysis revealed that younger age and a larger planning target volume (PTV) were significant risk factors for grade 3 or worse toxicity. CP provided superior survival outcome compared to photon radiotherapy. Tumor volume, primary site (nasopharyngeal), and prescribed dose were identified as survival factors. Younger patients with a larger PTV experienced toxicity grade ≥3.

  20. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    Science.gov (United States)

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    ) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  1. Efficient CT simulation of the four-field technique for conformal radiotherapy of prostate carcinoma

    International Nuclear Information System (INIS)

    Valicenti, Richard K.; Waterman, Frank M.; Croce, Raymond J.; Corn, Benjamin; Suntharalingam, Nagalingam; Curran, Walter J.

    1997-01-01

    Purpose: Conformal radiotherapy of prostate carcinoma relies on contouring of individual CT slices for target and normal tissue localization. This process can be very time consuming. In the present report, we describe a method to more efficiently localize pelvic anatomy directly from digital reconstructed radiographs (DRRs). Materials and Methods: Ten patients with prostate carcinoma underwent CT simulation (the spiral mode at 3 mm separation) for conformal four-field 'box' radiotherapy. The bulbous urethra and bladder were opacified with iodinated contrast media. On lateral and anteroposterior DRRs, the volume of interest (VOI) was restricted to 1.0-1.5 cm tissue thickness to optimize digital radiograph reconstruction of the prostate and seminal vesicles. By removing unessential voxel elements, this method provided direct visualization of those structures. For comparison, the targets of each patient were also obtained by contouring CT axial slices. Results: The method was successfully performed if the target structures were readily visualized and geometrically corresponded to those generated by contouring axial images. The targets in 9 of 10 patients were reliable representations of the CT-contoured volumes. One patient had 18 mm variation due to the lack of bladder opacification. Using VOIs to generate thin tissue DRRs, the time required for target and normal tissue localization was on the average less than 5 min. Conclusion: In CT simulation of the four-field irradiation technique for prostate carcinoma, thin-tissue DRRs allowed for efficient and accurate target localization without requiring individual axial image contouring. This method may facilitate positioning of the beam isocenter and provide reliable conformal radiotherapy

  2. Left-sided breast cancer irradiation using rotational and fixed-field radiotherapy

    International Nuclear Information System (INIS)

    Qi, X. Sharon; Liu, Tian X.; Liu, Arthur K.; Newman, Francis; Rabinovitch, Rachel; Kavanagh, Brian; Hu, Y. Angie

    2014-01-01

    The 3-dimensional conformal radiotherapy (3DCRT) technique is the standard for breast cancer radiotherapy. During treatment planning, not only the coverage of the planning target volume (PTV) but also the minimization of the dose to critical structures, such as the lung, heart, and contralateral breast tissue, need to be considered. Because of the complexity and variations of patient anatomy, more advanced radiotherapy techniques are sometimes desired to better meet the planning goals. In this study, we evaluated external-beam radiation treatment techniques for left breast cancer using various delivery platforms: fixed-field including TomoDirect (TD), static intensity-modulated radiotherapy (sIMRT), and rotational radiotherapy including Elekta volumetric-modulated arc therapy (VMAT) and tomotherapy helical (TH). A total of 10 patients with left-sided breast cancer who did or did not have positive lymph nodes and were previously treated with 3DCRT/sIMRT to the entire breast were selected, their treatment was planned with Monaco VMAT, TD, and TH. Dosimetric parameters including PTV coverage, organ-at-risk (OAR) sparing, dose-volume histograms, and target minimum/maximum/mean doses were evaluated. It is found that for plans providing comparable PTV coverage, the Elekta VMAT plans were generally more inhomogeneous than the TH and TD plans. For the cases with regional node involvement, the average mean doses administered to the heart were 9.2 (± 5.2) and 8.8 (± 3.0) Gy in the VMAT and TH plans compared with 11.9 (± 6.4) and 11.8 (± 9.2) Gy for the 3DCRT and TD plans, respectively, with slightly higher doses given to the contralateral lung or breast or both. On average, the total monitor units for VMAT plans are 11.6% of those TH plans. Our studies have shown that VMAT and TH plans offer certain dosimetric advantages over fixed-field IMRT plans for advanced breast cancer requiring regional nodal treatment. However, for early-stage breast cancer fixed

  3. Targeted radiotherapy with {sup 177} Lu-DOTA-TATE in athymic mice with induced pancreatic malignant tumours

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez C, J.; Murphy, C.A. de; Pedraza L, M. [Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga No. 15, 14000 Mexico D.F. (Mexico); Ferro F, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Murphy S, E. [Hospital Santelena, 06000 Mexico D.F. (Mexico)

    2006-07-01

    Malignant pancreas tumours induced in athymic mice are a good model for peptide receptor targeted radiotherapy. The objective of this research was to estimate pancreatic tumour absorbed radiation doses after administration of {sup 177}Lu-DOTA-TATE in mice as a therapeutic radiopharmaceutical that could be used in humans. AR42J murine pancreas cancer cells expressing somatostatin receptors, were implanted in athymic mice (n=18) to obtain the {sup 177}Lu-DOTA-TATE biokinetics and dosimetry. To estimate its therapeutic efficacy 87 MBq were injected in a tail vein of 3 mice and 19 days p.i. there were a partial relapse. There was an epithelial and sarcoma mixed tumour in the kidneys of mouse III. The absorbed dose to tumour, kidney and pancreas was 50.5 {+-} 7.2 Gy, 17.5 {+-} 2.5 Gy and 12.6 {+-} 2.3 Gy respectively. These studies justify further therapeutic and dosimetry estimations to ensure that {sup 177}Lu-DOTA-TATE will act as expected in man considering its kidney radiotoxicity. (Author)

  4. Clinical target volume delineation including elective nodal irradiation in preoperative and definitive radiotherapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Caravatta Luciana

    2012-06-01

    Full Text Available Abstract Background Radiotherapy (RT is widely used in the treatment of pancreatic cancer. Currently, recommendation has been given for the delineation of the clinical target volume (CTV in adjuvant RT. Based on recently reviewed pathologic data, the aim of this study is to propose criteria for the CTV definition and delineation including elective nodal irradiation (ENI in the preoperative and definitive treatment of pancreatic cancer. Methods The anatomical structures of interest, as well as the abdominal vasculature were identified on intravenous contrast-enhanced CT scans of two different patients with pancreatic cancer of the head and the body. To delineate the lymph node area, a margin of 10 mm was added to the arteries. Results We proposed a set of guidelines for elective treatment of high-risk nodal areas and CTV delineation. Reference CT images were provided. Conclusions The proposed guidelines could be used for preoperative or definitive RT for carcinoma of the head and body of the pancreas. Further clinical investigations are needed to validate the defined CTVs.

  5. Monte Carlo dosimetry for synchrotron stereotactic radiotherapy of brain tumours

    International Nuclear Information System (INIS)

    Boudou, Caroline; Balosso, Jacques; Esteve, Francois; Elleaume, Helene

    2005-01-01

    A radiation dose enhancement can be obtained in brain tumours after infusion of an iodinated contrast agent and irradiation with kilovoltage x-rays in tomography mode. The aim of this study was to assess dosimetric properties of the synchrotron stereotactic radiotherapy technique applied to humans (SSR) for preparing clinical trials. We designed an interface for dose computation based on a Monte Carlo code (MCNPX). A patient head was constructed from computed tomography (CT) data and a tumour volume was modelled. Dose distributions were calculated in SSR configuration for various energy beam and iodine content in the target volume. From the calculations, it appears that the iodine-filled target (10 mg ml -1 ) can be efficiently irradiated by a monochromatic beam of energy ranging from 50 to 85 keV. This paper demonstrates the feasibility of stereotactic radiotherapy for treating deep-seated brain tumours with monoenergetic x-rays from a synchrotron

  6. Comparative Study of Skeletal Stability between Postoperative Skeletal Intermaxillary Fixation and No Skeletal Fixation after Bilateral Sagittal Split Ramus Osteotomy

    DEFF Research Database (Denmark)

    Hartlev, Jens; Godtfredsen, Erik; Andersen, Niels Trolle

    2014-01-01

    OBJECTIVES: The purpose of the present study was to evaluate skeletal stability after mandibular advancement with bilateral sagittal split osteotomy. MATERIAL AND METHODS: Twenty-six patients underwent single-jaw bilateral sagittal split osteotomy (BSSO) to correct skeletal Class II malocclusion....

  7. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  8. Intensity modulated radiotherapy for breast cancer

    International Nuclear Information System (INIS)

    Riou, O.; Fenoglietto, P.; Lemanski, C.; Azria, D.

    2012-01-01

    Intensity modulated radiotherapy (IMRT) is a technique allowing dose escalation and normal tissue sparing for various cancer types. For breast cancer, the main goals when using IMRT were to improve dose homogeneity within the breast and to enhance coverage of complex target volumes. Nonetheless, better heart and lung protections are achievable with IMRT as compared to standard irradiation for difficult cases. Three prospective randomized controlled trials of IMRT versus standard treatment showed that a better breast homogeneity can translate into better overall cosmetic results. Dosimetric and clinical studies seem to indicate a benefit of IMRT for lymph nodes irradiation, bilateral treatment, left breast and chest wall radiotherapy, or accelerated partial breast irradiation. The multiple technical IMRT solutions available tend to indicate a widespread use for breast irradiation. Nevertheless, indications for breast IMRT should be personalized and selected according to the expected benefit for each individual. (authors)

  9. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  10. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Juneja, P; Harris, E; Bamber, J [The Institute of Cancer Research, London (United Kingdom); Royal Marsden NHS Foundation Trust, London (United Kingdom)

    2014-06-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  11. SU-E-J-76: Incorporation of Ultrasound Elastography in Target Volume Delineation for Partial Breast Radiotherapy Planning: A Comparative Study

    International Nuclear Information System (INIS)

    Juneja, P; Harris, E; Bamber, J

    2014-01-01

    Purpose: There is substantial observer variability in the delineation of target volumes for post-surgical partial breast radiotherapy because the tumour bed has poor x-ray contrast. This variability may result in substantial variations in planned dose distribution. Ultrasound elastography (USE) has an ability to detect mechanical discontinuities and therefore, the potential to image the scar and distortion in breast tissue architecture. The goal of this study was to compare USE techniques: strain elastography (SE), shear wave elastography (SWE) and acoustic radiation force impulse (ARFI) imaging using phantoms that simulate features of the tumour bed, for the purpose of incorporating USE in breast radiotherapy planning. Methods: Three gelatine-based phantoms (10% w/v) containing: a stiff inclusion (gelatine 16% w/v) with adhered boundaries, a stiff inclusion (gelatine 16% w/v) with mobile boundaries and fluid cavity inclusion (to mimic seroma), were constructed and used to investigate the USE techniques. The accuracy of the elastography techniques was quantified by comparing the imaged inclusion with the modelled ground-truth using the Dice similarity coefficient (DSC). For two regions of interest (ROI), the DSC measures their spatial overlap. Ground-truth ROIs were modelled using geometrical measurements from B-mode images. Results: The phantoms simulating stiff scar tissue with adhered and mobile boundaries and seroma were successfully developed and imaged using SE and SWE. The edges of the stiff inclusions were more clearly visible in SE than in SWE. Subsequently, for all these phantoms the measured DSCs were found to be higher for SE (DSCs: 0.91–0.97) than SWE (DSCs: 0.68–0.79) with an average relative difference of 23%. In the case of seroma phantom, DSC values for SE and SWE were similar. Conclusion: This study presents a first attempt to identify the most suitable elastography technique for use in breast radiotherapy planning. Further analysis will

  12. The molecular mechanism of gene-radiotherapy of tumor

    International Nuclear Information System (INIS)

    Zhu Xian

    2004-01-01

    Gene-radiotherapy of tumor is a new method which is induced by ionizing radiation. The molecular mechanism is to activate various molecular target by many ways and induce the apoptosis of tumor cell. It is a gene therapy based on the radiation-inducible property of the Egr-1 gene. It has good application prospect in therapy of tumor

  13. PLANNING NATIONAL RADIOTHERAPY SERVICES

    Directory of Open Access Journals (Sweden)

