WorldWideScience

Sample records for skeletal protein interactions

  1. Thioredoxin interacting protein mediates lipid-induced impairment of glucose uptake in skeletal muscle.

    Science.gov (United States)

    Mandala, Ashok; Das, Nabanita; Bhattacharjee, Sudarshan; Mukherjee, Bidisha; Mukhopadhyay, Satinath; Roy, Sib Sankar

    2016-10-28

    Insulin resistance (IR) is an important determinant of type-2 diabetes mellitus (T2DM). Free fatty acids (FFAs) induce IR by various mechanisms. A surfeit of circulating FFA leads to intra-myocellular lipid accumulation that induces mitochondrial ROS generation and worsens IR. However, the molecular mechanisms behind are unclear. We identified thioredoxin interacting protein (TxNIP), which is overexpressed in T2DM, to be a promoter of ROS-induced IR. We observed upregulation of TxNIP upon palmitate treatment in skeletal muscle cells that led to ROS generation and Glut-4 downregulation resulting in impaired glucose-uptake. FFA-induced overexpression of TxNIP gene was mediated through the activation of its bona-fide trans activator, ChREBP. Further, Palmitate-induced impairment in AMPK-SIRT-1 pathway resulted in overexpression of ChREBP. While Fenofibrate, abrogated PA-induced TxNIP expression and ROS generation in skeletal muscle cells, Saroglitazar, a dual PPARα/γ-agonist, not only inhibited PA-induced TXNIP expression but also led to greater improvement in glucose uptake. Taken together, TxNIP appears to be an important factor in FFA-induced ROS generation and IR in skeletal muscle cells, which can be modulated for the management of this complex disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Vind, Birgitte

    2010-01-01

    association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control...... for regulation of SNAP23 were also investigated in the skeletal muscle cell line L6. RESULTS: We showed increased SNAP23 levels in skeletal muscle from patients with type 2 diabetes compared with that from lean control subjects. Moreover, SNAP23 was redistributed from the plasma membrane to the microsomal....../cytosolic compartment in the patients with the type 2 diabetes. Expression of the SNARE-interacting protein Munc18c was higher in skeletal muscle from patients with type 2 diabetes. Studies in L6 cells showed that Munc18c promoted the expression of SNAP23. CONCLUSIONS: We have translated our previous in vitro results...

  3. Protein-protein interactions

    DEFF Research Database (Denmark)

    Byron, Olwyn; Vestergaard, Bente

    2015-01-01

    Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The bi...

  4. Costameric proteins in human skeletal muscle during muscular inactivity.

    Science.gov (United States)

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Santoro, Giuseppe; Arco, Alba; Rizzo, Giuseppina; Bramanti, Placido; Rinaldi, Carmen; Sidoti, Antonina; Amato, Aldo; Favaloro, Angelo

    2008-09-01

    Costameres are regions that are associated with the sarcolemma of skeletal muscle fibres and comprise proteins of the dystrophin-glycoprotein complex and vinculin-talin-integrin system. Costameres play both a mechanical and a signalling role, transmitting force from the contractile apparatus to the extracellular matrix in order to stabilize skeletal muscle fibres during contraction and relaxation. Recently, it was shown that bidirectional signalling occurs between sarcoglycans and integrins, with muscle agrin potentially interacting with both types of protein to enable signal transmission. Although numerous studies have been carried out on skeletal muscle diseases, such as Duchenne muscular dystrophy, recessive autosomal muscular dystrophies and other skeletal myopathies, insufficient data exist on the relationship between costameres and the pathology of the second motor nerve and between costameric proteins and muscle agrin in other conditions in which skeletal muscle atrophy occurs. Previously, we carried out a preliminary study on skeletal muscle from patients with sensitive-motor polyneuropathy, in which we analysed the distribution of sarcoglycans, integrins and agrin by immunostaining only. In the present study, we have examined the skeletal muscle fibres of ten patients with sensitive-motor polyneuropathy. We used immunofluorescence and reverse transcriptase PCR to examine the distribution of vinculin, talin and dystrophin, in addition to that of those proteins previously studied. Our aim was to characterize in greater detail the distribution and expression of costameric proteins and muscle agrin during this disease. In addition, we used transmission electron microscopy to evaluate the structural damage of the muscle fibres. The results showed that immunostaining of alpha 7B-integrin, beta 1D-integrin and muscle agrin appeared to be severely reduced, or almost absent, in the muscle fibres of the diseased patients, whereas staining of alpha 7A

  5. Response and function of skeletal muscle heat shock protein 70.

    Science.gov (United States)

    Liu, Yuefei; Gampert, Larissa; Nething, Katja; Steinacker, Jürgen M

    2006-09-01

    In response to stress, cells produce a series of heat shock proteins (Hsps). One of the most prominent Hsps, is the 70 kDa Hsp (Hsp70). Hsp70 is a highly conserved and essential protein against stress. The skeletal muscle responds to a diverse group of stress signals namely, muscle contraction linked energy and milieu challenges, ischemia and exercise by producing Hsp70. The extent of this Hsp70 response in skeletal muscle depends on the type and intensity of the signal, and is characterized in a muscle fiber specific manner by a special time course. Hsp70 in the skeletal muscle is regulated at transcriptional, translational and posttranslational levels. Hsp70 serves as an indicator for cellular stress as a molecular chaperone, plays pivotal role in maintaining cellular homeostasis by preventing apoptosis, influences energy metabolism, facilitates cellular processes in terms of muscular adaptation and interacts with other signalling pathways. This review summarizes our current knowledge on the skeletal muscle Hsp70 response.

  6. Regulatory mechanisms of skeletal muscle protein turnover during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2009-01-01

    Skeletal muscle protein turnover is a relatively slow metabolic process that is altered by various physiological stimuli such as feeding/fasting and exercise. During exercise, catabolism of amino acids contributes very little to ATP turnover in working muscle. With regards to protein turnover......, there is now consistent data from tracer studies in rodents and humans showing that global protein synthesis is blunted in working skeletal muscle. Whether there is altered skeletal muscle protein breakdown during exercise remains unclear. The blunting of protein synthesis is believed to be mediated...... downstream of changes in intracellular Ca(2+) and energy turnover. In particular, a signaling cascade involving Ca(2+)-calmodulin-eEF2 kinase-eEF2 is implicated. The possible functional significance of altered protein turnover in working skeletal muscle during exercise is discussed. Further work...

  7. Protein-Protein Interaction Databases

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Jensen, Lars Juhl

    2015-01-01

    of research are explored. Here we present an overview of the most widely used protein-protein interaction databases and the methods they employ to gather, combine, and predict interactions. We also point out the trade-off between comprehensiveness and accuracy and the main pitfall scientists have to be aware...

  8. Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.

    Science.gov (United States)

    MacPherson, Rebecca E K; Peters, Sandra J

    2015-07-01

    The regulation of skeletal muscle lipolysis and fat oxidation is a complex process involving multiple proteins and enzymes. Emerging work indicates that skeletal muscle PLIN proteins likely play a role in the hydrolysis of triglycerides stored in lipid droplets and the passage of fatty acids to the mitochondria for oxidation. In adipocytes, PLIN1 regulates lipolysis by interacting with comparative gene identification-58 (CGI-58), an activator of adipose triglyceride lipase (ATGL). Upon lipolytic stimulation, PLIN1 is phosphorylated, releasing CGI-58 to activate ATGL and initiate triglyceride breakdown. The absence of PLIN1 in skeletal muscle leads us to believe that other PLIN family members undertake this role. The focus of this review is on the PLIN family proteins expressed in skeletal muscle: PLIN2, PLIN3, and PLIN5. To date, most studies involving these PLIN proteins have used nonmuscle tissues and cell cultures to determine their potential roles. Results from work in these models support a role for PLIN proteins in sequestering lipases during basal conditions and in potentially working together for lipase translocation and activity during lipolysis. In skeletal muscle, PLIN2 tends to mirror the lipid content and may play a role in lipid droplet growth and stability through lipase interactions on the lipid droplet surface, whereas the skeletal muscle roles of both PLIN3 and PLIN5 seem to be more complex because they are found not only on the lipid droplet, but also at the mitochondria. Clearly, further work is needed to fully understand the intricate mechanisms by which PLIN proteins contribute to skeletal muscle lipid metabolism.

  9. Effects of ractopamine and gender on protein turnover in skeletal ...

    African Journals Online (AJOL)

    p2492989

    Effects of the β-agonist, ractopamine-HCl (ractopamine), on skeletal muscle protein turnover were evaluated in ... The increase in shear force of m. longissimus from cattle fed β-agonists suggests that muscle protein degradation is ..... Cimaterol-induced muscle hypertrophy and altered endocrine status in lambs. J. Anim. Sci.

  10. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  11. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients

    KAUST Repository

    Conti, Antonio

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS\\'s pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V.

  12. Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Conti, Antonio; Riva, Nilo; Pesca, Mariasabina; Iannaccone, Sandro; Cannistraci, Carlo V; Corbo, Massimo; Previtali, Stefano C; Quattrini, Angelo; Alessio, Massimo

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe and fatal neurodegenerative disease of still unknown pathogenesis. Recent findings suggest that the skeletal muscle may play an active pathogenetic role. To investigate ALS's pathogenesis and to seek diagnostic markers, we analyzed skeletal muscle biopsies with the differential expression proteomic approach. We studied skeletal muscle biopsies from healthy controls (CN), sporadic ALS (sALS), motor neuropathies (MN) and myopathies (M). Pre-eminently among several differentially expressed proteins, Myosin binding protein H (MyBP-H) expression in ALS samples was anomalously high. MyBP-H is a component of the thick filaments of the skeletal muscle and has strong affinity for myosin, but its function is still unclear. High MyBP-H expression level was associated with abnormal expression of Rho kinase 2 (ROCK2), LIM domain kinase 1 (LIMK1) and cofilin2, that might affect the actin-myosin interaction. We propose that MyBP-H expression level serves, as a putative biomarker in the skeletal muscle, to discriminate ALS from motor neuropathies, and that it signals the onset of dysregulation in actin-myosin interaction; this in turn might contribute to the pathogenesis of ALS. © 2013 Elsevier B.V. All rights reserved.

  13. Protein and amino acid metabolism in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  14. Effects of ractopamine and gender on protein turnover in skeletal ...

    African Journals Online (AJOL)

    Effects of the β-agonist, ractopamine-HCl (ractopamine), on skeletal muscle protein turnover were evaluated in 16 steers (512 kg) and 16 heifers (473 kg). Treatments were arranged in a 2 × 2 factorial design and included gender (steer vs. heifer) and ractopamine (0 or 200 mg/d). Steers were implanted with 120 mg ...

  15. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  16. Skeletal muscle as a regulator of the longevity protein, Klotho

    Directory of Open Access Journals (Sweden)

    Keith G Avin

    2014-06-01

    Full Text Available Klotho is a powerful longevity protein that has been linked to the prevention of muscle atrophy, osteopenia, and cardiovascular disease. Similar anti-aging effects have also been ascribed to exercise and physical activity. While an association between muscle function and klotho expression has been previously suggested from longitudinal cohort studies, a direct relationship between circulating klotho and skeletal muscle has not been investigated. In this paper, we present a review of the literature and preliminary evidence that, together, suggests klotho expression may be modulated by skeletal muscle activity. Our pilot clinical findings performed in young and aged individuals suggest that circulating klotho levels are upregulated in response to an acute exercise bout, but that the response may be dependent on fitness level. A similar upregulation of circulating klotho is also observed in response to an acute exercise in young and old mice, suggesting this may be a good model for mechanistically probing the role of physical activity on klotho expression. Finally, we highlight overlapping signaling pathways that are modulated by both klotho and skeletal muscle and propose potential mechanisms for cross-talk between the two. It is hoped that this review will stimulate further consideration of the relationship between skeletal muscle activity and klotho expression, potentially leading to important insights into the well-documented systemic anti-aging effects of exercise.

  17. Interactive protein manipulation

    Energy Technology Data Exchange (ETDEWEB)

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  18. Regulation of Skeletal Muscle Plasticity by Protein Arginine Methyltransferases and Their Potential Roles in Neuromuscular Disorders

    Directory of Open Access Journals (Sweden)

    Derek W. Stouth

    2017-11-01

    Full Text Available Protein arginine methyltransferases (PRMTs are a family of enzymes that catalyze the methylation of arginine residues on target proteins, thereby mediating a diverse set of intracellular functions that are indispensable for survival. Indeed, full-body knockouts of specific PRMTs are lethal and PRMT dysregulation has been implicated in the most prevalent chronic disorders, such as cancers and cardiovascular disease (CVD. PRMTs are now emerging as important mediators of skeletal muscle phenotype and plasticity. Since their first description in muscle in 2002, a number of studies employing wide varieties of experimental models support the hypothesis that PRMTs regulate multiple aspects of skeletal muscle biology, including development and regeneration, glucose metabolism, as well as oxidative metabolism. Furthermore, investigations in non-muscle cell types strongly suggest that proteins, such as peroxisome proliferator-activated receptor-γ coactivator-1α, E2F transcription factor 1, receptor interacting protein 140, and the tumor suppressor protein p53, are putative downstream targets of PRMTs that regulate muscle phenotype determination and remodeling. Recent studies demonstrating that PRMT function is dysregulated in Duchenne muscular dystrophy (DMD, spinal muscular atrophy (SMA, and amyotrophic lateral sclerosis (ALS suggests that altering PRMT expression and/or activity may have therapeutic value for neuromuscular disorders (NMDs. This review summarizes our understanding of PRMT biology in skeletal muscle, and identifies uncharted areas that warrant further investigation in this rapidly expanding field of research.

  19. Expression of Gla proteins during fish skeletal development

    OpenAIRE

    Gavaia, Paulo J.

    2006-01-01

    Senegal sole skeletal development; Skeletal malformations; Skeletal malformation in mediterranean species; Senegal sole skeletal deformities; Zebra fish as model system: skeletal development; Identification of bone cells / skeletal development; Spatial - temporal pattern of bgp expression; Single cell resolution: localization of bgp mRNA; Single cell resolution: Immunolocalization of Bgp; Single cell resolution: localization of mgp mRNA; Single cell resolution: Immunolocalization of Mgp; An i...

  20. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  1. Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults

    Directory of Open Access Journals (Sweden)

    Oliver C. Witard

    2016-03-01

    Full Text Available Skeletal muscle is critical for human health. Protein feeding, alongside resistance exercise, is a potent stimulus for muscle protein synthesis (MPS and is a key factor that regulates skeletal muscle mass (SMM. The main purpose of this narrative review was to evaluate the latest evidence for optimising the amino acid or protein source, dose, timing, pattern and macronutrient coingestion for increasing or preserving SMM in healthy young and healthy older adults. We used a systematic search strategy of PubMed and Web of Science to retrieve all articles related to this review objective. In summary, our findings support the notion that protein guidelines for increasing or preserving SMM are more complex than simply recommending a total daily amount of protein. Instead, multifactorial interactions between protein source, dose, timing, pattern and macronutrient coingestion, alongside exercise, influence the stimulation of MPS, and thus should be considered in the context of protein recommendations for regulating SMM. To conclude, on the basis of currently available scientific literature, protein recommendations for optimising SMM should be tailored to the population or context of interest, with consideration given to age and resting/post resistance exercise conditions.

  2. Interaction entropy for protein-protein binding

    Science.gov (United States)

    Sun, Zhaoxi; Yan, Yu N.; Yang, Maoyou; Zhang, John Z. H.

    2017-03-01

    Protein-protein interactions are at the heart of signal transduction and are central to the function of protein machine in biology. The highly specific protein-protein binding is quantitatively characterized by the binding free energy whose accurate calculation from the first principle is a grand challenge in computational biology. In this paper, we show how the interaction entropy approach, which was recently proposed for protein-ligand binding free energy calculation, can be applied to computing the entropic contribution to the protein-protein binding free energy. Explicit theoretical derivation of the interaction entropy approach for protein-protein interaction system is given in detail from the basic definition. Extensive computational studies for a dozen realistic protein-protein interaction systems are carried out using the present approach and comparisons of the results for these protein-protein systems with those from the standard normal mode method are presented. Analysis of the present method for application in protein-protein binding as well as the limitation of the method in numerical computation is discussed. Our study and analysis of the results provided useful information for extracting correct entropic contribution in protein-protein binding from molecular dynamics simulations.

  3. Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle

    National Research Council Canada - National Science Library

    Talanian, Jason L; Holloway, Graham P; Snook, Laelie A; Heigenhauser, George J F; Bonen, Arend; Spriet, Lawrence L

    2010-01-01

    ... examined. Therefore, we determined whether high-intensity interval training (HIIT) increased total skeletal muscle, sarcolemmal, and mitochondrial membrane fatty acid transport protein contents...

  4. Skeletal Muscle Responses to Negative Energy Balance: Effects of Dietary Protein12

    Science.gov (United States)

    Carbone, John W.; McClung, James P.; Pasiakos, Stefan M.

    2012-01-01

    Sustained periods of negative energy balance decrease body mass due to losses of both fat and skeletal muscle mass. Decreases in skeletal muscle mass are associated with a myriad of negative consequences, including suppressed basal metabolic rate, decreased protein turnover, decreased physical performance, and increased risk of injury. Decreases in skeletal muscle mass in response to negative energy balance are due to imbalanced rates of muscle protein synthesis and degradation. However, the underlying physiological mechanisms contributing to the loss of skeletal muscle during energy deprivation are not well described. Recent studies have demonstrated that consuming dietary protein at levels above the current recommended dietary allowance (0.8 g·kg−1·d−1) may attenuate the loss of skeletal muscle mass by affecting the intracellular regulation of muscle anabolism and proteolysis. However, the specific mechanism by which increased dietary protein spares skeletal muscle through enhanced molecular control of muscle protein metabolism has not been elucidated. This article reviews the available literature related to the effects of negative energy balance on skeletal muscle mass, highlighting investigations that assessed the influence of varying levels of dietary protein on skeletal muscle protein metabolism. Further, the molecular mechanisms that may contribute to the regulation of skeletal muscle mass in response to negative energy balance and alterations in dietary protein level are described. PMID:22516719

  5. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  6. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3β (GSK3β) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...... involved in muscle mass regulation, we investigated the phosphorylation and expression of key factors in these protein synthesis and breakdown signaling pathways in thigh skeletal muscle of critically ill intensive care unit (ICU) patients compared with healthy controls....

  7. Skeletal ligament healing using the recombinant human amelogenin protein.

    Science.gov (United States)

    Hanhan, Salem; Ejzenberg, Ayala; Goren, Koby; Saba, Faris; Suki, Yarden; Sharon, Shay; Shilo, Dekel; Waxman, Jacob; Spitzer, Elad; Shahar, Ron; Atkins, Ayelet; Liebergall, Meir; Blumenfeld, Anat; Deutsch, Dan; Haze, Amir

    2016-05-01

    Injuries to ligaments are common, painful and debilitating, causing joint instability and impaired protective proprioception sensation around the joint. Healing of torn ligaments usually fails to take place, and surgical replacement or reconstruction is required. Previously, we showed that in vivo application of the recombinant human amelogenin protein (rHAM(+)) resulted in enhanced healing of the tooth-supporting tissues. The aim of this study was to evaluate whether amelogenin might also enhance repair of skeletal ligaments. The rat knee medial collateral ligament (MCL) was chosen to prove the concept. Full thickness tear was created and various concentrations of rHAM(+), dissolved in propylene glycol alginate (PGA) carrier, were applied to the transected MCL. 12 weeks after transection, the mechanical properties, structure and composition of transected ligaments treated with 0.5 μg/μl rHAM(+) were similar to the normal un-transected ligaments, and were much stronger, stiffer and organized than control ligaments, treated with PGA only. Furthermore, the proprioceptive free nerve endings, in the 0.5 μg/μl rHAM(+) treated group, were parallel to the collagen fibres similar to their arrangement in normal ligament, while in the control ligaments the free nerve endings were entrapped in the scar tissue at different directions, not parallel to the axis of the force. Four days after transection, treatment with 0.5 μg/μl rHAM(+) increased the amount of cells expressing mesenchymal stem cell markers at the injured site. In conclusion application of rHAM(+) dose dependently induced mechanical, structural and sensory healing of torn skeletal ligament. Initially the process involved recruitment and proliferation of cells expressing mesenchymal stem cell markers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Interaction and cystogenesis of Toxoplasma gondii within skeletal muscle cells in vitro

    Directory of Open Access Journals (Sweden)

    Erick Vaz Guimarães

    2009-03-01

    Full Text Available Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.

  9. Developmental changes in the protein profiles of human cardiac and skeletal muscle.

    Science.gov (United States)

    Tipler, T D; Edwards, Y H; Hopkinson, D A

    1978-05-01

    1. The use of SDS electrophoresis as a tool for the analysis of development processes in man has been evaluated. 2. The protein profiles of cardiac and skeletal muscle from foetal (10--24 weeks gestation) infant and adult specimens have been analysed and striking developmental changes were found which involved all the major proteins. 3. Before 20 weeks gestation the soluble protein profile of skeletal muscle appears to consist largely of extracellular proteins. 4. Myoglobin was found in foetal cardiac muscle from 20 weeks gestation but was not demonstrable in foetal (greater than 24 weeks) skeletal muscle. Foetal and adult myoglobin were indistinguishable. 5. A limited survey of the protein patterns of brain, liver and kidney was carried out. In general these tissues show less developmental change than skeletal or cardiac muscle.

  10. Discovering functional interaction patterns in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Can Tolga

    2008-06-01

    Full Text Available Abstract Background In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks. Results In this article, we map known functional annotations of proteins onto a PPI network in order to identify frequently occurring interaction patterns in the functional space. We propose a new frequent pattern identification technique, PPISpan, adapted specifically for PPI networks from a well-known frequent subgraph identification method, gSpan. Existing module discovery techniques either look for specific clique-like highly interacting protein clusters or linear paths of interaction. However, our goal is different; instead of single clusters or pathways, we look for recurring functional interaction patterns in arbitrary topologies. We have applied PPISpan on PPI networks of Saccharomyces cerevisiae and identified a number of frequently occurring functional interaction patterns. Conclusion With the help of PPISpan, recurring functional interaction patterns in an organism's PPI network can be identified. Such an analysis offers a new perspective on the modular organization of PPI networks. The complete list of identified functional interaction patterns is available at http://bioserver.ceng.metu.edu.tr/PPISpan/.

  11. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling

    OpenAIRE

    Drummond, Micah J.; Dreyer, Hans C.; Fry, Christopher S.; Glynn, Erin L.; Rasmussen, Blake B

    2009-01-01

    In this review we discuss current findings in the human skeletal muscle literature describing the acute influence of nutrients (leucine-enriched essential amino acids in particular) and resistance exercise on muscle protein synthesis and mammalian target of rapamycin complex 1 (mTORC1) signaling. We show that essential amino acids and an acute bout of resistance exercise independently stimulate human skeletal muscle protein synthesis. It also appears that ingestion of essential amino acids fo...

  12. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function

    OpenAIRE

    Pedrotti, Simona; Giudice, Jimena; Dagnino-Acosta, Adan; Knoblauch, Mark; Singh, Ravi K.; Hanna, Amy; Mo, Qianxing; Hicks, John; Hamilton, Susan; Cooper, Thomas A

    2015-01-01

    The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic ap...

  13. Detecting mutually exclusive interactions in protein-protein interaction maps.

    Directory of Open Access Journals (Sweden)

    Carmen Sánchez Claros

    Full Text Available Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  14. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  15. Creating Interactions between Tissue-Engineered Skeletal Muscle and the Peripheral Nervous System

    Science.gov (United States)

    Smith, Alec S.T.; Passey, Samantha L.; Martin, Neil R.W.; Player, Darren J.; Mudera, Vivek; Greensmith, Linda; Lewis, Mark P.

    2016-01-01

    Effective models of mammalian tissues must allow and encourage physiologically (mimetic) correct interactions between co-cultured cell types in order to produce culture microenvironments as similar as possible to those that would normally occur in vivo. In the case of skeletal muscle, the development of such a culture model, integrating multiple relevant cell types within a biomimetic scaffold, would be of significant benefit for investigations into the development, functional performance, and pathophysiology of skeletal muscle tissue. Although some work has been published regarding the behaviour of in vitro muscle models co-cultured with organotypic slices of CNS tissue or with stem cell-derived neurospheres, little investigation has so far been made regarding the potential to maintain isolated motor neurons within a 3D biomimetic skeletal muscle culture platform. Here, we review the current state of the art for engineering neuromuscular contacts in vitro and provide original data detailing the development of a 3D collagen-based model for the co-culture of primary muscle cells and motor neurons. The devised culture system promotes increased myoblast differentiation, forming arrays of parallel, aligned myotubes on which areas of nerve-muscle contact can be detected by immunostaining for pre- and post-synaptic proteins. Quantitative RT-PCR results indicate that motor neuron presence has a positive effect on myotube maturation, suggesting neural incorporation influences muscle development and maturation in vitro. The importance of this work is discussed in relation to other published neuromuscular co-culture platforms along with possible future directions for the field. PMID:27825148

  16. Vasodilator interactions in skeletal muscle blood flow regulation

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Nyberg, Michael Permin; Jensen, Lasse Gliemann

    2012-01-01

    During exercise, oxygen delivery to skeletal muscle is elevated to meet the increased oxygen demand. The increase in blood flow to skeletal muscle is achieved by vasodilators formed locally in the muscle tissue, either on the intraluminal or the extraluminal side of the blood vessels. A number...... that this remaining hyperemia may be explained by cAMP and cGMP independent smooth muscle relaxation, such as effects of endothelial derived hyperpolarization factors (EDHFs) or through metabolic modulation of sympathetic effects. The nature and role of EDHF as well as potential novel mechanisms in muscle blood flow...

  17. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.

    Science.gov (United States)

    Chaturvedi, Vishal; Dye, Danielle E; Kinnear, Beverley F; van Kuppevelt, Toin H; Grounds, Miranda D; Coombe, Deirdre R

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.

  18. Database of Interacting Proteins (DIP)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The DIP database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent...

  19. Protein Intake, Especially Vegetable Protein Intake, Is Associated with Higher Skeletal Muscle Mass in Elderly Patients with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Akane Miki

    2017-01-01

    Full Text Available Background/Aims. Protein intake is important for maintaining muscle mass in general population. However, it remains to be elucidated the association between dietary protein intake and skeletal muscle mass in elderly patients with type 2 diabetes. Methods. In this cross-sectional study of 168 elderly patients with type 2 diabetes, we investigated the relationship between skeletal muscle index (SMI and protein intake. Bioimpedance analysis was used for measurement for skeletal muscle mass (kg and SMI (%, which was defined as skeletal muscle mass (kg/total body weight (kg × 100. Habitual food and nutrient intake were estimated by a questionnaire. Results. Protein intake was independently correlated with SMI after adjusting for age, hemoglobin A1c, C-peptide index, exercise, smoking, insulin treatment, total energy intake, and C-reactive protein (standardized regression coefficient = 0.664, P<0.001 in men and standardized regression coefficient = 0.516, P=0.005 in women. Additionally, the animal protein to vegetable protein ratio was negatively correlated with SMI after adjusting for covariates in men (standardized regression coefficient = −0.339, P=0.005. Conclusions. We found that total protein intake, especially vegetable protein intake, was positively associated with skeletal muscle mass in elderly patients with type 2 diabetes.

  20. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna

    2015-01-01

    spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins...

  1. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.

    Science.gov (United States)

    Bohnert, Kyle R; McMillan, Joseph D; Kumar, Ashok

    2018-01-01

    Skeletal muscle is the most abundant tissue in the human body and can adapt its mass as a consequence of physical activity, metabolism, growth factors, and disease conditions. Skeletal muscle contains an extensive network of endoplasmic reticulum (ER), called sarcoplasmic reticulum, which plays an important role in the regulation of proteostasis and calcium homeostasis. In many cell types, environmental and genetic factors that disrupt ER function cause an accumulation of misfolded and unfolded proteins in the ER lumen that ultimately leads to ER stress. To alleviate the stress and restore homeostasis, the ER activates a signaling network called the unfolded protein response (UPR). The UPR has three arms, which regulate protein synthesis and expression of many ER chaperone and regulatory proteins. However, the role of individual UPR pathways in skeletal muscle has just begun to be investigated. Recent studies suggest that UPR pathways play pivotal roles in muscle stem cell homeostasis, myogenic differentiation, and regeneration of injured skeletal muscle. Moreover, markers of ER stress and the UPR are activated in skeletal muscle in diverse conditions such as exercise, denervation, starvation, high fat diet, cancer cachexia, and aging. Accumulating evidence also suggests that ER stress may have important roles in the pathogenesis of inflammatory myopathies and genetic muscle disorders. The purpose of this review article is to discuss the role and potential mechanisms by which ER stress and the individual arms of the UPR regulate skeletal muscle formation, plasticity, and function in various physiological and pathophysiological conditions. © 2017 Wiley Periodicals, Inc.

  2. Neural-Thyroid Interaction on Skeletal Isomyosin in Zero Gravity

    Science.gov (United States)

    Baldwin, Kenneth M.

    2000-01-01

    The primary goal of the project was to develop a ground based model to first study the role of the nerve and of thyroid hormone (T3) in the regulation of body growth and skeletal muscle growth and differentiation in rodents. A primary objective was to test the hypothesis that normal weight bearing activity is essential for the development of antigravity, slow twitch skeletal muscle and the corresponding slow myosin heavy chain (MHC) gene; whereas, T3 was obligatory for general body and muscle growth and the establishment of fast MHC phenotype in typically fast locomoter muscles. These ground based experiments would provide both the efficacy and background for a spaceflight experiment (referred to as the Neurolab Mission) jointly sponsored by the NIH and NASA.

  3. Activated protein C attenuates acute ischaemia reperfusion injury in skeletal muscle.

    LENUS (Irish Health Repository)

    Dillon, J P

    2012-02-03

    Activated protein C (APC) is an endogenous anti-coagulant with anti-inflammatory properties. The purpose of the present study was to evaluate the effects of activated protein C in the setting of skeletal muscle ischaemia reperfusion injury (IRI). IRI was induced in rats by applying rubber bands above the levels of the greater trochanters bilaterally for a period of 2h followed by 12h reperfusion. Treatment groups received either equal volumes of normal saline or activated protein C prior to tourniquet release. Following 12h reperfusion, muscle function was assessed electrophysiologically by electrical field stimulation. The animals were then sacrificed and skeletal muscle harvested for evaluation. Activated protein C significantly attenuated skeletal muscle reperfusion injury as shown by reduced myeloperoxidase content, wet to dry ratio and electrical properties of skeletal muscle. Further in vitro work was carried out on neutrophils isolated from healthy volunteers to determine the direct effect of APC on neutrophil function. The effects of APC on TNF-alpha stimulated neutrophils were examined by measuring CD18 expression as well as reactive oxygen species generation. The in vitro work demonstrated a reduction in CD18 expression and reactive oxygen species generation. We conclude that activated protein C may have a protective role in the setting of skeletal muscle ischaemia reperfusion injury and that this is in part mediated by a direct inhibitory effect on neutrophil activation.

  4. Profiling Carbonylated Proteins in Heart and Skeletal Muscle Mitochondria from Trained and Untrained Mice.

    Science.gov (United States)

    Carpentieri, Andrea; Gamberi, Tania; Modesti, Alessandra; Amoresano, Angela; Colombini, Barbara; Nocella, Marta; Bagni, Maria Angela; Fiaschi, Tania; Barolo, Lorenzo; Gulisano, Massimo; Magherini, Francesca

    2016-10-07

    Understanding the relationship between physical exercise, reactive oxygen species, and skeletal muscle modification is important in order to better identify the benefits or the damages that appropriate or inappropriate exercise can induce. Heart and skeletal muscles have a high density of mitochondria with robust energetic demands, and mitochondria plasticity has an important role in both the cardiovascular system and skeletal muscle responses. The aim of this study was to investigate the influence of regular physical activity on the oxidation profiles of mitochondrial proteins from heart and tibialis anterior muscles. To this end, we used the mouse as animal model. Mice were divided into two groups: untrained and regularly trained. The carbonylated protein pattern was studied by two-dimensional gel electrophoresis followed by Western blot with anti-dinitrophenyl hydrazone antibodies. Mass spectrometry analysis allowed the identification of several different protein oxidation sites, including methionine, cysteine, proline, and leucine residues. A large number of oxidized proteins were found in both untrained and trained animals. Moreover, mitochondria from skeletal muscles and heart showed almost the same carbonylation pattern. Interestingly, exercise training seems to increase the carbonylation level mainly of mitochondrial proteins from skeletal muscle.

  5. Yeast Interacting Proteins Database: YJL199C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...cies; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey (4) Ro...n; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies... species; protein detected in large-scale protein-protein interaction studies Rows with this prey as prey Ro

  6. Exercise-induced phospho-proteins in skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Hawley, J A; Zierath, J R

    2008-01-01

    Efforts to identify exercise-induced signaling events in skeletal muscle have been influenced by ground-breaking discoveries in the insulin action field. Initial discoveries demonstrating that exercise enhances insulin sensitivity raised the possibility that contraction directly modulates insulin...... receptor signaling events. Although the acute effects of exercise on glucose metabolism are clearly insulin-independent, the canonical insulin signaling cascade has been used as a framework by investigators in an attempt to resolve the mechanisms by which muscle contraction governs glucose metabolism....... This review focuses on recent advances in our understanding of exercise-induced signaling pathways governing glucose metabolism in skeletal muscle. Particular emphasis will be placed on the characterization of AS160, a novel Akt substrate that plays a role in the regulation of glucose transport....

  7. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Farnir, Frédéric

    2004-01-01

    The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express...... a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele....... of a long-range control element (LRCE) because the CLPG mutation was shown, in postnatal skeletal muscle, to enhance the transcript levels of the DLK1, PEG11, GTL2, and MEG8 genes in cis without altering their imprinting status . As a result, the +(MAT)/CLPG(PAT) individuals have a unique expression profile...

  8. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    There is increasing evidence that multiple proteins involved in key regulatory processes in mitochondria are phosphorylated in mammalian tissues. Insulin regulates glucose metabolism by phosphorylation-dependent signaling and has been shown to stimulate ATP synthesis in human skeletal muscle. Here......, we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...

  9. Protein mixtures: interactions and gelation

    NARCIS (Netherlands)

    Ersch, C.

    2015-01-01

    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein

  10. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  11. Identification of an FHL1 protein complex containing gamma-actin and non-muscle myosin IIB by analysis of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lili Wang

    Full Text Available FHL1 is multifunctional and serves as a modular protein binding interface to mediate protein-protein interactions. In skeletal muscle, FHL1 is involved in sarcomere assembly, differentiation, growth, and biomechanical stress. Muscle abnormalities may play a major role in congenital clubfoot (CCF deformity during fetal development. Thus, identifying the interactions of FHL1 could provide important new insights into its functional role in both skeletal muscle development and CCF pathogenesis. Using proteins derived from rat L6GNR4 myoblastocytes, we detected FHL1 interacting proteins by immunoprecipitation. Samples were analyzed by liquid chromatography mass spectrometry (LC-MS. Dynamic gene expression of FHL1 was studied. Additionally, the expression of the possible interacting proteins gamma-actin and non-muscle myosin IIB, which were isolated from the lower limbs of E14, E15, E17, E18, E20 rat embryos or from adult skeletal muscle was analyzed. Potential interacting proteins isolated from E17 lower limbs were verified by immunoprecipitation, and co-localization in adult gastrocnemius muscle was visualized by fluorescence microscopy. FHL1 expression was associated with skeletal muscle differentiation. E17 was found to be the critical time-point for skeletal muscle differentiation in the lower limbs of rat embryos. We also identified gamma-actin and non-muscle myosin IIB as potential binding partners of FHL1, and both were expressed in adult skeletal muscle. We then demonstrated that FHL1 exists as part of a complex, which binds gamma-actin and non-muscle myosin IIB.

  12. Post-transcriptional regulation of ITGB6 protein levels in damaged skeletal muscle

    OpenAIRE

    Ducceschi, Melissa; Clifton, Lisa G.; Stimpson, Stephen A; Billin, Andrew N.

    2014-01-01

    We have identified integrin beta 6 (Itgb6) as a transcript highly enriched in skeletal muscle. This finding is unexpected because Itgb6 is typically associated with epithelial expression domains in normal tissue. Further we find that ITGB6 protein expression in muscle is post-transcriptionally regulated. Uninjured muscle expresses Itgb6 RNA but no ITGB6 protein is detectable. Muscle injury induces ITGB6 protein accumulation rapidly post-injury in myofibers adjacent to the site of injury. As r...

  13. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    Science.gov (United States)

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (Pdietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (Pgrowth factor 1 (IGF-1) (Pdietary protein levels and CS supplementation for all traits. In conclusion, dietary protein levels and CS supplementation influenced growth and protein metabolism through independent mechanisms in pigs. In addition, LP diets supplemented with EAA did not affect growth performance and other traits except the concentrations of SS and PUN probably through maintenance of protein synthesis and degradation signaling. Moreover, CS supplementation improved growth performance by increasing plasma IGF-1 concentrations possibly through alterations of mTOR and Akt/FOXO signaling pathways in skeletal muscle of finishing

  14. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System

    NARCIS (Netherlands)

    Chaturvedi, V.; Dye, D.E.; Kinnear, B.F.; Kuppevelt, T.H. van; Grounds, M.D.; Coombe, D.R.

    2015-01-01

    Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast

  15. Proteomic profiling reveals a severely perturbed protein expression pattern in aged skeletal muscle.

    Science.gov (United States)

    O'Connell, Kathleen; Gannon, Joan; Doran, Philip; Ohlendieck, Kay

    2007-08-01

    Extended longevity is often accompanied by frailty and increased susceptibility to a variety of crippling disorders. One of the most striking features of human aging is sarcopenia, which is defined as the age-related decline in skeletal muscle mass and strength. Although various metabolic and functional defects in aging muscle fibres have been described over the last decade, it is not known whether a pathophysiological hierarchy exists within degenerative pathways leading to muscle wasting. Hence, in order to identify novel biomarkers of age-dependent skeletal muscle degeneration, we have here applied mass spectrometry-based proteomics for studying global muscle protein expression patterns. As a model system of sarcopenia, we have employed crude extracts from senescent rat gastrocnemius muscle, as compared to young adult tissue preparations. Using the highly sensitive protein dye Deep Purple for the analysis of the 2-D separated muscle proteome and peptide mass fingerprinting for the identification of individual protein spots, a differential expression pattern was observed for contractile proteins, metabolic factors, regulatory components and heat shock elements. A drastic increase was shown for alpha B-crystallin, myosin light chain MLC-1, phosphoglycerate kinase, adenylate kinase, triosephosphate isomerase, albumin, aconitase and nucleoside-diphosphate kinase in aged fibres. In contrast, the expression of pyruvate kinase, aldolase, creatine kinase, transferrin, alpha-tropomyosin and myosin light chain MLC-3 was decreased in old skeletal muscle. Comparative 2-D immunoblotting of selected candidate proteins has confirmed the effect of aging on the skeletal muscle proteome. These findings demonstrate a severely perturbed protein expression pattern in aged skeletal muscle, which reflects the underlying molecular alterations causing a drastic decline of muscle strength in the senescent organism. In the long-term, the systematic deduction of abnormal protein expression

  16. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training.

    Science.gov (United States)

    Trommelen, Jorn; van Loon, Luc J C

    2016-11-28

    Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training.

  17. Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training

    Directory of Open Access Journals (Sweden)

    Jorn Trommelen

    2016-11-01

    Full Text Available Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training.

  18. An allosteric model of the molecular interactions of excitation- contraction coupling in skeletal muscle

    OpenAIRE

    1993-01-01

    A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca ch...