    Eduardo eRosenblatt

    2014-11-01

    Full Text Available Countries, states and island nations often need forward planning of their radiotherapy services driven by different motives. Countries without radiotherapy services sponsor patients to receive radiotherapy abroad. They often engage professionals for a feasibility study in order to establish whether it would be more cost-beneficial to establish a radiotherapy facility. Countries where radiotherapy services have developed without any central planning, find themselves in situations where many of the available centres are private and thus inaccessible for a majority of patients with limited resources. Government may decide to plan ahead when a significant exodus of cancer patients travel to another country for treatment, thus exposing the failure of the country to provide this medical service for its citizens. In developed countries the trigger has been the existence of highly visible waiting lists for radiotherapy revealing a shortage of radiotherapy equipment.This paper suggests that there should be a systematic and comprehensive process of long-term planning of radiotherapy services at the national level, taking into account the regulatory infrastructure for radiation protection, planning of centres, equipment, staff, education pr

  14. Bystander effects and radiotherapy.

    Science.gov (United States)

    Marín, Alicia; Martín, Margarita; Liñán, Olga; Alvarenga, Felipe; López, Mario; Fernández, Laura; Büchser, David; Cerezo, Laura

    2015-01-01

    Radiation-induced bystander effects are defined as biological effects expressed after irradiation by cells whose nuclei have not been directly irradiated. These effects include DNA damage, chromosomal instability, mutation, and apoptosis. There is considerable evidence that ionizing radiation affects cells located near the site of irradiation, which respond individually and collectively as part of a large interconnected web. These bystander signals can alter the dynamic equilibrium between proliferation, apoptosis, quiescence or differentiation. The aim of this review is to examine the most important biological effects of this phenomenon with regard to areas of major interest in radiotherapy. Such aspects include radiation-induced bystander effects during the cell cycle under hypoxic conditions when administering fractionated modalities or combined radio-chemotherapy. Other relevant aspects include individual variation and genetics in toxicity of bystander factors and normal tissue collateral damage. In advanced radiotherapy techniques, such as intensity-modulated radiation therapy (IMRT), the high degree of dose conformity to the target volume reduces the dose and, therefore, the risk of complications, to normal tissues. However, significant doses can accumulate out-of-field due to photon scattering and this may impact cellular response in these regions. Protons may offer a solution to reduce out-of-field doses. The bystander effect has numerous associated phenomena, including adaptive response, genomic instability, and abscopal effects. Also, the bystander effect can influence radiation protection and oxidative stress. It is essential that we understand the mechanisms underlying the bystander effect in order to more accurately assess radiation risk and to evaluate protocols for cancer radiotherapy.

  15. Factors influencing conformity index in radiotherapy for non-small cell lung cancer.

    LENUS (Irish Health Repository)

    Brennan, Sinead M

    2010-01-01

    The radiotherapy conformity index (CI) is a useful tool to quantitatively assess the quality of radiotherapy treatment plans, and represents the relationship between isodose distributions and target volume. A conformity index of unity implies high planning target volume (PTV) coverage and minimal unnecessary irradiation of surrounding tissues. We performed this analysis to describe the CI for lung cancer 3-dimensional conformal radiotherapy (3DCRT) and to identify clinical and technical determinants of CI, as it is not known which factors are associated with good quality 3D conformal radiotherapy treatment planning. Radiotherapy treatment plans from a database of 52 patients with inoperable Stage 1 to 3b lung cancer, on a hypofractionated 3DCRT trial were evaluated. A CI was calculated for all plans using the definition of the ICRU 62:CI = (TV\\/PTV), which is the quotient of the treated volume (TV) and the PTV. Data on patient, tumor, and planning variables, which could influence CI, were recorded and analyzed. Mean CI was 2.01 (range = 1.06-3.8). On univariate analysis, PTV (p = 0.023), number of beams (p = 0.036), medial vs. lateral tumor location (p = 0.016), and increasing tumor stage (p = 0.041) were associated with improved conformity. On multiple regression analysis, factors found to be associated with CI included central vs. peripheral tumor location (p = 0.041) and PTV size (p = 0.058). The term 3DCRT is used routinely in the literature, without any indication of the degree of conformality. We recommend routine reporting of conformity indices. Conformity indices may be affected by both planning variables and tumor factors.

  16. Image guided radiotherapy: equipment specifications and performance - an analysis of the dosimetric consequences of anatomic variations during head-and-neck radiotherapy treatment

    International Nuclear Information System (INIS)

    Marguet, Maud

    2009-01-01

    Anatomic variations during head-and-neck radiotherapy treatment may compromise the delivery of the planned dose distribution, particularly in the case of IMRT treatments. The aim of this thesis was to establish 'dosimetric indicators' to identify patients who delivered dose deviates from the planned dose, to allow an eventual re-optimisation of the patient's dosimetry, if necessary, during the course of their radiotherapy treatment. These anatomic variations were monitored by regular acquisition of 3D patient images using an onboard imaging system, for which a rigorous quality control program was implemented. The patient dose distribution analysis and comparison was performed using a modified gamma index technique which was named gammaLSC3D. This improved gamma index technique quantified and identified the location of changes in the dose distribution in a stack of 2D images, with particular reference to the target volume (PTV) or organs at risk (parotids). The changes observed in the dose distribution for the PTV or parotids were then analysed and presented in the form of gamma-volume histograms in order to facilitate the follow up of dosimetric changes during the radiotherapy treatment. This analysis method has been automated, and is applicable in clinical routine to follow dose variations during head and neck radiotherapy treatment. (author) [fr

  17. Does Motion Assessment With 4-Dimensional Computed Tomographic Imaging for Non–Small Cell Lung Cancer Radiotherapy Improve Target Volume Coverage?

    Directory of Open Access Journals (Sweden)

    Naseer Ahmed

    2017-03-01

    Full Text Available Introduction: Modern radiotherapy with 4-dimensional computed tomographic (4D-CT image acquisition for non–small cell lung cancer (NSCLC captures respiratory-mediated tumor motion to provide more accurate target delineation. This study compares conventional 3-dimensional (3D conformal radiotherapy (3DCRT plans generated with standard helical free-breathing CT (FBCT with plans generated on 4D-CT contoured volumes to determine whether target volume coverage is affected. Materials and methods: Fifteen patients with stage I to IV NSCLC were enrolled in the study. Free-breathing CT and 4D-CT data sets were acquired at the same simulation session and with the same immobilization. Gross tumor volume (GTV for primary and/or nodal disease was contoured on FBCT (GTV_3D. The 3DCRT plans were obtained, and the patients were treated according to our institution’s standard protocol using FBCT imaging. Gross tumor volume was contoured on 4D-CT for primary and/or nodal disease on all 10 respiratory phases and merged to create internal gross tumor volume (IGTV_4D. Clinical target volume margin was 5 mm in both plans, whereas planning tumor volume (PTV expansion was 1 cm axially and 1.5 cm superior/inferior for FBCT-based plans to incorporate setup errors and an estimate of respiratory-mediated tumor motion vs 8 mm isotropic margin for setup error only in all 4D-CT plans. The 3DCRT plans generated from the FBCT scan were copied on the 4D-CT data set with the same beam parameters. GTV_3D, IGTV_4D, PTV, and dose volume histogram from both data sets were analyzed and compared. Dice coefficient evaluated PTV similarity between FBCT and 4D-CT data sets. Results: In total, 14 of the 15 patients were analyzed. One patient was excluded as there was no measurable GTV. Mean GTV_3D was 115.3 cm 3 and mean IGTV_4D was 152.5 cm 3 ( P = .001. Mean PTV_3D was 530.0 cm 3 and PTV_4D was 499.8 cm 3 ( P = .40. Both gross primary and nodal disease analyzed separately were larger

  18. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    Science.gov (United States)

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  19. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    International Nuclear Information System (INIS)

    Lin Tong; Li Ruijiang; Tang Xiaoli; Jiang, Steve B; Dy, Jennifer G

    2009-01-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks-ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  20. Effect of radiotherapy on lymphocyte cytotoxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, J; Melen, B [Central Microbiological Laboratory, Stockholm County Council (Sweden); Blomgren, H; Glas, U; Perlmann, P

    1975-11-01

    The cytotoxic functions of highly purified blood lymphocytes from patients with breast cancer were studied before and after radiotherapy. Addition of PHA or of rabbit antibodies to target cells (chicken erythrocytes) were chosen as two means of inducing lymphocyte cytotoxicity in vitro. The proportion of T and non-T lymphocytes was determined by means of E and EAC rosette tests. The antibody-induced cytotoxicity of lymphocytes decreased following radiotherapy while that mediated by PHA remained unchanged. There was some reduction in the percentage of EAC rosette-forming cells. These results, as well as earlier observations, suggest that the decrease in the peripheral blood of the proportion of lymphocytes with receptors for activated complement is responsible for changes in the antibody-mediated lymphocyte cytotoxicity.

  1. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian [Department of Radiation Oncology, Royal North Shore Hospital, St Leonards, New South Wales (Australia)

    2015-09-15

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D{sub 105%} and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT.

  2. Intensity modulated radiotherapy and 3D conformal radiotherapy for whole breast irradiation: a comparative dosimetric study and introduction of a novel qualitative index for plan evaluation, the normal tissue index

    International Nuclear Information System (INIS)

    Yim, Jackie; Suttie, Clare; Bromley, Regina; Morgia, Marita; Lamoury, Gillian

    2015-01-01

    We report on a retrospective dosimetric study, comparing 3D conformal radiotherapy (3DCRT) and hybrid intensity modulated radiotherapy (hIMRT). We evaluated plans based on their planning target volume coverage, dose homogeneity, dose to organs at risk (OARs) and exposure of normal tissue to radiation. The Homogeneity Index (HI) was used to assess the dose homogeneity in the target region, and we describe a new index, the normal tissue index (NTI), to assess the dose in the normal tissue inside the tangent treatment portal. Plans were generated for 25 early-stage breast cancer patients, using a hIMRT technique. These were compared with the 3DCRT plans of the treatment previously received by the patients. Plan quality was evaluated using the HI, NTI and dose to OARs. The hIMRT technique was significantly more homogenous than the 3DCRT technique, while maintaining target coverage. The hIMRT technique was also superior at minimising the amount of tissue receiving D 105% and above (P < 0.0001). The ipsilateral lung and contralateral breast maximum were significantly lower in the hIMRT plans (P < 0.05 and P < 0.005), but the 3DCRT technique achieved a lower mean heart dose in left-sided breast cancer patients (P < 0.05). Hybrid intensity modulated radiotherapy plans achieved improved dose homogeneity compared to the 3DCRT plans and superior outcome with regard to dose to normal tissues. We propose that the addition of both HI and NTI in evaluating the quality of intensity modulated radiotherapy (IMRT) breast plans provides clinically relevant comparators which more accurately reflect the new paradigm of treatment goals and outcomes in the era of breast IMRT

  3. An atlas of normal skeletal scintigraphy

    International Nuclear Information System (INIS)

    Flanagan, J.J.; Maisey, M.N.

    1985-01-01

    This atlas was compiled to provide the neophyte as well as the experienced radiologist and the nuclear medicine physician with a reference on normal skeletal scintigraphy as an aid in distinguishing normal variations in skeletal uptake from abnormal findings. Each skeletal scintigraph is labeled, and utilizing an identical scale, a relevant skeletal photograph and radiograph are placed adjacent to the scintigraph

  4. Primary and secondary prevention of acute complications of radiotherapy of head and neck cancers; Prevention primaire et secondaire des complications aigues de la radiotherapie des cancers de la tete et du cou

    Energy Technology Data Exchange (ETDEWEB)

    Lambrexhe, M.; Frederick, B.; Burie, D.; Cavuto, C.; Rob, L.; Rasquin, I.; Coiffier, N.; Untereiner, M. [Centre national de Radiotherapie, Centre Francois-Baclesse (CFB), Esch-sur-Alzette (Luxembourg)

    2009-10-15

    Purpose: the standard treatment of head and neck cancers associates a 70 Gy irradiation and weekly concomitant chemotherapy by 5-fluoro-uracils and cisplatin or targeted therapy by Erbitux. A retrospective study realised at the Francois Baclesse center in 2004-2005 for 84 patients suffering of ear-nose-throat cancers whom treatment was a concomitant chemoradiotherapy, showed the noxious effects of the treatment on the patients nutritional situation: weight loss for 90% of patients; temporary interruption or definitive stop of radiotherapy for 28% of patients. based on this observation, a preventive approach of the nutritional risk was implemented. The objective was to reduce the malnutrition risk linked to radiotherapy associated to chemotherapy or to the targeted therapy. (N.C.)

  5. Ferulic Acid Promotes Hypertrophic Growth of Fast Skeletal Muscle in Zebrafish Model.

    Science.gov (United States)

    Wen, Ya; Ushio, Hideki

    2017-09-26

    As a widely distributed and natural existing antioxidant, ferulic acid and its functions have been extensively studied in recent decades. In the present study, hypertrophic growth of fast skeletal myofibers was observed in adult zebrafish after ferulic acid administration for 30 days, being reflected in increased body weight, body mass index (BMI), and muscle mass, along with an enlarged cross-sectional area of myofibers. qRT-PCR analyses demonstrated the up-regulation of relative mRNA expression levels of myogenic transcriptional factors (MyoD, myogenin and serum response factor (SRF)) and their target genes encoding sarcomeric unit proteins involved in muscular hypertrophy (skeletal alpha-actin, myosin heavy chain, tropomyosin, and troponin I). Western blot analyses detected a higher phosphorylated level of zTOR (zebrafish target of rapamycin), p70S6K, and 4E-BP1, which suggests an enhanced translation efficiency and protein synthesis capacity of fast skeletal muscle myofibers. These changes in transcription and translation finally converge and lead to higher protein contents in myofibers, as confirmed by elevated levels of myosin heavy chain (MyHC), and an increased muscle mass. To the best of our knowledge, these findings have been reported for the first time in vivo and suggest potential applications of ferulic acid as functional food additives and dietary supplements owing to its ability to promote muscle growth.

  6. The exercised skeletal muscle: a review

    Directory of Open Access Journals (Sweden)

    Marina Marini

    2010-09-01

    Full Text Available The skeletal muscle is the second more plastic tissue of the body - second to the nervous tissue only. In fact, both physical activity and inactivity contribute to modify the skeletal muscle, by continuous signaling through nerve impulses, mechanical stimuli and humoral clues. In turn, the skeletal muscle sends signals to the body, thus contributing to its homeostasis. We'll review here the contribute of physical exercise to the shaping of skeletal muscle, to the adaptation of its mass and function to the different needs imposed by different physical activities and to the attainment of the health benefits associated with active skeletal muscles. Focus will primarily be on the molecular pathways and on gene regulation that result in skeletal muscle adaptation to exercise.

  7. in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Espen E. Spangenburg

    2011-01-01

    Full Text Available Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs. Here, we describe the utilization of the BODIPY (493/503 dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503 dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.

  8. Objective assessment of cosmetic outcome after targeted intraoperative radiotherapy in breast cancer

    DEFF Research Database (Denmark)

    Keshtgar, Mohammed R S; Williams, Norman R; Bulsara, Max

    2013-01-01

    and thus impair cosmesis further, so we objectively evaluated the aesthetic outcome of patients within the TARGIT randomised controlled trial. We have used an objective assessment tool for evaluation of cosmetic outcome. Frontal digital photographs were taken at baseline (before TARGIT or EBRT) and yearly...... in a randomised setting, the aesthetic outcome of patients demonstrates that those treated with TARGIT have a superior cosmetic result to those patients who received conventional external beam radiotherapy....

  9. Brainstem tolerance to conformal radiotherapy of skull base tumors

    International Nuclear Information System (INIS)

    Debus, J.; Hug, E.B.; Liebsch, N.J.; O'Farrel, D.; Finkelstein, D.; Efird, J.; Munzenrider, J.E.

    1997-01-01

    Purpose: The aim of this study was to analyze the long-term incidence of brainstem toxicity in patients treated for skull base tumors with high dose conformal radiotherapy. Methods and Materials: Between 1974 and 1995, 367 patients with chordomas (n = 195) and chondrosarcomas (n = 172) of the base of skull have been treated with combined megavoltage photon and 160 MeV proton radiotherapy. Following 3D treatment planning with delineation of target volumes and critical nontarget structures dose distributions and dose-volume histograms were calculated. Radiotherapy was given an 1.8 Gy or CGE (=Cobalt Gray Equivalent) dose per fraction, with prescribed target doses ranging from 63 CGE to 79.2 CGE (mean = 67.8 CGE). Doses to the brainstem surface were limited to ≤64 CGE and to the brainstem center to ≤53 CGE. Results: Follow-up time ranged from 6 months to 21.4 years (mean = 42.5 months). Brainstem toxicity was observed in 17 of 367 patients attributable to treatment, resulting in death of three patients. Actuarial rates of 5 and 10-year high-grade toxicity-free survival were 94 and 88%, respectively. Increased risk of brainstem toxicity was significantly associated with maximum dose to brainstem, volume of brainstem receiving ≥50 CGE, ≥55 CGE, and ≥60 CGE, number of surgical procedures, and prevalence of diabetes or high blood pressure. Multivariate analysis identified three independent factors as important prognosticators: number of surgical procedures (p < 0.001), volume of the brainstem receiving 60 CGE (p < 0.001), and prevalence of diabetes (p < 0.01). Conclusions: Tolerance of brainstem to fractionated radiotherapy appears to be a steep function of tissue volume included in high dose regions rather than the maximum dose of brainstem alone. In addition, presence of predisposing factors as well as extent of surgical manipulation can significantly lower brainstem tolerance in the individual patient

  10. Treatment outcome in patients with vulvar cancer: comparison of concurrent radiotherapy to postoperative radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ja Young; Kim, Sung Hwan; Kim, Ki Won; Park, Dong Choon; Yoon, Joo Hee; Yoon, Sei Chul [St. Vincent' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of); Yu, Mina [St. Mary' s Hospital, The Catholic University of Korea School of Medicine, Seoul (Korea, Republic of)

    2012-03-15

    To evaluate outcome and morbidity in patients with vulvar cancer treated with radiotherapy, concurrent chemoradiotherapy or postoperative radiotherapy. The records of 24 patients treated with radiotherapy for vulvar cancer between July 1993 and September 2009 were retrospectively reviewed. All patients received once daily 1.8-4 Gy fractions external beam radiotherapy to median 51.2 Gy (range, 19.8 to 81.6 Gy) on pelvis and inguinal nodes. Seven patients were treated with primary concurrent chemoradiotherapy, one patient was treated with primary radiotherapy alone, four patients received palliative radiotherapy, and twelve patients were treated with postoperative radiotherapy. Twenty patients were eligible for response evaluation. Response rate was 55% (11/20). The 5-year disease free survival was 42.2% and 5-year overall survival was 46.2%, respectively. Fifty percent (12/24) experienced with acute skin complications of grade III or more during radiotherapy. Late complications were found in 8 patients. 50% (6/12) of patients treated with lymph node dissection experienced severe late complications. One patient died of sepsis from lymphedema. However, only 16.6% (2/12) of patients treated with primary radiotherapy developed late complications. Outcome of patients with vulvar cancer treated with radiotherapy showed relatively good local control and low recurrence. Severe late toxicities remained higher in patients treated with both node dissection and radiotherapy.

  11. External beam radiotherapy of localized prostatic adenocarcinoma. Evaluation of conformal therapy, field number and target margins

    International Nuclear Information System (INIS)

    Lennernaes, B.; Rikner, G.; Letocha, H.; Nilsson, S.

    1995-01-01

    The purpose of the present study was to identify factors of importance in the planning of external beam radiotherapy of prostatic adenocarcinoma. Seven patients with urogenital cancers were planned for external radiotherapy of the prostate. Four different techniques were used, viz. a 4-field box technique and four-, five- or six-field conformal therapy set-ups combined with three different margins (1-3 cm). The evaluations were based on the doses delivered to the rectum and the urinary bladder. A normal tissue complication probability (NTCP) was calculated for each plan using Lyman's dose volume reduction method. The most important factors that resulted in a decrease of the dose delivered to the rectum and the bladder were the use of conformal therapy and smaller margins. Conformal therapy seemed more important for the dose distribution in the urinary bladder. Five- and six-field set-ups were not significantly better than those with four fields. NTCP calculations were in accordance with the evaluation of the dose volume histograms. To conclude, four-field conformal therapy utilizing reduced margins improves the dose distribution to the rectum and the urinary bladder in the radiotherapy of prostatic adenocarcinoma. (orig.)

  12. Dosimetric and geometric evaluation of a hybrid strategy of offline adaptive planning and online image guidance for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Liu Han; Wu Qiuwen

    2011-01-01

    For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1-2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0-1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3-4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed

  13. Androgens regulate gene expression in avian skeletal muscles.

    Directory of Open Access Journals (Sweden)

    Matthew J Fuxjager

    Full Text Available Circulating androgens in adult reproductively active male vertebrates influence a diversity of organ systems and thus are considered costly. Recently, we obtained evidence that androgen receptors (AR are expressed in several skeletal muscles of three passeriform birds, the golden-collared manakin (Manacus vitellinus, zebra finch (Taenopygia guttata, and ochre-bellied flycatcher (Mionectes oleagieus. Because skeletal muscles that control wing movement make up the bulk of a bird's body mass, evidence for widespread effects of androgen action on these muscles would greatly expand the functional impact of androgens beyond their well-characterized effects on relatively discrete targets throughout the avian body. To investigate this issue, we use quantitative PCR (qPCR to determine if androgens alter gene mRNA expression patterns in wing musculature of wild golden-collared manakins and captive zebra finches. In manakins, the androgen testosterone (T up-regulated expression of parvalbumin (PV and insulin-like growth factor I (IGF-I, two genes whose products enhance cellular Ca(2+ cycling and hypertrophy of skeletal muscle fibers. In T-treated zebra finches, the anti-androgen flutamide blunted PV and IGF-I expression. These results suggest that certain transcriptional effects of androgen action via AR are conserved in passerine skeletal muscle tissue. When we examined wing muscles of manakins, zebra finches and ochre-bellied flycatchers, we found that expression of PV and IGF-I varied across species and in a manner consistent with a function for AR-dependent gene regulation. Together, these findings imply that androgens have the potential to act on avian muscle in a way that may enhance the physicality required for successful reproduction.

  14. Quo vadis radiotherapy? Technological advances and the rising problems in cancer management.

    Science.gov (United States)

    Allen, Barry J; Bezak, Eva; Marcu, Loredana G

    2013-01-01

    Despite the latest technological advances in radiotherapy, cancer control is still challenging for several tumour sites. The survival rates for the most deadly cancers, such as ovarian and pancreatic, have not changed over the last decades. The solution to the problem lies in the change of focus: from local treatment to systemic therapy. The aim of this paper is to present the current status as well as the gaps in radiotherapy and, at the same time, to look into potential solutions to improve cancer control and survival. The currently available advanced radiotherapy treatment techniques have been analysed and their cost-effectiveness discussed. The problem of systemic disease management was specifically targeted. Clinical studies show limited benefit in cancer control from hadron therapy. However, targeted therapies together with molecular imaging could improve treatment outcome for several tumour sites while controlling the systemic disease. The advances in photon therapy continue to be competitive with the much more expensive hadron therapy. To justify the cost effectiveness of proton/heavy ion therapy, there is a need for phase III randomised clinical trials. Furthermore, the success of systemic disease management lies in the fusion between radiation oncology technology and microbiology.

  15. Radiotherapy in small countries.

    Science.gov (United States)

    Barton, Michael B; Zubizarreta, Eduardo H; Polo Rubio, J Alfredo

    2017-10-01

    To examine the availability of radiotherapy in small countries. A small country was defined as a country with a population less than one million persons. The economic status of each country was defined using the World Bank Classification. The number of cancers in each country was obtained from GLOBOCAN 2012. The number of cancer cases with an indication or radiotherapy was calculated using the CCORE model. There were 41 countries with a population of under 1 million; 15 were classified as High Income, 15 Upper Middle Income, 10 Lower Middle Income and one Low Income. 28 countries were islands. Populations ranged from 799 (Holy See) to 886450 (Fiji) and the total number of cancer cases occurring in small countries was 21,043 (range by country from 4 to 2476). Overall the total number of radiotherapy cases in small countries was 10982 (range by country from 2 to 1239). Radiotherapy was available in all HIC islands with 80 or more new cases of cancer in 2012 but was not available in any LMIC island. Fiji was the only LMIC island with a large radiotherapy caseload. Similar caseloads in non-island LMIC all had radiotherapy services. Most non-island HIC did not have radiotherapy services presumably because of the easy access to radiotherapy in neighbouring countries. There are no radiotherapy services in any LMIC islands. Copyright © 2017. Published by Elsevier Ltd.