  19. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.

    2014-01-01

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  20. Vitamin D receptor protein is associated with interleukin-6 in human skeletal muscle

    Science.gov (United States)

    Vitamin D is associated with skeletal muscle physiology and function and may play a role in intramuscular inflammation, possibly via the vitamin D receptor (VDR). We conducted two studies to examine (1) whether serum 25-hydroxyvitamin D (25OHD) and/or intramuscular VDR protein concentrations are ass...

  1. Uncoupling Protein 3 Content Is Decreased in Skeletal Muscle of Patients With Type 2 Diabetes

    NARCIS (Netherlands)

    Keizer; E.E. Blaak; P. Schrauwen; G. Schaart; dr. Lars B. Borghouts; Saris; M.K.C. Hesselink

    2001-01-01

    Recently, a role for uncoupling protein-3 (UCP3) in carbohydrate metabolism and in type 2 diabetes has been suggested. Mice overexpressing UCP3 in skeletal muscle showed reduced fasting plasma glucose levels, improved glucose tolerance after an oral glucose load, and reduced fasting plasma insulin

  2. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia

    DEFF Research Database (Denmark)

    Vigano, A.; Ripamonti, M.; Palma, S. De

    2008-01-01

    High altitude hypoxia is a paraphysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. In man, skeletal muscle, after prolonged exposure to hypoxia, undergoes mass reduction and alterations at the cellular...

  3. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJ...

  4. The Skeletal Muscle Anabolic Response to Plant- versus Animal-Based Protein Consumption.

    Science.gov (United States)

    van Vliet, Stephan; Burd, Nicholas A; van Loon, Luc J C

    2015-09-01

    Clinical and consumer market interest is increasingly directed toward the use of plant-based proteins as dietary components aimed at preserving or increasing skeletal muscle mass. However, recent evidence suggests that the ingestion of the plant-based proteins in soy and wheat results in a lower muscle protein synthetic response when compared with several animal-based proteins. The possible lower anabolic properties of plant-based protein sources may be attributed to the lower digestibility of plant-based sources, in addition to greater splanchnic extraction and subsequent urea synthesis of plant protein-derived amino acids compared with animal-based proteins. The latter may be related to the relative lack of specific essential amino acids in plant- as opposed to animal-based proteins. Furthermore, most plant proteins have a relatively low leucine content, which may further reduce their anabolic properties when compared with animal proteins. However, few studies have actually assessed the postprandial muscle protein synthetic response to the ingestion of plant proteins, with soy and wheat protein being the primary sources studied. Despite the proposed lower anabolic properties of plant vs. animal proteins, various strategies may be applied to augment the anabolic properties of plant proteins. These may include the following: 1) fortification of plant-based protein sources with the amino acids methionine, lysine, and/or leucine; 2) selective breeding of plant sources to improve amino acid profiles; 3) consumption of greater amounts of plant-based protein sources; or 4) ingesting multiple protein sources to provide a more balanced amino acid profile. However, the efficacy of such dietary strategies on postprandial muscle protein synthesis remains to be studied. Future research comparing the anabolic properties of a variety of plant-based proteins should define the preferred protein sources to be used in nutritional interventions to support skeletal muscle mass gain

  5. Diacylglycerol kinase-zeta localization in skeletal muscle is regulated by phosphorylation and interaction with syntrophins.

    Science.gov (United States)

    Abramovici, Hanan; Hogan, Angela B; Obagi, Christopher; Topham, Matthew K; Gee, Stephen H

    2003-11-01

    Syntrophins are scaffolding proteins that link signaling molecules to dystrophin and the cytoskeleton. We previously reported that syntrophins interact with diacylglycerol kinase-zeta (DGK-zeta), which phosphorylates diacylglycerol to yield phosphatidic acid. Here, we show syntrophins and DGK-zeta form a complex in skeletal muscle whose translocation from the cytosol to the plasma membrane is regulated by protein kinase C-dependent phosphorylation of the DGK-zeta MARCKS domain. DGK-zeta mutants that do not bind syntrophins were mislocalized, and an activated mutant of this sort induced atypical changes in the actin cytoskeleton, indicating syntrophins are important for localizing DGK-zeta and regulating its activity. Consistent with a role in actin organization, DGK-zeta and syntrophins were colocalized with filamentous (F)-actin and Rac in lamellipodia and ruffles. Moreover, extracellular signal-related kinase-dependent phosphorylation of DGK-zeta regulated its association with the cytoskeleton. In adult muscle, DGK-zeta was colocalized with syntrophins on the sarcolemma and was concentrated at neuromuscular junctions (NMJs), whereas in type IIB fibers it was found exclusively at NMJs. DGK-zeta was reduced at the sarcolemma of dystrophin-deficient mdx mouse myofibers but was specifically retained at NMJs, indicating that dystrophin is important for the sarcolemmal but not synaptic localization of DGK-zeta. Together, our findings suggest syntrophins localize DGK-zeta signaling complexes at specialized domains of muscle cells, which may be critical for the proper control of lipid-signaling pathways regulating actin organization. In dystrophic muscle, mislocalized DGK-zeta may cause abnormal cytoskeletal changes that contribute to disease pathogenesis.

  6. Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia.

    Science.gov (United States)

    Lohuis, T D; Harlow, H J; Beck, T D I

    2007-05-01

    Black bears spend four to seven months every winter confined to their den and anorexic. Despite potential for skeletal muscle atrophy and protein loss, bears appear to retain muscle integrity throughout winter dormancy. Other authors have suggested that bears are capable of net protein anabolism during this time. The present study was performed to test this hypothesis by directly measuring skeletal muscle protein metabolism during the summer, as well as early and late hibernation periods. Muscle biopsies were taken from the vastus lateralis of six free-ranging bears in the summer, and from six others early in hibernation and again in late winter. Protein synthesis and breakdown were measured on biopsies using (14)C-phenylalanine as a tracer. Muscle protein, nitrogen, and nucleic acid content, as well as nitrogen stable isotope enrichment, were also measured. Protein synthesis was greater than breakdown in summer bears, suggesting that they accumulate muscle protein during periods of seasonal food availability. Protein synthesis and breakdown were both lower in winter compared to summer but were equal during both early and late denning, indicating that bears are in protein balance during hibernation. Protein and nitrogen content, nucleic acid, and stable isotope enrichment measurements of the biopsies support this conclusion.

  7. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle

    DEFF Research Database (Denmark)

    Larsen, Lea Hüche; Sandø-Pedersen, Sofie; Ørstrup, Laura Kofoed Hvidsten

    2017-01-01

    by taurine supplementation (LP-Tau). LP-Tau offspring had significantly lower birth weight compared to controls. Gene expression profiling revealed 895 significantly changed genes, mainly an LP-induced down-regulation of genes involved in protein translation. Taurine fully or partially rescued 32......Taurine ameliorates changes occurring in newborn skeletal muscle as a result of gestational protein restriction in C57BL/6 mice, but taurine supplementation effects may be exaggerated in C57BL/6 mice due to their inherent excessive taurinuria.We examined if maternal taurine supplementation could...... ameliorate changes in gene expression levels, properties of mitochondria, myogenesis, and nutrient transport and sensing, in male newborn skeletal muscle caused by a maternal low protein (LP) diet in Wistar rats.LP diet resulted in an 11% non-significant decrease in birth weight, which was not rescued...

  8. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals

    DEFF Research Database (Denmark)

    van Hall, Gerrit; Steensberg, Adam; Fischer, Christian

    2008-01-01

    CONTEXT: IL-6 is a key modulator of immune function and suggested to be involved in skeletal muscle wasting as seen in sepsis. OBJECTIVE: Our objective was to determine the role of IL-6 in human in vivo systemic and skeletal muscle amino acid metabolism and protein turnover. SUBJECTS AND METHODS:...

  9. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia

    Science.gov (United States)

    Bohnert, Kyle R.; Gallot, Yann S.; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M.; Kumar, Ashok

    2016-01-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and ApcMin/+ mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin–proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.—Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. PMID:27206451

  10. Visualisation of Collagen in fixed skeletal muscle tissue using fluorescently tagged Collagen binding protein CNA35.

    Science.gov (United States)

    Mohammadkhah, Melika; Simms, Ciaran K; Murphy, Paula

    2017-02-01

    Detection and visualisation of Collagen structure are important to understand the relationship between mechanical behaviour and microstructure in skeletal muscle since Collagen is the main structural protein in animal connective tissues, and is primarily responsible for their passive load-bearing properties. In the current study, the direct detection and visualization of Collagen using fluorescently tagged CNA35 binding protein (fused to EGFP or tdTomato) is reported for the first time on fixed skeletal muscle tissue. This Technical Note also establishes a working protocol by examining tissue preparation, dilution factor, exposure time etc. for sensitivity and specificity. Penetration of the binding protein into intact mature skeletal muscle was found to be very limited, but detection works well on tissue sections with higher sensitivity on wax embedded sections compared to frozen sections. CNA35 fused to tdTomato has a higher sensitivity than CNA35 fused to EGFP but both show specific detection. Best results were obtained with 15μm wax embedded sections, with blocking of non-specific binding in 1% BSA and antigen retrieval in Sodium Citrate. There was a play-off between dilution of the binding protein and time of incubation but both CNA35-tdTomato and CNA35-EGFP worked well with approximately 100μg/ml of purified protein with overnight incubation, while CNA35-tdTomato could be utilized at 5 fold less concentration. This approach can be applied to study the relationship between skeletal muscle micro-structure and to observe mechanical response to applied deformation. It can be used more broadly to detect Collagen in a variety of fixed tissues, useful for structure-functions studies, constitutive modelling, tissue engineering and assessment of muscle tissue pathologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enteral leucine and protein synthesis in skeletal and cardiac muscle

    Science.gov (United States)

    There are three members of the Branch Chain Amino Acids: leucine, isoleucine, and valine. As essential amino acids, these amino acids have important functions which include a primary role in protein structure and metabolism. It is intriguing that the requirement for BCAA in humans comprise about 40–...

  12. AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

    DEFF Research Database (Denmark)

    Brandauer, Josef; Vienberg, Sara Gry; Andersen, Marianne Agerholm

    2013-01-01

    -activated protein kinase (AMPK) increases sirtuin activity by elevating NAD levels. As NAM directly inhibits sirtuins, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary...... for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependant. One-legged knee-extensor exercise training in humans increased Nampt protein...

  13. Yeast Interacting Proteins Database: YEL043W, YOR164C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies...ing based on quantitative analysis of protein-protein interaction maps; may interact with ribosomes, based on co-purification studies

  14. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  15. Immunoprecipitation-based analysis of protein-protein interactions.

    Science.gov (United States)

    Speth, Corinna; Toledo-Filho, Luis A A; Laubinger, Sascha

    2014-01-01

    Several techniques allow the detection of protein-protein interactions. In vivo co-immunoprecipitation (Co-IP) studies are an important complement to other commonly used techniques such as yeast two-hybrid or fluorescence complementation, as they reveal interactions between functional proteins at physiological relevant concentrations. Here, we describe an in vivo Co-IP approach using either GFP affinity matrix or specific antibodies to purify proteins of interests and their interacting partners.

  16. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...... interactions between proteins and lipids. First, interactions of soluble proteins with membranes and specific lipids were studied, using two proteins: Annexin V and Tma1. The protein was first subjected to a lipid/protein overlay assay to identify candidate interaction partners in a fast and efficient way....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...

  17. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi

    2016-08-01

    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  18. Role of adenosine 5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target of rapamycin signaling

    DEFF Research Database (Denmark)

    Deshmukh, Atul S.; Treebak, Jonas Thue; Long, Yun Chau

    2008-01-01

    AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activ...

  19. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  20. Yeast Interacting Proteins Database: YGL161C, YDR084C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL161C YIP5 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction

  1. Yeast Interacting Proteins Database: YPL095C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available d to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests a ...gene name YIP4 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational

  2. Building blocks for protein interaction devices

    OpenAIRE

    Gr?nberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein?protein or protein?peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part?based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors contro...

  3. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    Science.gov (United States)

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    The obesogenic and diabetogenic effects of the environmental toxin bisphenol A during critical windows of development are well recognized. Liver and skeletal muscle play a central role in the control of glucose production, utilization, and storage. We hypothesized that maternal bisphenol A exposure disrupts insulin signaling in rat offspring liver and skeletal muscle. We determined the protein expression of hepatic and skeletal muscle insulin signaling molecules including insulin receptor beta, its downstream target insulin receptor substrate 1 and glucose transporters (glucose transporter 2, glucose transporter 4), and hepatic glucose-regulating enzymes phosphoenolpyruvate carboxykinase and glucokinase. Rat dams had ad libitum access to filtered drinking water (control) or drinking water with bisphenol A from 2 weeks prior to mating and through pregnancy and lactation. Offspring litters were standardized to 4 males and 4 females and nursed by the same dam. At weaning, bisphenol A exposure was removed from all offspring. Glucose tolerance was tested at 6 weeks and 6 months. Liver and skeletal muscle was collected from 3 week old and 10 month old offspring for protein expression (Western blot) of insulin receptor beta, insulin receptor substrate 1, glucose transporter 2, glucose transporter 4, phosphoenolpyruvate carboxykinase, and glucokinase. Male, but not female, bisphenol A offspring had impaired glucose tolerance at 6 weeks and 6 months. Both male and female adult offspring had higher glucose-stimulated insulin secretion as well as the ratio of stimulated insulin to glucose. Male bisphenol A offspring had higher liver protein abundance of the 200 kDa insulin receptor beta precursor (2-fold), and insulin receptor substrate 1 (1.5-fold), whereas glucose transporter 2 was 0.5-fold of the control at 3 weeks of age. In adult male bisphenol A offspring, the abundance of insulin receptor beta was higher (2-fold) and glucose transporter 4 was 0.8-fold of the control in

  4. PSAIA – Protein Structure and Interaction Analyzer

    Directory of Open Access Journals (Sweden)

    Vlahoviček Kristian

    2008-04-01

    Full Text Available Abstract Background PSAIA (Protein Structure and Interaction Analyzer was developed to compute geometric parameters for large sets of protein structures in order to predict and investigate protein-protein interaction sites. Results In addition to most relevant established algorithms, PSAIA offers a new method PIADA (Protein Interaction Atom Distance Algorithm for the determination of residue interaction pairs. We found that PIADA produced more satisfactory results than comparable algorithms implemented in PSAIA. Particular advantages of PSAIA include its capacity to combine different methods to detect the locations and types of interactions between residues and its ability, without any further automation steps, to handle large numbers of protein structures and complexes. Generally, the integration of a variety of methods enables PSAIA to offer easier automation of analysis and greater reliability of results. PSAIA can be used either via a graphical user interface or from the command-line. Results are generated in either tabular or XML format. Conclusion In a straightforward fashion and for large sets of protein structures, PSAIA enables the calculation of protein geometric parameters and the determination of location and type for protein-protein interaction sites. XML formatted output enables easy conversion of results to various formats suitable for statistic analysis. Results from smaller data sets demonstrated the influence of geometry on protein interaction sites. Comprehensive analysis of properties of large data sets lead to new information useful in the prediction of protein-protein interaction sites.

  5. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Esther Barreiro

    2016-05-01

    Full Text Available Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF, chronic obstructive pulmonary disease (COPD, cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

  6. NPIDB: nucleic acid?protein interaction database

    OpenAIRE

    Kirsanov, Dmitry D.; Zanegina, Olga N.; Aksianov, Evgeniy A.; Spirin, Sergei A.; Karyagina, Anna S.; Alexeevski, Andrei V

    2012-01-01

    The Nucleic acid?Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA?protein and RNA?protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid?Protein Interaction DataBase is an upgrade ...

  7. Yeast Interacting Proteins Database: YNL189W, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein; not conserved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...myces species; protein detected in large-scale protein-protein interaction studies Rows with this prey as pr

  8. Chapter 4: Protein interactions and disease.

    Directory of Open Access Journals (Sweden)

    Mileidy W Gonzalez

    Full Text Available Proteins do not function in isolation; it is their interactions with one another and also with other molecules (e.g. DNA, RNA that mediate metabolic and signaling pathways, cellular processes, and organismal systems. Due to their central role in biological function, protein interactions also control the mechanisms leading to healthy and diseased states in organisms. Diseases are often caused by mutations affecting the binding interface or leading to biochemically dysfunctional allosteric changes in proteins. Therefore, protein interaction networks can elucidate the molecular basis of disease, which in turn can inform methods for prevention, diagnosis, and treatment. In this chapter, we will describe the computational approaches to predict and map networks of protein interactions and briefly review the experimental methods to detect protein interactions. We will describe the application of protein interaction networks as a translational approach to the study of human disease and evaluate the challenges faced by these approaches.

  9. Inferring interaction partners from protein sequences

    CERN Document Server

    Bitbol, Anne-Florence; Colwell, Lucy J; Wingreen, Ned S

    2016-01-01

    Specific protein-protein interactions are crucial in the cell, both to ensure the formation and stability of multi-protein complexes, and to enable signal transduction in various pathways. Functional interactions between proteins result in coevolution between the interaction partners. Hence, the sequences of interacting partners are correlated. Here we exploit these correlations to accurately identify which proteins are specific interaction partners from sequence data alone. Our general approach, which employs a pairwise maximum entropy model to infer direct couplings between residues, has been successfully used to predict the three-dimensional structures of proteins from sequences. Building on this approach, we introduce an iterative algorithm to predict specific interaction partners from among the members of two protein families. We assess the algorithm's performance on histidine kinases and response regulators from bacterial two-component signaling systems. The algorithm proves successful without any a pri...

  10. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type...... CSA increased exclusively with Whey-Conc (P hypertrophy correlated with whole muscle hypertrophy exclusively following Conc training (P ...-specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose...

  11. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    Directory of Open Access Journals (Sweden)

    L.H. Manfredi

    2017-10-01

    Full Text Available Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  12. Yeast Interacting Proteins Database: YNL189W, YOR284W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ait as prey (0) YOR284W HUA2 Cytoplasmic protein of unknown function; computational...protein of unknown function; computational analysis of large-scale protein-protein interaction data suggests

  13. The protein interaction map of bacteriophage lambda

    Directory of Open Access Journals (Sweden)

    Uetz Peter

    2011-09-01

    Full Text Available Abstract Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage. Results In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome" into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%. We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda. Conclusions Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins.

  14. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... (loops and domains) to comprehend the molecular mechanisms of PPIs. A paradox in protein-protein binding is to explain how the unbound proteins of a binary complex recognize each other among a large population within a cell and how they find their best docking interface in a short timescale. We use...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...

  15. A conserved mammalian protein interaction network.

    Directory of Open Access Journals (Sweden)

    Åsa Pérez-Bercoff

    Full Text Available Physical interactions between proteins mediate a variety of biological functions, including signal transduction, physical structuring of the cell and regulation. While extensive catalogs of such interactions are known from model organisms, their evolutionary histories are difficult to study given the lack of interaction data from phylogenetic outgroups. Using phylogenomic approaches, we infer a upper bound on the time of origin for a large set of human protein-protein interactions, showing that most such interactions appear relatively ancient, dating no later than the radiation of placental mammals. By analyzing paired alignments of orthologous and putatively interacting protein-coding genes from eight mammals, we find evidence for weak but significant co-evolution, as measured by relative selective constraint, between pairs of genes with interacting proteins. However, we find no strong evidence for shared instances of directional selection within an interacting pair. Finally, we use a network approach to show that the distribution of selective constraint across the protein interaction network is non-random, with a clear tendency for interacting proteins to share similar selective constraints. Collectively, the results suggest that, on the whole, protein interactions in mammals are under selective constraint, presumably due to their functional roles.

  16. Yeast Interacting Proteins Database: YDR425W, YGL161C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with this bait as prey (0) YGL161C YIP5 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...IP5 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computatio...nal analysis of large-scale protein-protein interaction data suggests a possible ro

  17. Yeast Interacting Proteins Database: YDR425W, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with this bait as prey (0) YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...IP4 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computatio...nal analysis of large-scale protein-protein interaction data suggests a possible ro

  18. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    Science.gov (United States)

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  19. Acute moderate elevation of TNF-{alpha} does not affect systemic and skeletal muscle protein turnover in healthy humans

    DEFF Research Database (Denmark)

    Petersen, Anne Marie; Plomgaard, Peter; Fischer, Christian P

    2009-01-01

    Context: Skeletal muscle wasting has been associated with elevations in circulating inflammatory cytokines, in particular TNF-alpha. Objective: In this study, we investigated whether TNF-alpha affects human systemic and skeletal muscle protein turnover, via a 4 hours recombinant human TNF...... of either rhTNF-alpha (700 ng.m(-2).h(-1)) or 20% human albumin (Control) which was the vehicle of rhTNF-alpha. Systemic and skeletal muscle protein turnover were estimated by a combination of tracer dilution methodology (primed continuous infusion of L-[ring-(2)H5]phenylalanine and L-[(15)N...... with the phenylalanine 3-compartment model showed similar muscle synthesis, breakdown and net muscle degradation after 2 hours basal and after 4 hours Control or rhTNF-alpha infusion. Conclusion: This study is the first to show in humans that TNF-alpha does not affect systemic and skeletal muscle protein turnover, when...

  20. MARS: A protein family involved in the formation of vertical skeletal elements.

    Science.gov (United States)

    Abehsera, Shai; Peles, Shani; Tynyakov, Jenny; Bentov, Shmuel; Aflalo, Eliahu D; Li, Shihao; Li, Fuhua; Xiang, Jianhai; Sagi, Amir

    2017-05-01

    Vertical organizations of skeletal elements are found in various vertebrate teeth and invertebrate exoskeletons. The molecular mechanism behind the development of such structural organizations is poorly known, although it is generally held that organic matrix proteins play an essential role. While most crustacean cuticular organizations exhibit horizontal chitinous layering, a typical vertical organization is found towards the surface of the teeth in the mandibles of the crayfish Cherax quadricarinatus. Candidate genes encoding for mandible-forming structural proteins were mined in C. quadricarinatus molt-related transcriptomic libraries by using a binary patterning approach. A new protein family, termed the Mandible Alanine Rich Structural (MARS) protein family, with a modular sequence design predicted to form fibers, was found. Investigations of spatial and temporal expression of the different MARS genes suggested specific expression in the mandibular teeth-forming epithelium, particularly during the formation of the chitinous vertical organization. MARS loss-of-function RNAi experiments resulted in the collapse of the organization of the chitin fibers oriented vertically to the surface of the crayfish mandibular incisor tooth. A general search of transcriptomic libraries suggested conservation of MARS proteins across a wide array of crustaceans. Our results provide a first look into the molecular mechanism used to build the complex crustacean mandible and into the specialized vertical structural solution that has evolved in skeletal elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein.

    Science.gov (United States)

    Rowlands, David S; Thomson, Jasmine S; Timmons, Brian W; Raymond, Frédéric; Fuerholz, Andreas; Mansourian, Robert; Zwahlen, Marie-Camille; Métairon, Sylviane; Glover, Elisa; Stellingwerff, Trent; Kussmann, Martin; Tarnopolsky, Mark A

    2011-09-08

    Postexercise protein feeding regulates the skeletal muscle adaptive response to endurance exercise, but the transcriptome guiding these adaptations in well-trained human skeletal muscle is uncharacterized. In a crossover design, eight cyclists ingested beverages containing protein, carbohydrate and fat (PTN: 0.4, 1.2, 0.2 g/kg, respectively) or isocaloric carbohydrate and fat (CON: 1.6, 0.2 g/kg) at 0 and 1 h following 100 min of cycling. Biopsies of the vastus lateralis were collected at 3 and 48 h following to determine the early and late transcriptome and regulatory signaling responses via microarray and immunoblot. The top gene ontology enriched by PTN were: muscle contraction, extracellular matrix--signaling and structure, and nucleoside, nucleotide, and nucleic acid metabolism (3 and 48 h); developmental processes, immunity, and defense (3 h); glycolysis, lipid and fatty acid metabolism (48 h). The transcriptome was also enriched within axonal guidance, actin cytoskeletal, Ca2+, cAMP, MAPK, and PPAR canonical pathways linking protein nutrition to exercise-stimulated signaling regulating extracellular matrix, slow-myofibril, and metabolic gene expression. At 3 h, PTN attenuated AMPKα1Thr172 phosphorylation but increased mTORC1Ser2448, rps6Ser240/244, and 4E-BP1-γ phosphorylation, suggesting increased translation initiation, while at 48 h AMPKα1Thr172 phosphorylation and PPARG and PPARGC1A expression increased, supporting the late metabolic transcriptome, relative to CON. To conclude, protein feeding following endurance exercise affects signaling associated with cell energy status and translation initiation and the transcriptome involved in skeletal muscle development, slow-myofibril remodeling, immunity and defense, and energy metabolism. Further research should determine the time course and posttranscriptional regulation of this transcriptome and the phenotype responding to chronic postexercise protein feeding.

  2. Mining protein networks for synthetic genetic interactions

    Directory of Open Access Journals (Sweden)

    Zhao Shan

    2008-10-01

    Full Text Available Abstract Background The local connectivity and global position of a protein in a protein interaction network are known to correlate with some of its functional properties, including its essentiality or dispensability. It is therefore of interest to extend this observation and examine whether network properties of two proteins considered simultaneously can determine their joint dispensability, i.e., their propensity for synthetic sick/lethal interaction. Accordingly, we examine the predictive power of protein interaction networks for synthetic genetic interaction in Saccharomyces cerevisiae, an organism in which high confidence protein interaction networks are available and synthetic sick/lethal gene pairs have been extensively identified. Results We design a support vector machine system that uses graph-theoretic properties of two proteins in a protein interaction network as input features for prediction of synthetic sick/lethal interactions. The system is trained on interacting and non-interacting gene pairs culled from large scale genetic screens as well as literature-curated data. We find that the method is capable of predicting synthetic genetic interactions with sensitivity and specificity both exceeding 85%. We further find that the prediction performance is reasonably robust with respect to errors in the protein interaction network and with respect to changes in the features of test datasets. Using the prediction system, we carried out novel predictions of synthetic sick/lethal gene pairs at a genome-wide scale. These pairs appear to have functional properties that are similar to those that characterize the known synthetic lethal gene pairs. Conclusion Our analysis shows that protein interaction networks can be used to predict synthetic lethal interactions with accuracies on par with or exceeding that of other computational methods that use a variety of input features, including functional annotations. This indicates that protein

  3. Potassium-transporting proteins in skeletal muscle: cellular location and fiber-type differences

    DEFF Research Database (Denmark)

    Kristensen, Michael; Juel, Carsten

    2010-01-01

    Potassium (K+) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K+ concentration ([K+]e) to values higher than approx. 10 mm significantly reduce force...... development in unfatigued skeletal muscle. Several in vivo studies have shown that [K+]e increases progressively with increasing work intensity, reaching values higher than 10 mm. This increase in [K+]e is expected to be even higher in the transverse (T)-tubules than the concentration reached....... The relative content of the different K+-transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K+]e tolerance observed....

  4. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  5. An allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle.

    Science.gov (United States)

    Ríos, E; Karhanek, M; Ma, J; González, A

    1993-09-01

    A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88-118), and analogous to one proposed by Marks and Jones for voltage-dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium

  6. Yeast Interacting Proteins Database: YML064C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available y related Saccharomyces species; protein detected in large-scale protein-protein interaction studies Rows wi...in-protein interaction studies Rows with this prey as prey (4) Rows with this prey as bait (1) 28 6 3 4 0 0 ...d in closely related Saccharomyces species; protein detected in large-scale prote

  7. Yeast Interacting Proteins Database: YLR291C, YJL199C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ved in closely related Saccharomyces species; protein detected in large-scale protein-protein interaction studies...in large-scale protein-protein interaction studies Rows with this prey as prey Rows with this prey as prey (

  8. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  9. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  10. Role for protein-protein interaction databases in human genetics.

    Science.gov (United States)

    Pattin, Kristine A; Moore, Jason H

    2009-12-01

    Proteomics and the study of protein-protein interactions are becoming increasingly important in our effort to understand human diseases on a system-wide level. Thanks to the development and curation of protein-interaction databases, up-to-date information on these interaction networks is accessible and publicly available to the scientific community. As our knowledge of protein-protein interactions increases, it is important to give thought to the different ways that these resources can impact biomedical research. In this article, we highlight the importance of protein-protein interactions in human genetics and genetic epidemiology. Since protein-protein interactions demonstrate one of the strongest functional relationships between genes, combining genomic data with available proteomic data may provide us with a more in-depth understanding of common human diseases. In this review, we will discuss some of the fundamentals of protein interactions, the databases that are publicly available and how information from these databases can be used to facilitate genome-wide genetic studies.

  11. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  12. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  13. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically ill patients

    DEFF Research Database (Denmark)

    Jespersen, Jakob G; Nedergaard, Anders; Reitelseder, Søren

    2011-01-01

    Skeletal muscle mass is controlled by myostatin and Akt-dependent signaling on mammalian target of rapamycin (mTOR), glycogen synthase kinase 3ß (GSK3ß) and forkhead box O (FoxO) pathways, but it is unknown how these pathways are regulated in critically ill human muscle. To describe factors...

  14. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  15. Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan.

    Science.gov (United States)

    Swezey, Daniel S; Bean, Jessica R; Ninokawa, Aaron T; Hill, Tessa M; Gaylord, Brian; Sanford, Eric

    2017-04-26

    Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata) under factorial combinations of dissolved carbon dioxide (CO2), temperature and food concentrations. High CO2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO2 For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify. © 2017 The Author(s).

  16. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Science.gov (United States)

    2010-01-01

    Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO) or essential amino acids (EAA) can increase muscle protein synthesis (MPS) in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1) stimulate the greatest rise in MPS, 2) result in greater muscle cross-sectional area when combined with chronic resistance training, and 3) at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training. PMID:20565767

  17. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein

    Directory of Open Access Journals (Sweden)

    Stout Jeffrey R

    2010-06-01

    Full Text Available Abstract Regardless of age or gender, resistance training or provision of adequate amounts of dietary protein (PRO or essential amino acids (EAA can increase muscle protein synthesis (MPS in healthy adults. Combined PRO or EAA ingestion proximal to resistance training, however, can augment the post-exercise MPS response and has been shown to elicit a greater anabolic effect than exercise plus carbohydrate. Unfortunately, chronic/adaptive response data comparing the effects of different protein sources is limited. A growing body of evidence does, however, suggest that dairy PRO, and whey in particular may: 1 stimulate the greatest rise in MPS, 2 result in greater muscle cross-sectional area when combined with chronic resistance training, and 3 at least in younger individuals, enhance exercise recovery. Therefore, this review will focus on whey protein supplementation and its effects on skeletal muscle mass when combined with heavy resistance training.

  18. Novel protein-protein interactions inferred from literature context.

    Directory of Open Access Journals (Sweden)

    Herman H H B M van Haagen

    Full Text Available We have developed a method that predicts Protein-Protein Interactions (PPIs based on the similarity of the context in which proteins appear in literature. This method outperforms previously developed PPI prediction algorithms that rely on the conjunction of two protein names in MEDLINE abstracts. We show significant increases in coverage (76% versus 32% and sensitivity (66% versus 41% at a specificity of 95% for the prediction of PPIs currently archived in 6 PPI databases. A retrospective analysis shows that PPIs can efficiently be predicted before they enter PPI databases and before their interaction is explicitly described in the literature. The practical value of the method for discovery of novel PPIs is illustrated by the experimental confirmation of the inferred physical interaction between CAPN3 and PARVB, which was based on frequent co-occurrence of both proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships between proteins predicted by our method are broader than PPIs, and include proteins in the same complex or pathway. Dependent on the type of relationships deemed useful, the precision of our method can be as high as 90%. The full set of predicted interactions is available in a downloadable matrix and through the webtool Nermal, which lists the most likely interaction partners for a given protein. Our framework can be used for prioritizing potential interaction partners, hitherto undiscovered, for follow-up studies and to aid the generation of accurate protein interaction maps.

  19. Yeast Interacting Proteins Database: YIL007C, YOR117W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YIL007C NAS2 Proteasome-interacting protein involved in the assembly of the base su...tion Proteasome-interacting protein involved in the assembly of the base subcomplex of the 19S proteasomal r

  20. Yeast Interacting Proteins Database: YDL226C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available s bait as prey (0) YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...iption Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational

  1. Yeast Interacting Proteins Database: YOR158W, YLR424W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR158W PET123 Mitochondrial ribosomal protein of the small subunit; PET123 exhibits genetic interactions...al ribosomal protein of the small subunit; PET123 exhibits genetic interactions with PET122, which encodes a

  2. Yeast Interacting Proteins Database: YPR103W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors...gulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf

  3. Yeast Interacting Proteins Database: YNL258C, YKR022C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts...membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts

  4. Yeast Interacting Proteins Database: YGL145W, YNL258C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts...membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts

  5. Yeast Interacting Proteins Database: YNL258C, YLR440C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts...membrane protein required for Golgi-to-ER retrograde traffic; component of the ER target site that interacts

  6. Yeast Interacting Proteins Database: YNL078W, YKR048C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Protein localized in the bud neck at G2/M phase; physically interacts with septins; possibly involved in...Protein localized in the bud neck at G2/M phase; physically interacts with septins; possibly involved in

  7. Yeast Interacting Proteins Database: YPR040W, YDL188C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which ...ait ORF YPR040W Bait gene name TIP41 Bait description Protein that interacts physically and genetically

  8. Yeast Interacting Proteins Database: YPR040W, YDL134C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which ...Bait ORF YPR040W Bait gene name TIP41 Bait description Protein that interacts physically and genetically

  9. Modeling disordered protein interactions from biophysical principles

    National Research Council Canada - National Science Library

    Peterson, Lenna X; Roy, Amitava; Christoffer, Charles; Terashi, Genki; Kihara, Daisuke

    2017-01-01

    ...-protein interactions (PPIs) are formed with IDPs [3]. A well-known example is the p53 tumor suppressor, which contains disordered regions that interact with dozens of partner proteins [4]. Due to the abundance and characteristic features of IDPs in PPI networks, including many critical signaling pathways, fully understanding the molecular mechanisms of PPI networ...

  10. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Kiens, Bente; Richter, Erik

    2006-01-01

    Ca2+ signalling is proposed to play an important role in skeletal muscle function during exercise. Here, we examined the expression of multifunctional Ca2+-calmodulin-dependent protein kinases (CaMK) in human skeletal muscle and show that CaMKII and CaMKK, but not CaMKI or CaMKIV, are expressed...... response factor at Ser103, a putative CaMKII substrate, was higher after 30 min of exercise. PLN phosphorylation at Thr17 was higher with increasing exercise intensities. These data indicate that CaMKII is the major multifunctional CaMK in skeletal muscle and its activation occurs rapidly and is sustained...

  11. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming.

    Science.gov (United States)

    Magnoni, Leonardo J; Palstra, Arjan P; Planas, Josep V

    2014-05-15

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has not been investigated in fish. We found that sustained swimming (40 days at 0.75 body lengths s(-1)) increased AMPK activity in red and white trout skeletal muscle (3.9- and 2.2-fold, respectively) as well as the expression of AMPK target genes involved in energy use: lipoprotein lipase and citrate synthase in red and white muscle and CPT1β1b and PGC-1α in red muscle. Furthermore, electrical pulse stimulation of cultured trout myotubes increased AMPK activity and glucose uptake (1.9- and 1.2-fold, respectively) in an AMPK-dependent manner. These results suggest that AMPK may play an important mediatory role in the metabolic adaptation to swimming in fish skeletal muscle. © 2014. Published by The Company of Biologists Ltd.

  12. Yeast Interacting Proteins Database: YGR268C, YER125W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available larity to that of Type I J-proteins; computational analysis of large-scale protein-protein interaction data ...equence similarity to that of Type I J-proteins; computational analysis of large-scale protein-protein inter

  13. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    OpenAIRE

    Susan Khor

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where t...

  14. Building blocks for protein interaction devices.

    Science.gov (United States)

    Grünberg, Raik; Ferrar, Tony S; van der Sloot, Almer M; Constante, Marco; Serrano, Luis

    2010-05-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein-protein or protein-peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part-based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general-purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.

  15. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  16. Alix Protein Is Substrate of Ozz-E3 Ligase and Modulates Actin Remodeling in Skeletal Muscle*

    Science.gov (United States)

    Bongiovanni, Antonella; Romancino, Daniele P.; Campos, Yvan; Paterniti, Gaetano; Qiu, Xiaohui; Moshiach, Simon; Di Felice, Valentina; Vergani, Naja; Ustek, Duran; d'Azzo, Alessandra

    2012-01-01

    Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz−/− myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling. PMID:22334701

  17. Alix protein is substrate of Ozz-E3 ligase and modulates actin remodeling in skeletal muscle.

    Science.gov (United States)

    Bongiovanni, Antonella; Romancino, Daniele P; Campos, Yvan; Paterniti, Gaetano; Qiu, Xiaohui; Moshiach, Simon; Di Felice, Valentina; Vergani, Naja; Ustek, Duran; d'Azzo, Alessandra

    2012-04-06

    Alix/AIP1 is a multifunctional adaptor protein that participates in basic cellular processes, including membrane trafficking and actin cytoskeleton assembly, by binding selectively to a variety of partner proteins. However, the mechanisms regulating Alix turnover, subcellular distribution, and function in muscle cells are unknown. We now report that Alix is expressed in skeletal muscle throughout myogenic differentiation. In myotubes, a specific pool of Alix colocalizes with Ozz, the substrate-binding component of the muscle-specific ubiquitin ligase complex Ozz-E3. We found that interaction of the two endogenous proteins in the differentiated muscle fibers changes Alix conformation and promotes its ubiquitination. This in turn regulates the levels of the protein in specific subcompartments, in particular the one containing the actin polymerization factor cortactin. In Ozz(-/-) myotubes, the levels of filamentous (F)-actin is perturbed, and Alix accumulates in large puncta positive for cortactin. In line with this observation, we show that the knockdown of Alix expression in C2C12 muscle cells affects the amount and distribution of F-actin, which consequently leads to changes in cell morphology, impaired formation of sarcolemmal protrusions, and defective cell motility. These findings suggest that the Ozz-E3 ligase regulates Alix at sites where the actin cytoskeleton undergoes remodeling.

  18. An Interactive Introduction to Protein Structure

    Science.gov (United States)

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  19. Yeast Interacting Proteins Database: YGL198W, YDR084C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational... GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-protein interactio

  20. Noninvasive imaging of protein-protein interactions in living animals

    Science.gov (United States)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  1. Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis

    Directory of Open Access Journals (Sweden)

    Fry Christopher S

    2011-03-01

    Full Text Available Abstract Background Sarcopenia, the loss of skeletal muscle mass during aging, increases the risk for falls and dependency. Resistance exercise (RE training is an effective treatment to improve muscle mass and strength in older adults, but aging is associated with a smaller amount of training-induced hypertrophy. This may be due in part to an inability to stimulate muscle-protein synthesis (MPS after an acute bout of RE. We hypothesized that older adults would have impaired mammalian target of rapamycin complex (mTORC1 signaling and MPS response compared with young adults after acute RE. Methods We measured intracellular signaling and MPS in 16 older (mean 70 ± 2 years and 16 younger (27 ± 2 years subjects. Muscle biopsies were sampled at baseline and at 3, 6 and 24 hr after exercise. Phosphorylation of regulatory signaling proteins and MPS were determined on successive muscle biopsies by immunoblotting and stable isotopic tracer techniques, respectively. Results Increased phosphorylation was seen only in the younger group (PP >0.05. After exercise, MPS increased from baseline only in the younger group (PP 0.05. Conclusions We conclude that aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. These age-related differences may contribute to the blunted hypertrophic response seen after resistance-exercise training in older adults, and highlight the mTORC1 pathway as a key therapeutic target to prevent sarcopenia.