  16. Congenital anomalies and normal skeletal variants

    International Nuclear Information System (INIS)

    Guebert, G.M.; Yochum, T.R.; Rowe, L.J.

    1987-01-01

    Congenital anomalies and normal skeletal variants are a common occurrence in clinical practice. In this chapter a large number of skeletal anomalies of the spine and pelvis are reviewed. Some of the more common skeletal anomalies of the extremities are also presented. The second section of this chapter deals with normal skeletal variants. Some of these variants may simulate certain disease processes. In some instances there are no clear-cut distinctions between skeletal variants and anomalies; therefore, there may be some overlap of material. The congenital anomalies are presented initially with accompanying text, photos, and references, beginning with the skull and proceeding caudally through the spine to then include the pelvis and extremities. The normal skeletal variants section is presented in an anatomical atlas format without text or references

  17. Primary and secondary prevention of acute complications of radiotherapy of head and neck cancers

    International Nuclear Information System (INIS)

    Lambrexhe, M.; Frederick, B.; Burie, D.; Cavuto, C.; Rob, L.; Rasquin, I.; Coiffier, N.; Untereiner, M.

    2009-01-01

    Purpose: the standard treatment of head and neck cancers associates a 70 Gy irradiation and weekly concomitant chemotherapy by 5-fluoro-uracils and cisplatin or targeted therapy by Erbitux. A retrospective study realised at the Francois Baclesse center in 2004-2005 for 84 patients suffering of ear-nose-throat cancers whom treatment was a concomitant chemoradiotherapy, showed the noxious effects of the treatment on the patients nutritional situation: weight loss for 90% of patients; temporary interruption or definitive stop of radiotherapy for 28% of patients. based on this observation, a preventive approach of the nutritional risk was implemented. The objective was to reduce the malnutrition risk linked to radiotherapy associated to chemotherapy or to the targeted therapy. (N.C.)

  18. Chromatin-regulating proteins as targets for cancer therapy

    International Nuclear Information System (INIS)

    Oike, Takahiro; Ogiwara, Hideaki; Kohno, Takashi; Amornwichet, Napapat; Nakano, Takashi

    2014-01-01

    Chromatin-regulating proteins represent a large class of novel targets for cancer therapy. In the context of radiotherapy, acetylation and deacetylation of histones by histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in the repair of DNA double-strand breaks generated by ionizing irradiation, and are therefore attractive targets for radiosensitization. Small-molecule inhibitors of HATs (garcinol, anacardic acid and curcumin) and HDACs (vorinostat, sodium butyrate and valproic acid) have been shown to sensitize cancer cells to ionizing irradiation in preclinical models, and some of these molecules are being tested in clinical trials, either alone or in combination with radiotherapy. Meanwhile, recent large-scale genome analyses have identified frequent mutations in genes encoding chromatin-regulating proteins, especially in those encoding subunits of the SWI/SNF chromatin-remodeling complex, in various human cancers. These observations have driven researchers toward development of targeted therapies against cancers carrying these mutations. DOT1L inhibition in MLL-rearranged leukemia, EZH2 inhibition in EZH2-mutant or MLL-rearranged hematologic malignancies and SNF5-deficient tumors, BRD4 inhibition in various hematologic malignancies, and BRM inhibition in BRG1-deficient tumors have demonstrated promising anti-tumor effects in preclinical models, and these strategies are currently awaiting clinical application. Overall, the data collected so far suggest that targeting chromatin-regulating proteins is a promising strategy for tomorrow's cancer therapy, including radiotherapy and molecularly targeted chemotherapy. (author)

  19. Status of Radiotherapy around the World: Radiotherapy in China. Chapter 25.6

    International Nuclear Information System (INIS)

    Zhu, Ci; Yin, Wei Bo; Chen, Bo; Zhang, Chun Li; Zhang, Hong Zhi; Li, Ye Xiong

    2017-01-01

    China’s experience of using radiotherapy to treat cancer began with the installation of the first superficial X ray machine at Peking Union Medical College Hospital in early 1920, followed by the first 200 kV deep X ray machine installed at the French Hospital in Shanghai in 1923, and the first Chinese radiotherapy department established at the Affiliated Hospital of Peking University in 1932. However, the field of radiotherapy in China was still in its infancy between the 1930s and 1960s, as all operating machines were imported from foreign countries, making radiotherapy very difficult to access for cancer patients. Progress was slow until the mid-1970s, when the first batch of megavoltage machines (cobalt-60 machines and linacs) was produced by Chinese manufacturers. Owing to the efforts of radiotherapy pioneers such as Wu Huanxing, Gu Xianzhi, Liu Taifu, and Yin Weibo, who brought radiotherapy to China and shaped how Chinese patients would be treated today, radiotherapy was installed as one of the mainstream modalities of cancer treatment. In 1986, the China Society for Radiation Oncology (CSTRO) was founded, indicating that a network advancing radiation oncology practice in China was taking shape. One year later, the first issue of the Chinese Journal of Radiation Oncology was published, offering a platform for the timely exchange and sharing of laboratory and clinical research outcomes among radiation oncology professions across the country. During the past two decades, with the introduction of the gamma knife and stereotactic radiotherapy, 3-D conformal radiotherapy, IMRT, IGRT and other advanced techniques, China experienced not only a big jump in its radiotherapy equipment and facilities, but also a dramatic growth in the excellence of radiation oncology specialist staff nationwide

  20. Dosimetry at the location of secondary tumors after radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baas, H W; Davelaar, J J; Broerse, J J; Noordijk, E M [University Hospital, Leiden (Netherlands). Dept. of Clinical Oncology

    1995-12-01

    After a latency period of many years the incidence of a secondary tumor is considered a serious late effect of radiotherapy. Analysis of about 200 patients, treated by radiotherapy for Hodgkin`s disease in our hospital, shows an actuarial risk for the incidence of a secondary tumor of about 7% after 10 years. The chance of tumor induction depends on the dose at the location of the tumor and therefore a good dose estimation is mandatory. Radiotherapy was given with Co-60 in the early years and with linear accelerators thereafter, exposing the target areas to 36 - 40 Gy. For dose estimations at the penumbra and outside the beam, where tumor incidence is expected to be high, we used a.o. Monte Carlo calculations. We developed an EGS4 computer simulation for a treatment beam from a linear accelerator irradiating a mathematical phantom representing the patient geometry (GSF ADAM phantom). The isodose curves at certain energies were obtained for a water phantom and fitted quite well with measurements. In addition to Monte Carlo calculations we also used existing treatment planning systems. The dose estimations of a number of patients and the derived risk per unit of dose, which is important for both radiotherapy as well as radiation protection in general, is discussed.

  1. Hyperthermia and radiotherapy

    International Nuclear Information System (INIS)

    Fitspatrick, C.

    1990-01-01

    Hyperthermia and radiotherapy have for long been used to assist in the control of tumours, either as separate entities, or, in a combined treatment scheme. This paper outlines why hyperthermia works, thermal dose and the considerations required in the timing when hyperthermia is combined with radiotherapy. Previously reported results for hyperthermia and radiotherapy used together are also presented. 8 refs., 8 tabs

  2. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  3. How PET is changing the management of cancer with radiotherapy

    International Nuclear Information System (INIS)

    Mac Manus, M.

    2005-01-01

    Information from PET scanning is transforming the management of many malignancies and the impact of PET is likely to increase further as new indications are recognised. PET is of particular value in patients treated with radiotherapy (RT) with curative intent. These patients rarely undergo invasive surgical staging and therefore imaging is crucial in determining the extent of disease before treatment. More accurate staging with PET means that futile aggressive RT or chcmoRT can be avoided in patients with incurable extensive disease. FDG-PET is of proven value in the staging of common metabolically-active malignancies treated with radiotherapy. These include lung cancer, head and neck cancer, lymphomas and oesophageal carcinoma. It has been shown that PET can improve the selection of patients for radical surgery or radiotherapy in lung cancer and that PET-based staging more accurately predicts survival than conventional staging. For those patients that remain eligible for definitive RT after PET. treatment can be more accurately targeted at the tumour and involved regional nodes. The value of PET for treatment planning is enhanced significantly when PET and CT scans are acquired on a combined PET/CT scanner. Fused PET-CT images can be imported into the radiotherapy planning computer and used to accurately target tumour with the best beam arrangement. After treatment, response may be hard to assess with structural imaging. PET-rcsponse to chemotherapy or radiotherapy in non-small cell lung cancer (NSCLC) predicts survival in NSCLC more accurately than CT response. However, PET has much more potential than imaging with FDG alone can realise. Markers such as FLT can be used to image proliferation in tumours, misonidazole or FAZA can be used to image hypoxia and labeled metabolites of anti-cancer drugs such as 5-FU can be used to study pharmacokinetics. New combinations of radiation and drugs may emerge that can be selected based on biological characteristics of

  4. Radiotherapy

    International Nuclear Information System (INIS)

    Wannenmacher, M.; Debus, J.; Wenz, F.

    2006-01-01

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  5. Stereotactic radiotherapy in oligometastatic cancer.

    Science.gov (United States)

    Kennedy, Thomas A C; Corkum, Mark T; Louie, Alexander V

    2017-09-01

    Oligometastatic cancer describes a disease state somewhere between localized and metastatic cancer. Proposed definitions of oligometastatic disease have typically used a cut-off of five or fewer sites of disease. Treatment of oligometastatic disease should have the goal of long-term local control, and in selected cases, disease remission. While several retrospective cohorts argue for surgical excision of limited metastases (metastasectomy) as the preferred treatment option for several clinical indications, limited randomized data exists for treating oligometastases. Alternatively, stereotactic ablative radiotherapy (SABR) is a radiotherapy technique that combines high radiation doses per fraction with precision targeting with the goal of achieving long-term local control of treated sites. Published cohort studies of SABR have demonstrated excellent local control rates of 70-90% in oligometastatic disease, with long-term survival in some series approaching 20-40%. A recent randomized phase 2 clinical trial by Gomez et al. demonstrated significantly improved progression free survival with aggressive consolidative therapy (surgery, radiotherapy ± chemotherapy or SABR) in oli-gometastatic non-small cell lung cancer (NSCLC). As additional randomized controlled trials are ongoing to determine the efficacy of SABR in oligometastatic disease, SABR is increasingly being used within routine clinical practice. This review article aims to sum-marize the history and current paradigm of the oligometastatic state, review recently pub-lished literature of SABR in oligometastatic cancer and discuss ongoing trials and future directions in this context.

  6. Role of Radiotherapy in Metastatic Non-small Cell Lung Cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Sergio L. Faria

    2014-10-01

    Full Text Available Radiotherapy has had important role in the palliation of NSCLC. Randomized trials tend to suggest that, in general, short regimens give similar palliation and toxicity compared to longer regimens. The benefit of combining chemotherapy to radiosensitize the palliative radiation treatment is an open question, but so far it has not been proved to be very useful in NSCLC. The addition of molecular targeted drugs to radiotherapy outside of approved regimens or clinical trials warrants careful consideration for every single case and probably should not be used as a routine management.Stereotactic radiosurgery (SRS and stereotactic body radiation therapy (SBRT are modern techniques being used each time more frequently in the treatment of single or oligometastases. In general, they offer good tumour control with little toxicity (with a more expensive cost compared to the traditionally fractionated radiotherapy regimens.