  2. Predicting Protein Interactions by Brownian Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Xuan-Yu Meng

    2012-01-01

    Full Text Available We present a newly adapted Brownian-Dynamics (BD-based protein docking method for predicting native protein complexes. The approach includes global BD conformational sampling, compact complex selection, and local energy minimization. In order to reduce the computational costs for energy evaluations, a shell-based grid force field was developed to represent the receptor protein and solvation effects. The performance of this BD protein docking approach has been evaluated on a test set of 24 crystal protein complexes. Reproduction of experimental structures in the test set indicates the adequate conformational sampling and accurate scoring of this BD protein docking approach. Furthermore, we have developed an approach to account for the flexibility of proteins, which has been successfully applied to reproduce the experimental complex structure from the structure of two unbounded proteins. These results indicate that this adapted BD protein docking approach can be useful for the prediction of protein-protein interactions.

  3. Yeast Interacting Proteins Database: YLR447C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp...; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act

  4. Protecting Skeletal Muscle with Protein and Amino Acid during Periods of Disuse

    Directory of Open Access Journals (Sweden)

    Elfego Galvan

    2016-07-01

    Full Text Available Habitual sedentary behavior increases risk of chronic disease, hospitalization and poor quality of life. Short-term bed rest or disuse accelerates the loss of muscle mass, function, and glucose tolerance. Optimizing nutritional practices and protein intake may reduce the consequences of disuse by preserving metabolic homeostasis and muscle mass and function. Most modes of physical inactivity have the potential to negatively impact the health of older adults more than their younger counterparts. Mechanistically, mammalian target of rapamycin complex 1 (mTORC1 signaling and muscle protein synthesis are negatively affected by disuse. This contributes to reduced muscle quality and is accompanied by impaired glucose regulation. Simply encouraging increased protein and/or energy consumption is a well-intentioned, but often impractical strategy to protect muscle health. Emerging evidence suggests that leucine supplemented meals may partially and temporarily protect skeletal muscle during disuse by preserving anabolism and mitigating reductions in mass, function and metabolic homeostasis.

  5. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar

    2009-05-01

    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  6. Human Skeletal Muscle Stem Cells in Adaptations to Exercise; Effects of Resistance Exercise Contraction Mode and Protein Supplementation

    DEFF Research Database (Denmark)

    Farup, Jean

    2014-01-01

    SUMMARY Human skeletal muscle has a remarkable capability of adapting to a change in demands. The preservation of this adaptability relies partly on a pool of resident myogenic stem cells (satellite cells, SCs). Extrinsic factors such as mechanical load (e.g. resistance exercise) and dietary...... protein constitute key factors in regulation of human skeletal muscle mass; however, the influence of divergent resistance exercise contraction modes and protein supplementation on SC content, is not well described. The overall aim of the present thesis was to investigate whether eccentric versus...... concentric resistance training and ingestion of protein influence myocellular adaptations, with special emphasis on muscle stem cell adaptations, during both acute and prolonged resistance exercise in human skeletal muscle. Paper I. Whey protein supplementation accelerates satellite cell proliferation during...

  7. Yeast Interacting Proteins Database: YGR239C, YDR142C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available PEX21 Peroxin required for targeting of peroxisomal matrix proteins containing PTS2; interacts with Pex7p;...N-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins; WD repeat protein; defects in human homolog...description Peroxin required for targeting of peroxisomal matrix proteins containing PTS2; interacts with Pex7p;...N-terminal nonapeptide signal (PTS2) of peroxisomal matrix proteins; WD repeat protein; defects in human homolog

  8. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  9. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes

    OpenAIRE

    Hughes, M. A.; Downs, R. M.; Webb, G. W.; Crocker, C. L.; Kinsey, S.T.; Baumgarner, Bradley L.

    2017-01-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1–10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our ...

  10. Evolutionarily conserved herpesviral protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Even Fossum

    2009-09-01

    Full Text Available Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV and Kaposi's sarcoma-associated herpesvirus (KSHV. In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1, murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H, and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.

  11. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats.

    Science.gov (United States)

    Manfredi, L H; Zanon, N M; Garófalo, M A; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Although it is well established that carbohydrate and lipid metabolism are profoundly altered by cold stress, the effects of short-term cold exposure on protein metabolism in skeletal muscle are still poorly understood. Because cold acclimation requires that an organism adjust its metabolic flux, and muscle amino acids may be an important energy source for heat production, we hypothesize that muscle proteolysis is increased and protein synthesis is decreased under such a stress condition. Herein, cold exposure for 24 h decreased rates of protein synthesis and increased overall proteolysis in both soleus and extensor digitorum longus (EDL) muscles, but it did not affect muscle weight. An increase in proteolysis was accompanied by hyperactivity of the ubiquitin-proteasome system (UPS) in both soleus and EDL, and Ca(2+)-dependent proteolysis in EDL. Furthermore, muscles of rats exposed to cold showed increased mRNA and protein levels of atrogin-1 and muscle RING finger enzyme-1 (MuRF1). Additionally, cold stress reduced phosphorylation of Akt and Forkhead box class O1 (FoxO1), a well-known effect that increases FoxO translocation to the nucleus and leads to activation of proteolysis. Plasma insulin levels were lower, whereas catecholamines, corticosterone, and thyroid hormones were higher in cold-exposed rats compared with control rats. The present data provide the first direct evidence that short-term cold exposure for 24 h decreases rates of protein synthesis and increases the UPS and Ca(2+)-dependent proteolytic processes, and increases expression of atrogin-1 and MuRF1 in skeletal muscles of young rats. The activation of atrophy induced by acute cold stress seems to be mediated at least in part through the inactivation of Akt/FoxO signaling and activation of AMP-activated protein kinase.

  12. Integrative computational modeling of protein interactions

    NARCIS (Netherlands)

    Garcia Lopes Maia Rodrigues, João; Bonvin, Alexandre M J J

    2014-01-01

    Protein interactions define the homeostatic state of the cell. Our ability to understand these interactions and their role in both health and disease is tied to our knowledge of the 3D atomic structure of the interacting partners and their complexes. Despite advances in experimental method of

  13. Protein-protein interaction predictions using text mining methods.

    Science.gov (United States)

    Papanikolaou, Nikolas; Pavlopoulos, Georgios A; Theodosiou, Theodosios; Iliopoulos, Ioannis

    2015-03-01

    It is beyond any doubt that proteins and their interactions play an essential role in most complex biological processes. The understanding of their function individually, but also in the form of protein complexes is of a great importance. Nowadays, despite the plethora of various high-throughput experimental approaches for detecting protein-protein interactions, many computational methods aiming to predict new interactions have appeared and gained interest. In this review, we focus on text-mining based computational methodologies, aiming to extract information for proteins and their interactions from public repositories such as literature and various biological databases. We discuss their strengths, their weaknesses and how they complement existing experimental techniques by simultaneously commenting on the biological databases which hold such information and the benchmark datasets that can be used for evaluating new tools. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Dynamic fluctuations of protein-carbohydrate interactions promote protein aggregation.

    Directory of Open Access Journals (Sweden)

    Vladimir Voynov

    2009-12-01

    Full Text Available Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs. Aggregation is one of the main problems in protein-based therapeutics because of immunogenicity concerns and decreased efficacy. To explore the significance of intramolecular interactions between aromatic amino acids and carbohydrates in the IgG glycosylated domain, we utilized computer simulations, fluorescence analysis, and site-directed mutagenesis. We find that the surface exposure of one aromatic amino acid increases due to dynamic fluctuations. Moreover, protein-carbohydrate interactions decrease upon stress, while protein-protein and carbohydrate-carbohydrate interactions increase. Substitution of the carbohydrate-interacting aromatic amino acids with non-aromatic residues leads to a significantly lower stability than wild type, and to compromised binding to Fc receptors. Our results support a mechanism for antibody aggregation via decreased protein-carbohydrate interactions, leading to the exposure of aggregation-prone regions, and to aggregation.

  15. The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity

    DEFF Research Database (Denmark)

    Henstridge, Darren C; Forbes, Josephine M; Penfold, Sally A

    2010-01-01

    Decreased gene expression of heat shock protein 72 (HSP72) in skeletal muscle is associated with insulin resistance in humans. We aimed to determine whether HSP72 protein expression in insulin-sensitive tissues is related to criterion standard measures of adiposity and insulin resistance in a young...

  16. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Wojtaszewski, Jørgen; Richter, Erik

    2009-01-01

    . These include glucose uptake, glycogen synthesis, post-exercise insulin sensitivity, fatty acid (FA) uptake, intramuscular triacylglyceride hydrolysis, FA oxidation, suppression of protein synthesis, proteolysis, autophagy and transcriptional regulation of genes relevant to promoting an oxidative phenotype.......In skeletal muscle, the contraction-activated heterotrimeric 5'-AMP-activated protein kinase (AMPK) protein is proposed to regulate the balance between anabolic and catabolic processes by increasing substrate uptake and turnover in addition to regulating the transcription of proteins involved...

  17. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...... spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions....

  18. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  19. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.

    Science.gov (United States)

    Isaac, Stephanie T; Tan, Timothy C; Polly, Patsie

    2016-01-01

    Cancer cachexia is a debilitating paraneoplastic wasting syndrome characterized by skeletal muscle depletion and unintentional weight loss. It affects up to 50-80% of patients with cancer and directly accounts for one-quarter of cancer-related deaths due to cardio-respiratory failure. Muscle weakness, one of the hallmarks of this syndrome, has been postulated to be due to a combination of muscle breakdown, dysfunction and decrease in the ability to repair, with effective treatment strategies presently limited. Excessive inflammatory cytokine levels due to the host-tumor interaction, such as Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, are hypothesised to drive this pathological process but the specific mechanisms by which these cytokines produce skeletal muscle dysfunction in cancer cachexia remain undefined. Endoplasmic Reticulum (ER) stress and the associated disruptions in calcium signaling have been implicated in cytokine-mediated disruptions in skeletal muscle and function. Disrupted ER stress-related processes such as the Unfolded Protein Response (UPR), calcium homeostasis and altered muscle protein synthesis have been reported in clinical and experimental cachexia and other inflammation-driven muscle diseases such as myositis, potentially suggesting a link between increased IL-6 and TNF-α and ER stress in skeletal muscle cells. As the concept of upregulated ER stress in skeletal muscle cells due to elevated cytokines is novel and potentially very relevant to our understanding of cancer cachexia, this review aims to examine the potential relationship between inflammatory cytokine mediated muscle breakdown and ER stress, in the context of cancer cachexia, and to discuss the molecular signaling pathways underpinning this pathology.

  20. Gene-environment interaction in skeletal maturity and body dimensions of urban Oaxaca Mestizo schoolchildren.

    Science.gov (United States)

    Little, Bertis B; Malina, Robert M

    2007-01-01

    The study analyzed the relationship between skeletal age (SA) and the difference between skeletal and chronological ages (SA-CA) and body size among growth-stunted and well-nourished children. Tanner-Whitehouse 2 (TW2) 20 bone, radius-ulna-short (RUS) bone, and carpal SAs were analyzed in three cross-sectional samples of school children aged 6-13 years: Mestizo children (n = 396) from the city of Oaxaca, southern Mexico, and American Black (n = 570) and White (n = 432) from Philadelphia. The Oaxaca children were mild-to-moderately undernourished while the Philadelphia children were well nourished. The total sample included 1398 radiographs assessed with the Tanner-Whitehouse protocol by a single, experienced rater. Maturity scores were converted to TW2 20 bone, RUS and carpal SAs. Correlations of SA and SA-CA differences with body dimensions (height, sitting height, leg length, weight, triceps skinfold, arm and estimated midarm muscle circumferences) were consistent and approximately equal in magnitude for the well-nourished samples but were different among Oaxaca children. SAs of Philadelphia children were significantly more highly correlated with body dimensions than were SA-CA differences compared to Oaxaca Mestizo children. Patterns of RUS and carpal SA correlations with body size (height, sitting height, and leg length) in Oaxaca children were different from the Philadelphia samples. Oaxaca children tended to have advanced RUS SA and delayed carpal SA. Long bone complexes mature earlier than round bone complexes in Oaxaca children compared to Philadelphia Black and White children, resulting in short stature in Oaxaca children. Results suggest a gene-environment interaction effect on the program for skeletal growth and maturation in undernourished Oaxaca children compared to well-nourished Black and White children from Philadelphia.

  1. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function.

    Science.gov (United States)

    Pedrotti, Simona; Giudice, Jimena; Dagnino-Acosta, Adan; Knoblauch, Mark; Singh, Ravi K; Hanna, Amy; Mo, Qianxing; Hicks, John; Hamilton, Susan; Cooper, Thomas A

    2015-04-15

    The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1(-/-) muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1(-/-) muscle. Moreover, muscle function was significantly impaired in Rbfox1(-/-) muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    Full Text Available Dietary protein levels and cysteamine (CS supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP levels (14% or 10% and CS supplemental levels (0 or 700 mg/kg. The low-protein (LP diets (10% CP were supplemented with enough essential amino acids (EAA to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS (P<0.01 and plasma urea nitrogen (PUN (P<0.001, while dietary protein levels did not affect other traits. However, CS supplementation increased the average daily gain (P<0.001 and lean percentage (P<0.05, and decreased the feed conversion ratio (P<0.05 and back fat (P<0.05. CS supplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1 (P<0.001, and reduced the concentrations of leptin, SS, and PUN (P<0.001. Increased mRNA abundance of Akt1 and IGF-1 signaling (P<0.001 and decreased mRNA abundance of Forkhead Box O (FOXO 4 (P<0.01 and muscle atrophy F-box (P<0.001 were observed in pigs receiving CS. Additionally, CS supplementation increased the protein levels for the phosphorylated mammalian target of

  3. Yeast Interacting Proteins Database: YOR124C, YGR268C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available that of Type I J-proteins; computational analysis of large-scale protein-protein interaction data suggests a...plasmic protein containing a zinc finger domain with sequence similarity to that of Type I J-proteins; computational

  4. Characterization of protein-protein interactions by isothermal titration calorimetry.

    Science.gov (United States)

    Velazquez-Campoy, Adrian; Leavitt, Stephanie A; Freire, Ernesto

    2004-01-01

    Isothermal titration calorimetry (ITC) is a powerful technique to study both protein-ligand and protein-protein interactions. This methods chapter is devoted to describing protein-protein interactions, in particular, the association between two different proteins and the self-association of a protein into homodimers. ITC is the only technique that determines directly the thermodynamic parameters of a given reaction: DeltaG, DeltaH, DeltaS, and DeltaCP. Isothermal titration calorimeters have evolved over the years and one of the latest models is the VP-ITC produced by Microcal, Inc. In this chapter we will be describing the general procedure for performing an ITC experiment as well as for the specific cases of porcine pancreatic trypsin binding to soybean trypsin inhibitor and the dissociation of bovine pancreatic alpha-chymotrypsin.

  5. Yeast Interacting Proteins Database: YGL161C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL161C YIP5 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...that interacts with Rab GTPases, localized to late Golgi vesicles; computational ...eracts with Rab GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-pro...ized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests

  6. Yeast Interacting Proteins Database: YGL198W, YGL161C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YGL198W YIP4 Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational...that interacts with Rab GTPases, localized to late Golgi vesicles; computational ...eracts with Rab GTPases, localized to late Golgi vesicles; computational analysis of large-scale protein-pro...ized to late Golgi vesicles; computational analysis of large-scale protein-protein interaction data suggests

  7. Data management of protein interaction networks

    CERN Document Server

    Cannataro, Mario

    2012-01-01

    Interactomics: a complete survey from data generation to knowledge extraction With the increasing use of high-throughput experimental assays, more and more protein interaction databases are becoming available. As a result, computational analysis of protein-to-protein interaction (PPI) data and networks, now known as interactomics, has become an essential tool to determine functionally associated proteins. From wet lab technologies to data management to knowledge extraction, this timely book guides readers through the new science of interactomics, giving them the tools needed to: Generate

  8. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after...... kinase phosphorylation, peroxisome proliferator activated receptor ¿ coactivator-1a and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. Conclusion: The present findings indicate that only 7 days of physical inactivity reduce skeletal muscle metabolic...... capacity as well as abolish exercise-induced adaptive gene responses likely reflecting the interference with the ability of skeletal muscle to adapt to exercise....

  9. Effect of zinc-alpha2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue.

    Science.gov (United States)

    Sanders, Paul M; Tisdale, Michael J

    2004-08-20

    The plasma protein zinc-alpha2-glycoprotein (ZAG) has been shown to be identical with a lipid mobilizing factor capable of inducing loss of adipose tissue in cancer cachexia through an increased lipid mobilization and utilization. The ability of ZAG to induce uncoupling protein (UCP) expression has been determined using in vitro models of adipose tissue and skeletal muscle. ZAG induced a concentration-dependent increase in the expression of UCP-1 in primary cultures of brown, but not white, adipose tissue, and this effect was attenuated by the beta3-adrenergic receptor (beta3-AR) antagonist SR59230A. A 6.5-fold increase in UCP-1 expression was found in brown adipose tissue after incubation with 0.58 microM ZAG. ZAG also increased UCP-2 expression 3.5-fold in C2C12 murine myotubes, and this effect was also attenuated by SR59230A and potentiated by isobutylmethylxanthine, suggesting a cyclic AMP-mediated process through interaction with a beta3-AR. ZAG also produced a dose-dependent increase in UCP-3 in murine myotubes with a 2.5-fold increase at 0.58 microM ZAG. This effect was not mediated through the beta3-AR, but instead appeared to require mitogen activated protein kinase. These results confirm the ability of ZAG to directly influence UCP expression, which may play an important role in lipid utilization during cancer cachexia.

  10. Van der Waals Interactions Involving Proteins

    Science.gov (United States)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  11. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration.

    Science.gov (United States)

    Xiong, Guangyan; Hindi, Sajedah M; Mann, Aman K; Gallot, Yann S; Bohnert, Kyle R; Cavener, Douglas R; Whittemore, Scott R; Kumar, Ashok

    2017-03-23

    Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis.

  12. Protein-Protein Interaction Detection: Methods and Analysis

    Directory of Open Access Journals (Sweden)

    V. Srinivasa Rao

    2014-01-01

    Full Text Available Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid, TAP (tandem affinity purification, and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate the function of drug molecules. Thus, in silico methods which include sequence-based approaches, structure-based approaches, chromosome proximity, gene fusion, in silico 2 hybrid, phylogenetic tree, phylogenetic profile, and gene expression-based approaches were developed. Elucidation of protein interaction networks also contributes greatly to the analysis of signal transduction pathways. Recent developments have also led to the construction of networks having all the protein-protein interactions using computational methods for signaling pathways and protein complex identification in specific diseases.

  13. A simple dependence between protein evolution rate and the number of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Hirsh Aaron E

    2003-05-01

    Full Text Available Abstract Background It has been shown for an evolutionarily distant genomic comparison that the number of protein-protein interactions a protein has correlates negatively with their rates of evolution. However, the generality of this observation has recently been challenged. Here we examine the problem using protein-protein interaction data from the yeast Saccharomyces cerevisiae and genome sequences from two other yeast species. Results In contrast to a previous study that used an incomplete set of protein-protein interactions, we observed a highly significant correlation between number of interactions and evolutionary distance to either Candida albicans or Schizosaccharomyces pombe. This study differs from the previous one in that it includes all known protein interactions from S. cerevisiae, and a larger set of protein evolutionary rates. In both evolutionary comparisons, a simple monotonic relationship was found across the entire range of the number of protein-protein interactions. In agreement with our earlier findings, this relationship cannot be explained by the fact that proteins with many interactions tend to be important to yeast. The generality of these correlations in other kingdoms of life unfortunately cannot be addressed at this time, due to the incompleteness of protein-protein interaction data from organisms other than S. cerevisiae. Conclusions Protein-protein interactions tend to slow the rate at which proteins evolve. This may be due to structural constraints that must be met to maintain interactions, but more work is needed to definitively establish the mechanism(s behind the correlations we have observed.

  14. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle

    DEFF Research Database (Denmark)

    Robach, Paul; Cairo, Gaetano; Gelfi, Cecilia

    2007-01-01

    to increase. This study gives new insights into the changes in iron content and iron-oxygen interactions during enhanced erythropoiesis by simultaneously analyzing blood and muscle samples in humans exposed to 7 to 9 days of high altitude hypoxia (HA). HA up-regulates iron acquisition by erythroid cells......Iron is essential for oxygen transport because it is incorporated in the heme of the oxygen-binding proteins hemoglobin and myoglobin. An interaction between iron homeostasis and oxygen regulation is further suggested during hypoxia, in which hemoglobin and myoglobin syntheses have been reported......, mobilizes body iron, and increases hemoglobin concentration. However, contrary to our hypothesis that muscle iron proteins and myoglobin would also be up-regulated during HA, this study shows that HA lowers myoglobin expression by 35% and down-regulates iron-related proteins in skeletal muscle, as evidenced...

  15. Molecular principles of human virus protein-protein interactions.

    Science.gov (United States)

    Halehalli, Rachita Ramachandra; Nagarajaram, Hampapathalu Adimurthy

    2015-04-01

    Viruses, from the human protein-protein interaction network perspective, target hubs, bottlenecks and interconnected nodes enriched in certain biological pathways. However, not much is known about the general characteristic features of the human proteins interacting with viral proteins (referred to as hVIPs) as well as the motifs and domains utilized by human-virus protein-protein interactions (referred to as Hu-Vir PPIs). Our study has revealed that hVIPs are mostly disordered proteins, whereas viral proteins are mostly ordered proteins. Protein disorder in viral proteins and hVIPs varies from one subcellular location to another. In any given viral-human PPI pair, at least one of the two proteins is structurally disordered suggesting that disorder associated conformational flexibility as one of the characteristic features of virus-host interaction. Further analyses reveal that hVIPs are (i) slowly evolving proteins, (ii) associated with high centrality scores in human-PPI network, (iii) involved in multiple pathways, (iv) enriched in eukaryotic linear motifs (ELMs) associated with protein modification, degradation and regulatory processes, (v) associated with high number of splice variants and (vi) expressed abundantly across multiple tissues. These aforementioned findings suggest that conformational flexibility, spatial diversity, abundance and slow evolution are the characteristic features of the human proteins targeted by viral proteins. Hu-Vir PPIs are mostly mediated via domain-motif interactions (DMIs) where viral proteins employ motifs that mimic host ELMs to bind to domains in human proteins. DMIs are shared among viruses belonging to different families indicating a possible convergent evolution of these motifs to help viruses to adopt common strategies to subvert host cellular pathways. Hu-Vir PPI data, DDI and DMI data for human-virus PPI can be downloaded from http://cdfd.org.in/labpages/computational_biology_datasets.html. Supplementary data are

  16. Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jih-Hua [Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan (China); Chang, Nen-Chung [Division of Cardiology, Department of Internal Medicine, College of Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chen, Sy-Ping [Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan (China); Geraldine, Pitchairaj [Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu (India); Jayakumar, Thanasekaran, E-mail: tjaya_2002@yahoo.co.in [Department of Pharmacology and Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Fong, Tsorng-Harn, E-mail: thfong@tmu.edu.tw [Department of Anatomy and Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2015-10-09

    The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear. The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. - Highlights: • We successfully

  17. Acute high-caffeine exposure increases autophagic flux and reduces protein synthesis in C2C12 skeletal myotubes.

    Science.gov (United States)

    Hughes, M A; Downs, R M; Webb, G W; Crocker, C L; Kinsey, S T; Baumgarner, Bradley L

    2017-04-01

    Caffeine is a highly catabolic dietary stimulant. High caffeine concentrations (1-10 mM) have previously been shown to inhibit protein synthesis and increase protein degradation in various mammalian cell lines. The purpose of this study was to examine the effect of short-term caffeine exposure on cell signaling pathways that regulate protein metabolism in mammalian skeletal muscle cells. Fully differentiated C2C12 skeletal myotubes either received vehicle (DMSO) or 5 mM caffeine for 6 h. Our analysis revealed that caffeine promoted a 40% increase in autolysosome formation and a 25% increase in autophagic flux. In contrast, caffeine treatment did not significantly increase the expression of the skeletal muscle specific ubiquitin ligases MAFbx and MuRF1 or 20S proteasome activity. Caffeine treatment significantly reduced mTORC1 signaling, total protein synthesis and myotube diameter in a CaMKKβ/AMPK-dependent manner. Further, caffeine promoted a CaMKII-dependent increase in myostatin mRNA expression that did not significantly contribute to the caffeine-dependent reduction in protein synthesis. Our results indicate that short-term caffeine exposure significantly reduced skeletal myotube diameter by increasing autophagic flux and promoting a CaMKKβ/AMPK-dependent reduction in protein synthesis.

  18. Yeast Interacting Proteins Database: YGL237C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote... expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein

  19. Non-interacting surface solvation and dynamics in protein-protein interactions

    NARCIS (Netherlands)

    Visscher, Koen M.; Kastritis, Panagiotis L.|info:eu-repo/dai/nl/315886668; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238

    2015-01-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo

  20. Yeast Interacting Proteins Database: YKL002W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding prote...xpression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Sp

  1. Duchenne Muscular Dystrophy (DMD) Protein-Protein Interaction Mapping.

    Science.gov (United States)

    Rezaei Tavirani, Mostafa; OkHOVATIAN, Farshad; Zamanian Azodi, Mona; Rezaei Tavirani, Majid

    2017-01-01

    Duchenne muscular dystrophy (DMD) is one of the mortal diseases, subjected to study in terms of molecular investigation. In this study, the protein interaction map of this muscle-wasting condition was generated to gain a better knowledge of interactome profile of DMD. Applying Cytoscape and String Database, the protein-protein interaction network was constructed and the gene ontology of the constructed network was analyzed for biological process, molecular function, and cellular component annotations. Among 100 proteins related to DMD, dystrophin, utrophin, caveolin 3, and myogenic differentiation 1 play key roles in DMD network. In addition, the gene ontology analysis showed that regulation processes, kinase activity, and sarcoplasmic reticulum were the highlighted biological processes, molecular function, and cell component enrichments respectively for the proteins related to DMD. The central proteins and the enriched ontologies can be suggested as possible prominent agents in DMD; however, the validation studies may be required.

  2. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  3. SPRINT-INTERVAL TRAINING INDUCES HEAT SHOCK PROTEIN 72 IN RAT SKELETAL MUSCLES

    Directory of Open Access Journals (Sweden)

    Yuji Ogura

    2006-06-01

    Full Text Available Previous studies have demonstrated that endurance exercise training increases the level of heat shock proteins (HSPs in skeletal muscles. However, little attention has been drawn to the effects of high intensity-short duration exercise, or sprint- interval training (SIT on HSP72 level in rat skeletal muscles. This study performed to test the hypothesis that the SIT would induce the HSP72 in fast and slow skeletal muscles of rats. Young male Wistar rats (8 weeks old were randomly assigned to a control (CON or a SIT group (n = 8/group. Animals in the SIT group were trained (1 min/sprint, 6~10 sets/day and 5~6 days/week on a treadmill for 9 weeks. After the training period, HSP72 levels in the plantaris (fast and soleus (slow muscles were analyzed by Western blotting method. Enzyme activities (hexokinase, phosphofructokinase and citrate synthase and histochemical properties (muscle fiber type compositions and cross sectional area in both muscles were also determined. The SIT resulted in significantly (p < 0.05 higher levels of HSP72 in both the plantaris and soleus muscles compared to the CON group, with the plantaris producing a greater HSP72 increase than the soleus (plantaris; 550 ± 116%, soleus; 26 ± 8%, p < 0.05. Further, there were bioenergetic improvements, fast-to-slow shift of muscle fiber composition and hypertrophy in the type IIA fiber only in the plantaris muscle. These findings indicate that the SIT program increases HSP72 level of the rat hindlimb muscles, and the SIT-induced accumulation of HSP72 differs between fast and slow muscles

  4. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  5. Iterative cluster analysis of protein interaction data.

    Science.gov (United States)

    Arnau, Vicente; Mars, Sergio; Marín, Ignacio

    2005-02-01

    Generation of fast tools of hierarchical clustering to be applied when distances among elements of a set are constrained, causing frequent distance ties, as happens in protein interaction data. We present in this work the program UVCLUSTER, that iteratively explores distance datasets using hierarchical clustering. Once the user selects a group of proteins, UVCLUSTER converts the set of primary distances among them (i.e. the minimum number of steps, or interactions, required to connect two proteins) into secondary distances that measure the strength of the connection between each pair of proteins when the interactions for all the proteins in the group are considered. We show that this novel strategy has advantages over conventional clustering methods to explore protein-protein interaction data. UVCLUSTER easily incorporates the information of the largest available interaction datasets to generate comprehensive primary distance tables. The versatility, simplicity of use and high speed of UVCLUSTER on standard personal computers suggest that it can be a benchmark analytical tool for interactome data analysis. The program is available upon request from the authors, free for academic users. Additional information available at http://www.uv.es/genomica/UVCLUSTER.

  6. Website on Protein Interaction and Protein Structure Related Work

    Science.gov (United States)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  7. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C...

  8. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  9. Protein-Protein Interactions (PPI) reagents: | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below.

  10. Protein-Protein Interaction Reagents | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at Emory University has a library of genes used to study protein-protein interactions in mammalian cells. These genes are cloned in different mammalian expression vectors. A list of available cancer-associated genes can be accessed below. Emory_CTD^2_PPI_Reagents.xlsx Contact: Haian Fu

  11. Yeast Interacting Proteins Database: YOR158W, YLR423C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR158W PET123 Mitochondrial ribosomal protein of the small subunit; PET123 exhibits genetic interactions...23 Bait description Mitochondrial ribosomal protein of the small subunit; PET123 exhibits genetic interact...ions with PET122, which encodes a COX3 mRNA-specific translational activator Rows w

  12. Concentration dependent model of protein-protein interaction networks

    CERN Document Server

    Zhang, Jingshan

    2007-01-01

    The scale free structure p(k)~k^{-gamma} of protein-protein interaction networks can be produced by a static physical model. We find the earlier study of deterministic threshold models with exponential fitness distributions can be generalized to explain the apparent scale free degree distribution of the physical model, and this explanation provides a generic mechanism of "scale free" networks. We predict the dependence of gamma on experimental protein concentrations. The clustering coefficient distribution of the model is also studied.

  13. HCVpro: Hepatitis C virus protein interaction database

    KAUST Repository

    Kwofie, Samuel K.

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. © 2011 Elsevier B.V.

  14. Length, protein–protein interactions, and complexity

    NARCIS (Netherlands)

    Tan, T.; Frenkel, D.; Gupta, V.; Deem, M.W.

    2005-01-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein–protein interactions has driven the selection of longer proteins, as they

  15. The application of 2H2O to measure skeletal muscle protein synthesis

    Directory of Open Access Journals (Sweden)

    Fluckey James D

    2010-04-01

    Full Text Available Abstract Skeletal muscle protein synthesis has generally been determined by the precursor:product labeling approach using labeled amino acids (e.g., [13C]leucine or [13C]-, [15N]-, or [2H]phenylalanine as the tracers. Although reliable for determining rates of protein synthesis, this methodological approach requires experiments to be conducted in a controlled environment, and as a result, has limited our understanding of muscle protein renewal under free-living conditions over extended periods of time (i.e., integrative/cumulative assessments. An alternative tracer, 2H2O, has been successfully used to measure rates of muscle protein synthesis in mice, rats, fish and humans. Moreover, perturbations such as feeding and exercise have been included in these measurements without exclusion of common environmental and biological factors. In this review, we discuss the principle behind using 2H2O to measure muscle protein synthesis and highlight recent investigations that have examined the effects of feeding and exercise. The framework provided in this review should assist muscle biologists in designing experiments that advance our understanding of conditions in which anabolism is altered (e.g., exercise, feeding, growth, debilitating and metabolic pathologies.

  16. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  17. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  18. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  19. Clenbuterol increases muscle fiber size and GATA-2 protein in rat skeletal muscle in utero.

    Science.gov (United States)

    Downie, Diane; Delday, Margaret I; Maltin, Charlotte A; Sneddon, Alan A

    2008-05-01

    Certain beta(2)-adrenoceptor agonists, such as clenbuterol, are known to elicit a muscle-specific anabolism or hypertrophy in both normal and catabolic muscle in a wide variety of species. However, the underlying mechanism(s) of the beta(2)-agonist-induced anabolism remains unclear. This study aimed to determine the effects of clenbuterol administration in utero on skeletal muscle and to examine the underlying molecular mechanisms. Pregnant rats were fed clenbuterol (2 mg/kg diet) from Day 4 of gestation (4 dg) until weanling and fetal samples were taken from 13.5, 15.5, 17.5, and 19.5 dg and from 1d neonatal pups. Muscles were analyzed for total DNA, RNA and protein and sections examined morphologically for changes in muscle development. Western and immunohistochemical analyses were performed to identify changes in known myogenic signaling proteins. Clenbuterol increased the size of both fast and slow fibers in utero which was associated with a decreased DNA:protein ratio (28%) and an increased RNA:DNA ratio (36%). Additionally, drug treatment in utero induced a decrease in the fast:slow fiber ratio (38%). These myogenic changes were correlated with an increase in the GATA-2 hypertrophic transcription factor at both 17.5 dg (by 250%) and 19.5 dg (by 40%) in fetuses from clenbuterol treated dams. In addition, drug treatment resulted in increased membrane association of PKC-micro at 17.5 dg (325%) and increased PKC-alpha cytosolic abundance (40%) and PKC-theta membrane abundance at 19.5 dg (250%). These results are the first demonstration that beta(2)-agonists such as clenbuterol may act through upregulating the GATA-2 transcription factor and implicate certain PKC isoforms in the drug-induced regulation of skeletal muscle development. (c) 2007 Wiley-Liss, Inc.

  20. Yeast Interacting Proteins Database: YEL017W, YEL017W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Bait description Protein of unknown function with a possible role in glutathione metabolism, as suggested by computational...ion Protein of unknown function with a possible role in glutathione metabolism, as suggested by computational...putational analysis of large-scale protein-protein interaction data; GFP-fusion pro...tational analysis of large-scale protein-protein interaction data; GFP-fusion prote...17W GTT3 Protein of unknown function with a possible role in glutathione metabolism, as suggested by compu

  1. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; Kong, Xiangfeng; Tan, Bie; Li, Yinghui; Duan, Yehui; Blachier, François; Hu, Chien-An A; Yin, Yulong

    2015-01-01

    Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA) pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet)- or higher/NRC (National Research Council)-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I) and longissimus dorsi muscle (LDM, type II) were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR) signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (PPro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (PGB diet increased (P<0.05) the levels for mTOR and p70S6K in Bama mini-pigs, but repressed (P<0.05) the level for p70S6K in Landrace pigs. The higher protein-NRC diet increased ratio of p-mTOR/mTOR in Landrace pigs. These findings indicated that the dynamic consequences of AA profile and protein deposition in muscle tissues are the concerted effort of distinctive genotype, nutrient status, age, and muscle type. Our results provide valuable information for animal feeding strategy.

  2. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle

    Science.gov (United States)

    Kim, Jason K.; Gimeno, Ruth E.; Higashimori, Takamasa; Kim, Hyo-Jeong; Choi, Hyejeong; Punreddy, Sandhya; Mozell, Robin L.; Tan, Guo; Stricker-Krongrad, Alain; Hirsch, David J.; Fillmore, Jonathan J.; Liu, Zhen-Xiang; Dong, Jianying; Cline, Gary; Stahl, Andreas; Lodish, Harvey F.; Shulman, Gerald I.

    2004-01-01

    Insulin resistance in skeletal muscle plays a major role in the development of type 2 diabetes and may be causally associated with increases in intramuscular fatty acid metabolites. Fatty acid transport protein 1 (FATP1) is an acyl-CoA synthetase highly expressed in skeletal muscle and modulates fatty acid uptake and metabolism by converting fatty acids into fatty acyl-CoA. To investigate the role of FATP1 in glucose homeostasis and in the pathogenesis of insulin resistance, we examined the effect of acute lipid infusion or chronic high-fat feeding on insulin action in FATP1 KO mice. Whole-body adiposity, adipose tissue expression of adiponectin, intramuscular fatty acid metabolites, and insulin sensitivity were not altered in FATP1 KO mice fed a regular chow diet. In contrast, FATP1 deletion protected the KO mice from fat-induced insulin resistance and intramuscular accumulation of fatty acyl-CoA without alteration in whole-body adiposity. These findings demonstrate an important role of intramuscular fatty acid metabolites in causing insulin resistance and suggest that FATP1 may be a novel therapeutic target for the treatment of insulin resistance and type 2 diabetes. PMID:14991074

  3. A protein-protein interaction dictates Borrelial infectivity.

    Science.gov (United States)

    Thakur, Meghna; Sharma, Kavita; Chao, Kinlin; Smith, Alexis A; Herzberg, Osnat; Pal, Utpal

    2017-06-07

    Two Borrelia burgdorferi interacting proteins, BB0238 and BB0323, play distinct roles in pathogen biology and infectivity although a significance of their interaction remained enigmatic. Here we identified the polypeptide segment essential for BB0238-BB0323 interaction and examined how it supports spirochete infectivity. We show that the interaction region in BB0323 requires amino acid residues 22-200, suggesting that the binding encompasses discontinuous protein segments. In contrast, the interaction region in BB0238 spans only 11 amino acids, residues 120-130. A deletion of these 11 amino acids neither alters the overall secondary structure of the protein, nor affects its stability or oligomerization property, however, it reduces the post-translational stability of the binding partner, BB0323. Mutant B. burgdorferi isolates producing BB0238 lacking the 11-amino acid interaction region were able to persist in ticks but failed to transmit to mice or to establish infection. These results suggest that BB0238-BB0323 interaction is critical for post-translational stability of BB0323, and that this interaction is important for mammalian infectivity and transmission of B. burgdorferi. We show that saturation or inhibition of BB0238-BB0323 interaction could be studied in a luciferase assay, which could be amenable for future identification of small molecule inhibitors to combat B. burgdorferi infection.

  4. Negation of protein-protein interactions: analysis and extraction.

    Science.gov (United States)

    Sanchez-Graillet, Olivia; Poesio, Massimo

    2007-07-01

    Negative information about protein-protein interactions--from uncertainty about the occurrence of an interaction to knowledge that it did not occur--is often of great use to biologists and could lead to important discoveries. Yet, to our knowledge, no proposals focusing on extracting such information have been proposed in the text mining literature. In this work, we present an analysis of the types of negative information that is reported, and a heuristic-based system using a full dependency parser to extract such information. We performed a preliminary evaluation study that shows encouraging results of our system. Finally, we have obtained an initial corpus of negative protein-protein interactions as basis for the construction of larger ones. The corpus is available by request from the authors.

  5. Quantitative study of protein-protein interactions by quartz nanopipettes.

    Science.gov (United States)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-09-07

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.

  6. Yeast Interacting Proteins Database: YDL226C, YJL151C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available s bait as prey (0) YJL151C SNA3 Integral membrane protein localized to vacuolar intralumenal vesicles, computational...intralumenal vesicles, computational analysis of large-scale protein-protein interaction data suggests a pos... gene name SNA3 Prey description Integral membrane protein localized to vacuolar

  7. Yeast Interacting Proteins Database: YML064C, YOR284W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available th this bait as prey (0) YOR284W HUA2 Cytoplasmic protein of unknown function; computational analysis of lar...Rows with this bait as prey (0) Prey ORF YOR284W Prey gene name HUA2 Prey description Cytoplasmic protein of unknown function; comput...ational analysis of large-scale protein-protein interact

  8. Hydrophobic interactions of sucralose with protein structures.

    Science.gov (United States)

    Shukla, Nimesh; Pomarico, Enrico; Hecht, Cody J S; Taylor, Erika A; Chergui, Majed; Othon, Christina M

    2018-02-01

    Sucralose is a commonly employed artificial sweetener that appears to destabilize protein native structures. This is in direct contrast to the bio-preservative nature of its natural counterpart, sucrose, which enhances the stability of biomolecules against environmental stress. We have further explored the molecular interactions of sucralose as compared to sucrose to illuminate the origin of the differences in their bio-preservative efficacy. We show that the mode of interactions of sucralose and sucrose in bulk solution differ subtly through the use of hydration dynamics measurement and computational simulation. Sucralose does not appear to disturb the native state of proteins for moderate concentrations (sucralose appears to differ in its interactions with protein leading to the reduction of native state stability. This difference in interaction appears weak. We explored the difference in the preferential exclusion model using time-resolved spectroscopic techniques and observed that both molecules appear to be effective reducers of bulk hydration dynamics. However, the chlorination of sucralose appears to slightly enhance the hydrophobicity of the molecule, which reduces the preferential exclusion of sucralose from the protein-water interface. The weak interaction of sucralose with hydrophobic pockets on the protein surface differs from the behavior of sucrose. We experimentally followed up upon the extent of this weak interaction using isothermal titration calorimetry (ITC) measurements. We propose this as a possible origin for the difference in their bio-preservative properties. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Binding interactions of niclosamide with serum proteins

    Directory of Open Access Journals (Sweden)

    Esra Maltas

    2014-12-01

    Full Text Available A study of the binding of niclosamide (NC to serum proteins such as human serum albumin, hemoglobin, and globulin was carried out using fluorescence and UV-visible spectroscopy. Interactions between NC and these proteins were estimated by Stern–Volmer and van't Hoff equations. The binding constants and the thermodynamic parameters, ΔH, ΔS, and ΔG at different temperatures were also determined by using these equations. Data showed that NC may exhibit a static quenching mechanism with all proteins. The thermodynamic parameters were calculated. Data showed that van der Waals interactions and hydrogen bonds are the main forces for human serum albumin and hemoglobin. Globulin, however, bound to NC via hydrophobic interaction. The spectral changes of synchronous fluorescence suggested that both the microenvironment of NC and the conformation of the proteins changed in relation to their concentrations during NC's binding.

  10. Geometric de-noising of protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oleksii Kuchaiev

    2009-08-01

    Full Text Available Understanding complex networks of protein-protein interactions (PPIs is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H, tandem affinity purification (TAP and other high-throughput methods for protein-protein interaction (PPI detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.

  11. Geometric de-noising of protein-protein interaction networks.

    Science.gov (United States)

    Kuchaiev, Oleksii; Rasajski, Marija; Higham, Desmond J; Przulj, Natasa

    2009-08-01

    Understanding complex networks of protein-protein interactions (PPIs) is one of the foremost challenges of the post-genomic era. Due to the recent advances in experimental bio-technology, including yeast-2-hybrid (Y2H), tandem affinity purification (TAP) and other high-throughput methods for protein-protein interaction (PPI) detection, huge amounts of PPI network data are becoming available. Of major concern, however, are the levels of noise and incompleteness. For example, for Y2H screens, it is thought that the false positive rate could be as high as 64%, and the false negative rate may range from 43% to 71%. TAP experiments are believed to have comparable levels of noise.We present a novel technique to assess the confidence levels of interactions in PPI networks obtained from experimental studies. We use it for predicting new interactions and thus for guiding future biological experiments. This technique is the first to utilize currently the best fitting network model for PPI networks, geometric graphs. Our approach achieves specificity of 85% and sensitivity of 90%. We use it to assign confidence scores to physical protein-protein interactions in the human PPI network downloaded from BioGRID. Using our approach, we predict 251 interactions in the human PPI network, a statistically significant fraction of which correspond to protein pairs sharing common GO terms. Moreover, we validate a statistically significant portion of our predicted interactions in the HPRD database and the newer release of BioGRID. The data and Matlab code implementing the methods are freely available from the web site: http://www.kuchaev.com/Denoising.

  12. Interaction of melanosomal proteins with melanin.

    Science.gov (United States)

    Donatien, P D; Orlow, S J

    1995-08-15

    Melanin is deposited in melanosomes upon a proteinaceous matrix enveloped by a melanosomal membrane. Since melanin is highly detergent insoluble, we hypothesized that the detergent solubility of proteins of the melanosomal matrix might be inversely related to the state of melanosomal melanization. Immunoblotting analyses were performed on extracts of albino and black melanocytes to test this hypothesis. The protein products of the silver (si) and the pink-eyed-dilution (p) loci as well as other matrix constituents were present at twofold higher levels in extracts of albino cells. When black cells were rendered amelanotic by growing cultures in the presence of the tyrosinase inhibitor phenylthiourea, the apparent levels of these proteins were also increased. To obviate the potential role of different levels of synthesis in contributing to these differences, we developed a cell-free melanosomal melanization assay. Upon incubation of a melanosome-rich fraction with the melanin precursor L-3,4-dihydroxyphenylalanine (Dopa) followed by immunoblot analysis, the si locus protein, the p locus protein, and other putative matrix constituents became rapidly insoluble in SDS when compared with the members of the tyrosinase-related family of melanosomal membrane proteins. Our results suggest that melanosomal proteins that interact with melanin may be identified by their relative insolubility in SDS under conditions of increasing melanization. In addition to the si locus protein and other putative melanosomal matrix proteins, the membrane-bound p locus protein may also interact closely with melanin.

  13. Yeast Interacting Proteins Database: YBR135W, YBR252W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tes proteolysis of M-phase targets through interactions with the proteasome; role in transcriptional regulat...yclin-dependent protein kinase regulatory subunit and adaptor; modulates proteolysis of M-phase targets through interactions

  14. Interactive effect of dietary protein level and zilpaterol hydrochloride ...

    African Journals Online (AJOL)

    p2492989

    muscle hypertrophy (via reduced protein degradation) with decreased meat tenderness. However, all BAA ... Since ZH reduces DMI, improves growth rate and has an anabolic effect on muscle protein, the question arises whether ..... Bovine skeletal muscle calpastatin: cloning, sequence analysis, and steady-state mRNA ...

  15. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3

    Directory of Open Access Journals (Sweden)

    Marx Stephen J

    2008-08-01

    Full Text Available Abstract Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3, but not with non-muscle alpha-actinins (actinin-1 and actinin-4. The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells, but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin participate in sequestering parafibromin in the cytoplasmic compartment.

  16. Androgen interacts with exercise through the mTOR pathway to induce skeletal muscle hypertrophy

    Directory of Open Access Journals (Sweden)

    Fanxing Zeng

    2017-12-01

    Full Text Available This study was designed to investigate the effects of exogenous androgen and resistance exercise on skeletal muscle hypertrophy and the role of the mammalian target of rapamycin (mTOR signalling during the process. A total of 24 male Sprague-Dawley rats were randomly assigned to sham operation and dihydrotestosterone (DHT implantation groups with subgroups subjected to sedentary conditions or resistance exercise (SHAM+SED, SHAM+EX, DHT+SED, and DHT+EX. The experimental procedure lasted for 10 days. The mRNA expression of androgen receptor (AR and insulin-like growth factor I (IGF-I, the expression of myosin heavy chain (MHC, as well as the phosphorylation statuses of AR, mTOR, p70 ribosomal S6 kinase (p70S6K, and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1 were determined in the white gastrocnemius muscle. The cross sectional area and wet mass of the muscle were also measured. The cross sectional area and MHC expression were significantly higher in SHAM+EX, DHT+SED, and DHT+EX than in SHAM+SED. There was no significant difference among groups in muscle mass. The mRNA expression of AR and IGF-I and the phosphorylation of mTOR, p70S6K, and 4EBP1 were significantly increased in DHT+SED and SHAM+EX and were significantly enhanced in DHT+EX compared with either DHT or exercise alone. These data show that DHT causes hypertrophy in skeletal muscle and that exercise has a synergistic effect on DHT-induced hypertrophy. Exercise enhances androgen-induced rapid anabolic action, which involves activation of the mTOR pathway.

  17. Mapping of protein-protein interaction network of Alexander disease.

    Science.gov (United States)

    Saxena, A K; Saxena, V L; Dixit, S

    2016-05-30

    Alexander disease (ALXD) is slowly progressive neurodegenerative disorder which affects white matter of the central nervous system. The main cause of disorder is mutation in GFAP gene and mutation in some other genes were also reported. This study was aimed at getting a better insight into ALXD pathogenesis and identifying the important functional and highly interconnected nodes in human protein interaction network, identifying the important sub-networks in the system could be helpful in understanding the underlying molecular mechanism. The topological analysis of human protein interaction network strategy to identify highly interconnected sub-network modules from which six proteins are found i.e. GFAP, PLEC, CRYAB, NDUFV1, CASP3 and MAPK14 plays important role in disease. Further, the enrichment analysis of interaction network identifies crucial pathways in which most of the diseased proteins overlaps. Through system biology approach, the undirected human protein interaction network of ALXD is buildup with the help of Cytoscape tool and its various plugins helps to investigate network further. The systematic approach suggests the finding of previously known proteins, GFAP, PLEC, CRYAB, NDUFV1, CASP3 and MAPK14 can be used as a drug targets and potential treatment discovered also enrichment analysis will provide guidance for the future study on Alexander disease.

  18. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    Science.gov (United States)

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  19. Modeling disordered protein interactions from biophysical principles.

    Directory of Open Access Journals (Sweden)

    Lenna X Peterson

    2017-04-01

    Full Text Available Disordered protein-protein interactions (PPIs, those involving a folded protein and an intrinsically disordered protein (IDP, are prevalent in the cell, including important signaling and regulatory pathways. IDPs do not adopt a single dominant structure in isolation but often become ordered upon binding. To aid understanding of the molecular mechanisms of disordered PPIs, it is crucial to obtain the tertiary structure of the PPIs. However, experimental methods have difficulty in solving disordered PPIs and existing protein-protein and protein-peptide docking methods are not able to model them. Here we present a novel computational method, IDP-LZerD, which models the conformation of a disordered PPI by considering the biophysical binding mechanism of an IDP to a structured protein, whereby a local segment of the IDP initiates the interaction and subsequently the remaining IDP regions explore and coalesce around the initial binding site. On a dataset of 22 disordered PPIs with IDPs up to 69 amino acids, successful predictions were made for 21 bound and 18 unbound receptors. The successful modeling provides additional support for biophysical principles. Moreover, the new technique significantly expands the capability of protein structure modeling and provides crucial insights into the molecular mechanisms of disordered PPIs.

  20. Skeletal muscle myofibrillar and sarcoplasmic protein synthesis rates are affected differently by altitude-induced hypoxia in native lowlanders

    DEFF Research Database (Denmark)

    Holm, Lars; Haslund, Mads Lyhne; Robach, Paul

    2010-01-01

    As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-...

  1. Role of adenosine 5'-monophosphate-activated protein kinase in interleukin-6 release from isolated mouse skeletal muscle

    DEFF Research Database (Denmark)

    Glund, Stephan; Treebak, Jonas Thue; Long, Yun Chau

    2009-01-01

    IL-6 is released from skeletal muscle during exercise and has consequently been implicated to mediate beneficial effects on whole-body metabolism. Using 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), a pharmacological activator of 5'-AMP-activated protein kinase (AMPK), we tested...

  2. Analysis of leukocyte membrane protein interactions using protein microarrays

    Directory of Open Access Journals (Sweden)

    Foster-Cuevas Mildred

    2005-03-01

    Full Text Available Abstract Background Protein microarrays represent an emerging class of proteomic tools to investigate multiple protein-protein interactions in parallel. A sufficient proportion of immobilized proteins must maintain an active conformation and an orientation that allows for the sensitive and specific detection of antibody and ligand binding. In order to establish protein array technology for the characterization of the weak interactions between leukocyte membrane proteins, we selected the human leukocyte membrane protein CD200 (OX2 and its cell surface receptor (hCD200R as a model system. As antibody-antigen reactions are generally of higher affinity than receptor-ligand binding, we first analyzed the reactivity of monoclonal antibodies (mAb to normal and mutant forms of immobilized CD200R. Results Fluorescently labelled mAb DX147, DX136 and OX108 were specifically reactive with immobilized recombinant hCD200R extracellular region, over a range of 0.1–40 μg ml-1 corresponding to a limit of sensitivity of 0.01–0.05 femtomol per spot. Orientating hCD200R using capture antibodies, showed that DX147 reacts with an epitope spatially distinct from the more closely related DX136 and OX108 epitopes. A panel of soluble recombinant proteins with mutations in hCD200R domain 1 produced by transiently transfected cells, was arrayed directly without purification and screened for binding to the three mAb. Several showed decreased binding to the blocking mAb DX136 and OX108, suggesting close proximity of these epitopes to the CD200 binding site. Binding of hCD200 to directly immobilized rat, mouse, and hCD200R was achieved with multimeric ligands, in the form of biotinylated-hCD200 coupled to FITC-labelled avidin coated beads. Conclusion We have achieved sensitive, specific and reproducible detection of immobilized CD200R with different antibodies and mapped antigenic epitopes for two mAb in the vicinity of the ligand binding site using protein microarrays

  3. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  4. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man

    Energy Technology Data Exchange (ETDEWEB)

    Gelfand, R.A.; Barrett, E.J.

    1987-07-01

    Although insulin stimulates protein synthesis and inhibits protein breakdown in skeletal muscle in vitro, the actual contribution of these actions to its anabolic effects in man remains unknown. Using the forearm perfusion method together with systemic infusion of L-(ring-2,6-3H)phenylalanine and L-(1-/sup 14/C)leucine, we measured steady state amino acid exchange kinetics across muscle in seven normal males before and in response to a 2-h intraarterial infusion of insulin. Postabsorptively, the muscle disposal (Rd) of phenylalanine (43 +/- 5 nmol/min per 100 ml forearm) and leucine (113 +/- 13) was exceeded by the concomitant muscle production (Ra) of these amino acids (57 +/- 5 and 126 +/- 9 nmol/min per dl, respectively), resulting in their net release from the forearm (-14 +/- 4 and -13 +/- 5 nmol/min per dl, respectively). In response to forearm hyperinsulinemia (124 +/- 11 microU/ml), the net balance of phenylalanine and leucine became positive (9 +/- 3 and 61 +/- 8 nmol/min per dl, respectively (P less than 0.005 vs. basal). Despite the marked increase in net balance, the tissue Rd for both phenylalanine (42 +/- 2) and leucine (124 +/- 9) was unchanged from baseline, while Ra was markedly suppressed (to 33 +/- 5 and 63 +/- 9 nmol/min per dl, respectively, P less than 0.01). Since phenylalanine is not metabolized in muscle (i.e., its only fates are incorporation into or release from protein) these results strongly suggest that in normal man, physiologic elevations in insulin promote net muscle protein anabolism primarily by inhibiting protein breakdown, rather than by stimulating protein synthesis.

  5. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  6. Yeast Interacting Proteins Database: YFR049W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator... (0) YOR047C STD1 Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sens...ors Snf3p and Rgt2p, and TATA-binding protein Spt15p; ac

  7. Yeast Interacting Proteins Database: YOR047C, YKL038W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available racts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a...Bait description Protein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose senso...rs Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator of the tra

  8. KFC Server: interactive forecasting of protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org.

  9. Deciphering peculiar protein-protein interacting modules in Deinococcus radiodurans

    Directory of Open Access Journals (Sweden)

    Barkallah Insaf

    2009-04-01

    Full Text Available Abstract Interactomes of proteins under positive selection from ionizing-radiation-resistant bacteria (IRRB might be a part of the answer to the question as to how IRRB, particularly Deinococcus radiodurans R1 (Deira, resist ionizing radiation. Here, using the Database of Interacting Proteins (DIP and the Protein Structural Interactome (PSI-base server for PSI map, we have predicted novel interactions of orthologs of the 58 proteins under positive selection in Deira and other IRRB, but which are absent in IRSB. Among these, 18 domains and their interactomes have been identified in DNA checkpoint and repair; kinases pathways; energy and nucleotide metabolisms were the important biological processes that were found to be involved. This finding provides new clues to the cellular pathways that can to be important for ionizing-radiation resistance in Deira.

  10. Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum.

    Science.gov (United States)

    Hymel, L; Maurer, A; Berenski, C; Jung, C Y; Fleischer, S

    1984-04-25

    The oligomeric size of calcium pump protein (CPP) in fast skeletal muscle sarcoplasmic reticulum membrane was determined using target theory analysis of radiation inactivation data. There was a parallel decrease of Ca2+-ATPase and calcium pumping activities with increasing radiation dose. The loss of staining intensity of the CPP band, observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, also correlated directly with the loss of activity. The target size molecular weight of the CPP in the normal sarcoplasmic reticulum membrane ranged between 210,000 and 250,000, which is consistent with a dimeric structure. Essentially the same size is obtained for the non-phosphorylated CPP or for the phosphoenzyme form generated from either ATP (E1 state) or inorganic phosphate (E2 state). Hence, the oligomeric state of the pump does not appear to change during the catalytic cycle. Similar results were obtained with reconstituted sarcoplasmic reticulum membrane vesicles with different lipid to protein ratios. We conclude that the CPP is a dimer in both native and reconstituted sarcoplasmic reticulum membranes. The target size of the calcium-binding protein (calsequestrin) was found to be 50,000 daltons, approximating a monomer.

  11. PIWI Proteins and PIWI-Interacting RNA

    DEFF Research Database (Denmark)

    Han, Yi Neng; Li, Yuan; Xia, Sheng Qiang

    2017-01-01

    P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic......-cell maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer...... treatment. Nevertheless, their specific mechanisms and functions need further investigation. In this review, we discuss about the biogenesis, functions and the emerging role of piRNAs and PIWI proteins in cancer, providing novel insights into the possible applications of piRNAs and PIWI proteins in cancer...

  12. PIWI Proteins and PIWI-Interacting RNA

    DEFF Research Database (Denmark)

    Han, Yi Neng; Li, Yuan; Xia, Sheng Qiang

    2017-01-01

    P-Element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a type of noncoding RNAs (ncRNAs) and interact with PIWI proteins. piRNAs were primarily described in the germline, but emerging evidence revealed that piRNAs are expressed in a tissue-specific manner among multiple human somatic...... tissue types as well and play important roles in transposon silencing, epigenetic regulation, gene and protein regulation, genome rearrangement, spermatogenesis and germ stem-cell maintenance. PIWI proteins were first discovered in Drosophila and they play roles in spermatogenesis, germline stem......-cell maintenance, self-renewal, retrotransposons silencing and the male germline mobility control. A growing number of studies have demonstrated that several piRNA and PIWI proteins are aberrantly expressed in various kinds of cancers and may probably serve as a novel biomarker and therapeutic target for cancer...

  13. Potential disruption of protein-protein interactions by graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mei [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Kang, Hongsuk; Luan, Binquan [Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Yang, Zaixing [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123 (China); Zhou, Ruhong, E-mail: ruhong@us.ibm.com [Department of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou 310027 (China); Computational Biological Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  14. Potential disruption of protein-protein interactions by graphene oxide

    Science.gov (United States)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  15. A method for predicting protein-protein interaction types.

    Directory of Open Access Journals (Sweden)

    Yael Silberberg

    Full Text Available Protein-protein interactions (PPIs govern basic cellular processes through signal transduction and complex formation. The diversity of those processes gives rise to a remarkable diversity of interactions types, ranging from transient phosphorylation interactions to stable covalent bonding. Despite our increasing knowledge on PPIs in humans and other species, their types remain relatively unexplored and few annotations of types exist in public databases. Here, we propose the first method for systematic prediction of PPI type based solely on the techniques by which the interaction was detected. We show that different detection methods are better suited for detecting specific types. We apply our method to ten interaction types on a large scale human PPI dataset. We evaluate the performance of the method using both internal cross validation and external data sources. In cross validation, we obtain an area under receiver operating characteristic (ROC curve ranging from 0.65 to 0.97 with an average of 0.84 across the predicted types. Comparing the predicted interaction types to external data sources, we obtained significant agreements for phosphorylation and ubiquitination interactions, with hypergeometric p-value = 2.3e(-54 and 5.6e(-28 respectively. We examine the biological relevance of our predictions using known signaling pathways and chart the abundance of interaction types in cell processes. Finally, we investigate the cross-relations between different interaction types within the network and characterize the discovered patterns, or motifs. We expect the resulting annotated network to facilitate the reconstruction of process-specific subnetworks and assist in predicting protein function or interaction.

  16. Prediction of Protein-Protein Interacting Sites: How to Bridge Molecular Events to Large Scale Protein Interaction Networks

    Science.gov (United States)

    Bartoli, Lisa; Martelli, Pier Luigi; Rossi, Ivan; Fariselli, Piero; Casadio, Rita

    Most of the cellular functions are the result of the concerted action of protein complexes forming pathways and networks. For this reason, efforts were devoted to the study of protein-protein interactions. Large-scale experiments on whole genomes allowed the identification of interacting protein pairs. However residues involved in the interaction are generally not known and the majority of the interactions still lack a structural characterization. A crucial step towards the deciphering of the interaction mechanism of proteins is the recognition of their interacting surfaces, particularly in those structures for which also the most recent interaction network resources do not contain information. To this purpose, we developed a neural network-based method that is able to characterize protein complexes, by predicting amino acid residues that mediate the interactions. All the Protein Data Bank (PDB) chains, both in the unbound and in the complexed form, are predicted and the results are stored in a database of interaction surfaces (http://gpcr.biocomp.unibo.it/zenpatches). Finally, we performed a survey on the different computational methods for protein-protein interaction prediction and on their training/testing sets in order to highlight the most informative properties of protein interfaces.

  17. Yeast Interacting Proteins Database: YOR097C, YML008C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YOR097C - Putative protein of unknown function; identified as interacting with Hsp82p in a high-throughpu... description Putative protein of unknown function; identified as interacting with... Hsp82p in a high-throughput two-hybrid screen; YOR097C is not an essential gene Rows with this bait as bait

  18. Yeast Interacting Proteins Database: YLR223C, YOR247W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YLR223C IFH1 Essential protein with a highly acidic N-terminal domain; IFH1 exhibits genetic interactions...ion Essential protein with a highly acidic N-terminal domain; IFH1 exhibits genetic interactions with FHL1,

  19. Yeast Interacting Proteins Database: YBR187W, YNR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available null mutant; GFP-fusion protein localizes to the vacuole; expression pattern and physical interactions sugge...expression is reduced in a gcr1 null mutant; GFP-fusion protein localizes to the vacuole; expression pattern and physical interaction

  20. Yeast Interacting Proteins Database: YOR180C, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2...central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2

  1. Yeast Interacting Proteins Database: YCR036W, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2...central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2

  2. Yeast Interacting Proteins Database: YDR256C, YGL153W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2...central component of the peroxisomal protein import machinery; interacts with both PTS1 (Pex5p) and PTS2

  3. Yeast Interacting Proteins Database: YMR280C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available olved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensor... glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, an

  4. Yeast Interacting Proteins Database: YGR173W, YDR152W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available plasmic RWD domain-containing protein of unknown function; interacts with Rbg1p and Gcn1p; associates with translating...slating ribosomes; putative intrinsically unstructured p...ion Highly-acidic cytoplasmic RWD domain-containing protein of unknown function; interacts with Rbg1p and Gcn1p; associates with tran

  5. Yeast Interacting Proteins Database: YHR114W, YDR422C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available substrate specificity; vacuolar protein containing KIS (Kinase-Interacting Sequence) and ASC (Association w...strate specificity; vacuolar protein containing KIS (Kinase-Interacting Sequence) and ASC (Association with ...e 4 CuraGen (0 or 1) 0 S. Fields (0 or 1) 0 Association (0 or 1,YPD) 0 Complex (0

  6. Yeast Interacting Proteins Database: YDR026C, YDL030W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available -purification experiments; Myb-like DNA-binding protein that may bind to the Ter region of rDNA; interacts physically...n experiments; Myb-like DNA-binding protein that may bind to the Ter region of rDNA; interacts physically wi

  7. Yeast Interacting Proteins Database: YMR047C, YNL078W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available L078W NIS1 Protein localized in the bud neck at G2/M phase; physically interacts ...ene name NIS1 Prey description Protein localized in the bud neck at G2/M phase; physically interacts with se

  8. Yeast Interacting Proteins Database: YPR040W, YNR032W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YPR040W TIP41 Protein that interacts physically and genetically with Tap42p, which ... 0 0 0 0 0 - - - - - 0 0 3 - Show YPR040W Bait ORF YPR040W Bait gene name TIP41 Bait description Protein that interacts physically

  9. Yeast Interacting Proteins Database: YBR108W, YGR136W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YBR108W AIM3 Protein interacting with Rvs167p; null mutant is viable and displays e...w YBR108W Bait ORF YBR108W Bait gene name AIM3 Bait description Protein interacting with Rvs167p; null mutant is viable and display

  10. Expression profile of plakin cross-linking proteins in short-term denervated mouse hindlimb skeletal muscle

    Directory of Open Access Journals (Sweden)

    Blouin P

    2016-08-01

    Full Text Available Patrick Blouin,1 Olivier Serresse,1 Sandra C Dorman,1,2 Céline Larivière,1–3 1School of Human Kinetics, 2Northern Ontario School of Medicine, 3Biomolecular Sciences, Laurentian University, Sudbury, ON, Canada Purpose: Skeletal muscle atrophy linked to neuromuscular inactivity is a complex phenomenon involving widespread alteration of muscle structure and function. Plakin cross-linking proteins are important structural elements that are expressed in skeletal muscles, which require resistance to mechanical stress. The plakin proteins most prevalent in skeletal muscles are plectin, dystonin, and microtubule-actin cross-linking factor (MACF. The expression profile of plakin cross-linking proteins in skeletal muscles during atrophy is poorly understood. We therefore investigated the expression profile of plectin, dystonin, and MACF in mouse hindlimb muscles undergoing denervation-induced atrophy.Materials and methods: Quantitative polymerase chain reaction and Western blotting were performed to assess plakin mRNA and protein expression in mouse gastrocnemius muscles that were denervated for 1 day, 3 days, 7 days, and 14 days. The left hindlimb muscles were denervated by severing the left sciatic nerve, and the contralateral limb muscles served as sham control muscles. The mRNA expression of myogenin and acetylcholinesterase was measured in parallel and served as controls.Results: As expected, myogenin mRNA expression was substantially induced in denervated muscles (13-fold induction, whereas acetylcholinesterase expression was significantly and progressively suppressed (90% reduction in denervated skeletal muscles. In comparison, we found that plectin and dystonin mRNA expression were progressively reduced by ~50% at day 14 denervation time point, but the protein levels remained relatively constant. On the other hand, MACF expression was upregulated approximately threefold by day 7 denervation at both the mRNA and protein levels

  11. HCVpro: hepatitis C virus protein interaction database.

    Science.gov (United States)

    Kwofie, Samuel K; Schaefer, Ulf; Sundararajan, Vijayaraghava S; Bajic, Vladimir B; Christoffels, Alan

    2011-12-01

    It is essential to catalog characterized hepatitis C virus (HCV) protein-protein interaction (PPI) data and the associated plethora of vital functional information to augment the search for therapies, vaccines and diagnostic biomarkers. In furtherance of these goals, we have developed the hepatitis C virus protein interaction database (HCVpro) by integrating manually verified hepatitis C virus-virus and virus-human protein interactions curated from literature and databases. HCVpro is a comprehensive and integrated HCV-specific knowledgebase housing consolidated information on PPIs, functional genomics and molecular data obtained from a variety of virus databases (VirHostNet, VirusMint, HCVdb and euHCVdb), and from BIND and other relevant biology repositories. HCVpro is further populated with information on hepatocellular carcinoma (HCC) related genes that are mapped onto their encoded cellular proteins. Incorporated proteins have been mapped onto Gene Ontologies, canonical pathways, Online Mendelian Inheritance in Man (OMIM) and extensively cross-referenced to other essential annotations. The database is enriched with exhaustive reviews on structure and functions of HCV proteins, current state of drug and vaccine development and links to recommended journal articles. Users can query the database using specific protein identifiers (IDs), chromosomal locations of a gene, interaction detection methods, indexed PubMed sources as well as HCVpro, BIND and VirusMint IDs. The use of HCVpro is free and the resource can be accessed via http://apps.sanbi.ac.za/hcvpro/ or http://cbrc.kaust.edu.sa/hcvpro/. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Quantitative Interaction Proteomics of Neurodegenerative Disease Proteins

    Directory of Open Access Journals (Sweden)

    Fabian Hosp

    2015-05-01

    Full Text Available Several proteins have been linked to neurodegenerative disorders (NDDs, but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP and Presenilin-1 (PSEN1 for Alzheimer’s disease (AD, Huntingtin (HTT for Huntington’s disease, Parkin (PARK2 for Parkinson’s disease, and Ataxin-1 (ATXN1 for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD.

  13. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  14. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  15. Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans.

    Science.gov (United States)

    Draganidis, Dimitrios; Chondrogianni, Niki; Chatzinikolaou, Athanasios; Terzis, Gerasimos; Karagounis, Leonidas G; Sovatzidis, Apostolos; Avloniti, Alexandra; Lefaki, Maria; Protopapa, Maria; Deli, Chariklia K; Papanikolaou, Konstantinos; Jamurtas, Athanasios Z; Fatouros, Ioannis G

    2017-08-01

    The ubiquitin-proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.

  16. Quantitative study of protein-protein interactions by quartz nanopipettes

    Science.gov (United States)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with

  17. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    AIMS/HYPOTHESIS: Understanding the molecular networks controlling ectopic lipid deposition and insulin responsiveness in skeletal muscle is essential for developing new strategies to treat type 2 diabetes. We recently identified serine/threonine protein kinase 25 (STK25) as a critical regulator...... of liver steatosis, hepatic lipid metabolism and whole body glucose and insulin homeostasis. Here, we assessed the role of STK25 in control of ectopic fat storage and insulin responsiveness in skeletal muscle. METHODS: Skeletal muscle morphology was studied by histological examination, exercise performance...... and insulin sensitivity were assessed by treadmill running and euglycaemic-hyperinsulinaemic clamp, respectively, and muscle lipid metabolism was analysed by ex vivo assays in Stk25 transgenic and wild-type mice fed a high-fat diet. Lipid accumulation and mitochondrial function were also studied in rodent...

  18. Interactions affected by arginine methylation in the yeast protein-protein interaction network.

    Science.gov (United States)

    Erce, Melissa A; Abeygunawardena, Dhanushi; Low, Jason K K; Hart-Smith, Gene; Wilkins, Marc R

    2013-11-01

    Protein-protein interactions can be modulated by the methylation of arginine residues. As a means of testing this, we recently described a conditional two-hybrid system, based on the bacterial adenylate cyclase (BACTH) system. Here, we have used this conditional two-hybrid system to explore the effect of arginine methylation in modulating protein-protein interactions in a subset of the Saccharomyces cerevisiae arginine methylproteome network. Interactions between the yeast hub protein Npl3 and yeast proteins Air2, Ded1, Gbp2, Snp1, and Yra1 were first validated in the absence of methylation. The major yeast arginine methyltransferase Hmt1 was subsequently included in the conditional two-hybrid assay, initially to determine the degree of methylation that occurs. Proteins Snp1 and Yra1 were confirmed as Hmt1 substrates, with five and two novel arginine methylation sites mapped by ETD LC-MS/MS on these proteins, respectively. Proteins Ded1 and Gbp2, previously predicted but not confirmed as substrates of Hmt1, were also found to be methylated with five and seven sites mapped respectively. Air2 was found to be a novel substrate of Hmt1 with two sites mapped. Finally, we investigated the interactions of Npl3 with the five interaction partners in the presence of active Hmt1 and in the presence of Hmt1 with a G68R inactivation mutation. We found that the interaction between Npl3 and Air2, and Npl3 and Ded1, were significantly increased in the presence of active Hmt1; the interaction of Npl3 and Snp1 showed a similar degree of increase in interaction but this was not statistically significant. The interactions of Npl3 and Gbp2, along with Npl3 and Yra1, were not significantly increased or decreased by methylation. We conclude that methylarginine may be a widespread means by which the interactions of proteins are modulated.

  19. Yeast Interacting Proteins Database: YGL127C, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regula...rotein involved in control of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors

  20. Yeast Interacting Proteins Database: YOR358W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; act...rotein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt15p; acts as a regulator o

  1. Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23 Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Shimoda

    Full Text Available Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23 is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus.

  2. What is the Optimal Amount of Protein to Support Post-Exercise Skeletal Muscle Reconditioning in the Older Adult?

    Science.gov (United States)

    Churchward-Venne, Tyler A; Holwerda, Andrew M; Phillips, Stuart M; van Loon, Luc J C

    2016-09-01

    Hyperaminoacidemia following protein ingestion enhances the anabolic effect of resistance-type exercise by increasing the stimulation of muscle protein synthesis and attenuating the exercise-mediated increase in muscle protein breakdown rates. Although factors such as the source of protein ingested and the timing of intake relative to exercise can impact post-exercise muscle protein synthesis rates, the amount of protein ingested after exercise appears to be the key nutritional factor dictating the magnitude of the muscle protein synthetic response during post-exercise recovery. In younger adults, muscle protein synthesis rates after resistance-type exercise respond in a dose-dependent manner to ingested protein and are maximally stimulated following ingestion of ~20 g of protein. In contrast to younger adults, older adults are less sensitive to smaller doses of ingested protein (less than ~20 g) after exercise, as evidenced by an attenuated increase in muscle protein synthesis rates during post-exercise recovery. However, older muscle appears to retain the capacity to display a robust stimulation of muscle protein synthesis in response to the ingestion of greater doses of protein (~40 g), and such an amount may be required for older adults to achieve a robust stimulation of muscle protein synthesis during post-exercise recovery. The aim of this article is to discuss the current state of evidence regarding the dose-dependent relationship between dietary protein ingestion and changes in skeletal muscle protein synthesis during recovery from resistance-type exercise in older adults. We provide recommendations on the amount of protein that may be required to maximize skeletal muscle reconditioning in response to resistance-type exercise in older adults.

  3. Studying protein-protein interactions using peptide arrays

    NARCIS (Netherlands)

    Katz, C.; Levy-Beladev, L.; Rotem-Bamberger, S.; Rito, T.; Rudiger, S.G.D.; Friedler, A.

    2010-01-01

    Screening of arrays and libraries of compounds is well-established as a high-throughput method for detecting and analyzing interactions in both biological and chemical systems. Arrays and libraries can be composed from various types of molecules, ranging from small organic compounds to DNA, proteins

  4. Motif mediated protein-protein interactions as drug targets.

    Science.gov (United States)

    Corbi-Verge, Carles; Kim, Philip M

    2016-03-02

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery.

  5. The interactions between mitochondria and sarcoplasmic reticulum and the proteome characterization of mitochondrion-associated membrane from rabbit skeletal muscle.

    Science.gov (United States)

    Liu, Zhouying; Du, Xiangning; Deng, Jie; Gu, Mingyue; Hu, Hongli; Gui, Miao; Yin, Chang-Cheng; Chang, Zhenzhan

    2015-08-01

    To obtain a comprehensive understanding of proteins involved in mitochondrion-sarcoplasmic reticulum (SR) linking, a catalog of proteins from mitochondrion-associated membrane (MAM) of New Zealand white rabbit skeletal muscle were analyzed by an optimized shotgun proteomic method. The membrane fractions were prepared by differential centrifugation and separated by 1D electrophoresis followed by a highly reproducible, automated LC-MS/MS on the hybrid linear ion trap (LTQ)-Orbitrap mass spectrometer. By integrating as low as 1% false discovery rate as one of the features for quality control method, 459 proteins were identified from both of the two independent MAM preparations. Protein pI value, molecular weight range, and transmembrane region were calculated using bioinformatics softwares. One hundred one proteins were recognized as membrane proteins. This protein database suggested that the MAM preparations composed of proteins from mitochondrion, SR, and transverse-tubule. This result indicated mitochondria physically linked with SR in rabbit skeletal muscle, voltage-dependent anion channel 1 (VDAC1), VDAC2, and VDAC3 might participate in formation of the tethers between SR and mitochondria. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration

    Science.gov (United States)

    Xiong, Guangyan; Hindi, Sajedah M; Mann, Aman K; Gallot, Yann S; Bohnert, Kyle R; Cavener, Douglas R; Whittemore, Scott R; Kumar, Ashok

    2017-01-01

    Regeneration of skeletal muscle in adults is mediated by satellite stem cells. Accumulation of misfolded proteins triggers endoplasmic reticulum stress that leads to unfolded protein response (UPR). The UPR is relayed to the cell through the activation of PERK, IRE1/XBP1, and ATF6. Here, we demonstrate that levels of PERK and IRE1 are increased in satellite cells upon muscle injury. Inhibition of PERK, but not the IRE1 arm of the UPR in satellite cells inhibits myofiber regeneration in adult mice. PERK is essential for the survival and differentiation of activated satellite cells into the myogenic lineage. Deletion of PERK causes hyper-activation of p38 MAPK during myogenesis. Blocking p38 MAPK activity improves the survival and differentiation of PERK-deficient satellite cells in vitro and muscle formation in vivo. Collectively, our results suggest that the PERK arm of the UPR plays a pivotal role in the regulation of satellite cell homeostasis during regenerative myogenesis. DOI: http://dx.doi.org/10.7554/eLife.22871.001 PMID:28332979

  7. A framework for protein and membrane interactions

    Directory of Open Access Journals (Sweden)

    Giorgio Bacci

    2009-11-01

    Full Text Available We introduce the BioBeta Framework, a meta-model for both protein-level and membrane-level interactions of living cells. This formalism aims to provide a formal setting where to encode, compare and merge models at different abstraction levels; in particular, higher-level (e.g. membrane activities can be given a formal biological justification in terms of low-level (i.e., protein interactions. A BioBeta specification provides a protein signature together a set of protein reactions, in the spirit of the kappa-calculus. Moreover, the specification describes when a protein configuration triggers one of the only two membrane interaction allowed, that is "pinch" and "fuse". In this paper we define the syntax and semantics of BioBeta, analyse its properties, give it an interpretation as biobigraphical reactive systems, and discuss its expressivity by comparing with kappa-calculus and modelling significant examples. Notably, BioBeta has been designed after a bigraphical metamodel for the same purposes. Hence, each instance of the calculus corresponds to a bigraphical reactive system, and vice versa (almost. Therefore, we can inherith the rich theory of bigraphs, such as the automatic construction of labelled transition systems and behavioural congruences.

  8. PCorral--interactive mining of protein interactions from MEDLINE.

    Science.gov (United States)

    Li, Chen; Jimeno-Yepes, Antonio; Arregui, Miguel; Kirsch, Harald; Rebholz-Schuhmann, Dietrich

    2013-01-01

    The extraction of information from the scientific literature is a complex task-for researchers doing manual curation and for automatic text processing solutions. The identification of protein-protein interactions (PPIs) requires the extraction of protein named entities and their relations. Semi-automatic interactive support is one approach to combine both solutions for efficient working processes to generate reliable database content. In principle, the extraction of PPIs can be achieved with different methods that can be combined to deliver high precision and/or high recall results in different combinations at the same time. Interactive use can be achieved, if the analytical methods are fast enough to process the retrieved documents. PCorral provides interactive mining of PPIs from the scientific literature allowing curators to skim MEDLINE for PPIs at low overheads. The keyword query to PCorral steers the selection of documents, and the subsequent text analysis generates high recall and high precision results for the curator. The underlying components of PCorral process the documents on-the-fly and are available, as well, as web service from the Whatizit infrastructure. The human interface summarizes the identified PPI results, and the involved entities are linked to relevant resources and databases. Altogether, PCorral serves curator at both the beginning and the end of the curation workflow for information retrieval and information extraction. Database URL: http://www.ebi.ac.uk/Rebholz-srv/pcorral.