  7. Skeletal Stability after Large Mandibular Advancement (> 10 mm) with Bilateral Sagittal Split Osteotomy and Skeletal Elastic Intermaxillary Fixation

    DEFF Research Database (Denmark)

    Schwartz, Kristoffer; Rodrigo, Maria; Jensen, Thomas

    2016-01-01

    OBJECTIVES: The aim of the present study was to assess the skeletal stability after large mandibular advancement (> 10 mm) with bilateral sagittal split osteotomy and skeletal elastic intermaxillary fixation and to correlate the skeletal stability with the vertical facial type. MATERIAL AND METHODS......: A total of 33 consecutive patients underwent bimaxillary surgery to correct skeletal Class II malocclusion with a mandibular advancement (> 10 mm) measured at B-point and postoperative skeletal elastic intermaxillary fixation for 16 weeks. Skeletal stability was evaluated using lateral cephalometric...... radiographs obtained preoperative (T1), 8 weeks postoperatively (T2), and 18 month postoperatively (T3). B-point and pogonion (Pog) was used to measure the skeletal relapse and the mandibular plane angle (MP-angle) was used to determine the vertical facial type. RESULTS: The mean advancement from T1 to T2...

  8. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: Simulation results

    International Nuclear Information System (INIS)

    Keall, P. J.; Lauve, A. D.; Hagan, M. P.; Siebers, J. V.

    2007-01-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D 5 , D 95 , and D mean were not increased or decreased by more than 5% of the prescription dose for any of the 3600

  9. Analysis of Electronic Densities and Integrated Doses in Multiform Glioblastomas Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Baron-Aznar, C.; Moreno-Jimenez, S.; Celis, M. A.; Ballesteros-Zebadua, P.; Larraga-Gutierrez, J. M.

    2008-01-01

    Integrated dose is the total energy delivered in a radiotherapy target. This physical parameter could be a predictor for complications such as brain edema and radionecrosis after stereotactic radiotherapy treatments for brain tumors. Integrated Dose depends on the tissue density and volume. Using CT patients images from the National Institute of Neurology and Neurosurgery and BrainScan(c) software, this work presents the mean density of 21 multiform glioblastomas, comparative results for normal tissue and estimated integrated dose for each case. The relationship between integrated dose and the probability of complications is discussed

  10. Present and future of the Image Guided Radiotherapy (I.G.R.T.) and its applications in lung cancer treatment

    International Nuclear Information System (INIS)

    Lefkopoulos, D.; Ferreira, I.; Isambert, A.; Le Pechoux, C.; Mornex, F.

    2007-01-01

    These last years, the new irradiation techniques as the conformal 3D radiotherapy and the IMRT are strongly correlated with the technological developments in radiotherapy. The rigorous definition of the target volume and the organs at risk required by these irradiation techniques, imposed the development of various image guided patient positioning and target tracking techniques. The availability of these imaging systems inside the treatment room has lead to the exploration of performing real-time adaptive radiation therapy. In this paper we present the different image guided radiotherapy (IGRT) techniques and the adaptive radiotherapy (ART) approaches. IGRT developments are focused in the following areas: 1) biological imaging for better definition of tumor volume; 2) 4D imaging for modeling the intra-fraction organ motion; 3) on-board imaging system or imaging devices registered to the treatment machines for inter-fraction patient localization; and 4) treatment planning and delivery schemes incorporating the information derived from the new imaging techniques. As this paper is included in the 'Cancer Radiotherapie' special volume dedicated to the lung cancers, in the description of the different IGRT techniques we try to present the lung tumors applications when this is possible. (author)

  11. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  12. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system.

    Science.gov (United States)

    Gutch, Manish; Philip, Rajeev; Philip, Renjit; Toms, Ajit; Saran, Sanjay; Gupta, K K

    2013-10-01

    Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  13. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse.

    Science.gov (United States)

    Salanova, Michele; Schiffl, Gudrun; Gutsmann, Martina; Felsenberg, Dieter; Furlan, Sandra; Volpe, Pompeo; Clarke, Andrew; Blottner, Dieter

    2013-01-01

    Activity-induced nitric oxide (NO) imbalance and "nitrosative stress" are proposed mechanisms of disrupted Ca(2+) homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO) functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study) without and with exercise as countermeasure in order to assess (i) the negative effects of chronic muscle disuse by nitrosative stress, (ii) to test for possible attenuation by exercise countermeasure in bed rest and (iii) to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre) and at end (End) from a bed rest disuse control group (CTR, n=9) and two bed rest resistive exercise groups either without (RE, n=7) or with superimposed vibration stimuli (RVE, n=7). At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, -SERCA1 and -PMCA) and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  14. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse

    Directory of Open Access Journals (Sweden)

    Michele Salanova

    2013-01-01

    Full Text Available Activity-induced nitric oxide (NO imbalance and “nitrosative stress” are proposed mechanisms of disrupted Ca2+ homeostasis in atrophic skeletal muscle. We thus mapped S-nitrosylated (SNO functional muscle proteins in healthy male subjects in a long-term bed rest study (BBR2-2 Study without and with exercise as countermeasure in order to assess (i the negative effects of chronic muscle disuse by nitrosative stress, (ii to test for possible attenuation by exercise countermeasure in bed rest and (iii to identify new NO target proteins. Muscle biopsies from calf soleus and hip vastus lateralis were harvested at start (Pre and at end (End from a bed rest disuse control group (CTR, n=9 and two bed rest resistive exercise groups either without (RE, n=7 or with superimposed vibration stimuli (RVE, n=7. At subcellular compartments, strong anti-SNO-Cys immunofluorescence patterns in control muscle fibers after bed rest returned to baseline following vibration exercise. Total SNO-protein levels, Nrf-2 gene expression and nucleocytoplasmic shuttling were changed to varying degrees in all groups. Excess SNO-protein levels of specific calcium release/uptake proteins (SNO-RyR1, –SERCA1 and –PMCA and of contractile myosin heavy chains seen in biopsy samples of chronically disused skeletal muscle were largely reduced by vibration exercise. We also identified NOS1 as a novel NO target in human skeletal muscle controlled by activity driven auto-nitrosylation mechanisms. Our findings suggest that aberrant levels of functional SNO-proteins represent signatures of uncontrolled nitrosative stress management in disused human skeletal muscle that can be offset by exercise as countermeasure.

  15. Feasibility of preference-driven radiotherapy dose treatment planning to support shared decision making in anal cancer

    DEFF Research Database (Denmark)

    Rønde, Heidi S; Wee, Leonard; Pløen, John

    2017-01-01

    PURPOSE/OBJECTIVE: Chemo-radiotherapy is an established primary curative treatment for anal cancer, but clinically equal rationale for different target doses exists. If joint preferences (physician and patient) are used to determine acceptable tradeoffs in radiotherapy treatment planning, multipl...... that preference-informed dose planning is feasible for clinical studies utilizing shared decision making....... dose plans must be simultaneously explored. We quantified the degree to which different toxicity priorities might be incorporated into treatment plan selection, to elucidate the feasible decision space for shared decision making in anal cancer radiotherapy. MATERIAL AND METHODS: Retrospective plans.......7%-points; (0.3; 30.6); p decision space available in anal cancer radiotherapy to incorporate preferences, although tradeoffs are highly patient-dependent. This study demonstrates...

  16. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors invol...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  17. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors invol...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  18. Therapeutic Results of Radiotherapy in Rectal Carcinoma -Comparison of Sandwich Technique Radiotherapy with Postoperative Radiotherapy

    International Nuclear Information System (INIS)

    Huh, Gil Cha; Suh, Hyun Suk; Lee, Hyuk Sang; Kim, Re Hwe; Kim, Chul Soo; Kim, Hong Yong; Kim, Sung Rok

    1996-01-01

    Purpose : To evaluate the potential advantage for 'sandwich' technique radiotherapy compared to postoperative radiotherapy in respectable rectal cancer. Between January 1989 and May 1994, 60 patients with respectable rectal cancer were treated at Inje University Seoul and Sanggye Paik Hospital.Fifty one patients were available for analysis : 20 patients were treated with sandwich technique radiotherapy and 31 patients were treated with postoperative radiotherapy. In sandwich technique radiotherapy(RT), patients were treated with preoperative RT 1500 cGy/5fx followed by immediate curative resection. Patients staged as Astler-Coller B2, C were considered for postoperative RT with 2500-4500 cGy. In postoperative RT, total radiation dose of 4500-6120 cGy, 180 cGy daily at 4-6 weeks was delivered. Patients were followed for median period of 25 months. Results : The overall 5-year survival rates for sandwich technique RT group and postoperative RT group were 60% and 71%, respectively(p>0.05). The 5-year disease free survival rates for each group were 63%. There was no difference in local failure rate between two groups(11% versus 7%). Incidence of distant metastasis was 11%(2/20) in the sandwich technique RT group and 20%(6/31) in the postoperative RT group(p>0.05). The frequencies of acute and chronic complications were comparable in both groups. Conclusion : The sandwich technique radiotherapy group shows local recurrence and survival similar to those of postoperative RT alone group but reduced distant metastasis compared to postoperative RT group. But long term follow-up and large number of patients is needed to make an any firm conclusion regarding the value of this sandwich technique RT

  19. Bladder radiotherapy treatment: A retrospective comparison of 3-dimensional conformal radiotherapy, intensity-modulated radiation therapy, and volumetric-modulated arc therapy plans

    Energy Technology Data Exchange (ETDEWEB)

    Pasciuti, Katia, E-mail: k.pasciuti@virgilio.it [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Kuthpady, Shrinivas [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom); Anderson, Anne; Best, Bronagh [Department of Radiotherapy Physics, Royal Free Hospital, London (United Kingdom); Waqar, Saleem; Chowdhury, Subhra [Department of Radiotherapy, Royal Free Hospital, London (United Kingdom)

    2017-04-01

    To examine tumor's and organ's response when different radiotherapy plan techniques are used. Ten patients with confirmed bladder tumors were first treated using 3-dimensional conformal radiotherapy (3DCRT) and subsequently the original plans were re-optimized using the intensity-modulated radiation treatment (IMRT) and volumetric-modulated arc therapy (VMAT)-techniques. Targets coverage in terms of conformity and homogeneity index, TCP, and organs' dose limits, including integral dose analysis were evaluated. In addition, MUs and treatment delivery times were compared. Better minimum target coverage (1.3%) was observed in VMAT plans when compared to 3DCRT and IMRT ones confirmed by a statistically significant conformity index (CI) results. Large differences were observed among techniques in integral dose results of the femoral heads. Even if no statistically significant differences were reported in rectum and tissue, a large amount of energy deposition was observed in 3DCRT plans. In any case, VMAT plans provided better organs and tissue sparing confirmed also by the normal tissue complication probability (NTCP) analysis as well as a better tumor control probability (TCP) result. Our analysis showed better overall results in planning using VMAT techniques. Furthermore, a total time reduction in treatment observed among techniques including gantry and collimator rotation could encourage using the more recent one, reducing target movements and patient discomfort.

  20. Expression of Gla proteins during fish skeletal development

    OpenAIRE

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  1. Postoperative Irradiation of Gynecologic Malignancies: Improving Treatment Delivery Using Aperture-Based Intensity-Modulated Radiotherapy

    International Nuclear Information System (INIS)

    Nadeau, Sylvain; Bouchard, Myriam; Germain, Isabelle; Raymond, Paul-Emile; Beaulieu, Frederic; Beaulieu, Luc; Roy, Rene; Gingras, Luc

    2007-01-01

    Purpose: To evaluate dosimetric and treatment delivery advantages of aperture-based intensity-modulated radiotherapy (AB-IMRT) for the treatment of patients receiving whole pelvic radiotherapy for gynecologic malignancies. Methods and Materials: Nineteen patients undergoing pelvic radiotherapy after resection of endometrial cancers were selected. A 45-Gy dose was prescribed to the target volume delineated on a planning CT scan. An in-house inverse planning system, Ballista, was used to develop a treatment plan using aperture-based multileaf collimator segments. This approach was compared with conventional four-field, enlarged four-field, and static beamlet-based IMRT (BB-IMRT) techniques in terms of target coverage, dose-volume histogram statistics for surrounding normal tissues, and numbers of segments and monitor units (MU). Results: Three quarters (76.4%) of the planning target volume received the prescription dose with conventional four-field plans. With adequate target coverage, the Ballista plans significantly reduced the volume of bowel and bladder irradiated at the prescribed dose (p < 0.001), whereas the two approaches provided equivalent results for the rectum (p 0.5). On the other hand, AB-IMRT and BB-IMRT plans showed only small differences in dose-volume histogram statistics of unknown clinical impact, whereas Ballista plan delivery required on average 73% and 59% fewer segments and MU, respectively. Conclusion: With respect to conventional techniques, AB-IMRT for the treatment of gynecologic malignancies provides dosimetric advantages similar to those with BB-IMRT but with clear treatment delivery improvements

  2. Intracavitary curietherapy of nasopharyngeal cancer after external radiotherapy

    International Nuclear Information System (INIS)

    Latini, P.; Panizza, B.M.; Checcaglini, F.; Maranzano, E.; Aristei, C.; Perucci, E.