  9. Next-Generation Sequencing for Binary Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Bernhard eSuter

    2015-12-01

    Full Text Available The yeast two-hybrid (Y2H system exploits host cell genetics in order to display binary protein-protein interactions (PPIs via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS, and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  10. Next-Generation Sequencing for Binary Protein-Protein Interactions.

    Science.gov (United States)

    Suter, Bernhard; Zhang, Xinmin; Pesce, C Gustavo; Mendelsohn, Andrew R; Dinesh-Kumar, Savithramma P; Mao, Jian-Hua

    2015-01-01

    The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein-protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

  11. Interaction of plant polyphenols with salivary proteins.

    Science.gov (United States)

    Bennick, Anders

    2002-01-01

    Tannins are polyphenols that occur widespread in plant-based food. They are considered to be part of the plant defense system against environmental stressors. Tannins have a number of effects on animals, including growth-rate depression and inhibition of digestive enzymes. Tannins also have an effect on humans: They are, for example, the cause of byssinosis, a condition that is due to exposure to airborne tannin. Their biological effect is related to the great efficiency by which tannins precipitate proteins, an interaction that occurs by hydrophobic forces and hydrogen bonding. Two groups of salivary proteins, proline-rich proteins and histatins, are highly effective precipitators of tannin, and there is evidence that at least proline-rich proteins act as a first line of defense against tannins, perhaps by precipitating tannins in food and preventing their absorption from the alimentary canal. Proline plays an important role in the interaction of proline-rich proteins with tannins. In contrast, it is primarily basic residues that are responsible for the binding of histatins to tannin. The high concentration of tannin-binding proteins in human saliva may be related to the fruit and vegetable diet of human ancestors.

  12. Ankyrin-B interactions with spectrin and dynactin-4 are required for dystrophin-based protection of skeletal muscle from exercise injury.

    Science.gov (United States)

    Ayalon, Gai; Hostettler, Janell D; Hoffman, Jan; Kizhatil, Krishnakumar; Davis, Jonathan Q; Bennett, Vann

    2011-03-04

    Costameres are cellular sites of mechanotransduction in heart and skeletal muscle where dystrophin and its membrane-spanning partner dystroglycan distribute intracellular contractile forces into the surrounding extracellular matrix. Resolution of a functional costamere interactome is still limited but likely to be critical for understanding forms of muscular dystrophy and cardiomyopathy. Dystrophin binds a set of membrane-associated proteins (the dystrophin-glycoprotein complex) as well as γ-actin and microtubules and also is required to align sarcolemmal microtubules with costameres. Ankyrin-B binds to dystrophin, dynactin-4, and microtubules and is required for sarcolemmal association of these proteins as well as dystroglycan. We report here that ankyrin-B interactions with β2 spectrin and dynactin-4 are required for localization of dystrophin, dystroglycan, and microtubules at costameres as well as protection of muscle from exercise-induced injury. Knockdown of dynactin-4 in adult mouse skeletal muscle phenocopied depletion of ankyrin-B and resulted in loss of sarcolemmal dystrophin, dystroglycan, and microtubules. Moreover, mutations of ankyrin-B and of dynactin-4 that selectively impaired binary interactions between these proteins resulted in loss of their costamere-localizing activity and increased muscle fiber fragility as a result of loss of costamere-associated dystrophin and dystroglycan. In addition, costamere-association of dynactin-4 did not require dystrophin but did depend on β2 spectrin and ankyrin-B, whereas costamere association of ankyrin-B required β2 spectrin. Together, these results are consistent with a functional hierarchy beginning with β2 spectrin recruitment of ankyrin-B to costameres. Ankyrin-B then interacts with dynactin-4 and dystrophin, whereas dynactin-4 collaborates with dystrophin in coordinating costamere-aligned microtubules.

  13. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  14. Specificity and stability of transient protein-protein interactions.

    Science.gov (United States)

    Vishwanath, Sneha; Sukhwal, Anshul; Sowdhamini, Ramanathan; Srinivasan, Narayanaswamy

    2017-06-01

    Remarkable features that are achieved in a protein-protein complex to precise levels are stability and specificity. Deviation from the normal levels of specificity and stability, which is often caused by mutations, could result in disease conditions. Chemical nature, 3-D arrangement and dynamics of interface residues code for both specificity and stability. This article reviews roles of interfacial residues in transient protein-protein complexes. It is proposed that aside from hotspot residues conferring stability to the complex, a small set of 'rigid' residues at the interface that maintain conformation between complexed and uncomplexed forms, play a major role in conferring specificity. Exceptionally, 'super hotspot' residues, which confer both stability and specificity, are attractive sites for interaction with small molecule inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  16. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  17. Geometric evolutionary dynamics of protein interaction networks.

    Science.gov (United States)

    Przulj, Natasa; Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne

    2010-01-01

    Understanding the evolution and structure of protein-protein interaction (PPI) networks is a central problem of systems biology. Since most processes in the cell are carried out by groups of proteins acting together, a theoretical model of how PPI networks develop based on duplications and mutations is an essential ingredient for understanding the complex wiring of the cell. Many different network models have been proposed, from those that follow power-law degree distributions and those that model complementarity of protein binding domains, to those that have geometric properties. Here, we introduce a new model for PPI network (and thus gene) evolution that produces well-fitting network models for currently available PPI networks. The model integrates geometric network properties with evolutionary dynamics of PPI network evolution.

  18. Exploring NMR ensembles of calcium binding proteins: Perspectives to design inhibitors of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Craescu Constantin T

    2011-05-01

    Full Text Available Abstract Background Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural changes occurring at the binding interfaces make difficult drug discovery processes using structure-based drug design/virtual screening approaches. Here we focused on two homologous calcium binding proteins, calmodulin and human centrin 2, involved in different cellular functions via protein-protein interactions, and known to undergo important conformational changes upon ligand binding. Results In order to find suitable protein conformations of calmodulin and centrin for further structure-based drug design/virtual screening, we performed in silico structural/energetic analysis and molecular docking of terphenyl (a mimicking alpha-helical molecule known to inhibit protein-protein interactions of calmodulin into X-ray and NMR ensembles of calmodulin and centrin. We employed several scoring methods in order to find the best protein conformations. Our results show that docking on NMR structures of calmodulin and centrin can be very helpful to take into account conformational changes occurring at protein-protein interfaces. Conclusions NMR structures of protein-protein complexes nowadays available could efficiently be exploited for further structure-based drug design/virtual screening processes employed to design small molecule inhibitors of protein-protein interactions.

  19. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  20. Increased ratio of dietary carbohydrate to protein shifts the focus of metabolic signaling from skeletal muscle to adipose

    Directory of Open Access Journals (Sweden)

    Devkota Suzanne

    2011-03-01

    Full Text Available Abstract Background The Dietary Reference Intakes (DRI established acceptable macronutrient distribution ranges (AMDR for carbohydrates and protein, however little is known about differences in glycemic regulations and metabolic signaling across this range. This study examined metabolic outcomes associated with intake of two diets differing in carbohydrate:protein ratios representing the upper and lower ends of the AMDR. Methods Adult, male rats were fed either a high carbohydrate (CHO diet (60% of energy from carbohydrates, 12% protein, 28% fat; n = 30 or a high protein (PRO diet (35% carbohydrate, 35% protein, 30% fat; n = 30. Rats were meal-fed 3x/d the respective diets for 10 d and then terminated after overnight food deprivation or 30, 60, 90, 120 min post-prandial (PP. Plasma was collected at each of these points to provide a time course for glucose, insulin and C-peptide. Skeletal muscle and adipose tissues were collected at 0, 30 and 90 min for measurements of basal, early and delayed activation of Akt, p70S6K and Erk 1/2. Data were analyzed by two-way ANOVA. Results The CHO group produced a consistently elevated response in plasma glucose, insulin and C-peptide following the meal through the 120 min time course. In addition, Akt and Erk 1/2 activation in adipose was much higher than in skeletal muscle. Conversely, the PRO group PP glucose response was minimal and insulin maintained a response similar to a biphasic pattern. Tissue responses for the PRO group were greater for Akt and p70S6K signaling in skeletal muscle compared with adipose. Conclusion Taken together these data suggest that altering CHO:PRO ratios within the AMDR produce different glycemic response patterns accompanied by differential metabolic signaling in skeletal muscle and adipose.

  1. Mechanical stimuli of skeletal muscle: implications on mTOR/p70s6k and protein synthesis.

    Science.gov (United States)

    Zanchi, Nelo Eidy; Lancha, Antonio Herbert

    2008-02-01

    The skeletal muscle is a tissue with adaptive properties which are essential to the survival of many species. When mechanically stimulated it is liable to undergo remodeling, namely, changes in its mass/volume resulting mainly from myofibrillar protein accumulation. The mTOR pathway (mammalian target of rapamycin) via its effector p70s6k (ribosomal protein kinase S6) has been reported to be of importance to the control of skeletal muscle mass, particularly under mechanical stimulation. However, not all mechanical stimuli are capable of activating this pathway, and among those who are, there are differences in the activation magnitude. Likewise, not all skeletal muscle fibers respond to the same extent to mechanical stimulation. Such evidences suggest specific mechanical stimuli through appropriate cellular signaling to be responsible for the final physiological response, namely, the accumulation of myofibrillar protein. Lately, after the mTOR signaling pathway has been acknowledged as of importance for remodeling, the interest for the mechanical/chemical mediators capable of activating it has increased. Apart from the already known MGF (mechano growth factor), some other mediators such as phosphatidic acid (PA) have been identified. This review article comprises and discusses relevant information on the mechano-chemical transduction of the pathway mTOR, with special emphasis on the muscle protein synthesis.

  2. Analysis of interactions between intraflagellar transport proteins.

    Science.gov (United States)

    Behal, Robert H; Cole, Douglas G

    2013-01-01

    Intraflagellar transport (IFT) involves the movement of large proteinaceous particles or trains along the length of ciliary and flagellar axonemal microtubules. The particles contain multiple copies of two protein complexes. As isolated from the flagellated model organism, Chlamydomonas reinhardtii, IFT A contains 6 distinct gene products while IFT B contains at least 13 distinct gene products. To better understand the architecture of these two complexes, a multifaceted approach has been employed to identify subcomplexes and specific protein-protein interactions. The high biochemical yields afforded with Chlamydomonas preparations have allowed traditional biochemical approaches including chemical cross-linking and disruption of native complexes, which, in the case of IFT B, have revealed a core subcomplex retaining nine of the B subunits. Complementing these results are molecular approaches including two-hybrid screenings and heterologous expression that have identified specific protein-protein interactions. Lastly, genetic approaches utilizing Chlamydomonas IFT mutants have shown how the loss of specific subunits perturb the complexes and, in the case of IFT A, they have revealed a core subcomplex containing half of the A subunits. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian

    2005-01-01

    Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  4. PCorral—interactive mining of protein interactions from MEDLINE

    Science.gov (United States)

    Li, Chen; Arregui, Miguel; Kirsch, Harald; Rebholz-Schuhmann, Dietrich

    2013-01-01

    The extraction of information from the scientific literature is a complex task—for researchers doing manual curation and for automatic text processing solutions. The identification of protein–protein interactions (PPIs) requires the extraction of protein named entities and their relations. Semi-automatic interactive support is one approach to combine both solutions for efficient working processes to generate reliable database content. In principle, the extraction of PPIs can be achieved with different methods that can be combined to deliver high precision and/or high recall results in different combinations at the same time. Interactive use can be achieved, if the analytical methods are fast enough to process the retrieved documents. PCorral provides interactive mining of PPIs from the scientific literature allowing curators to skim MEDLINE for PPIs at low overheads. The keyword query to PCorral steers the selection of documents, and the subsequent text analysis generates high recall and high precision results for the curator. The underlying components of PCorral process the documents on-the-fly and are available, as well, as web service from the Whatizit infrastructure. The human interface summarizes the identified PPI results, and the involved entities are linked to relevant resources and databases. Altogether, PCorral serves curator at both the beginning and the end of the curation workflow for information retrieval and information extraction. Database URL: http://www.ebi.ac.uk/Rebholz-srv/pcorral. PMID:23640984

  5. A reliability measure of protein-protein interactions and a reliability measure-based search engine.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-02-01

    Many methods developed for estimating the reliability of protein-protein interactions are based on the topology of protein-protein interaction networks. This paper describes a new reliability measure for protein-protein interactions, which does not rely on the topology of protein interaction networks, but expresses biological information on functional roles, sub-cellular localisations and protein classes as a scoring schema. The new measure is useful for filtering many spurious interactions, as well as for estimating the reliability of protein interaction data. In particular, the reliability measure can be used to search protein-protein interactions with the desired reliability in databases. The reliability-based search engine is available at http://yeast.hpid.org. We believe this is the first search engine for interacting proteins, which is made available to public. The search engine and the reliability measure of protein interactions should provide useful information for determining proteins to focus on.

  6. Yeast Interacting Proteins Database: YDR084C, YGL198W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available with Rab GTPases, localized to late Golgi vesicles; computational analysis of lar...gene name YIP4 Prey description Protein that interacts with Rab GTPases, localized to late Golgi vesicles; computational

  7. Expression profile of mitrogen-activated protein kinase (MAPK signaling genes in the skeletal muscle & liver of rat with type 2 diabetes: Role in disease pathology

    Directory of Open Access Journals (Sweden)

    Xiaoli Tang

    2014-01-01

    Full Text Available Background & objectives: Type 2 diabetes (T2D is characterized as hyperglycaemia caused by defects in insulin secretion, and it affects target tissues, such as skeletal muscle, liver and adipose tissue. Therefore, analyzing the changes of gene expression profiles in these tissues is important to elucidate the pathogenesis of T2D. We, therefore, measured the gene transcript alterations in liver and skeletal muscle of rat with induced T2D, to detect differentially expressed genes in liver and skeletal muscle and perform gene-annotation enrichment analysis. Methods: In the present study, skeletal muscle and liver tissue from 10 streptozotocin-induced diabetic rats and 10 control rats were analyzed using gene expression microarrays. KEGG pathways enriched by differentially expressed genes (DEGs were identified by WebGestalt Expander and GATHER software. DEGs were validated by the method of real-time PCR and western blot. Results: From the 9,929 expressed genes across the genome, 1,305 and 997 differentially expressed genes (DEGs, P<0.01 were identified in comparisons of skeletal muscle and liver, respectively. Large numbers of DEGs (200 were common in both comparisons, which was clearly more than the predicted number (131 genes, P<0.001. For further interpretation of the gene expression data, three over-representation analysis softwares (WebGestalt, Expander and GATHER were used. All the tools detected one KEGG pathway (MAPK signaling and two GO (gene ontology biological processes (response to stress and cell death, with enrichment of DEGs in both tissues. In addition, PPI (protein-protein interaction networks constructed using human homologues not only revealed the tendency of DEGs to form a highly connected module, but also suggested a "hub" role of p38-MAPK-related genes (such as MAPK14 in the pathogenesis of T2D. Interpretation & conclusions: Our results indicated the considerably aberrant MAPK signaling in both insulin-sensitive tissues of T2D

  8. Yeast Interacting Proteins Database: YMR047C, YER107C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available repetitive GLFG motif that interacts with mRNA export factor Mex67p and with karyopherin Kap95p; homologous...nuclear pore complex required for polyadenylated RNA export but not for protein import, homologous to S. pombe...repetitive GLFG motif that interacts with mRNA export factor Mex67p and with karyopherin Kap95p; homologous...nuclear pore complex required for polyadenylated RNA export but not for protein import, homologous to S. pombe

  9. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    Science.gov (United States)

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  10. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis

    DEFF Research Database (Denmark)

    Doessing, Simon; Heinemeier, Katja; Holm, Lars

    2010-01-01

    matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue.......In skeletal muscle and tendon the extracellular matrix confers important tensile properties and is crucially important for tissue regeneration after injury. Musculoskeletal tissue adaptation is influenced by mechanical loading, which modulates the availability of growth factors, including growth...... young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P muscle collagen I m...

  11. NPIDB: Nucleic acid-Protein Interaction DataBase

    National Research Council Canada - National Science Library

    Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V

    2013-01-01

    The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank...

  12. Frontal affinity chromatography: sugar-protein interactions.

    Science.gov (United States)

    Tateno, Hiroaki; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun

    2007-01-01

    Frontal affinity chromatography using fluorescence detection (FAC-FD) is a versatile technique for the precise determination of dissociation constants (Kd) between glycan-binding proteins (lectins) and fluorescent-labeled glycans. A series of glycan-containing solutions is applied to a lectin-immobilized column, and the elution profile of each glycan (termed the 'elution front', V) is compared with that (V0) for an appropriate control. Here we describe our standard protocol using an automated FAC system (FAC-1), consisting of two isocratic pumps, an autosampler, a column oven and two miniature columns connected to a fluorescence detector. Analysis time for 100 sugar-protein interactions is approximately 10 h, using as little as 2.5 pmol of pyridylaminated (PA) oligosaccharide per analysis. Using FAC-FD, we have so far obtained quantitative interaction data of >100 lectins for >100 PA oligosaccharides.

  13. Experimental evolution of protein?protein interaction networks

    OpenAIRE

    Ka?ar, Bet?l; Gaucher, Eric A.

    2013-01-01

    The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molec...

  14. Overexpression of protein kinase STK25 in mice exacerbates ectopic lipid accumulation, mitochondrial dysfunction and insulin resistance in skeletal muscle

    DEFF Research Database (Denmark)

    Chursa, Urszula; Nuñez-Durán, Esther; Cansby, Emmelie

    2017-01-01

    increases intramyocellular lipid accumulation, impairs skeletal muscle mitochondrial function and sarcomeric ultrastructure, and induces perimysial and endomysial fibrosis, thereby reducing endurance exercise capacity and muscle insulin sensitivity. Furthermore, we observed enhanced lipid accumulation...... and impaired mitochondrial function in rodent myoblasts overexpressing STK25, demonstrating an autonomous action for STK25 within cells. Global phosphoproteomic analysis revealed alterations in the total abundance and phosphorylation status of different target proteins located predominantly to mitochondria...

  15. Inferring protein function by domain context similarities in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Sun Zhirong

    2009-12-01

    Full Text Available Abstract Background Genome sequencing projects generate massive amounts of sequence data but there are still many proteins whose functions remain unknown. The availability of large scale protein-protein interaction data sets makes it possible to develop new function prediction methods based on protein-protein interaction (PPI networks. Although several existing methods combine multiple information resources, there is no study that integrates protein domain information and PPI networks to predict protein functions. Results The domain context similarity can be a useful index to predict protein function similarity. The prediction accuracy of our method in yeast is between 63%-67%, which outperforms the other methods in terms of ROC curves. Conclusion This paper presents a novel protein function prediction method that combines protein domain composition information and PPI networks. Performance evaluations show that this method outperforms existing methods.

  16. Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications in Skeletal Muscles Identified by Top-down Proteomics.

    Science.gov (United States)

    Wei, Liming; Gregorich, Zachery R; Lin, Ziqing; Cai, Wenxuan; Jin, Yutong; McKiernan, Susan H; McIlwain, Sean; Aiken, Judd M; Moss, Richard L; Diffee, Gary M; Ge, Ying

    2017-10-18

    Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  17. Yeast Interacting Proteins Database: YNL189W, YKL130C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available teracts with She3p; part of the mRNA localization machinery that restricts accumulation of certain proteins ...A-binding protein that binds specific mRNAs and interacts with She3p; part of the mRNA localization machinery that restricts

  18. Yeast Interacting Proteins Database: YOR302W, YOR047C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available rol of glucose-regulated gene expression; interacts with protein kinase Snf1p, glucose sensors Snf3p and Rgt...tein kinase Snf1p, glucose sensors Snf3p and Rgt2p, and TATA-binding protein Spt1

  19. Notable Aspects of Glycan-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Miriam Cohen

    2015-09-01

    Full Text Available This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry. Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells, stick and roll (bacteria or surfacing (viruses.

  20. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  1. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle

    National Research Council Canada - National Science Library

    James P. Morton; Louise Croft; Jonathan D. Bartlett; Don P. M. MacLaren; Thomas Reilly; Louise Evans; Anne McArdle; Barry Drust

    2009-01-01

    ... for training-induced heat shock protein (HSP) adaptations of skeletal muscle. A secondary aim was to investigate the influence of reduced carbohydrate availability on oxidative adaptations and exercise performance...

  2. Yeast Interacting Proteins Database: YJR102C, YLR417W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available omain which is involved in interactions with ESCRT-I and ubiquitin-dependent sort...T-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domain which is involved in interac...tions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endosome Ro

  3. Yeast Interacting Proteins Database: YPL002C, YLR417W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available RAM Like Ubiquitin binding in EAP45) domain which is involved in interactions with ESCRT-I and ubiquitin-dep...n which is involved in interactions with ESCRT-I and ubiquitin-dependent sorting of proteins into the endoso... ESCRT-II complex; contains the GLUE (GRAM Like Ubiquitin binding in EAP45) domai

  4. Yeast Interacting Proteins Database: YHR009C, YOR359W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ding protein containing a SAM domain; shows genetic interactions with Vti1p, which is a v-SNARE involved in ...aining a SAM domain; shows genetic interactions with Vti1p, which is a v-SNARE involved in cis-Golgi membran

  5. Yeast Interacting Proteins Database: YBR135W, YBR160W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available tes proteolysis of M-phase targets through interactions with the proteasome; role in transcriptional regulat... description Cyclin-dependent protein kinase regulatory subunit and adaptor; modulates proteolysis of M-phase targets through interac...tions with the proteasome; role in transcriptional regulation, recruiting proteasom

  6. Arabinogalactan proteins in root-microbe interactions.

    Science.gov (United States)

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Cannesan, Marc-Antoine; Driouich, Azeddine

    2013-08-01

    Arabinogalactan proteins (AGPs) are among the most intriguing sets of macromolecules, specific to plants, structurally complex, and found abundantly in all plant organs including roots, as well as in root exudates. AGPs have been implicated in several fundamental plant processes such as development and reproduction. Recently, they have emerged as interesting actors of root-microbe interactions in the rhizosphere. Indeed, recent findings indicate that AGPs play key roles at various levels of interaction between roots and soil-borne microbes, either beneficial or pathogenic. Therefore, the focus of this review is the role of AGPs in the interactions between root cells and microbes. Understanding this facet of AGP function will undoubtedly improve plant health and crop protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Channel-interacting PDZ protein, 'CIPP', interacts with proteins involved in cytoskeletal dynamics.

    Science.gov (United States)

    Alpi, Emanuele; Landi, Elena; Barilari, Manuela; Serresi, Michela; Salvadori, Piero; Bachi, Angela; Dente, Luciana

    2009-04-15

    Neuronal CIPP (channel-interacting PDZ protein) is a multivalent PDZ protein that interacts with specific channels and receptors highly expressed in the brain. It is composed of four PDZ domains that behave as a scaffold to clusterize functionally connected proteins. In the present study, we selected a set of potential CIPP interactors that are involved directly or indirectly in mechanisms of cytoskeletal remodelling and membrane protrusion formation. For some of these, we first proved the direct binding to specific CIPP PDZ domains considered as autonomous elements, and then confirmed the interaction with the whole protein. In particular, the small G-protein effector IRSp53 (insulin receptor tyrosine kinase substrate protein p53) specifically interacts with the second PDZ domain of CIPP and, when co-transfected in cultured mammalian cells with a tagged full-length CIPP, it induces a marked reorganization of CIPP cytoplasmic localization. Large punctate structures are generated as a consequence of CIPP binding to the IRSp53 C-terminus. Analysis of the puncta nature, using various endocytic markers, revealed that they are not related to cytoplasmic vesicles, but rather represent multi-protein assemblies, where CIPP can tether other potential interactors.

  8. Signaling Pathways Related to Protein Synthesis and Amino Acid Concentration in Pig Skeletal Muscles Depend on the Dietary Protein Level, Genotype and Developmental Stages.

    Directory of Open Access Journals (Sweden)

    Yingying Liu

    Full Text Available Muscle growth is regulated by the homeostatic balance of the biosynthesis and degradation of muscle proteins. To elucidate the molecular interactions among diet, pig genotype, and physiological stage, we examined the effect of dietary protein concentration, pig genotype, and physiological stages on amino acid (AA pools, protein deposition, and related signaling pathways in different types of skeletal muscles. The study used 48 Landrace pigs and 48 pure-bred Bama mini-pigs assigned to each of 2 dietary treatments: lower/GB (Chinese conventional diet- or higher/NRC (National Research Council-protein diet. Diets were fed from 5 weeks of age to respective market weights of each genotype. Samples of biceps femoris muscle (BFM, type I and longissimus dorsi muscle (LDM, type II were collected at nursery, growing, and finishing phases according to the physiological stage of each genotype, to determine the AA concentrations, mRNA levels for growth-related genes in muscles, and protein abundances of mechanistic target of rapamycin (mTOR signaling pathway. Our data showed that the concentrations of most AAs in LDM and BFM of pigs increased (P<0.05 gradually with increasing age. Bama mini-pigs had generally higher (P<0.05 muscle concentrations of flavor-related AA, including Met, Phe, Tyr, Pro, and Ser, compared with Landrace pigs. The mRNA levels for myogenic determining factor, myogenin, myocyte-specific enhancer binding factor 2 A, and myostatin of Bama mini-pigs were higher (P<0.05 than those of Landrace pigs, while total and phosphorylated protein levels for protein kinase B, mTOR, and p70 ribosomal protein S6 kinases (p70S6K, and ratios of p-mTOR/mTOR, p-AKT/AKT, and p-p70S6K/p70S6K were lower (P<0.05. There was a significant pig genotype-dependent effect of dietary protein on the levels for mTOR and p70S6K. When compared with the higher protein-NRC diet, the lower protein-GB diet increased (P<0.05 the levels for mTOR and p70S6K in Bama mini-pigs, but

  9. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    NARCIS (Netherlands)

    Espinosa-Soto, C.; Immink, R.G.H.; Angenent, G.C.; Alvarez-Buylla, E.R.; Folter, de S.

    2014-01-01

    Background: MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate

  10. Discover Protein Complexes in Protein-Protein Interaction Networks Using Parametric Local Modularity

    Directory of Open Access Journals (Sweden)

    Tan Kai

    2010-10-01

    Full Text Available Abstract Background Recent advances in proteomic technologies have enabled us to create detailed protein-protein interaction maps in multiple species and in both normal and diseased cells. As the size of the interaction dataset increases, powerful computational methods are required in order to effectively distil network models from large-scale interactome data. Results We present an algorithm, miPALM (Module Inference by Parametric Local Modularity, to infer protein complexes in a protein-protein interaction network. The algorithm uses a novel graph theoretic measure, parametric local modularity, to identify highly connected sub-networks as candidate protein complexes. Using gold standard sets of protein complexes and protein function and localization annotations, we show our algorithm achieved an overall improvement over previous algorithms in terms of precision, recall, and biological relevance of the predicted complexes. We applied our algorithm to predict and characterize a set of 138 novel protein complexes in S. cerevisiae. Conclusions miPALM is a novel algorithm for detecting protein complexes from large protein-protein interaction networks with improved accuracy than previous methods. The software is implemented in Matlab and is freely available at http://www.medicine.uiowa.edu/Labs/tan/software.html.

  11. Detection of protein complex from protein-protein interaction network using Markov clustering

    Science.gov (United States)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  12. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  13. Experimental evolution of protein-protein interaction networks.

    Science.gov (United States)

    Kaçar, Betül; Gaucher, Eric A

    2013-08-01

    The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks.

  14. A protein interaction network associated with asthma.

    Science.gov (United States)

    Hwang, Sohyun; Son, Seung-Woo; Kim, Sang Cheol; Kim, Young Joo; Jeong, Hawoong; Lee, Doheon

    2008-06-21

    Identifying candidate genes related to complex diseases or traits and mapping their relationships require a system-level analysis at a cellular scale. The objective of the present study is to systematically analyze the complex effects of interrelated genes and provide a framework for revealing their relationships in association with a specific disease (asthma in this case). We observed that protein-protein interaction (PPI) networks associated with asthma have a power-law connectivity distribution as many other biological networks have. The hub nodes and skeleton substructure of the result network are consistent with the prior knowledge about asthma pathways, and also suggest unknown candidate target genes associated with asthma, including GNB2L1, BRCA1, CBL, and VAV1. In particular, GNB2L1 appears to play a very important role in the asthma network through frequent interactions with key proteins in cellular signaling. This network-based approach represents an alternative method for analyzing the complex effects of candidate genes associated with complex diseases and suggesting a list of gene drug targets. The full list of genes and the analysis details are available in the following online supplementary materials: http://biosoft.kaist.ac.kr:8080/resources/asthma_ppi.

  15. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  16. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    Science.gov (United States)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  17. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Energy Technology Data Exchange (ETDEWEB)

    Benny Klimek, Margaret E.; Aydogdu, Tufan [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Link, Majik J.; Pons, Marianne [Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Koniaris, Leonidas G. [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States); Zimmers, Teresa A., E-mail: tzimmers@med.miami.edu [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States)

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  18. Protein-protein interactions as druggable targets: recent technological advances.

    Science.gov (United States)

    Higueruelo, Alicia P; Jubb, Harry; Blundell, Tom L

    2013-10-01

    Classical target-based drug discovery, where large chemical libraries are screened using inhibitory assays for a single target, has struggled to find ligands that inhibit protein-protein interactions (PPI). Nevertheless, in the past decade there have been successes that have demonstrated that PPI can be useful drug targets, and the field is now evolving fast. This review focuses on the new approaches and concepts that are being developed to tackle these challenging targets: the use of fragment based methods to explore the chemical space, stapled peptides to regulate intracellular PPI, alternatives to competitive inhibition and the use of antibodies to enable small molecule discovery for these targets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays.

    Science.gov (United States)

    Tang, Yanyang; Qiu, Ji; Machner, Matthias; LaBaer, Joshua

    2017-03-03

    We have developed a protocol enabling the study of protein-protein interactions (PPIs) at the proteome level using in vitro-synthesized proteins. Assay preparation requires molecular cloning of the query gene into a vector that supports in vitro transcription/translation (IVTT) and appends a HaloTag to the query protein of interest. In parallel, protein microarrays are prepared by printing plasmids encoding glutathione S-transferase (GST)-tagged target proteins onto a carrier matrix/glass slide coated with antibody directed against GST. At the time of the experiment, the query protein and the target protein are produced separately through IVTT. The query protein is then applied to nucleic acid programmable protein arrays (NAPPA) that display thousands of freshly produced target proteins captured by anti-GST antibody. Interactions between the query and immobilized target proteins are detected through addition of a fluorophore-labeled HaloTag ligand. Our protocol allows the elucidation of PPIs in a high-throughput fashion using proteins produced in vitro, obviating the scientific challenges, high cost, and laborious work, as well as concerns about protein stability, which are usually present in protocols using conventional protein arrays. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Modularity detection in protein-protein interaction networks.

    Science.gov (United States)

    Narayanan, Tejaswini; Gersten, Merril; Subramaniam, Shankar; Grama, Ananth

    2011-12-29

    Many recent studies have investigated modularity in biological networks, and its role in functional and structural characterization of constituent biomolecules. A technique that has shown considerable promise in the domain of modularity detection is the Newman and Girvan (NG) algorithm, which relies on the number of shortest-paths across pairs of vertices in the network traversing a given edge, referred to as the betweenness of that edge. The edge with the highest betweenness is iteratively eliminated from the network, with the betweenness of the remaining edges recalculated in every iteration. This generates a complete dendrogram, from which modules are extracted by applying a quality metric called modularity denoted by Q. This exhaustive computation can be prohibitively expensive for large networks such as Protein-Protein Interaction Networks. In this paper, we present a novel optimization to the modularity detection algorithm, in terms of an efficient termination criterion based on a target edge betweenness value, using which the process of iterative edge removal may be terminated. We validate the robustness of our approach by applying our algorithm on real-world protein-protein interaction networks of Yeast, C.Elegans and Drosophila, and demonstrate that our algorithm consistently has significant computational gains in terms of reduced runtime, when compared to the NG algorithm. Furthermore, our algorithm produces modules comparable to those from the NG algorithm, qualitatively and quantitatively. We illustrate this using comparison metrics such as module distribution, module membership cardinality, modularity Q, and Jaccard Similarity Coefficient. We have presented an optimized approach for efficient modularity detection in networks. The intuition driving our approach is the extraction of holistic measures of centrality from graphs, which are representative of inherent modular structure of the underlying network, and the application of those measures to

  1. AMP-activated protein kinase at the nexus of therapeutic skeletal muscle plasticity in Duchenne muscular dystrophy.

    Science.gov (United States)

    Ljubicic, Vladimir; Jasmin, Bernard J

    2013-10-01

    Recent studies have highlighted the potential of adenosine monophosphate-activated protein kinase (AMPK) to act as a central therapeutic target in Duchenne muscular dystrophy (DMD). Here, we review the role of AMPK as an important integrator of cell signaling pathways that mediate phenotypic plasticity within the context of dystrophic skeletal muscle. Pharmacological AMPK activation remodels skeletal muscle towards a slower, more oxidative phenotype, which is more pathologically resistant to the lack of dystrophin. Moreover, recent studies suggest that AMPK-activated autophagy may be beneficial for myofiber structure and function in mice with muscular dystrophy. Thus, AMPK may represent an ideal target for intervention because clinically approved pharmacological agonists exist, and because benefits can be derived via two independent yet, complementary biological pathways. The availability of several AMPK activators could therefore lead to the rapid development and implementation of novel and highly effective therapeutics aimed at altering the relentless progression of DMD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Paulsen, G; Schjerling, P

    2013-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response...... in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal...... eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and a...

  3. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins.

    Directory of Open Access Journals (Sweden)

    Kevork Hagopian

    Full Text Available Shc proteins interact with the insulin receptor, indicating a role in regulating glycolysis. To investigate this idea, the activities of key glycolytic regulatory enzymes and metabolites levels were measured in skeletal muscle from mice with low levels of Shc proteins (ShcKO and wild-type (WT controls. The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase were decreased in ShcKO versus WT mice under both fed and fasted conditions. Increased alanine transaminase and branched-chain amino acid transaminase activities were also observed in ShcKO mice under both fed and fasting conditions. Protein expression of glycolytic enzymes was unchanged in the ShcKO and WT mice, indicating that decreased activities were not due to changes in their transcription. Changes in metabolite levels were consistent with the observed changes in enzyme activities. In particular, the levels of fructose-2,6-bisphosphate, a potent activator of phosphofructokinase-1, were consistently decreased in the ShcKO mice. Furthermore, the levels of lactate (inhibitor of hexokinase and phosphofructokinase-1 and citrate (inhibitor of phosphofructokinase-1 and pyruvate kinase were increased in fed and fasted ShcKO versus WT mice. Pyruvate dehydrogenase activity was lower in ShcKO versus WT mice under fed conditions, and showed inhibition under fasting conditions in both ShcKO and WT mice, with ShcKO mice showing less inhibition than the WT mice. Pyruvate dehydrogenase kinase 4 levels were unchanged under fed conditions but were lower in the ShcKO mice under fasting conditions. These studies indicate that decreased levels of Shc proteins in skeletal muscle lead to a decreased glycolytic capacity in both fed and fasted states.

  4. Constitutive expression of Yes-associated protein (Yap in adult skeletal muscle fibres induces muscle atrophy and myopathy.

    Directory of Open Access Journals (Sweden)

    Robert N Judson

    Full Text Available The aim of this study was to investigate the function of the Hippo pathway member Yes-associated protein (Yap, gene name Yap1 in skeletal muscle fibres in vivo. Specifically we bred an inducible, skeletal muscle fibre-specific knock-in mouse model (MCK-tTA-hYAP1 S127A to test whether the over expression of constitutively active Yap (hYAP1 S127A is sufficient to drive muscle hypertrophy or stimulate changes in fibre type composition. Unexpectedly, after 5-7 weeks of constitutive hYAP1 S127A over expression, mice suddenly and rapidly lost 20-25% body weight and suffered from gait impairments and kyphosis. Skeletal muscles atrophied by 34-40% and the muscle fibre cross sectional area decreased by ≈40% when compared to control mice. Histological analysis revealed evidence of skeletal muscle degeneration and regeneration, necrotic fibres and a NADH-TR staining resembling centronuclear myopathy. In agreement with the histology, mRNA expression of markers of regenerative myogenesis (embryonic myosin heavy chain, Myf5, myogenin, Pax7 and muscle protein degradation (atrogin-1, MuRF1 were significantly elevated in muscles from transgenic mice versus control. No significant changes in fibre type composition were detected using ATPase staining. The phenotype was largely reversible, as a cessation of hYAP1 S127A expression rescued body and muscle weight, restored muscle morphology and prevented further pathological progression. To conclude, high Yap activity in muscle fibres does not induce fibre hypertrophy nor fibre type changes but instead results in a reversible atrophy and deterioration.

  5. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  6. Yeast Three-Hybrid System for the Detection of Protein-Protein Interactions.

    Science.gov (United States)

    Maruta, Natsumi; Trusov, Yuri; Botella, Jose R

    2016-01-01

    Protein-protein interaction studies provide useful insights into biological processes taking place within the living cell. A number of techniques are available to unravel large structural protein complexes, functional protein modules, and temporary protein associations occurring during signal transduction. The choice of method depends on the nature of the proteins and the interaction being studied. Here we present an optimized and simplified yeast three-hybrid method for analysis of protein interactions involving three components.

  7. Head-head interactions of resting myosin crossbridges in intact frog skeletal muscles, revealed by synchrotron x-ray fiber diffraction.

    Directory of Open Access Journals (Sweden)

    Kanji Oshima

    Full Text Available The intensities of the myosin-based layer lines in the x-ray diffraction patterns from live resting frog skeletal muscles with full thick-thin filament overlap from which partial lattice sampling effects had been removed were analyzed to elucidate the configurations of myosin crossbridges around the thick filament backbone to nanometer resolution. The repeat of myosin binding protein C (C-protein molecules on the thick filaments was determined to be 45.33 nm, slightly longer than that of myosin crossbridges. With the inclusion of structural information for C-proteins and a pre-powerstroke head shape, modeling in terms of a mixed population of regular and perturbed regions of myosin crown repeats along the filament revealed that the myosin filament had azimuthal perturbations of crossbridges in addition to axial perturbations in the perturbed region, producing pseudo-six-fold rotational symmetry in the structure projected down the filament axis. Myosin crossbridges had a different organization about the filament axis in each of the regular and perturbed regions. In the regular region that lacks C-proteins, there were inter-molecular interactions between the myosin heads in axially adjacent crown levels. In the perturbed region that contains C-proteins, in addition to inter-molecular interactions between the myosin heads in the closest adjacent crown levels, there were also intra-molecular interactions between the paired heads on the same crown level. Common features of the interactions in both regions were interactions between a portion of the 50-kDa-domain and part of the converter domain of the myosin heads, similar to those found in the phosphorylation-regulated invertebrate myosin. These interactions are primarily electrostatic and the converter domain is responsible for the head-head interactions. Thus multiple head-head interactions of myosin crossbridges also characterize the switched-off state and have an important role in the regulation

  8. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  9. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Leucine-Enriched Essential Amino Acids Augment Mixed Protein Synthesis, But Not Collagen Protein Synthesis, in Rat Skeletal Muscle after Downhill Running

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kato

    2016-06-01

    Full Text Available Mixed and collagen protein synthesis is elevated for as many as 3 days following exercise. Immediately after exercise, enhanced amino acid availability increases synthesis of mixed muscle protein, but not muscle collagen protein. However, the potential for synergic effects of amino acid ingestion with exercise on both mixed and collagen protein synthesis remains unclear. We investigated muscle collagen protein synthesis in rats following post-exercise ingestion of leucine-enriched essential amino acids. We determined fractional protein synthesis rates (FSR at different time points following exercise. Mixed protein and collagen protein FSRs in skeletal muscle were determined by measuring protein-bound enrichments of hydroxyproline and proline, and by measuring the intracellular enrichment of proline, using injections of flooding d3-proline doses. A leucine-enriched mixture of essential amino acids (or distilled water as a control was administrated 30 min or 1 day post-exercise. The collagen protein synthesis in the vastus lateralis was elevated for 2 days after exercise. Although amino acid administration did not increase muscle collagen protein synthesis, it did lead to augmented mixed muscle protein synthesis 1 day following exercise. Thus, contrary to the regulation of mixed muscle protein synthesis, muscle collagen protein synthesis is not affected by amino acid availability after damage-inducing exercise.