    1991-01-01

    The authors report their experience in the treatment of nasopharyngeal carcinoma with intracavitary curietherapy to cure small recurring carcinomas or residual local disease 2-6 weeks after completing external radiotherapy. Since 1984 , 10 patients have received intracavitary radiotherapy with customized molds charged with Ir 192. Six of them received a boost dose because of residual disease and for local recurrence. The technique we employed to shape the molds is described, together with the mode of use and the doses to target volume. Due to both the small number of treated cases and the short follow-up, no significant conclusions could be drawn relative to survival time. However, it must be stressed that this therapeutic approach gives a high local control rate with no severe side-effects or sequelae

  3. Cyberknife : how has it changed the radiotherapy practice?

    International Nuclear Information System (INIS)

    Hukku, S.

    2016-01-01

    The CyberKnife is a frameless robotic radiosurgery system used for treating benign tumors, malignant tumors and other medical conditions. The system was invented by John R. Adler, a Stanford University professor of neurosurgery and radiation oncology, and Peter and Russell Schonberg of Schonberg Research Corporation. It is the most accurate and flexible tool available for aggressive therapeutic irradiation. It is a method of delivering radiotherapy, with the intention of targeting treatment more accurately than standard radiotherapy. The two main elements of the CyberKnife are: 1. The radiation produced from a small linear particle accelerator (linac) 2. A robotic arm which allows the energy to be directed at any part of the body from any direction. Several generations of the CyberKnife system have been developed since its initial inception in 1990

  4. Adopted orphans as regulators of inflammation, immunity and skeletal homeostasis.

    Science.gov (United States)

    Ipseiz, Natacha; Scholtysek, Carina; Culemann, Stephan; Krönke, Gerhard

    2014-01-01

    Adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs), have emerged as key regulators of inflammation and immunity and likewise control skeletal homeostasis. These properties render them attractive targets for the therapy of various inflammatory and autoimmune diseases affecting the musculoskeletal system. This review summarises the current knowledge on the role of these families of receptors during innate and adaptive immunity as well as during the control of bone turnover and discuss the potential use of targeting these molecules during the treatment of chronic diseases such as osteoarthritis, rheumatoid arthritis and osteoporosis.

  5. Commissioning an image-guided localization system for radiotherapy

    International Nuclear Information System (INIS)

    Phillips, Mark H.; Singer, Karen; Miller, Elizabeth; Stelzer, Keith

    2000-01-01

    Purpose: To describe the design and commissioning of a system for the treatment of classes of tumors that require highly accurate target localization during a course of fractionated external-beam therapy. This system uses image-guided localization techniques in the linac vault to position patients being treated for cranial tumors using stereotactic radiotherapy, conformal radiotherapy, and intensity-modulated radiation therapy techniques. Design constraints included flexibility in the use of treatment-planning software, accuracy and precision of repeat localization, limits on the time and human resources needed to use the system, and ease of use. Methods and Materials: A commercially marketed, stereotactic radiotherapy system, based on a system designed at the University of Florida, Gainesville, was adapted for use at the University of Washington Medical Center. A stereo pair of cameras in the linac vault were used to detect the position and orientation of an array of fiducial markers that are attached to a patient's biteblock. The system was modified to allow the use of either a treatment-planning system designed for stereotactic treatments, or a general, three-dimensional radiation therapy planning program. Measurements of the precision and accuracy of the target localization, dose delivery, and patient positioning were made using a number of different jigs and devices. Procedures were developed for the safe and accurate clinical use of the system. Results: The accuracy of the target localization is comparable to that of other treatment-planning systems. Gantry sag, which cannot be improved, was measured to be 1.7 mm, which had the effect of broadening the dose distribution, as confirmed by a comparison of measurement and calculation. The accuracy of positioning a target point in the radiation field was 1.0 ± 0.2 mm. The calibration procedure using the room-based lasers had an accuracy of 0.76 mm, and using a floor-based radiosurgery system it was 0.73 mm

  6. Skeletal muscle performance and ageing.

    Science.gov (United States)

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  7. Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: Does IMRT increase the integral dose to normal brain?

    International Nuclear Information System (INIS)

    Hermanto, Ulrich; Frija, Erik K.; Lii, MingFwu J.; Chang, Eric L.; Mahajan, Anita; Woo, Shiao Y.

    2007-01-01

    Purpose: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. Methods and Materials: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. Results: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p mean by 19.8% and D max by 10.7%), optic chiasm (D mean by 25.3% and D max by 22.6%), right optic nerve (D mean by 37.3% and D max by 28.5%), and left optic nerve (D mean by 40.6% and D max by 36.7%), p ≤ 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. Conclusions: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation

  8. Three-dimensional intrafractional internal target motions in accelerated partial breast irradiation using three-dimensional conformal external beam radiotherapy.

    Science.gov (United States)

    Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro

    2017-07-01

    We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Markov chain Monte Carlo methods in radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Hugtenburg, R.P.

    2001-01-01

    The Markov chain method can be used to incorporate measured data in Monte Carlo based radiotherapy treatment planning. This paper shows that convergence to the measured data, within the target precision, is achievable. Relative output factors for blocked fields and oblique beams are shown to compare well with independent measurements according to the same criterion. (orig.)

  10. Historical review of radiotherapy

    International Nuclear Information System (INIS)

    Onai, Yoshio

    1993-01-01

    The techniques of radiotherapy have been improved by development of particle accelerators, radionuclides and computers. This paper presents a historical review of the physical and technical aspects of radiotherapy in Japan. Changes in the kinds of radiation, such as X-rays, gamma rays, electrons, neutrons and protons used for external radiotherapy, and the equipment involved are described chronologically, and historical changes in the quality of radiotherapy apparatus are outlined. Patient data acquisition equipment, such as X-ray simulator and X-ray CT, beam modifying devices, patient setup devices, and devices to verify treatment fields and patient doses are reviewed historically. Radiation sources for brachytherapy and internal radiotherapy, and remotely controlled afterloading systems are reviewed chronologically. Historical changes in methods to evaluate absorbed doses, dose monitor systems and beam data acquisition systems are outlined. Changes in methods of calculating dose distributions for external X-ray and electron therapy, brachytherapy and internal radiotherapy by unsealded radionuclides are described and calculation techniques for treatment planning system are reviewed. Annual figures in the numbers of radiotherapy equipment, such as telecobalt and telecesium units, linear accelerators, betatrons, microtrons, stereotactic gamma units, conformation radiotherapy units, remotely controlled afterloading systems, and associated equipment such as X-ray simulators and treatment planning systems are provided, as are changes in the number of accelerators by maximum X-ray energy and maximum electron energy, and in the number of licensed hospitals and clinics using small sealed sources. Changes in techniques of external radiotherapy and brachytherapy are described briefly from the point of view of dose distributions. (author)

  11. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  12. Does skeletal muscle have an 'epi'-memory? The role of epigenetics in nutritional programming, metabolic disease, aging and exercise.

    Science.gov (United States)

    Sharples, Adam P; Stewart, Claire E; Seaborne, Robert A

    2016-08-01

    Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can 'remember' early-life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an 'epi'-memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re-encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early-life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise-induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the 'epi'-memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Clinical evaluation of radiotherapy for endocrine ophthalmopathy

    International Nuclear Information System (INIS)

    Okada, Kayoko; Oshitani, Takashi; Mieda, Chieko

    1990-01-01

    Ten patients with severe endocrine ophthalmopathy were treated by radiotherapy at Hyogo Medical Center for Adults from May 1984 to February 1988. All but one of the patients had poorly responded to previous systemic or topical corticosteroid therapy. The target of the radiotherapy was both retrobulbar tissues. The radiation field used was about 4 x 4 cm, excluding the pituitary gland and the brain, and was angled 5deg posteriorly to avoid the contralateral lens. A total of 2000 cGy was given to each patient over a 2 week-period. Eight of the ten patients showed some response, with 5 of them (50%) having a good to excellent response. Treatment was more effective for soft tissue changes, proptosis and keratopathy, while myopathy was less responsive. As for the duration of the eye signs and symptoms, those of a shorter duration (less than 12 months) responded better. It was also noted that the degree of the eye muscle enlargement on the pre-treatment orbital CT scan was directly correlated to the results of the treatment. Although three of the patients experienced transient headache, there were no serious acute reactions or long term complications. In conclusion, retrobulbar radiotherapy is a well-tolerated, safe and effective treatment for sever endocrine ophthalmopathy. (author)

  14. Clinical evaluation of radiotherapy for endocrine ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kayoko; Oshitani, Takashi; Mieda, Chieko (Hyogo Medical Center for Adults, Hyogo (Japan)) (and others)

    1990-06-01

    Ten patients with severe endocrine ophthalmopathy were treated by radiotherapy at Hyogo Medical Center for Adults from May 1984 to February 1988. All but one of the patients had poorly responded to previous systemic or topical corticosteroid therapy. The target of the radiotherapy was both retrobulbar tissues. The radiation field used was about 4 x 4 cm, excluding the pituitary gland and the brain, and was angled 5deg posteriorly to avoid the contralateral lens. A total of 2000 cGy was given to each patient over a 2 week-period. Eight of the ten patients showed some response, with 5 of them (50%) having a good to excellent response. Treatment was more effective for soft tissue changes, proptosis and keratopathy, while myopathy was less responsive. As for the duration of the eye signs and symptoms, those of a shorter duration (less than 12 months) responded better. It was also noted that the degree of the eye muscle enlargement on the pre-treatment orbital CT scan was directly correlated to the results of the treatment. Although three of the patients experienced transient headache, there were no serious acute reactions or long term complications. In conclusion, retrobulbar radiotherapy is a well-tolerated, safe and effective treatment for sever endocrine ophthalmopathy. (author).

  15. Field arrangement and dosimetry verification for concave target

    International Nuclear Information System (INIS)

    Chen Liang; Wang Huankun; Li Yumin

    2005-01-01

    Objective: To provide a method of radiotherapy field arrangement for concave paraspinal target. Methods: Plan was designed for concave target in wax phantom and the selected patients by the guidance of beam eye view (BEV) provided by a 3D treatment planning system (CREAT EXPERT). In BEV, the inner border of all tangential fields was 2 mm out of the organ at risk (OAR) and the outer border was 5 mm beyond the target. Dosimetry films and ion chamber were used to verify the dose distribution and point dose in the wax phantom. Results: Dose distribution in phantom and patient was homogeneous. The mean dose of OAR in phantom did not exceed 16% of the prescribed dose. Isodose curves dropped more than 8% per mm between the target and OAR in the phantom. Film dosimetry coincided well with the calculated results. Position error in high dose region was with- in 4 mm and absolute dose errors were no more than 5%. Conclusion: Tangential field arrangement is valuable and practical in radiotherapy for concave paraspinal targets. (authors)

  16. Oncological outcomes of patients with Ewing's sarcoma: is there a difference between skeletal and extra-skeletal Ewing's sarcoma?

    Science.gov (United States)

    Pradhan, A; Grimer, R J; Spooner, D; Peake, D; Carter, S R; Tillman, R M; Abudu, A; Jeys, L

    2011-04-01

    The aim of this study was to identify whether there was any difference in patient, tumour, treatment or outcome characteristics between patients with skeletal or extra-skeletal Ewing's sarcoma. We identified 300 patients with new primary Ewing's sarcoma diagnosed between 1980 and 2005 from the centres' local database. There were 253 (84%) with skeletal and 47 (16%) with extra-skeletal Ewing's sarcomas. Although patients with skeletal Ewing's were younger (mean age 16.8 years) than those with extra-skeletal Ewing's sarcoma (mean age 27.5 years), there was little difference between the groups in terms of tumour stage or treatment. Nearly all the patients were treated with chemotherapy and most had surgery. There was no difference in the overall survival of patients with skeletal (64%) and extra-skeletal Ewing's sarcoma (61%) (p = 0.85), and this was also the case when both groups were split by whether they had metastases or not. This large series has shown that the oncological outcomes of Ewing's sarcoma are related to tumour characteristics and patient age, and not determined by whether they arise in bone or soft tissue.

  17. Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications.

    Science.gov (United States)

    Burks, Scott R; Ziadloo, Ali; Kim, Saejeong J; Nguyen, Ben A; Frank, Joseph A

    2013-11-01

    Stem cells are promising therapeutics for cardiovascular diseases, and i.v. injection is the most desirable route of administration clinically. Subsequent homing of exogenous stem cells to pathological loci is frequently required for therapeutic efficacy and is mediated by chemoattractants (cell adhesion molecules, cytokines, and growth factors). Homing processes are inefficient and depend on short-lived pathological inflammation that limits the window of opportunity for cell injections. Noninvasive pulsed focused ultrasound (pFUS), which emphasizes mechanical ultrasound-tissue interactions, can be precisely targeted in the body and is a promising approach to target and maximize stem cell delivery by stimulating chemoattractant expression in pFUS-treated tissue prior to cell infusions. We demonstrate that pFUS is nondestructive to murine skeletal muscle tissue (no necrosis, hemorrhage, or muscle stem cell activation) and initiates a largely M2-type macrophage response. We also demonstrate that local upregulation of chemoattractants in pFUS-treated skeletal muscle leads to enhance homing, permeability, and retention of human mesenchymal stem cells (MSC) and human endothelial precursor cells (EPC). Furthermore, the magnitude of MSC or EPC homing was increased when pFUS treatments and cell infusions were repeated daily. This study demonstrates that pFUS defines transient "molecular zip codes" of elevated chemoattractants in targeted muscle tissue, which effectively provides spatiotemporal control and tunability of the homing process for multiple stem cell types. pFUS is a clinically translatable modality that may ultimately improve homing efficiency and flexibility of cell therapies for cardiovascular diseases. © AlphaMed Press.

  18. Role of radiotherapy in the treatment of meningiomas

    International Nuclear Information System (INIS)

    Noel, G.; Renard, A.; Mazeron, J.J.; Valery, C.; Mokhtari, K.

    2001-01-01

    Role of radiotherapy in the treatment of meningiomas. Cerebral meningiomas account for 15-20% of all cerebral tumours. Although seldom malignant, they frequently recur in spite of complete surgery, which remains the cornerstone of the treatment. In order to decrease the probability of local recurrence, radiotherapy has often been recommended in atypical or malignant meningioma as well as in benign meningioma which was incompletely resected. However, this treatment never was the subject of prospective studies, randomized or not. The purpose of this review of the literature was to give a progress report on the results of different published series in the field of methodology as well as in the techniques of radiotherapy. Proposals for a therapeutic choice are made according to this analysis. For grade I or grade II-III meningiomas, limits of gross tumor volume (GTV) include the tumour in place or the residual tumour after surgery; clinical target volume (CTV) limits include gross tumour volume before surgery with a GTV-CTV distance of 1 and 2 cm respectively. Delivered doses are 55 Gy into CTV and 55-60 Gy and 70 Gy into GTV for grade I and grade II-III meningiomas respectively. (authors)

  19. Proteomic profiling of non-obese type 2 diabetic skeletal muscle.

    Science.gov (United States)

    Mullen, Edel; Ohlendieck, Kay

    2010-03-01

    Abnormal glucose handling has emerged as a major clinical problem in millions of diabetic patients worldwide. Insulin resistance affects especially one of the main target organs of this hormone, the skeletal musculature, making impaired glucose metabolism in contractile fibres a major feature of type 2 diabetes. High levels of circulating free fatty acids, an increased intramyocellular lipid content, impaired insulin-mediated glucose uptake, diminished mitochondrial functioning and an overall weakened metabolic flexibility are pathobiochemical hallmarks of diabetic skeletal muscles. In order to increase our cellular understanding of the molecular mechanisms that underlie this complex diabetes-associated skeletal muscle pathology, we initiated herein a mass spectrometry-based proteomic analysis of skeletal muscle preparations from the non-obese Goto-Kakizaki rat model of type 2 diabetes. Following staining of high-resolution two-dimensional gels with colloidal Coomassie Blue, 929 protein spots were detected, whereby 21 proteins showed a moderate differential expression pattern. Decreased proteins included carbonic anhydrase, 3-hydroxyisobutyrate dehydrogenase and enolase. Increased proteins were identified as monoglyceride lipase, adenylate kinase, Cu/Zn superoxide dismutase, phosphoglucomutase, aldolase, isocitrate dehydrogenase, cytochrome c oxidase, small heat shock Hsp27/B1, actin and 3-mercaptopyruvate sulfurtransferase. These proteomic findings suggest that the diabetic phenotype is associated with a generally perturbed protein expression pattern, affecting especially glucose, fatty acid, nucleotide and amino acid metabolism, as well as the contractile apparatus, the cellular stress response, the anti-oxidant defense system and detoxification mechanisms. The altered expression levels of distinct skeletal muscle proteins, as documented in this study, might be helpful for the future establishment of a comprehensive biomarker signature of type 2 diabetes

  20. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification.

    Science.gov (United States)

    Harrison, R M

    2008-12-01

    The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.

  1. Skeletal manifestations of juvenile hypothyroidism and the impact of treatment on skeletal system

    Directory of Open Access Journals (Sweden)

    Manish Gutch

    2013-01-01

    Full Text Available Thyroid hormone mediates growth and development of the skeleton through its direct effects and through its permissive effects on growth hormone. The effect of hypothyroidism on bone is well described in congenital hypothyroidism, but the impact of thyroid hormone deficiency on a growing skeleton, as it happens with juvenile hypothyroidism, is less defined. In addition, the extent to which the skeletal defects of juvenile hypothyroidism revert on the replacement of thyroid hormone is not known. A study was undertaken in 29 juvenile autoimmune hypothyroid patients to study the skeletal manifestations of juvenile hypothyroidism and the impact of treatment of hypothyroidism on the skeletal system of juvenile patients. Hypothyroidism has a profound impact on the skeletal system and delayed bone age, dwarfism, and thickened bands at the metaphyseal ends being the most common findings. Post treatment, skeletal findings like delayed bone age and dwarfism improved significantly, but there were no significant changes in enlargement of sella, presence of wormian bones, epihyseal dysgenesis, vertebral changes and thickened band at the metaphyseal ends. With the treatment of hypothyroidism, there is an exuberant advancement of bone age, the catch up of bone age being approximately double of the chronological age advancement.

  2. Insights into skeletal muscle development and applications in regenerative medicine.

    Science.gov (United States)

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Physics aspects of recent and future concepts in radiotherapy

    International Nuclear Information System (INIS)

    Georg, D.

    2001-01-01

    Full text: The development of 3-D conformal radiotherapy (3D-CRT), in which the high dose volume matches as closely as possible the target volume and avoids therefore normal tissue irradiation as far as possible, has been a major theme in radiotherapy for improving the therapeutic window. Conformal radiotherapy is not a new concept but only the technological improvements of the last decade allow its clinical implementation. More recent and advanced forms of 3D-CRT are intensity modulated radiotherapy (IMRT) and stereotactic radiotherapy (SRT). IMRT uses an additional degree of freedom to achieve a new class of conformation: the variation of the primary beam intensity. SRT is based on a three dimensional stereotactic coordinate system which is correlated with the patient and the treatment facility through modern imaging technology. IMRT and SRT are related by common features, e.g. high dose gradients and small fields which require a high geometric precision. A high dosimetric and geometric precision can only be based on a detailed knowledge of the patient specific anatomy. Therefore, IMRT and SRT need to underlie multi-modality imaging studies. Both IMRT and SRT utilize photon beams and multiple field arrangements which increase the volumes of healthy tissue receiving low doses. Photons have a low selectivity along the beam direction implying that the sharp dose gradients are to be compromised. The increased low dose volume as well as the low selectivity of photon beams can be over-come by using proton or ions. Brachytherapy, a form of radiotherapy where encapsuled radioactive sources are placed directly in or in the vicinity of the tumor, is by definition conformal. Endovascular brachytherapy has become a promising new field in radiotherapy for the prevention of (re)stenosis after angioplasty. Although many clinical trials have been performed during the last years specific aspects related to endovascular brachytherapy have not been addressed clearly, such as the

  4. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    Directory of Open Access Journals (Sweden)

    Miyatake S

    2016-08-01

    Full Text Available Shouta Miyatake,1 Yuko Shimizu-Motohashi,2 Shin’ichi Takeda,1 Yoshitsugu Aoki1 1Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; 2Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan Abstract: Duchenne muscular dystrophy (DMD, an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. Keywords: calcium channels, ryanodine receptor 1, exon skipping, NF-κB, myokine, ROS

  5. Syntheses and evaluation of 68 Ga- and 153 Sm-labeled DOTA-conjugated bisphosphonate ligand for potential use in detection of skeletal metastases and management of pain arising from skeletal metastases.

    Science.gov (United States)

    Chakraborty, Sudipta; Goswami, Dibakar; Chakravarty, Rubel; Mohammed, Sahiralam Khan; Sarma, Haladhar Deb; Dash, Ashutosh

    2018-05-05

    This article reports the syntheses and evaluation of 68 Ga- and 153 Sm-complexes of a new DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-conjugated geminal bisphosphonate, DOTA-Bn-SCN-BP, for their potential uses in the early detection of skeletal metastases by imaging and palliation of pain arising from skeletal metastases, respectively. The conjugate was synthesized in high purity following an easily adaptable three-step reaction scheme. Gallium-68- and 153 Sm-complexes were prepared in high yield (>98%) and showed excellent in vitro stability in phosphate-buffered saline (PBS) and human serum. Both the complexes showed high affinity for hydroxyapatite particles in in vitro binding study. In biodistribution studies carried out in normal Wistar rats, both the complexes exhibited rapid skeletal accumulation with almost no retention in any other major organ. The newly synthesized molecule DOTA-Bn-SCN-BP would therefore be a promising targeting ligand for the development of radiopharmaceuticals for both imaging skeletal metastases and palliation of pain arising out of it in patients with cancer when radiolabeled with 68 Ga and 153 Sm, respectively. A systematic comparative evaluation, however, showed that there was no significant improvement of skeletal accumulation of the 153 Sm-DOTA-Bn-SCN-BP complex over 153 Sm-DOTMP (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethylenephosphonic acid) as the later itself demonstrated optimal properties required for an agent for bone pain palliation. © 2018 John Wiley & Sons A/S.

  6. Contact radiotherapy. Report of technological assessment

    International Nuclear Information System (INIS)

    Ortholan, Cecile; Melin, Nicole; Lee-Robin, Sun Hae; David, Denis Jean; Pages, Frederique; Devaud, Christine; Noel, Georges; Biga, Julie; Moty-Monnereau, Celine; Canet, Philippe; Lascols, Sylvie; Lamas, Muriel; Ramdine, Jessica; Tuil, Louise

    2008-10-01

    This report aims at assessing safety, indications, the role in therapeutic strategy, and efficiency of contact radiotherapy. It also aims at answering questions like: is the contact radiotherapy technique validated? What are the indications for contact radiotherapy? What about the efficiency and safety of contact radiotherapy? After a presentation of preliminary notions on radiotherapy (radiation types, dose, and irradiation techniques), the report presents this specific technique of contact radiotherapy: definition, devices, use recommendations, issues of radiation protection, modalities of performance of a contact radiotherapy session, and concerned pathologies. Then, based on a literature survey, this report addresses the various concerned tumours (skin, rectum, brain, breast), indicates some general information about these tumours (epidemiological data, anatomy and classification, therapeutic options, radiotherapy), and proposes an assessment of the efficiency and safety of contact radiotherapy

  7. Impact of low skeletal muscle mass on non-lung cancer mortality after stereotactic body radiotherapy for patients with stage I non-small cell lung cancer.

    Science.gov (United States)

    Matsuo, Yukinori; Mitsuyoshi, Takamasa; Shintani, Takashi; Iizuka, Yusuke; Mizowaki, Takashi

    2018-05-17

    The purpose of the present study was to retrospectively evaluate impact of pre-treatment skeletal muscle mass (SMM) on overall survival and non-lung cancer mortality after stereotactic body radiotherapy (SBRT) for patients with stage I non-small cell lung cancer (NSCLC). One-hundred and eighty-six patients whose abdominal CT before the treatment was available were enrolled into this study. The patients were divided into two groups of SMM according to gender-specific thresholds for unilateral psoas area. Operability was judged by the treating physician or thoracic surgeon after discussion in a multi-disciplinary tumor board. Patients with low SMM tended to be elderly and underweight in body mass index compared with the high SMM. Overall survival in patients with the low SMM tended to be worse than that in the high SMM (41.1% and 55.9% at 5 years, P = 0.115). Cumulative incidence of non-lung cancer death was significantly worse in the low SMM (31.3% at 5 years compared with 9.7% in the high SMM, P = 0.006). Multivariate analysis identified SMM and operability as significant factors for non-lung cancer mortality. Impact of SMM on lung cancer death was not significant. No difference in rate of severe treatment-related toxicity was observed between the SMM groups. Low SMM is a significant risk factor for non-lung cancer death, which might lead to worse overall survival, after SBRT for stage I NSCLC. However, the low SMM does not increase lung cancer death or severe treatment-related toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Skeletal muscle and fetal alcohol spectrum disorder.

    Science.gov (United States)

    Myrie, Semone B; Pinder, Mark A

    2018-04-01

    Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol ("prenatal alcohol exposure"; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.

  9. Primary lung sarcoma treated with stereotactic ablative radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Yeo SG

    2017-07-01

    Full Text Available Seung-Gu Yeo Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea Abstract: Primary lung sarcoma (PLS is an extremely rare, very aggressive malignancy. Surgical removal is considered the treatment of choice, and patients who have been given conventional radiotherapy have had inferior outcomes. This study is the first describing a case of PLS treated with stereotactic ablative radiotherapy (SABR, which precisely targets a small tumor with a markedly higher biologically effective dose than conventional radiotherapy. The patient was an 82-year-old man who was diagnosed with primary lung leiomyosarcoma based on radiology, pathology, and immunohistochemical examinations. The PLS was located in the right lower lobe and measured 2.5 cm. No regional nodal or distant organ metastasis was observed. He was inoperable medically. The SABR was performed using volumetric modulated arc therapy and a dose of 56 Gy in four fractions. Follow-up computed tomography 2 months after SABR revealed a complete tumor response. The toxicity was limited to mild respiratory symptoms. The patient is alive and has had no evidence of disease for 2 years. This study suggests that SABR can be a safe and effective treatment option for PLS. Keywords: primary lung sarcoma, leiomyosarcoma, stereotactic ablative radiotherapy, stereotactic body radiotherapy, radiation therapy, sarcoma 

  10. Tumor control and normal tissue toxicity: The two faces of radiotherapy

    NARCIS (Netherlands)

    van Oorschot, B.

    2016-01-01

    This thesis discusses the two contrasting sides of radiotherapy: tumor control and normal tissue toxicity. On one hand, radiation treatment aims to target the tumor with the highest possible radiation dose, inducing as much lethal DNA damage as possible. On the other hand however, escalation of the

  11. Accelerated hyperfractionated radiotherapy for malignant gliomas

    International Nuclear Information System (INIS)

    Buatti, John M.; Marcus, Robert B.; Mendenhall, William M.; Friedman, William A.; Bova, Francis J.

    1996-01-01

    Purpose: To evaluate accelerated hyperfractionated radiotherapy for the treatment of malignant gliomas. Methods and Materials: Between April 1985 and June 1994, 70 adult patients with pathologically confirmed malignant glioma (75% glioblastoma multiforme, 25% anaplastic astrocytoma) suitable for high-dose therapy were selected for treatment with accelerated hyperfractionated radiotherapy, 1.5 Gy twice daily to a total target dose of 60 Gy. Two patients were excluded from analysis (one patient had a fatal pulmonary embolism after 18 Gy; one patient discontinued therapy after 28.5 Gy against medical advice and without sequelae or progression). The 68 patients in the study group had a median age of 52 years and a median Karnofsky performance status of 90. Stereotactic implant ( 125 I) or stereotactic radiosurgery boosts were delivered to 16 patients (24%) in the study group. Minimum follow-up was 6 months. Results: Median survival was 13.8 months and median progression-free survival was 7.4 months. The absolute Kaplan-Meier survival rate was 16% at 2 years and 4% at 5 years. Multivariate analysis for the prognostic impact of age, gender, histology, Karnofsky performance status, symptomatology, surgical resection vs. biopsy, and boost vs nonboost therapy revealed that Karnofsky performance status ≥ 90, boost therapy, and surgical excision predicted significantly improved outcome. No severe toxicity occurred in patients treated with accelerated hyperfractionated radiotherapy alone, although 5% required steroids temporarily for edema. Progression occurred during treatment in one patient (1.5%). Conclusion: This regimen of accelerated hyperfractionated radiotherapy is well tolerated and leads to results comparable with those of standard therapy. The rate of disease progression during treatment is significantly better (p = 0.001) than is reported for patients treated with standard fractionation, with or without chemotherapy. This regimen is a reasonable starting point

  12. Transition from 2-D radiotherapy to 3-D conformal and intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    2008-05-01

    Cancer is one of the leading causes of death globally and radiotherapy is currently an essential component in the management of cancer patients, either alone or in combination with surgery or chemotherapy, both for cure or palliation. It is now recognized that safe and effective radiotherapy service needs not only substantial capital investment in radiotherapy equipment and specially designed facilities but also continuous investment in maintenance and upgrading of the equipment to comply with the technical progress, but also in training the staff. The recent IAEA-TECDOC publication 'Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects' provides general guidelines for designing and implementing radiotherapy services in Member States. Advances in computer technology have enabled the possibility of transitioning from basic 2- dimensional treatment planning and delivery (2-D radiotherapy) to a more sophisticated approach with 3-dimensional conformal radiotherapy (3-D CRT). Whereas 2-D radiotherapy can be applied with simple equipment, infrastructure and training, transfer to 3-D conformal treatments requires more resources in technology, equipment, staff and training. A novel radiation treatment approach using Intensity Modulated Radiation Therapy (IMRT) that optimizes the delivery of radiation to irregularly shaped tumour volumes demands even more sophisticated equipment and seamless teamwork, and consequentially more resources, advanced training and more time for treatment planning and verification of dose delivery than 3-D CRT. Whereas 3-D CRT can be considered as a standard, IMRT is still evolving. Due to the increased interest of Member States to the modern application of radiotherapy the IAEA has received a number of requests for guidance coming from radiotherapy departments that wish to upgrade their facilities to 3-D CRT and IMRT through Technical Cooperation programme. These requests are expected to increase

  13. Proteomic profiling of non-obese type 2 diabetic skeletal muscle

    OpenAIRE

    Mullen, Edel; Ohlendieck, Kay

    2010-01-01

    Abnormal glucose handling has emerged as a major clinical problem in millions of diabetic patients worldwide. Insulin resistance affects especially one of the main target organs of this hormone, the skeletal musculature, making impaired glucose metabolism in contractile fibres a major feature of type 2 diabetes. High levels of circulating free fatty acids, an increased intramyocellular lipid content, impaired insulin-mediated glucose uptake, diminished mitochondrial functioning and an overall...

  14. Anatomical imaging for radiotherapy

    International Nuclear Information System (INIS)

    Evans, Philip M

    2008-01-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  15. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    International Nuclear Information System (INIS)

    Krengli, Marco; Inglese, Eugenio; Milia, Maria E; Turri, Lucia; Mones, Eleonora; Bassi, Maria C; Cannillo, Barbara; Deantonio, Letizia; Sacchetti, Gianmauro; Brambilla, Marco

    2010-01-01

    FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 × 10 -4 ) and CT-CTV (p = 2.9 × 10 -4 ). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 × 10 -5 ) and CT-CTV (p = 6 × 10 -5 ). FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

  16. Applying Next Generation Sequencing to Skeletal Development and Disease

    OpenAIRE

    Bowen, Margot Elizabeth

    2013-01-01

    Next Generation Sequencing (NGS) technologies have dramatically increased the throughput and lowered the cost of DNA sequencing. In this thesis, I apply these technologies to unresolved questions in skeletal development and disease. Firstly, I use targeted re-sequencing of genomic DNA to identify the genetic cause of the cartilage tumor syndrome, metachondromatosis (MC). I show that the majority of MC patients carry heterozygous loss-of-function mutations in the PTPN11 gene, which encodes a p...

  17. Treatment simulations with a statistical deformable motion model to evaluate margins for multiple targets in radiotherapy for high-risk prostate cancer

    International Nuclear Information System (INIS)

    Thörnqvist, Sara; Hysing, Liv B.; Zolnay, Andras G.; Söhn, Matthias; Hoogeman, Mischa S.; Muren, Ludvig P.; Bentzen, Lise; Heijmen, Ben J.M.

    2013-01-01

    Background and purpose: Deformation and correlated target motion remain challenges for margin recipes in radiotherapy (RT). This study presents a statistical deformable motion model for multiple targets and applies it to margin evaluations for locally advanced prostate cancer i.e. RT of the prostate (CTV-p), seminal vesicles (CTV-sv) and pelvic lymph nodes (CTV-ln). Material and methods: The 19 patients included in this study, all had 7–10 repeat CT-scans available that were rigidly aligned with the planning CT-scan using intra-prostatic implanted markers, followed by deformable registrations. The displacement vectors from the deformable registrations were used to create patient-specific statistical motion models. The models were applied in treatment simulations to determine probabilities for adequate target coverage, e.g. by establishing distributions of the accumulated dose to 99% of the target volumes (D 99 ) for various CTV–PTV expansions in the planning-CTs. Results: The method allowed for estimation of the expected accumulated dose and its variance of different DVH parameters for each patient. Simulations of inter-fractional motion resulted in 7, 10, and 18 patients with an average D 99 >95% of the prescribed dose for CTV-p expansions of 3 mm, 4 mm and 5 mm, respectively. For CTV-sv and CTV-ln, expansions of 3 mm, 5 mm and 7 mm resulted in 1, 11 and 15 vs. 8, 18 and 18 patients respectively with an average D 99 >95% of the prescription. Conclusions: Treatment simulations of target motion revealed large individual differences in accumulated dose mainly for CTV-sv, demanding the largest margins whereas those required for CTV-p and CTV-ln were comparable

  18. Comparison of simple and complex liver intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Lee, Mark T; Purdie, Thomas G; Eccles, Cynthia L; Sharpe, Michael B; Dawson, Laura A

    2010-01-01

    Intensity-modulated radiotherapy (IMRT) may allow improvement in plan quality for treatment of liver cancer, however increasing radiation modulation complexity can lead to increased uncertainties and requirements for quality assurance. This study assesses whether target coverage and normal tissue avoidance can be maintained in liver cancer intensity-modulated radiotherapy (IMRT) plans by systematically reducing the complexity of the delivered fluence. An optimal baseline six fraction individualized IMRT plan for 27 patients with 45 liver cancers was developed which provided a median minimum dose to 0.5 cc of the planning target volume (PTV) of 38.3 Gy (range, 25.9-59.5 Gy), in 6 fractions, while maintaining liver toxicity risk <5% and maximum luminal gastrointestinal structure doses of 30 Gy. The number of segments was systematically reduced until normal tissue constraints were exceeded while maintaining equivalent dose coverage to 95% of PTV (PTVD95). Radiotherapy doses were compared between the plans. Reduction in the number of segments was achieved for all 27 plans from a median of 48 segments (range 34-52) to 19 segments (range 6-30), without exceeding normal tissue dose objectives and maintaining equivalent PTVD95 and similar PTV Equivalent Uniform Dose (EUD(-20)) IMRT plans with fewer segments had significantly less monitor units (mean, 1892 reduced to 1695, p = 0.012), but also reduced dose conformity (mean, RTOG Conformity Index 1.42 increased to 1.53 p = 0.001). Tumour coverage and normal tissue objectives were maintained with simplified liver IMRT, at the expense of reduced conformity

  19. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    Science.gov (United States)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  20. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    Science.gov (United States)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.