  11. Channel-interacting PDZ protein “CIPP” interacts with proteins involved in cytoskeletal dynamics

    OpenAIRE

    Alpi, Emanuele; Landi, Elena; Barilari, Manuela; Serresi, Michela; Salvadori, Piero; Bachi, Angela; Dente, Luciana

    2009-01-01

    Abstract Neuronal CIPP is a multivalent PDZ protein that interacts with specific channels and receptors, highly expressed in the brain. It is composed of four PDZ domains that behave as a scaffold to clusterize functionally connected proteins. In this study, we selected a set of potential CIPP interactors that are directly or indirectly involved in mechanisms of cytoskeletal remodeling and membrane protrusions formation. For some of these, we first proved the direct binding to spec...

  12. Fragment molecular orbital method for studying lanthanide interactions with proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tsushima, Satoru [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Komeiji, Y. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan); Mochizuki, Y. [Rikkyo Univ., Tokyo (Japan)

    2017-06-01

    The binding affinity of the calcium-binding protein calmodulin towards Eu{sup 3+} was studied as a model for lanthanide protein interactions in the large family of ''EF-hand'' calcium-binding proteins.

  13. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  14. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    Science.gov (United States)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  15. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier.

    Science.gov (United States)

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well.

  16. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  17. Assessment and significance of protein-protein interactions during development of protein biopharmaceuticals.

    Science.gov (United States)

    Yadav, Sandeep; Liu, Jun; Scherer, Thomas M; Gokarn, Yatin; Demeule, Barthélemy; Kanai, Sonoko; Andya, James D; Shire, Steven J

    2013-06-01

    Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein-protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein-protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody-antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.

  18. Reuse of structural domain–domain interactions in protein networks

    Science.gov (United States)

    Schuster-Böckler, Benjamin; Bateman, Alex

    2007-01-01

    Background Protein interactions are thought to be largely mediated by interactions between structural domains. Databases such as iPfam relate interactions in protein structures to known domain families. Here, we investigate how the domain interactions from the iPfam database are distributed in protein interactions taken from the HPRD, MPact, BioGRID, DIP and IntAct databases. Results We find that known structural domain interactions can only explain a subset of 4–19% of the available protein interactions, nevertheless this fraction is still significantly bigger than expected by chance. There is a correlation between the frequency of a domain interaction and the connectivity of the proteins it occurs in. Furthermore, a large proportion of protein interactions can be attributed to a small number of domain interactions. We conclude that many, but not all, domain interactions constitute reusable modules of molecular recognition. A substantial proportion of domain interactions are conserved between E. coli, S. cerevisiae and H. sapiens. These domains are related to essential cellular functions, suggesting that many domain interactions were already present in the last universal common ancestor. Conclusion Our results support the concept of domain interactions as reusable, conserved building blocks of protein interactions, but also highlight the limitations currently imposed by the small number of available protein structures. PMID:17640363

  19. Yeast Interacting Proteins Database: YBR108W, YDR388W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available Rvs161p to regulate actin cytoskeleton, endocytosis, and viability following star...0) YDR388W RVS167 Actin-associated protein, interacts with Rvs161p to regulate actin cytoskeleton, endocytosis, and viability followi...ng starvation or osmotic stress; homolog of mammalian am

  20. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Jacob Jeppesen

    Full Text Available FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA. These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were affected by an increased fuel demand induced by exercise training. Eight young healthy males were recruited to the study. All subjects were non smokers and did not participate in regular physical activity (<1 time per week for the past 6 months, VO(2peak 3.4±0.1 l O₂ min⁻¹. Subjects underwent an 8 week supervised aerobic training program. Training induced an increase in VO(2peak from 3.4±0.1 to 3.9±0.1 l min⁻¹ and citrate synthase activity was increased from 53.7±2.5 to 80.8±3.7 µmol g⁻¹ min⁻¹. The protein content of FATP4 was increased by 33%, whereas FATP1 protein content was reduced by 20%. Interestingly, at the end of the training intervention a significant association (r² = 0.74 between the observed increase in skeletal muscle FATP4 protein expression and lipid oxidation during a 120 min endurance exercise test was observed. In conclusion, based on the present findings it is suggested that FATP1 and FATP4 proteins perform different functional roles in handling LCFA in skeletal muscle with FATP4 apparently more important as a lipid transport protein directing lipids for lipid oxidation.

  1. The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis

    Directory of Open Access Journals (Sweden)

    David B. Melville

    2011-11-01

    Craniofacial and skeletal dysmorphologies account for the majority of birth defects. A number of the disease phenotypes have been attributed to abnormal synthesis, maintenance and composition of extracellular matrix (ECM, yet the molecular and cellular mechanisms causing these ECM defects remain poorly understood. The zebrafish feelgood mutant manifests a severely malformed head skeleton and shortened body length due to defects in the maturation stage of chondrocyte development. In vivo analyses reveal a backlog of type II and type IV collagens in rough endoplasmic reticulum (ER similar to those found in coat protein II complex (COPII-deficient cells. The feelgood mutation hinders collagen deposition in the ECM, but trafficking of small cargos and other large ECM proteins such as laminin to the extracellular space is unaffected. We demonstrate that the zebrafish feelgood mutation causes a single amino acid substitution within the DNA-binding domain of transcription factor Creb3l2. We show that Creb3l2 selectively regulates the expression of genes encoding distinct COPII proteins (sec23a, sec23b and sec24d but find no evidence for its regulation of sec24c expression. Moreover, we did not detect activation of ER stress response genes despite intracellular accumulation of collagen and prominent skeletal defects. Promoter trans-activation assays show that the Creb3l2 feelgood variant is a hypomorphic allele that retains approximately 50% of its transcriptional activity. Transgenic rescue experiments of the feelgood phenotype restore craniofacial development, illustrating that a precise level of Creb3l2 transcriptional activity is essential for skeletogenesis. Our results indicate that Creb3l2 modulates the availability of COPII machinery in a tissue- and cargo-specific manner. These findings could lead to a better understanding of the etiology of human craniofacial and skeletal birth defects as well as adult-onset diseases that are linked to dysregulated ECM deposition

  2. Skeletal muscle morphology, protein synthesis and gene expression in Ehlers Danlos Syndrome

    DEFF Research Database (Denmark)

    Nygaard, Rie H; Jensen, Jacob K; Voermans, Nicol C

    2017-01-01

    INTRODUCTION: Patients with Ehlers Danlos Syndrome are known to have genetically impaired connective tissue and skeletal muscle symptoms in form of pain, fatigue and cramps, however earlier studies have not been able to link these symptoms to morphological muscle changes. METHODS: We obtained...

  3. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard

    2013-01-01

    -specific phosphorylation sites were identified in tissue-specific enzymes such as those encoded by HMGCS2, BDH1, PCK2, CPS1, and OTC in liver mitochondria, and CKMT2 and CPT1B in heart and skeletal muscle. Kinase prediction showed an important role for PKA and PKC in all tissues but also for proline-directed kinases...

  4. Role of 5'AMP-activated protein kinase in skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Wojtaszewski, Jørgen F. P.

    2008-01-01

    shown to regulate fatty acid and cholesterol synthesis, but is now hypothesized to take part in the regulation of energy/fuel balance not only at the cellular level but also at the level of the whole organism. In this brief review we will discuss some of the roles of AMPK in skeletal muscle....

  5. Grandpaternal-induced transgenerational dietary reprogramming of the unfolded protein response in skeletal muscle

    DEFF Research Database (Denmark)

    Alm, Petter S; de Castro Barbosa, Thais; Barrès, Romain

    2017-01-01

    impacts the transcriptome and lipidome in skeletal muscle. Our aim was to identify tissue-specific pathways involved in transgenerational inheritance of environmental-induced phenotypes. METHODS: F0 male Sprague-Dawley rats were fed a HFD or chow for 12 weeks before breeding with chow-fed females...

  6. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased...... slow-fibre MHC and suppresses fast-fibre MHC isoforms. However, the effect on enzyme activities is not fibre-type specific. The effect of U0126 on the percentage of pyruvate dehydrogenase in the active form suggests that the ERK1/2 pathway may also be involved in regulation of the phosphorylation state...

  7. Impaired autophagy, chaperone expression, and protein synthesis in response to critical illness interventions in porcine skeletal muscle.

    Science.gov (United States)

    Banduseela, Varuna C; Chen, Yi-Wen; Kultima, Hanna Göransson; Norman, Holly S; Aare, Sudhakar; Radell, Peter; Eriksson, Lars I; Hoffman, Eric P; Larsson, Lars

    2013-06-17

    Critical illness myopathy (CIM) is characterized by a preferential loss of the motor protein myosin, muscle wasting, and impaired muscle function in critically ill intensive care unit (ICU) patients. CIM is associated with severe morbidity and mortality and has a significant negative socioeconomic effect. Neuromuscular blocking agents, corticosteroids, sepsis, mechanical ventilation, and immobilization have been implicated as important risk factors, but the causal relationship between CIM and the risk factors has not been established. A porcine ICU model has been used to determine the immediate molecular and cellular cascades that may contribute to the pathogenesis prior to myosin loss and extensive muscle wasting. Expression profiles have been compared between pigs exposed to the ICU interventions, i.e., mechanically ventilated, sedated, and immobilized for 5 days, with pigs exposed to critical illness interventions, i.e., neuromuscular blocking agents, corticosteroids, and induced sepsis in addition to the ICU interventions for 5 days. Impaired autophagy as well as impaired chaperone expression and protein synthesis were observed in the skeletal muscle in response to critical illness interventions. A novel finding in this study is impaired core autophagy machinery in response to critical illness interventions, which when in concert with downregulated chaperone expression and protein synthesis may collectively affect the proteostasis in skeletal muscle and may exacerbate the disease progression in CIM.

  8. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    Science.gov (United States)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  9. [The role of protein AS160/TBC1D4 in the transport of glucose into skeletal muscles].

    Science.gov (United States)

    Mikłosz, Agnieszka; Konstantynowicz, Karolina; Stepek, Tomasz; Chabowski, Adrian

    2011-05-06

    Skeletal muscle plays an essential role in the regulation of whole-body glucose homeostasis. Glucose is transported into the muscle cells via protein-mediated transport that requires sarcolemmal glucose transporters (GLUT). Translocation of GLUT-4 to the plasma membranes is the most potent factor stimulating glucose uptake by myocytes. Relocation of GLUT-4 from an intracellular pool(s) to the plasma membranes is activated by either insulin (associated with activation of kinase PI3K), or physical activity (associated with activation of kinase AMPK). Recent studies have shown that the signaling protein known as AS160 is involved in the directed GLUT-4 intramyocellular redistribution. AS160 protein appears to be activated by the insulin pathway as well as by AMPK. Moreover, in human skeletal muscles that are insulin-resistant, insulin-stimulated phosphorylation of AS160 is significantly impaired. Therefore, decreased insulin-induced AS160 phosphorylation that results in diminished GLUT-4 redistribution to the plasma membrane may play an important role in insulin resistance in vivo.

  10. Differential adsorption of a membrane skeletal protein, spectrin, in phospholipid membranes

    Science.gov (United States)

    Giri, Rajendra P.; Mukhopadhyay, Mrinmay K.; Mitra, Madhurima; Chakrabarti, Abhijit; Sanyal, Milan K.; Ghosh, Sajal K.; Bera, Sambhunath; Lurio, Laurence B.; Ma, Yicong; Sinha, Sunil K.

    2017-06-01

    The interaction of phospholipids with the peripheral membrane proteins like spectrin is important not only to understand the various physiological functions of cells, but also to gain insight into the mechanism involved in the self-assembly of polymer-like long chain molecules at the soft surfaces and interfaces. The lipid head-group specificity of adsorption of spectrin to supported phopsholipid bilayer model membranes has been investigated using the X-ray reflectivity (XRR) technique. Model lipid bilayers composed of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) head groups have been prepared on a soft polymer cushion and the XRR measurements have been carried out from the bilayers immersed in a water bath using high-energy synchrotron X-rays. Our results suggest that in PC-based membranes the spectrin chains form a uniform layer on top of the bilayer with their chains lying on the membrane surface, while in PE-based membranes with relatively smaller head groups, the spectrin chains are attached only through a few possible binding sites with the rest of the part projected out of the membrane surface. In addition, the reflectivity profiles reveal the penetration of spectrin polypeptide chains through the PE bilayer in its fluid phase. Pressure-area isotherm measurements on Langmuir monolayers also support similar observations on the adsorption of spectrin molecules to the membranes composed of PC and PE. The observed results were explained using a qualitative model based on the ion-mediated protein interaction in the PC-based membrane.

  11. Enhanced fatty acid oxidation and FATP4 protein expression after endurance exercise training in human skeletal muscle

    DEFF Research Database (Denmark)

    Jeppesen, Jacob; Jordy, Andreas B; Sjøberg, Kim A

    2012-01-01

    FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation......; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were...... affected by an increased fuel demand induced by exercise training. Eight young healthy males were recruited to the study. All subjects were non smokers and did not participate in regular physical activity (...

  12. 5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Jakob Nis; Mustard, Kirsty J.W.; Graham, Drew A.

    2002-01-01

    (3)) AMPK subunits and exercise-induced AMPK activity are influenced by exercise training status, muscle biopsies were obtained from seven endurance exercise-trained and seven sedentary young healthy men. The alpha(1)- and alpha(2)-AMPK mRNA contents in trained subjects were both 117 +/- 2...... trained human skeletal muscle has increased alpha(1)-AMPK protein levels and blunted AMPK activation during exercise.......5'-AMP-activated protein kinase (AMPK) has been proposed to be a pivotal factor in cellular responses to both acute exercise and exercise training. To investigate whether protein levels and gene expression of catalytic (alpha(1), alpha(2)) and regulatory (beta(1), beta(2), gamma(1), gamma(2), gamma...

  13. Crosslinking Studies of Protein-Protein Interactions in Nonribosomal Peptide Biosynthesis

    National Research Council Canada - National Science Library

    Hur, Gene H; Meier, Jordan L; Baskin, Jeremy; Codelli, Julian A; Bertozzi, Carolyn R; Marahiel, Mohamed A; Burkart, Michael D

    2009-01-01

    .... In this study, we developed a crosslinking assay, utilizing bioorthogonal probes compatible with carrier protein modification, for probing the protein interactions between COM domains of NRPS enzymes...

  14. Studying protein-protein interactions via blot overlay/far western blot.

    Science.gov (United States)

    Hall, Randy A

    2015-01-01

    Blot overlay is a useful method for studying protein-protein interactions. This technique involves fractionating proteins on SDS-PAGE, blotting to nitrocellulose or PVDF membrane, and then incubating with a probe of interest. The probe is typically a protein that is radiolabeled, biotinylated, or simply visualized with a specific antibody. When the probe is visualized via antibody detection, this technique is often referred to as "Far Western blot." Many different kinds of protein-protein interactions can be studied via blot overlay, and the method is applicable to screens for unknown protein-protein interactions as well as to the detailed characterization of known interactions.

  15. Elucidating the Interacting Domains of Chandipura Virus Nucleocapsid Protein

    Directory of Open Access Journals (Sweden)

    Kapila Kumar

    2013-01-01

    Full Text Available The nucleocapsid (N protein of Chandipura virus (CHPV plays a crucial role in viral life cycle, besides being an important structural component of the virion through proper organization of its interactions with other viral proteins. In a recent study, the authors had mapped the associations among CHPV proteins and shown that N protein interacts with four of the viral proteins: N, phosphoprotein (P, matrix protein (M, and glycoprotein (G. The present study aimed to distinguish the regions of CHPV N protein responsible for its interactions with other viral proteins. In this direction, we have generated the structure of CHPV N protein by homology modeling using SWISS-MODEL workspace and Accelrys Discovery Studio client 2.55 and mapped the domains of N protein using PiSQRD. The interactions of N protein fragments with other proteins were determined by ZDOCK rigid-body docking method and validated by yeast two-hybrid and ELISA. The study revealed a unique binding site, comprising of amino acids 1–30 at the N terminus of the nucleocapsid protein (N1 that is instrumental in its interactions with N, P, M, and G proteins. It was also observed that N2 associates with N and G proteins while N3 interacts with N, P, and M proteins.

  16. MG53-IRS-1 (Mitsugumin 53-Insulin Receptor Substrate-1) Interaction Disruptor Sensitizes Insulin Signaling in Skeletal Muscle.

    Science.gov (United States)

    Lee, Hyun; Park, Jung-Jin; Nguyen, Nga; Park, Jun Sub; Hong, Jin; Kim, Seung-Hyeob; Song, Woon Young; Kim, Hak Joong; Choi, Kwangman; Cho, Sungchan; Lee, Jae-Seon; Kim, Bong-Woo; Ko, Young-Gyu

    2016-12-23

    Mitsugumin 53 (MG53) is an E3 ligase that interacts with and ubiquitinates insulin receptor substrate-1 (IRS-1) in skeletal muscle; thus, an MG53-IRS-1 interaction disruptor (MID), which potentially sensitizes insulin signaling with an elevated level of IRS-1 in skeletal muscle, is an excellent candidate for treating insulin resistance. To screen for an MID, we developed a bimolecular luminescence complementation system using an N-terminal luciferase fragment fused with IRS-1 and a C-terminal luciferase fragment fused with an MG53 C14A mutant that binds to IRS-1 but does not have E3 ligase activity. An MID, which was discovered using the bimolecular luminescence complementation system, disrupted the molecular association of MG53 with IRS-1, thus abolishing MG53-mediated IRS-1 ubiquitination and degradation. Thus, the MID sensitized insulin signaling and increased insulin-elicited glucose uptake with an elevated level of IRS-1 in C2C12 myotubes. These data indicate that this MID holds promise as a drug candidate for treating insulin resistance. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  18. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Harumasa Nakazawa

    Full Text Available OBJECTIVE: Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. METHODS: A full thickness burn (30% total body surface area was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. RESULTS: Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR, insulin receptor substrate (IRS-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling, PTEN (a negative regulator of Akt-mediated signaling, protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. CONCLUSIONS: Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a

  19. Linguistic feature analysis for protein interaction extraction

    Directory of Open Access Journals (Sweden)

    Cornelis Chris

    2009-11-01

    Full Text Available Abstract Background The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels. Results Our results reveal that the contribution of the different feature types varies for the different data sets on which the experiments were conducted. The smaller the training corpus compared to the test data, the more important the role of grammatical relations becomes. Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous texts where no or only limited common vocabulary is shared. Conclusion Our findings suggest that grammatical relations play an important role in the interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic features is small related to the number of added features. This implies that efficient classifiers can be built by using only a small fraction of the features that are typically being used in recent approaches.

  20. Interaction of Proteins Identified in Human Thyroid Cells

    Science.gov (United States)

    Pietsch, Jessica; Riwaldt, Stefan; Bauer, Johann; Sickmann, Albert; Weber, Gerhard; Grosse, Jirka; Infanger, Manfred; Eilles, Christoph; Grimm, Daniela

    2013-01-01

    Influence of gravity forces on the regulation of protein expression by healthy and malignant thyroid cells was studied with the aim to identify protein interactions. Western blot analyses of a limited number of proteins suggested a time-dependent regulation of protein expression by simulated microgravity. After applying free flow isoelectric focusing and mass spectrometry to search for differently expressed proteins by thyroid cells exposed to simulated microgravity for three days, a considerable number of candidates for gravi-sensitive proteins were detected. In order to show how proteins sensitive to microgravity could directly influence other proteins, we investigated all polypeptide chains identified with Mascot scores above 100, looking for groups of interacting proteins. Hence, UniProtKB entry numbers of all detected proteins were entered into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and processed. The program indicated that we had detected various groups of interacting proteins in each of the three cell lines studied. The major groups of interacting proteins play a role in pathways of carbohydrate and protein metabolism, regulation of cell growth and cell membrane structuring. Analyzing these groups, networks of interaction could be established which show how a punctual influence of simulated microgravity may propagate via various members of interaction chains. PMID:23303277

  1. Methods for detection of protein-protein and protein-DNA interactions using HaloTag.

    Science.gov (United States)

    Urh, Marjeta; Hartzell, Danette; Mendez, Jacqui; Klaubert, Dieter H; Wood, Keith

    2008-01-01

    HaloTag is a protein fusion tag which was genetically engineered to covalently bind a series of specific synthetic ligands. All ligands carry two groups, the reactive group and the functional/reporter group. The reactive group, the choloroalkane, is the same in all the ligands and is involved in binding to the HaloTag. The functional reporter group is variable and can carry many different moieties including fluorescent dyes, affinity handles like biotin or solid surfaces such as agarose beads. Thus, HaloTag can serve either as a labeling tag or as a protein immobilization tag depending on which ligand is bound to it. Here, we describe a procedure for immobilization of HaloTag fusion proteins and how immobilized proteins can be used to study protein-protein and protein-DNA interactions in vivo and in vitro.

  2. Proteomic identification of dysferlin-interacting protein complexes in human vascular endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Cleo; Utokaparch, Soraya; Sharma, Arpeeta; Yu, Carol; Abraham, Thomas; Borchers, Christoph [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada); Bernatchez, Pascal, E-mail: pbernatc@mail.ubc.ca [UBC James Hogg Research Centre, Institute for Heart and Lung Health, Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia (Canada); University of Victoria - Genome BC Proteomics Centre, University of Victoria, Victoria, British Columbia (Canada)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Bi-directional (inward and outward) movement of GFP-dysferlin in COS-7 cells. Black-Right-Pointing-Pointer Dysferlin interacts with key signaling proteins for transcytosis in EC. Black-Right-Pointing-Pointer Dysferlin mediates trafficking of vesicles carrying protein cargos in EC. -- Abstract: Dysferlin is a membrane-anchored protein known to facilitate membrane repair in skeletal muscles following mechanical injury. Mutations of dysferlin gene impair sarcolemma integrity, a hallmark of certain forms of muscular dystrophy in patients. Dysferlin contains seven calcium-dependent C2 binding domains, which are required to promote fusion of intracellular membrane vesicles. Emerging evidence reveal the unexpected expression of dysferlin in non-muscle, non-mechanically active tissues, such as endothelial cells, which cast doubts over the belief that ferlin proteins act exclusively as membrane repair proteins. We and others have shown that deficient trafficking of membrane bound proteins in dysferlin-deficient cells, suggesting that dysferlin might mediate trafficking of client proteins. Herein, we describe the intracellular trafficking and movement of GFP-dysferlin positive vesicles in unfixed reconstituted cells using live microscopy. By performing GST pull-down assays followed by mass spectrometry, we identified dysferlin binding protein complexes in human vascular endothelial cells. Together, our data further support the claims that dysferlin not only mediates membrane repair but also trafficking of client proteins, ultimately, help bridging dysferlinopathies to aberrant membrane signaling.

  3. Mammalian CHORD-containing protein 1 is a novel heat shock protein 90-interacting protein.

    Science.gov (United States)

    Wu, Jianchun; Luo, Shouqing; Jiang, Hai; Li, Honglin

    2005-01-17

    With two tandem repeated cysteine- and histidine-rich domains (designated as CHORD), CHORD-containing proteins (CHPs) are a novel family of highly conserved proteins that play important roles in plant disease resistance and animal development. Through interacting with suppressor of the G2 allele of Skp1 (SGT1) and Hsp90, plant CHORD-containing protein RAR1 (required for Mla resistance 1) plays a critical role in disease resistance mediated by multiple R genes. Yet, the physiological function of vertebrate CHORD-containing protein-1 (Chp-1) has been poorly investigated. In this study, we provide the first biochemical evidence demonstrating that mammalian Chp-1 is a novel Hsp90-interacting protein. Mammalian Chp-1 contains two CHORD domains (I and II) and one CS domain (a domain shared by CHORD-containing proteins and SGT1). With sequence and structural similarity to Hsp90 co-chaperones p23 and SGT1, Chp-1 binds to the ATPase domain of Hsp90, but the biochemical property of the interaction is unique. The Chp-1-Hsp90 interaction is independent of ATP and ATPase-coupled conformational change of Hsp90, a feature that distinguishes Chp-1 from p23. Furthermore, it appears that multiple domains of Chp-1 are required for stable Chp-1-Hsp90 interaction. Unlike SGT1 whose CS domain is sufficient for Hsp90 binding, the CS domain of Chp-1 is essential but not sufficient for Hsp90 binding. While the CHORD-I domain of Chp-1 is dispensable for Hsp90 binding, the CHORD-II domain and the linker region are essential. Interestingly, the CHORD-I domain of plant RAR1 protein is solely responsible for Hsp90 binding. The unique Chp-1-Hsp90 interaction may be indicative of a distinct biological activity of Chp-1 and functional diversification of CHORD-containing proteins during evolution.

  4. Protein profiles of Taenia solium cysts obtained from skeletal muscles and the central nervous system of pigs: Search for tissue-specific proteins.

    Science.gov (United States)

    Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro

    2017-01-01

    Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In silico study of interaction between rice proteins enhanced disease ...

    Indian Academy of Sciences (India)

    To study this interaction, a model of EDS1 and PAD4 proteins from rice was generated and validated with Accelrys DS software version 3.1 using bioinformatics interface. The in silico docking between the two proteins showed a significant protein–protein interaction between rice EDS1 and PAD4, suggesting that they form a ...

  6. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner.

    Science.gov (United States)

    Liu, Yingying; Li, Fengna; He, Lingyun; Tan, Bie; Deng, Jinping; Kong, Xiangfeng; Li, Yinghui; Geng, Meimei; Yin, Yulong; Wu, Guoyao

    2015-04-14

    Skeletal muscle is a major site for the oxidation of fatty acids (FA) in mammals, including humans. Using a swine model, we tested the hypothesis that dietary protein intake regulates the expression of key genes for lipid metabolism in skeletal muscle. A total of ninety-six barrows (forty-eight pure-bred Bama mini-pigs (fatty genotype) and forty-eight Landrace pigs (lean genotype)) were fed from 5 weeks of age to market weight. Pigs of fatty or lean genotype were randomly assigned to one of two dietary treatments (low- or adequate-protein diet), with twenty-four individually fed pigs per treatment. Our data showed that dietary protein levels affected the expression of genes involved in the anabolism and catabolism of lipids in the longissimus dorsi and biceps femoris muscles in a genotype-dependent manner. Specifically, Bama mini-pigs had more intramuscular fat, SFA and MUFA, as well as elevated mRNA expression levels of lipogenic genes, compared with Landrace pigs. In contrast, Bama mini-pigs had lower mRNA expression levels of lipolytic genes than Landrace pigs fed an adequate-protein diet in the growing phase. These data are consistent with higher white-fat deposition in Bama mini-pigs than in Landrace pigs. In conclusion, adequate provision of dietary protein (amino acids) plays an important role in regulating the expression of key lipogenic genes, and the growth of white adipose tissue, in a genotype- and tissue-specific manner. These findings have important implications for developing novel dietary strategies in pig production.

  7. Skeletal stem cell and bone implant interactions are enhanced by LASER titanium modification

    Energy Technology Data Exchange (ETDEWEB)

    Sisti, Karin E., E-mail: karinellensisti@gmail.com [Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD (United Kingdom); Biomaterials Group, Institute of Chemistry, São Paulo State University (UNESP), Box 355, Araraquara (Brazil); Federal University of Mato Grosso do Sul (UFMS), Campo Grande (Brazil); Andrés, María C. de; Johnston, David [Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD (United Kingdom); Almeida-Filho, Edson; Guastaldi, Antonio C. [Biomaterials Group, Institute of Chemistry, São Paulo State University (UNESP), Box 355, Araraquara (Brazil); Oreffo, Richard O.C. [Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD (United Kingdom)

    2016-05-06

    Purpose: To evaluate the osteo-regenerative potential of Titanium (Ti) modified by Light Amplification by Stimulated Emission of Radiation (LASER) beam (Yb-YAG) upon culture with human Skeletal Stem Cells (hSSCs{sup 1}). Methods: Human skeletal cell populations were isolated from the bone marrow of haematologically normal patients undergoing primary total hip replacement following appropriate consent. STRO-1{sup +} hSSC{sup 1} function was examined for 10 days across four groups using Ti discs: i) machined Ti surface group in basal media (Mb{sup 2}), ii) machined Ti surface group in osteogenic media (Mo{sup 3}), iii) LASER-modified Ti group in basal media (Lb{sup 4}) and, iv) LASER-modified Ti group in osteogenic media (Lo{sup 5}). Molecular analysis and qRT-PCR as well as functional analysis including biochemistry (DNA, Alkaline Phosphatase (ALP{sup 6}) specific activity), live/dead immunostaining (Cell Tracker Green (CTG{sup 7})/Ethidium Homodimer-1 (EH-1{sup 8})), and fluorescence staining (for vinculin and phalloidin) were undertaken. Inverted, confocal and Scanning Electron Microscopy (SEM) approaches were used to characterise cell adherence, proliferation, and phenotype. Results: Enhanced cell spreading and morphological rearrangement, including focal adhesions were observed following culture of hSSCs{sup 1} on LASER surfaces in both basal and osteogenic conditions. Biochemical analysis demonstrated enhanced ALP{sup 6} specific activity on the hSSCs{sup 1}-seeded on LASER-modified surface in basal culture media. Molecular analysis demonstrated enhanced ALP{sup 6} and osteopontin expression on titanium LASER treated surfaces in basal conditions. SEM, inverted microscopy and confocal laser scanning microscopy confirmed extensive proliferation and migration of human bone marrow stromal cells on all surfaces evaluated. Conclusions: LASER-modified Ti surfaces modify the behaviour of hSSCs.{sup 1} In particular, SSC{sup 1} adhesion, osteogenic gene expression, cell

  8. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  9. Induction of uncoupling protein 3 gene expression in skeletal muscle of preterm newborns

    Czech Academy of Sciences Publication Activity Database

    Brauner, Petr; Kopecký, P.; Flachs, Pavel; Ruffer, J.; Sebroň, V.; Plavka, R.; Vítková, I.; Vorlíček, Jaroslav; Kopecký, Jan

    2003-01-01

    Roč. 53, č. 4 (2003), s. 691-697 ISSN 0031-3998 R&D Projects: GA MŠk LN00A079; GA MZd NE6430 Grant - others:March of Dimes Birth Defects Foundation(US) 6-FY00-331 Institutional research plan: CEZ:AV0Z5011922 Keywords : preterm newborns * skeletal muscle development * nutrition Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.064, year: 2003

  10. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks.

    Science.gov (United States)

    Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon

    2015-01-01

    As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw.

  11. Ensemble learning prediction of protein-protein interactions using proteins functional annotations.

    Science.gov (United States)

    Saha, Indrajit; Zubek, Julian; Klingström, Tomas; Forsberg, Simon; Wikander, Johan; Kierczak, Marcin; Maulik, Ujjwal; Plewczynski, Dariusz

    2014-04-01

    Protein-protein interactions are important for the majority of biological processes. A significant number of computational methods have been developed to predict protein-protein interactions using protein sequence, structural and genomic data. Vast experimental data is publicly available on the Internet, but it is scattered across numerous databases. This fact motivated us to create and evaluate new high-throughput datasets of interacting proteins. We extracted interaction data from DIP, MINT, BioGRID and IntAct databases. Then we constructed descriptive features for machine learning purposes based on data from Gene Ontology and DOMINE. Thereafter, four well-established machine learning methods: Support Vector Machine, Random Forest, Decision Tree and Naïve Bayes, were used on these datasets to build an Ensemble Learning method based on majority voting. In cross-validation experiment, sensitivity exceeded 80% and classification/prediction accuracy reached 90% for the Ensemble Learning method. We extended the experiment to a bigger and more realistic dataset maintaining sensitivity over 70%. These results confirmed that our datasets are suitable for performing PPI prediction and Ensemble Learning method is well suited for this task. Both the processed PPI datasets and the software are available at .

  12. Flow Cytometric FRET Analysis of Protein Interactions.

    Science.gov (United States)

    Ujlaky-Nagy, László; Nagy, Péter; Szöllősi, János; Vereb, György

    2018-01-01

    In the past decades, investigation of protein-protein interactions in situ in living or intact cells has gained expanding importance as structure/function relationships proposed from bulk biochemistry and molecular modeling experiments required confirmation at the cellular level. Förster (fluorescence) resonance energy transfer (FRET)-based methods are excellent tools for determining proximity and supramolecular organization of biomolecules at the cell surface or inside the cell. This could well be the basis for the increasing popularity of FRET. In fact, the number of publications exploiting FRET has exploded since the turn of the millennium. Interestingly, most applications are microscope-based, and only a fraction employs flow cytometry, even though the latter offers great statistical power owed to the potentially huge number of individually measured cells. However, with the increased availability of multi-laser flow cytometers, strategies to obtain absolute FRET efficiencies can now be relatively facilely implemented. In this chapter, we intend to provide generally useable protocols for measuring FRET in flow cytometry. After a concise theoretical introduction, recipes are provided for successful labeling techniques and measurement approaches. The simple, quenching-based population-level measurement, the classic ratiometric, intensity-based technique providing cell-by-cell actual FRET efficiencies, and a more advanced version of the latter, allowing for cell-by-cell autofluorescence correction are described. An Excel macro pre-loaded with spectral data of the most commonly used fluorophores is also provided for easy calculation of average FRET efficiencies. Finally, points of caution are given to help design proper experiments and critically interpret the results.

  13. A Least Square Method Based Model for Identifying Protein Complexes in Protein-Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Qiguo Dai

    2014-01-01

    Full Text Available Protein complex formed by a group of physical interacting proteins plays a crucial role in cell activities. Great effort has been made to computationally identify protein complexes from protein-protein interaction (PPI network. However, the accuracy of the prediction is still far from being satisfactory, because the topological structures of protein complexes in the PPI network are too complicated. This paper proposes a novel optimization framework to detect complexes from PPI network, named PLSMC. The method is on the basis of the fact that if two proteins are in a common complex, they are likely to be interacting. PLSMC employs this relation to determine complexes by a penalized least squares method. PLSMC is applied to several public yeast PPI networks, and compared with several state-of-the-art methods. The results indicate that PLSMC outperforms other methods. In particular, complexes predicted by PLSMC can match known complexes with a higher accuracy than other methods. Furthermore, the predicted complexes have high functional homogeneity.

  14. A Brief Review of RNA-Protein Interaction Database Resources

    Directory of Open Access Journals (Sweden)

    Ying Yi

    2017-01-01

    Full Text Available RNA-protein interactions play critical roles in various biological processes. By collecting and analyzing the RNA-protein interactions and binding sites from experiments and predictions, RNA-protein interaction databases have become an essential resource for the exploration of the transcriptional and post-transcriptional regulatory network. Here, we briefly review several widely used RNA-protein interaction database resources developed in recent years to provide a guide of these databases. The content and major functions in databases are presented. The brief description of database helps users to quickly choose the database containing information they interested. In short, these RNA-protein interaction database resources are continually updated, but the current state shows the efforts to identify and analyze the large amount of RNA-protein interactions.

  15. Gap junctions and connexin-interacting proteins

    NARCIS (Netherlands)

    Giepmans, Ben N G

    2004-01-01

    Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of which c-Src is the

  16. Analysis of protein-protein interaction networks by means of annotated graph mining algorithms

    NARCIS (Netherlands)

    Rahmani, Hossein

    2012-01-01

    This thesis discusses solutions to several open problems in Protein-Protein Interaction (PPI) networks with the aid of Knowledge Discovery. PPI networks are usually represented as undirected graphs, with nodes corresponding to proteins and edges representing interactions among protein pairs. A large

  17. Dynamics of protein-protein interactions studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Somireddy Venkata, Bharat Kumar Reddy

    2012-01-01

    Protein-protein interactions play an important role in all cellular processes such as signal transduction, electron transfer, gene regulation, transcription, and translation. Understanding these protein-protein interactions at the molecular level, is an important aim in structural biology. The

  18. AtPIN: Arabidopsis thaliana Protein Interaction Network

    Directory of Open Access Journals (Sweden)

    Silva-Filho Marcio C

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions (PPIs constitute one of the most crucial conditions to sustain life in living organisms. To study PPI in Arabidopsis thaliana we have developed AtPIN, a database and web interface for searching and building interaction networks based on publicly available protein-protein interaction datasets. Description All interactions were divided into experimentally demonstrated or predicted. The PPIs in the AtPIN database present a cellular compartment classification (C3 which divides the PPI into 4 classes according to its interaction evidence and subcellular localization. It has been shown in the literature that a pair of genuine interacting proteins are generally expected to have a common cellular role and proteins that have common interaction partners have a high chance of sharing a common function. In AtPIN, due to its integrative profile, the reliability index for a reported PPI can be postulated in terms of the proportion of interaction partners that two proteins have in common. For this, we implement the Functional Similarity Weight (FSW calculation for all first level interactions present in AtPIN database. In order to identify target proteins of cytosolic glutamyl-tRNA synthetase (Cyt-gluRS (AT5G26710 we combined two approaches, AtPIN search and yeast two-hybrid screening. Interestingly, the proteins glutamine synthetase (AT5G35630, a disease resistance protein (AT3G50950 and a zinc finger protein (AT5G24930, which has been predicted as target proteins for Cyt-gluRS by AtPIN, were also detected in the experimental screening. Conclusions AtPIN is a friendly and easy-to-use tool that aggregates information on Arabidopsis thaliana PPIs, ontology, and sub-cellular localization, and might be a useful and reliable strategy to map protein-protein interactions in Arabidopsis. AtPIN can be accessed at http://bioinfo.esalq.usp.br/atpin.

  19. Interactions of proteins in gels, solutions and on surfaces

    Science.gov (United States)

    Ramasamy, Radha Perumal

    2006-12-01

    The study of protein interaction, identification and separation has applications in various fields relating to Biotechnology. In this research these aspects were investigated. The proteins albumin, casein, poly-L-lysine were studied. FITC and TRITC were used to fluorescently tag the proteins. Confocal microscopy was used to image the interaction of proteins. The migration of fluorescently tagged protein-salt aggregates on solid surfaces during electrophoresis was investigated using Confocal microscopy. The secondary structural modifications of proteins in solutions were investigated using FTIR micro spectroscopic imaging. The size of the colloids formed due to protein-protein interactions as a function of the protein concentrations were studied using DLS and their charges were found using zeta potential measurements. Based on DL.S and zeta potential measurements, a model is proposed for interactions of oppositely charged proteins. The nature of interaction was found using UV - Visual spectroscopy. It was found that oppositely charged proteins formed ionic bonds. It was also found that FITC molecule influenced the surface charge of albumin more than TRITC molecule. The effects of the influence of cell geometries upon Electro Osmotic Flow (EOF) were studied using neutrally charged fluorescent Polystyrene beads. Results showed that tagging proteins with fluorescent molecules influenced their mobility and interactions with other proteins. However no secondary structural modifications of the proteins were observed when oppositely charged proteins interacted. It was also observed that electrostatic interactions made oppositely charged proteins form large aggregates. The EOF was found to be dependent upon the ionic strength of the buffer, conductivity of the solid surfaces, distance from the surface and position of the electrodes in the electrophoretic cell.

  20. Protein-lipid interactions: paparazzi hunting for snap-shots

    NARCIS (Netherlands)

    Haberkant, P.|info:eu-repo/dai/nl/311488749; van Meer, G.|info:eu-repo/dai/nl/068570368

    2009-01-01

    Photoactivatable groups meeting the criterion of minimal perturbance allow the investigation of interactions in biological samples. Here, we review the application of photoactivatable groups in lipids enabling the study of protein-lipid interactions in (biological) membranes. The chemistry of

  1. RAIN: RNA-protein Association and Interaction Networks

    DEFF Research Database (Denmark)

    Junge, Alexander; Refsgaard, Jan Christian; Garde, Christian

    2017-01-01

    is challenging due to data heterogeneity. Here, we present a database of ncRNA-RNA and ncRNA-protein interactions and its integration with the STRING database of protein-protein interactions. These ncRNA associations cover four organisms and have been established from curated examples, experimental data...... web interface and all interaction data can be downloaded.......Protein association networks can be inferred from a range of resources including experimental data, literature mining and computational predictions. These types of evidence are emerging for non-coding RNAs (ncRNAs) as well. However, integration of ncRNAs into protein association networks...

  2. Dynamic identifying protein functional modules based on adaptive density modularity in protein-protein interaction networks.

    Science.gov (United States)

    Shen, Xianjun; Yi, Li; Yi, Yang; Yang, Jincai; He, Tingting; Hu, Xiaohua

    2015-01-01

    The identification of protein functional modules would be a great aid in furthering our knowledge of the principles of cellular organization. Most existing algorithms for identifying protein functional modules have a common defect -- once a protein node is assigned to a functional module, there is no chance to move the protein to the other functional modules during the follow-up processes, which lead the erroneous partitioning occurred at previous step to accumulate till to the end. In this paper, we design a new algorithm ADM (Adaptive Density Modularity) to detect protein functional modules based on adaptive density modularity. In ADM algorithm, according to the comparison between external closely associated degree and internal closely associated degree, the partitioning of a protein-protein interaction network into functional modules always evolves quickly to increase the density modularity of the network. The integration of density modularity into the new algorithm not only overcomes the drawback mentioned above, but also contributes to identifying protein functional modules more effectively. The experimental result reveals that the performance of ADM algorithm is superior to many state-of-the-art protein functional modules detection techniques in aspect of the accuracy of prediction. Moreover, the identified protein functional modules are statistically significant in terms of "Biological Process" annotated in Gene Ontology, which provides substantial support for revealing the principles of cellular organization.

  3. Modularity in the evolution of yeast protein interaction network.

    Science.gov (United States)

    Ogishima, Soichi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution.

  4. Ribosome abundance regulates the recovery of skeletal muscle protein mass upon recuperation from postnatal undernutrition in mice

    Science.gov (United States)

    Fiorotto, Marta L; Davis, Teresa A; Sosa, Horacio A; Villegas-Montoya, Carolina; Estrada, Irma; Fleischmann, Ryan

    2014-01-01

    Nutritionally-induced growth faltering in the perinatal period has been associated with reduced adult skeletal muscle mass; however, the mechanisms responsible for this are unclear. To identify the factors that determine the recuperative capacity of muscle mass, we studied offspring of FVB mouse dams fed a protein-restricted diet during gestation (GLP) or pups suckled from postnatal day 1 (PN1) to PN11 (E-UN), or PN11 to PN22 (L-UN) on protein-restricted or control dams. All pups were refed under control conditions following the episode of undernutrition. Before refeeding, and 2, 7 and 21 days later, muscle protein synthesis was measured in vivo. There were no long-term deficits in protein mass in GLP and E-UN offspring, but in L-UN offspring muscle protein mass remained significantly smaller even after 18 months (P < 0.001). E-UN differed from L-UN offspring by their capacity to upregulate postprandial muscle protein synthesis when refed (P < 0.001), a difference that was attributable to a transient increase in ribosomal abundance, i.e. translational capacity, in E-UN offspring (P < 0.05); translational efficiency was similar across dietary treatments. The postprandial phosphorylation of Akt and extracellular signal-regulated protein kinases were similar among treatments. However, activation of the ribosomal S6 kinase 1 via mTOR (P < 0.02), and total upstream binding factor abundance were significantly greater in E-UN than L-UN offspring (P < 0.02). The results indicate that the capacity of muscles to recover following perinatal undernutrition depends on developmental age as this establishes whether ribosome abundance can be enhanced sufficiently to promote the protein synthesis rates required to accelerate protein deposition for catch-up growth. PMID:25239457

  5. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. A cytoplasmic protein-protein interaction detection method based on reporter translation.

    Science.gov (United States)

    Renaut, Laurence; Bouayadi, Khalil; Kharrat, Hakim; Mondon, Philippe

    2009-01-15

    One approach to drug discovery involves the targeting of abnormal protein-protein interactions that lead to pathology. We present a new technology allowing the detection of such interactions within the cytoplasm in a yeast-based system. The interaction detection is based on the sequestration of a translation termination factor involved in stop codon recognition. This sequestration inhibits the activity of the factor, thereby permitting the translation of a reporter gene harboring a premature stop codon. This novel cytoplasmic protein-protein interaction (CPPI) detection system should prove to be useful in the characterization of proteins as well as in partner identification, interaction mapping, and drug discovery applications.

  7. Course 1: Physics of Protein-DNA Interaction

    Science.gov (United States)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  8. GAPDH and β-actin protein decreases with aging, making Stain-Free technology a superior loading control in Western blotting of human skeletal muscle

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Dybboe, Rie; Hansen, Christina Neigaard

    2015-01-01

    Reference proteins (RP) or the total protein (TP) loaded is used to correct for uneven loading and/or transfer in Western blotting. However, the signal sensitivity and the influence of physiological conditions may question the normalization methods. Therefore, three widely used reference proteins...... and differences in muscle fiber type. The novel SF technology adds lower variation to the results compared with the existing methods for correcting for loading inaccuracy in Western blotting of human skeletal muscle in applied physiology....

  9. The dynamic multisite interactions between two intrinsically disordered proteins

    KAUST Repository

    Wu, Shaowen

    2017-05-11

    Protein interactions involving intrinsically disordered proteins (IDPs) comprise a variety of binding modes, from the well characterized folding upon binding to dynamic fuzzy complex. To date, most studies concern the binding of an IDP to a structured protein, while the Interaction between two IDPs is poorly understood. In this study, we combined NMR, smFRET, and molecular dynamics (MD) simulation to characterize the interaction between two IDPs, the C-terminal domain (CTD) of protein 4.1G and the nuclear mitotic apparatus (NuMA) protein. It is revealed that CTD and NuMA form a fuzzy complex with remaining structural disorder. Multiple binding sites on both proteins were identified by MD and mutagenesis studies. Our study provides an atomic scenario in which two IDPs bearing multiple binding sites interact with each other in dynamic equilibrium. The combined approach employed here could be widely applicable for investigating IDPs and their dynamic interactions.

  10. Preferential interactions and the effect of protein PEGylation

    DEFF Research Database (Denmark)

    Holm, Louise Stenstrup; Thulstrup, Peter Waaben; Kasimova, Marina Robertovna

    2015-01-01

    excipients that preferentially interact with the protein. METHODOLOGY/PRINCIPAL FINDINGS: The model protein hen egg white lysozyme was doubly PEGylated on two lysines with 5 kDa linear PEGs (mPEG-succinimidyl valerate, MW 5000) and studied in the absence and presence of preferentially excluded sucrose...... excipients. This suggests that formulation principles using preferentially interacting excipients are similar for PEGylated and non-PEGylated proteins.......BACKGROUND: PEGylation is a strategy used by the pharmaceutical industry to prolong systemic circulation of protein drugs, whereas formulation excipients are used for stabilization of proteins during storage. Here we investigate the role of PEGylation in protein stabilization by formulation...

  11. Receptors, G proteins, and their interactions

    NARCIS (Netherlands)

    Hollmann, Markus W.; Strumper, Danja; Herroeder, Susanne; Durieux, Marcel E.

    2005-01-01

    Membrane receptors coupling to intracellular G proteins (G protein-coupled receptors) form one of the major classes of membrane signaling proteins. They are of great importance to the practice of anesthesiology because they are involved in many systems of relevance to the specialty (cardiovascular

  12. Membrane-mediated interaction between strongly anisotropic protein scaffolds.

    Directory of Open Access Journals (Sweden)

    Yonatan Schweitzer

    2015-02-01

    Full Text Available Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains.

  13. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  14. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen...... as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  15. Skeletal response to diet with soya bean seeds used as primary source of protein in growing broiler chickens.

    Science.gov (United States)

    Olkowski, B; Charuta, A; Radzki, R; Bieńko, M; Toczko, R

    2016-08-01

    The study was conducted using 120 commercial broiler chicks (Ross 308) randomly allocated to two experimental groups. The experimental diets, differing only in protein source, either solvent-extracted soya bean meal (SBM) or traditional (non-genetically modified) full-fat soya bean seeds (FFS), were prepared using practical corn-based formulation designed to meet nutritional requirements of broilers. Performance parameters were monitored weekly. Also, the subjects were evaluated daily for overt changes in skeletal anatomy and gait physiology. Randomly selected chickens from each group (seven males and seven females) were euthanized at 2, 3, 4 and 6 weeks of age, and bone specimens were collected for further study. Bone mineral density (BMD) and bone mineral content (BMC) were determined in tibiotarsal bones. Broilers fed FFS diet showed retarded growth rate and decreased feed intake (both p beans contain factors that have some specific detrimental effects on skeletal system of chickens. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis.

    Science.gov (United States)

    Drummond, Micah J; Miyazaki, Mitsunori; Dreyer, Hans C; Pennings, Bart; Dhanani, Shaheen; Volpi, Elena; Esser, Karyn A; Rasmussen, Blake B

    2009-04-01

    Muscle growth is associated with an activation of the mTOR signaling pathway and satellite cell regulators. The purpose of this study was to determine whether 17 selected genes associated with mTOR/muscle protein synthesis and the satellite cells/myogenic program are differentially expressed in young and older human skeletal muscle at rest and in response to a potent anabolic stimulus [resistance exercise + essential amino acid ingestion (RE+EAA)]. Twelve male subjects (6 young, 6 old) completed a bout of heavy resistance exercise. Muscle biopsies were obtained before and at 3 and 6 h post RE+EAA. Subjects ingested leucine-enriched essential amino acids at 1 h postexercise. mRNA expression was determined using qRT-PCR. At rest, hVps34 mRNA was elevated in the older subjects (P muscle are more responsive in young men post RE+EAA. Our data provide new insights into the regulation of genes important for transcription and translation in young and old human skeletal muscle post RE+EAA.

  17. From networks of protein interactions to networks of functional dependencies

    Directory of Open Access Journals (Sweden)

    Luciani Davide

    2012-05-01

    Full Text Available Abstract Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation. However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations, based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud or biological processes (e.g., cell budding of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.

  18. Impact of rs361072 in the phosphoinositide 3-kinase p110beta gene on whole-body glucose metabolism and subunit protein expression in skeletal muscle

    DEFF Research Database (Denmark)

    Ribel-Madsen, Rasmus; Poulsen, Pernille; Holmkvist, Johan

    2010-01-01

    . The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes. RESEARCH DESIGN AND METHODS: The functional role of rs361072 was studied in 196 Danish healthy adult twins. Peripheral and hepatic insulin sensitivity...... in 9,316 Danes with glucose tolerance ranging from normal to overt type 2 diabetes. RESULTS: While hepatic insulin resistance was similar in the fasting state, carriers of the minor G allele had lower hepatic glucose output (per-allele effect: -16%, P(add) = 0.004) during high physiological insulin...... infusion. rs361072 did not associate with insulin-stimulated peripheral glucose disposal despite a decreased muscle p85alpha:p110beta protein ratio (P(add) = 0.03) in G allele carriers. No association with HOMA-IR or type 2 diabetes (odds ratio 1.07, P = 0.5) was identified, and obesity did not interact...

  19. Interactions of carbohydrates and proteins by fluorophore-assisted ...

    Indian Academy of Sciences (India)

    A sensitive, specific, and rapid method for the detection of carbohydrate-protein interactions is demonstrated by fluorophore-assisted carbohydrate electrophoresis (FACE). The procedure is simple and the cost is low. The advantage of this method is that carbohydrate-protein interactions can be easily displayed by FACE, ...

  20. Forkhead box O1 and muscle RING finger 1 protein expression in atrophic and hypertrophic denervated mouse skeletal muscle

    Science.gov (United States)

    2014-01-01

    Background Forkhead box O (FoxO) transcription factors and E3 ubiquitin ligases such as Muscle RING finger 1 (MuRF1) are believed to participate in the regulation of skeletal muscle mass. The function of FoxO transcription factors is regulated by post-translational modifications such as phosphorylation and acetylation. In the present study FoxO1 protein expression, phosphorylation and acetylation as well as MuRF1 protein expression, were examined in atrophic and hypertrophic denervated skeletal muscle. Methods Protein expression, phosphorylation and acetylation were studied semi-quantitatively using Western blots. Muscles studied were 6-days denervated mouse hind-limb muscles (anterior tibial as well as pooled gastrocnemius and soleus muscles, all atrophic), 6-days denervated mouse hemidiaphragm muscles (hypertrophic) and innervated control muscles. Total muscle homogenates were used as well as separated nuclear and cytosolic fractions of innervated and 6-days denervated anterior tibial and hemidiaphragm muscles. Results Expression of FoxO1 and MuRF1 proteins increased 0.3-3.7-fold in all 6-days denervated muscles studied, atrophic as well as hypertrophic. Phosphorylation of FoxO1 at S256 increased about 0.8-1-fold after denervation in pooled gastrocnemius and soleus muscles and in hemidiaphragm but not in unfractionated anterior tibial muscle. A small (0.2-fold) but statistically significant increase in FoxO1 phosphorylation was, however, observed in cytosolic fractions of denervated anterior tibial muscle. A statistically significant increase in FoxO1 acetylation (0.8-fold) was observed only in denervated anterior tibial muscle. Increases in total FoxO1 and in phosphorylated FoxO1 were only seen in cytosolic fractions of denervated atrophic anterior tibial muscle whereas in denervated hypertrophic hemidiaphragm both total FoxO1 and phosphorylated FoxO1 increased in cytosolic as well as in nuclear fractions. MuRF1 protein expression increased in cytosolic as well

  1. Fusion and differentiation of murine C2C12 skeletal muscle cells that express Trichinella spiralis p43 protein.

    Science.gov (United States)

    Jasmer, Douglas P; Kwak, Dongmi

    2006-02-01

    The ability of a 43 kDa stichocyte protein from Trichinella spiralis (Tsp43) to interfere with mammalian skeletal muscle gene expression was investigated. A MYC-tagged Tsp43 construct was expressed as a recombinant protein in C2C12 myoblasts. Transfection with low amounts of expression plasmid was required for successful expression of the protein. This construct had apparent toxic effects on transfected myoblasts and ectopic green fluorescent protein expression was suppressed in myoblasts co-transfected with the Tsp43 construct. These effects may result from similarities of Tsp43 to DNase II. Use of the general DNase inhibitor aurintricarboxylic acid (ATA) enhanced expression of MYC-Tsp43 in transfected muscle cells. Myoblasts transfected with Tsp43 did not fuse well when cultured under differentiation conditions without ATA. In contrast, transfected myoblasts transiently cultured with ATA underwent fusion and differentiation. Under short-term differentiation conditions without ATA, unfused myoblasts nevertheless expressed both MYC-Tsp43 and myosin heavy chain. Collectively, the results support that Tsp43 has a role in the T. spiralis life cycle that is distinct from repressing muscle gene expression during the muscle phase of infection. While the function of Tsp43 as a DNase is under debate, the effects of ATA on transfected muscle cells were consistent with this possibility.

  2. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats.

    Directory of Open Access Journals (Sweden)

    Carolina Soares Moura

    Full Text Available Whey protein hydrolysate (WPH intake has shown to increase HSP70 expression. The aim of the present study was to investigate whether WPH intake would also influences HSP90, HSP60 and HSP25 expression, as well as associated parameters. Forty-eight male Wistar rats were divided into sedentary (unstressed and exercised (stressed groups, and were fed with three different sources of protein: whey protein (WP, whey protein hydrolysate (WPH and casein (CAS as a control, based on the AIN93G diet for 3 weeks. WPH intake increased HSP90 expression in both sedentary and exercised animals compared to WP or CAS, however no alteration was found from exercise or diet to HSP60 or HSP25. Co-chaperone Aha1 and p-HSF1 were also increased in the exercised animals fed with WPH in comparison with WP or CAS, consistent with enhanced HSP90 expression. VEGF and p-AKT were increased in the WPH exercised group. No alteration was found in BCKDH, PI3-Kinase (p85, GFAT, OGT or PGC for diet or exercise. The antioxidant system GPx, catalase and SOD showed different responses to diet and exercise. The data indicate that WPH intake enhanced factors related to cell survival, such as HSP90 and VEGF, but does not alter HSP60 or HSP25 in rat skeletal muscle.

  3. Prediction of protein and nucleic acid interactions

    OpenAIRE

    Cirillo, Davide

    2016-01-01

    The purpose of my doctoral studies has been the development of bioinformatics methods to quantitatively evaluate associations between proteins and nucleic acids (NAs). This thesis aims at providing insights into molecular features and still relatively unknown mechanisms of protein-NAs associations, such as RNA-binding proteins and long noncoding RNAs as well as transcription factors and regulatory DNA elements. In this work, I present two algorithms, catRAPID omics express and PAnDA, for the ...

  4. Exhaustive Training Increases Uncoupling Protein 2 Expression and Decreases Bcl-2/Bax Ratio in Rat Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    W. Y. Liu

    2013-01-01

    Full Text Available This work investigates the effects of oxidative stress due to exhaustive training on uncoupling protein 2 (UCP2 and Bcl-2/Bax in rat skeletal muscles. A total of 18 Sprague-Dawley female rats were randomly divided into three groups: the control group (CON, the trained control group (TC, and the exhaustive trained group (ET. Malondialdehyde (MDA, superoxide dismutase (SOD, xanthine oxidase (XOD, ATPase, UCP2, and Bcl-2/Bax ratio in red gastrocnemius muscles were measured. Exhaustive training induced ROS increase in red gastrocnemius muscles, which led to a decrease in the cell antiapoptotic ability (Bcl-2/Bax ratio. An increase in UCP2 expression can reduce ROS production and affect mitochondrial energy production. Thus, oxidative stress plays a significant role in overtraining.

  5. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In......Web_InBioMap, or InWeb_IM) with severalfold more interactions (>500,000) and better functional biological relevance than comparable resources. We illustrate that InWeb_InBioMap enables functional interpretation of >4,700 cancer genomes and genes involved in autism....

  6. Mapping functional prion-prion protein interaction sites using prion protein based peptide-arrays

    NARCIS (Netherlands)

    Rigter, A.; Priem, J.; Timmers-Parohi, D.; Langeveld, J.; Bossers, A.

    2009-01-01

    Protein-protein interactions are at the basis of most if not all biological processes in living cells. Therefore, adapting existing techniques or developing new techniques to study interactions between proteins are of importance in elucidating which amino acid sequences contribute to these

  7. Transcription factors do it together : the hows and whys of studying protein-protein interactions

    NARCIS (Netherlands)

    Immink, R.G.H.; Angenent, G.C.

    2002-01-01

    Protein–protein interactions are intrinsic to virtually every cellular process. Recent breakthroughs in techniques to study protein-interaction and the availability of fully sequenced plant genomes have attracted many plant scientists to undertake the first steps in the field of protein

  8. PDZ domain-mediated interactions of G protein-coupled receptors with postsynaptic density protein 95

    DEFF Research Database (Denmark)

    Møller, Thor C; Wirth, Volker F; Roberts, Nina Ingerslev

    2013-01-01

    G protein-coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome. Their signaling is regulated by scaffold proteins containing PDZ domains, but although these interactions are important for GPCR function, they are still poorly understood. We here present...... a quantitative characterization of the kinetics and affinity of interactions between GPCRs and one of the best characterized PDZ scaffold proteins, postsynaptic density protein 95 (PSD-95), using fluorescence polarization (FP) and surface plasmon resonance (SPR). By comparing these in vitro findings....... The approach can easily be transferred to other receptors and scaffold proteins and this could help accelerate the discovery and quantitative characterization of GPCR-PDZ interactions....

  9. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  10. Understanding protein–protein interactions by genetic suppression

    Indian Academy of Sciences (India)

    Protein–protein interactions influence many cellular processes and it is increasingly being felt that even a weak and remote interplay between two subunits of a protein or between two proteins in a complex may govern the fate of a particular biochemical pathway. In a bacterial system where the complete genome sequence ...

  11. Post-transcriptional gene silencing of ribosomal protein S6 kinase 1 restores insulin action in leucine-treated skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A; Salehzadeh, F; Metayer-Coustard, S

    2009-01-01

    Excessive nutrients, especially amino acids, impair insulin action on glucose metabolism in skeletal muscle. We tested the hypothesis that the branched-chain amino acid leucine reduces acute insulin action in primary myotubes via a negative feedback mechanism involving ribosomal protein S6 kinase 1...

  12. Enteral leucine supplementation increases protein synthesis in skeletal and cardiac muscles and visceral tissues of neonatal pigs through mTORC1-dependent pathways

    Science.gov (United States)

    Leucine activates mammalian target of rapamycin (mTOR) to upregulate protein synthesis (PS). To examine enteral Leu effects on PS and signaling activation, 5-d-old piglets were fed for 24 h diets containing: (i) LP, (ii) LP+L, or (iii) HP. PS in skeletal muscles, heart, liver, pancreas, and jejunum...

  13. Dietary L-Lysine Suppresses Autophagic Proteolysis and Stimulates Akt/mTOR Signaling in the Skeletal Muscle of Rats Fed a Low-Protein Diet.

    Science.gov (United States)

    Sato, Tomonori; Ito, Yoshiaki; Nagasawa, Takashi

    2015-09-23

    Amino acids, especially L-leucine, regulate protein turnover in skeletal muscle and have attracted attention as a means of increasing muscle mass in people suffering from malnutrition, aging (sarcopenia), or a bedridden state. We previously showed that oral administration of L-lysine (Lys) by gavage suppressed proteolysis in skeletal muscles of fasted rats. However, the intake of Lys in the absence of other dietary components is unlikely in a non-experimental setting, and other dietary components may interfere with the suppressive effect of Lys on proteolysis. We supplemented Lys to a 10% casein diet and investigated the effect of Lys on proteolysis and autophagy, a major proteolytic system, in the skeletal muscle of rats. The rate of proteolysis was evaluated from 3-methylhisitidine (MeHis) released from isolated muscles, in plasma, and excreted in urine. Supplementing lysine with the 10% casein diet decreased the rate of proteolysis induced by intake of a low-protein diet. The upregulated autophagy activity [light chain 3 (LC3)-II/total LC3] caused by a low-protein diet was reduced, and the Akt/mTOR signaling pathway was activated by Lys. Importantly, continuous feeding of a Lys-rich 10% casein diet for 15 days increased the masses of the soleus and gastrocnemius muscles. Taken together, supplementation of Lys to a low-protein diet suppresses autophagic proteolysis through the Akt/mTOR signaling pathway, and continuous feeding of a Lys-rich diet may increase skeletal muscle mass.

  14. Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring's liver and skeletal muscle; protective effect of taurine

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Olsen, Hanne Lodberg; Frandsen, Lis

    2010-01-01

    in genes concerned with fatty acid metabolism in liver and with oxidative phoshorylation and tri carboxylic acid (TCA) cycle in skeletal muscle. Conclusion: Gestational protein restriction resulted in lower birthweight associated with significant gene expression changes, which was different in liver...

  15. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    DEFF Research Database (Denmark)

    Nissen, Klaus B; Kedström, Linda Maria Haugaard; Wilbek, Theis S

    2015-01-01

    and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series...... of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG...... linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic...

  16. NPIDB: Nucleic acid-Protein Interaction DataBase.

    Science.gov (United States)

    Kirsanov, Dmitry D; Zanegina, Olga N; Aksianov, Evgeniy A; Spirin, Sergei A; Karyagina, Anna S; Alexeevski, Andrei V

    2013-01-01

    The Nucleic acid-Protein Interaction DataBase (http://npidb.belozersky.msu.ru/) contains information derived from structures of DNA-protein and RNA-protein complexes extracted from the Protein Data Bank (3846 complexes in October 2012). It provides a web interface and a set of tools for extracting biologically meaningful characteristics of nucleoprotein complexes. The content of the database is updated weekly. The current version of the Nucleic acid-Protein Interaction DataBase is an upgrade of the version published in 2007. The improvements include a new web interface, new tools for calculation of intermolecular interactions, a classification of SCOP families that contains DNA-binding protein domains and data on conserved water molecules on the DNA-protein interface.

  17. PPLook: an automated data mining tool for protein-protein interaction

    Directory of Open Access Journals (Sweden)

    Xia Li

    2010-06-01

    Full Text Available Abstract Background Extracting and visualizing of protein-protein interaction (PPI from text literatures are a meaningful topic in protein science. It assists the identification of interactions among proteins. There is a lack of tools to extract PPI, visualize and classify the results. Results We developed a PPI search system, termed PPLook, which automatically extracts and visualizes protein-protein interaction (PPI from text. Given a query protein name, PPLook can search a dataset for other proteins interacting with it by using a keywords dictionary pattern-matching algorithm, and display the topological parameters, such as the number of nodes, edges, and connected components. The visualization component of PPLook enables us to view the interaction relationship among the proteins in a three-dimensional space based on the OpenGL graphics interface technology. PPLook can also provide the functions of selecting protein semantic class, counting the number of semantic class proteins which interact with query protein, counting the literature number of articles appearing the interaction relationship about the query protein. Moreover, PPLook provides heterogeneous search and a user-friendly graphical interface. Conclusions PPLook is an effective tool for biologists and biosystem developers who need to access PPI information from the literature. PPLook is freely available for non-commercial users at http://meta.usc.edu/softs/PPLook.

  18. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  19. Casein - whey protein interactions in heated milk

    NARCIS (Netherlands)

    Vasbinder, Astrid Jolanda

    2002-01-01

    Heating of milk is an essential step in the processing of various dairy products, like for example yoghurt. A major consequence of the heat treatment is the denaturation of whey proteins, which either associate with the casein micelle or form soluble whey protein aggregates. By combination of

  20. RNA-protein interactions: an overview

    DEFF Research Database (Denmark)

    Re, Angela; Joshi, Tejal; Kulberkyte, Eleonora

    2014-01-01

    RNA binding proteins (RBPs) are key players in the regulation of gene expression. In this chapter we discuss the main protein-RNA recognition modes used by RBPs in order to regulate multiple steps of RNA processing. We discuss traditional and state-of-the-art technologies that can be used to stud...

  1. Raman probing of lipids, proteins, and mitochondria in skeletal myocytes: a case study on obesity

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A.; Nikelshparg, Evelina I.; Prats, Clara

    2017-01-01

    We propose a novel approach to assess simultaneously lipid composition in lipid droplets, the redox state of cytochromes, and the relative amount of [Fe–S] clusters in the electron transport chain in the mitochondria of skeletal myocytes by means of near-infrared Raman spectroscopy. Mitochondria...... demonstrate the applicability of the proposed approach in a case study of myocytes of an obese patient before and after the gastric bypass surgery in comparison with a healthy lean donor. Ratios from chosen Raman peaks were calculated and compared between the different subjects. We show that the suggested...... technique allows to estimate qualitatively the relative amount of cholesterol and unsaturated lipids, ordering of lipid phase in lipid droplets, changes in the redox state of c-type and b-type cytochromes, and the relative amount of [Fe–S] clusters in the mitochondria of intact myocytes. The proposed...

  2. Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Skov, Vibe; Glintborg, Dorte; Knudsen, Steen

    2008-01-01

    Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZDs) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZDs in PCOS is, in part, mediated...... by changes in the transcriptional profile of muscle favoring insulin sensitivity. Using Affymetrix microarrays, we examined the effect of pioglitazone (30 mg/day for 16 weeks) on gene expression in skeletal muscle of 10 obese women with PCOS metabolically characterized by a euglycemic-hyperinsulinemic clamp....... Moreover, we explored gene expression changes between these PCOS patients before treatment and 13 healthy women. Treatment with pioglitazone improved insulin-stimulated glucose metabolism and plasma adiponectin, and reduced fasting serum insulin (all P

  3. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  4. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks.

    Science.gov (United States)

    Cao, Renzhi; Cheng, Jianlin

    2016-01-15

    Protein function prediction is an important and challenging problem in bioinformatics and computational biology. Functionally relevant biological information such as protein sequences, gene expression, and protein-protein interactions has been used mostly separately for protein function prediction. One of the major challenges is how to effectively integrate multiple sources of both traditional and new information such as spatial gene-gene interaction networks generated from chromosomal conformation data together to improve protein function prediction. In this work, we developed three different probabilistic scores (MIS, SEQ, and NET score) to combine protein sequence, function associations, and protein-protein interaction and spatial gene-gene interaction networks for protein function prediction. The MIS score is mainly generated from homologous proteins found by PSI-BLAST search, and also association rules between Gene Ontology terms, which are learned by mining the Swiss-Prot database. The SEQ score is generated from protein sequences. The NET score is generated from protein-protein interaction and spatial gene-gene interaction networks. These three scores were combined in a new Statistical Multiple Integrative Scoring System (SMISS) to predict protein function. We tested SMISS on the data set of 2011 Critical Assessment of Function Annotation (CAFA). The method performed substantially better than three base-line methods and an advanced method based on protein profile-sequence comparison, profile-profile comparison, and domain co-occurrence networks according to the maximum F-measure. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Protein interaction discovery using parallel analysis of translated ORFs (PLATO).

    Science.gov (United States)

    Zhu, Jian; Larman, H Benjamin; Gao, Geng; Somwar, Romel; Zhang, Zijuan; Laserson, Uri; Ciccia, Alberto; Pavlova, Natalya; Church, George; Zhang, Wei; Kesari, Santosh; Elledge, Stephen J

    2013-04-01

    Identifying physical interactions between proteins and other molecules is a critical aspect of biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions by affinity enrichment of a library of full-length open reading frames displayed on ribosomes, followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility of the method for human proteins by identifying known and previously unidentified interacting partners of LYN kinase, patient autoantibodies, and the small-molecules gefitinib and dasatinib.

  6. Interactome Data and Databases: Different Types of Protein Interaction

    Directory of Open Access Journals (Sweden)

    Alberto de Luis

    2006-04-01

    Full Text Available In recent years, the biomolecular sciences have been driven forward by overwhelming advances in new biotechnological high-throughput experimental methods and bioinformatic genome-wide computational methods. Such breakthroughs are producing huge amounts of new data that need to be carefully analysed to obtain correct and useful scientific knowledge. One of the fields where this advance has become more intense is the study of the network of ‘protein–protein interactions’, i.e. the ‘interactome’. In this short review we comment on the main data and databases produced in this field in last 5 years. We also present a rationalized scheme of biological definitions that will be useful for a better understanding and interpretation of ‘what a protein–protein interaction is’ and ‘which types of protein–protein interactions are found in a living cell’. Finally, we comment on some assignments of interactome data to defined types of protein interaction and we present a new bioinformatic tool called APIN (Agile Protein Interaction Network browser, which is in development and will be applied to browsing protein interaction databases.

  7. Dendrimer-protein interactions versus dendrimer-based nanomedicine.

    Science.gov (United States)

    Shcharbin, Dzmitry; Shcharbina, Natallia; Dzmitruk, Volha; Pedziwiatr-Werbicka, Elzbieta; Ionov, Maksim; Mignani, Serge; de la Mata, F Javier; Gómez, Rafael; Muñoz-Fernández, Maria Angeles; Majoral, Jean-Pierre; Bryszewska, Maria

    2017-04-01

    Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Enhanced Fasting Glucose Turnover in Mice with Disrupted Action of TUG Protein in Skeletal Muscle*

    Science.gov (United States)

    Löffler, Michael G.; Birkenfeld, Andreas L.; Philbrick, Katerina M.; Belman, Jonathan P.; Habtemichael, Estifanos N.; Booth, Carmen J.; Castorena, Carlos M.; Choi, Cheol Soo; Jornayvaz, Francois R.; Gassaway, Brandon M.; Lee, Hui-Young; Cartee, Gregory D.; Philbrick, William; Shulman, Gerald I.; Samuel, Varman T.; Bogan, Jonathan S.

    2013-01-01

    Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12–13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet

  9. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle.

    Science.gov (United States)

    Löffler, Michael G; Birkenfeld, Andreas L; Philbrick, Katerina M; Belman, Jonathan P; Habtemichael, Estifanos N; Booth, Carmen J; Castorena, Carlos M; Choi, Cheol Soo; Jornayvaz, Francois R; Gassaway, Brandon M; Lee, Hui-Young; Cartee, Gregory D; Philbrick, William; Shulman, Gerald I; Samuel, Varman T; Bogan, Jonathan S

    2013-07-12

    Insulin stimulates glucose uptake in 3T3-L1 adipocytes in part by causing endoproteolytic cleavage of TUG (tether containing a ubiquitin regulatory X (UBX) domain for glucose transporter 4 (GLUT4)). Cleavage liberates intracellularly sequestered GLUT4 glucose transporters for translocation to the cell surface. To test the role of this regulation in muscle, we used mice with muscle-specific transgenic expression of a truncated TUG fragment, UBX-Cter. This fragment causes GLUT4 translocation in unstimulated 3T3-L1 adipocytes. We predicted that transgenic mice would have GLUT4 translocation in muscle during fasting. UBX-Cter expression caused depletion of PIST (PDZ domain protein interacting specifically with TC10), which transmits an insulin signal to TUG. Whereas insulin stimulated TUG proteolysis in control muscles, proteolysis was constitutive in transgenic muscles. Fasting transgenic mice had decreased plasma glucose and insulin concentrations compared with controls. Whole-body glucose turnover was increased during fasting but not during hyperinsulinemic clamp studies. In muscles with the greatest UBX-Cter expression, 2-deoxyglucose uptake during fasting was similar to that in control muscles during hyperinsulinemic clamp studies. Fasting transgenic mice had increased muscle glycogen, and GLUT4 targeting to T-tubule fractions was increased 5.7-fold. Whole-body oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure were increased by 12-13%. After 3 weeks on a high fat diet, the decreased fasting plasma glucose in transgenic mice compared with controls was more marked, and increased glucose turnover was not observed; the transgenic mice continued to have an increased metabolic rate. We conclude that insulin stimulates TUG proteolysis to translocate GLUT4 in muscle, that this pathway impacts systemic glucose homeostasis and energy metabolism, and that the effects of activating this pathway are maintained during high fat diet

  10. Prolonged calorie restriction downregulates skeletal muscle mTORC1 signaling independent of dietary protein intake and associated microRNA expression

    Directory of Open Access Journals (Sweden)

    Lee M Margolis

    2016-10-01

    Full Text Available Short-term (5-10 days calorie restriction (CR downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic target of rapamycin complex 1 (mTORC1, however, there is limited evidence to support this contention. The purpose of this investigation was to determine the effects of prolonged CR and high protein diets on skeletal muscle mTORC1 signaling and expression of associated microRNA (miR. 12-wk old male Sprague Dawley rats consumed ad libitum (AL or calorie restricted (CR; 40% adequate (10%, AIN-93M or high (32% protein milk-based diets for 16 weeks. Body composition was determined using dual energy X-ray absorptiometry and muscle protein content was calculated from muscle homogenate protein concentrations expressed relative to fat-free mass to estimate protein content. Western blot and RT-qPCR were used to determine mTORC1 signaling and mRNA and miR expression in fasted mixed gastrocnemius. Independent of dietary protein intake, muscle protein content was 38% lower (P < 0.05 in CR compared to AL. Phosphorylation and total Akt, mTOR, rpS6 and p70S6K were lower (P < 0.05 in CR versus AL, and total rpS6 was associated with muscle protein content (r = 0.64, r2 = 0.36. Skeletal muscle miR expression was not altered by either energy or protein intake. This study provides evidence that chronic CR attenuates muscle protein content by downregulating mTORC1 signaling. This response is independent of skeletal muscle miR and dietary protein.

  11. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    that the same type of training affects many transport proteins, suggesting that all transport proteins increase with training, and that both sprint and endurance training in humans increase the density of most membrane transport proteins. There seems to be an upper limit for these changes: intense training......Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...... for 6-8 weeks substantially increases the density of membrane proteins, whereas years of training (as performed by athletes) have no further effect. Studies suggest that training-induced changes at the protein level are important functionally. The underlying factors responsible for these changes...

  12. Screening for protein-DNA interactions by automatable DNA-protein interaction ELISA.

    Directory of Open Access Journals (Sweden)

    Luise H Brand

    Full Text Available DNA-binding proteins (DBPs, such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI-ELISA screen of an optimized double-stranded DNA (dsDNA probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a

  13. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    Science.gov (United States)

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  14. Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Katrina eMeyer

    2015-07-01

    Full Text Available While the genomic revolution has dramatically accelerated the discovery of disease-associated genes, the functional characterization of the corresponding proteins lags behind. Most proteins fulfill their tasks in complexes with other proteins, and analysis of Protein-Protein Interactions (PPIs can therefore provide insights into protein function. Several methods can be used to generate large-scale protein interaction networks. However, most of these approaches are not quantitative and therefore cannot reveal how perturbations affect the network. Here, we illustrate how a clever combination of quantitative mass spectrometry with different biochemical methods provides a rich toolkit to study different aspects of PPIs including topology, subunit stoichiometry, and dynamic behavior.

  15. Protein-material interactions: From micro-to-nano scale

    Energy Technology Data Exchange (ETDEWEB)

    Tsapikouni, Theodora S. [Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504 (Greece); Missirlis, Yannis F. [Laboratory of Biomechanics and Biomedical Engineering, Mechanical Engineering and Aeronautics Department, University of Patras, Patras 26504 (Greece)], E-mail: misirlis@mech.upatras.gr

    2008-08-25

    The article presents a survey on the significance of protein-material interactions, the mechanisms which control them and the techniques used for their study. Protein-surface interactions play a key role in regenerative medicine, drug delivery, biosensor technology and chromatography, while it is related to various undesired effects such as biofouling and bio-prosthetic malfunction. Although the effects of protein-surface interaction concern the micro-scale, being sometimes obvious even with bare eyes, they derive from biophysical events at the nano-scale. The sequential steps for protein adsorption involve events at the single biomolecule level and the forces driving or inhibiting protein adsorption act at the molecular level too. Following the scaling of protein-surface interactions, various techniques have been developed for their study both in the micro- and nano-scale. Protein labelling with radioisotopes or fluorescent probes, colorimetric assays and the quartz crystal microbalance were the first techniques used to monitor protein adsorption isotherms, while the surface force apparatus was used to measure the interaction forces between protein layers at the micro-scale. Recently, more elaborate techniques like total internal reflection fluorescence (TIRF), Fourier transform infrared spectroscopy (FTIR), surface plasmon resonance, Raman spectroscopy, ellipsometry and time of flight secondary ion mass spectrometry (ToF-SIMS) have been applied for the investigation of protein density, structure or orientation at the interfaces. However, a turning point in the study of protein interactions with the surfaces was the invention and the wide-spread use of atomic force microscopy (AFM) which can both image single protein molecules on surfaces and directly measure the interaction force.

  16. Interaction between -Synuclein and Other Proteins in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Kurt A. Jellinger

    2011-01-01

    Full Text Available Protein aggregation is a common characteristic of many neurodegenerative disorders, and the interaction between pathological/toxic proteins to cause neurodegeneration is a hot topic of current neuroscience research. Despite clinical, genetic, and experimental differences, evidence increasingly indicates considerable overlap between synucleinopathies and tauopathies or other protein-misfolding diseases. Inclusions, characteristics of these disorders, also occurring in other neurodegenerative diseases, suggest interactions of pathological proteins engaging common downstream pathways. Novel findings that have shifted our understanding in the role of pathologic proteins in the pathogenesis of Parkinson and Alzheimer diseases have confirmed correlations/overlaps between these and other neurodegenerative disorders. The synergistic effects of α-synuclein, hyperphosphorylated tau, amyloid-β, and other pathologic proteins, and the underlying molecular pathogenic mechanisms, including induction and spread of protein aggregates, are critically reviewed, suggesting a dualism or triad of neurodegeneration in protein-misfolding disorders, although the etiology of most of these processes is still mysterious.

  17. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  18. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the 'anabolic resistance' of ageing

    Directory of Open Access Journals (Sweden)

    Phillips Stuart M

    2011-10-01

    Full Text Available Abstract Age-related muscle wasting (sarcopenia is accompanied by a loss of strength which can compromise the functional abilities of the elderly. Muscle proteins are in a dynamic equilibrium between their respective rates of synthesis and breakdown. It has been suggested that age-related sarcopenia is due to: i elevated basal-fasted rates of muscle protein breakdown, ii a reduction in basal muscle protein synthesis (MPS, or iii a combination of the two factors. However, basal rates of muscle protein synthesis and breakdown are unchanged with advancing healthy age. Instead, it appears that the muscles of the elderly are resistant to normally robust anabolic stimuli such as amino acids and resistance exercise. Ageing muscle is less sensitive to lower doses of amino acids than the young and may require higher quantities of protein to acutely stimulate equivalent muscle protein synthesis above rest and accrue muscle proteins. With regard to dietary protein recommendations, emerging evidence suggests that the elderly may need to distribute protein intake evenly throughout the day, so as to promote an optimal per meal stimulation of MPS. The branched-chain amino acid leucine is thought to play a central role in mediating mRNA translation for MPS, and the elderly should ensure sufficient leucine is provided with dietary protein intake. With regards to physical activity, lower, than previously realized, intensity high-volume resistance exercise can stimulate a robust muscle protein synthetic response similar to traditional high-intensity low volume training, which may be beneficial for older adults. Resistance exercise combined with amino acid ingestion elicits the greatest anabolic response and may assist elderly in producing a 'youthful' muscle protein synthetic response provided sufficient protein is ingested following exercise.

  19. Presence of enolase in the M-band of skeletal muscle and possible indirect interaction with the cytosolic muscle isoform of creatine kinase.

    Science.gov (United States)

    Foucault, G; Vacher, M; Merkulova, T; Keller, A; Arrio-Dupont, M

    1999-01-01

    Glycerol-skinned skeletal muscle fibres retain the defined sarcomeric structure of the myofibrils. We show here that a small fraction of two enzymes important for energy metabolism, the cytosolic muscle isoform of creatine kinase (EC 2.7.3.2), MM-creatine kinase (MM-CK), and enolase (EC 4.2.1.11), remains bound to skinned fibres. CK is slowly exchangeable, whereas enolase is firmly bound. Two-dimensional gel electrophoresis followed by Western blot analyses demonstrates that both alpha (ubiquitous) and beta (muscle-specific) subunits of enolase are present in these preparations. Enolase and CK were co-localized at the M-band of the sarcomeres, as observed by indirect immunofluorescence and confocal microscopy. Cross-linking experiments were performed on skinned fibres with three bifunctional succinimidyl esters of different lengths and yielded a protein complex of 150 kDa that reacted with antibodies directed against either M-CK or beta-enolase. The cross-linking efficiency was greatest for the longest reagent and zero for the shortest one. The length of the cross-linker giving a covalent complex between the two enzymes does not support the notion of a direct interaction between M-CK and enolase. This is the first demonstration of the presence of an enzyme of energy metabolism other than CK at the M-band of myofibres. PMID:9931306

  20. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...... and illustrate simple protein-ligand interactions and as well as typical strategies for measuring binding constants using NMR spectroscopy. Finally, this review provides examples of caveats of the method as well as the options to improve the outcome of an NMR analysis of a protein interaction reaction...

  1. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  2. Expression of heat shock protein (Hsp90 paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon.

    Directory of Open Access Journals (Sweden)

    Daniel Garcia de la Serrana

    Full Text Available Heat shock proteins 90 (Hsp90 have an essential role in sarcomere formation and differentiation in skeletal muscle and also act as molecular chaperones during protein folding impacting a wide range of physiological processes. We characterised and provided a phylogenetically consistent nomenclature for the complete repertoire of six Hsp90 paralogues present in duplicated salmonid fish genomes (Hsp90α1a, Hsp90α1b, Hsp90α2a, Hsp90α2b, Hsp90ß1a and Hsp90ß1b. The expression of paralogues in fast skeletal muscle was investigated using in vivo fasting-feeding experiments and primary myogenic cultures. Fasted juvenile Atlantic salmon (Salmo salar showed a transient 2 to 8-fold increase in the expression of all 4 Hsp90α paralogues within 24h of satiation feeding. Hsp90α1a and hsp90α1b also showed a pronounced secondary increase in expression after 10 days, concomitant with muscle differentiation and the expression of myogenin and sarcomeric proteins (mlc2, myhc. Hsp90ß1b was constitutively expressed whereas Hsp90ß1a expression was downregulated 10-fold between fasted and fed individuals. Hsp90α1a and Hsp90α1b were upregulated 10 to 15-fold concomitant with myotube formation and muscle differentiation in vitro whereas other Hsp90 paralogues showed no change in expression. In cells starved of amino acid (AA and serum for 72h the addition of AA, but not insulin-like growth factor 1, increased phosphorylation of mTor and expression of all 4 hsp90α paralogues and associated co-chaperones including hsp30, tbcb, pdia4, pdia6, stga and fk504bp1, indicating a general activation of the protein folding response. In contrast, Hsp90ß1a expression in vitro was unresponsive to AA treatment indicating that some other as yet uncharacterised signal(s regulate its expression in response to altered nutritional state.

  3. Mirin: identifying microRNA regulatory modules in protein-protein interaction networks

    National Research Council Canada - National Science Library

    Yang, Ken-Chi; Hsu, Chia-Lang; Lin, Chen-Ching; Juan, Hsueh-Fen; Huang, Hsuan-Cheng

    2014-01-01

    .... Mirin is a web-based application suitable for identifying functional modules from protein-protein interaction networks regulated by aberrant miRNAs under user-defined biological conditions such as cancers...

  4. Versatile screening for binary protein-protein interactions by yeast two-hybrid mating

    NARCIS (Netherlands)

    Letteboer, S.J.F.; Roepman, R.

    2008-01-01

    Identification of binary protein-protein interactions is a crucial step in determining the molecular context and functional pathways of proteins. State-of-the-art proteomics techniques provide high-throughput information on the content of proteomes and protein complexes, but give little information

  5. Multitask Matrix Completion for Learning Protein Interactions Across Diseases.

    Science.gov (United States)

    Kshirsagar, Meghana; Murugesan, Keerthiram; Carbonell, Jaime G; Klein-Seetharaman, Judith

    2017-06-01

    Disease-causing pathogens such as viruses introduce their proteins into the host cells in which they interact with the host's proteins, enabling the virus to replicate inside the host. These interactions between pathogen and host proteins are key to understanding infectious diseases. Often multiple diseases involve phylogenetically related or biologically similar pathogens. Here we present a multitask learning method to jointly model interactions between human proteins and three different but related viruses: Hepatitis C, Ebola virus, and Influenza A. Our multitask matrix completion-based model uses a shared low-rank structure in addition to a task-specific sparse structure to incorporate the various interactions. We obtain between 7 and 39 percentage points improvement in predictive performance over prior state-of-the-art models. We show how our model's parameters can be interpreted to reveal both general and specific interaction-relevant characteristics of the viruses. Our code is available online.

  6. The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling

    National Research Council Canada - National Science Library

    Staines, Katherine A; MacRae, Vicky E; Farquharson, Colin

    2012-01-01

    The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein...

  7. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Emilie eGauliard

    2015-02-01

    Full Text Available Chlamydiae are obligate intracellular pathogens of eukaryotes. The bacteria grow in an intracellular vesicle called an inclusion, the membrane of which is heavily modified by chlamydial proteins called Incs (Inclusion membrane proteins. Incs represent 7-10% of the genomes of Chlamydia and, given their localization at the interface between the host and the pathogen, likely play a key role in the development and pathogenesis of the bacterium. However, their functions remain largely unknown. Here, we characterized the interaction properties between various Inc proteins of C. trachomatis, using a bacterial two-hybrid (BACTH method suitable for detecting interactions between integral membrane proteins. To validate this approach, we first examined the oligomerization properties of the well-characterized IncA protein and showed that both the cytoplasmic domain and the transmembrane region independently contribute to IncA oligomerization. We then analyzed a set of Inc proteins and identified novel interactions between these components. Two small Incs, IncF and Ct222, were found here to interact with many other Inc proteins and may thus represent interaction nodes within the inclusion membrane. Our data suggest that the Inc proteins may assemble in the membrane of the inclusion to form specific multi-molecular complexes in an hierarchical and temporal manner. These studies will help to better define the putative functions of the Inc proteins in the infectious process of Chlamydia.

  8. Unveiling protein functions through the dynamics of the interaction network.

    Directory of Open Access Journals (Sweden)

    Irene Sendiña-Nadal

    Full Text Available Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes.

  9. Regulation of PCNA-protein interactions for genome stability

    DEFF Research Database (Denmark)

    Mailand, Niels; Gibbs-Seymour, Ian; Bekker-Jensen, Simon

    2013-01-01

    Proliferating cell nuclear antigen (PCNA) has a central role in promoting faithful DNA replication, providing a molecular platform that facilitates the myriad protein-protein and protein-DNA interactions that occur at the replication fork. Numerous PCNA-associated proteins compete for binding...... to a common surface on PCNA; hence these interactions need to be tightly regulated and coordinated to ensure proper chromosome replication and integrity. Control of PCNA-protein interactions is multilayered and involves post-translational modifications, in particular ubiquitylation, accessory factors...... and regulated degradation of PCNA-associated proteins. This regulatory framework allows cells to maintain a fine-tuned balance between replication fidelity and processivity in response to DNA damage....

  10. A protein domain interaction interface database: InterPare.

    Science.gov (United States)

    Gong, Sungsam; Park, Changbum; Choi, Hansol; Ko, Junsu; Jang, Insoo; Lee, Jungsul; Bolser, Dan M; Oh, Donghoon; Kim, Deok-Soo; Bhak, Jong

    2005-08-25

    Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains) interfaces and intra-chain (within chain) interfaces. InterPare uses three methods to detect interfaces: 1) the geometric distance method for checking the distance between atoms that belong to different domains, 2) Accessible Surface Area (ASA), a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3) the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance), 10,431 (ASA), and 11,010 (Voronoi diagram) entries in the Protein Data Bank (PDB) containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain-domain interaction interfaces and 12,758 intra

  11. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain

  12. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    Science.gov (United States)

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  13. Yeast Interacting Proteins Database: YDR446W, YDR510W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available YDR446W ECM11 Non-essential protein apparently involved in meiosis, GFP fusion protein is present in discret...description Non-essential protein apparently involved in meiosis, GFP fusion protein is present in discrete

  14. Electrostatic Control of Protein-Surface Interactions

    Science.gov (United States)

    2013-10-21

    noncovalently -assembled superstructures from the controlled aggregation of β-strand peptides into fibrils and fibers. These structures are predicted to...interactions (such as hydrogen bonding ) with important small molecule nutrients This could be accomplished by synthesizing unnatural amino acids into the...in Figure 3, which demonstrates how the noncovalent interaction of peptides with various functional groups on the surface will impact the adsorption

  15. Reduced dietary protein level influences the free amino acid and gene expression profiles of selected amino acid transceptors in skeletal muscle of growing pigs.

    Science.gov (United States)

    Li, Y H; Li, F N; Wu, L; Liu, Y Y; Wei, H K; Li, T J; Tan, B E; Kong, X F; Wu, F; Duan, Y H; Oladele, O A; Yin, Y L

    2017-02-01

    This study was conducted to evaluate the effect of reduced dietary protein level on growth performance, muscle mass weight, free amino acids (FAA) and gene expression profile of selected amino acid transceptors in different fibre type of skeletal muscle tissues (longissimus dorsi, psoas major, biceps femoris) of growing pigs. A total of 18 cross-bred growing pigs (Large White × Landrace × Duroc) with initial body weight (9.57 ± 0.67 kg) were assigned into three dietary treatments: 20% crude protein (CP) diet (normal recommended, NP), 17% CP diet (low protein, LP) and 14% CP diet (very low protein, VLP). The results indicated improved feed-to-gain ratio was obtained for pigs fed LP and NP diets (p  0.05). Majority of the determined FAA concentration of LP group were greater than or equal to those of NP group in both longissimus dorsi and psoas major muscle (p dietary protein level (3 points of percentage less than recommended level) would upregulate the mRNA expression of amino acid transceptors to enhance the absorption of FAA in skeletal muscle of growing pigs. There seems to be a relationship between response of AA transceptors to the dietary protein level in skeletal muscle tissue of different fibre type. To illustrate the underlying mechanisms will be beneficial to animal nutrition. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Discovering novel protein-protein interactions by measuring the protein semantic similarity from the biomedical literature.

    Science.gov (United States)

    Chiang, Jung-Hsien; Ju, Jiun-Huang

    2014-12-01

    Protein-protein interactions (PPIs) are involved in the majority of biological processes. Identification of PPIs is therefore one of the key aims of biological research. Although there are many databases of PPIs, many other unidentified PPIs could be buried in the biomedical literature. Therefore, automated identification of PPIs from biomedical literature repositories could be used to discover otherwise hidden interactions. Search engines, such as Google, have been successfully applied to measure the relatedness among words. Inspired by such approaches, we propose a novel method to identify PPIs through semantic similarity measures among protein mentions. We define six semantic similarity measures as features based on the page counts retrieved from the MEDLINE database. A machine learning classifier, Random Forest, is trained using the above features. The proposed approach achieve an averaged micro-F of 71.28% and an averaged macro-F of 64.03% over five PPI corpora, an improvement over the results of using only the conventional co-occurrence feature (averaged micro-F of 68.79% and an averaged macro-F of 60.49%). A relation-word reinforcement further improves the averaged micro-F to 71.3% and averaged macro-F to 65.12%. Comparing the results of the current work with other studies on the AIMed corpus (ranging from 77.58% to 85.1% in micro-F, 62.18% to 76.27% in macro-F), we show that the proposed approach achieves micro-F of 81.88% and macro-F of 64.01% without the use of sophisticated feature extraction. Finally, we manually examine the newly discovered PPI pairs based on a literature review, and the results suggest that our approach could extract novel protein-protein interactions.

  17. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  18. Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications

    Directory of Open Access Journals (Sweden)

    R. P. Kengne-Momo

    2012-01-01

    Full Text Available Interaction and surface binding characteristics of staphylococcal protein A (SpA and an anti-Escherichia coli immunoglobulin G (IgG were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.

  19. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  20. Yeast Interacting Proteins Database: YDL239C, YGR268C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available ith sequence similarity to that of Type I J-proteins; computational analysis of large-scale protein-protein ...equence similarity to that of Type I J-proteins; computational analysis of large-scale protein-protein inter

  1. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  2. Protein thiol oxidation does not change in skeletal muscles of aging female mice.

    Science.gov (United States)

    Tohma, Hatice; El-Shafey, Ahmed F; Croft, Kevin; Shavlakadze, Tea; Grounds, Miranda D; Arthur, Peter G

    2014-02-01

    Oxidative stress caused by reactive oxygen species is proposed to cause age related muscle wasting (sarcopenia). Reversible oxidation of protein thiols by reactive oxygen species can affect protein function, so we evaluated whether muscle wasting in normal aging was associated with a pervasive increase in reversible oxidation of protein thiols or with an increase in irreversible oxidative damage to macromolecules. In gastrocnemius muscles of C57BL/6J female mice aged 3, 15, 24, 27, and 29 months there was no age related increase in protein thiol oxidation. In contrast, there was a significant correlation (R (2) = 0.698) between increasing protein carbonylation, a measure of irreversible oxidative damage to proteins, and loss of mass of gastrocnemius muscles in aging female mice. In addition, there was an age-related increase in lipofuscin content, an aggregate of oxidised proteins and lipids, in quadriceps limb muscles in aging female mice. However, there was no evidence of an age-related increase in malondialdehyde or F2-isoprostanes levels, which are measures of oxidative damage to lipids, in gastrocnemius muscles. In summary, this study does not support the hypothesis that a pervasive increase in protein thiol oxidation is a contributing factor to sarcopenia. Instead, the data are consistent with an aging theory which proposes that molecular damage to macromolecules leads to the structural and functional disorders associated with aging.

  3. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis

    Science.gov (United States)

    This study examined ubiquitin-mediated proteolysis and associated gene expression in normal-23 weight adults consuming varying levels of dietary protein during short-term energy deficit. 24 Using a randomized-bock design, 32 men and 7 women were assigned to diets providing protein 25 at 0.8 (RDA), 1...

  4. Cytoplasmic fatty acid-binding protein facilitates fatty acid utilization by skeletal muscle

    NARCIS (Netherlands)

    Glatz, J. F. C.; Schaap, F. G.; Binas, B.; Bonen, A.; van der Vusse, G. J.; Luiken, J. J. F. P.

    2003-01-01

    The intracellular transport of long-chain fatty acids in muscle cells is facilitated to a great extent by heart-type cytoplasmic fatty acid-binding protein (H-FABP). By virtue of the marked affinity of this 14.5-kDa protein for fatty acids, H-FABP dramatically increases their concentration in the

  5. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  6. Prediction of virus-host protein-protein interactions mediated by short linear motifs.

    Science.gov (United States)

    Becerra, Andrés; Bucheli, Victor A; Moreno, Pedro A

    2017-03-09

    Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predicting motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1). We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2) located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D,R are united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly inferred with them - with experimental validation. The comparison is done with HIV-1 sequences and interactions from the National Institute of Allergy and Infectious Diseases (NIAID). The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D∪R and C. The ordering of the sets is descending on the probability of capturing functional interactions. With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteins mediated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions. We have developed a method for predicting protein-protein interactions mediated by linear motifs between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we will use it to explore possible viral attack mechanisms based on linear motif mimicry.

  7. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Jepsen, Pia Lørup; Boysen, Anders

    2017-01-01

    to actin. This interaction is present in regenerating myofibers of patients with Duchenne muscular dystrophy, polymyositis, and compartment syndrome. Analysis of the α-, β-, and γ-actin isoforms in SPARC knockout myoblasts reveals a changed expression pattern with dominance of γ-actin. In SPARC knockout...... stimulation protocol, we find a defective force recovery. Therefore, SPARC appears to be an important modulator of the actin cytoskeleton, implicating maintenance of muscular function. This direct interaction with actin suggests a new role of SPARC during tissue remodeling....

  8. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  9. Protein-protein interactions between proteins of Citrus tristeza virus isolates.

    Science.gov (United States)

    Nchongboh, Chofong Gilbert; Wu, Guan-Wei; Hong, Ni; Wang, Guo-Ping

    2014-12-01

    Citrus tristeza virus (CTV) is one of the most devastating pathogens of citrus. Its genome is organized into 12 open reading frames (ORFs), of which ten ORFs located at the 3'-terminus of the genome have multiple biological functions. The ten genes at the 3'-terminus of the genome of a severe isolate (CTV-S4) and three ORFs (CP, CPm and p20) of three other isolates (N4, S45 and HB1) were cloned into pGBKT7 and pGADT7 yeast shuttle vectors. Yeast two-hybridization (Y2H) assays results revealed a strong self-interaction for CP and p20, and a unique interaction between the CPm of CTV-S4 (severe) and CP of CTV-N4 (mild) isolates. Bimolecular fluorescence complementation also confirmed these interactions. Analysis of the deletion mutants delineated the domains of CP and p20 self-interaction. Furthermore, the domains responsible for CP and p20 self-interactions were mapped at the CP amino acids sites 41-84 and p20 amino acids sites 1-21 by Y2H. This study provided new information on CTV protein interactions which will help for further understanding the biological functions.

  10. Proteomics of Skeletal Muscle

    DEFF Research Database (Denmark)

    Deshmukh, Atul S

    2016-01-01

    Skeletal muscle is the largest tissue in the human body and plays an important role in locomotion and whole body metabolism. It accounts for ~80% of insulin stimulated glucose disposal. Skeletal muscle insulin resistance, a primary feature of Type 2 diabetes, is caused by a decreased ability...... of muscle to respond to circulating insulin. Physical exercise improves insulin sensitivity and whole body metabolism and remains one of the most promising interventions for the prevention of Type 2 diabetes. Insulin resistance and exercise adaptations in skeletal muscle might be a cause, or consequence......, of altered protein expressions profiles and/or their posttranslational modifications (PTMs). Mass spectrometry (MS)-based proteomics offer enormous promise for investigating the molecular mechanisms underlying skeletal muscle insulin resistance and exercise-induced adaptation; however, skeletal muscle...

  11. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  12. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  13. Gene essentiality and the topology of protein interaction networks

    Science.gov (United States)

    Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude

    2005-01-01

    The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428

  14. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  15. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  16. Membrane interaction of retroviral Gag proteins

    Directory of Open Access Journals (Sweden)

    Robert Alfred Dick

    2014-04-01

    Full Text Available Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses-- MA, CA, and NC-- provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.

  17. Evolutionary analysis and interaction prediction for protein-protein interaction network in geometric space.

    Science.gov (United States)

    Huang, Lei; Liao, Li; Wu, Cathy H

    2017-01-01

    Prediction of protein-protein interaction (PPI) remains a central task in systems biology. With more PPIs identified, forming PPI networks, it has become feasible and also imperative to study PPIs at the network level, such as evolutionary analysis of the networks, for better understanding of PPI networks and for more accurate prediction of pairwise PPIs by leveraging the information gained at the network level. In this work we developed a novel method that enables us to incorporate evolutionary information into geometric space to improve PPI prediction, which in turn can be used to select and evaluate various evolutionary models. The method is tested with cross-validation using human PPI network and yeast PPI network data. The results show that the accuracy of PPI prediction measured by ROC score is increased by up to 14.6%, as compared to a baseline without using evolutionary information. The results also indicate that our modified evolutionary model DANEOsf-combining a gene duplication/neofunctionalization model and scale-free model-has a better fitness and prediction efficacy for these two PPI networks. The improved PPI prediction performance may suggest that our DANEOsf evolutionary model can uncover the underlying evolutionary mechanism for these two PPI networks better than other tested models. Consequently, of particular importance is that our method offers an effective way to select evolutionary models that best capture the underlying evolutionary mechanisms, evaluating the fitness of evolutionary models from the perspective of PPI prediction on real PPI networks.

  18. Effects of energy deficit, dietary protein, and feeding on intracellular regulators of skeletal muscle proteolysis.

    Science.gov (United States)

    Carbone, John W; Margolis, Lee M; McClung, James P; Cao, Jay J; Murphy, Nancy E; Sauter, Edward R; Combs, Gerald F; Young, Andrew J; Pasiakos, Stefan M

    2013-12-01

    This study was undertaken to characterize the ubiquitin proteasome system (UPS) response to varied dietary protein intake, energy deficit (ED), and consumption of a mixed meal. A randomized, controlled trial of 39 adults consuming protein at 0.8 (recommended dietary allowance [RDA]), 1.6 (2×-RDA), or 2.4 (3×-RDA) g · kg(-1) · d(-1) for 31 d. A 10-d weight maintenance (WM) period was followed by 21 d of 40% ED. Ubiquitin (Ub)-mediated proteolysis and associated gene expression were assessed in the postabsorptive (fasted) and postprandial (fed; 480 kcal, 20 g protein) states after WM and ED by using muscle biopsies, fluorescence-based assays, immunoblot analysis, and real-time qRT-PCR. In the assessment of UPS responses to varied protein intakes, ED, and feeding, the RDA, WM, and fasted measures served as appropriate controls. ED resulted in the up-regulation of UPS-associated gene expression, as mRNA expression of the atrogenes muscle RING finger-1 (MuRF1) and atrogin-1 were 1.2- and 1.3-fold higher (Pregardless of dietary protein and energy manipulations. Independent of habitual protein intake and despite increased MuRF1 and atrogin-1 mRNA expression during ED, consuming a protein-containing mixed meal attenuates Ub-mediated proteolysis.

  19. Interaction of puroindolines with gluten proteins

    Science.gov (United States)

    The effect of puroindolines (PINs) on structural characteristics of gluten proteins was investigated in Triticum turgidum ssp. durum (cv. Svevo) and Triticum aestivum (cv. Alpowa) and from their respective derivatives in which PIN genes were expressed (Soft Svevo) or the distal end of the short arm ...

  20. compartment-specific interactions of Hox proteins

    Indian Academy of Sciences (India)

    Unknown

    was on understanding gene sequences and function. These studies showed that important regulatory proteins are highly conserved in sequence and, often, in function, in organisms as diverse as mice and worms. Thus, novel genes alone do not make one organism different from another. Instead, many findings have made ...

  1. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  2. Direct Identification of Protein-Protein Interactions by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Vera, Andrés M; Carrión-Vázquez, Mariano

    2016-11-02

    Single-molecule force spectroscopy based on atomic force microscopy (AFM-SMFS) has allowed the measurement of the intermolecular forces involved in protein-protein interactions at the molecular level. While intramolecular interactions are routinely identified directly by the use of polyprotein fingerprinting, there is a lack of a general method to directly identify single-molecule intermolecular unbinding events. Here, we have developed an internally controlled strategy to measure protein-protein interactions by AFM-SMFS that allows the direct identification of dissociation force peaks while ensuring single-molecule conditions. Single-molecule identification is assured by polyprotein fingerprinting while the intermolecular interaction is reported by a characteristic increase in contour length released after bond rupture. The latter is due to the exposure to force of a third protein that covalently connects the interacting pair. We demonstrate this strategy with a cohesin-dockerin interaction. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway

    DEFF Research Database (Denmark)

    Lu, Huogen; Shah, Poonam; Ennis, David

    2002-01-01

    Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense PTP....... Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway.......Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense...... PTPalpha or with full-length wild-type human or mouse or double catalytic site Cys --> Ala mutant (DM8) PTPalpha cDNA. Expression of PTPalpha in these cell lines was determined by immunoblotting and immunofluorescence. Cells harboring antisense PTPalpha exhibited a significantly reduced growth rate...

  4. Progress and potential of Drosophila protein interaction maps.

    Science.gov (United States)

    Stanyon, C A; Finley, R L

    2000-11-01

    Protein-protein interactions mediate many important cellular processes and are central to the mechanisms by which most proteins function. Charting the interactions among the proteins involved in a process has been an essential step in characterising the function of proteins and pathways. The yeast two-hybrid system is one approach to detecting protein interactions that can now be scaled-up to assay large sets of proteins systematically, such as those being identified from genome sequencing efforts. The system has already been extensively used to acquire data that have enabled construction of large protein interaction maps (PIMs). When combined with other data, including data being generated by other functional genomics approaches, PIMs help assign function to new proteins and delineate functional networks. Hypotheses generated in such a manner often must be tested by additional experimentation, preferably in vivo. The model organism Drosophila melanogaster has a wealth of genetic and bioinformatic tools available for such analyses. The proteome predicted from the recently sequenced Drosophila genome indicates that humans have more genes in common with Drosophila than with any other invertebrate model organism characterised to date. Thus, the construction and characterisation of Drosophila PIMs will help define the functions of many conserved genes and pathways, and will provide the pharmaceutical research industry with invaluable data to assist with drug target identification and validation.

  5. Protein function prediction using guilty by association from interaction networks.

    Science.gov (United States)

    Piovesan, Damiano; Giollo, Manuel; Ferrari, Carlo; Tosatto, Silvio C E

    2015-12-01

    Protein function prediction from sequence using the Gene Ontology (GO) classification is useful in many biological problems. It has recently attracted increasing interest, thanks in part to the Critical Assessment of Function Annotation (CAFA) challenge. In this paper, we introduce Guilty by Association on STRING (GAS), a tool to predict protein function exploiting protein-protein interaction networks without sequence similarity. The assumption is that whenever a protein interacts with other proteins, it is part of the same biological process and located in the same cellular compartment. GAS retrieves interaction partners of a query protein from the STRING database and measures enrichment of the associated functional annotations to generate a sorted list of putative functions. A performance evaluation based on CAFA metrics and a fair comparison with optimized BLAST similarity searches is provided. The consensus of GAS and BLAST is shown to improve overall performance. The PPI approach is shown to outperform similarity searches for biological process and cellular compartment GO predictions. Moreover, an analysis of the best practices to exploit protein-protein interaction networks is also provided.

  6. Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown and insulin resistance- a qualitative review

    Directory of Open Access Journals (Sweden)

    Supreeth S Rudrappa

    2016-08-01

    Full Text Available The ever increasing burden of an ageing population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as simple atrophy and insulin resistance are ‘non-pathological’ events resulting from sedentary behaviour and periods of enforced immobilization e.g. due to fractures or elective orthopaedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear – especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilisation lowers fasted state muscle protein synthesis (MPS and induces fed-state ‘anabolic resistance’. While a lack of dynamic measurements of muscle protein breakdown (MPB precludes defining a definitive role for MPB in disuse atrophy, some proteolytic marker studies (e.g. MPB genes suggest a potential early elevation. Immobilisation also induces muscle insulin resistance (IR. Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g. Type II diabetes, suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.

  7. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes

    DEFF Research Database (Denmark)

    Højlund, Kurt; Wrzesinski, Krzysztof; Larsen, Peter Mose

    2003-01-01

    quantitate a large number of proteins and their post-translational modifications simultaneously and is a powerful tool to study polygenic diseases like type 2 diabetes. Using this approach on human skeletal muscle biopsies, we have identified eight potential protein markers for type 2 diabetes in the fasting......Insulin resistance in skeletal muscle is a hallmark feature of type 2 diabetes. An increasing number of enzymes and metabolic pathways have been implicated in the development of insulin resistance. However, the primary cellular cause of insulin resistance remains uncertain. Proteome analysis can...... of patients with type 2 diabetes. Phosphorylation appears to play a key, potentially coordinating role for most of the proteins identified in this study. In particular, we demonstrated that the catalytic beta-subunit of ATP synthase is phosphorylated in vivo and that the levels of a down-regulated ATP...

  8. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S

    2009-01-01

    C12 skeletal muscle cells were electrically stimulated to mimic contraction. L6 myotubes and isolated rat extensor digitorum longus muscles were treated with BDNF and phosphorylation of the proteins AMP-activated protein kinase (AMPK) (Thr(172)) and acetyl coenzyme A carboxylase beta (ACCbeta) (Ser...... into the circulation. Bdnf mRNA and protein expression was increased in muscle cells that were electrically stimulated. BDNF increased phosphorylation of AMPK and ACCbeta and enhanced FAO both in vitro and ex vivo. The effect of BDNF on FAO was AMPK-dependent, since the increase in FAO was abrogated in cells infected......AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2...

  9. The effects of resistance exercise training on macro- and micro-circulatory responses to feeding and skeletal muscle protein anabolism in older men

    DEFF Research Database (Denmark)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna

    2015-01-01

    KEY POINTS: Increases in limb blood flow in response to nutrition are reduced in older age. Muscle microvascular blood flow (MBF) in response to nutrition is also reduced with advancing age and this may contribute to age-related 'anabolic resistance'. Resistance exercise training (RET) can...... rejuvenate limb blood flow responses to nutrition in older individuals. We report here that 20 weeks of RET also restores muscle MBF in older individuals. Restoration of MBF does not, however, enhance muscle anabolic responses to nutrition. ABSTRACT: The anabolic effects of dietary protein on skeletal muscle...... depend on adequate skeletal muscle perfusion, which is impaired in older people. This study explores fed state muscle microvascular blood flow, protein metabolism and exercise training status in older men. We measured leg blood flow (LBF), muscle microvascular blood volume (MBV) and muscle protein...

  10. A split luciferase complementation assay for studying in vivo protein-protein interactions in filamentous ascomycetes.

    Science.gov (United States)

    Kim, Hee-Kyoung; Cho, Eun Ji; Jo, Seong mi; Sung, Bo Reum; Lee, Seunghoon; Yun, Sung-Hwan

    2012-06-01

    Protein-protein interactions play important roles in controlling many cellular events. To date, several techniques have been developed for detection of protein-protein interactions in living cells, among which split luciferase complementation has been applied in animal and plant cells. Here, we examined whether the split luciferase assay could be used in filamentous ascomycetes, such as Gibberella zeae and Cochliobolus heterostrophus. The coding sequences of two strongly interacting proteins (the F-box protein, FBP1, and its partner SKP1) in G. zeae, under the control of the cryparin promoter from Cryphonectria parasitica, were translationally fused to the C- and N-terminal fragments of firefly luciferase (luc), respectively. Each fusion product inserted into a fungal transforming vector carrying the gene for resistance to either geneticin or hygromycin B, was transformed into both fungi. We detected complementation of split luciferase proteins driven by interaction of the two fungal proteins with a high luminescence intensity-to-background ratio only in the fungal transformants expressing both N-luc and C-luc fusion constructs. Using this system, we also confirmed a novel protein interaction between transcription factors, GzMCM1 and FST12 in G. zeae, which could hardly be proven by the yeast two-hybrid method. This is the first study demonstrating that monitoring of split luciferase complementation is a sensitive and efficient method of studying in vivo protein-protein interactions in filamentous ascomycetes.

  11. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    Science.gov (United States)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  12. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise.

    Science.gov (United States)

    Hector, Amy J; McGlory, Chris; Damas, Felipe; Mazara, Nicole; Baker, Steven K; Phillips, Stuart M

    2018-01-01

    Preservation of lean body mass (LBM) may be important during dietary energy restriction (ER) and requires equal rates of muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Currently, the relative contribution of MPS and MPB to the loss of LBM during ER in humans is unknown. We aimed to determine the impact of dietary protein intake and resistance exercise on MPS and MPB during a controlled short-term energy deficit. Adult men (body mass index, 28.6 ± 0.6 kg/m 2 ; age 22 ± 1 yr) underwent 10 d of 40%-reduced energy intake while performing unilateral resistance exercise and consuming lower protein (1.2 g/kg/d, n = 12) or higher protein (2.4 g/kg/d, n = 12). Pre- and postintervention testing included dual-energy X-ray absorptiometry, primed constant infusion of ring -[ 13 C 6 ]phenylalanine, and 15 [N]phenylalanine to measure acute postabsorptive MPS and MPB; D 2 O to measure integrated MPS; and gene and protein expression. There was a decrease in acute MPS after ER (higher protein, 0.059 ± 0.006 to 0.051 ± 0.009%/h; lower protein, 0.061 ± 0.005 to 0.045 ± 0.006%/h; P resistance exercise (higher protein, 0.067 ± 0.01%/h; lower protein, 0.061 ± 0.006%/h), and integrated MPS followed a similar pattern. There was no change in MPB (energy balance, 0.080 ± 0.01%/hr; ER rested legs, 0.078 ± 0.008%/hr; ER exercised legs, 0.079 ± 0.006%/hr). We conclude that a reduction in MPS is the main mechanism that underpins LBM loss early in ER in adult men.-Hector, A. J., McGlory, C., Damas, F., Mazara, N., Baker, S. K., Phillips, S. M. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. © FASEB.

  13. Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals

    National Research Council Canada - National Science Library

    Mitsunori Miyazaki; Karyn A. Esser

    2009-01-01

    .... In this review, we discuss the animal and cell culture models used and the signaling mechanisms identified in understanding regulation of protein synthesis in response to mechanical loading/resistance exercise...

  14. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle

    DEFF Research Database (Denmark)

    Holm, Lars; van Hall, Gerrit; Rose, Adam

    2010-01-01

    with the fasting condition. The Rp-s6k-4E-binding protein-1 (BP1) and the mitogen-activated protein kinase (MAPk) pathways were activated by the HL intensity and were suggested to be responsible for regulating myofibrillar FSR in response to adequate contractile activity. Feeding predominantly affected Rp-s6k...... to contractile activity, whereas elongation mainly was found to respond to feeding. Furthermore, although functionally linked, the contractile and the supportive matrix structures upregulate their protein synthesis rate quite differently in response to feeding and contractile activity and intensity.......Exercise stimulates muscle protein fractional synthesis rate (FSR), but the importance of contractile intensity and whether it interplays with feeding is not understood. This was investigated following two distinct resistance exercise (RE) contraction intensities using an intrasubject design...

  15. An Evolutionarily Conserved Innate Immunity Protein Interaction Network*

    Science.gov (United States)

    De Arras, Lesly; Seng, Amara; Lackford, Brad; Keikhaee, Mohammad R.; Bowerman, Bruce; Freedman, Jonathan H.; Schwartz, David A.; Alper, Scott

    2013-01-01

    The innate immune response plays a critical role in fighting infection; however, innate immunity also can affect the pathogenesis of a variety of diseases, including sepsis, asthma, cancer, and atherosclerosis. To identify novel regulators of innate immunity, we performed comparative genomics RNA interference screens in the nematode Caenorhabditis elegans and mouse macrophages. These screens have uncovered many candidate regulators of the response to lipopolysaccharide (LPS), several of which interact physically in multiple species to form an innate immunity protein interaction network. This protein interaction network contains several proteins in the canonical LPS-responsive TLR4 pathway as well as many novel interacting proteins. Using RNAi and overexpression studies, we show that almost every gene in this network can modulate the innate immune response in mouse cell lines. We validate the importance of this network in innate immunity regulation in vivo using available mutants in C. elegans and mice. PMID:23209288

  16. Inferring High-Confidence Human Protein-Protein Interactions

    Science.gov (United States)

    2012-01-01

    bound 2 44 33.2 15615 9129.8 FANCA 217 Fanconi anemia , complementation A FANCG 143 Fanconi anemia , complementation G 43 117.3 1808 2226.3 EGFR 626...Degree), as well as the overall de - gree distribution for the entire network (All). Selecting highly ranked subsets of PPIs, using either IDBOS or...help clarify the de - pendence on confidence on topological and biological prop- erties associated with human protein networks. Materials and methods

  17. Measurements of Protein-Protein Interactions by Size Exclusion Chromatography

    OpenAIRE

    Bloustine, J.; Berejnov, V.; Fraden, S.

    2003-01-01

    A method is presented for determining second virial coefficients (B2) of protein solutions from retention time measurements in size exclusion chromatography. We determine B2 by analyzing the concentration dependence of the chromatographic partition coefficient. We show the ability of this method to track the evolution of B2 from positive to negative values in lysozyme and bovine serum albumin solutions. Our size exclusion chromatography results agree quantitatively with data obtained by light...

  18. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    Science.gov (United States)

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types.

  19. Evolutionary diversification of protein-protein interactions by interface add-ons.

    Science.gov (United States)

    Plach, Maximilian G; Semmelmann, Florian; Busch, Florian; Busch, Markus; Heizinger, Leonhard; Wysocki, Vicki H; Merkl, Rainer; Sterner, Reinhard

    2017-09-18

    Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.

  20. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Hao Wu

    Full Text Available In this paper, we present a novel rough-fuzzy clustering (RFC method to detect overlapping protein complexes in protein-protein interaction (PPI networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks.