WorldWideScience

Sample records for sizewell-a reactor

  1. Sizewell papers

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A collection of papers, previously published in the New Scientist between September 1980 and January 1983, dealing with the pressurised water reactor and in particular the proposal by CEGB to build a PWR at Sizewell, Suffolk, is presented. The individual papers are entitled: American reactors are wrong for Britain; Britain's first pressurised-water reactor; a test bed for nuclear safety; the pressure on nuclear safety; Suffolk - a soft touch for PWRs; why Britain needs a PWR; critical time for Sizewell's reactor; why Britain does not need a PWR; a reactor designed for Sizewell; a case not proven; lessons from Three Mile Island; how France went nuclear; an environmentalist's case for the Sizewell PWR. (U.K.)

  2. Sizing up Sizewell

    International Nuclear Information System (INIS)

    Woolf, G.

    1993-01-01

    Sizewell-B nuclear power plant should start to generate electricity in mid-1994. In this article Nuclear Electric makes a case for starting the Sizewell-C project, a 2260 MW twin pressurized water reactor design, before the Sizewell-B project team is disbanded. Sizewell-B has provided a large number of jobs, many for local people, and these will disappear unless Sizewell-C is started. Money would be saved through repeat orders for major plant items and development costs would be spread between the two projects. The capitalized cost of Sizewell-C is estimated at Pound 3.45b with generating costs estimated at 3p/KWh, less than other generating plants. Sizewell-C would also save the carbon dioxide emissions from gas- or coal-fired generating stations. (UK)

  3. Special report: Sizewell

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Both the UK strategy in choosing a Wistinghouse-type PWR for Sizewell B and the confusion over management structure for Sizewell B are discussed. The role of the NNC (National Nuclear Corporation) is considered. Initially it was implied that NNC would design, sell, and perhaps, even construct PWR reactors. However, this has been reduced gradually and the strategy for obtaining the major components is not clear. It is suggested that the UK should reconsider its commitment to a PWR reactor which may not be the best available. (U.K.)

  4. Is Sizewell a good investment

    International Nuclear Information System (INIS)

    MacKerron, G.

    1984-01-01

    The CEGB proposal, at present the subject of a public inquiry, to build a Westinghouse pressurised water reactor at Sizewell, is discussed. The principal aim of the paper is to examine the case for achieving cost savings for the electricity supply industry. The headings are: system cost savings (discussion of method of assessing savings); the CEGB case (involving various assumptions about the UK economy); objections to the Board's case (assumptions about fossil fuel prices, construction costs, operating characteristics and net present costs; uncertainty); other arguments for Sizewell (capacity need; fuel diversity); conclusion. (U.K.)

  5. The industrial impact of Sizewell 'B'

    International Nuclear Information System (INIS)

    1988-01-01

    The paper is a report on the industrial impact of post-Sizewell nuclear reactor policy, as presented by a Working Group set up by the United Kingdom Advisory Council on Applied Research and Development. The primary objective of the Working Group was the quantification of the effects of the introduction of a non-UK design of reactor upon employment, the availability of skilled resources, and on imports and exports. The subject is discussed under the topic headings:-the effect of Sizewell-'B' on UK manufacturing industry, skilled resources, safety, reactor design choice, and replication of the PWR. (U.K.)

  6. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Baker, J.W.

    1982-11-01

    The case for Sizewell B in terms of the CEGB's overall duties, policies and objectives is presented. The discussion concentrates on the rationale of the CEGB's wish to proceed with Sizewell B and the implications which an eventual decision to proceed with a Pressurised Water Reactor at Sizewell could have for future power station orders. (U.K.)

  7. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  8. Reactor choice - the merits of Sizewell follow-up and longer-term options

    International Nuclear Information System (INIS)

    Smith, P.

    1994-01-01

    During 1994 Sizewell B will be completed, a contractor will be selected for the Lungmen Project in Taiwan and the Nuclear Review will hopefully clear the way for continuing PWR construction in the UK. Once the Government has sanctioned the next nuclear station, the choice of plant will fall to Nuclear Electric. Consideration of the available options demonstrates clearly that for the short and medium term only Sizewell C, a twin replica of Sizewell B, provides the low-risk option essential to attracting private finance. The UK has built up the design, manufacturing and construction capability necessary to build the Sizewell C design, both in the UK and overseas. However, there is only a limited window of opportunity to exploit these capabilities since they will decay unless sustained by continuing orders. (author)

  9. Design and safety of the Sizewell pressurized water reactor

    International Nuclear Information System (INIS)

    Marshall, W.

    1983-01-01

    The Central Electricity Generating Board propose to build a pressurized water reactor at Sizewell in Suffolk. The PWR Task Force was set up in June 1981 to provide a communications centre for developing firm design proposals for this reactor. These were to follow the Standardized Nuclear Unit Power Plant System designed by Bechtel for the Westinghouse nuclear steam supply system for reactors built in the United States. Changes were required to the design to accommodate, for example, the use of two turbine generators and to satisfy British safety requirements. Differences exist between the British and American licensing procedures. In the UK the statutory responsibility for the safety of a nuclear power station rests unambiguously with the Generating Boards. In the U.S.A. the Nuclear Regulatory Commission issues detailed written instructions, which must be followed precisely. Much of the debate on the safety of nuclear power focuses on the risks of big nuclear accidents. It is necessary to explain to the public what, in a balanced perspective, the risks of accidents actually are. The long-term consequences can be presented in terms of reduction in life expectancy, increased chance of cancer or the equivalent pattern of compulsory cigarette smoking. (author)

  10. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Smedley, G.P.

    1982-11-01

    A description is given of the role of Lloyd's Register of Shipping as Independent Inspection Agency for the primary circuit of the PWR for the proposed Sizewell B power station. Topics discussed include: Lloyd's Register of Shipping and its functions; the Independent Inspection Agency and its functions; fabrication of the reactor pressure vessel; inspection on site at Sizewell. (U.K.)

  11. Statement for Sizewell 'B' public inquiry

    International Nuclear Information System (INIS)

    1982-07-01

    The formation of National Nuclear Corporation Limited (NNC) is discussed together with its acquisition of staff with nuclear experience, the main contracts which it has performed or is performing, its present corporate structure and the organisation by projects and functions through which it discharges its current obligations. Information concerning NNC's experience in water reactor design and technology; its most recent contribution to assist the Government in making its decisions with respect to the type of reactor upon which the UK nuclear programme should be based; technical agreements it has reached with US organisations; the nature of the work on Sizewell B which is currently being done and the arrangements made for doing it; the implications of building Sizewell B on export prospects and on industry; and NNC's planning to anticipate the possible future requirements for PWR power stations is provided. (U.K.)

  12. Economic issues of the Sizewell B public enquiry

    International Nuclear Information System (INIS)

    Foster, C.

    1987-01-01

    The economic arguments and conclusions reached in the Layfield Report of the Sizewell-B public inquiry are restated. The key test for deciding whether Sizewell-B should be built was the net effective cost per kW per annum (the net cost of supplying electricity from a new power station including capital and operating costs) compared with the net avoidable cost (the cost of withdrawing a plant from the generating system). If the net effective cost is less than the net avoidable cost the construction is economically worthwhile. The effective cost calculations are given. The argument in favour not only had to show that nuclear was economically favourable over coal or any other fuel but that the pressurized water reactor design was preferable to the advanced gas-cooled reactor type. The price of coal, (at the time of the Inquiry and in the future) is tabulated. The changed economic situation between the end of the Inquiry and the publication of the Inquiry Report did not invalidate the decision made. There is only a one in seven chance that a coal-fired station will provide new capacity at lower cost than Sizewell-B. The figures used for CEGB's case to the Public Inquiry are given. (UK)

  13. Sizewell and the people: what the community thinks

    International Nuclear Information System (INIS)

    Chappell, H.

    1983-01-01

    Some 15 or so of the people who live in Leiston, the town (pop. 4000) nearest the proposed Sizewell-B site, give their views about the building of the PWR station. The points raised include the possibility of employment, the disruption to the town during the actual building of the reactor and the safety record of PWRs. It is an issue which divides families and where young and old are found on both sides of the argument. The public inquiry is felt to be a formality only and the building of Sizewell-B to be inevitable. (U.K.)

  14. Sizewell 'dirty tricks'

    International Nuclear Information System (INIS)

    Martin, Steve.

    1987-01-01

    The pro-nuclear lobby is accused of dubious tactics to promote their case for the Sizewell-B reactor. These include reassessing future electricity demand which, it is claimed, could only be met by nuclear power, claiming that new power stations were needed to avoid blackouts during cold spells, and the reporting of a major design fault in the control rods of the Torness and Heysham AGR stations. The latter is felt to be related to the promotion by the South of Scotland Electricity Board of the AGR case, as opposed to the Central Electricity Generating Board's advocation of a PWR reactor design. The author argues for a series of coal-fired power stations instead, and a major energy conservation programme. (UK)

  15. Sizing up Sizewell

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The CEGB proposal to build a PWR nuclear power plant at Sizewell, in Suffolk, is discussed under the headings: paying for power (economics of Sizewell); paying for capital (high capital cost of nuclear power plants); paying for delays (effects of construction delays and design changes to meet safety requirements); paying for coal (circumstances in which a fossil-fuel power plant would be less costly than expected); playing for time (advantage argued for postponing Sizewell's construction while pressing on with an energy conservation programme). (U.K.)

  16. Validation gets underway on Sizewell ''Incredibility of Failure'' components

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Inspection Validation Centre (IVC) of AEA Reactor Services in the UK has begun an eighteen month programme to validate the procedures and personnel of OIS plc, the inspection agents chosen by Nuclear Electric to carry out the pre-service ultrasonic inspection of the Sizewell B Pressurized Water Reactor components assigned to the ''Incredibility of Failure'' (IoF) category. The work involves several Sizewell B primary circuit components - the steam generators, pressurizer, and primary pumps - and will consider the inspections to be applied to the circumferential and nozzle-to-shell welds, nozzle inner radii and the pump fly-wheel forging. The validation will provide independent confirmation that OIS personnel are capable of using manual and automated methods to find and size any flaws of structural concern in these components. (author)

  17. NDE fo Sizewell B

    International Nuclear Information System (INIS)

    Baborovsky, V.M.; Whittle, M.J.

    1988-01-01

    A key feature of the safety case for Sizewell B is the extensive NDE proposed for all primary circuit components whose failure must be demonstrated to be incredible. These incredibility of failure components include the reactor pressure vessel, the pressurizer, steam generator shells and reactor coolant pump casings. All of them are to be inspected by repeated, independent inspections using diverse techniques to ensure the highest reliability. The inspections themselves are checked by an independent inspection validation center. This paper reviews the progress made in implementing the above proposals. A number of components have already been inspected, other inspections are imminent. The work has required major technical and administrative innovations and these are described

  18. The UK nuclear programme: The Sizewell experience

    International Nuclear Information System (INIS)

    Salter, W.B.

    1990-01-01

    The current status of the Sizewell 'B' PWR programme and the effect on it of the proposed privatisation of U.K electricity generation is reviewed. Departures from and additions to the Standard Nuclear Unit Power Plant System (SNUPPS) reference plant design are given. These include Reactor Coolant System overpressure protection and the addition of an Emergency Charging System and an Emergency Boration System. Improvements in monitoring Reactor Coolant System water level during refuelling and maintenance shutdown operations are presented. (author)

  19. Sizewell 'B' power station public enquiry: CEGB statement of case. 2 vols and appendices A-G, H, J, L, M

    International Nuclear Information System (INIS)

    1982-04-01

    This statement of case summarises the case which the CEGB intends to put to the public enquiry into building a PWR reactor at Sizewell. The two volumes are divided into chapters covering an introduction, the Electricity Supply Industry and the CEGB, nuclear development on the CEGB system, new generating plant, the need for Sizewell B and various aspects of safety and design. (U.K.)

  20. Validated automated ultrasonic inspections of the Sizewell 'B' reactor pressure vessel

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.

    1992-01-01

    Automated ultrasonic inspection was applied extensively during manufacture of the RPV for Sizewell 'B'. This was an important element of the safety case presented at the Sizewell 'B' public enquiry. This requirement reflected concern in the United Kingdom as to the effectiveness and reliability of ultrasonic inspections. By applying automated inspections in addition to the manual ultrasonic inspection carried out by the vessel manufacturer, the overall reliability of the inspection of the vessel would be considerably enhanced. The automated inspections carried out in the manufacturer's workshops were termed 'automated shop inspections' (ASIs). The ASIs were carried out in two contracts: the first to inspect the component forgings of the RPV, the second to inspect the pressure retaining welds. (author)

  1. Sizewell 'B' PWR pre-construction safety report

    International Nuclear Information System (INIS)

    1982-04-01

    The Pre-Construction Safety Report (PCSR) for a PWR power station to be constructed as Sizewell 'B' is presented in 13 volumes containing 16 chapters. The PCSR has been submitted to the Nuclear Installations Inspectorate in support of the Central Electricity Generating Board's application for consent to the extension at Sizewell. It describes the design and provides the safety case for the proposed station, which comprises a 4-loop pressurized water reactor with associated generating plant and supporting auxiliary equipment. A general description of the station and its site is given. The strategy for ensuring nuclear safety is set out and the general design aspects of systems and plant outlined. The plant and systems, including their safety design bases and the fault analyses carried out for the design are described. Finally the way in which the plant will be decommissioned at the end of its useful life is outlined. (U.K.)

  2. An analysis of the Sizewell B inquiry

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The public inquiry into the Central Electricity Generating Board's application to build the first PWR reactor in the United Kingdom (at Sizewell) ranged beyond that particular issue to a more general investigation of the desirability of promoting nuclear power generally. The CEGB's case is presented briefly. The four main arguments are security of electricity supply, diversity of supply, the benefits of PWRs as opposed to AGRs and cost savings. This latter was important to justify not only the need case, but the economic case for Sizewell-B. The economic case included five computed scenarios over a range of the proposed station's capital, fuel and related operating costs, set against three 'no-nuclear', 'medium nuclear' or 'high nuclear' backgrounds. The CEGB figures are compared with those from objectors. The main arguments are outlined. Other political and technical arguments were not examined in depth by the Inquiry. (UK)

  3. Inpile honing of Sizewell primary selector valve housings

    International Nuclear Information System (INIS)

    Grindrod, A.; Ward, R.G.

    1976-03-01

    Difficulties have been experienced at Sizewell power station with the removal and replacement of several of the primary selector valves fitted in the reactors, during the annual maintenance programme. An inpile honing device is described which was specifically designed and developed to facilitate the restoration of the inner sealing faces of the valve housings. (author)

  4. Sizewell B

    International Nuclear Information System (INIS)

    1983-03-01

    The safety case relating to protection against the effects of earthquakes is discussed for the proposed Sizewell B nuclear power station. Conclusions on sensitivity studies of events beyond the safe shutdown earthquake (SSE) level, on the level of permissible stresses arising from SSE loads, on the pre-qualification approach to operating basis earthquake or operational shutdown earthquake loads, and on the absence of offshore tectonic features that might influence the seismicity of the Sizewell site are described. Additional work is required on load combinations and the provision of an external hazards trip. (UK)

  5. Validation of Sizewell ''B'' ultrasonic inspections -- Messages for performance demonstration

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.; Waites, C.

    1994-01-01

    At the time that the decisions leading to the construction of the Sizewell ''B'' plant were being made, public concern over the potential hazards of nuclear power was increasing. This concern was heightened by the accident at USA's Three Mile Island plant. The result of this and public pressure was that an extensive public inquiry was held in addition to the UK's normal licensing process. Part of the evidence to the inquiry supporting the safety case relied upon the ability of ultrasonic inspections to demonstrate that the Reactor Pressure Vessel (RPV) and other key components were free from defects that could threaten structural integrity. Evidence from a variety of trials designed to investigate the performance capability of ultrasonic inspection revealed that although ultrasonic inspection had the potential to satisfy this requirement its performance in practice was heavily dependent upon the details of application. It was therefore generally recognized that some form of inspection validation was required to provide assurance that the equipment, procedures and operators to be employed were adequate for purpose. The concept of inspection validation was therefore included in the safety case for the licensing of Sizewell ''B''. The UK validation trials covering the ultrasonic inspections of the Sizewell ''B'' PWR Reactor Pressure Vessel are now nearing completion. This paper summarizes the results of the RPV validations and considers some of the implications for ASME 11 Appendix 8 the US code covering performance demonstration

  6. Sizewell B PWR: safety implications for operating staff. A report

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    A report given on the safety implications for the staff who would be involved in the commissioning and operating of Sizewell B reactor, looking in particular detail at the following aspects of the plant and its proposed operation: operator access to the containment whilst the reactor is on-load and the reasons for and means of restricting this, the use of robotics to minimise routine access to high radiation areas, circuit chemistry in relation to its effect on minimising the coolant activity, the handling and storage of the radioactive waste arisings on-site, including the use of robotics and the integrity of the pressure vessel as considered by the Cottrell/Marshall dialogue.

  7. Sizewell B: consent application for Britain's first PWR power station

    International Nuclear Information System (INIS)

    1981-02-01

    The Central Electricity Generating Board has applied to the Secretary of State for Energy for consent and for other necessary permissions to construct a nuclear power station of about 1200 MW output capacity based on the pressurised water reactor (PWR) system on the Board's existing site at Sizewell (near Leiston) in Suffolk to be known as Sizewell B. Application has also been made to the Health and Safety Executive to extend the existing nuclear site licence to permit the use of the site for a pressurised water reactor. The Secretary of State for Energy has already stated that a Public Inquiry will be held into the application and this is expected to take place in 1982. The Board is making these applications now to give ample time for public discussion and consultation. Construction of the station could not begin until the outcome of the Public Inquiry is known and the necessary consents, nuclear licence and clearances have been given. The text of the application is presented. Some background information is given. (author)

  8. Steam turbine generators for Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Hesketh, J.A.; Muscroft, J.

    1990-01-01

    The thermodynamic cycle of the modern 3000 r/min steam turbine as applied at Sizewell 'B' is presented. Review is made of the factors affecting thermal efficiency including the special nature of the wet steam cycle and the use of moisture separation and steam reheating. Consideration is given to the optimization of the machine and cycle parameters, including particular attention to reheating and to the provision of feedheating, in order to achieve a high overall level of performance. A modular design approach has made available a family of machines suitable for the output range 600-1300 MW. The constructional features of the 630 MW Sizewell 'B' turbine generators from this range are described in detail. The importance of service experience with wet steam turbines and its influence on the design of modern turbines for pressurized water reactor (PWR) applications is discussed. (author)

  9. Sizewell 'B' public inquiry

    International Nuclear Information System (INIS)

    Barritt, E.E.

    1982-11-01

    The report falls under the headings: introduction (need/economics; safety; waste management; local and site specific issues); the Sizewell site - history and planning policies; planning and environmental implications; land use and landscape implications; ecological implications; mineral requirements; highway implications; employment implications; accommodation implications; infrastructure and social/community services; safeguarding restrictions for Sizewell - Nuclear Installations Inspectorate; decommissioning. (U.K.)

  10. Sizewell B: the anatomy of an inquiry

    International Nuclear Information System (INIS)

    O'Riordan, T.; Kemp, R.; Purdue, M.

    1987-01-01

    The Economic and Social Research Council has studied four major environmental public inquiries, including Sizewell-B. This report summarizes some of the observations of the Sizewell Inquiry Review Project which has been analyzing the context, content and conduct of the Sizewell-B Inquiry. Although public inquiries in Britain have an important function in building public trust in planning decisions where opinions are divided and independent advice is needed, one outcome of the Sizewell-B Inquiry may be a streamlining of the inquiry process, eg by prior examination of policy matters, leaving the Inquiry to consider specifically site-related matters only. (UK)

  11. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Whittle, J.

    1982-11-01

    The non-destructive testing of components for the proposed Sizewell B nuclear power station is discussed. Issues considered include: non-destructive testing techniques available; inspection of ferritic steel components during fabrication; reliability of the ultrasonic inspection of ferritic structures; inspection of components of austenitic steel; in-service inspection of the reactor coolant system. (U.K.)

  12. Inspecting Sizewell B Class 1 and IoF components

    International Nuclear Information System (INIS)

    McNulty, T.

    1990-01-01

    Class 1 and ''incredibility of failure'' (IoF) pre-service inspections for Sizewell B cover steam generator and pressurizer welds and nozzles, welds on the emergency boration system, accumulators and reactor coolant loop, and the whole of the Class 1 piping. The contractor for this work has recently been selected. The scope of the work and the techniques and equipment to be used are outlined. (author)

  13. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Harrison, J.R.

    1982-11-01

    An overview is given of the Safety Case for the Sizewell B nuclear power station as presented in the Pre-Construction Safety Report. Information which has been made available since its publication is included. Safety is considered for normal operation of the reactor and under fault conditions. Faults considered are those due to external hazards such as earthquakes, extreme weather conditions and aircraft crashes, internal hazards such as fire and missiles and reactor faults. Reactor fault studies described include transient analyses of pressurised faults and of loss-of-coolant accidents and the evaluation of the radiological consequences of design basis faults. (U.K.)

  14. Sizewell: good value for consumers' money

    International Nuclear Information System (INIS)

    MacKerron, G.

    1984-01-01

    For consumers, the overriding issues in electricity policy are always likely to be those which affect prices, both in the near future and over the longer term. It is therefore the 'need and economics' part of the overall case for Sizewell that consumers' representatives chose to scrutinize. This paper argues that there are no compelling short-term reasons to start construction of Sizewell at the earliest possible time. Further, long-term considerations suggest that there are good reasons not to make an early commitment to the Westinghouse four-loop design of PWR, either for Sizewell or for subsequent orders. (author)

  15. Structural integrity of Sizewell B - the way forward

    International Nuclear Information System (INIS)

    Geraghty, J.E.

    1996-01-01

    The Incredibility of Failure (IOF) approach has been used on Sizewell B. This involves demonstrating that under all conditions, the failure of certain components is so remote as to be considered incredible. It means that the integrity of these components is such that they must remain intact assuming other plant items do fail. For example, a complete failure of the main loop pipework must be withstood by the RPV and steam generator shell. The IOF components are mainly those of the reactor coolant circuit and the purpose of this paper is to describe the approach adopted for the RPV, the steam generator shell, pressurizer and reactor coolant pump casing. The two arms of the safety case are achievement and demonstration of integrity. (author)

  16. Development of operator training programmes for Sizewell B

    International Nuclear Information System (INIS)

    Birnie, S.

    1988-01-01

    In accordance with existing practice, it is the Central Electricity Generating Board's (CEGB's) intention that the station manager of Sizewell B and future pressurized water reactor (PWR) stations will be responsible for ensuring that his staff perform their designated duties competently. To assist the station managers in fulfilling these responsibilities, the CEGB ensures that all nuclear training needs are identified, effective training strategies are developed and training programmes provided. The management, operation and development of the CEGB Nuclear Power Training Centre is integrated with nuclear power training activities conducted on site and at other locations. A systematic approach to training must be used so that the training is effective, i.e. that the staff can operate the plant safely and economically. To aid in the systematic production of PWR training programmes in general, but in particular for shift operations engineers, a PWR section was established in 1983 at the CEGB Nuclear Power Training Centre. A condition in the site licence for Sizewell B states that a suitable simulator must be available for training operations staff at least one year before fuel loading commences. The work of this section in operations engineer training is summarized. (author)

  17. The Sizewell B inquiry and East Anglia: the legacy of Three Mile Island

    International Nuclear Information System (INIS)

    Kemp, R.V.

    1985-01-01

    This paper argues that the great length and cost of the Public Inquiry into the proposed Sizewell-B PWR reactor is due to its investigatory style. This style became necessary because of the complexity of the issues, the difference in resources between the proponents and objectors and because of delays in licensing of the PWR by the Nuclear Installations Inspectorate. The fears about the safety of the PWR type reactors followed the accident at Three Mile Island in 1979, and the Major of Harrisburg was called by the local residents opposed to the siting to give evidence at the Inquiry. The ways in which the Sizewell-B Inquiry has attempted to come to terms with the fears and concerns of local objectors to the project are looked at. The paper considers how these can be properly weighed when the government is committed to nuclear power. The Inquiry is only advisory - the final decision will be taken by the Ministers after Parliamentary debate. The procedures and facilities adopted by the Inquiry are listed and, in particular, the two evening public meetings held in nearby towns to hear the views of local residents outside the formal main hearing are noted. The two main safety aspects of concern were the incidence of leukemia in East Suffolk, and the planning in case of an emergency at Sizewell-B. The experience of the Mayor of Harrisburg was relevant to this point. (U.K.)

  18. Why mini Sizewell is safe as houses

    International Nuclear Information System (INIS)

    Pease, J.

    1989-01-01

    A one-tenth scale model of the Sizewell-B nuclear power station pressure vessel is under construction. The framework was made from steel, timber and lathe and plaster work. Reinforcement and prestressing can then be fitted. The object is to build a structure that will reflect the behaviour of the real thing. Once completed the vessel will be filled with water (not gas as in the real reactor) and the pressure brought up to 15% overload. 600 measuring instruments will make measurements of the mechanical properties. The model will then be tested to failure. The model will be analysed by computer, then tested, and the results compared. (author)

  19. Sizewell 'B' power station - engineering and construction

    International Nuclear Information System (INIS)

    Walker, A.

    1989-01-01

    The Sizewell 'B' design is based on the Callaway PWR station in Missouri, USA. There have been many papers describing the additional criteria covering safety, operational experience and design and manufacturing practices which were applied to the Callaway reference design and which led to the Sizewell 'B' design concept. This paper describes the implementation of some of these design criteria leading to the layout related design features. Comparisons are drawn with the reference design. This paper concludes by describing various aspects of the design and construction process and the progress which has been made on the Sizewell site. (author)

  20. A Review of the United Kingdom Fast Reactor Programme, March 1987

    International Nuclear Information System (INIS)

    Bramman, J.I.; Wheeler, R.C.

    1987-01-01

    Nuclear power produced about 20% of the electricity supply in the United Kingdom in 1986, mostly from gas-cooled reactors, i.e. the 10 AGRs currently in operation and the 26 older MAGNOX reactors. Plans to increase the nuclear component of generating capacity by building the first PWR in the UK, Sizewell 'B', were strongly endorsed in the report by Sir Frank Layfield published on 26 January 1987. This resulted from the Public Inquiry into building Sizewell 'B', which was held between 11 January 1983 and 7 March 1985, the longest Public Inquiry ever held in the UK. The government gave the go-ahead for the building of Sizewell 'B' on 12 March 1987

  1. The validation of corrosion inhibitors for ancillary cooling systems at Sizewell B PWR

    International Nuclear Information System (INIS)

    Allan, S.J.; Garnsey, R.; Lawson, W.F.

    1994-01-01

    Sizewell B has several low temperature ancillary cooling circuits for removing low grade heat. One of the principal circuits is the Component Cooling Water System (CCWS) primarily constructed from carbon steel pipework but also containing stainless steel, titanium, copper and cupronickel components. Linked to the CCWS is another carbon steel system namely the Reserve Ultimate Heat Sink (RUHS) a system unique to Sizewell B providing an independent heat removal capability for the CCWS as a safety back-up. Both systems utilize demineralized water with the addition of an inhibitor to prevent corrosion. The vendor recommended inhibitor namely potassium chromate is highly toxic to marine life and initial discussions with the regulatory authorities indicated that it would be extremely difficult to obtain a discharge consent to cover leakage or potential system purges and dumps associated with maintenance operations. Thus an alternative was sought. Sodium nitrite (anhydrous NaN0 2 )/borax (Na 2 B 4 0 7 1OH 2 0) inhibitor solutions have been used for many years in the power industry for preservation of carbon steel plant and several proprietary formulations are based on this mixture. There has been extensive test work in the UK on this inhibitor for secondary side boiler storage on gas reactors and therefore it was considered a prime candidate for use at Sizewell B. Starting in 1985 a programme of work sponsored by Nuclear Electric plc has been completed by NNC Ltd to compare nitrite/borax with other suitable inhibitors and validate its use for Sizewell B. (authors). 5 figs., 1 tab

  2. Sizewell B

    International Nuclear Information System (INIS)

    1983-07-01

    An assessment of human factors topics, which are of significant importance to safety, is discussed with respect to design, construction and operation of the proposed Sizewell B nuclear power station. CEGB expertise in ergonomics and fault studies are described. Outstanding issues are identified and a programme of additional work is discussed. (U.K.)

  3. The design and management of cables and supporting steelwork systems for Sizewell 'B'

    International Nuclear Information System (INIS)

    Kerry, L.P.

    1992-01-01

    Sizewell B Power Station has over 33,000 cables connecting in excess of 20,000 items of equipment. Over 120 cable types are used. Many cables supply power to, or monitor, safety category 1 equipment essential to the safe operation of the Reactor and supporting systems. Cables must be designed to survive the postulated hazards of Reactor systems fault, earthquake, fire and radiation exposure. The cable network is the nerve system of the station; its role is to distribute electrical power and control indication, metering and protection signals to the various items of plant and equipment under normal and emergency operating conditions. To perform these functions satisfactorily a new range of cable insulations had to be developed and supporting steelwork designed to withstand the effect of an earthquake. The 63 month Sizewell B construction programme means record cable laying and completion rates have to be achieved needing careful and detailed planning from design to installation. As with electrical equipment, cables are designated either essential (to Reactor safety operation) or non-essential. This paper describes the required safety design criteria, how these are achieved and the design approaches to seismically qualified supporting steelwork. Also described are the cable design, scheduling, routing and planning processes which lead to the required installation and commissioning activities being completed in a controlled and timely manner. (Author)

  4. Sizewell 'B'

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Installations Inspectorate's views on the Central Electricity Generating Board's fuel clad ballooning safety case for the proposed Sizewell B PWR nuclear power station are presented. The Inspectorate's reservations concerning the safety case are discussed and it is emphasised that additional work needs to be done by the CEGB. (U.K.)

  5. Radiation monitoring at Sizewell B PWR

    International Nuclear Information System (INIS)

    Hills, O.C.

    1992-01-01

    Radiation monitoring in Sizewell-B Power Station most significantly differs from that in existing UK Power Stations in two respects: firstly in the large number of on-line radiation monitors and secondly in the way that the monitors are linked into a fully-integrated, centralised data acquisition and display system, which can be accessed and viewed by the operators. An overview is given of how full process data is transmitted along data links between the Auxiliary Shut-Down Room, Technical Support Centre and Main Control Room, enabling Health Physics and other staff to access information from any radiation monitor. The permanently installed monitors together with the safety category, type and location are listed. As part of the Sizewell-B Process Plant control and instrumentation contract, NEI is to supply the Health Physics Instrumentation (HPI) and Process and Effluent Activity Monitoring System (PEAMS) (excluding the Primary Protection System) plus the Nuclear Sampling System (NSS). This paper concentrates on the HPI, and parts of the PEAMS and NSS for which NEI have the responsibility for system design, detail design, manufacture, site installation and commissioning. Section 2 briefly describes the sources of radiation at Sizewell-B; Sections 3, 4 and 5 describe the PEAMS, HPI and NSS respectively. Section 6 details the design of two of the Sizewell-B PEAMS subsystems. (Author)

  6. Electrical and control aspects of the Sizewell B PWR

    International Nuclear Information System (INIS)

    1992-01-01

    The pressurized water reactor, Sizewell-B, which is being built in Suffolk is well on in its construction schedule. This conference looked at the electrical and control aspects of the first PWR to be built in the United Kingdom. Although based on the standard Westinghouse PWR design, modifications have been made to meet the particular requirements of the site and the UK licensing regulations. There are 11 papers on all aspects of the electrical systems, 5 papers on the cables and cable installation, 5 on the main control rooms and auxiliary shutdown room, 5 on the integrated system and centralised operation, 6 on the monitoring and protection systems and 9 on the reactor protection systems. All 41 are indexed separately. (UK)

  7. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Edmondson, B.

    1982-11-01

    A discussion is given on the safety issues for the pressure circuit components of the proposed Sizewell B nuclear power station. The detail of the evidence concentrates on the reactor pressure vessel itself, as the principal example of a component whose failure is considered incredible. The general background to construction and operation of pressurized plant is described. A description of the form of the vessel and its role is given. Each of the factors which lead to confidence in the integrity of the vessel is then considered. (U.K.)

  8. Sizewell B nuclear power station: the basis for the decision by the Health and Safety Executive to grant consent to load fuel into the reactor

    International Nuclear Information System (INIS)

    1994-01-01

    The licensing and consent process and the basis for granting a consent for Nuclear Electric to load fuel into the Sizewell B reactor in the United Kingdom are explained. Consent was granted by the UK Nuclear Installations Inspectorate on behalf of the Health and Safety Executive on satisfactory completion of construction and those commissioning stages needed to proceed safely, and the production of a satisfactory safety case. A summary of the assessment of the safety case is appended. It covers the reactor core, coolant system structural integrity, engineered safety features, main and essential electrical system, control and instrumentation, radioactive waste management, radiological protection, fuel storage and handling, civil works and structures, fault analysis, human factors, hazard analysis, quality assurance, and decommissioning. (UK)

  9. Sizewell B

    International Nuclear Information System (INIS)

    1983-03-01

    The probability of an aircraft crash on the proposed Sizewell B nuclear power station leading to a significant release of radioactivity is discussed. The aircraft considered are all types of civil and military fixed wing aircraft and helicopters. It is concluded that the general approach to the safety case for aircraft crash is acceptable. Outstanding issues are identified and a programme of additional work is discussed. (UK)

  10. The structural integrity safety case for Sizewell B power station

    International Nuclear Information System (INIS)

    Gerachty, J.E.

    1993-01-01

    This paper presents the safety case approach adopted for the components of the Sizewell 'B' Power Station for which a high degree of structural integrity is required. Such components include the Reactor Pressure Vessel, Steam Generator and Pressuriser for which Incredibility of Failure is claimed. The two parts of the case involve achievement and demonstration of integrity. This is achieved by extensive measures involving design, manufacture, materials and inspection. The demonstration has required a fracture mechanics approach. The specific role of inspection validation and its relation to critical defect size is described. (author)

  11. The development of the Nuclear Electric core performance and fault transient analysis code package in support of Sizewell B

    International Nuclear Information System (INIS)

    Hall, P.; Hutt, P.

    1994-01-01

    This paper describes Nuclear Electric's (NE) development of an integrated code package in support of all its reactors including Sizewell B, designed for the provision of fuel management design, core performance studies, operational support and fault transient analysis. The package uses the NE general purpose three-dimensional transient reactor physics code PANTHER with cross-sections derived in the PWR case from the LWRWIMS LWR lattice neutronics code. The package also includes ENIGMA a generic fuel performance code and for PWR application VIPRE-01 a subchannel thermal hydraulics code, RELAP5 the system thermal hydraulics transient code and SCORPIO an on-line surveillance system. The paper describes the capabilities and validation of the elements of this package for PWR, how they are coupled within the package and the way in which they are being applied for Sizewell B to on-line surveillance and fault transient analysis. (Author)

  12. Description of Sizewell B nuclear power plant

    International Nuclear Information System (INIS)

    Meyer, G.; Stokke, E.

    1997-09-01

    The intention of this report is to present a condensed technical description of Sizewell B in a language understandable to non-technical personnel. It is unavoidable that some parts will be less precise than the technically initiated would like to see, but hopefully the content still give a realistic picture of Sizewell B. The technical description is based on publicly available material, of which the Sizewell B safety report has been particularly useful. Nearly all figures and drawings found in this description are reproductions of corresponding material in the safety report. To keep the description from becoming too voluminous it has been necessary to condense some background material down to a small volume. Hopefully this has not introduced any errors or inaccuracies, possible oversimplification at certain points must be weighed against the wish to cover most of the topics in the agreed table of contents for these NKS reports. (au)

  13. Electronic document management at Sizewell B

    International Nuclear Information System (INIS)

    Rippon, Simon.

    1996-01-01

    Sizewell ''B'', Britain's first PWR, officially opened on March 25 1996, will now rely for its document management on a sophisticated computer-based system. One of the largest single engineering projects ever to be commissioned on one site in Britain, Sizewell ''B'' accommodates more than 300,000 documents, including over 200,000 drawings. The electronic document management system will provide a number of important benefits, including a more direct method of maintaining the station's Configuration Management and hence maintaining high safety standards; improved turnaround in plant modification proposals (PMP); significant time and cost savings in managing vital records; and increased productivity. (Author)

  14. Sizewell: proposed site for Britain's first PWR power station

    International Nuclear Information System (INIS)

    1980-10-01

    The pamphlet covers the following points, very briefly: nuclear power - a success story; the Government's nuclear programme; why Sizewell; the PWR (with diagram); the PWR at Sizewell (with aerial view) (location; size; cooling water; road access; fuel transport; construction; employment; environment; screening; the next steps (licensing procedures, etc.); safety; further information). (U.K.)

  15. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Vignes, A.

    1983-02-01

    Evidence is presented to show how the integrity of the reactor pressure vessel to be constructed for the proposed Sizewell B nuclear power station could be achieved by the French company Framatome. Following a description of the organization and experience of Framatome, their ability to manufacture the pressure vessel to the preferred design and to meet all the requirements of the National Nuclear Corporation is demonstrated. Then it is shown, using examples, how the various procurement and fabrication operations are carried out and controlled and how the quality of the materials and products is assessed and guaranteed. (U.K.)

  16. Sizewell: UK power demand

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Sizewell Inquiry was about whether the next power stations to be built in the UK should be nuclear or coal and, if nuclear, PWRs or AGRs. During the period of the Inquiry forecasts of demand for electricity were low. Now, however, it seems that the forecast demand is much increased. This uncertainty in demand and the wide regional variations are examined in some detail. Facts and figures on electricity sales (area by area) are presented. Also the minutes of supply lost per consumer per year. These show that security of supply is also a problem. It is also shown that the way electricity is used has changed. Whilst electricity generation has been changing to large-scale, centralised power stations the demand patterns may make smaller scale, quickly-constructed units more sensible. The questions considered at the Sizewell Inquiry may, indeed, no longer be the right ones. (UK)

  17. Diaphragm walling for Sizewell B sets records

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The first phase of construction of the Sizewell-B nuclear reactor has been completed. This was the building of a diaphragm wall around the site. It is one of the largest and deepest diaphragm walls to be installed in Europe. The site can be pumped dry of groundwater and the foundations constructed in the dry. The specifications of the wall and its construction, using two Hydrofraise excavation rigs, are described. The excavated material is brought up as a slurry and the (bentonite) slurry is cleaned and desanded. Most of the wall has been formed using a plastic concrete but reinforced concrete has been used for some stretches. The diaphragm wall, which is 1258m long and 55m deep on average, was built in 19 weeks. (U.K.)

  18. A local authority view of the Sizewell B decision and the role of the public enquiry

    International Nuclear Information System (INIS)

    Ayre, D.

    1987-01-01

    The background to the Sizewell-B public inquiry is presented. The local authorities are important in this as it was they who first received the Central Electricity Generating Board's request to build Sizewell-B and who triggered the need for a Public Inquiry. The local authorities did not object in principle to the use of the Sizewell site for additional nuclear power generation provided the Government was satisfied that there was a national need for the extra capacity. In future inquiries there might not be acceptance in principle which would change the nature of the Inquiry. The local authority involvement in the public inquiry is discussed under the headings: need and economics, safety and local environment issues. The relevant parts of the Sizewell-B report are considered. The Secretary of State's decision, which follows the Inspector's report, justifies the confidence put in the inquiry process by the local authorities. Concern is expressed, however, that extra financial help is needed to pay for the local authorities expenditure on the Inquiry and also for the consequences of the Sizewell-B project itself. (U.K.)

  19. Assessment of options for the treatment of Sizewell PWR liquid effluent

    International Nuclear Information System (INIS)

    Hornby, J.; Allam, J.; Knibbs, R.H.

    1992-01-01

    This report describes the origins of PWR liquid waste streams, their composition and rates of arising. Data has been collected from operational PWRs and estimates obtained for Sizewell B PWR liquid waste streams. Current liquid waste treatment practices are reviewed and assessments made of established and novel treatment techniques which could be applicable to Sizewell B. A short list of treatment options is given and recommendations are made relating to established treatment technologies suitable for Sizewell B and also to development work on more novel treatments which could lead to a reduction in waste disposal volumes. (author)

  20. Sizewell B

    International Nuclear Information System (INIS)

    1983-07-01

    The design strategy for keeping all exposures of persons to ionising radiations as low as is reasonably practicable (ALARP) is discussed for the proposed Sizewell B nuclear power station. The safety assessment objectives are discussed together with economic factors, choice of primary circuit materials to minimise the formation of crud, operational chemistry, filtration, decontamination, design modifications and radioactive waste management. It is concluded that a significant attempt has been made to quantify design decisions in respect of the ALARP strategy for dose reduction. A programme of additional work is discussed. (U.K.)

  1. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Jenkin, F.P.

    1982-11-01

    The CEGB's planning and assessment procedures relating to Sizewell B are explained. The various bases of need for new generating plant capacity are outlined. These are: capacity requirement; provision of economic generating capacity; security of fuel supplies; making provision for future investment options. A detailed case for Sizewell B is then presented, including an assessment of risk and uncertainty. (U.K.)

  2. Electricity consumers' council statement of case to the Sizewell 'B' power station public inquiry

    International Nuclear Information System (INIS)

    Barnes, M.

    1983-01-01

    Of the four arguments used in favour of Sizewell, the ECC considers that the economic benefit case is much the most important. Consumers will need to be convinced above all that Sizewell will help to restrain the growth of electricity prices. Of the other three arguments, plant need is not taken very seriously by the Board, making provision for future investment options hardly appears in the Statement of Case, and fuel diversity - while an important objective - can only be examined properly within the context of long-term investment strategy and relates only marginally to Sizewell as a self-standing project. Because a decision about Sizewell can in any case only be fully evaluated within the context of long-term plant strategy, the ECC has also briefly considered the most important long-term issues - the existence or otherwise of a nuclear programme, the questions surrounding technology acquisition and alternative energy investments - against which the Sizewell decision should be viewed. (author)

  3. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    McFarlane, J.D.

    1982-11-01

    The NNC construction programme for the Sizewell B nuclear power station is outlined. The following topics are considered: constructability aspects of the Sizewell B design; overall project programme and organization; NNC target construction programme; construction planning; material quantities and installation rates; site construction manpowers; construction contracting policy; site industrial relations and productivity; site management. (U.K.)

  4. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Newell, J.E.

    1982-11-01

    A brief description is given of the design of the steam generators for the proposed Sizewell B power station. A review of the operational behaviour of earlier models is presented. The problem of degradation of steam generator tubes is considered in some detail. Model F steam generator, which has been incorporated into the Sizewell B reference design, is discussed. Finally the impact of steam generator tube degradation upon radiological safety is discussed. (U.K.)

  5. Proof of evidence by National Nuclear Corporation Limited for Sizewell 'B' public inquiry

    International Nuclear Information System (INIS)

    Franklin, N.L.

    1983-02-01

    The history, experience and capability of National Nuclear Corporation Limited (NNC) and the requirements for the Sizewell B PWR project are reviewed. A Joint Project Team comprising staff from NNC, Westinghouse, Bechtel and the CEGB has been formed to develop the design of the station and the safety case. It is concluded that Sizewell B will be economic in its own right and will equip NNC with expertise, experience and resources in PWR technology. The construction of Sizewell B will provide the experience on which future PWR projects can proceed with confidence. (U.K.)

  6. Ultimate load model test for Sizewell 'B' primary containment

    International Nuclear Information System (INIS)

    Crowder, R.

    1988-01-01

    This paper considers the factors influencing the adoption of an ultimate load factor for the Sizewell 'B' PWR primary containment structure. As part of the validation process for the ultimate load analysis method, a proposal has been made by Nuclear Design Associates to build and test a 1/10th scale model of the containment structure, which would proceed following the granting of section 2 consent for Sizewell 'B'. The modelling principles, construction method and test proposals are examined in some detail. The proposal is currently being considered by the CEGB's Project Management Team. (author)

  7. The construction of a PWR power station reactor building liner

    International Nuclear Information System (INIS)

    Skirving, N.; Goulding, J.S.; Gibson, J.A.

    1991-01-01

    Cleveland Bridge and Engineering Co Ltd (CBE) are constructing the Reactor Building Liner Plate containment of the Sizewell 'B' Power Station for Nuclear Electric Ltd. This has entailed extensive offsite prefabrication of components and their subsequent erection at Sizewell. It has been necessary to engineer temporary supporting mechanisms to enable manufacture and erection to proceed, yet also to withstand wet concrete forces during the progressive construction. The Reactor Building Liner Plate is a safety related system and as such, in addition to strict compliance with the ASME code, the Quality Assurance (QA) requirements of BS 5882 are applicable. A dedicated Project Team was established by CBE to control and direct the work. Equally important as satisfying the rigorous Q.A. requirements has been the need to meet programme and budget. This paper details CBE execution of the Project. (author)

  8. Sizewell 'B' public inquiry. Proof of evidence on local environmental issues

    Energy Technology Data Exchange (ETDEWEB)

    Barritt, E E

    1982-11-01

    The report falls under the headings: introduction (need/economics; safety; waste management; local and site specific issues); the Sizewell site - history and planning policies; planning and environmental implications; land use and landscape implications; ecological implications; mineral requirements; highway implications; employment implications; accommodation implications; infrastructure and social/community services; safeguarding restrictions for Sizewell - Nuclear Installations Inspectorate; decommissioning.

  9. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Passant, F.H.

    1982-11-01

    The radioactive wastes expected to arise at the proposed Sizewell B PWR are identified. The plant provided to collect, process, store and dispose of the wastes is described. The quantities and activities of wastes for disposal are derived. The proposed methods of transport and disposal are described. Wastes which would arise from reprocessing and from decommissioning Sizewell B are discussed. Finally some of the radiological aspects of waste disposal are outlined. (U.K.)

  10. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  11. ECOS: a configurable, multi-terabyte database supporting engineering and technical computing at Sizewell B

    International Nuclear Information System (INIS)

    Binns, F.; Fish, A.

    1992-01-01

    One of the three main classes of computing support systems is concerned with the technical and engineering aspects of Sizewell-B power station. These aspects are primarily concerned with engineering means to optimise plant use to maximise power output by increasing availability and efficiency. At Sizewell-B the Engineering Computer system (ECOS) will provide the necessary support facilities, and is described. ECOS is being used by the station commissioning team and for monitoring the state of some plant already in service. (Author)

  12. Democracy and the Sizewell inquiry

    International Nuclear Information System (INIS)

    Armstrong, J.

    1987-01-01

    In this paper the brief summary of selected procedural aspects of the Sizewell Inquiry indicates that the way in which major and controversial planning proposals are subject to public debate is in need of urgent review. The Sizewell Inquiry fell short of public expectation, and indeed of Government promises, on two major counts; it did not provide a forum for the debate of certain questions which are clearly of utmost importance and concern to the nuclear issue, while its semi-judicial format and unbalanced funding effectively discouraged and often prevented the level of participation which many objecting parties sought. The Government's assurance of a 'full and fair' debate proved to be hollow and in some quarters this has served to increase scepticism of the stated desire for public involvement in nuclear decision-making. Of the major controversies which have been in the subject of public inquiries in recent years, nuclear power is clearly one of the most challenging. It brings together an extremely varied band of objectors which, in the light of recent radioactive leakages from Windscale, future plans for waste storage facilities and the proposed plutonium reprocessing plant at Dounreay, promises only to grow

  13. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    George, B.V.

    1982-11-01

    The design of the proposed Sizewell B power station and the policies which have guided design choices are outlined. The specification for Sizewell B and the production of its reference design are discussed. The Nuclear Steam Supply System and the associated safeguards systems are dealt with in more detail. The protection against hazards causing damage to plant and the protection provided to reduce radiation exposure are described. Control, instrumentation and operation of the plant are discussed. A section on quality of design follows. Finally economic aspects of the design are dealt with. (U.K.)

  14. Validation results of the pre-service ultrasonic inspections of the Sizewell B pressurizer and steam generators and reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    Conroy, P.J.; Leyland, K.S.

    1995-01-01

    In the UK, concern over the safety issues associated with nuclear power generation resulted in a demand for a public inquiry into the construction and operation of Sizewell ''B'', Britain's first PWR. This public inquiry was additional to the UK's normal licensing process. The onus was placed upon the UK utility, CEGB (now Nuclear Electric plc) to provide evidence to the inquiry to support the case that the plant would be constructed and operated to a sufficiently high standard of safety. Part of the evidence to the inquiry (1) relied upon the ability of ultrasonic inspections to verify that the reactor pressure vessel and other safety critical components (collectively known as IoF components), were free from defects that could threaten structural integrity. At that time, the body of evidence showed that although ultrasonic inspection had the potential to satisfy this requirement, it would be necessary to validate the procedures and key operators used in order to provide assurance that they were adequate. Inspection validation therefore became an integral part of the UK PWR nuclear power program

  15. Probabilistic safety analysis for Sizewell B - proof of evidence, established on behalf of the Friends of the Earth, London, within the framework of the Sizewell B power station public inquiry

    International Nuclear Information System (INIS)

    Hahn, L.

    1985-01-01

    The conclusions drawn in the study presented by the Oeko-Institut, Freiburg, state that there are indeed advantages in the design of the PWR-type Sizewell-B reactor over other types with regard to certain event sequences, but that on the whole, with regard to overall accident probability, there is no significant progress detectable, or even provable. The main results of the analysis in hand undoubtedly are that the unrealistically favourable data presented in the other two Sizewell studies are brought about not by the design features, but by the assumptions, methods and data applied in the studies, so that certain weak points in the methodological approach common to both studies inevitably lead to similar results. The authors of the study in hand explain some of the weak points of the Westinghouse Study and of the CEGB Study to be as follows: - Lack of error bands of results. - Lack of a quantitative analysis of in-plant fire accidents. - Lack of quantitative analysis of external impacts. - Lack of (CEGB) or unsatisfactory (Westinghouse) evaluation of the measuring, control, and drive systems. - Lack of (CEGB) or unsatisfatory (Westinghouse) evaluation of the human factors. - Completely unsatisfactory evaluation of common-mode failures (i.e. multiple failures due to common cause, undiscovered systems interactions, etc.). - Unacceptable handling and use of available data (using data assessments made by experts, instead of data available from experience). (orig./HSCH) [de

  16. Designing power transformers for Sizewell 'B' as quality products

    International Nuclear Information System (INIS)

    White, A.; Poole, C.W.

    1992-01-01

    At the beginning of 1990, Nuclear Electric plc., then a Division of the CEGB, placed a contract with GEC ALSTHOM Transformers Limited of Stafford for the design, supply and installation of the main transformers for the Sizewell B electrical system. The following transformers are being provided under this contract; two Generator Transformers, two Station Transformers, two Unit Transformers and two Fault Limiting Reactors. The main objective of this paper is to describe the quality assurance philosophies applied to the design of these transformers to ensure that the performance requirements were met in full and to describe how these philosophies were converted into a practical working system. The paper does not set out to present a detailed technical appreciation of the transformers themselves but rather, to demonstrate that by addressing quality in the design and design processes, reliable and efficient items of high value, capital equipment result from the partnership in quality between supplier and customer. (Author)

  17. Sizewell nuclear power station: investigation of radiation exposure pathways from liquid effluents. Local habits survey 1981

    International Nuclear Information System (INIS)

    Leonard, D.R.P.; Smith, B.D.

    1982-01-01

    A habits and consumption survey to review radiation exposure pathways due to liquid effluents released from the CEGB Sizewell site is described. It is relevant to both the Sizewell A and proposed Sizewell B nuclear power stations. The main objectives are to provide input data to a radiological assessment by means of identifying critical groups and to provide data for guidance in a review of environmental monitoring programmes. The way in which data for the different pathways should be combined in order to aid the subsequent radiological assessment is discussed. Recommendations are made for adjustments to the present monitoring programmes. (U.K.)

  18. Can the myth be maintained? - understanding the economics of Sizewell B

    International Nuclear Information System (INIS)

    Harper, M.

    1990-01-01

    The cost of electricity generated by Sizewell-B is discussed as this has been the model for the economic arguments in favour of the proposed Hinkley Point C pressurised water station. However, since the Energy Select Committee report concluding that electricity from Sizewell-B will be substantially dearer than from coal-fired stations was published public justification is now expressed in terms of benefits to the environment. Reduction of the greenhouse effect, security of supply and maintenance of the nuclear option are now more important. The economic case is examined. (UK)

  19. The economic consequences of the Sizewell 'B' nuclear power station

    International Nuclear Information System (INIS)

    Fothergill, S.; Gudgin, G.; Mason, N.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (the background to Sizewell 'B'); policy options (Sizewell 'B'; a new coal-fired station; the no-new-station option; a PWR programme); economic framework (direct effects; financing; final macroeconomic effects); the construction phase (capital costs; direct effects; final effects; summary); the operating phase (a new power station as a replacement for older stations; the period of base-load operation; the later years of operation; summary); conclusions and policy recommendations. The first recommendation is that if a new power station is built it should be a coal-fired station rather than a PWR. The second recommendation is that if a new coal station is built there is a case for building it early, ahead of demand. (U.K.)

  20. Torness and Hunterston - as uneconomic as Sizewell B

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1986-01-01

    The admission by CEGB that Sizewell B would be uneconomic under conditions postulated in the evidence given by the present author at the Sizewell Inquiry, is used to show that Torness and Hunterston AGRs have almost no chance of being economic, because the large immediate increases in postulated real coal prices required to enable Torness to produce a lifetime surplus, have not materialized. The attempt of SSEB to conceal the fact that it postulated this large increase in real coal prices in order to make Torness appear to be economic, is described and exposed. The joint practice of CEGB and SSEB of discounting long-term nuclear costs so that they make no significant contribution to the final calculated unit cost is described. Finally, the recent document, explaining the SSEB's case for keeping the AGR, is analysed and characterized as 'one of the most misleading documents on the economics of nuclear power to be seriously presented to the public'. (author)

  1. Man-machine interface systems for the Sizewell B Nuclear Power Station

    International Nuclear Information System (INIS)

    Boettcher, D.B.

    2004-01-01

    Sizewell B is the first nuclear power station to be built in the United Kingdom using the Pressurised Water Reactor or PWR system. The design is based on stations operating in the United States, but many changes and new features have been introduced to bring it up to date, and to meet United Kingdom practice and regulatory requirements. The Man-Machine Interfaces (MMIs) in the control rooms have been newly designed from first principles, with special attention paid to human factors and the role of the operators. The instrumentation and control (1 and C) systems which interface the MMIs to the process plant, and automate the operation of the station, use advanced technology to achieve high performance and availability. This paper describes the development of the control rooms and 1 and C systems, explaining the thinking that lay behind the principal decisions. (author)

  2. Main unit electrical protection at Sizewell 'B' power station

    International Nuclear Information System (INIS)

    Fischer, A.; Keates, T.

    1992-01-01

    For any power station, reliable electrical protection of the main generating units (generators plus generator transformers) has important commercial implications. Spurious trips cause loss of generation and consequent loss of revenue, while failure to rapidly isolate a fault leads to unnecessary damage and again, loss of generation and revenue. While these conditions apply equally to Sizewell B there are additional factors to be taken into consideration. A spurious trip of a main generating unit may lead to a trip of the reactor with an associated challenge to the shutdown and core cooling plant. The generator transformers, besides exporting power from the generators to the 400 kV National Grid, also import power from the Grid to the 11 kV Main Electrical System, which in turn is the preferred source of supply to the Essential Electrical System. The Main Unit Protection is designed to clear generator faults leaving this off-site power route intact. Hence failure to operate correctly could affect the integrity of the Essential Electrical Supplies. (Author)

  3. The future of nuclear power after Sizewell B. 3 v.: v. 1 Economic issues; v. 2 Environmental and safety issues; v. 3 Public perception issues

    International Nuclear Information System (INIS)

    1987-01-01

    The three days of conference proceedings are published in three separate volumes. The first includes 7 papers relating to economic issues - those presented at the Sizewell-B public inquiry and the changes in the economic situation since the inquiry ended. The electricity demand, how this demand is to be met by nuclear and other fuel sources and how energy conservation might be an economic alternative to simply building more generating capacity are all issues discussed. The possible privatisation of the industry is also touched on. Volume two has 8 papers concerned with environmental and safety issues. These include the influence of the Sizewell-B decision on nuclear licensing and reactor safety, the technical and safety aspects of pressurized water reactors (PWR), the roles of British Nuclear Fuels and the United Kingdom Atomic Energy Authority, and radiation protection and effluent discharge control. The six papers in volume 3 look at public perception issues - not only towards nuclear power but towards the public inquiry process. The local authority view, the Friends of the Earth case against the PWR, and technical expertise in the decision process are also topics covered. All the papers are indexed separately. (UK)

  4. Sizewell 'B' PWR reference design

    International Nuclear Information System (INIS)

    1982-04-01

    The reference design for a PWR power station to be constructed as Sizewell 'B' is presented in 3 volumes containing 14 chapters and in a volume of drawings. The report describes the proposed design and provides the basis upon which the safety case and the Pre-Construction Safety Report have been prepared. The station is based on a 3425MWt Westinghouse PWR providing steam to two turbine generators each of 600 MW. The layout and many of the systems are based on the SNUPPS design for Callaway which has been chosen as the US reference plant for the project. (U.K.)

  5. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Arnold, P.J.

    1982-11-01

    The systems benefits of the selection of the Sizewell site for a PWR power station are dealt with. The transmission modifications which would be needed to provide effective connection of this station to the system are considered. (U.K.)

  6. Ergonomics and its application to Sizewell 'B'

    International Nuclear Information System (INIS)

    Singleton, W.T.

    1986-01-01

    The scope of the ergonomics contribution to the design and operation of power stations is described on the basis of current experience in the CEGB and in other countries. The ergonomics questions which arise in relation to Sizewell 'B' are enumerated in detail. Issues which arise from the point of view of station operation and from the complementary point of view of human behaviour are considered. (author)

  7. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Youngman, P.

    1982-11-01

    The scenic effect of the proposed Sizewell B power station is considered. Offsite planting of trees, landscaping of the areas around the new access road and of the site itself are discussed. The landscape designs are in a separate volume. (U.K.)

  8. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    McInerny, P.T.

    1982-11-01

    A description is given of the policy and practices that would be adopted in the commissioning, operation and maintenance of the proposed Sizewell B PWR power station. The system of personnel recruitment and training required to staff the station is discussed. (U.K.)

  9. United Kingdom and USSR reactor types

    International Nuclear Information System (INIS)

    Lewins, Jeffery

    1988-01-01

    The features of the RBMK reactor operated at Chernobyl are compared with reactor types pertinent to the UK. The UK reactors covered are in three classes: the commercial reactors now built and operated or in commission (Magnox and Advanced Gas-cooled Reactor (AGR)); the prototype Steam Generating Heavy Water Reactor (SGHWR) and Prototype Fast Reactor (PFR) that have comparable performance to commercial reactors; and the proposed Pressurised Water Reactor (PWR) or Sizewell 'B' design which, it will be recollected, is different in detail from PWRs built elsewhere. We do not include research and test reactors nor the Royal Navy PWRs. The appendices explain resonances, Doppler and Xenon effects, the reactor physics of Chernobyl and positive void coefficients all of which are relevant to the comparisons. (author)

  10. A RETRAN-02 model of the Sizewell B PCSR design - the Winfrith one-loop model, version 3.0

    International Nuclear Information System (INIS)

    Kinnersly, S.R.

    1983-11-01

    A one-loop RETRAN-02 model of the Sizewell B Pre Construction Safety Report (PCSR) design, set up at Winfrith, is described and documented. The model is suitable for symmetrical pressurised transients. Comparison with data from the Sizewell B PCSR shows that the model is a good representation of that design. Known errors, limitations and deficiencies are described. The mode of storage and maintenance at Winfrith using PROMUS (Program Maintenance and Update System) is noted. It is recommended that users modify the standard data by adding replacement cards to the end so as to aid in identification, use and maintenance of local versions. (author)

  11. Software change control in the Sizewell B ISCO

    International Nuclear Information System (INIS)

    Johnson, A.

    1997-01-01

    Central to the control and instrumentation system of the Sizewell B nuclear power plant is a control, data acquisition and control system based on a distributed network of several hundred microprocessors. The system has been integrated into a single functional unity, and software modifications affecting one part of it have an effect on the other parts. The software modification and configuration processes are therefore kept as similar as possible. (A.K.)

  12. The use of probabilistic safety analysis in design and operation -- Lessons learned from Sizewell B. Annex 14

    International Nuclear Information System (INIS)

    Buttery, N.E.

    2002-01-01

    Probabilistic Safety Assessments (PSAs) have been used extensively in the design and licensing of Sizewell B. This paper outlines the role of PSA in the UK licensing process and describes how it has been applied to Sizewell B during both the pre-construction and pre-operational phases. From this experience a 'Living PSA' has been formulated which continues be used to support operation. The application of PSA to Sizewell B has demonstrated that it is a powerful tool with potential for future use. Its strengths and limitations as a tool need to recognised by both users and regulators. It is not a fully mechanistic means of ensuring design safety, but is an important aid to decision making. It also has the potential to allow risk judgements to be taken in conjunction with commercial and environmental issues. (author)

  13. An exploratory study of the local socio-economic effects of Sizewell B

    International Nuclear Information System (INIS)

    1982-12-01

    This Sizewell B study involved five main tasks: (i) to provide broad estimates of the temporary and permanent accommodation requirements of the proposed Sizewell B workforce and families and the likely level of local supply of accommodation; (ii) to provide broad estimates of the requirements for school places of the accompanied workforce and the likely local supply of such places; (iii) to assess further the wider employment effects of the proposed development on local firms, particularly as potential suppliers of goods and services; (iv) to conduct further studies of the expenditure patterns of power station employees; and (v) to incorporate where relevant the likely effects of a policy of double day shift work (in power station construction) into the predictions. Results of the study are reported. (author)

  14. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Henderson, B.

    1982-11-01

    Architectural concepts and design proposals associated with the proposed Sizewell B power station are outlined. The figures are in a separate volume. They consist of the site layout plan, an axonometric drawing of the site, an elevations drawing and a colour perspective drawing of 'A', 'B' and 'C' stations. (U.K.)

  15. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Wilson, A.

    1982-11-01

    The methods of establishing construction time, capital cost, availability and lifetime of different types of generating plant are described. In volume one assessments are presented for a new coal fired station, for a new AGR station and for a new PWR station - Sizewell B. Volume two, contains all diagrams, tables and appendices presented as evidence. (U.K.)

  16. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Gittus, J.

    1982-11-01

    In volume one an analysis is presented of degraded core accidents involving the proposed Sizewell B PWR. Consideration is given to their estimated frequency, the course which they take, the release of radioisotopes from the plant and the radiological consequences of such a release. Volume two contains all the figures, tables and appendices presented as evidence. (U.K.)

  17. Industrial relations and site management proposals for Sizewell 'B'

    International Nuclear Information System (INIS)

    Burbridge, R.N.

    1986-01-01

    The vendor assessment and general contract strategy for the proposed Sizewell 'B' PWR are reviewed with particular reference to a 'Key Date' procedure. The family of programmes used in constructing CEGB projects is indicated and the intended site labour strategy for the project is outlined. To exemplify the current success of these policies, the paper concludes with a brief review of their application to the CEGB's Drax Completion Project. (author)

  18. The effect of fish impingement at Sizewell 'A' Power Station, Suffolk, on North Sea fish stocks

    International Nuclear Information System (INIS)

    Turnpenny, A.W.H.; Utting, N.J.; Millner, R.S.; Riley, J.D.

    1988-04-01

    Samples collected from the cooling water intake screens of Sizewell 'A' power station over a 12 month period contained 73 species of fish. Of these, only 20 species were present on more than 50% of sampling dates and only 7 commercially exploited species were caught in quantities of more than a few hundred over the year; namely sprat, herring, cod, whiting, sole, dab and plaice. These species formed the basis of analysis of the impact of the Power Station on commercial species. Commercial species found in the Sizewell area are part of major North Sea stocks. The impact of the losses due to the Power Station is spread over these stocks, hence the effect is minimal. The mortality rate caused by the Power Station is one thousandth to one hundred-thousandth, depending on species, of that caused by commercial fishing and the effect is less than that of a small, inefficient commercial trawler. (author)

  19. The management of interfaces between organizations involved with the construction of Sizewell 'B'

    International Nuclear Information System (INIS)

    Butler, P.H.; Salmons, B.H.

    1990-01-01

    The overall organisation for the design, construction and commissioning of Sizewell 'B' is described, together with the specific responsibilities of the organisations involved. The paper describes how the parameters for each interface are identified, and how the formal arrangements for controlling transmission of information and material are handled. Whilst each organisation will perceive quality achievement as the ultimate objective, the specific individual responsibilities may dictate different, and sometimes opposing mechanisms for implementation, due to different perceptions of priority. The PWR Project Group has the ultimate responsibility for building Sizewell 'B' to cost and schedule and to the specified quality, and the paper describes, with some examples, how the different perceptions are addressed in order to achieve the ultimate objective. (author)

  20. Remote filter handling machine for Sizewell B

    International Nuclear Information System (INIS)

    Barker, D.

    1993-01-01

    Two Filter Handling machines (FHM) have been supplied to Nuclear Electric plc for use at Sizewell B Power Station. These machines have been designed and built following ALARP principles with the functional objective being to remove radioactive filter cartridges from a filter housing and replace them with clean filter cartridges. Operation of the machine is achieved by the prompt of each distinct task via an industrial computer or the prompt of a full cycle using the automatic mode. The design of the machine features many aspects demonstrating ALARP while keeping the machine simple, robust and easy to maintain. (author)

  1. Radiation protection in the design and operation of Sizewell B

    International Nuclear Information System (INIS)

    Oldfield, M.

    1989-01-01

    This paper raises Health Physics operational issues specific to PWR or not previously encountered by the CEGB, which need to be resolved before the operation of Sizewell B and its replica successors. Staffing, access to contamination areas, training, temporary scaffolding and temporary lead shielding are discussed and the author makes some observations and suggestions. (author)

  2. The Sizewell inquiry - is there a better way

    International Nuclear Information System (INIS)

    Greenhalgh, G.

    1984-01-01

    The author sees the Inquiry as the latest in a line arising from government's wish to achieve greater public participation in controversial decisions. He believes that the Sizewell Inquiry is unlikely to shake the public out of its apathy, while a decision that goes against them will not satisfy the objectors. The concept of the Inquiry is based on the belief that the legal process will unearth objective truth, while most of the issues are matters of opinion and judgement. The wide-ranging terms of reference are leading to constitutional anomalies and attempts to take on Herculean tasks in the search for objective truth. However, while concluding that an Inquiry Commission adopting a legal approach and following courtroom procedures is not a satisfactory way of dealing with large-scale technological projects, the author finds it hard to suggest alternatives short of more direct parliamentary control. (author)

  3. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Gammon, K.M.

    1982-11-01

    The site selection and site specific aspects of the proposal to build Sizewell B PWR are dealt with. A description of the site and its surroundings is followed by physical and technical details of the proposed development. Consultations with statutory authorities, environmental and other local issues are discussed. Finally population distribution around the site and the way in which this could be controlled are considered. (U.K.)

  4. Agricultural production data for the Sizewell area

    International Nuclear Information System (INIS)

    1982-11-01

    The proposed site for the Sizewell B nuclear power station is located at the centre of the East Suffolk coastline. The county itself is predominantly agricultural, producing a very wide range of foodstuffs which in the case of one or two particular foodstuffs contribute a significant proportion of the total national production. A general view of the agricultural setting within which the development would be sited and a compendium of more detailed agricultural data relating to the immediate vicinity of the site, which has been drawn on in the Ministry's assessment of the radiological impact of routine atmospheric waste emission, are given. (U.K.)

  5. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Dutton, L.M.

    1982-11-01

    A description is given of the main sources of radioactivity and the barriers which would prevent their release at the proposed Sizewell B nuclear power station. The methods of calculating the radiological consequences associated with the most significant faults within the design are outlined. The following possibilities are considered: faults involving high fuel temperatures; loss of coolant accidents; secondary coolant circuit faults; waste processing system faults; irradiated fuel faults. (U.K.)

  6. Radioactivity in the vicinity of Sizewell nuclear power station: marine environmental monitoring, 1983

    International Nuclear Information System (INIS)

    Hunt, G.J.

    1984-01-01

    Regular monitoring of radioactivity in the aquatic environment of the British Isles has continued. A report presents the results of this program in relation to the Sizewell nuclear power station for 1983, so as to supplement the most recently available full report which is for 1982. (author)

  7. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Hawes, F.B.

    1982-11-01

    The biological consequences of using a direct cooled system at the proposed Sizewell B power station are dealt with. Problems caused by the impingement of organisms on the fine-mesh screens through which the water is pumped, by the entrainment of smaller organisms in the flow through the cooling system and by the discharge of warmed chlorinated water into the sea are discussed. The chlorination of cooling water is described. (U.K.)

  8. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Wright, J.K.

    1982-11-01

    A general description of the nuclear fuel cycle for PWRs and AGRs is given. The details of the fuel cycle for Sizewell B are explained and its cost is analysed against a specific set of background assumptions. Then, in less detail, an evaluation of PWR fuel cycle costs is presented against a wide range of background assumptions. The cost of the AGR fuel cycle is analysed. Finally the uncertainties in the results obtained are considered. (U.K.)

  9. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Healey, T.; Board, S.J.

    1982-11-01

    The issue of fuel clad ballooning during a postulated large loss of coolant accident is examined. A summary of the evidence which shows that such an event in the proposed Sizewell B nuclear power plant would not lead to violation of the fuel limits laid down in the United States NRC Code of Federal Regulations, 10 CFR 50, Appendix K. The present status of the computer codes BART and TAPSWEL and the validation evidence to demonstrate their adequacy is outlined. (U.K.)

  10. An examination of the proposals for the off-site electrical power sources at the Sizewell B PWR

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, P. A. [HM Nuclear Installations Inspectorate, London (United Kingdom)

    1986-02-15

    Over the past few years there has been an increase in the attention being given to the adequacy and reliability of alternative sources of power provided to supply safety equipment should off-site electrical sources fail. This paper discusses the rationale of HM Nuclear Installations Inspectorates assessment of the electrical systems proposed for the UK's first Pressurized water Reactor, Sizewell 3. The requirements for on-site sources are given, and a discussion is provided of the NII's Assessment Principles including common mode failure, single failure criterion and reliability targets. Where the assessment has resulted in notifications to the original design the reasons are given. The UK's large interconnected Grid System makes complete losses of off-site power comparatively rare. The potential exists however and this paper shows how the current approach ensures that not only are adequate on-site sources available but also that their siting, maintenance and testing are such that loss of off-site power will not cause an unacceptable risk to the public. (author)

  11. Sizewell 'B' power station public inquiry. CEGB proof of evidence

    International Nuclear Information System (INIS)

    Flint, R.A.

    1982-11-01

    The NNC cost estimates for the construction of the Sizewell B nuclear power station are discussed and the methods employed in their preparation are described. The preparation of the estimates for each of the major divisions of cost are outlined. These divisions are: civil engineering and building works; nuclear steam supply system; NNC costs; turbine generators; other mechanical plant; other electrical plant. The uncertainties which exist in making these estimates are discussed and the cost allowances which must be made as a result are outlined. (U.K.)

  12. Sizewell B - analysis of British application of US PWR technology

    International Nuclear Information System (INIS)

    1983-05-01

    This report provides information on the staff's evaluation of major design differences and issues developed by the British in their application (Sizewell B) of US PWR technology. One design change, the addition of steam-driven charging pumps, was assessed to have a relatively high value compared to the other changes. However, the assessment is based on a number of assumptions for which inadequate data exist to make an unqualified judgment. Other changes to the US design (as typified by the SNUPPS design) were found to have relatively low or moderate safety benefits for US application

  13. Frequency limitations on reactor release derived from radiological criteria

    International Nuclear Information System (INIS)

    Clarke, R.H.

    1976-05-01

    Acceptable frequencies are suggested with which a number of defined individual and collective dose criteria are met. This has enabled a relationship to be proposed between the frequency and any event leading to release of radioactive material and the dose commitment to the hypothetical individual at the site boundary. The philosphy developed is generally applicable, but in this instance it has been demonstrated for an SGHW Reactor located at Sizewell. The results are derived on the basis of an acceptable level of risk of fatality to the most exposed individual and the application of the methodology to other reactor types and sites is demonstrated. (author)

  14. The potential for reducing the radiological consequences of reactor decommissioning through selection of construction materials for activated components

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1984-08-01

    This report considers whether it may be possible to reduce the radiological consequences of reactor decommissioning by careful attention to the specification of the elemental concentration of materials used in the reactor's construction. In particular, consideration is given to the potential for reduction of the concentration of elements known to activate to long lived daughter isotopes. Two particular areas are addressed, both applied to Sizewell 'B' PWR. The first is the choice of raw materials for the construction of the concrete bioshield to minimise future waste arisings. The second is the specification of some trace element concentrations in the steel pressure vessel and reactor internal structures to minimise personnel exposure at decommissioning time. The report presents extensive analyses of many of the candidate raw materials for Sizewell 'B' concrete, including PFA, and derives the radiological consequences for the eventual disposal of these materials to a hypothetical municipal land fill waste site. Data are also presented on the concentrations of important elements activating to gamma emitting daughters in type 304 stainless steels, leading to an assessment of likely dose equivalent rates at decommissioning time from the pressure vessel and from the internal components. (author)

  15. Showcase or swansong: the dilemma of Sizewell B

    International Nuclear Information System (INIS)

    Ashmore, Colin.

    1996-01-01

    The proposal to privatize the United Kingdom's nuclear power generators (Nuclear Electric and Scottish Nuclear, now joined and renamed British Energy) is driven by political rather than rational motives, it is argued. Notwithstanding that nearly one third of the current United Kingdom generating capacity, comes from British Energy, the future looks uncertain, and plans for future nuclear plants at Hinkley Point and Sizewell have been withdrawn, rendering the long-term future of the nuclear fission based industry very unattractive to investors. As gas prices rise, in the long term, the economic balance is likely to change again, with nuclear fusion technology, most likely to benefit. (UK)

  16. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Mawer, W.T.

    1982-11-01

    The cooling water system which would be needed for the proposed Sizewell B power station is described. The possible effects upon public safety, local fishing interests and the existing seabed are examined. Studies of the heat dispersion from outfalls, the location of offshore structures and the control of marine growth in the system are reported. Finally the essential service water system, the reserve ultimate heat sink, the discharge of liquid radioactive waste into the sea and the possible use of waste heat for agricultural and fish farming purposes are discussed. (U.K.)

  17. A new reactor core monitoring system. First experience gained at the Dukovany NPP

    International Nuclear Information System (INIS)

    Pecka, M.; Svarny, J.; Kment, J.

    2001-01-01

    The article deals with methods of interpretation of in-core measurements that are based on the determination of the three-dimensional (3D) power distribution within the reactor core, discusses on-line mode calculations, and describes the results obtained during the trial operation of the new SCORPIO-VVER reactor core monitoring system. The principles of the method of determination of the fuel assembly subchannel parameters are outlined. Alternative methods of self-powered detector signal conversion to local power are given, and some results of their testing are presented. Emphasis is put on self-powered detectors supplied by the US firm IST, which were first deployed at the Dukovany NPP in 1998. The predictive function of the SCORPIO-VVER system, whose implementation was inspired by favourable experience gained on some PWR reactors (such as the products of the Halden reactor project at Ringhals and Sizewell B) were adapted to the specific needs of WWER-440 reactors. The main results of validation of the functions are described and presented in detail. (author)

  18. Sizewell integrated system for centralized operations: getting it all together

    International Nuclear Information System (INIS)

    Cook, B.M.; Robinson, D.E.P.

    1992-01-01

    In June 1991, Westinghouse was awarded a contract by Nuclear Electric to supply the Integrated System for Centralized Operations (ISCO) for the Sizewell B nuclear power plant under construction in Suffolk. This system is a large scale distributed control and instrumentation system that will perform safety and control functions for the primary and secondary systems for the plant. Combined with the control and instrumentation equipment that was already being supplied for the plant by Westinghouse, this will be the most extensive integration of modern digital control equipment on a nuclear power plant to date. The ISCO architecture, consisting of 3 major segments -high integrity control, process control and the distributed computer system - is described. The history of the ISCO development is explained. (Author)

  19. Automated ultrasonic shop inspection of reactor pressure vessel forgings

    International Nuclear Information System (INIS)

    Farley, J.M.; Dikstra, B.J.; Hanstock, D.J.; Pople, C.H.

    1986-01-01

    Automated ultrasonic shop inspection utilizing a computer-controlled system is being applied to each of the forgings for the reactor pressure vessel of the proposed Sizewell B PWR power station. Procedures which utilize a combination of high sensitivity shear wave pulse echo, 0 degrees and 70 degrees angled longitudinal waves, tandem and through-thickness arrays have been developed to provide comprehensive coverage and an overall reliability of inspection comparable to the best achieved in UKAEA defect detection trials and in PISC II. This paper describes the ultrasonic techniques, the automated system (its design, commissioning and testing), validation and the progress of the inspections

  20. Issues regarding transient analysis examined by the Sizewell B Public Inquiry

    International Nuclear Information System (INIS)

    Farmer, P.R.; Dunnicliffe, C.J.

    1988-01-01

    Issues on PWR safety transient analysis that were discussed at the Sizewell B Public Inquiry are presented. The Public Inquiry was set up by the UK Government under an Inspector, Sir Frank Layfield, to examine all aspects of the construction, safety and operation of a 1200 MW(e) PWR on the Sizewell site. The terms of reference were broad ranging, and the constitution of the Inquiry was to make a recommendation under three Acts of Parliament which apply to the construction and operation of nuclear electrical plant. The Inquiry also covered local planning aspects, which are the responsibility of the Local Authority - in this case the Suffolk County Council. The Inspector examined and made recommendations on the safety of the Station, but consideration by Public Inquiry is outside the formal safety and licensing process, which is the business of the Utility (the CEGB) and the Nuclear Installations Inspectorate (the NII). The paper therefore takes a broader look at the question of safety, dealing with the licensing process, the requirements of the safety case and the forward strategies adopted by the CEGB in terms of research and development. This is considered for transient analysis, and the aim is to set the discussions and conclusions of the Public Inquiry into their proper context with regard to nuclear safety in the UK. The Inquiry went into some depth on the topic of LOCA, as an example of safety analysis. In the summary of the evidence and cross-examination the Inspector accepted the adequacy of the LOCA safety case without major reservations, and was satisfied further work in progress would resolve any residual criticisms. In particular support was given for the CEGB commitment to the development and use of more physically realistic calculational methods

  1. Load shedding and emergency load sequencing system at Sizewell B power station

    International Nuclear Information System (INIS)

    Bowcock, S.; Miller, D.

    1992-01-01

    Sizewell B Nuclear Power Station has a main electrical system that connects together the main turbo-generators, generating at 23.5kV, the 400kV grid and the auxiliary equipment required to operate the station. A separate essential electrical system fed from the main electrical system, supplies all the auxiliaries required to shut-down the nuclear reactor and maintain it in a safe shut-down condition. For safety reasons four similar independent essential electrical systems are provided, each headed by a 3.3kV switchboard and a stand-by 8MW diesel generator. Feeds from the 3.3kV switchboards in turn supply the essential 3.3kV drives and transformer fed 415V essential switchboards. The function of the Load Shedding and Emergency Load Sequencing (LSELS) System is to monitor the condition of the 3.3kV incoming supply from the main electrical system to each essential 3.3kV switchboard and initiate its replacement, with the supply from the associated diesel generator, if it is outside set parameters. In order to achieve this transfer the essential electrical system load must be reduced to a level which the diesel can accommodate as a standing load and then allow the sequenced reconnection of required loads so as not to overload the diesel. The LSELS equipment is categorised as Safety Category 1E and has a significant importance to the safe operation of the power station. Therefore the design of the system must be highly reliable and the purpose of this paper is to detail the design approach used to ensure that a high system reliability is achieved. (Author)

  2. Sizewell B

    International Nuclear Information System (INIS)

    1983-07-01

    The concern for failure of the reactor pressure vessel arises not only from the fact that rupture of the vessel may produce a loss of coolant accident in excess of the design basis for the emergency core cooling system, but may simultaneously give rise to missiles which could damage other protection or safeguards systems, including the containment. The safety case for the reactor pressure vessel is discussed with reference to design, manufacture, fracture analysis, inspection and operation. Outstanding issues are identified. (UK)

  3. Graphics and control of the guide tube assembly reinforcement manipulators at Sizewell 'A'

    International Nuclear Information System (INIS)

    Burden, C.

    1996-01-01

    A method was devised to reinforce the lower lug welds of the Guide Tube Assemblies (GTA's) at Sizewell 'A'. A six degree of freedom manipulator was designed to place a clamp around the lugs and tighten it. The manipulator was fitted with the three fixed cameras but required another surveillance manipulator positioned in an adjacent standpipe to provide additional views. The need to prepare two standpipes limited the rate at which reinforcements could be made. Therefore an articulated two arm camera manipulator, which could be used on the existing manipulator mast was designed and built. The two manipulators were driven from separate desks and were controlled by the same supervisory computer linked to online graphics. The camera arm joints were driven on preplanned routes using a single joystick because of the complex moves and tight spaces involved. A large number of GTA sites have now been reinforced including a dropped GTA which had to be raised to carry out clamping. (Author)

  4. Operational experience with the Sizewell B integrated plant computer system

    International Nuclear Information System (INIS)

    Ladner, J.E.J.; Alexander, N.C.; Fitzpatrick, J.A.

    1997-01-01

    The Westinghouse Integrated System for Centralised Operation (WISCO) is the primary plant control system at the Sizewell B Power Station. It comprises three subsystems; the High Integrity Control System (HICS), the Process Control System (PCS) and the Distributed Computer system (DCS). The HICS performs the control and data acquisition of nuclear safety significant plant systems. The PCS uses redundant data processing unit pairs. The workstations and servers of the DCS communicate with each other over a standard ethernet. The maintenance requirements for every plant system are covered by a Maintenance Strategy Report. The breakdown of these reports is listed. The WISCO system has performed exceptionally well. Due to the diagnostic information presented by the HICS, problems could normally be resolved within 24 hours. There have been some 200 outstanding modifications to the system. The procedure of modification is briefly described. (A.K.)

  5. The effects of a severe reactor accident at the proposed Sizewell B station upon agriculture and fisheries in the United Kingdom and neighbouring countries

    International Nuclear Information System (INIS)

    Taylor, P.J.

    1984-05-01

    This report is a preliminary assessment of the effects of a degraded core accident at the Sizewell site upon regional, national and international agricultural production and fisheries. Two scales of release are taken, one where the containment works effectively, and one where it is breached within a few hours. These two accidents correspond to the UK-11 and UK-1 releases studied by the NRPB. Hitherto, accident consequence studies have focussed upon numbers of cancers or radiation deaths as a measure of the impact. There have been no detailed studies of the impact of the radioactive fall-out upon agricultural production itself, or upon fisheries if the releases are carried out to sea. This report provides a first assessment of the areas of land contaminated by the two scales of accident under weather conditions representative of the range that occurs normally at the site and for a number of different wind directions. The results show that if the containment remains intact, effects would be confined to the locality, with restrictions extending little further than 30 km. However, in the case of the most severe release, agricultural restrictions would be extensive, depending upon wind direction, over the whole of the British Isles. (author)

  6. A review of the United Kingdom fast reactor programme

    International Nuclear Information System (INIS)

    Bramman, J.I.; Hickey, H.B.; Whitlow, W.H.; Frew, J.D.; Gregory, C.V.

    1990-01-01

    Total energy consumption in the UK in 1989 was 340 million tonnes of coal or coal equivalent, made up as follows: coal 31%, petroleum 35%, natural gas 24%, nuclear electricity 8%, hydroelectricity 1% and imported electricity 1%. About half of the nuclear electricity generated came from 14 Advanced Gas-Cooled Reactors (AGRs) and about half from the 24 older gas-cooled Magnox reactors, one Steam-Generating Heavy-Water Reactor (SGHWR) and one fast reactor (the Prototype Fast Reactor, PFR, at Dounreay). The privatization of the Electricity Supply Industry (ESI) in the UK is proceeding. On 9 November 1989, however, it was announced by the Secretary of State for Energy that the privatization plan would be changed and that the CEGB's nuclear stations were to remain in state ownership, through the formation of an additional company, Nuclear Electric. At the same time, the Secretary of State for Scotland announced the formation of a similar state-owned company, Scottish Nuclear. Nuclear Electric was asked, in the interim, to examine priorities in the whole nuclear field with particular reference to the improvement of the economics and performance of existing reactors, to the development of the Sizewell and alternative reactors and to the development of longer-term options such as the fast reactor and fusion. Nuclear Electric has been asked to formulate its new policy by June 1990. The PFR programme will continue to be funded by the UK government until March 1994. AEA Technology is endeavouring to find alternative funding to maintain the operation of the PFR until at least the year 2000. The House of Commons Select Committee on Energy stated in its report that the fast reactor ''is a matter for the British Government to foster as a long-term option for the generation of electricity in this country'', and recommended that in the interim the Government reassesses its position on this new technology in the light of increasing concern about CO 2 emissions and the long

  7. The choice of cement for the manufacture of concrete to be activated: the potential for reducing the radiological consequences of reactor decommissioning

    International Nuclear Information System (INIS)

    Woollam, P.B.

    1985-05-01

    This report presents trace element analyses of some candidate cements which might be used in the manufacture of Sizewell 'B' concrete. It completes a programme of work whose aim was to investigate the potential for reducing the radiological consequences of reactor decommissioning through selection of construction materials for activated components. In particular, consideration has been given to the potential for reducing the concentration of elements known to activate to long lived daughters. (U.K.)

  8. Degraded core accidents for the Sizewell PWR A sensitivity analysis of the radiological consequences

    CERN Document Server

    Kelly, G N; Clarke, R H; Ferguson, L; Haywood, S M; Hemming, C R; Jones, J A

    1982-01-01

    The radiological impact of degraded core accidents postulated for the Sizewell PWR was assessed in an earlier study. In this report the sensitivity of the predicted consequences to variation in the values of a number of important parameters is investigated for one of the postulated accidental releases. The parameters subjected to sensitivity analyses are the dose-mortality relationship for bone marrow irradiation, the energy content of the release, the warning time before the release to the environment, and the dry deposition velocity for airborne material. These parameters were identified as among the more important in determining the uncertainty in the results obtained in the initial study. With a few exceptions the predicted consequences were found to be not very sensitive to the parameter values investigated, the range of variation in the consequences for the limiting values of each parameter rarely exceeded a factor of a few and in many cases was considerably less. The conclusions reached are, however, p...

  9. How has severe accident analysis contributed to sizewell B and how can it continue to contribute in the future

    International Nuclear Information System (INIS)

    Harrison, J.R.; Western, D.J.

    1987-01-01

    Sizewell B is a proposed 1100 MWe PWR which is a UK development of the US SNUPPS design. The UK reference design document for the plant was first issued in 1981 and the Pre-Construction Safety Report (PCSR) was submitted to the Nuclear Installations Inspectorate (NII), the UK licensing authority, in 1982. A major public inquiry into the proposal took place between January 1983 and March 1985. This paper is concerned with the analysis of severe accidents. This means all the analysis that is concerned with those fault sequences that are outside the design basis of the plant and which may lead to severe consequences - either in terms of plant damage or release of radioactivity. This analysis comprises probabilistic assessments of the frequency of such sequences, transient analysis of the way such sequences develop and radiological release analysis. Part one of this paper examines how the severe accident analysis carried out for Sizewell B has contributed to the judgement that the design is sound and that the construction phase should proceed. The second part of the paper looks to the future and asks ''Can severe accident analysis make any further contribution during the period from licensing up until operation commences

  10. A Review of Past Reactor Progress in the UK, April 1975

    International Nuclear Information System (INIS)

    Smith, R.D.

    1975-01-01

    The fast reactor project in the UK is continuing at approximately the same scale of effort as last year, with great attention being paid to overcoming the difficulties being met in raising PFR to full power. Organisational arrangements for nuclear power in the UK during the year have been dominated by two interlinked issues, firstly the choice of thermal reactor system for the next stage of the British nuclear power programme, and secondly the consolidation of the British nuclear design and construction industry. On the former, widespread discussion on the merits of alternative thermal systems culminated in the announcement by the Secretary of State for Energy on 10 July 1974 that the British electricity boards would adopt the SGHWR for their next nuclear power station orders. The initial ordering programme was set at 4000 KW(E) over the next four years, with the prospect of extending the programme in the later 1970s given satisfactory initial experience of construction. Consent has now been given by the Department of Energy to the CEGB for an SGHWR station at Sizewell in Suffolk (adjacent to an existing Magnox station) and to the SSEB for one at Torness Point in East Lothian

  11. Procedures to relate the NII safety assessment principles for nuclear reactors to risk

    CERN Document Server

    Kelly, G N; Hemming, C R

    1985-01-01

    Within the framework of the Public Inquiry into the proposed pressurised water reactor (PWR) at Sizewell, estimates were made of the levels of individual and societal risk from a PWR designed in a manner which would conform to the safety assessment principles formulated by the Nuclear Installations Inspectorate (NII). The procedures used to derive these levels of risk are described in this report. The opportunity has also been taken to revise the risk estimates made at the time of the Inquiry by taking account of additional data which were not then available, and to provide further quantification of the likely range of uncertainty in the predictions. This re-analysis has led to small changes in the levels of risk previously evaluated, but these are not sufficient to affect the broad conclusions reached before. For a reactor just conforming to the NII safety assessment principles a maximum individual risk of fatal cancer of about 10 sup - sup 6 per year of reactor operation has been estimated; the societal ris...

  12. Sizewell B

    International Nuclear Information System (INIS)

    1983-07-01

    The safety of pressure circuit components is discussed with respect to coolant loop piping, coolant pumps, pressuriser, steam generator channel head and shell, primary component supports and restraints, accumulators, main steam line no-break zone, reactor internals and core, and valves including main steam isolating valves. Outstanding issues are identified and a programme of additional work is discussed. (U.K.)

  13. Sizewell Power Station

    International Nuclear Information System (INIS)

    1985-01-01

    A detailed emergency plan for the reactor is presented. Definitions, conditions for taking action, duties of staff, emergency control centres and equipment, communications, both internal and external, hazard assessment, including iodine inhalation and radioactive deposition procedures collaboration with other bodies, warnings to the public and exercises are among topics described. (author)

  14. Ballooning analysis for the Sizewell B PWR using symmetric MABEL calculations

    International Nuclear Information System (INIS)

    Sweet, D.W.; Gibson, I.H.; Fell, J.

    1982-12-01

    An analysis of the fuel clad ballooning potential associated with the Sizewell B PWR following a design basis large break cold leg LOCA is described. Calculations employ MABEL-2C code. No allowance has been made for asymmetries in power or geometry, thus precluding any amelioration offered by early clad rupture. Thermal hydraulic data were derived from a TRAC-PD2 best estimate analysis of the LOCA and the work includes a detailed sensitivity study which leads to a correlation between peak clad temperature and clad strain. For the best estimate start of cycle 1 peak rod rating, no loss of coolability is expected within 95 percent confidence limits on peak clad temperature. No loss of coolability is expected either for rods at the design basis peak rod rating. The temperature does not have to be much higher than the 95 percent confidence limit on the best estimate rating or much beyond that of the design basis rating for rod contact and severe blockage to follow. This indicates that to establish a complete safety case the added complexity of pellet eccentricity and rod to rod power variations must be considered. (U.K.)

  15. Achilles tests finally nail PWR fuel clad ballooning fears

    International Nuclear Information System (INIS)

    Dore, P.; McMinn, K.

    1992-01-01

    A conclusive series of experiments carried out by AEA Reactor Services at its Achilles rig in the UK has finally allayed fears that fuel clad ballooning is a major safety problem for Sizewell B, Britain's first Pressurized Water Reactor. The experiments are described in this article. (author)

  16. Sizewell B cycle 5 core design with Framatome ANP's CASCADE-3D and British Energy's PANTHER

    International Nuclear Information System (INIS)

    Attale, F.; Koegl, J.; Knight, M.; Bryce, P.

    2001-01-01

    Sizewell B Cycle 5 is the first cycle, after 4 cycles with BNFL fuel, with a reload consisting of Framatome ANP HTP (high thermal performance) fuel assemblies. The impact of this fuel vendor change on the Nuclear Design area is that, according to British energy's (BE) practice, the Framatome ANP's nuclear design code system CASCADE-3D is used for the majority of the cycle specific safety case calculations. However, other parts of the safety submission (e.g. 3D transient analyses) are made by using the BE code PANTHER. Before using in parallel two different code systems for reload core licensing extensive comparisons of applied methodologies and obtained results were required to ensure an acceptable level of agreement. (orig.)

  17. Lessons from the Sizewell B inquiry: how to make major public inquiries into energy projects fair and efficient. Address to the parliamentary group for energy studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Riordan, T.; Purdue, M.; Kemp, R.

    1986-07-01

    The paper is an address to the Parliamentary Group for Energy Studies, and concerns an appraisal of the Sizewell B Inquiry. The unique nature of the Inquiry is described, and an assessment of the Inquiry is given. Based on the main criticisms of the Inquiry, proposals for the reform of future major public inquiries are put forward.

  18. Nuclear and non-nuclear risks: Address to the Parliamentary and Scientific Committee

    International Nuclear Information System (INIS)

    Gittus, J.

    1988-01-01

    Risk assessment is first explained. For example, for a loss of coolant accident at Sizewell B the estimate of the likelihood that radioactivity would be released involves three numbers:- the frequency of loss of coolant from the reactor; how often the safety pumps which would have to work in case of a loss of coolant have failed when tested; and the chance that the containment round the reactor will fail. As each risk number is small, the combined risk is very small. Using the same method of assessment the risk of an accident affecting public safety at the liquid gas plant on Canvey Island is 1000 larger, but still small and acceptable. Much time and money was spent on establishing the 1000 times lower risk of an accident affecting public safety at the Sizewell reactor. The risk assessment was however, finally accepted. Fast reactors are even safer than pressurised water reactors and use a renewable energy source; their development is strongly advocated. It is noted that the risks from a medieval water-wheel were enormous compared with nuclear risks today. (U.K.)

  19. The radiological impact on the Greater London population of postulated accidental releases from the Sizewell PWR

    CERN Document Server

    Kelly, G N; Charles, D; Hemming, C R

    1983-01-01

    This report contains an assessment of the radiological impact on the Greater London population of postulated accidental releases from the Sizewell PWR. Three of the degraded core accident releases postulated by the CEGB are analysed. The consequences, conditional upon each release, are evaluated in terms of the health impact on the exposed population and the impact of countermeasures taken to limit the exposure. Consideration is given to the risk to the Greater London population as a whole and to individuals within it. The consequences are evaluated using the NRPB code MARC (Methodology for Assessing Radiological Consequences). The results presented in this report are all conditional upon the occurrence of each release. In assessing the significance of the results, due account must be taken of the frequency with which such releases may be predicted to occur.

  20. The radiological consequences of degraded core accidents for the Sizewell PWR The impact of adopting revised frequencies of occurrence

    CERN Document Server

    Kelly, G N

    1983-01-01

    The radiological consequences of degraded core accidents postulated for the Sizewell PWR were assessed in an earlier study and the results published in NRPB-R137. Further analyses have since been made by the Central Electricity Generating Board (CEGB) of degraded core accidents which have led to a revision of their predicted frequencies of occurrence. The implications of these revised frequencies, in terms of the risk to the public from degraded core accidents, are evaluated in this report. Increases, by factors typically within the range of about 1.5 to 7, are predicted in the consequences, compared with those estimated in the earlier study. However, the predicted risk from degraded core accidents, despite these increases, remains exceedingly small.

  1. Organisation of radiation protection at Sizewell Nuclear Power Plant in the UK. Report n. 290

    International Nuclear Information System (INIS)

    Crouail, P.; Jeannin, B.; Lefaure, C.; Panisset, L.

    2004-01-01

    This report first describes the organisation and management of radiation protection at Sizewell Nuclear Power Plant (UK): general organisation, organisation of the radiation protection department, goals of radiation protection at plant and corporate levels, measurement of radiation protection performance, presence of health physicists in the plant, national and international comparisons. Then, it addresses the training of workers and radiation protection specialists with respect to radiation protection, the management of zoning and surveillance (action to address the radiation risk and the contamination risk). It describes the relationships of Health physicists with contractors and other workers teams, and the relationships with safety authorities. It indicates the different outages of this organisation: general planning, information sheets, physicists work planning, reviews and meetings. It describes the management of personal dosimetry with radiation work permits and actions aimed at the reduction of doses during various operations. The last part proposes a feedback experience report and evokes the generated database, and addresses events reporting

  2. Friends of the Earth case against the PWR

    International Nuclear Information System (INIS)

    Boyle, S.

    1987-01-01

    Friends of the Earth's case against Sizewell B has been summarised in a report entitled 'Critical Decision: Should Britain buy the Pressurised Water Reactor?'. This showed that on economic and safety grounds, Sizewell B would not be a good choice for the electricity consumer or the country at large. Events since the end of the Inquiry, particularly those affecting the economic case, have confirmed this conclusion. This paper will summarise the case, both during the Inquiry and subsequent to this, as well as make reference to the long-term environmental implications of the Central Electricity Generating Board's PWR programme. (author)

  3. An assessment of the radiological consequences of releases to groundwater following a core-melt accident at the Sizewell PWR

    International Nuclear Information System (INIS)

    Maul, P.R.

    1984-03-01

    In the extremely unlikely event of a degraded core accident at the proposed Sizewell PWR it is theoretically possible for the core to melt through the containment, after which activity could enter groundwater directly or as a result of subsequent leaching of the core in the ground. The radiological consequences of such an event are analysed and compared with the analysis undertaken by the NRPB for the corresponding releases to atmosphere. It is concluded that the risks associated with the groundwater route are much less important than those associated with the atmospheric route. The much longer transport times in the ground compared with those in the atmosphere enable countermeasures to be taken, if necessary, to restrict doses to members of the public to very low levels in the first few years following the accident. The entry of long-lived radionuclides into the sea over very long timescales results in the largest contribution to population doses, but these are delivered at extremely low dose rates which would be negligible compared with background exposure. (author)

  4. Hinkley Point 'C' power station public inquiry: proof of evidence on safety criteria

    International Nuclear Information System (INIS)

    Taylor, R.H.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The policy is to replicate the Sizewell ''B'' PWR design which was accepted as safe by an earlier enquiry. In this evidence to the Inquiry, subsequent developments are examined with a view to determining whether these would reverse the Sizewell decision. They are: the possible revision of radiation risk estimates upwards; whether cases of leukaemia occur with greater frequency around nuclear sites than elsewhere; publication of the Health and Safety Executive's consultative document ''The Tolerability of Risk from Nuclear Power Stations''. The overall conclusion is that these developments do not undermine the findings of the Sizewell ''B'' inquiry or the validity of the CEGB's safety criteria. (author)

  5. Inspection of the Sizewll 'B' reactor coolant pump flywheels

    International Nuclear Information System (INIS)

    McNulty, A.L.; Cheshire, A.

    1992-01-01

    The Sizewell ''B'' safety case has categorised some primary circuit items as components for which failure is considered to be incredible. These Incredibility of Failure (IOF) components are particularly critical in their safety function, and specially stringent and all embracing provisions are made in their design, manufacture, inspection and operation. These provisions are such as to limit the probability of failure to levels which are so low that it does not have to be taken into account and no steps are necessary to control the consequences. The reactor coolant pump flywheel is considered to be an IOF component. Consequently there is a need for rigorous inspection during both manufacture and in service (ISI). The ISI requirement results in the need for an automated inspection. There is therefore a prerequisite to perform a Pre-Service Inspection (PSI) for baseline fingerprinting purposes. Furthermore there is a requirement that the inspection procedure, the inspection equipment and the operators are validated at the Inspection Validation Centre (IVC) of the AEA Technology laboratories at Risley. Development work is described. (author)

  6. Sizewell B cycle 5 core design with Framatome ANP's CASCADE-3D and British Energy's PANTHER

    Energy Technology Data Exchange (ETDEWEB)

    Attale, F.; Koegl, J. [Framatome ANP GmbH, Nuclear Fuel Cycle, Erlangen (Germany); Knight, M.; Bryce, P. [British Energy, Nuclear Technology Branch, Gloucester (United Kingdom)

    2001-07-01

    Sizewell B Cycle 5 is the first cycle, after 4 cycles with BNFL fuel, with a reload consisting of Framatome ANP HTP (high thermal performance) fuel assemblies. The impact of this fuel vendor change on the Nuclear Design area is that, according to British energy's (BE) practice, the Framatome ANP's nuclear design code system CASCADE-3D is used for the majority of the cycle specific safety case calculations. However, other parts of the safety submission (e.g. 3D transient analyses) are made by using the BE code PANTHER. Before using in parallel two different code systems for reload core licensing extensive comparisons of applied methodologies and obtained results were required to ensure an acceptable level of agreement. (orig.)

  7. The siting of UK nuclear reactors.

    Science.gov (United States)

    Grimston, Malcolm; Nuttall, William J; Vaughan, Geoff

    2014-06-01

    Choosing a suitable site for a nuclear power station requires the consideration and balancing of several factors. Some 'physical' site characteristics, such as the local climate and the potential for seismic activity, will be generic to all reactors designs, while others, such as the availability of cooling water, the area of land required and geological conditions capable of sustaining the weight of the reactor and other buildings will to an extent be dependent on the particular design of reactor chosen (or alternatively the reactor design chosen may to an extent be dependent on the characteristics of an available site). However, one particularly interesting tension is a human and demographic one. On the one hand it is beneficial to place nuclear stations close to centres of population, to reduce transmission losses and other costs (including to the local environment) of transporting electricity over large distances from generator to consumer. On the other it is advantageous to place nuclear stations some distance away from such population centres in order to minimise the potential human consequences of a major release of radioactive materials in the (extremely unlikely) event of a major nuclear accident, not only in terms of direct exposure but also concerning the management of emergency planning, notably evacuation.This paper considers the emergence of policies aimed at managing this tension in the UK. In the first phase of nuclear development (roughly speaking 1945-1965) there was a highly cautious attitude, with installations being placed in remote rural locations with very low population density. The second phase (1965-1985) saw a more relaxed approach, allowing the development of AGR nuclear power stations (which with concrete pressure vessels were regarded as significantly safer) closer to population centres (in 'semi-urban' locations, notably at Hartlepool and Heysham). In the third phase (1985-2005) there was very little new nuclear development, Sizewell

  8. The place of nuclear power on the CEGB system

    International Nuclear Information System (INIS)

    Jenkin, F.P.

    1987-01-01

    This paper discusses the developments in the Central Electricity Generating Board's programme of nuclear generation of electricity since the Sizewell-B inquiry. In particular, recent trends in electricity demand growth are discussed. An average growth in both electricity sales and peak demand of over 1.5%pa during the next ten years is predicted, so that by the mid-1990s an additional 5GW capacity will be needed. Energy conservation is one factor taken into consideration when estimating demand. The need for new capacity is illustrated graphically. With the closure of old plant the new generating capacity needed by 2000 is estimated at 13GW with Sizewell-B supplying 1.2GW of this. This demand will be met by construction of both nuclear and coal fired stations. As the demand increase is greater in the south of Britain than in the north, more of this new generating capacity will be built in the south. The CEGB policy is to build four or five Pressurized Water Reactors the same as Sizewell-B. The sites under consideration for new nuclear stations are shown. They are Hinkley Point, Winfrith, Dungeness, Sizewell, Trawsfynnedd, Wylfa and Druridge. (UK)

  9. Risk assessment for LRW

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The information obtained by probabilistic methods is explained discussing the results of various studies, such as the Reactor Safety Study of the USA, the West-German Reactor Safety Study (phases A and B), some other important studies like the RSSMAP and the IREP, as well as the Sizewell B report and an NRC report on precursors to potential severe core damage accidents. (DG) [de

  10. Hinkley Point 'C' power station public inquiry: proof of evidence on potential off-site effects of radiation

    International Nuclear Information System (INIS)

    Western, D.J.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. This evidence to the Inquiry is concerned with the potential of the proposed Hinkely Point ''C'' PWR to increase the exposure of members of the public offsite to radiation. The policy is to replicate the design of the Sizewell ''B'' reactor. The evidence examined in great detail at the Sizewell ''B'' Public Inquiry where the Inspector concluded that the risk would be very small. The purpose of this evidence is to provide an explicit account of the potential off-site effects of radiation at the Hinkley Point site, so that it can be seen that there is nothing specific to this location that could lead to a different conclusion. (author)

  11. PWR training from conception to criticality

    International Nuclear Information System (INIS)

    Molloy, B.

    1993-01-01

    Since the accident at the Three Mile Island Pressurized Water Reactor in 1979, training of reactor personnel has been critically evaluated and reviewed. In the United Kingdom, the building of the first Pressurized Water Reactor at Sizewell in Suffolk, has brought staff training into sharp relief also. This article looks at the training program, set up in response to concerns over safety, which has been evolving over the last ten years. Simulators are widely used so that staff, especially reactor operators, are thoroughly conversant with operational technology long before reactor commissioning takes place. (UK)

  12. Hinkley Point 'C' power station public inquiry: proof of evidence on design and safety

    International Nuclear Information System (INIS)

    George, B.V.

    1988-09-01

    A public inquiry has been set up to examine the planning application made by the Central Electricity Generating Board (CEGB) for the construction of a 1200 MW Pressurized Water Reactor power station at Hinkley Point (Hinkley Point ''C'') in the United Kingdom. The policy is to replicate the Sizewell ''B'' PWR design. The Hinkley Point ''C'' design is described indicating where changes in the Sizewell ''B'' design have been made to accommodate site differences. These are associated with the civil engineering construction and some of the electrical systems and do not affect the safety case. External hazards differ from site to site and the effect on the safety case of those specific to Hinkley Point are examined. The Chernobyl accident and the assessment of the United Kingdom PWR which was carried out subsequently are reviewed. The assessment indicated that no changes in the Sizewell ''B'' design and safety case were called for as a result of this accident; accident management developments are also reviewed, however. The CEGB's approach to minimizing occupational radiation doses is described. (UK)

  13. The power of British Energy

    International Nuclear Information System (INIS)

    Hawley, R.

    1997-01-01

    When the power industry in Britain was privatized, British Energy plc (BE), whose head office is in Edingburgh, Scotland, was founded in July 1996. It is the only power utility in the world exclusively operating nuclear power stations. Operative business has remained the responsibility of the two regional supply companies, Nuclear Electric (NE) and Scottish Nuclear (SN) which, in addition to the modern PWR nuclear generating unit of Sizewell B, have included in the new holding company their advanced gas-cooled and gas-moderated reactor (AGR) units. The older gas-graphite reactor (GGR) plants were combined in the new Magnox Electric plc, Berkeley; at some later date, this company is to be merged with another nuclear power plant operator, British Nuclear Fuels plc (BNFL). Sizewell B, which was commissioned in 1995, is the last nuclear generating unit to be started up in the United Kingdom, for the time being. In times of low raw material prices and the need for a quick return on invested capital, BE is reluctant to run the risk associated with tying up capital for a long time. Instead, the company has backfitted its plants so that the production of electricity from nuclear power in Britain in 1996 of 92,476 GWh was increased by almost 10% over the 1995 level of 84,174 GWh. In addition to modernization and rationalization at home, BE together with Sizewell B vendor Westinghouse is engaged worldwide in the development and commercialization of future advanced reactors. This ensures that the know-how accumulated will be preserved and will be available for new nuclear power plants to be built in Britain in the next century. (orig.)

  14. National Nuclear Corporation Limited report and financial statements 31 March 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The paper presents the annual report and audited financial statements of the National Nuclear Corporation Limited, 31 March 1987. The company is engaged in designing and constructing power stations and nuclear power reactors and other related work. A review of the development work carried out on power stations is briefly given, along with the research and development work on reactors. Future prospects concerning the Sizewell-'B' project are briefly outlined. (U.K.)

  15. 1994 - Starting a new era for nuclear power in Great Britain

    International Nuclear Information System (INIS)

    Collier, J.G.

    2004-01-01

    A gap is opening up between what the world would like to consume in terms of energy and what the world's environment can sustain. To bridge this gap a much greater contribution from nuclear and renewables is needed to limit the emission of CO 2 and other harmful gases. Plans already laid in some Pacific Rim countries recognise this need and nuclear energy is expected to grow rapidly in this region over the next 20-30 years. For Pacific Rim countries without plentiful indigenous fossil fuel resources, nuclear power is the most economic form of electricity generation, minimising the need for expensive imports and strengthening security of energy supply. Nuclear power already makes a significant contribution to reducing emissions in other regions, especially Europe. Well over a third of electricity in Europe comes from nuclear power. In the UK the figure is nearer a quarter and rising. If nuclear power is to fulfil its role as a key part of UK energy supply into the 21st century, we need to maintain our existing capacity as our older plant retires by building further, modern PWRs. Central to our future is Sizewell B power station - the UK's first PWR. Construction is complete and commissioning is well under way. The project is nearing completion - ahead of time and under budget. The success of Sizewell B is the foundation for the future of nuclear power in the UK. Stations based on the Sizewell design will become the workhorses of our utility. Already Nuclear Electric has submitted a planning application to construct Sizewell C. This is a technical replica of Sizewell B in twin reactor form with a net output of around 2600MW. And this design also has strong export potential. Westinghouse and Nuclear Electric have submitted a joint-vender to build a PWR here in Taiwan. Our bid is based on the Sizewell design; an innovative, safe and proven nuclear power plant design for supplying reliable low-cost electricity for the Republic of China's growing economy. The Sizewell

  16. For sale: 7 AGR stations and a brand new PWR

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Britain's seven AGR stations and the Sizewell B PWR will pass to private ownership under the UK government's plan to privatise the two nuclear generators, Nuclear Electric and Scottish Nuclear, sometime next year. Under the new set-up, the two generators will become operating subsidiaries of a holding company which will be headquartered in Scotland. The companies' ageing Magnox gas-cooled reactors will remain in a separate public sector company before being transferred to British Nuclear Fuels (BNFL) at the time of privatisation. (author)

  17. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the 'Sizewell-B' prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with 'bonded' and 'unbonded' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plane stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. (author)

  18. Comparison of pre-test analyses with the Sizewell-B 1:10 scale prestressed concrete containment test

    International Nuclear Information System (INIS)

    Dameron, R.A.; Rashid, Y.R.; Parks, M.B.

    1991-01-01

    This paper describes pretest analyses of a one-tenth scale model of the Sizewell-B prestressed concrete containment building. The work was performed by ANATECH Research Corp. under contract with Sandia National Laboratories (SNL). Hydraulic testing of the model was conducted in the United Kingdom by the Central Electricity Generating Board (CEGB). In order to further their understanding of containment behavior, the USNRC, through an agreement with the United Kingdom Atomic Energy Authority (UKAEA), also participated in the test program with SNL serving as their technical agent. The analyses that were conducted included two global axisymmetric models with ''bonded'' and ''unbonded'' analytical treatment of meridional tendons, a 3D quarter model of the structure, an axisymmetric representation of the equipment hatch region, and local plan stress and r-θ models of a buttress. Results of these analyses are described and compared with the results of the test. A global hoop failure at midheight of the cylinder and a shear/bending type failure at the base of the cylinder wall were both found to have roughly equal probability of occurrence; however, the shear failure mode had higher uncertainty associated with it. Consequently, significant effort was dedicated to improving the modeling capability for concrete shear behavior. This work is also described briefly. 5 refs., 7 figs

  19. Britain's first pressurised-water reactor

    International Nuclear Information System (INIS)

    Kenward, M.

    1982-01-01

    The recent announcement that the public inquiry into the CEGB's plans to build a PWR at Sizewell will begin in January 1983 and the statement which followed from the task force that was set up in July 1981 to consider the future of the PWR programme in the UK, are considered. The relevant time scales, costs and safety, in particular the cost incurred due to the added safety features for the British PWR, are discussed. The effect of political aspects on the future of the PWR in Britain is considered. (U.K.)

  20. Multilink manipulator computer control: experience in development and commissioning

    International Nuclear Information System (INIS)

    Holt, J.E.

    1988-11-01

    This report describes development which has been carried out on the multilink manipulator computer control system. The system allows the manipulator to be driven using only two joysticks. The leading link is controlled and the other links follow its path into the reactor, thus avoiding any potential obstacles. The system has been fully commissioned and used with the Sizewell ''A'' reactor 2 Multilink T.V. manipulator. Experience of the use of the system is presented, together with recommendations for future improvements. (author)

  1. NNC - the past, present and future

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    An account is given of the activities of the National Nuclear Corporation and its predecessors. Its historical involvement in the design and construction of all the nuclear power stations currently operated by Britain's generating boards, two stations overseas, and in association with UKAEA the design and construction of the Prototype Fast Reactor at Dounreay, is described. Heysham 2 and Torness, and the Proposed Sizewell B are discussed. Headings are: origins and structure; qualified workforce; choice of reactors; collaborative agreements (on fast reactors); market survey; more diversity. (U.K.)

  2. PWR design for low doses in the United Kingdom: The present and the future

    Energy Technology Data Exchange (ETDEWEB)

    Zodiates, A.M.; Willcock, A. [PWR Project Group, Knutsford, England (United Kingdom)

    1995-03-01

    The Pressurizer Water Reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS). This design was developed to meet the United Kingdom (UK) requirements and those improvements are embodied in the Sizewell B plant. Nuclear Electric plc is now looking to the design of the future PWRs to be built in the UK. These PWRs will be based as replicas of the Sizewell B design, but attention will be given to reducing operator doses further. This paper details the approach in operator protection improvements incorporated at Sizewall B, presents the estimated annual collective dose, and identifies the approach being adopted to reduce further operator doses in future plants.

  3. Licensing aspects of structural integrity

    International Nuclear Information System (INIS)

    Turner, M.J.; Hemsworth, B.; Boydon, F.M.D.; Harrop, L.P.; Waters, R.

    1992-01-01

    Examples are given of the wide variety of structural integrity assessments of nuclear plant carried out by the United Kingdom Nuclear Installations Inspectorate (NII) and the consequent need for a flexible approach within the framework provided by the Safety Assessment Principles. The paper describes the use of the Special Case Procedure and draws the distinction between the assessment of incredibility of failure of components and components whose failures are considered within the design basis. Assessment examples provided are the Sizewell B reactor pressure vessel, Magnox reactor pressure vessels, the Prototype Fast Reactor core support structure, Advanced Gas-cooled Reactor steam plant, Thermal Oxide Reprocessing Plant (THORP) vessels, and Steam Generating Heavy Water Reactor pressure tubes. (author)

  4. A review of the UK fast reactor programme, March 1981

    International Nuclear Information System (INIS)

    Smith, R.D.

    1981-01-01

    A reduction in electricity sales over the last year had led to some fossil-fuelled stations being prematurely retired and has postponed the start of some new stations. Nevertheless the main programme for the building of 1 5 G We of thermal reactors during the next ten years remains unaltered and as summarised in last year's review. A formal request to build the first PWR at Sizewell in Suffolk has been presented by the CEGB to the government. This is expected to lead to a Public Inquiry within the next 12-18 months. The major contracts for building the AGR stations at Torness and Heysham were placed recently. Reduced projections for electricity demand up to the end of the century have also contributed to a delay in the government's response to the recommendation by the industry that the Commercial Demonstration Fast Reactor (CDFR) should be built to ensure that the option for commercial LMFBR should be demonstrated and maintained. A government statement is now expected before the end of 1981. Fast breeder reactors are expected to be required in the UK electrical supply system by about the turn of the century. Series ordering will be preceded by construction and operation of the CDFR, of a design suitable in all basic features for replication in programme reactors. The National Nuclear Corporation (NNC) has continued the development of a CDFR design having the required operational safety and economic characteristics. The basic design concept is now nearing completion following investigation of a number of alternatives. Some of the more important features of this design, namely the core, primary circuit and reactor cooling systems. steam cycle and boilers, and overall plant and station layout are described in this review. As a result of increased understanding of sodium/water reaction behaviour, development of manufacturing and inspection techniques and experience in plugging and repair of tubes containing leaking welds, coupled with the preference for a once through

  5. A review of the UK fast reactor programme, March 1981

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R D [Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)

    1981-05-01

    A reduction in electricity sales over the last year had led to some fossil-fuelled stations being prematurely retired and has postponed the start of some new stations. Nevertheless the main programme for the building of 1 5 G We of thermal reactors during the next ten years remains unaltered and as summarised in last year's review. A formal request to build the first PWR at Sizewell in Suffolk has been presented by the CEGB to the government. This is expected to lead to a Public Inquiry within the next 12-18 months. The major contracts for building the AGR stations at Torness and Heysham were placed recently. Reduced projections for electricity demand up to the end of the century have also contributed to a delay in the government's response to the recommendation by the industry that the Commercial Demonstration Fast Reactor (CDFR) should be built to ensure that the option for commercial LMFBR should be demonstrated and maintained. A government statement is now expected before the end of 1981. Fast breeder reactors are expected to be required in the UK electrical supply system by about the turn of the century. Series ordering will be preceded by construction and operation of the CDFR, of a design suitable in all basic features for replication in programme reactors. The National Nuclear Corporation (NNC) has continued the development of a CDFR design having the required operational safety and economic characteristics. The basic design concept is now nearing completion following investigation of a number of alternatives. Some of the more important features of this design, namely the core, primary circuit and reactor cooling systems. steam cycle and boilers, and overall plant and station layout are described in this review. As a result of increased understanding of sodium/water reaction behaviour, development of manufacturing and inspection techniques and experience in plugging and repair of tubes containing leaking welds, coupled with the preference for a once through

  6. The economic aspect

    International Nuclear Information System (INIS)

    MacKerron, G.

    1984-01-01

    The subject is covered in sections: introduction (indicating the importance of 'back end' operations in the economics of nuclear power production); irradiated fuel transport costs in the UK (the Sizewell PWR; existing UK reactors); economic appraisal; past nuclear economics; future nuclear economics; (electricity demand; technological maturity; social and political factors; competition to nuclear power). (U.K.)

  7. Nuclear dewatering

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The Sizewell 'B' Nuclear Power Station, the first in a new family of PWR (Pressurised Water Reactor) stations in the UK, is currently under construction on the Suffolk coast. One of the first civil engineering tasks associated with the power station construction was the necessity to lower the water table by 17-18 m over an area of approximately 8 hectares to allow the excavation for the foundations to be carried out in the dry. The way chosen to do this was to construct a diaphragm wall around the site area. This had the least effect on surrounding sites -the Sizewell-A station and various nature reserves and wetlands. The reasons for the choice of method are discussed. Following the construction of the wall the water was pumped out from within the diaphragm wall in January 1988. (author)

  8. Assessing the risks of nuclear energy

    International Nuclear Information System (INIS)

    Evans, Nigel

    1986-01-01

    The question how safe is safe is discussed. The way in which nuclear energy is presented in the context of the risks inherent in daily life is considered. Calculations based on actual reactor accidents (not Chernobyl) are then extrapolated for the proposed Sizewell-B reactor. Comparison is made between the risks of the nuclear industry and coal mining. Risk perception is considered and a risk index is constructed that allows for the fact that nuclear power continues to arouse public fear in spite of a good safety record. (UK)

  9. A CEGB system for the assurance of quality in the commissioning of power plant

    International Nuclear Information System (INIS)

    Lake, M.W.

    1984-01-01

    This paper outlines a system of organization, documentation and surveillance which has been fully proven in practice and looks ahead to identify the arrangements for the organization, documentation, and audit which the CEGB proposes to use in the commissioning of the Sizewell 'B' PWR, so that quality may be assured. In the UK between 1967 and 1982, the CEGB commissioned approximately 40,000 M Watts of power plant. This comprised power plants that were coal fired, oil fired, water driven, gas turbine driven and nuclear (both magnox and advanced gas cooled (AGR) reactors)

  10. Ergonomics design and operator training as contributors to human reliability

    International Nuclear Information System (INIS)

    Jackson, A.R.G.; Madden, V.J.; Umbers, I.G.; Williams, J.C.

    1987-01-01

    The safe operation of nuclear reactors depends not only on good physical safety engineering but on the human operators as well. The Central Electricity Generating Board's approach to human reliability includes the following aspects: ergonomics design (task analysis and the development of man-machine interfaces), analysis of human reliability, operational feedback, staff training and assessment, maintenance management, research programmes and management. This paper describes how these combine to achieve the highest practicable level of human reliability, not only for the Sizewell-B pressurized water reactor, but also for the Board's gas-cooled reactors. Examples are used to illustrate the topics considered. (UK)

  11. The regulatory approach to the assessment of containment structures in the United Kingdom, with reference to the proposed Sizewell 'B' project

    International Nuclear Information System (INIS)

    Todd, I.W.

    1988-01-01

    The regulation of nuclear installations in the United Kingdom is carried out by means of a licensing system which is administered on behalf of the Health and Safety Executive (HSE) by HM Nuclear Installations Inspectorate. A major part of this process lies in the assessment of an installation's designs and safety case, which must be submitted to the Inspectorate before a licence may be granted. This paper describes the work carried out in assessing the design proposed for the containment structure of the United Kingdom's first PWR, Sizewell 'B'. The roles of the Inspectorate's Safety Assessment Principles, and the engineering judgement of the individual assessor, are discussed. The reasons behind the Inspectorate's decision to commission independent design studies of the structure are explained, and the results of these studies are presented in outline. Views are also expressed upon the validation of analytical results, quality assurance, and further work planned by the Inspectorate in this field. The paper concludes that it is the flexibility and discretion allowed by the above approach which represents the principal strength of the UK's system of regulatory assessment. (author)

  12. Nuclear economics in a nutshell

    International Nuclear Information System (INIS)

    Birkby, E.

    1984-01-01

    Two main questions are discussed from the economics viewpoint; how the Central Electricity Generating Board (CEGB) decides which of its electricity generating stations to run to meet the demand for electricity at any point in time; and how the CEGB analyse possible future investments in new generating capacity. These questions are considered generally and then with the particular case of the proposed Sizewell B PWR reactor in mind. The cost of producing electricity has three components, the capital cost, the fuel cost and operating cost. These must be considered using meaningful and comparable figures. (U.K.)

  13. The Management Advisory Committee of the Inspection Validation Centre seventh report

    International Nuclear Information System (INIS)

    1990-07-01

    The Management Advisory Committee of the Inspection Validation Centre (IVC/MAC) was set up to review the policy, scope, procedure and operation of the Inspection Validation Centre (IVC), to supervise its operation and to advise and report to the United Kingdom Atomic Energy Authority (UKAEA) appropriately. The IVC was established at the UKAEA Risley Laboratory, to validate the procedures, personnel and equipment proposed by Nuclear Electric for use in the ultrasonic inspection at various stages of the fabrication, erection and operation of the Sizewell 'B' Pressurized Water Reactor (PWR) reactor pressure vessel (RPV) and such other components as are identified by the utility. It is operated by the UKAEA to work as an independent organisation under contract to Nuclear Electric, and results are reported to Nuclear Electric together with the conclusions of the Centre in relation to the validation of individual techniques. At the meetings of the IVC/MAC, the progress on the manufacture of the pressure vessel is also outlined by the PWR Project Director. The vessel has now undergone the final stress relief and post-hydro inspection and is due to be delivered to the Sizewell site before the end of 1990. (author)

  14. Sizewell 'B' power station public inquiry: CEGB proof of evidence

    International Nuclear Information System (INIS)

    Wright, J.K.

    1982-11-01

    A description is given of the CEGB's current assessment of the potential contribution to electricity generation of those methods considered to be the most significant alternatives to conventional power stations or thermal nuclear reactors for generating electricity. The state of development of the technology, the timescale on which it could be developed, its ability to generate electricity reliably and the cost of generating electricity are some of the matters considered. The following topics are covered: potential developments in coal fired generating plant; combined heat and power generation; energy storage; electricity generation from renewable energy sources; fast reactors and fusion. (U.K.)

  15. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  16. The probability of containment failure by steam explosion in a PWR

    International Nuclear Information System (INIS)

    Briggs, A.J.

    1983-12-01

    The study of the risk associated with operation of a PWR includes assessment of severe accidents in which a combination of faults results in melting of the core. Probabilistic methods are used in such assessment, hence it is necessary to estimate the probability of key events. One such event is the occurrence of a large steam explosion when molten core debris slumps into the base of the reactor vessel. This report considers recent information, and recommends an upper limit to the range of probability values for containment failure by steam explosion for risk assessment for a plant such as the proposed Sizewell B station. (U.K.)

  17. Reflections on Britain's nuclear history: a conversation with Lord Hinton

    International Nuclear Information System (INIS)

    Lowry, D.

    1984-09-01

    This record of a discussion with Lord Hinton, who was in charge of the industrial side of the U.K. atomic energy project, and later Chairman of the Central Electricity Generating Board, covers the following topics: history of the development and construction of reactors for the production of plutonium and, later, nuclear power; secrecy; early relations between Central Electricity Authority (and later, CEGB), the Government, and Atomic Energy Authority; Government policy on the nuclear power programme; decision making in the area of nuclear power; economics of nuclear power; the nuclear industry; safety, insurance, National Nuclear Inspectorate; support research and development in CEGB; Sizewell-B proposed PWR. (U.K.)

  18. Nuclear power: consolidation or change

    International Nuclear Information System (INIS)

    1986-02-01

    Currently about 45% of the electricity consumed in Scotland comes from nuclear sources and when the power station at Torness, near Edinburgh, is fully commissioned it will be about 60%. Torness is an AGR type reactor and the Scottish Electricty Board (SSEB) consider that there is no case for changing to a PWR type design for any future reactor built in the UK. The economics of 'a next AGR' and a PWR reactor are compared. The construction times for the Torness programme, the electrical output, station life, load factor, fuel costs and additional support costs are also considered, and compared with costs estimated by the Central Elecricity Generating Board (CEGB) for the proposed Sizewell-B reactor. Exposure of station staff to radiation, safety, public acceptibility and development potential, impact on industry, job creation and export potential are also discussed briefly. (UK)

  19. The crumbling case for nuclear power

    International Nuclear Information System (INIS)

    Bunyard, P.

    1983-01-01

    In connection with the Public Inquiry into the CEGB proposal to build a pressurised water reactor at Sizewell in Suffolk, the case for nuclear power is examined under the headings: the economics of nuclear power - how they would like them to be; systems analysis - net effective cost; CEGB prejudices the results (comparison with coal-fired plants; forecasting on various assumptions); discounting future costs; back-end costs soar (reprocessing); real reprocessing costs; AGR costs balloon. (U.K.)

  20. PSA - A utility perspective from the United Kingdom

    International Nuclear Information System (INIS)

    Ross, P.J.

    2004-01-01

    This paper provides an outline of the three stages of PSA used for the Sizewell B PWR. These stages cover the use of PSA during design, licensing and (in future) operation of Sizewell B. The paper discusses each of these stages in some detail, highlighting the differences in approach and lessons learnt at each stage. (author)

  1. Opening stages of the marathon at the Maltings

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In this report on the opening stages of the public inquiry into plans to build a new nuclear power station at Sizewell in Suffolk based on the pressurised water reactor system, the opening address of Lord Silsoe QC and the evidence of J. Baker, R. Mathews and J. Wright, all appearing for the CEGB, are summarized. Arguments examined included, economy, siting, safety, diversification of fuel supplies, and the question of using renewable energy sources for alternative power generation. (U.K.)

  2. A British standard for inspection qualification - a step on the road to European harmonization

    International Nuclear Information System (INIS)

    Waites, C.; Leyland, K.S.; Whittle, M.J.

    1993-01-01

    The safety case for the Sizewell 'B' reactor requires the ultrasonic inspection of certain components to be validated independently of those directly responsible for reactor construction and operation. This paper describes how this has been done. To illustrate the way in which validation needs to be tailored to particular requirements, an example is given involving the application of a time-of-flight detection (TOFD) technique to in-service inspection of a weld from an offshore installation. The experience gained from the application above and from other work has enabled an approach to validation to be set out in a British Standard Draft for Development. The intent is to provide a methodology within which individual validations can be developed in a consistent and coherent way. A European Methodology for Inspection Qualification also builds on this and other experience and aims to promote a common approach within Europe. The intent is to define a qualification approach to NDT which provides the necessary confidence in the test in the most cost-effective way possible. (author)

  3. Investment with a risk attached

    International Nuclear Information System (INIS)

    Barrie, C.

    1996-01-01

    The commercial pressures on the United Kingdom's privatised nuclear power company, British Electric, are examined. The demand to deliver increasing dividends to shareholders raises questions about the ability of the company to ensure continuing safe operation of its seven AGR power stations and the Sizewell-B PWR. Investors expectations will require that the AGR stations be kept running at a high level of productivity and that the approval of the Nuclear Installations Inspectorate be sought for life extension plans for some of these ageing reactors. Yet the City expects a further reduction in engineering manpower on top of the 18% cuts over recent years made to improve productivity in the run up to privatisation. Past cuts have inevitably led to a reduction in the company's pool of experienced personnel, so a further concern is that outside contractors brought in in the future to make up shortfalls in manpower will not have the degree of expertise necessary adequately to maintain the safe operation of the AGR reactors whose design is unique to the United Kingdom. (UK)

  4. Report and accounts 1989/90

    International Nuclear Information System (INIS)

    1991-01-01

    Nuclear Electric was set up to run all the Magnox and AGR nuclear power stations and nuclear-related assets of the Central Electricity Generating Board. It is also to be responsible for the construction and operation of the PWR station at Sizewell-B in Suffolk. The decision not to privatise the nuclear section of the electricity supply industry in England but to retain it in government ownership came quite late on so the handover to Nuclear Electric was set up in 20 weeks, so that the new company could start operating on 31st march 1990. This report sets out the first year's progress and reviews the operation of the Magnox and AGR reactors and the construction of Sizewell-B including a revised cost estimation. Health and Safety is an important objective of the company and its committment to this and to environmental protection is stated. The Directors Report and company accounts presented. The accounts show an operating profit but an overall loss for the financial year 1989/90. (UK)

  5. A multi-purpose reactor

    International Nuclear Information System (INIS)

    Changwen Ma

    2000-01-01

    An integrated natural circulation self pressurized reactor can be used for sea water desalination, electrogeneration, ship propulsion and district or process heating. The reactor can be used for ship propulsion because it has following advantages: it is a integrated reactor. Whole primary loop is included in a size limited pressure vessel. For a 200 MW reactor the diameter of the pressure vessel is about 5 m. It is convenient to arranged on a ship. Hydraulic driving facility of control rods is used on the reactor. It notably decreases the height of the reactor. For ship propulsion, smaller diameter and smaller height are important. Besides these, the operation reliability of the reactor is high enough, because there is no rotational machine (for example, circulating pump) in safety systems. Reactor systems are simple. There are no emergency water injection system and boron concentration regulating system. These features for ship propulsion reactor are valuable. Design of the reactor is based on existing demonstration district heating reactor design. The mechanic design principles are the same. But boiling is introduced in the reactor core. Several variants to use the reactor as a movable seawater desalination plant are presented in the paper. When the sea water desalination plant is working to produce fresh water, the reactor can supply electricity at the same time to the local electricity network. Some analyses for comprehensive application of the reactor have been done. Main features and parameters of the small (Thermopower 200 MW) reactor are given in the paper. (author)

  6. Physics and nuclear power

    International Nuclear Information System (INIS)

    Buttery, N E

    2008-01-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors

  7. Hinkley Point A gas duct repairs

    International Nuclear Information System (INIS)

    Curtis, R.F.

    1996-01-01

    In 1990, routine visual inspection of the Hinckley Point A Reactor 1 pressure vessel gas outlet ducts showed failures in the welded stud bolts retaining the insulation edging strips. Since the ducts are accessible only from within the pressure vessel, a remote repair technique that could be deployed via the vessel stand pipe had to be found. A drawn arc stud welding and work package formerly used at the Oldbury Power Station was modified for the purpose. The only manipulators with sufficient reach and adequate carrying capacity to deploy the package were the Sizewell SNAKES manipulators. One of these was modified to fit the Hinckley reactor and repairs have been successfully carried out. Similar studs on the gas ducts in Reactor 2, are shielded from visual inspection by a Z-clip feature. A technique using pulsed thermography was developed. The studs were heated for a short time at their exposed ends using a prefocused lamp and the heat decay patterns monitored by an infrared camera enabling attached and detached studs to be distinguished. The inspection package was deployed using the SNAKES manipulator again. In both operations, I-Grip computer modelling was used in the design of the package envelope and the deployment routes. (UK)

  8. Chernobyl

    International Nuclear Information System (INIS)

    1986-01-01

    This leaflet has been prepared by the Central Electricity Generating Board. Following the accident at Chernobyl nuclear power station in the Soviet Union people are concerned about the safety of the UK's nuclear power stations. This leaflet explains that Chernobyl is unlike any nuclear station operating or planned in the UK and under the CEGB's stringent safety rules it could not have been built in the UK. The leaflet explains what happened at Chernobyl and compares the RBMK design and British reactors. The bodies concerned with reactor safety are noted. The containment of radioactivity and emergency procedures are explained. The PWR design for Sizewell-B is stated to be much safer than the RBMK Chernobyl design. (UK)

  9. A study into the consequences of a nuclear accident

    International Nuclear Information System (INIS)

    Arnott, D.G.

    1987-07-01

    The nuclear industry in Britain would like to believe, and would like the general public to believe, that major accidents such as that at Chernobyl in 1986, could no happen in Britain, because the design and operating procedure have been made as safe as possible. However, because the designers and operators are human, they can make mistakes. Some of these are mentioned; errors of design, errors of maintenance or inspection and errors of judgement. In spite of protestations to the contrary, a major accident could occur at Sizewell-B reactor. Given that this a real possibility, plans should be drawn up to prepare for the situation. The study considers the possible consequences of a nuclear accident under the headings, human error, how nuclear fission works, radioactivity, the truth about Chernobyl, what patterns of reactor accident are possible, what can be done (this includes meteorological information, the issuing of potassium iodate tables, radiation monitoring and evacuation). Practical issues which should concern the local authorities, especially Wrekin Council, are discussed and a recommendation made for an environmental protection officer to be appointed to keep the matter under continuing review. (U.K.)

  10. Reviewing nuclear power

    International Nuclear Information System (INIS)

    Robinson, Colin

    1990-01-01

    The UK government has proposed a review of the prospects for nuclear power as the Sizewell B pressurized water reactor project nears completion in 1994. However, a delay in the completion of Sizewell B or a change of government could put off the review for some years beyond the mid 1990s. Anticipating, though, that such a review will eventually take place, issues which it should consider are addressed. Three broad categories of possible benefit claimed for nuclear power are examined. These are that nuclear power contributes to the security of energy supply, that it provides protection against long run fossil fuel price increases and that it is a means of mitigating the greenhouse effect. Arguments are presented which cost doubt over the reality of these benefits. Even if these benefits could be demonstrated, they would have to be set against the financial, health and accident costs attendant on nuclear power. It is concluded that the case may be made that nuclear power imposes net costs on society that are not justified by the net benefits conferred. Some comments are made on how a government review, if and when it takes place, should be conducted. (UK)

  11. Method of operating a reactor

    International Nuclear Information System (INIS)

    Oosumi, Katsumi; Yamamoto, Michiyoshi.

    1980-01-01

    Purpose: To prevent stress corrosion cracking in the structural material of a reactor pressure vessel. Method: Prior to the starting of a reactor, the reactor pressure vessel is evacuated to carry out degassing of reactor water, and, at the same time, reactor water is heated. After reactor water is heated to a predetermined temperature, control rods are extracted to start nuclear heating. While the temperature of the reactor water is in a temperature range where elution of a metal which is a structural material of the reactor pressure vessel becomes vigorous and the sensitivity to the stress corrosion cracks increases, the reactor is operated at the maximum permissible temperature raising speed or maximum permissible cooling speed. (Aizawa, K.)

  12. The benefits of nuclear power to the United Kingdom

    International Nuclear Information System (INIS)

    Allen, A.M.

    1985-01-01

    The larger of Great Britain's generating boards, the CEGB, is seeking approval for the PWR on its Sizewell site based on Westinghouse designs. The very thorough enquiry which lasted for more than a year was completed in March and now awaits the Inspector's report and recommendations, which are not expected before the Autumn at the earliest. The CEGB put forward various weighty reasons for the station amongst other things it argued that building a PWR at Sizewell, even in advance of a need for additional capacity, would save more in fuel bills than it would cost to build and run it. Its net effective cost is negative. The opponents have contested demand projections, all aspects of rector costs, fossil fuel price projections (on which benefit estimates are based), safety arguments and other concerns. Their basic line of argument, as one might expect, is that the reactor is not needed now, even if it were it would be uneconomic, or if economic it would be unsafe, or if safe and economic there are other preferable designs, and in any case proliferation considerations or local impacts should rule a nuclear choice out altogether. All these issues are both debated

  13. Use of PSA in a regulatory framework

    International Nuclear Information System (INIS)

    Ross, P.J.

    1994-01-01

    The paper will briefly describe the use of PSA in the licensing process for the Sizewell 'B' PWR Power Station currently under construction in the U.K. There are two distinct phases in the licensing process - (i) A PSA has been performed to support the application to construct Sizewell 'B'. At that stage the PSA was used as a design tool (along with deterministic design requirements) for Sizewell 'B' and as such lead to a number of significant design changes in the early design process. (ii) A PSA is currently being performed to support the application to operate Sizewell 'B'. The PSA is required to support the claim that the design has included all reasonably practical measures to prevent and mitigate accidents. The comprehensive PSA being produced for the second phase of the licensing process will be described. The way the regulators/designer/analysts have interacted over the years has affected the scope, complexity, detail and bias of the comprehensive PSA. The paper will discuss these issues and highlight some of the more significant ones. The benefits and drawbacks of providing a PSA in a regulatory framework will be discussed. One of the conclusions of the paper is that the use of true ''best-estimates'' in the PSA is difficult to achieve in a regulatory framework where persistent bias to the conservative side is apparent in the designers, analysts and regulators judgements. The usefulness of the PSA is therefore, potentially, compromised by giving misleading outputs or diverting resources to unnecessary areas. (author)

  14. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  15. Report on NPPCI topics in the United Kingdom - March 1986

    International Nuclear Information System (INIS)

    Cox, R.J.

    1986-01-01

    The author reviews the activities on nuclear power plant instrumentation and control topics in the United Kingdom. Since the last meeting of the Working Group in May 1984, the activities of the nuclear power industry in the United Kingdom has been dominated, firstly, by the Public Inquiry into the proposal to site a PWR at Sizewell in Suffolk - the public part of the Inquiry finished about a year ago having lasted eighteen months but the report is not now expected for some months. Secondly, all of the first generation of Advanced Gas Cooled Reactors have run up to power. Thirdly, the Prototype Fast Reactor at Dounreay is now reliably producing its design output of 250 MW(e) following major modifications to its steam generators. The new developments of the NPP simulators, computer control and instrumentation systems as well as reactor protection systems are briefly discussed

  16. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  17. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  18. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  19. State space modeling of reactor core in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ashaari, A.; Ahmad, T.; M, Wan Munirah W. [Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Shamsuddin, Mustaffa [Institute of Ibnu Sina, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Abdullah, M. Adib [Swinburne University of Technology, Faculty of Engineering, Computing and Science, Jalan Simpang Tiga, 93350 Kuching, Sarawak (Malaysia)

    2014-07-10

    The power control system of a nuclear reactor is the key system that ensures a safe operation for a nuclear power plant. However, a mathematical model of a nuclear power plant is in the form of nonlinear process and time dependent that give very hard to be described. One of the important components of a Pressurized Water Reactor is the Reactor core. The aim of this study is to analyze the performance of power produced from a reactor core using temperature of the moderator as an input. Mathematical representation of the state space model of the reactor core control system is presented and analyzed in this paper. The data and parameters are taken from a real time VVER-type Pressurized Water Reactor and will be verified using Matlab and Simulink. Based on the simulation conducted, the results show that the temperature of the moderator plays an important role in determining the power of reactor core.

  20. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  1. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  2. Examination of corrosion on primary selector valve bellows

    International Nuclear Information System (INIS)

    Rickards, G.K.

    1975-07-01

    The stainless steel bellows of the primary selector valves from the burst can detection system of the Sizewell 'A' reactor were found to have spots of corrosion. These corrosion spots were thought to be caused by the cleaning process employed during manufacture. Samples subjected to the manufacturing cleaning process were examined in the scanning electron microscope equipped with an X-ray energy dispersive analysis system. The corrosion was shown to be associated with the acid cleaning process employed. Deposits were also left on samples not acid cleaned and it is suggested that these have come from contaminated washing water. (author)

  3. Farewell to a reactor

    International Nuclear Information System (INIS)

    Skanborg, P.

    1976-01-01

    Denmark's second reactor, DR 2, whose first criticality took place the night of 18/19 December 1958 was shut down for the last time on 31 October 1975. It was a light-water moderrated and cooled reactor of swimming-pool type with a thermal power of 5 MW, using 90% enriched uranium. The operation is described. The reactor and auxiliary equipment are now being put 'in store' - all fuel elements sent for reprocessing, the reactor tank and cooling circuits emptied, and a lead shielding placed over the tank opening. The rest of the equipment will remain in place. (B.P.)

  4. Nuclear power now and in the future

    Energy Technology Data Exchange (ETDEWEB)

    Collier, J G [Nuclear Electric (United Kingdom)

    1991-08-01

    The future of the nuclear industry in the United Kingdom is considered from the perspective of the new public sector utility, Nuclear Electric, set up to retain control of nuclear power stations on the privatization of the rest of the electricity supply industry. Two major objectives are the increased nuclear generation of electricity and the cutting of costs. These are discussed in terms of life extension programmes for the magnox reactors, improved performance of AGR reactors and expectations for the Sizewell B PWR station now under construction; waste management, reactor decommissioning and fuel-cycle costs are also considered. Economic, environmental and political criteria are outlined which need to be addressed in relation to the government's review of nuclear power in 1991. Because of the marginal economic advantages of nuclear power in the United Kingdom, it will be important to quantify the environmental and diversity benefits of this source. (UK).

  5. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  6. Neutron source for a reactor

    International Nuclear Information System (INIS)

    Kobayashi, Hiromasa.

    1975-01-01

    Object: To easily increase a start-up power of a reactor without irradiation in other reactors. Structure: A neutron source comprises Cf 252 , a natural antimony rod, a layer of beryllium, and a vessel of neutron source. On upper and lower portion of Cf 252 are arranged natural antimony rods, which are surrounded by the Be layer, the entirety being charged into the vessel. The Cf 252 may emit neutron, has a half life more than a period of operating cycle of the reactor and is less deteriorated even irradiated by radioactive rays while being left within the reactor. The natural antimony rod is radioactivated by neutron from Cf 252 and neutron as reactor power increases to emit γ rays. The Be absorbs γ rays to emit the neutron. The antimony rod is irradiated within the reactor. Further, since the Cf 252 is small in neutron absorption cross section, it is hard to be deteriorated even while being inserted within the reactor. (Kamimura, M.)

  7. Current training initiatives at Nuclear Electric plc

    International Nuclear Information System (INIS)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under construction on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994

  8. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    2000-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  9. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1998-01-01

    Full text: In 1998 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  10. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Cupac, S.; Vukadin, Z.

    1996-01-01

    Full text: In 2000 Ra reactor was not operated. New instrumentation is not complete, without it, it is not possible to think about reactor start-up. Since 1985, when reactor operation was forbidden, there are 480 fuel elements left in 48 fuel channels in the reactor core. Heavy water was removed from the reactor core because of the repair of the heavy water pumps in 1986. The old instrumentation was removed. Eleven years after being left to its own destiny, it would be difficult to imagine that anybody would think of reactor restart without examining the state of reactor vessel and other vital reactor components. Maintaining the reactor under existing conditions without final decision about restart or permanent shutdown is destructive for this nuclear facility. The existing state that pertains for more than 10 years would have only one result, destruction of the RA reactor [sr

  11. A regulatory view of nuclear containment on UK licensed sites

    International Nuclear Information System (INIS)

    Bradford, P.M.; McNair, I.J.

    1997-01-01

    Members of the UK regulatory body, HM Nuclear Installations Inspectorate (NII) have previously presented conference papers and official reports which have dealt separately with either reactor applications or chemical plant applications. The objective of this paper is to draw together a brief overview of the role of containment in protecting against potential radiological and related hazards, and to describe the factors which influence the NII's assessment of containment safety cases. It draws upon the NII's experience of regulating many types of nuclear facility, from those designed in the late 1940s through to the modern plants, such as Sizewell 'B' and THORP. The paper reviews the legislative and regulatory background within which the facilities exist and are operated. Finally, the paper reviews recent, ongoing and planned research in the field of containment, which has been designed to behave under challenge. (author)

  12. An internally illuminated monolith reactor: Pros and cons relative to a slurry reactor

    NARCIS (Netherlands)

    Carneiro, Joana T.; Carneiro, J.T.; Berger, Rob; Moulijn, Jacob A.; Mul, Guido

    2009-01-01

    In the present study, kinetic models for the photo-oxidation of cyclohexane in two different photoreactor systems are discussed: a top illumination reactor (TIR) representative of a slurry reactor, and the so-called internally illuminated monolith reactor (IIMR) representing a reactor containing

  13. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Guigon, B.; Vacelet, H.; Dornbusch, D.

    2000-01-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs from activation analysis to power reactor fuel qualification. In this paper the main characteristics of the Jules Horowitz Reactor are presented. Safety criteria are explained. Finally, merits and disadvantages of UMo compared to the standard U 3 Si 2 fuel are discussed. (author)

  14. Reactor building for a nuclear reactor

    International Nuclear Information System (INIS)

    Haidlen, F.

    1976-01-01

    The invention concerns the improvement of the design of a liner, supported by a latticed steel girder structure and destined for guaranteeing a gastight closure for the plant compartments in the reactor building of a pressurized water reactor. It is intended to provide the steel girder structure on their top side with grates, being suited for walking upon, and to hang on their lower side diaphragms in modular construction as a liner. At the edges they may be sealed with bellows in order to avoid thermal stresses. The steel girder structure may at the same time serve as supports for parts of the steam pipe. (RW) [de

  15. Checking out the CEGB's sums

    International Nuclear Information System (INIS)

    Heald, D.

    1983-01-01

    Accurate investment plans are difficult to make for projects such as power stations because of the timescale over which economic growth, technical performance and relative fuel prices must be estimated. For the Sizewell B PWR reactor this is 71/2 years for construction and 35 years for operating life. Past errors in forecasting, the political opposition from environmental groups and the Conservative governments dislike of nationalized industries have all combined to make the Central Electricity Generating Board (CEGB) defensive about the figures it uses to promote its power station building programme. These figures are questioned here in a summary of a report by the Electricity Consumer's Council. In particular it is suggested that the CEGB's estimate of the net effective cost was systematically biased in favour of nuclear power over coal, that the sensitivity analysis was inadequate, that the 5% discount rate chosen by the CEGB favours nuclear power with its higher capital costs and that the external presentation of results of past investments was misleading. The CEGB in its submission to the Sizewell B enquiry has rectified the first two criticisms. However, the continued use of the 5% discount rate without sensitivity tests is questioned. A table of comparative generation costs is also discussed. (U.K.)

  16. Reactor utilization, Annex A

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1984-01-01

    Reactor was operated until August 1984 due to prohibition issued by the Ministry since the reactor does not have the emergency cooling system nor special filters in the ventilation system yet. This means that the operation plan was fulfilled by 69%. This annex includes detailed tables containing data about utilization of reactor experimental channels, irradiated samples, as well as interruptions of operation. Detailed data about reactor power during this period are shown as well

  17. Reactor coolant pump for a nuclear reactor

    International Nuclear Information System (INIS)

    Burkhardt, W.; Richter, G.

    1976-01-01

    An improvement is proposed concerning the easier disengagement of the coupling at the reactor coolant pump for a nuclear reactor transporting a pressurized coolant. According to the invention the disengaging coupling consists of two parts separated by screws. At least one of the screws contains a propellent charge ananged within a bore and provided with a speed-dependent ignition device in such a way that by separation of the screws at overspeeds the coupling is disengaged. The sub-claims are concerned with the kind of ignition ot the propellent charge. (UWI) [de

  18. A new MTR fuel for a new MTR reactor: UMo for the Jules Horowitz reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guigon, B. [CEA Cadarache, Dir. de l' Energie Nucleaire DEN, Reacteur Jules Horowitz, 13 - Saint-Paul-lez-Durance (France); Vacelet, H. [Compagnie pour l' Etude et la Realisation de Combustibles Atomiques, CERCA, Etablissement de Romans, 26 (France); Dornbusch, D. [Technicatome, Service d' Architecture Generale, 13 - Aix-en-Provence (France)

    2003-07-01

    Within some years, the Jules Horowitz Reactor will be the only working experimental reactor (material and fuel testing reactor) in France. It will have to provide facilities for a wide range of needs: from activation analysis to power reactor fuel qualification. In this paper will be presented the main characteristics of the Jules Horowitz Reactor: its total power, neutron flux, fuel element... Safety criteria will be explained. Finally merits and disadvantages of UMo compared to the standard U{sub 3}Si{sub 2} fuel will be discussed. (authors)

  19. Nuclear power and public acceptance in the UK

    International Nuclear Information System (INIS)

    Baker, J.W.

    1985-01-01

    The subject is covered in sections: introduction; UK nuclear experience (experience of the Central Electricity Generating Board; impartial assessment); Sizewell inquiry (into proposal to construct a PWR based plant as Sizewell B; inquiry process; ground covered; economics and safety; project management); public acceptance (sociological studies); long-term programme. (U.K.)

  20. Reactor core in FBR type reactor

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Kawashima, Katsuyuki; Kurihara, Kunitoshi.

    1989-01-01

    In a reactor core in FBR type reactors, a portion of homogenous fuels constituting the homogenous reactor core is replaced with multi-region fuels in which the enrichment degree of fissile materials is lower nearer to the axial center. This enables to condition the composition such that a reactor core having neutron flux distribution either of a homogenous reactor core or a heterogenous reactor core has substantially identical reactivity. Accordingly, in the transfer from the homogenous reactor core to the axially heterogenous reactor core, the average reactivity in the reactor core is substantially equal in each of the cycles. Further, by replacing a portion of the homogenous fuels with a multi-region fuels, thereby increasing the heat generation near the axial center, it is possiable to reduce the linear power output in the regions above and below thereof and, in addition, to improve the thermal margin in the reactor core. (T.M.)

  1. Safety equipment in a reactor

    International Nuclear Information System (INIS)

    Shiratori, Hirozo; Ishiyama, Satoshi; Ugawa, Yukio.

    1976-01-01

    Object: To safely retain, even if fuel should be molten and flown through the bottom of a container in a reactor, the molten fuel to remove heat generation of the fuel to prevent occurrence of a critical trouble. Structure: A reactor container housing a core and coolant has thereunder a separation dome in a central portion thereof and a partitioning plate coaxially and circularly disposed in the periphery of the separation dome, with a tray formed of magnesium oxide being disposed. Further, a cooling path system is provided so as to surround the tray. The cooling path system and the reactor container are surrounded and protected by a reactor wall provided with heat insulating refractory bricks, a coolant pouring system extends through the reactor wall, and the coolant is supplied to the tray. (Furukawa, Y.)

  2. Fusion reactor development: A review

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This paper is a review of the current prospects for fusion reactor development based upon the present status in plasma physics research, fusion technology development and reactor conceptual design for the tokamak magnetic confinement concept. Recent advances in tokamak plasma research and fusion technology development are summarized. The direction and conclusions of tokamak reactor conceptual design are discussed. The status of alternate magnetic confinement concept research is reviewed briefly. A feasible timetable for the development of fusion reactors is presented

  3. Reactor FaceMap Tool: A modern graphics tool for displaying reactor data

    International Nuclear Information System (INIS)

    Roberts, J.C.

    1991-01-01

    A prominent graphical user interface in reactor physics applications at the Savannah River Site is the reactor facemap display. This is a two dimensional view of a cross section of a reactor. In the past each application which needed a facemap implemented its own version. Thus, none of the code was reused, the facemap implementation was hardware dependent and the user interface was different for each facemap. The Reactor FaceMap Tool was built to solve these problems. Through the use of modern computing technologies such as X Windows, object-oriented programming and client/server technology the Reactor FaceMap Tool has the flexibility to work in many diverse applications and the portability to run on numerous types of hardware

  4. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given

  5. A WIMS-NESTLE reactor physics model for an RBMK reactor

    International Nuclear Information System (INIS)

    Perry, R.T.; Meriwether, G.H.

    1996-01-01

    This work describes the static neutronic calculations made for a three-dimensional model of an RBMK (Russian) reactor. Future work will involve the use of this neutronic model and a thermal-hydraulic model in coupled calculations. The lattice code, WIMS-D, was used to obtain the cross sections for the static neutronic calculations. The static reactor neutronic calculations were made with NESTLE, a three-dimensional nodal diffusion code. The methods used to establish an RBMK reactor model for use in these codes are discussed, and the cross sections calculated are given. (author)

  6. RA Reactor applications, Annex A

    International Nuclear Information System (INIS)

    Martinc, R.; Cupac, S.; Stanic, A.

    1990-01-01

    RA reactor was not operated during the past five years due to the renewal and reconstruction of the reactor systems, which in underway. In the period from 1986-1990, reactor was operated only 144 MWh in 1986, for the need of testing the reactor systems and possibility of irradiating 125 I. Reactor will not be operated in 1991 because of the exchange of complete instrumentation which is planned to be finished by the end of 1991. It is expected to start operation in May 1992. That is why this annex includes the plan of reactor operation for period of nine months starting from from the moment of start-up. It is planned to operate the reactor at 0.02 MW power first three months, to increase the power gradually and reach 3.5 MW after 8 months of operation. It is foreseen to operate the reactor at 4.7 MW from the tenth month on [sr

  7. Reinforced confinement in a nuclear reactor

    International Nuclear Information System (INIS)

    Norman, H.

    1988-01-01

    The present invention concerns a nuclear reactor containing a reactor core, a swimming pool space that is filled and pressurized with a neutron-absorbing solution, a reactor tank, at least one heat exchanger, at least one inlet line, at least one return line and at least one circulation pump, where the said reactor tank is confined in the said swimming pool space and designed to be cooled with the aid of relatively pure water, which is fed by means of the said at least one circulating pump to the said reactor tank from the said heat exchanger via the said at least one inlet line and is returned to the heat exchanger via the said at least one return line. The problem that is to be solved by the invention is to design a reactor of the above type in such a way that a complete confinement of the primary circuit of the reactor is achieved at relatively low extra cost. This problem is solved by providing the reactor with a special confinement space that confines the heat exchanger, but not the reactor tank, with the confinement space and the swimming pool space being fashioned in the same concrete body

  8. Transmutation of actinide 237Np with a fusion reactor and a hybrid reactor

    International Nuclear Information System (INIS)

    Feng, K.M.; Huang, J.H.

    1994-01-01

    The use of fusion reactors to transmute fission reactor wastes to stable species is an attractive concept. In this paper, the feasibility of transmutation of the long-lived actinide radioactive waste Np-237 with a fusion reactor and a hybrid reactor has been investigated. A new waste management concept of burning HLW (High Level Waste), utilizing released energy and converting Np-237 into fissile fuel Pu-239 through transmutation has been adopted. The detailed neutronics and depletion calculation of waste inventories was carried out with a modified version of one-dimensional neutron transport and burnup calculation code system BISON1.5 in this study. The transmutation rate of Np with relationship to neutron wall loading, Pu and Np with relationship to neutron wall load, Pu and Np concentration in the transmutation zone have been explored as well as relevant results are also given

  9. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  10. The application of the ALARP principle to the design of nuclear power stations

    International Nuclear Information System (INIS)

    Pugh, I.G.; Eaton, J.R.P.; Dutton, L.M.C.; Youell, F.P.

    1987-01-01

    A summary is given of the numerical fundamental design criteria specified to ensure nuclear reactor safety; these numerical criteria are compared to ICRP dose limits in order to demonstrate the important role of the criteria in achieving 'ALARP'. The design strategy which has been applied to both AGR and PWR power stations to ensure compliance with the design criteria and guidelines is described. The application of the strategy to Heysham II/ Torness and Sizewell 'B' demonstrates its effectiveness. Details of radiation exposures to operators and the public both in normal operation and following accidents are given including examples of cost-benefit analysis studies. (UK)

  11. Nuclear economics and privatisation

    International Nuclear Information System (INIS)

    Evans, N.L.

    1987-01-01

    In this paper the compatibility of the British government's two policies of privatisation of the electricity supply industry and the development of nuclear power is considered. The structures that a privatised electricity supply industry might have looked at, especially those which might have greatest effect on the position of nuclear power. Only three alternatives for Sizewell-B - a pressurized water reactor, an advanced gas-cooled reactor or a large coal-fired power station were considered. The economic case was made using a discount rate o 5% -lower than would be taken by private sector companies. This has an important effect on the economic advantage of one fuel over another. Changes in the electricity supply industry with privatisation are discussed. These might lead to consideration of a greater range of options for meeting demand (eg renewable energy sources) as the emphasis would be on profitability. (UK)

  12. Calculation models for a nuclear reactor

    International Nuclear Information System (INIS)

    Tashanii, Ahmed Ali

    2010-01-01

    Determination of different parameters of nuclear reactors requires neutron transport calculations. Due to complicity of geometry and material composition of the reactor core, neutron calculations were performed for simplified models of the real arrangement. In frame of the present work two models were used for calculations. First, an elementary cell model was used to prepare cross section data set for a homogenized-core reactor model. The homogenized-core reactor model was then used to perform neutron transport calculation. The nuclear reactor is a tank-shaped thermal reactor. The semi-cylindrical core arrangement consists of aluminum made fuel bundles immersed in water which acts as a moderator as well as a coolant. Each fuel bundle consists of aluminum cladded fuel rods arranged in square lattices. (author)

  13. Reactor core of FBR type reactor

    International Nuclear Information System (INIS)

    Hayashi, Hideyuki; Ichimiya, Masakazu.

    1994-01-01

    A reactor core is a homogeneous reactor core divided into two regions of an inner reactor core region at the center and an outer reactor core region surrounding the outside of the inner reactor core region. In this case, the inner reactor core region has a lower plutonium enrichment degree and less amount of neutron leakage in the radial direction, and the outer reactor core region has higher plutonium enrichment degree and greater amount of neutron leakage in the radial direction. Moderator materials containing hydrogen are added only to the inner reactor core fuels in the inner reactor core region. Pins loaded with the fuels with addition of the moderator materials are inserted at a ratio of from 3 to 10% of the total number of the fuel pins. The moderator materials containing hydrogen comprise zirconium hydride, titanium hydride, or calcium hydride. With such a constitution, fluctuation of the power distribution in the radial direction along with burning is suppressed. In addition, an absolute value of the Doppler coefficient can be increased, and a temperature coefficient of coolants can be reduced. (I.N.)

  14. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  15. Reactor core and initially loaded reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Koyama, Jun-ichi; Aoyama, Motoo.

    1989-01-01

    In BWR type reactors, improvement for the reactor shutdown margin is an important characteristic condition togehter with power distribution flattening . However, in the reactor core at high burnup degree, the reactor shutdown margin is different depending on the radial position of the reactor core. That is , the reactor shutdown margin is smaller in the outer peripheral region than in the central region of the reactor core. In view of the above, the reactor core is divided radially into a central region and as outer region. The amount of fissionable material of first fuel assemblies newly loaded in the outer region is made less than the amount of the fissionable material of second fuel assemblies newly loaded in the central region, to thereby improve the reactor shutdown margin in the outer region. Further, the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower portion of the first fuel assemblies is made smaller than the ratio between the amount of the fissionable material in the upper region and that of the fissionable material in the lower region of the second fuel assemblies, to thereby obtain a sufficient thermal margin in the central region. (K.M.)

  16. Neutronics of a mixed-flow gas-core reactor

    International Nuclear Information System (INIS)

    Soran, P.D.; Hansen, G.E.

    1977-11-01

    The study was made to investigate the neutronic feasibility of a mixed-flow gas-core reactor. Three reactor concepts were studied: four- and seven-cell radial reactors and a seven-cell scallop reactor. The reactors were fueled with UF 6 (either U-233 or U-235) and various parameters were varied. A four-cell reactor is not practical nor is the U-235 fueled seven-cell radial reactor; however, the 7-cell U-233 radial and scallop reactors can satisfy all design criteria. The mixed flow gas core reactor is a very attractive reactor concept and warrants further investigation

  17. A new fluidized bed nuclear reactor

    International Nuclear Information System (INIS)

    Sefidvash, F.

    1986-01-01

    A new nuclear reactor design based on the fluidized bed concept is proposed. A current design utilizes spherical fuel of slightly enriched Zircaloy-clad uranium dioxide fluidized by light water under pressure. The reactor is modular in system; therefore, any size reactor can be constructed from the basic standard modul. The reactor physics calculations show that reactivity increases with porosity to a maximum value and thereafter decreases. This produces inherent safety and eliminates the need for control rods and burnable poisons. The heat transfer calculations show that the maximum power extracted from the reactor core is not limited to the material temperature limits but to the maximum mass flow of coolant, which corresponds to the desired operating porosity. Design simplicity and inherent safety make it an attractive small reactor design. (Author) [pt

  18. Nuclear privatization

    International Nuclear Information System (INIS)

    Jeffs, E.

    1995-01-01

    The United Kingdom government announced in May 1995 plans to privatize the country's two nuclear generating companies, Nuclear Electric and Scottish Nuclear. Under the plan, the two companies will become operating divisions of a unified holding company, to be called British Electric, with headquarters in Scotland. Britain's nuclear plants were left out of the initial privatization in 1989 because the government believed the financial community would be unwilling to accept the open-ended liability of decommissioning the original nine stations based on the Magnox gas-cooled reactor. Six years later, the government has found a way around this by retaining these power stations in state ownership, leaving the new nuclear company with the eight Advanced Gas-cooled Reactor (AGR) stations and the recently completed Sizewell B PWR stations. The operating Magnox stations are to be transferred to BNFL, which operates two Magnox stations of their own at Calder Hall and Chapelcross

  19. SCORPIO: a framework for core surveillance systems

    International Nuclear Information System (INIS)

    Berg, Oe.; Tsuiki, Makoto

    1999-01-01

    The first version of the core surveillance system SCORPIO was installed at Unit 2, Ringhals, in 1984. It was implemented on Norsk Data mini-computers with a fully graphical user-interface. The main purpose was to provide a practical tool for reactor operators and reactor physicists for on-line monitoring and predictive analysis of core behaviour. A second version of SCORPIO was developed in 1993-1995 and implemented on Unix workstations. In addition to upgrading the system at Ringhals, the system was installed by Duke Power, USA, on 7 reactors. SCORPIO was also installed on the Sizewell B reactor. Recently a new framework has been developed which further enhances the flexibility and capabilities for implementing core surveillance systems in different types of nuclear power plants. Modules can be added and replaced in an easy manner. It allows fast and reliable communication of data between modules based on the Software Bus tool developed by IFE. Further, the Picasso-3 user interface management system supports efficient implementation of different user interfaces. Both Unix and Windows NT platforms are supported. The new framework has been applied in development and installation of a SCORPIO-VVER version for the Dukovany NPP, Czech Republic. Here it was of particular importance to provide a flexible system for integration of modules originating from different companies. Development of a BWR version is now in progress. This means that SCORPIO will be available for all the major reactor types, and synergy is obtained by application of a common framework both with respect to system implementation and maintenance. By using the SCORPIO framework, the development time is reduced and the maintenance work is carried out more efficiently, compared to developing systems with lower-level tools. For instance, the MMI can be developed and tested independently of the physics modules

  20. Investigation of flow stabilization in a compact reactor vessel of a FBR. Flow visualization in a reactor vessel

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Igarashi, Minoru; Kimura, Nobuyuki; Kamide, Hideki

    2002-01-01

    In the feasibility studies of Commercialized Fast Breeder Reactor Cycle System, a compact reactor vessel is considered from economical improvement point of a sodium cooled loop type fast reactor. The flow field was visualized by water experiment for a reactor vessel with 'a column type UIS (Upper Internal Structure)', which has a slit for fuel handling mechanism and is useful for a compact fast reactor. In this research, the 1/20 scale test equipment using water was made to understand coolant flow through a slit of a column type UIS' and fundamental behavior of reactor upper plenum flow. In the flow visualization tests, tracer particles were added in the water, and illuminated by the slit-shaped pulse laser. The flow visualization image was taken with a CCD camera. We obtained fluid velocity vectors from the visualization image using the Particle Imaging Velocimetry (PIV). The results are as follows. 1. Most of coolant flow through a slit of 'column type UIS' arrived the dip plate directly. In the opposite side of a slit, most of coolant flowed toward reactor vessel wall before it arrived the dip plate. 2. The PIV was useful to measure the flow field in the reactor vessel. The obtained velocity field was consistent with the flow visualization result. 3. The jet through the UIS slit was dependent on the UIS geometry. There is a possibility to control the jet by the UIS geometry. (author)

  1. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  2. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  3. National report on nuclear power plant control and instrumentation in the United Kingdom

    International Nuclear Information System (INIS)

    Goodings, A.

    1992-01-01

    This paper notes that, although no fundamental, NPPC and I technical developments have taken place in the UK since 1989, enormous organizational changes have occurred. The influence of these changes on instrumentation capability is discussed and the current situations on the Magnox, AGR and Fast Reactors and on the Sizewell PWR are described. Work on pulse-coded-logic reactor trip systems based on conventional microprocessor components is noted and a new, Dungeness B AGR, single channel trip systems which uses these principles is described. Other developments in sensors, instrumentation, ultrasonics and under-sodium viewing are also described as are studies on software reliability, human factors engineering and related topics. Comments are made on general aspects of computers in reactor safety systems. It is concluded that the last two years have seen considerable progress in the UK despite the interruptions and problems generated by organizational changes. It is felt that these changes may have produced a new sense of urgency and better insights into the needs of the industry. (author). 2 refs

  4. National Nuclear Corporation Limited report and financial statements 31 March 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Group is engaged in designing and constructing power stations and nuclear power reactors and other related work and in associated research and development. Work on the Advanced Gas Cooled Reactor Power Stations at Heysham II and Torness has continued during the year. A variety of work continues to be undertaken on completed stations at Hinkley Point 'B', Heysham I, Hartlepool and Dungeness 'B' through the company's Operational Support Unit which was formed during the year. The Unit is pursuing work on other nuclear stations. Work on the Sizewell 'B' PWR under the Central Electricity Generating Board's Project Management Team is proceeding well. In June 1988 the company was awarded a contract to assist the Ministry of Defence in the management of several major projects. The accounts are presented. It is shown that the profit available to the shareholders for the year ended 31 March 1988 is Pound 4,219,000. Research and development has been undertaken on AGRs, PWRs and fast reactors. Its technologies cover chemistry, materials, heat transfer, fluid flow, mechanical engineering and instrumentation. (author)

  5. UK minister and science advisors reassert roles of PWRs and FBRs

    International Nuclear Information System (INIS)

    Fishlock, D.

    1988-01-01

    Britain continues to vigorously debate the wisdom of privatizing its electricity supply system by breaking the Central Electricity Generating Board into three separate parts, with specific consequences for nuclear energy. What is already clear is that the proposed changes must have a profound impact on all long-term activities, from the future of the fast reactor to national research into the environmental impact of electricity supply. The Government stated that future use of nuclear energy is necessary. The Government then published a nuclear study by its own top technical advisors, the Advisory Council on Science and Technology (ACOST). ACOST recommends that Britain should abandon further research and development on gas-cooled reactors and concentrate wholeheartedly on the PWR, following what it says is the public inquiry's unequivocal endorsement of the Sizewell-B design. The Advisory Council also comments on the fast reactor, in the context of what it calls the Government's responsibility to underpin long-term ventures in power generation. It states that the technology is approaching commercialization

  6. A study on ex-vessel steam explosion for a flooded reactor cavity of reactor scale - 15216

    International Nuclear Information System (INIS)

    Song, S.; Yoon, E.; Kim, Y.; Cho, Y.

    2015-01-01

    A steam explosion can occur when a molten corium is mixed with a coolant, more volatile liquid. In severe accidents, corium can come into contact with coolant either when it flows to the bottom of the reactor vessel and encounters the reactor coolant, or when it breaches the reactor vessel and flows into the reactor containment. A steam explosion could then threaten the containment structures, such as the reactor vessel or the concrete walls/penetrations of the containment building. This study is to understand the shortcomings of the existing analysis code (TEXAS-V) and to estimate the steam explosion loads on reactor scale and assess the effect of variables, then we compared results and physical phenomena. Sensitivity study of major parameters for initial condition is performed. Variables related to melt corium such as corium temperature, falling velocity and diameter of melt are more important to the ex-vessel steam explosion load and the steam explosion loads are proportional to these variables related to melt corium. Coolant temperature on reactor cavity has a specific area to increase the steam explosion loads. These results will be used to evaluate the steam explosion loads using ROAAM (Risk Oriented Accident Analysis Methodology) and to develop the evaluation methodology of ex-vessel steam explosion. (authors)

  7. Auxiliary reactor for a hydrocarbon reforming system

    Science.gov (United States)

    Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.

    2006-01-17

    An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.

  8. Nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    This patent describes an improved liquid metal nuclear reactor construction comprising: (a) a nuclear reactor core having a bottom platform support structure; (b) a reactor vessel for holding a large pool of low pressure liquid metal coolant and housing the core; (c) a containment structure surrounding the reactor vessel and having a sidewall spaced outwardly from the reactor vessel side wall and having a base mat spaced below the reactor vessel bottom end wall; (d) a central small diameter post anchored to the containment structure base mat and extending upwardly to the reactor vessel to axially fix the bottom end wall of the reactor vessel and provide a center column support for the lower end of the reactor core; (e) annular support structure disposed in the reactor vessel on the bottom end wall and extending about the lower end of the core; (f) structural support means disposed between the containment structure base mat and bottom end of the reactor vessel wall and cooperating for supporting the reactor vessel at its bottom end wall on the containment structure base mat to allow the reactor vessel to expand radially but substantially prevent any lateral motions that might be imposed by the occurrence of a seismic event; (g) a bed of insulating material disposed between the containment structure base mat and the bottom end wall of the reactor vessel and uniformly supporting the reactor vessel at its bottom end wall; freely expand radially from the central post as it heats up while providing continuous support thereof; (h) a deck supported upon the wall of the containment vessel above the top open end of the reactor vessel; and (i) extendible and retractable coupling means extending between the deck and the top open end of the reactor vessel and flexibly and sealably interconnecting the reactor vessel at its top end to the deck

  9. The UK nuclear power industry

    International Nuclear Information System (INIS)

    Collier, J. G.

    1995-01-01

    In the United Kingdom, nuclear power plants are operated by three companies: Nuclear Electric (NE), Scottish Nuclear (SN), and British Nuclear Fuels plc (BNFL). The state-operated power industry was privatized in 1989 with the exception of nuclear power generation activities, which were made part of the newly founded (state-owned) NE and SN. At the same time, a moratorium on the construction of new nuclear power plants was agreed. Only Sizewell B, the first plant in the UK to be equipped with a pressurized water reactor, was to be completed. That unit was first synchronized with the power grid on February 14, 1995. Another decision in 1989 provided for a review to be conducted in 1994 of the future of the peaceful uses of nuclear power in the country. The results of the review were presented by the government in a white paper on May 9, 1995. Accordingly, NE and SN will be merged and privatized in 1996; the headquarters of the new holding company will be in Scotland. The review does not foresee the construction of more nuclear power plants. However, NE hopes to gain a competitive edge over other sources of primary energy as a result of this privatization, and advocates construction of a dual-unit plant identical with Sizewell B so as to avoid recurrent design and development costs. Outside the UK, the company plans to act jointly with the reactor vendor, Westinghouse, especially in the Pacific region; a bid submitted by the consortium has been shortisted by the future operator of the Lungmen nuclear power plant project in Taiwan. In upgrading the safety of nuclear power plants in Eastern Europe, the new company will be able to work through existing contacts of SN. (orig.) [de

  10. Great Britain 1994: Starting a new era for nuclear power

    International Nuclear Information System (INIS)

    Collier, J.G.

    1994-01-01

    In the course of the British program of privatization of the state-owned electricity generating industry the nuclear power plants in England and Wales were incorporated into the newly founded (and state-owned) NE in 1989. In addition, the government decided in favor of a moratorium in the construction of more nuclear power plants. Only Sizewell B, Britain's first pressurized water reactor (PWR), was to be completed. At that point in time, three other PWRs were in the planning stage. The government decision included a review of the future of nuclear technology to be held in 1994. At the beginning of 1994, the nuclear future of Britain appears in a much more positive light than had been thought possible in 1989. When founding NE, the British government endowed it with a startup capital and also instituted a tax levied on fossil energy sources, the revenue from which is being made available to NE in compensation for the old liabilities NE had to assume. (orig./UA) [de

  11. Preparing the construction of a school reactor

    International Nuclear Information System (INIS)

    Matejka, K.

    1977-01-01

    The possibilities are discussed of teaching and training nuclear reactor operation and control, teaching experimental reactor physics and investigating reactor lattice parameters using a training reactor to be installed at the Faculty of Nuclear Science and Physical Engineering in Prague. Requirements are indicated for the reactor's technical design and the Faculty's possibilities to contribute to its construction. (J.B.)

  12. The United Kingdom

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The history of nuclear development in the United Kingdom is traced, together with the factors (eg electricity demand, fossil fuel prices, political policy) that have influenced policy choices. Many of the research establishments and the fissile material production plants were established in the late 1940s. In these early years the civil and military development programmes were not separate. The initial growth period was in the 1950s when the plan was to build twelve reactors in three groups of four over ten years. The first were to be Magnox type reactors. This was trebled in 1957 and the advanced gas cooled reactor was developed. The Windscale fire in 1957 affected confidence in the nuclear programme. However, five AGR twin-reactor stations were ordered in 1964. These ran into construction problems and delay and it was not until 1980 that more new units were contemplated. The plan then was to build a pressurized water reactor at Sizewell-B. A delay to allow for the public inquiry put back the start of this until 1987 with commissioning planned for 1994. A list of the UK nuclear power stations is given and their operating performance discussed. The present situation and future prospects for nuclear power are reviewed. (U.K.)

  13. Who needs a small reactor?

    International Nuclear Information System (INIS)

    Wood, Janet.

    1991-01-01

    The opportunities and problems facing small reactors were debated at the Delhi seminar. It was established that these were markets where small reactors, producing heat as well as electricity, might be of use. Small combined heat and power reactors would be more useful in district heating than would large reactors, as their optimum heat production is in line with current district heating schemes. Most process heat requirements are below 900 o C and so may be provided by small nuclear plants. Several areas in electricity supply where small and medium sized reactors could find a market were also identified. Despite good reasons for favouring nuclear plants in these markets, such as no production of carbon dioxide, no need to use expensive oil or other scarce fossil fuels and flexibility, these are, however, disincentives to potential buyers. While serial production would decrease plant costs, the lead plants would bear heavy financial risks. Currently too many options in plant design make it difficult to present the advantages of small reactor technology. Siting reactors near centres of population would be problematical. The disposal of spent fuel and radioactive wastes would create problems in developing or non-nuclear countries. Over and above all these problems, however, was that of public acceptance. Some ways of overcoming these disincentives were discussed. (author)

  14. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  15. A new advanced safe nuclear reactor concept

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    1999-01-01

    The reactor design is based on fluidized bed concept and utilizes pressurized water reactor technology. The fuel is automatically removed from the reactor by gravity under any accident condition. The reactor demonstrates the characteristics of inherent safety and passive cooling. Here two options for modification to the original design are proposed in order to increase the stability and thermal efficiency of the reactor. A modified version of the reactor involves the choice of supercritical steam as the coolant to produce a plant thermal efficiency of about 40%. Another is to modify the shape of the reactor core to produce a non-fluctuating bed and consequently guarantee the dynamic stability of the reactor. The mixing of Tantalum in the fuel is also proposed as an additional inhibition to power excursion. The spent fuel pellets may not be considered nuclear waste since they are in the shape and size that can easily be used as a a radioactive source for food irradiation and industrial applications. The reactor can easily operate with any desired spectrum by varying the porosity in order to be a plutonium burner or utilize a thorium fuel cycle. (author)

  16. A nuclear power reactor

    International Nuclear Information System (INIS)

    Borrman, B.E.; Broden, P.; Lundin, N.

    1979-12-01

    The invention consists of shock absorbing support beams fastened to the underside of the reactor tank lid of a BWR type reactor, whose purpose is to provide support to the steam separator and dryer unit against accelerations due to earthquakes, without causing undue thermal stresses in the unit due to differential expansion. (J.I.W.)

  17. Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, R.; Shen, L.H.; Zhang, M.Y.; Jin, B.S.; Xiong, Y.Q.; Duan, Y.F.; Zhong, Z.P.; Zhou, H.C.; Chen, X.P.; Huang, Y.J. [Southeast University, Nanjing (China)

    2007-01-15

    A 0.1 MWth lab-scale and 2 MWth pilot-scale experimental rigs were constructed to demonstrate the technical feasibility of a new process. The aim of the lab-scale study is to optimize coal partial gasification reactions operating conditions, which were applied in the pilot-scale tests. A comparison between the laboratory and pilot scale experimental results is presented in this paper in order to provide valuable information for scaling-up of the PFB coal partial reactor to industrial applications. The results show that trends and phenomena obtained in the laboratory reactor are confirmed in a pilot plant operating at similar conditions. However, many differences are observed in the two reactors. The higher heat loss in the lab-scale reactor is responsible for higher equivalence ratio (ER) and lower gas heating value at the similar reactor temperature. With respect to the pilot-scale reactor, mass transfer limitation between bubbles and emulsion phase may become important. Hence, longer contact time is required to achieve the same conversions as in the lab-scale reactor. This difference is explained by a significant change of the hydrodynamic conditions due to the formation of larger bubbles.

  18. Reactor theory and power reactors. 1. Calculational methods for reactors. 2. Reactor kinetics

    International Nuclear Information System (INIS)

    Henry, A.F.

    1980-01-01

    Various methods for calculation of neutron flux in power reactors are discussed. Some mathematical models used to describe transients in nuclear reactors and techniques for the reactor kinetics' relevant equations solution are also presented

  19. Probabilistic assessment of faults

    International Nuclear Information System (INIS)

    Foden, R.W.

    1987-01-01

    Probabilistic safety analysis (PSA) is the process by which the probability (or frequency of occurrence) of reactor fault conditions which could lead to unacceptable consequences is assessed. The basic objective of a PSA is to allow a judgement to be made as to whether or not the principal probabilistic requirement is satisfied. It also gives insights into the reliability of the plant which can be used to identify possible improvements. This is explained in the article. The scope of a PSA and the PSA performed by the National Nuclear Corporation (NNC) for the Heysham II and Torness AGRs and Sizewell-B PWR are discussed. The NNC methods for hazards, common cause failure and operator error are mentioned. (UK)

  20. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  1. RSAS: a Reactor Safety Assessment System

    International Nuclear Information System (INIS)

    Sebo, D.E.; Dixon, B.W.; Bray, M.A.

    1985-01-01

    The Reactor Safety Assessment System (RSAS) is an expert system under development for the United States Nuclear Regulatory Commission (NRC). RSAS is being developed for use at the NRC's Operations Center in the event of a serious incident at a licensed nuclear power plant. The system generates situation assessments for the NRC Reactor Safety Team based on a limited number of plant parameters, known operator actions, and plant status data. The RSAS rule base currently covers one reactor type. The extension of the rule base to other reactor types is also discussed

  2. Utilization of research reactors - A global perspective

    International Nuclear Information System (INIS)

    Muranaka, R.G.

    1988-01-01

    This paper presents 1) a worldwide picture of research reactors, operable, shutdown, under construction and planned, 2) statistics on utilization of research reactors including TRIGA reactors, and 3) some results of a survey conducted during 1988 on the utilization of research reactors in developing Member States in the Asia-Pacific Region

  3. Generation IV reactors: reactor concepts

    International Nuclear Information System (INIS)

    Cardonnier, J.L.; Dumaz, P.; Antoni, O.; Arnoux, P.; Bergeron, A.; Renault, C.; Rimpault, G.; Delpech, M.; Garnier, J.C.; Anzieu, P.; Francois, G.; Lecomte, M.

    2003-01-01

    Liquid metal reactor concept looks promising because of its hard neutron spectrum. Sodium reactors benefit a large feedback experience in Japan and in France. Lead reactors have serious assets concerning safety but they require a great effort in technological research to overcome the corrosion issue and they lack a leader country to develop this innovative technology. In molten salt reactor concept, salt is both the nuclear fuel and the coolant fluid. The high exit temperature of the primary salt (700 Celsius degrees) allows a high energy efficiency (44%). Furthermore molten salts have interesting specificities concerning the transmutation of actinides: they are almost insensitive to irradiation damage, some salts can dissolve large quantities of actinides and they are compatible with most reprocessing processes based on pyro-chemistry. Supercritical water reactor concept is based on operating temperature and pressure conditions that infers water to be beyond its critical point. In this range water gets some useful characteristics: - boiling crisis is no more possible because liquid and vapour phase can not coexist, - a high heat transfer coefficient due to the low thermal conductivity of supercritical water, and - a high global energy efficiency due to the high temperature of water. Gas-cooled fast reactors combining hard neutron spectrum and closed fuel cycle open the way to a high valorization of natural uranium while minimizing ultimate radioactive wastes and proliferation risks. Very high temperature gas-cooled reactor concept is developed in the prospect of producing hydrogen from no-fossil fuels in large scale. This use implies a reactor producing helium over 1000 Celsius degrees. (A.C.)

  4. Establishing a Radiation Protection Programme for a Research Reactor

    International Nuclear Information System (INIS)

    Abdallah, M. M.

    2014-04-01

    The nature and intensity of radiation from the operation of a research reactor depend on the type of reactor, its design features and its operational history. The protection of workers from the harmful effect of radiation must therefore be of paramount importance to any operating organization of a research reactor. This project report attempts to establish an operational radiation protection programme for a research reactor using the Ghana Research Reactor-1 as a case study. (au)

  5. Method of operating a nuclear reactor

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Schaefer, W.F.

    1978-01-01

    A method of controlling a nuclear power generting station in the event of a malfunction of particular operating components is described. Upon identification of a malfunction, preselected groups of control rods are fully inserted sequentially until a predetermined power level is approached. Additional control rods are then selectively inserted to quickly bring the reactor to a second given power level to be compatible with safe operation of the system with the malfunctioning component. At the time the thermal power output of the reactor is being reduced, the turbine is operated at a rate consistent with the output of the reactor. In the event of a malfunction, the power generating system is operated in a turbine following reactor mode, with the reactor power rapidly reduced, in a controlled manner, to a safe level compatible with the type of malfunction experienced

  6. Programming for a nuclear reactor instrument simulator

    International Nuclear Information System (INIS)

    Cohn, C.E.

    1989-01-01

    A new computerized control system for a transient test reactor incorporates a simulator for pre-operational testing of control programs. The part of the simulator pertinent to the discussion here consists of two microprocessors. An 8086/8087 reactor simulator calculates simulated reactor power by solving the reactor kinetics equations. An 8086 instrument simulator takes the most recent power value developed by the reactor simulator and simulates the appropriate reading on each of the eleven reactor instruments. Since the system is required to run on a one millisecond cycle, careful programming was required to take care of all eleven instruments in that short time. This note describes the special programming techniques used to attain the needed performance

  7. Design options for a bunsen reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles

    2013-10-01

    This work is being performed for Matt Channon Consulting as part of the Sandia National Laboratories New Mexico Small Business Assistance Program (NMSBA). Matt Channon Consulting has requested Sandia's assistance in the design of a chemical Bunsen reactor for the reaction of SO2, I2 and H2O to produce H2SO4 and HI with a SO2 feed rate to the reactor of 50 kg/hour. Based on this value, an assumed reactor efficiency of 33%, and kinetic data from the literature, a plug flow reactor approximately 1%E2%80%9D diameter and and 12 inches long would be needed to meet the specification of the project. Because the Bunsen reaction is exothermic, heat in the amount of approximately 128,000 kJ/hr would need to be removed using a cooling jacket placed around the tubular reactor. The available literature information on Bunsen reactor design and operation, certain support equipment needed for process operation and a design that meet the specification of Matt Channon Consulting are presented.

  8. Nuclear reactor

    International Nuclear Information System (INIS)

    Hattori, Sadao; Sato, Morihiko.

    1994-01-01

    Liquid metals such as liquid metal sodium are filled in a reactor container as primary coolants. A plurality of reactor core containers are disposed in a row in the circumferential direction along with the inner circumferential wall of the reactor container. One or a plurality of intermediate coolers are disposed at the inside of an annular row of the reactor core containers. A reactor core constituted with fuel rods and control rods (module reactor core) is contained at the inside of each of the reactor core containers. Each of the intermediate coolers comprises a cylindrical intermediate cooling vessels. The intermediate cooling vessel comprises an intermediate heat exchanger for heat exchange of primary coolants and secondary coolants and recycling pumps for compulsorily recycling primary coolants at the inside thereof. Since a plurality of reactor core containers are thus assembled, a great reactor power can be attained. Further, the module reactor core contained in one reactor core vessel may be small sized, to facilitate the control for the reactor core operation. (I.N.)

  9. Statements by the National Executive Committee to the 85. annual conference of the Labour Party to be held in the Empress Ballroom, Blackpool, from 29 September to 3 October, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    All the statements by the National Executive Committee to the Annual Labour Party Conference held in Blackpool in 1986 are included. As well as statements on Social Ownership, the Environment, Social Security and Taxation, Defence conversion and costs, Shipbuilding, the rights of people at work and policies on low pay, there is a 5 page section on Civil Nuclear Power. This restates the resolution passed at the 1985 conference and identifies problems with nuclear power (the risk of an accident at a nuclear power station and the dangers of disposing of nuclear waste). Labour's plan is to move away from reliance on nuclear energy to a strategy based on coal, conservation and alternative energy resources. The policy for the different reactor types is presented including opposition to a PWR reactor at Sizewell-B. The Party's policies on nuclear waste and reprocessing, and health and radiation are stated, and Labour's alternative summarized. (UK)

  10. Nuclear reactor with a suspended vessel

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1977-01-01

    This invention relates to a nuclear reactor with a suspended vessel and applies in particular when this is a fast reactor, the core or active part of the reactor being inside the vessel and immersed under a suitable volume of flowing liquid metal to cool it by extracting the calories released by the nuclear fission in the fuel assemblies forming this core [fr

  11. Neutron behavior, reactor control, and reactor heat transfer. Volume four

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume four covers neutron behavior (neutron absorption, how big are nuclei, neutron slowing down, neutron losses, the self-sustaining reactor), reactor control (what is controlled in a reactor, controlling neutron population, is it easy to control a reactor, range of reactor control, what happens when the fuel burns up, controlling a PWR, controlling a BWR, inherent safety of reactors), and reactor heat transfer (heat generation in a nuclear reactor, how is heat removed from a reactor core, heat transfer rate, heat transfer properties of the reactor coolant)

  12. A Novel Dual-Stage Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    2015-01-01

    The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation....... The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. Ti...

  13. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  14. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  15. Reactor science and technology: operation and control of reactors

    International Nuclear Information System (INIS)

    Qiu Junlong

    1994-01-01

    This article is a collection of short reports on reactor operation and research in China in 1991. The operation of and research activities linked with the Heavy Water Research Reactor, Swimming Pool Reactor and Miniature Neutron Source Reactor are briefly surveyed. A number of papers then follow on the developing strategies in Chinese fast breeder reactor technology including the conceptual design of an experimental fast reactor (FFR), theoretical studies of FFR thermo-hydraulics and a design for an immersed sodium flowmeter. Reactor physics studies cover a range of topics including several related to work on zero power reactors. The section on reactor safety analysis is concerned largely with the assessment of established, and the presentation of new, computer codes for use in PWR safety calculations. Experimental and theoretical studies of fuels and reactor materials for FBRs, PWRs, BWRs and fusion reactors are described. A final miscellaneous section covers Mo-Tc isotope production in the swimming pool reactor, convective heat transfer in tubes and diffusion of tritium through plastic/aluminium composite films and Li 2 SiO 3 . (UK)

  16. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  17. SBWR: A simplified boiling water reactor

    International Nuclear Information System (INIS)

    Duncan, J.D.; Sawyer, C.D.; Lagache, M.P.

    1987-01-01

    An advanced light water reactor concept is being developed for possible application in the 1990's. The concept, known as SBWR is a boiling water reactor which uses natural circulation to provide flow to the reactor core. In an emergency, a gravity driven core cooling system is used. The reactor is depressurized and water from an elevated suppression pool flows by gravity to the reactor vessel to keep the reactor core covered. The concept also features a passive containment cooling system in which water flows by gravity to cool the suppression pool wall. No operator action is required for a period of at least three days. Use of these and other passive systems allows the elimination of emergency diesel generators, core cooling pumps and heat removal pumps which is expected to simplify the plant design, reduce costs and simplify licensing. The concept is being developed by General Electric, Bechtel and the Massachusetts Institute of Technology supported by the Electric Power Research Institute and the United States Department of Energy in the United States. In Japan, The Japan Atomic Power Company has a great interest in this concept

  18. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  19. Reactor core and passive safety systems descriptions of a next generation pressure tube reactor - mechanical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Rhodes, D.; Hamilton, H.; Pencer, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada has been developing a channel-type supercritical water-cooled nuclear reactor concept, often called the Canadian SCWR. The objective of this reactor concept is to meet the technology goals of the Generation IV International Forum (GIF) for the next generation nuclear reactor development, which include enhanced safety features (inherent safe operation and deploying passive safety features), improved resource utilization, sustainable fuel cycle, and greater proliferation resistance than Generation III nuclear reactors. The Canadian SCWR core concept consists of a high-pressure inlet plenum, a separate low-pressure heavy water moderator contained in a calandria vessel, and 336 pressure tubes surrounded by the moderator. The reactor uses supercritical water as a coolant, and a direct steam power cycle to generate electricity. The reactor concept incorporates advanced safety features such as passive core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce core damage frequency relative to existing nuclear reactors. This paper presents a description of the design concepts for the Canadian SCWR core, reactor building layout and the plant layout. Passive safety concepts are also described that address containment and core cooling following a loss-of coolant accident, as well as long term reactor heat removal at station blackout conditions. (author)

  20. The CAREM reactor and present currents in reactor design

    International Nuclear Information System (INIS)

    Ordonez, J.P.

    1990-01-01

    INVAP has been working on the CAREM project since 1983. It concerns a very low power reactor for electrical energy generation. The design of the reactor and the basic criteria used were described in 1984. Since then, a series of designs have been presented for reactors which are similar to CAREM regarding the solutions presented to reduce the chance of major nuclear accidents. These designs have been grouped under different names: Advanced Reactors, Second Generation Reactors, Inherently Safe Reactors, or even, Revolutionary Reactors. Every reactor fabrication firm has, at least, one project which can be placed in this category. Presently, there are two main currents of Reactor Design; Evolutionary and Revolutionary. The present work discusses characteristics of these two types of reactors, some revolutionary designs and common criteria to both types. After, these criteria are compared with CAREM reactor design. (Author) [es

  1. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  2. Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach

    International Nuclear Information System (INIS)

    Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.

    1980-01-01

    A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%

  3. Digital computer operation of a nuclear reactor

    International Nuclear Information System (INIS)

    Colley, R.W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state

  4. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  5. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  6. Reactor containment and reactor safety in the United States

    International Nuclear Information System (INIS)

    Kouts, H.

    1986-01-01

    The reactor safety systems of two reactors are studied aiming at the reactor containment integrity. The first is a BWR type reactor and is called Peachbottom 2, and the second is a PWR type reactor, and is called surry. (E.G.) [pt

  7. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  8. Lateral restraint assembly in a nuclear reactor

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, W.

    1977-01-01

    A lateral restraint assembly is described for a reactor of, for example, the high temperature gas-cooled type which commonly includes a reactor core of relatively complex construction supported within a shell or vessel providing a shielded cavity for containing the reactor core. (U.K.)

  9. Method for filling a reactor with a catalyst

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method for filling a reactor with a catalyst for the carbonylation of carbonylated compounds in the gas phase. According to said method, a SILP catalyst is covered with a filling agent which is liquid under normal conditions and is volatile under carbonylation reaction...... conditions, and a thus-treated catalyst is introduced into the reactor and the reactor is sealed....

  10. Reactor

    International Nuclear Information System (INIS)

    Toyama, Masahiro; Kasai, Shigeo.

    1978-01-01

    Purpose: To provide a lmfbr type reactor wherein effusion of coolants through a loop contact portion is reduced even when fuel assemblies float up, and misloading of reactor core constituting elements is prevented thereby improving the reactor safety. Constitution: The reactor core constituents are secured in the reactor by utilizing the differential pressure between the high-pressure cooling chamber and low-pressure cooling chamber. A resistance port is formed at the upper part of a connecting pipe, and which is connect the low-pressure cooling chamber and the lower surface of the reactor core constituent. This resistance part is formed such that the internal sectional area of the connecting pipe is made larger stepwise toward the upper part, and the cylinder is formed larger so that it profiles the inner surface of the connecting pipe. (Aizawa, K.)

  11. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico

    International Nuclear Information System (INIS)

    Reyes R, R.; Martin del Campo M, C.

    2006-01-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of each reactor in each one of the

  12. Nuclear reactor types

    International Nuclear Information System (INIS)

    Jones, P.M.S.

    1987-01-01

    The characteristics of different reactor types designed to exploit controlled fission reactions are explained. Reactors vary from low power research devices to high power devices especially designed to produce heat, either for direct use or to produce steam to drive turbines to generate electricity or propel ships. A general outline of basic reactors (thermal and fast) is given and then the different designs considered. The first are gas cooled, including the Magnox reactors (a list of UK Magnox stations and reactor performance is given), advanced gas cooled reactors (a list of UK AGRs is given) and the high temperature reactor. Light water cooled reactors (pressurized water [PWR] and boiling water [BWR] reactors) are considered next. Heavy water reactors are explained and listed. The pressurized heavy water reactors (including CANDU type reactors), boiling light water, steam generating heavy water reactors and gas cooled heavy water reactors all come into this category. Fast reactors (liquid metal fast breeder reactors and gas cooled fast reactors) and then water-cooled graphite-moderated reactors (RBMK) (the type at Chernobyl-4) are discussed. (U.K.)

  13. ISIS Training Reactor: A Reactor Dedicated to Education and Training for Students and Professionals

    International Nuclear Information System (INIS)

    Foulon, F.

    2014-01-01

    Conclusion: • INSTN strategy: complete theoretical courses by practical courses on the ISIS research reactor. • Training courses integrated both in Academic degree programs and continuing education. • 27 hours of training courses have been developed focusing on the practical and safety aspects of reactor operation. • The Education and Training activity became the main activity of ISIS reactor: 400 trainees/year; 360 hours/year; 40% in English. • Remote access to the Training courses: Internet Reactor Laboratory under development to be started from 2014 to broadcast training courses from ISIS reactor to guest institutions

  14. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  15. Improved nuclear reactor construction with bottom supported reactor vessel

    International Nuclear Information System (INIS)

    Sharbaugh, J.E.

    1987-01-01

    An improved liquid metal nuclear reactor construction has a reactor core and a generally cylindrical reactor vessel for holding liquid metal coolant and housing the core within the pool. A generally cylindrical concrete containment structure surrounds the reactor vessel and a central support pedestal is anchored to the containment structure base mat and supports the bottom wall of the reactor vessel and the reactor core. The periphery of the reactor vessel bore is supported by an annular structure which allows thermal expansion but not seismic motion of the vessel, and a bed of thermally insulating material uniformly supports the vessel base whilst allowing expansion thereof. A guard ring prevents lateral seismic motion of the upper end of the reactor vessel. The periphery of the core is supported by an annular structure supported by the vessel base and keyed to the vessel wall so as to be able to expand but not undergo seismic motion. A deck is supported on the containment structure above the reactor vessel open top by annular bellows, the deck carrying the reactor control rods such that heating of the reactor vessel results in upward expansion against the control rods. (author)

  16. Control of reactor coolant flow path during reactor decay heat removal

    International Nuclear Information System (INIS)

    Hunsbedt, A.N.

    1988-01-01

    This patent describes a sodium cooled reactor of the type having a reactor hot pool, a slightly lower pressure reactor cold pool and a reactor vessel liner defining a reactor vessel liner flow gap separating the hot pool and the cold pool along the reactor vessel sidewalls and wherein the normal sodium circuit in the reactor includes main sodium reactor coolant pumps having a suction on the lower pressure sodium cold pool and an outlet to a reactor core; the reactor core for heating the sodium and discharging the sodium to the reactor hot pool; a heat exchanger for receiving sodium from the hot pool, and removing heat from the sodium and discharging the sodium to the lower pressure cold pool; the improvement across the reactor vessel liner comprising: a jet pump having a venturi installed across the reactor vessel liner, the jet pump having a lower inlet from the reactor vessel cold pool across the reactor vessel liner and an upper outlet to the reactor vessel hot pool

  17. Reactor core for LMFBR type reactors

    International Nuclear Information System (INIS)

    Masumi, Ryoji; Azekura, Kazuo; Kurihara, Kunitoshi; Bando, Masaru; Watari, Yoshio.

    1987-01-01

    Purpose: To reduce the power distribution fluctuations and obtain flat and stable power distribution throughout the operation period in an LMFBR type reactor. Constitution: In the inner reactor core region and the outer reactor core region surrounding the same, the thickness of the inner region is made smaller than the axial height of the reactor core region and the radial width thereof is made smaller than that of the reactor core region and the volume thereof is made to 30 - 50 % for the reactor core region. Further, the amount of the fuel material per unit volume in the inner region is made to 70 - 90 % of that in the outer region. The difference in the neutron infinite multiplication factor between the inner region and the outer region is substantially constant irrespective of the burnup degree and the power distribution fluctuation can be reduced to about 2/3, by which the effect of thermal striping to the reactor core upper mechanisms can be moderated. Further, the maximum linear power during operation can be reduced by 3 %, by which the thermal margin in the reactor core is increased and the reactor core fuels can be saved by 3 %. (Kamimura, M.)

  18. Performance of a multipurpose research electrochemical reactor

    International Nuclear Information System (INIS)

    Henquin, E.R.; Bisang, J.M.

    2011-01-01

    Highlights: → For this reactor configuration the current distribution is uniform. → For this reactor configuration with bipolar connection the leakage current is small. → The mass-transfer conditions are closely uniform along the electrode. → The fluidodynamic behaviour can be represented by the dispersion model. → This reactor represents a suitable device for laboratory trials. - Abstract: This paper reports on a multipurpose research electrochemical reactor with an innovative design feature, which is based on a filter press arrangement with inclined segmented electrodes and under a modular assembly. Under bipolar connection, the fraction of leakage current is lower than 4%, depending on the bipolar Wagner number, and the current distribution is closely uniform. When a turbulence promoter is used, the local mass-transfer coefficient shows a variation of ±10% with respect to its mean value. The fluidodynamics of the reactor responds to the dispersion model with a Peclet number higher than 10. It is concluded that this reactor is convenient for laboratory research.

  19. Research and development of a super fast reactor (12). Considerations for the reactor characteristics

    International Nuclear Information System (INIS)

    Goto, Shoji; Ishiwatari, Yuki; Oka, Yoshiaki

    2008-01-01

    A research program aimed at developing the Super Fast Reactor (Super FR) has been entrusted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan since December 2005. It includes the following three projects. (A) Development of the Super Fast Reactor concept. (B)Thermal-hydraulic experiments. (C) Materials development. Tokyo Electric Power Company (TEPCO) has joined this program and works on part (A) together with the University of Tokyo. From the utility's viewpoint, it is important to consider the most desirable characteristics for Super FR to have. Four issues were identified in project (A), (1) Fuel design, (2) Reactor core design, (3) Safety, and (4) Plant characteristics of Super FR. This report describes the desired characteristics of Super FR with respect to item (1) fuel design and item (2) Reactor core design, as compared with a boiling water reactor (BWR) plant. The other two issues will be discussed in this project, and will also be considered in the design process of Super FR. (author)

  20. Plant with nuclear reactor, in particular a thermal reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The reactor core of the plant has tubular and vertically movable control rods moved by a flow of coolant under pressure. Each control rod surrounds a similarly tubular guide rod, stationary relative to the reactor core, leaving an annular slot-like space therebetween. The inside of each guide rod forms a first pressure chamber supplied with the coolant under pressure. The upper end of each control rod is closed and has a vertical shaft that extends into the inside of the guide rod and forms therewith a second annular slot-like space. At least one first restriction is provided in the first annular slot-like space and at least one second restriction is provided in the second annular slot-like space. A second pressure chamber is formed between both restrictions. The coolant supplied to the guide rod thus returns to the pressure vessel surrounding the reactor core through the second annular slot-like space, the second pressure chamber and the first annular slot-like space. Controlling means are provided, with which pressure thrusts can be generated if necessary in the coolant within the first pressure chamber. (author) 5 refs., 10 figs

  1. Decommissioning of a small reactor (BR3 reactor, Belgium)

    International Nuclear Information System (INIS)

    Dadoumont, J.; Massaut, V.; Klein, M.; Demeulemeester, Y.

    2002-01-01

    Since 1989, SCK-CEN has been dismantling its PWR reactor BR3 (Belgian Reactor No. 3). After gaining a great deal of experience in remote dismantling of highly radioactive components during the actual dismantling of the two sets of internals, the BR3 team completed the cutting of its reactor pressure vessel (RPV). During the feasibility phase of the RPV dismantling, a decision was made to cut it under water in the refuelling pool of the plant, after having removed it from its cavity. The RPV was cut into segments using a milling cutter and a bandsaw machine. These mechanical techniques have shown their ability for this kind of operations. Prior to the segmentation, the thermal insulation situated around the RPV was remotely removed and disposed of. The paper will describe all these operations. The BR3 decommissioning activities also include the dismantling of contaminated loops and equipment. After a careful sorting of the pieces, optimized management routes are selected in order to minimize the final amount of radioactive waste to be disposed of. Some development of different methods of decontamination were carried out: abrasive blasting (or sand blasting), chemical decontamination (Oxidizing-Reducing process using Cerium). The main goal of the decontamination program is to recycle most of the metallic materials either in the nuclear world or in the industrial world by reaching the respective recycling or clearance level. Overall the decommissioning of the BR3 reactor has shown the feasibility of performing such a project in a safe and economical way. Moreover, BR3 has developed methodologies and decontamination processes to economically reduce the amount of radwaste produced. (author)

  2. Seismic attenuation system for a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liszkai, Tamas; Cadell, Seth

    2018-01-30

    A system for attenuating seismic forces includes a reactor pressure vessel containing nuclear fuel and a containment vessel that houses the reactor pressure vessel. Both the reactor pressure vessel and the containment vessel include a bottom head. Additionally, the system includes a base support to contact a support surface on which the containment vessel is positioned in a substantially vertical orientation. An attenuation device is located between the bottom head of the reactor pressure vessel and the bottom head of the containment vessel. Seismic forces that travel from the base support to the reactor pressure vessel via the containment vessel are attenuated by the attenuation device in a direction that is substantially lateral to the vertical orientation of the containment vessel.

  3. Fluidized bed nuclear reactor as a IV generation reactor

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    2002-01-01

    The object of this paper is to analyze the characteristics of the Fluidized Bed Nuclear Reactor (FBNR) concept under the light of the requirements set for the IV generation nuclear reactors. It is seen that FBNR generally meets the goals of providing sustainable energy generation that meets clean air objectives and promotes long-term availability of systems and effective fuel utilization for worldwide energy production; minimize and manage their nuclear waste and notably reduce the long term stewardship burden in the future, thereby improving protection for the public health and the environment; increase the assurance that it is a very unattractive and least desirable route for diversion or theft of weapons-usable materials; excel in safety and reliability; have a very low likelihood and degree of reactor core damage; eliminate the need for offsite emergency response; have a clear life-cycle cost advantage over other energy sources; have a level of financial risk comparable to other energy projects. The other advantages of the proposed design are being modular, low environmental impact, exclusion of severe accidents, short construction period, flexible adaptation to demand, excellent load following characteristics, and competitive economics. (author)

  4. Fusion reactors as a future energy source

    International Nuclear Information System (INIS)

    Seifritz, W.

    A detailed update of fusion research concepts is given. Discussions are given for the following areas: (1) the magnetic confinement principle, (2) UWMAK I: conceptual design for a fusion reactor, (3) the inertial confinement principle, (4) the laser fusion power plant, (5) electron-induced fusion, (6) the long-term development potential of fusion reactors, (7) the symbiosis between fusion and fission reactors, (8) fuel supply for fusion reactors, (9) safety and environmental impact, and (10) accidents, and (11) waste removal and storage

  5. Reactor

    International Nuclear Information System (INIS)

    Ikeda, Masaomi; Kashimura, Kazuo; Inoue, Kazuyuki; Nishioka, Kazuya.

    1979-01-01

    Purpose: To facilitate the construction of a reactor containment building, whereby the inspections of the outer wall of a reactor container after the completion of the construction of the reactor building can be easily carried out. Constitution: In a reactor accommodated in a container encircled by a building wall, a space is provided between the container and the building wall encircling the container, and a metal wall is provided in the space so that it is fitted in the building wall in an attachable or detatchable manner. (Aizawa, K.)

  6. Reactor physics aspects of CANDU reactors

    International Nuclear Information System (INIS)

    Critoph, E.

    1980-01-01

    These four lectures are being given at the Winter Course on Nuclear Physics at Trieste during 1978 February. They constitute part of the third week's lectures in Part II: Reactor Theory and Power Reactors. A physical description of CANDU reactors is given, followed by an overview of CANDU characteristics and some of the design options. Basic lattice physics is discussed in terms of zero energy lattice experiments, irradiation effects and analytical methods. Start-up and commissioning experiments in CANDU reactors are reviewed, and some of the more interesting aspects of operation discussed - fuel management, flux mapping and control of the power distribution. Finally, some of the characteristics of advanced fuel cycles that have been proposed for CANDU reactors are summarized. (author)

  7. A study of reactor neutrino monitoring at the experimental fast reactor JOYO

    International Nuclear Information System (INIS)

    Furuta, H.; Fukuda, Y.; Hara, T.; Haruna, T.; Ishihara, N.; Ishitsuka, M.; Ito, C.; Katsumata, M.; Kawasaki, T.; Konno, T.; Kuze, M.; Maeda, J.; Matsubara, T.; Miyata, H.; Nagasaka, Y.; Nitta, K.; Sakamoto, Y.; Suekane, F.; Sumiyoshi, T.; Tabata, H.

    2012-01-01

    We carried out a study of neutrino detection at the experimental fast reactor JOYO using a 0.76 tons gadolinium loaded liquid scintillator detector. The detector was set up on the ground level at 24.3 m from the JOYO reactor core of 140 MW thermal power. The measured neutrino event rate from reactor on-off comparison was 1.11±1.24(stat.)±0.46(syst.) events/day. Although the statistical significance of the measurement was not enough, backgrounds in such a compact detector at the ground level were studied in detail and MC simulations were found to describe the data well. A study for improvement of the detector for future such experiments is also shown.

  8. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  9. Permanent seal ring for a nuclear reactor cavity

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Marshall, J.R.

    1988-01-01

    A nuclear reactor containment arrangement is described including: a. a reactor vessel which thermally expands and contracts during cyclic operation of the reactor and which has a peripheral wall; b. a containment wall spaced apart from and surrounding the peripheral wall of the reactor vessel and defining an annular thermal expansion gap therebetween for accommodating thermal expansion; and c. an annular ring seal which sealingly engages and is affixed to and extends between the peripheral wall of the reactor vessel and the containment wall

  10. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  11. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  12. Preliminary Design Concept for a Reactor-internal CRDM

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Jong Wook; Kim, Tae Wan; Choi, Suhn; Kim, Keung Koo

    2013-01-01

    A rod ejection accident may cause severer result in SMRs because SMRs have relatively high control rod reactivity worth compared with commercial nuclear reactors. Because this accident would be perfectly excluded by adopting a reactor-internal CRDM (Control Rod Drive Mechanism), many SMRs accept this concept. The first concept was provided by JAERI with the MRX reactor which uses an electric motor with a ball screw driveline. Babcock and Wilcox introduced the concept in an mPower reactor that adopts an electric motor with a roller screw driveline and hydraulic system, and Westinghouse Electric Co. proposes an internal Control Rod Drive in its SMR with an electric motor with a latch mechanism. In addition, several other applications have been reported thus far. The reactor-internal CRDM concept is now widely adopted in many SMR designs, and this concept may also be applied in an evolutionary reactor development. So the preliminary study is conducted based on the SMART CRDM design. A preliminary design concept for a reactor-internal CRDM was proposed and evaluated through an electromagnetic analysis. It was found that there is an optimum design for the motor housing, and the results may contribute to the realization a reactor-internal CRDM for an evolutionary reactor development. More detailed analysis results will be reported later

  13. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2002-01-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  14. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  15. Reactor Physics

    International Nuclear Information System (INIS)

    Ait Abderrahim, A.

    2001-01-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  16. News on the development of nuclear energy in Great Britain

    International Nuclear Information System (INIS)

    Oppenfeld, M. von

    1991-01-01

    Governmental influence on public utilities and on the government-controlled nuclear industry so far has been much stronger than in the Federal Republic. This influence was cut back considerable when denationalization pursuant to the Electricity Act 1989 took effect, but not for the nuclear industry. Despite governmental declarations to the contrary, the big reactor building program has shrunk to one started reactor being finished. The reasons for turning away from nuclear energy are not so much to be found with the greens, who have little influence because of majority suffrage, but with orientating at short-term maximization of profits as a result of the denationalization process which prevents at present the realization of financing large-scale projects in the field of nuclear energy on a long-term basis. With the Magnox reactors coming to the end of their working life and neither coal-fired power stations nor nuclear power plants being built, with the exception of Sizewell II, this situation will sooner or later lead to an out-of-date power plant pool, and considerations concerning power plant capacities (including nuclear reactors) will become necessary. As regards reprocessing, the abandonment of Wackersdorf has led to the Internal Market being already anticipated by long-term contracts concluded with BNF. (orig./HSCH) [de

  17. Roles of plasma neutron source reactor in development of fusion reactor engineering: Comparison with fission reactor engineering

    International Nuclear Information System (INIS)

    Hirayama, Shoichi; Kawabe, Takaya

    1995-01-01

    The history of development of fusion power reactor has come to a turning point, where the main research target is now shifting from the plasma heating and confinement physics toward the burning plasma physics and reactor engineering. Although the development of fusion reactor system is the first time for human beings, engineers have experience of development of fission power reactor. The common feature between them is that both are plants used for the generation of nuclear reactions for the production of energy, nucleon, and radiation on an industrial scale. By studying the history of the development of the fission reactor, one can find the existence of experimental neutron reactors including irradiation facilities for fission reactor materials. These research neutron reactors played very important roles in the development of fission power reactors. When one considers the strategy of development of fusion power reactors from the points of fusion reactor engineering, one finds that the fusion neutron source corresponds to the neutron reactor in fission reactor development. In this paper, the authors discuss the roles of the plasma-based neutron source reactors in the development of fusion reactor engineering, by comparing it with the neutron reactors in the history of fission power development, and make proposals for the strategy of the fusion reactor development. 21 refs., 6 figs

  18. FBR type reactor

    International Nuclear Information System (INIS)

    Kimura, Kimitaka; Fukuie, Ken; Iijima, Tooru; Shimpo, Masakazu.

    1994-01-01

    In an FBR type reactor for exchanging fuels by pulling up reactor core upper mechanisms, a connection mechanism is disposed for connecting the top of the reactor core and the lower end of the reactor core upper mechanisms. In addition, a cylindrical body is disposed surrounding the reactor core upper mechanisms, and a support member is disposed to the cylindrical body for supporting an intermediate portion of the reactor core upper mechanisms. Then, the lower end of the reactor core upper mechanisms is connected to the top of the reactor core. Same displacements are caused to both of them upon occurrence of earthquakes and, as a result, it is possible to eliminate mutual horizontal displacement between a control rod guide hole of the reactor core upper mechanisms and a control rod insertion hole of the reactor core. In addition, since the intermediate portion of the reactor core upper mechanisms is supported by the support member disposed to the cylindrical body surrounding the reactor core upper mechanisms, deformation caused to the lower end of the reactor core upper mechanisms is reduced, so that the mutual horizontal displacement with respect to the control rod insertion hole of the reactor core can be reduced. As a result, performance of control rod insertion upon occurrence of the earthquakes is improved, so that reactor shutdown is conducted more reliably to improve reactor safety. (N.H.)

  19. History of fast reactor development in U.S.A.-I

    International Nuclear Information System (INIS)

    Ninokata, Hisashi; Sasao, Nobuyki

    2007-01-01

    History and present state of fast reactor was reviewed in series. As a history of fast reactor development in U.S.A. - I, this third lecture presented the dawn of the fast reactor development in the USA. The first fast reactor was the Clementine reactor with plutonium fuels and mercury coolant. The LAMPRE-1 reactor was the first sodium cooled and molten plutonium reactor. Experimental breeder reactor (EBR-1) was the first reactor to produce electricity and four kinds of fuels were loaded. Zero-power reactors were constructed to conduct reactor physics experiments on fast reactors. Today there are renewed interests in fast reactors due to their ability to fission actinides and reduce radioactive wastes. (T. Tanaka)

  20. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  1. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  2. A small modular fast reactor as starting point for industrial deployment of fast reactors

    International Nuclear Information System (INIS)

    Chang, Yoon I.; Lo Pinto, Pierre; Konomura, Mamoru

    2006-01-01

    The current commercial reactors based on light water technology provide 17% of the electricity worldwide owing to their reliability, safety and competitive economics. In the near term, next generation reactors are expected to be evolutionary type, taking benefits of extensive LWR experience feedbacks and further improved economics and safety provisions. For the long term, however, sustainable energy production will be required due to continuous increase of the human activities, environmental concerns such as greenhouse effect and the need of alternatives to fossil fuels as long term energy resources. Therefore, future generation commercial reactors should meet some criteria of sustainability that the current generation cannot fully satisfy. In addition to the current objectives of economics and safety, waste management, resource extension and public acceptance become other major objectives among the sustainability criteria. From this perspective, two questions can be raised: what reactor type can meet the sustainability criteria, and how to proceed to an effective deployment in harmony with the high reliability and availability of the current nuclear reactor fleet. There seems to be an international consensus that the fast spectrum reactor, notably the sodium-cooled system is most promising to meet all of the long term sustainability criteria. As for the latter, we propose a small modular fast reactor project could become a base to prepare the industrial infrastructure. The paper has the following contents: - Introduction; - SMFR project; - Core design; - Supercritical CO 2 Brayton cycle; - Near-term reference plant; - Advanced designs; - Conclusions. To summarize, the sodium-cooled fast reactor is currently recognized as the technology of choice for the long term nuclear energy expansion, but some research and development are required to optimize and validate advanced design solutions. A small modular fast reactor can satisfy some existing near-term market niche

  3. Denitrification performance of Pseudomonas denitrificans in a fluidized-bed biofilm reactor and in a stirred tank reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cattaneo, C.; Nicolella, C.; Rovatti, M. [Department of Chemical and Process Engineering, Faculty of Engineering, University of Genoa, Via Opera Pia 15, 16145 Genoa (Italy)

    2003-04-09

    Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems - a fluidized-bed biofilm reactor (FBBR) and a stirred tank reactor (STR) - using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg {sub N} . m{sup -3} . d{sup -1}) was higher than in the STR, due to higher biomass concentration (10 kg {sub BM} . m{sup -3} vs 1.2 kg {sub BM} m{sup -3}). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  4. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected. (author)

  5. A wall-crawling robot for reactor vessel inspection in advanced reactors

    International Nuclear Information System (INIS)

    Spelt, P.F.; Crane, C.; Feng, L.; Abidi, M.; Tosunoglu, S.

    1994-01-01

    A consortium of four universities and the Center for Engineering Systems Advanced Research of the Oak Ridge National Laboratory has designed a prototype wall-crawling robot to perform weld inspection in advanced nuclear reactors. Design efforts for the reactor vessel inspection robot (RVIR) concentrated on the Advanced Liquid Metal Reactor because it presents the most demanding environment in which such a robot must operate. The RVIR consists of a chassis containing two sets of suction cups that can alternately grasp the side of the vessel being inspected, providing both locomotion and steering functions. Sensors include three CCD cameras and a weld inspection device based on new shear-wave technology. The restrictions of the inspection environment presented major challenges to the team. These challenges were met in the prototype, which has been tested in a non-radiation, room-temperature mockup of the robot work environment and shown to perform as expected

  6. Methodology for the integral comparison of nuclear reactors: selecting a reactor for Mexico; Metodologia para la comparacion integral de reactores nucleares: seleccion de un reactor para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Reyes R, R.; Martin del Campo M, C. [UNAM, Facultad de Ingenieria, Laboratorio de Analisis de Ingenieria de Reactores Nucleares, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: ricarera@yahoo.com.mx

    2006-07-01

    In this work it was built a methodology to compare nuclear reactors of third generation that can be contemplated for future electric planning in Mexico. This methodology understands the selection of the reactors to evaluate eliminating the reactors that still are not sufficiently mature at this time of the study. A general description of each reactor together with their main ones characteristic is made. It was carried out a study for to select the group of parameters that can serve as evaluation indicators, which are the characteristics of the reactors with specific values for each considered technology, and it was elaborated an evaluation matrix indicators including the reactors in the columns and those indicators in the lines. Since that none reactor is the best in all the indicators were necessary to use a methodology for multi criteria taking decisions that we are presented. It was used the 'Fuzzy Logic' technique, the which is based in those denominated diffuse groups and in a system of diffuse inference based on heuristic rules in the way 'If Then consequence> ', where the linguistic values of the condition and of the consequence is defined by diffuse groups, it is as well as the rules always they transform a diffuse group into another. Later on they combine all the diffuse outputs to create a single output and an inverse transformation is made that it transfers the output from the diffuse domain to the real one. They were carried out two studies one with the entirety of the indicators and another in which the indicators were classified in three approaches: the first one refers to indicators related with the planning of the plants inside the context of the general electric sector, the second approach includes indicators related with the characteristics of the fuel and the third it considers indicators related with the acting of the plant in safety and environmental impact. This second study allowed us to know the qualities of

  7. Assessment of the Capability of Molten Salt Reactors as a Next Generation High Temperature Reactors

    International Nuclear Information System (INIS)

    Elsheikh, B.M.

    2017-01-01

    Molten Salt Reactor according to Aircraft Reactor Experiment (ARE) and the Molten Salt Reactor Experiment (MSRE) programs, was designed to be the first full-scale, commercial nuclear power plant utilizing molten salt liquid fuels that can be used for producing electricity, and producing fissile fuels (breeding)burning actinides. The high temperature in the primary cycle enables the realization of efficient thermal conversion cycles with net thermal efficiencies reach in some of the designs of nuclear reactors greater than 45%. Molten salts and liquid salt because of their low vapor pressure are excellent candidates for meeting most of the requirements of these high temperature reactors. There is renewed interest in MSRs because of changing goals and new technologies in the use of high-temperature reactors. Molten Salt Reactors for high temperature create substantial technical challenges to have high effectiveness intermediate heat transfer loop components. This paper will discuss and investigate the capability and compatibility of molten salt reactors, toward next generation high temperature energy system and its technical challenges

  8. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  9. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2002-04-01

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised.

  10. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    Kato, Yukitaka; Yamada, Mitsuteru; Kanie, Toshihiro; Yoshizawa, Yoshio

    2001-01-01

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg -1 . The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO 2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  11. Reactor Physics Training

    International Nuclear Information System (INIS)

    Baeten, P.

    2007-01-01

    University courses in nuclear reactor physics at the universities consist of a theoretical description of the physics and technology of nuclear reactors. In order to demonstrate the basic concepts in reactor physics, training exercises in nuclear reactor installations are also desirable. Since the number of reactor facilities is however strongly decreasing in Europe, it becomes difficult to offer to students a means for demonstrating the basic concepts in reactor physics by performing training exercises in nuclear installations. Universities do not generally possess the capabilities for performing training exercises. Therefore, SCK-CEN offers universities the possibility to perform (on a commercial basis) training exercises at its infrastructure consisting of two research reactors (BR1 and VENUS). Besides the organisation of training exercises in the framework of university courses, SCK-CEN also organizes theoretical courses in reactor physics for the education and training of nuclear reactor operators. It is indeed a very important subject to guarantee the safe operation of present and future nuclear reactors. In this framework, an understanding of the fundamental principles of nuclear reactor physics is also necessary for reactor operators. Therefore, the organisation of a basic Nuclear reactor physics course at the level of reactor operators in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The objectives this activity are: (1) to provide training and education activities in reactor physics for university students and (2) to organise courses in nuclear reactor physics for reactor operators

  12. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  13. Nuclear reactor, reactor core thereof, and device for constituting the reactor

    International Nuclear Information System (INIS)

    Takiyama, Masashi.

    1994-01-01

    A reactor core is constituted by charging coolants (light water) in a reactor pressure vessel and distributing fuel assemblies, reflecting material sealing pipes, moderator (heavy water and helium gas) sealing pipes, and gas sealing pipes therein. A fuel guide tube is surrounded by a cap and the gap therebetween is made hollow and filled with coolant steams. The cap is supported by a baffle plate. The moderator sealing pipe is disposed in a flow channel of coolants in adjacent with the cap. The position of the moderator sealing tube in the reactor core is controlled by water stream from a hydraulic pump with a guide tube extending below the baffle plate being as a guide. Then, the position of the moderator sealing tube is varied to conduct power control, burnup degree compensation, and reactor shut down. With such procedures, moderator cooling facility is no more necessary to simplify the structure. Further, heat generated from the moderator is transferred to the coolants thereby improving heat efficiency of the reactor. (I.N.)

  14. Core configuration of a gas-cooled reactor as a tritium production device for fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, H., E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, H.; Nakao, Y. [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Shimakawa, S.; Goto, M.; Nakagawa, S. [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan); Nishikawa, M. [Malaysia-Japan International Institute of Technology, UTM, Kuala Lumpur 54100 (Malaysia)

    2014-05-01

    The performance of a high-temperature gas-cooled reactor as a tritium production device is examined, assuming the compound LiAlO{sub 2} as the tritium-producing material. A gas turbine high-temperature reactor of 300 MWe nominal capacity (GTHTR300) is assumed as the calculation target, and using the continuous-energy Monte Carlo transport code MVP-BURN, burn-up simulations are carried out. To load sufficient Li into the core, LiAlO{sub 2} is loaded into the removable reflectors that surround the ring-shaped fuel blocks in addition to the burnable poison insertion holes. It is shown that module high-temperature gas-cooled reactors with a total thermal output power of 3 GW can produce almost 8 kg of tritium in a year.

  15. Method of fueling for a nuclear reactor

    International Nuclear Information System (INIS)

    Igarashi, Takao.

    1983-01-01

    Purpose: To enable the monitoring of reactor power with sufficient accuracy, upon starting even without existence of neutron source in case of a low average burnup degree in the reactor core. Constitution: Each of fuel assemblies is charged such that neutron source region monitors for the start-up system in a reactor core neutron instrumentation system having nuclear fuel assemblies and a neutron instrumentation system are surrounded with 4 or 16 fuel assemblies of a low burnup degree. Then, the average burnup degree of the fuel assemblies surrounding the neutron source region monitors are increased than the reactor core burnup degree, whereby neutrons released from the peripheral fuels are increased, sufficient number of neutron counts can be obtained even with no neutron sources upon start-up and the reactor power can be monitored at a sufficient accuracy. (Sekiya, K.)

  16. Dynamic simulation platform to verify the performance of the reactor regulating system for a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    Digital instrumentation and controls system technique is being introduced in new constructed research reactor or life extension of older research reactor. Digital systems are easy to change and optimize but the validated process for them is required. Also, to reduce project risk or cost, we have to make it sure that configuration and control functions is right before the commissioning phase on research reactor. For this purpose, simulators have been widely used in developing control systems in automotive and aerospace industries. In these literatures, however, very few of these can be found regarding test on the control system of research reactor with simulator. Therefore, this paper proposes a simulation platform to verify the performance of RRS (Reactor Regulating System) for research reactor. This simulation platform consists of the reactor simulation model and the interface module. This simulation platform is applied to I and C upgrade project of TRIGA reactor, and many problems of RRS configuration were found and solved. And it proved that the dynamic performance testing based on simulator enables significant time saving and improves economics and quality for RRS in the system test phase. (authors)

  17. ADVANCED CONTROL FOR A ETHYLENE REACTOR

    Directory of Open Access Journals (Sweden)

    Dumitru POPESCU

    2017-06-01

    Full Text Available The main objective of this work is the design and implementation of control solutions for petrochemical processes, namely the control and optimization of a pyrolysis reactor, the key-installation in the petrochemical industry. We present the technological characteristics of this petrochemical process and some aspects about the proposed control system solution for the ethylene plant. Finally, an optimal operating point for the reactor is found, considering that the process has a nonlinear multi-variable structure. The results have been implemented on an assembly of pyrolysis reactors on a petrochemical platform from Romania.

  18. RB Research nuclear reactor RB reactor, Annual report for 2000

    International Nuclear Information System (INIS)

    Milosevic, M.

    2000-12-01

    Report on RB reactor operation during 2000 contains 3 parts. Part one contains a brief description of reactor operation and reactor components, relevant dosimetry data and radiation protection issues, personnel and financial data. Part two is devoted to maintenance of the reactor components, namely, fuel, heavy water, reactor vessel, heavy water circulation system, absorption rods and heavy water level-meters, maintenance of electronic, mechanical, electrical and auxiliary equipment. Part three contains data concerned with reactor operation and utilization with a comprehensive list of publications resulting from experiments done at the RB reactor. It contains data about reactor operation during previous 14 years, i.e. from 1986 - 2000

  19. Production of energy in a high temperature reactor

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The cooling gas having left the reactor core is fed to a generator for direct production of current from the kinetic energy. Afterwards the gas is fed to a heat exchanger for cooling, then compressed and refed to the reactor core. The method further comprises that one part of the energy of the fission material is directly converted to electric energy in the reactor core, whereas the other part of the energy of the fission material is impressed upon the cooling gas. According to the invention the cooling gas when entering the reactor is first fed to that part of the reactor core which serves as a thermoionic or thermoelectric transducer. Afterwards the cooling gas is fed to the remaining part of the reactor gas. (P.K.)

  20. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  1. Discussion of the use of the Dragon reactor as a facility for integral reactor physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gutmann, H

    1972-06-05

    The purpose and use of the Dragon Reactor Experiment (DRE) has changed considerably during the years of its operation. The original purpose was to show that the principle of a High Temperature Reactor is sound and demonstrate its operation. After this achievement, the purpose of the Dragon reactor changed to the use as a fuel testing facility. During recent years, a new use of the DRE has been added to its use as a fuel testing facility, namely Fuel Element Design Testing. The current report covers reactor physics experiments aspects.

  2. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  3. SOLASE: a conceptual laser fusion reactor design

    International Nuclear Information System (INIS)

    Conn, R.W.; Abdel-Khalik, S.I.; Moses, G.A.

    1977-12-01

    The SOLASE conceptual laser fusion reactor has been designed to elucidate the technological problems posed by inertial confinement fusion reactors. This report contains a detailed description of all aspects of the study including the physics of pellet implosion and burn, optics and target illumination, last mirror design, laser system analysis, cavity design, pellet fabrication and delivery, vacuum system requirements, blanket design, thermal hydraulics, tritium analysis, neutronics calculations, radiation effects, stress analysis, shield design, reactor and plant building layout, maintenance procedures, and power cycle design. The reactor is designed as a 1000 MW/sub e/ unit for central station electric power generation

  4. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  5. Reactor core for FBR type reactor

    International Nuclear Information System (INIS)

    Fujita, Tomoko; Watanabe, Hisao; Kasai, Shigeo; Yokoyama, Tsugio; Matsumoto, Hiroshi.

    1996-01-01

    In a gas-sealed assembly for a FBR type reactor, two or more kinds of assemblies having different eigen frequency and a structure for suppressing oscillation of liquid surface are disposed in a reactor core. Coolant introduction channels for introducing coolants from inside and outside are disposed in the inside of structural members of an upper shielding member to form a shielding member-cooling structure in the reactor core. A structure for promoting heat conduction between a sealed gas in the assembly and coolants at the inner side or the outside of the assembly is disposed in the reactor core. A material which generates heat by neutron irradiation is disposed in the assembly to heat the sealed gases positively by radiation heat from the heat generation member also upon occurrence of power elevation-type event to cause temperature expansion. Namely, the coolants flown out from or into the gas sealed-assemblies cause differential fluctuation on the liquid surface, and the change of the capacity of a gas region is also different on every gas-sealed assemblies thereby enabling to suppress fluctuation of the reactor power. Pressure loss is increased by a baffle plate or the like to lower the liquid surface of the sodium coolants or decrease the elevating speed thereof thereby suppressing fluctuation of the reactor power. (N.H.)

  6. Control of reactor coolant flow path during reactor decay heat removal

    Science.gov (United States)

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  7. Preliminary design of a Binary Breeder Reactor

    International Nuclear Information System (INIS)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C.

    2014-10-01

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  8. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  9. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  10. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  11. A survey on the development of advanced instrumentation and control system in NPP

    International Nuclear Information System (INIS)

    Ham, Chang Sik; Kwon, Kee Choon; Chung, Chul Hwan

    1993-12-01

    Many developed countries are improving or operating the advanced I and C systems of NPPs. They are: 1) N4 of EDF in France, 2) AP 600 of Westinghouse in USA, 3) NUPLEX-80+ of ABB-CE in USA, 4) CANDU in Canada, 5) Ohi 3 and 4, APWR and ABWR in Japan, 6) Belt-D in Germany, 7) Sizewell B in Britain, 8) Halden Reactor Projector in Norway, 9) I and C systems in Russia and Eastern Europe. This report describes the development trend, background, system architecture, characteristics with the new safety concerns, licensing problems, future plan, and retrofit experiences of these advanced nuclear I and C systems. The biggest difference between the existing systems and the advanced systems is the application of software rather than hardware for the functional implementation. All of the improved I and C systems accepted the standard modules and off-the shelf devices. Their characteristics are focused on EPRI URD Chapter 10. (author)

  12. A survey on the development of advanced instrumentation and control system in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Chang Sik; Kwon, Kee Choon; Chung, Chul Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-12-01

    Many developed countries are improving or operating the advanced I and C systems of NPPs. They are: (1) N4 of EDF in France, (2) AP 600 of Westinghouse in USA, (3) NUPLEX-80+ of ABB-CE in USA, (4) CANDU in Canada, (5) Ohi 3 and 4, APWR and ABWR in Japan, (6) Belt-D in Germany, (7) Sizewell B in Britain, (8) Halden Reactor Projector in Norway, (9) I and C systems in Russia and Eastern Europe. This report describes the development trend, background, system architecture, characteristics with the new safety concerns, licensing problems, future plan, and retrofit experiences of these advanced nuclear I and C systems. The biggest difference between the existing systems and the advanced systems is the application of software rather than hardware for the functional implementation. All of the improved I and C systems accepted the standard modules and off-the shelf devices. Their characteristics are focused on EPRI URD Chapter 10. (author).

  13. Choice of thermal reactor systems: a report

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    This is a report by the UK National Nuclear Corporation published by the UK Secretary of State for Energy (Mr. Benn) on 29th July 1977. It is concerned with the advantages and disadvantages of three thermal reactor systems -the AGR (advanced gas cooled reactor), the PWR (pressurised water reactor), and the SGHWR (steam generating heavy water reactor). The object was to help in the future choice of a thermal system for the UK to cover the next 25 years. The matter of export potential is also considered. A programme of four stations of 1100 to 1300 MW each over six years starting from 1979 was assumed. It is emphasised that a decision must be taken now both about reactor systems and actual orders. Headings are as follows: Extract from conclusions reached; Summary of main features of assessment; General conclusions regarding the following - safety, security of the investment, operational characteristics, development and launching requirements, effect on industry, and capital and generation costs. It is stated that in order to make an overall judgement on reactor choice the technical, commercial and social issues involved must be weighed in conjunction with cost differentials.

  14. Demand for and supply of nuclear fuel in Europe

    International Nuclear Information System (INIS)

    Giroux, M.

    1995-01-01

    The overall European nuclear generating capacity appears fairly stable during the study period, at around 170 GWe. This apparent stability is hiding larger local variations. In western Europe the main decrease of nuclear capacity is attributable to Sweden due to the choice made to retain as achieved by 2010 the officially announced country decision to close down all its nuclear reactors. On the contrary France has planned to increase its capacity by another 15%. Nuclear capacity will as well increase in UK with a follow-up to Sizewell scheduled. In eastern Europe, the nuclear capacities should increase by about 10% during the forecast period, once the economic situation is settled in the two main nuclear countries: Russia and Ukraine. (orig.)

  15. A fast spectrum dual path flow cermet reactor

    International Nuclear Information System (INIS)

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  16. The development of quality assurance and quality management in civil engineering

    International Nuclear Information System (INIS)

    Haste, N.D.

    1991-01-01

    The paper describes the development of Quality Assurance and Quality Management during construction at the Sizewell-B power plant from the lead provided in the Client's documentation. The hard lessons learnt from dealing with major suppliers and sub-contractors are explained. The paper concludes by describing the ways in which total Quality Management is now addressed within Laings Civil Engineering following the experiences at Sizewell and elsewhere. (author)

  17. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  18. A worldwide survey of fast breeder reactors

    International Nuclear Information System (INIS)

    Hennies, H.H.

    1986-01-01

    While the completion of the SNR 300 was accompanied by manifold discussions on questions relevant to safety and energy policies in the Federal Republic of Germany and as a result considerable scheduling delays and exceeding of budgets were recorded, breeder reactor technology has been progressing worldwide. The transition from the development phase with small trial reactors to the construction and operation of large performance reactors was completed systematically, in particular in France and the Soviet Union. Even though the uranium supply situation does not make a short-term and comprehensive employment of fast breeder reactors essential, technology has meanwhile been advanced to such a level and extensive operating experience is on hand to enable the construction and safe operation of fast breeder reactors. A positive answer has long been found to the question of the realization of a breeding rate to guarantee the breeding effect. There remain now the endeavors to achieve a reduction in investment and fuel cycle costs. (orig.) [de

  19. Integral Fast Reactor: A future source of nuclear energy

    International Nuclear Information System (INIS)

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  20. Optimal reactor strategy for commercializing fast breeder reactors

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  1. The modular high-temperature gas-cooled reactor - a new production reactor

    International Nuclear Information System (INIS)

    Nulton, J.D.

    1990-01-01

    One of the reactor concepts being considered for application as a new production reactor (NPR) is a 350-MW(thermal) modular high-temperature gas-cooled reactor (MHTGR). The proposed MHTGR-NPR is based on the design of the commercial MHTGR and is being developed by a team that includes General Atomics and Combustion Engineering. The proposed design includes four modules combined into a production block that includes a shared containment, a spent-fuel storage facility, and other support facilities. The MHTGR has a helium-cooled, graphite-moderated, graphite-reflected annular core formed from prismatic graphite fuel blocks. The MHTGR fuel consists of highly enriched uranium oxycarbide (UCO) microsphere fuel particles that are coated with successive layers of pyrolytic carbon (PyC) and silicon carbide (SiC). Tritium-producing targets consist of enriched 6 Li aluminate microsphere target particles that are coated with successive layers of PyC and SiC similar to the fuel microspheres. Normal reactivity control is implemented by articulated control rods that can be inserted into channels in the inner and outer reflector blocks. Shutdown heat removal is accomplished by a single shutdown heat exchanger and electric motor-driven circulator located in the bottom of the reactor vessel. Current plans are to stack spent fuel elements in dry, helium-filled, water-cooled wells and store them for ∼1 yr before reprocessing. All phases of MHTGR fuel reprocessing have been demonstrated

  2. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  3. A compact reactor/ORC power source

    International Nuclear Information System (INIS)

    Meier, K.L.; Kirchner, W.L.; Willcutt, G.J.

    1986-01-01

    A compact power source that combines an organic Rankine cycle (ORC) electric generator with a nuclear reactor heat source is being designed and fabricated. Incorporating existing ORC technology with proven reactor technology, the compact reactor/ORC power source offers high reliability while minimizing the need for componenet development. Thermal power at 125 kWt is removed from the coated particle fueled, graphite moderated reactor by heat pipes operating at 500 0 C. Outside the reactor vessel and connected to the heat pipes are vaporizers in which the toluene ORC working fluid is heated to 370 0 C. In the turbine-alternator-pump (TAP) combined-rotating unit, the thermal energy of the toluene is converted to 25 kWe of electric power. Lumped parameter systems analyses combined with a finite element thermal analyses combined with a finite element thermal analysis have aided in the power source design. The analysis have provided assurance of reliable multiyear normal operation as well as full power operation with upset conditions, such as failed heat pipes and inoperative ORC vaporizers. Because of inherent high reliability, long life, and insensitivity to upset conditions, this power source is especially suited for use in remote, inaccessible locations where fuel delivery and maintenance costs are high

  4. The Design of a Nuclear Reactor

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The aim of this largely pedagogical article is toemploy pre-college physics to arrive at an understanding of a system as complex as a nuclear reactor. We focus on three key issues: the fuelpin, the moderator, and lastly the dimensions ofthe nuclear reactor.

  5. A parameter set for a double-null DEMO reactor

    International Nuclear Information System (INIS)

    Cooke, P.I.H.

    1987-01-01

    The present study is aimed at commenting on the reactor-relevance of the design principles and technology being proposed for NET. The authors propose that a double-null device serve as a basis for a NET-based demonstration reactor. Calculations are carried out to determine the parameter set for reactors based on the double-null NET design, and the results are presented in tabular form. (U.K.)

  6. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  7. Safeguarding research reactors

    International Nuclear Information System (INIS)

    Powers, J.A.

    1983-03-01

    The report is organized in four sections, including the introduction. The second section contains a discussion of the characteristics and attributes of research reactors important to safeguards. In this section, research reactors are described according to their power level, if greater than 25 thermal megawatts, or according to each fuel type. This descriptive discussion includes both reactor and reactor fuel information of a generic nature, according to the following categories. 1. Research reactors with more than 25 megawatts thermal power, 2. Plate fuelled reactors, 3. Assembly fuelled reactors. 4. Research reactors fuelled with individual rods. 5. Disk fuelled reactors, and 6. Research reactors fuelled with aqueous homogeneous fuel. The third section consists of a brief discussion of general IAEA safeguards as they apply to research reactors. This section is based on IAEA safeguards implementation documents and technical reports that are used to establish Agency-State agreements and facility attachments. The fourth and last section describes inspection activities at research reactors necessary to meet Agency objectives. The scope of the activities extends to both pre and post inspection as well as the on-site inspection and includes the examination of records and reports relative to reactor operation and to receipts, shipments and certain internal transfers, periodic verification of fresh fuel, spent fuel and core fuel, activities related to containment and surveillance, and other selected activities, depending on the reactor

  8. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  9. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  10. Slurry reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuerten, H; Zehner, P [BASF A.G., Ludwigshafen am Rhein (Germany, F.R.)

    1979-08-01

    Slurry reactors are designed on the basis of empirical data and model investigations. It is as yet not possible to calculate the flow behavior of such reactors. The swarm of gas bubbles and cluster formations of solid particles and their interaction in industrial reactors are not known. These effects control to a large extent the gas hold-up, the gas-liquid interface and, similarly as in bubble columns, the back-mixing of liquids and solids. These hydrodynamic problems are illustrated in slurry reactors which constructionally may be bubble columns, stirred tanks or jet loop reactors. The expected effects are predicted by means of tests with model systems modified to represent the conditions in industrial hydrogenation reactors. In his book 'Mass Transfer in Heterogeneous Catalysis' (1970) Satterfield complained of the lack of knowledge about the design of slurry reactors and hence of the impossible task of the engineer who has to design a plant according to accepted rules. There have been no fundamental changes since then. This paper presents the problems facing the engineer in designing slurry reactors, and shows new development trends.

  11. Multiregion reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The study of reflected reactors can be done employing the multigroup diffusion method. The neutron conservation equations, inside the intervals, can be written by fluxes and group constants. A reflected reactor (one and two groups) for a slab geometry is studied, aplying the continuity of flux and current in the interface. At the end, the appropriated solutions for a infinite cylindrical reactor and for a spherical reactor are presented. (Author) [pt

  12. A model for nuclear research reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2013-09-15

    Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.

  13. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  14. Reactor Physics Programme

    International Nuclear Information System (INIS)

    De Raedt, C.

    2000-01-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies

  15. A glossary of terms for fast reactors

    International Nuclear Information System (INIS)

    Wheeler, R.C.

    1979-04-01

    The glossary aims to provide definitions of technical terms likely to be used in a fast reactor enquiry and to encourage the use of the same set of consistent terms in any documents intended for such an inquiry. In some cases definitions are formulated in the limited context of LMFBRS rather than applying to all types of reactors. A brief guide is presented to the different reactor types. (author)

  16. Reactor building

    International Nuclear Information System (INIS)

    Maruyama, Toru; Murata, Ritsuko.

    1996-01-01

    In the present invention, a spent fuel storage pool of a BWR type reactor is formed at an upper portion and enlarged in the size to effectively utilize the space of the building. Namely, a reactor chamber enhouses reactor facilities including a reactor pressure vessel and a reactor container, and further, a spent fuel storage pool is formed thereabove. A second spent fuel storage pool is formed above the auxiliary reactor chamber at the periphery of the reactor chamber. The spent fuel storage pool and the second spent fuel storage pool are disposed in adjacent with each other. A wall between both of them is formed vertically movable. With such a constitution, the storage amount for spent fuels is increased thereby enabling to store the entire spent fuels generated during operation period of the plant. Further, since requirement of the storage for the spent fuels is increased stepwisely during periodical exchange operation, it can be used for other usage during the period when the enlarged portion is not used. (I.S.)

  17. A water inner circulation device for a reactor vessel

    International Nuclear Information System (INIS)

    Eriksson, O.

    1976-01-01

    A water inner circulation device for a reactor vessel comprising a pump mounted in the reactor vessel and driven by a water-cooled electric motor mounted in a housing outside the reactor vessel, the shaft of the pump passing through the reactor-vessel bottom and being coupled to the motor shaft in a member mechanically connected to the bottom of the reactor vessel in the vicinity of the motor housing, the pump shaft being surrounded by a resilient sealing ring, the reactor vessel communicating with the cooling channels of the pump, when the latter is operating, via a slot surrounding the pump hollow cylindrical shaft, characterized in that the slot inner end is used for/forming a circular space surrounding the pump shaft and surrounded by the motorhousing, in which is coaxially mounted a separating cylindral wall, the upper edge of which is tightly applied against the inner wall of the motor-housing to which it is fastened vertically, the inner surface of said wall being turned towards the outer surface of a circular packing-box, the outer surface of said separating wall constituting a separating radical inner surface for a circular chamber through which flow the motor cooling water. (author)

  18. A design study of reactor core optimization for direct nuclear heat-to-electricity conversion in a space power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Hidekazu; Takahashi, Makoto; Shimoda, Hiroshi; Takeoka, Satoshi [Kyoto Univ. (Japan); Nakagawa, Masayuki; Kugo, Teruhiko

    1998-01-01

    To propose a new design concept of a nuclear reactor used in the space, research has been conducted on the conceptual design of a new nuclear reactor on the basis of the following three main concepts: (1) Thermionic generation by thermionic fuel elements (TFE), (2) reactivity control by rotary reflector, and (3) reactor cooling by liquid metal. The outcomes of the research are: (1) A calculation algorithm was derived for obtaining convergent conditions by repeating nuclear characteristic calculation and thermal flow characteristic calculation for the space nuclear reactor. (2) Use of this algorithm and the parametric study established that a space nuclear reactor using 97% enriched uranium nitride as the fuel and lithium as the coolant and having a core with a radius of about 25 cm, a height of about 50 cm and a generation efficiency of about 7% can probably be operated continuously for at least more than ten years at 100 kW only by reactivity control by rotary reflector. (3) A new CAD/CAE system was developed to assist design work to optimize the core characteristics of the space nuclear reactor comprehensively. It is composed of the integrated design support system VINDS using virtual reality and the distributed system WINDS to collaboratively support design work using Internet. (N.H.)

  19. Oscillation characteristics of the reactor 'A'; Oscilatorne karakteristike reaktora 'A'

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Lolic, B [The Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1961-07-01

    In addition to good knowledge of reactor physical properties, design of the reactor oscillator demands determining of the oscillator operating points as well as oscillation reactor properties. This paper contains study of the RA reactor power changes due to oscillations in in one of the vertical experimental channels. It has been concluded that the reactor optimum operating conditions are attained when the oscillator operates at optimum points, and other parameters are determined dependent on the sensitivity of the method and reactor stability.

  20. Nuclear reactor

    International Nuclear Information System (INIS)

    Garabedian, G.

    1988-01-01

    A liquid reactor is described comprising: (a) a reactor vessel having a core; (b) one or more satellite tanks; (c) pump means in the satellite tank; (d) heat exchanger means in the satellite tank; (e) an upper liquid metal conduit extending between the reactor vessel and the satellite tank; (f) a lower liquid metal duct extending between the reactor vessel and satellite tanks the upper liquid metal conduit and the lower liquid metal duct being arranged to permit free circulation of liquid metal between the reactor vessel core and the satellite tank by convective flow of liquid metal; (g) a separate sealed common containment vessel around the reactor vessel, conduits and satellite tanks; (h) the satellite tank having space for a volume of liquid metal that is sufficient to dampen temperature transients resulting from abnormal operating conditions

  1. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  2. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    International Nuclear Information System (INIS)

    Faghihi, F.; Mirvakili, S.M.

    2009-01-01

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity (ρ ex ), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10 3 Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  3. Burn up calculations for the Iranian miniature reactor: A reliable and safe research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Faghihi, F. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of); Research Center for Radiation Protection, Shiraz University, Shiraz (Iran, Islamic Republic of)], E-mail: faghihif@shirazu.ac.ir; Mirvakili, S.M. [Department of Nuclear Engineering, School of Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2009-06-15

    Presenting neutronic calculations pertaining to the Iranian miniature research reactor is the main goal of this article. This is a key to maintaining safe and reliable core operation. The following reactor core neutronic parameters were calculated: clean cold core excess reactivity ({rho}{sub ex}), control rod and shim worth, shut down margin (SDM), neutron flux distribution of the reactor core components, and reactivity feedback coefficients. Calculations for the fuel burnup and radionuclide inventory of the Iranian miniature neutron source reactor (MNSR), after 13 years of operational time, are carried out. Moreover, the amount of uranium burnup and produced plutonium, the concentrations and activities of the most important fission products, the actinide radionuclides accumulated, and the total radioactivity of the core are estimated. Flux distribution for both water and fuel temperature increases are calculated and changes of the central control rod position are investigated as well. Standard neutronic simulation codes WIMS-D4 and CITATION are employed for these studies. The input model was validated by the experimental data according to the final safety analysis report (FSAR) of the reactor. The total activity of the MNSR core is calculated including all radionuclides at the end of the core life and it is found to be equal to 1.3 x 10{sup 3}Ci. Our investigation shows that the reactor is operating under safe and reliable conditions.

  4. Advanced reactors: A retrospective

    International Nuclear Information System (INIS)

    Starr, C.

    1989-01-01

    The objectives for nuclear power have always emphasized competitive costs, reliability, and public safety. During its initial two decades, the nuclear reactor program was enthusiastically and generously supported by the public, government, and industry. In the subsequent decades this external support was substantially eroded by the growing public fears of catastrophic accidents, poor economic performance of many nuclear plants, regulatory constraints, and a plethora of engineering issues disclosed by plant operations. The technical and institutional histories are discussed with particular relevance to their influence on the framework for future development of the several proposed advance reactors

  5. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Taryo, Taswanda

    2002-01-01

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  6. Photocatalytic reactors for treating water pollution with solar illumination. I: a simplified analysis for batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Usual applications of photocatalytic reactors for treating wastewater exhibit the difficulty of handling fluids having varying composition and/or concentrations; thus, a detailed kinetic representation may not be possible. When the catalyst activation is obtained employing solar illumination an additional complexity always coexists: solar fluxes are permanently changing with time. For comparing different reacting systems under similar operating conditions and to provide approximate estimations for scaling up purposes, simplified models may be useful. For these approximations the model parameters should be restricted as much as possible to initial physical and boundary conditions such as: initial concentrations (expressed as such or as TOC measurements), flow rate or reactor volume, irradiated reactor area, incident radiation fluxes and a fairly simple experimental observation such as the photonic efficiency. A combination of a new concept: the ''actual observed photonic efficiency'' with ideal reactor models and empirical kinetic rate expressions can be used to provide rather simple working equations that can be efficiently used to describe the performance of practical reactors. In this paper, the method has been developed for the case of a photocatalytic batch reactor (PBR). (orig.)

  7. Preliminary design of a Binary Breeder Reactor; Diseno preliminar de un reactor esferico de quema/cria

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, E. Y.; Francois, J. L.; Lopez S, R. C., E-mail: eliasgarcerv@hotmail.com [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac No. 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    A binary breeder reactor (BBR) is a reactor that by means of the transmutation and fission process can operates through the depleted uranium burning with a small quantity of fissile material. The advantages of a BBR with relation to other nuclear reactor types are numerous, taking into account their capacity to operate for a long time without requiring fuel reload or re-arrangement. In this work four different simulations are shown carried out with the MCNPX code with libraries Jeff-3.1 to 1200 K. The objective of this study is to compare two different models of BBR: a spherical reactor and a cylindrical one, using two fuel cycles for each one of them (U-Pu and Th-U) and different reflectors for the two different geometries. For all the models a super-criticality state was obtained at least 10.9 years without carrying out some fuel re-arrangement or reload. The plutonium-239 production was achieved in the models where natural uranium was used in the breeding area, while the production of uranium-233 was observed in the cases where thorium was used in the fertile area. Finally, a behavior of stationary wave reactor was observed inside the models of spherical reactor when contemplating the power uniform increment in the breeding area, while inside the cylindrical models was observed the behavior of a traveling wave reactor when registering the displacement of the burnt wave along the cylindrical model. (Author)

  8. Sloshing of coolant in a seismically isolated reactor

    International Nuclear Information System (INIS)

    Wu, T.S.; Guildys, J.; Seidensticker, R.W.

    1988-01-01

    During a seismic event, the liquid coolant inside the reactor vessel has sloshing motion which is a low-frequency phenomenon. In a reactor system incorporated with seismic isolation, the isolation frequency usually is also very low. There is concern on the potential amplification of sloshing motion of the liquid coolant. This study investigates the effects of seismic isolation on the sloshing of liquid coolant inside the reactor vessel of a liquid metal cooled reactor. Based on a synthetic ground motion whose response spectra envelop those specified by the NRC Regulator Guide 1.60, it is found that the maximum sloshing wave height increases from 18 in. to almost 30 in. when the system is seismically isolated. Since higher sloshing wave may introduce severe impact forces and thermal shocks to the reactor closure and other components within the reactor vessel, adequate design considerations should be made either to suppress the wave height or to reduce the effects caused by high waves

  9. Power conditioning system for a nuclear reactor

    International Nuclear Information System (INIS)

    Higashigawa, Yuichi; Joge, Toshio.

    1981-01-01

    Purpose: To provide a power conditioning system for a BWR type reactor which has a function to be automatically operated within a range that the relationship between the heat power of the reactor and the electric power of an electric generator does not lose the safety of fuel by eliminating the unnecessary fluctuation of the power of the reactor. Constitution: A load request error signal fed from a conventional turbine control system to recirculation flow regulator is eliminated, and a reactor power conditioning system is newly provided, to which an electric generator power signal, a reactor average power area monitor signal and a load request signal are inputted. Thus, the load request signal is compared directly with the electric power of the electric generator, the recirculation flow rate is controlled by the compared result, and whether the correlation between the heat power of the reqctor and the electric power of the generator satisfies the correlation determined to prove the safety of fuel or not is checked. If this correlation is satisfied, the recirculation flow rate is merely automatically controlled. (Yoshino, Y.)

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  11. The 'Reacteur Jules Horowitz': a new experimental reactor project

    International Nuclear Information System (INIS)

    Frachet, S.; Ballagny, A.

    1999-01-01

    The Jules Horowitz Reactor (RJH) is a new research reactor project dedicated to materials and nuclear fuel testing, the location of which is foreseen at the CEA-CADARACHE site, and the start-up in 2006. The launching of this project originated from a double finding: The development of nuclear power plants aimed at satisfying the energy needs of the next century, cannot be envisaged without experimental reactors which are unrivaled for the validation of new concepts of nuclear fuels, materials, and components as well as for their qualification under irradiation. The existing experimental reactors are 30 to 40 years old and it is advisable to examine henceforth the necessity for and the nature of a new reactor to take over and replace, at the beginning of next century, the reactors shut-down in the mean time or at the very end of their lives. Within this framework, the CEA has undertaken, in the last years, a study on the mid and long term irradiation needs, to determine the main features and performances of this new reactor. The concept of the reactor will have to fulfill the thermal neutron irradiation requirements as well as the fast neutron experimental needs, with a great potential versatility for any new irradiation programs. The reactor project selected among several different concepts, is finally a light water pool concept, with 100 MW thermal power. It could reach neutronic fluxes twice those of present French reactors, and allows for many irradiations in and around the core, under high neutron fluxes. The reactor will satisfy the highest level of safety in full accordance with international safety recommendations and the French safety approach for this kind of nuclear facility, thus giving an added safety margin keeping in mind the versatility of research reactors. The feasibility studies have been focused on the following most important items: neutronic and thermalhydraulic studies on alternative core designs, with or without added pressurization

  12. REACTOR: a computer simulation for schools

    International Nuclear Information System (INIS)

    Squires, D.

    1985-01-01

    The paper concerns computer simulation of the operation of a nuclear reactor, for use in schools. The project was commissioned by UKAEA, and carried out by the Computers in the Curriculum Project, Chelsea College. The program, for an advanced gas cooled reactor, is briefly described. (U.K.)

  13. Pebble bed test reactor in peu-a-peu load

    International Nuclear Information System (INIS)

    Kranz, L.

    1988-03-01

    The presented work deals with a new type of load model for high temperature reactors with spherical fuels: the peu-a-peu load system. Using this load system the reactor core is only filled partially in the beginning of the power operation. But it has to be a critical base core. With proceeding burn-off the reactor is filled up with further fuel elements the way that it stays always just critically. When the reactor is filled up completely with fuel elements, the reactor operation has to be interrupted and the reactor has to be discharged. Afterwards a new cycle can start like the one just described. A reference reactor with 100 MW thermal power is investigated in this work in detail and should make clear the way of function of the load system and the base idea of 'simplicity and safety'. The improvement proposal to use again a part of the fuel elements of a cycle for the next cycle minimizes the higher specific uranium need of a peu-a-peu reactor decisively. (orig.) [de

  14. A tokamak reactor with servicing capability

    International Nuclear Information System (INIS)

    Mitchell, J.T.D.; Hollis, A.

    1976-01-01

    A conceptual design for a Tokamak reactor with practical facilities for the regular replacement of blanket components after the inevitable damage from neutron irradiation, and fatigue is described. This essential facility has been largely ignored in published fusion reactor designs. One exception is the inertially-confined Saturn proposal. Tokamak and other toroidal closed-line systems have very complex geometries and sub-system requirements, which result in blanket servicing being a very difficult problem. In the concept described the magnet shield is divided into two structures - an outer permanent one with access doors and an inner shield, part of and supporting the blanket inside. Servicing access is horizontally between the toroidal magnet coils, after moving some outer poloidal magnet coils. The reactor, reactor hall, workshops and remote-handling facilities are described, and the servicing requirements discussed. The important servicing operation is the remote replacement of radiation damaged blanket and shield - divided in this design into 20 sectors, each weighing 75-100 tons and 11-12 metres high. Analysis of the operation indicates that if one sector can be replaced during a single weekend - i.e. a period of low power demand - then the annual reactor-generator availability allowing as well for the general plant servicing should be >0.9. This level of availability should meet the requirements of generating authorities but the facilities, equipment and workshops necessary may be complex and expensive

  15. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  16. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  17. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    International Nuclear Information System (INIS)

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  18. Decommissioning a nuclear reactor

    International Nuclear Information System (INIS)

    Montoya, G.M.

    1991-01-01

    The process of decommissioning a facility such as a nuclear reactor or reprocessing plant presents many waste management options and concerns. Waste minimization is a primary consideration, along with protecting a personnel and the environment. Waste management is complicated in that both radioactive and chemical hazardous wastes must be dealt with. This paper presents the general decommissioning approach of a recent project at Los Alamos. Included are the following technical objectives: site characterization work that provided a thorough physical, chemical, and radiological assessment of the contamination at the site; demonstration of the safe and cost-effective dismantlement of a highly contaminated and activated nuclear-fuelded reactor; and techniques used in minimizing radioactive and hazardous waste. 12 figs

  19. RHTF 2, a 1200 MWe high temperature reactor

    International Nuclear Information System (INIS)

    Brisbois, Jacques

    1978-01-01

    After having adapted to French conditions the 1160 MWe G.A.C. reactor, Commissariat a l'Energie Atomique and French Industry have decided to design an High Temperature Reactor 1200 MWe based on the G.A.C. technology and taking into account the point of view of Electricite de France and the experience of C.E.A. and industry on the gas cooled reactor technology. The main objective of this work is to produce a reactor design having a low technical risk, good operability, with an emphasis on the safety aspects easing the licensing problems

  20. Vacuum switchgear for power station auxiliary switchboards

    International Nuclear Information System (INIS)

    Coombs, P.E.

    1992-01-01

    Sizewell B is the first UK power station in which vacuum switchgear is used for the auxiliary switchboards. Previously the 3.3kV, 6.6kV or 11kV switchgear has used air-break circuit breakers and fused air-break contactors, known as motor starting devices or fused switching devices (FSD). The use of vacuum interrupters is therefore a new technology in this application, although it has been established in the UK distribution network and in industrial installations from the mid 1970s. Vacuum switchgear was already in use in the USA for power station auxiliary switchgear at the time that it was proposed for Sizewell B. The Sizewell B high voltage auxiliary switchgear comprises eight Unit and Station Auxiliary Switchboards at 3.3kV and 11kV, and four 3.3kV Essential Switchboards for the essential safety related circuits, making a total of 65 circuit breakers plus FSD panels. (Author)

  1. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  2. A small research reactor for the 1980's

    International Nuclear Information System (INIS)

    Baglin, C.; Collis-Smith, J.A.; Mitchell, B.; Roskilly, T.

    1978-01-01

    In 1960, GEC together with Imperial College, designed and built the Consort reactor which is still in daily use at the London University Reactor Centre, Silwood Park. In 1977, GEC-REL chose the Consort reactor as a prototype for the development of a modern swimming pool research reactor, designed to meet the needs of countries or organisations starting in the field of Nuclear Technology. This paper outlines some of the topics which arose in the course of this project. (author)

  3. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1998-01-01

    The general position with regard to nuclear power and fast reactors in the UK during 1996 is described. The main UK Government-funded fast reactor research and development programme was concluded in 1993, to be replaced by a smaller programme which is mainly funded and managed by British Nuclear Fuels plc. The main focus of this programme sustains the UK participation in the European Fast Reactor (EFR) collaboration and the broader international links built-up over the previous decades. The status of fast reactor studies made in the UK in 1996 is outlined and, with respect to the Prototype Fast Reactor at Dounreay, a report of progress with the closure studies, fuel reprocessing and decommissioning activities is provided. (author)

  4. Device for removing a spent reactor core instrument tube

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Tsuji, Teruaki.

    1980-01-01

    Purpose: To easily and exactly execute works for removing a used reactor core instrument tube to be mounted in a reactor core from the lattice space of the core or for charging the tube into the lattice of the core. Constitution: When fuel assembly is pulled out of a reactor core and a spent reactor core instrument tube is then bent and removed from the core at periodical inspection time, a lower gripping unit integral with an upper gripping unit and a bending unit is provided at the lower end of a hanging rope of a winch, and lowered to the reactor core. Then, the spent reactor core instrument tube is gripped by the upper and lower gripping units, the bending unit is operated, the spent reactor core instrument tube is bent, and the tube is then pulled upwardly by the winch to remove the tube. (Aizawa, K.)

  5. Reactor refurbishment options for a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    McNeish, D. [Bruce Power, Tiverton, Ontario (Canada)

    2012-07-01

    As the industry looks ahead to another generation of reactor refurbishment, it is acknowledged that the traditional way of Retubing a reactor is a daunting prospect for our investors and stakeholders. Innovations are required to mitigate the long downtime and large one-time investment associated with previous reactor refurbishments. These can take the shape of improvements to the Retube processes or by fundamentally changing the approach, e.g., calandria/shield tank replacement or partial Retubes. This session presents technical challenges that utilities need help resolving to arrive at a more attractive reactor refurbishment model. This includes issues related to calandria vessel fitness-for-service, the fuel channel replacement process, the feeder replacement process, life extension of fuel channels and feeders and complexities involving interfacing systems. (author)

  6. Reactor refurbishment options for a changing climate

    International Nuclear Information System (INIS)

    McNeish, D.

    2012-01-01

    As the industry looks ahead to another generation of reactor refurbishment, it is acknowledged that the traditional way of Retubing a reactor is a daunting prospect for our investors and stakeholders. Innovations are required to mitigate the long downtime and large one-time investment associated with previous reactor refurbishments. These can take the shape of improvements to the Retube processes or by fundamentally changing the approach, e.g., calandria/shield tank replacement or partial Retubes. This session presents technical challenges that utilities need help resolving to arrive at a more attractive reactor refurbishment model. This includes issues related to calandria vessel fitness-for-service, the fuel channel replacement process, the feeder replacement process, life extension of fuel channels and feeders and complexities involving interfacing systems. (author)

  7. Mechanical design of a PERMCAT reactor module

    Energy Technology Data Exchange (ETDEWEB)

    Tosti, S. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy)], E-mail: tosti@frascati.enea.it; Bettinali, L. [Associazione ENEA Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, Frascati, Roma I-00044 (Italy); Borgognoni, F. [Tesi Sas, Via Bolzano 28, Rome (Italy); Murdoch, D.K. [EFDA CSU, Boltzmannstr. 2, D-85748 Garching bei Munchen (Germany)

    2007-02-15

    The PERMCAT is a membrane reactor proposed for processing fusion reactor plasma exhaust gas: tritium removal is obtained by isotopic swamping operating in counter-current mode. In this work, a membrane reactor using a permeator tube of length about 500 mm produced via diffusion welding of Pd-Ag thin foils is described. An appropriate mechanical design of the membrane module has been developed in order to avoid any significant compressive and bending stresses on the very long and thin wall permeator tube: two expanded bellows have been applied to the Pd-Ag tube, so that it has been pre-tensioned before operating. The elongation of the metal permeator under hydrogenation has been theoretically estimated and experimentally verified for properly designing the membrane reactor.

  8. Method of cooling a pressure tube type reactor

    International Nuclear Information System (INIS)

    Kanazawa, Nobuhiro.

    1983-01-01

    Purpose: To improve the operation efficiency of a nuclear reactor by carrying out cooling depending on the power distribution in the reactor core. Constitution: Reactor core channels are divided into a plurality of channel groups depending on the reactor power, and a water drum and a pump are disposed to each of the channel groups so as to increase the amount of coolants in response to the magnitude of the power from each of the channel groups. In this way, the minimum limiting power ratio can be increased. (Seki, T.)

  9. A swivelling transfer device for nuclear reactors

    International Nuclear Information System (INIS)

    Allain, Albert; Mulot, Pierre; Filloleau, Etienne

    1974-01-01

    The invention relates to a swivelling transfer device for fuel-assemblies. According to the invention, the device comprises, within a protective enclosure, a swivelling system comprising two sets of rails rotatable about an axis and so arranged that the lower and thereof penetrates into the extensions of the extremities of ramps dipped into the reactor and into a storage enclosure. This can apply to the transfer of nuclear reactor fuel assemblies, in particular for reactors of the molten sodium fast neutron type [fr

  10. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  11. The Jules Horowitz Reactor project, a driver for revival of the research reactor community

    International Nuclear Information System (INIS)

    Pere, P.; Cavailler, C.; Pascal, C.

    2010-01-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first-rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10 14 n.cm -2 /sec -1 E>1 MeV in core and 3,6x10 14 n.cm -2 /sec -1 E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items:accommodation of a broad experimental domain; involvement by international partners making in-kind contributions to the project; ? development of components critical to safety and performance; the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and; tools to carry out the project, including computer codes

  12. Fail-safe reactivity compensation method for a nuclear reactor

    Science.gov (United States)

    Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.

    2018-01-23

    The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.

  13. A review of fast reactor programme in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Y [Experimental Fast Reactor Division, O-arai Engineering Center, PNC (Japan); Bando, S [Project Planning and Management Division, PNC, Minato-ku, Tokyo (Japan)

    1981-05-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report.

  14. A review of fast reactor programme in Japan

    International Nuclear Information System (INIS)

    Masuno, Y.; Bando, S.

    1981-01-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report

  15. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  16. FBR type reactors

    International Nuclear Information System (INIS)

    Suzuoki, Akira; Yamakawa, Masanori.

    1985-01-01

    Purpose: To enable safety and reliable after-heat removal from a reactor core. Constitution: During ordinary operation of a FBR type reactor, sodium coolants heated to a high temperature in a reactor core are exhausted therefrom, collide against the reactor core upper mechanisms to radially change the flowing direction and then enter between each of the guide vanes. In the case if a main recycling pump is failed and stopped during reactor operation and the recycling force is eliminated, the swirling stream of sodium that has been resulted by the flow guide mechanism during normal reactor operation is continuously maintained within a plenum at a high temperature. Accordingly, the sodium recycling force in the coolant flow channels within the reactor vessel can surely be maintained for a long period of time due to the centrifugal force of the sodium swirling stream. In this way, since the reactor core recycling flow rate can be secured even after the stopping of the main recycling pump, after-heat from the reactor core can safely and surely be removed. (Seki, T.)

  17. Fission power: a search for a ''second-generation'' reactor

    International Nuclear Information System (INIS)

    Hovingh, J.

    1985-01-01

    This report touches on the history of US fission reactors and explores the current technical status of such reactors around the world, including experimental reactors. Its purpose is to identify, evaluate, and rank the most promising concepts among existing reactors, proposed but unadopted designs, and what can be described as ''new'' concepts. Also discussed are such related concerns as utility requirements and design considerations. The report concludes with some recommendations for possible future LLNL involvement

  18. Some local dilution transient in a pressurized water reactor

    International Nuclear Information System (INIS)

    Jacobson, S.

    1989-01-01

    Reactivity accidents are important in the safety analysis of a pressurized water reactor. In this anlysis ejected control rod, steam line break, start of in-active loop and boron dilution accidents are usually dealt with. However, in the analysis is not included what reactivity excursions might happen when a zone,depleted of boron passes the reactor core. This thesis investigates during what operation and emergency conditions diluted zones might exist in a pressurized water reactor and what should be the maximum volumes for then. The limiting transport means are also established in terms of reactivty addition, for the depleted zones. In order to describe the complicated mixing process in the reactor vessel during such a transportation, a typical 3-loop reactor vessel has been modulated by means of TRAC-PF1's VESSEL component. Three cases have been analysed. In the first case the reactor is in a cold condition and the ractor coolant has boron concentration of 2000 ppm. To the reactor vessel is injected an clean water colume of 14 m 3 . In the two other cases the reactor is close to hot shutdown and borated to 850 ppm. To the reactor vessel is added 41 and 13 m 3 clean water, respectively. In the thesis is shown what spatial distribution the depleted zone gets when passing through the reactor vessel in the three cases. The boron concentration in the first case did not decrease the values which would bring the reactor to critical condition. For case two was shown by means of TRAC's point kinetics model that the reactor reaches prompt criticality after 16.03 seconds after starting of the reactor coolant pump. Another prompt criticality occured two seconds later. The total energy developed during the two power escalations were about 55 GJ. A comparision with the criteria used to evaluate the ejected control rod reactivity transient showed that none of these criteria were exceeded. (64 figs.)

  19. A review of fast reactor program in Japan

    International Nuclear Information System (INIS)

    Matsuno, Y.

    1982-01-01

    The fast breeder reactor development project in Japan has been in progress for the past twelve months and will be continued this fiscal year, from April 1982 through March 1983, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1981. The 1982 year budget for R and D work and for construction of a prototype fast breeder reactor MONJU is approximately 20 and 27 billion yen respectively, excluding wages for the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaged in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, power increase from 50 MWt to 75 MWt was made in July 1979 and six operational cycles at 75 MWt were completed in December 1981. With respect to the prototype reactor MONJU, progress toward construction has been made and an environmental impact statement of the reactor was approved by the authorities concerned, and the licensing of the first step was completed at the end of 1981. Preliminary design studies of a large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  20. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  1. Development of Reactor Console Simulator for PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Nufarhana Ayuni Joha; Mohd Sabri Minhat

    2012-01-01

    The Reactor Console Simulator will be an interactive tool for operator training and teaching of PUSPATI TRIGA Reactor. Behaviour and characteristic for reactor console and reactor itself can be evaluated and understand. This Simulator will be used as complement for actual present reactor console. Implementation of man-machine interface is using computer screens, keyboard and mouse. Multiple screens are used to match the physical of present reactor console. LabVIEW software are using for user interface and mathematical calculation. Polynomial equation based on control rods calibration data as well as operation parameters record was used to calculate the estimated reactor console parameters. (author)

  2. Spring unit especially intended for a nuclear reactor core

    International Nuclear Information System (INIS)

    Brown, S.J.; Gorholt, Wilhelm.

    1977-01-01

    This invention relates to a spring unit or a group of springs bearing up a sprung mass against an unsprung mass. For instance, a gas cooled high temperature nuclear reactor includes a core of relatively complex structure supported inside a casing or vessel forming a shielded cavity enclosing the reactor core. This core can be assembled from a large number of graphite blocks of different sizes and shapes joined together to form a column. The blocks of each column can be fixed together so as to form together a loose side support. Under the effect of thermal expansion and contraction, shrinkage resulting from irradiation, the effects of pressure and the contraction and creep of the reactor vessel, it is not possible to confine all the columns of the reactor core in a cylindrical rigid structure. Further, the working of the nuclear reactor requires that the reactivity monitoring components may be inserted at any time in the reactor core. A standard process consists in mounting this loosely assembled reactor core in a floating manner by keeping it away from the vessel enclosure around it by means of a number of springs fitted between the lateral surfaces of the core unit and the reactor vessel. The core may be considered as a spring supported mass whereas, relatively, the reactor vessel is a mass that is not flexibly supported [fr

  3. Fast breeder reactor safety : a perspective

    International Nuclear Information System (INIS)

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  4. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  5. Space reactors, a prospective for the future

    International Nuclear Information System (INIS)

    Wahlquist, E.; Voss, S.S.

    1989-01-01

    The power requirements for future space missions are increasing and alternate power systems will be required to meet these needs. Therefore, in the early 1980's a tri-agency space reactor program, the SP-100, was initiated that is capable of meeting the higher power requirements. To understand the current space reactor program, it is important to review it in the context of past space nuclear programs - including radioisotopes, nuclear rockets and reactors. Initial effort on these programs began in the mid-1950's. Radioisotope generators have been flown on a variety of missions and are continuing to be used. The space reactor and nuclear rocket programs were technically successful but were both terminated in 1973. The current SP-100 program builds on those earlier programs

  6. Research reactors - an overview

    International Nuclear Information System (INIS)

    West, C.D.

    1997-01-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs

  7. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  8. Operation and maintenance of the RA Reactor in 1985, Part 1, Annex A - Reactor applications

    International Nuclear Information System (INIS)

    Martinc, R.; Stanic, A.

    1985-01-01

    This document describes reactor operation from 1981 to 1985, including data about short term (shorter than 24 hours) and long term operation interruptions, as well as safety shutdown and reactor applications. During 1982, 1983 until July 1984 reactor was operated at 2 MW power according to the plan. Plan was not fulfilled in 1983 because deposits were noticed again, at the end of 1982, on the surface of fuel elements. Reactor was mainly used for neutron activation purposes and isotope production as source of neutrons for experimental purposes [sr

  9. A review of the UKAEA interest in heavy water reactors

    International Nuclear Information System (INIS)

    Symes, R.J.

    1983-01-01

    The chapter commences with a brief account of the history of heavy water production and then begins the story of the British use of this moderator in power reactors. This is equated with the introduction and development of the tube reactor as a distinct and important form of reactor construction in contrast with the perhaps better known vessel design that has tended to dominate reactor engineering to date. The account thus includes a succession of reactor designs including the gas and steam cooled heavy water systems in addition to the steam-generating heavy water reactor. The SGHWR was demonstrated by the construction of a substantial prototype, which continues in operation as a flexible and reliable electricity-generating plant. It was also, for a time, identified as the system to be used for Britain's third reactor programme. Today the successful Canadian CANDU power reactors represent the only penetration of heavy water reactor technology into large scale electricity generation. The range of research and experimental reactors using heavy water in their cores is reviewed. (author)

  10. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  11. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Tilliette, Z.

    1975-01-01

    A description is given of a nuclear reactor and especially a high-temperature reactor in which provision is made within a pressure vessel for a main cavity containing the reactor core and a series of vertical cylindrical pods arranged in spaced relation around the main cavity and each adapted to communicate with the cavity through two collector ducts or headers for the primary fluid which flows downwards through the reactor core. Each pod contains two superposed steam-generator and circulator sets disposed in substantially symmetrical relation on each side of the hot primary-fluid header which conveys the primary fluid from the reactor cavity to the pod, the circulators of both sets being mounted respectively at the bottom and top ends of the pod

  13. FBR type reactor

    International Nuclear Information System (INIS)

    Hayase, Tamotsu.

    1991-01-01

    The present invention concerns an FBR type reactor in which transuranium elements are eliminated by nuclear conversion. There are loaded reactor core fuels being charged with mixed oxides of plutonium and uranium, and blanket fuels mainly comprising depleted uranium. Further, liquid sodium is used as coolants. As transuranium elements, isotope elements of neptunium, americium and curium contained in wastes taken out from light water reactors or the composition thereof are used. The reactor core comprises a region with a greater mixing ratio and a region with a less mixing ratio of the transuranium elements. The mixing ratio of the transuranium elements is made greater for the fuels in the reactor core region at the boundary with the blanket of great neutron leakage. With such a constitution, since the positive reactivity value at the reactor core central portion is small in the Na void reactivity distribution in the reactor core, the positive reactivity is small upon Na boiling in the reactor core central region upon occurrence of imaginable accident, to attain reactor safety. (I.N.)

  14. Calculation of low-energy reactor neutrino spectra reactor for reactor neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Riyana, Eka Sapta; Suda, Shoya; Ishibashi, Kenji; Matsuura, Hideaki [Dept. of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Kyushu (Japan); Katakura, Junichi [Dept. of Nuclear System Safety Engineering, Nagaoka University of Technology, Nagaoka (Japan)

    2016-06-15

    Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% {sup 235}U contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. {sup 241}Pu) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate. Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

  15. Internal corium catcher of a nuclear reactor

    International Nuclear Information System (INIS)

    Anatolii S Vlasov; Vladimir N Mineev; Aleksandr S Sidorov; Yuri A Zeigarnik

    2005-01-01

    Full text of publication follows: A corium catcher is one of the main devices of a nuclear reactor that provides corium melt and fission products retention within a containment during severe accidents. Several studies and design developments have shown that corium retention within a reactor vessel can be attained with a moderate capacity of the latter (up to 600 - 650 MW el.). With a higher reactor capacity external corium catchers are applied both at Russian (VVER-1000) and European (EPR) reactors. In the external catcher of a VVER-1000 reactor, most technological problems are solved due to using sacrificial material. They are as follows: (a) endo-thermal interaction of corium and sacrificial material reduces a level of the temperatures in the final melt pool; (b) solution in the melt of a great amount of the sacrificial material reduces the specific heat release density and the heat flux density at the boundaries of a melt; (c) due to changing of the oxide-component density an inverse stratification of the metallic and oxide components of the corium takes place, thus excluding heat-flux focusing in the zone of the metallic layer and making it possible to supply water on the free surface of the corium without a danger of incipience of the vapor explosion; (d) final oxidation of zirconium occurs without hydrogen generation. The above principles have been realized in the external catcher of the VVER- 1000 reactor at Tyanvan NPS that is presently under construction in China. Successfully solving of the problems concerning to the external catcher makes it possible to return on the new conceptual and technological basis to the idea of retention of the corium melt inside the vessel of a nuclear reactor of large capacity, that is, to provide the reactor vessel to play a role of an internal catcher. For this purpose, a reactor vessel is elongated by approximately two meters. In the lower part of the vessel, on elliptical bottom, pieces of sacrificial material are arranged

  16. A method of installing a reactor container

    International Nuclear Information System (INIS)

    Hayashi, Kenji; Murakawa, Hisao.

    1975-01-01

    Object: To achieve exact installation of a reactor container at a site. Structure: A pole is set upright at the center of a cylindrical base portion, a plurality of beams are disposed around the pole in a radial fashion to form a cone, a plurality of steel plates are mounted successively around the cone through a ring, and the steel plates are welded to each other to assemble and install a reactor container at the same time. (Kamimura, M.)

  17. The dual fluid reactor - a new concept for a highly effective fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huke, A.; Ruprecht, G. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); WeiBbach, D. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. Szczecin, ul. Wielkopolska, Inst. Fizyki, Wydzial Matematyczno-Fizyczny, Szczecin, (Poland); Gottlieb, S. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Hussein, A. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. of Northern British Columbia, Dept. of Physics, Prince George, BC (Canada); Czerski, K. [Institut fur Festkorper-Kernphysik gGmbH, Leistikowstr, Berlin (Germany); Univ. Szczecin, ul. Wielkopolska, Inst. Fizyki, Wydzial Matematyczno-Fizyczny, Szczecin, (Poland)

    2014-07-01

    The Dual Fluid Reactor, DFR, is a novel concept of a fast heterogeneous nuclear reactor. Its key feature is the employment of two separate liquid cycles, one for fuel and one for the coolant. As opposed to other liquid-fuel concepts like the molten-salt fast reactor (MSFR), in the DFR both cycles can be separately optimized for their respective purpose, leading to advantageous consequences: A very high power density resulting in enormous cost savings, and a highly negative temperature feedback coefficient, enabling a self-regulation without any control rods or mechanical parts in the core. The fuel liquid, an undiluted actinide trichloride (consisting of isotope-purified {sup 37}Cl) in the reference design, circulates at an operating temperature of 1300 K and can be processed on-line in a small internal processing unit utilizing fractionated distillation or electro refining. Medical radioisotopes like Mo-99/Tc-99m are by-products and can be provided right away. In a more advanced design, an actinide metal alloy melt with an appropriately low solidus temperature is well possible which further compactifies the core and allows to further increase the operating temperature due to its high heat conductivity. The best choice for the coolant is pure lead which yields a very hard neutron spectrum. (author)

  18. Facility with a nuclear district heating reactor

    International Nuclear Information System (INIS)

    Straub, H.

    1988-01-01

    The district heating reactor has a pressure vessel which contains the reactor core and at least one coolant conducting primary heat carrier surrounded by a heat sink. The pressure vessel has two walls with a space between them. This space is connected with a container which contains air as heat isolating medium and water as heat conducting medium. During the normal reactor operation the space is filled by air from the container with the aid of a blower, whereas in the case of a break-down of the cooling system it is filled by water which flows out of the container by gravity after the blower has been switched off. The after-heat, generated in the reactor core during cooling break-down, is removed into the heat sink surrounding the pressure vessel in a safe and simple way. 6 figs

  19. Selective distribution of enzymes in a microfluidic reactor

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Pereira Rosinha Grundtvig, Ines; Krühne, Ulrich

    Off stoichiometric thiol-ene mixtures are well suited for preparation of microfluidic devices with highly functional surfaces. Here a two stage process employing first thiol-ene chemistry (TEC) to prepare two opposite parts of a microfluidic system with a 30x30 mm reactor and subsequently a thiol......-epoxy bonding was used to prepare a fully sealed microfluidic system. The reactor was surface functionalized in-situ with allyl glycidyl ether in different patterns (half-reactor, full-reactor, checkerboard structures) on the surface to provide a controlled distribution of epoxides. The method additionally...... enables the selective immobilization on either top-side or bottom-side or both sides of the reactor. Thereafter horseradish peroxidase was immobilized on the surface and activity tests illustrated how this distribution of the enzyme on the surface could be used to optimize the activity of the enzyme...

  20. Reactor core of nuclear reactor

    International Nuclear Information System (INIS)

    Sasagawa, Masaru; Masuda, Hiroyuki; Mogi, Toshihiko; Kanazawa, Nobuhiro.

    1994-01-01

    In a reactor core, a fuel inventory at an outer peripheral region is made smaller than that at a central region. Fuel assemblies comprising a small number of large-diameter fuel rods are used at the central region and fuel assemblies comprising a great number of smalldiameter fuel rods are used at the outer peripheral region. Since a burning degradation rate of the fuels at the outer peripheral region can be increased, the burning degradation rate at the infinite multiplication factor of fuels at the outer region can substantially be made identical with that of the fuels in the inner region. As a result, the power distribution in the direction of the reactor core can be flattened throughout the entire period of the burning cycle. Further, it is also possible to make the degradation rate of fuels at the outer region substantially identical with that of fuels at the inner side. A power peak formed at the outer circumferential portion of the reactor core of advanced burning can be lowered to improve the fuel integrity, and also improve the reactor safety and operation efficiency. (N.H.)

  1. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  2. Increased SRP reactor power

    International Nuclear Information System (INIS)

    MacAfee, I.M.

    1983-01-01

    Major changes in the current reactor hydraulic systems could be made to achieve a total of about 1500 MW increase of reactor power for P, K, and C reactors. The changes would be to install new, larger heat exchangers in the reactor buildings to increase heat transfer area about 24%, to increase H 2 O flow about 30% per reactor, to increase D 2 O flow 15 to 18% per reactor, and increase reactor blanket gas pressure from 5 psig to 10 psig. The increased reactor power is possible because of reduced inlet temperature of reactor coolant, increased heat removal capacity, and increased operating pressure (larger margin from boiling). The 23% reactor power increase, after adjustment for increased off-line time for reactor reloading, will provide a 15% increase of production from P, K, and C reactors. Restart of L Reactor would increase SRP production 33%

  3. Humidity control device in a reactor container

    International Nuclear Information System (INIS)

    Aizawa, Motohiro; Igarashi, Hiroo; Osumi, Katsumi; Kimura, Takashi.

    1986-01-01

    Purpose: To provide a device capable of maintaining the inside of a container under high humidity circumstantial conditions causing less atmospheric corrosions, in order to prevent injuries due to atmospheric corrosions to smaller diameter stainless steel pipeways in the reactor container. Constitution: Stress corrosion cracks (SCC) to the smaller diameter stainless steel pipeways are caused dependent on the relative humidity and it is effective as the countermeasure against SCC to maintain the relative humidity at a low level less than 30 % or high level greater than 60 %. Based on the above findings, a humidity control device is disposed so as to maintain the relative humidity for the atmosphere within a reactor core on a higher humidity region. The device is adapted such that recycling gas in the dry-well coolant circuit is passed through an orifice to atomize the water introduced from feedwater pipe and introduce into a reactor core or such that the recycling gases in the dry-well cooling circuit are bubbled into water to remove chlorine gas in the reactor container gas thereby increasing the humidity in the reactor container. (Kamimura, M.)

  4. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  5. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  6. Sampling system for a boiling reactor NPP

    International Nuclear Information System (INIS)

    Zabelin, A.I.; Yakovleva, E.D.; Solov'ev, Yu.A.

    1976-01-01

    Investigations and pilot running of the nuclear power plant with a VK-50 boiling reactor reveal the necessity of normalizing the design system of water sampling and of mandatory replacement of the needle-type throttle device by a helical one. A method for designing a helical throttle device has been worked out. The quantitative characteristics of depositions of corrosion products along the line of reactor water sampling are presented. Recommendations are given on the organizaton of the sampling system of a nuclear power plant with BWR type reactors

  7. ATFSR: a small torsatron reactor

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Lacatski, J.T.; Uckan, N.A.

    1985-01-01

    A small (average minor radius anti a approx. = 1 m), moderate-aspect-ratio torsatron reactor based on the Advanced Toroidal Facility (ATF) is proposed as a starting point for improved stellarator reactor designs. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Neoclassical confinement models for helically trapped particles show that a large electric potential (radial electric field) is necessary to achieve ignition in a device of this size, although high-Q operation is still attainable with more modest potentials

  8. Prevention device for rapid reactor core shutdown in BWR type reactors

    International Nuclear Information System (INIS)

    Koshi, Yuji; Karatsu, Hiroyuki.

    1986-01-01

    Purpose: To surely prevent rapid shutdown of a nuclear reactor upon partial load interruption due to rapid increase in the system frequency. Constitution: If a partial load interruption greater than the sum of the turbine by-pass valve capacity and the load setting bias portion is applied in a BWR type power plant, the amount of main steams issued from the reactor is decreased, the thermal input/output balance of the reactor is lost, the reactor pressure is increased, the void is collapsed, the neutron fluxes are increased and the reactor power rises to generate rapid reactor shutdown. In view of the above, the turbine speed signal is compared with a speed setting value in a recycling flowrate control device and the recycling pump is controlled to decrease the recycling flowrate in order to compensate the increase in the neutron fluxes accompanying the reactor power up. In this way, transient changes in the reactor core pressure and the neutron fluxes are kept within a setting point for the rapid reactor shutdown operation thereby enabling to continue the plant operation. (Horiuchi, T.)

  9. Leak monitoring method for a reactor container

    International Nuclear Information System (INIS)

    Uehara, Toshio.

    1987-01-01

    Purpose: To confirm leakages from a container upon nuclear reactor operation. Method: Leakages from a nuclear reactor container has been prevented by lowering the inner pressure of the container relative to the external pressure. In the conventional method of calculating the leakage by applying an inner pressure to the container and measuring the pressure change, etc. after the elapse of a pre-determined time, the measurement has to be conducted at periodical inspection when the nuclear reactor is shut-down. In view of the above, the leak test is conducted in the present invention by applying a slight inner pressure to the inside of the reactor container by supplying gases from a gas supply system and detecting the flow rate of the gases in the gas supply system while maintaining the slight inner pressure constant by controlling the supply and discharge of the gases. By applying such a inner pressure as causing no effect to the reactor operation, it is possible to monitor the leaks during operation and to detect the flow rate value surely and continuously if the leak is resulted. (Kamimura, M.)

  10. Method of dismantling a nuclear reactor

    International Nuclear Information System (INIS)

    Shirai, Masato; Hashimoto, Osamu.

    1984-01-01

    Purpose: To enable rapid and simple positioning for a plasma arc torch disposed to the inside of a nuclear reactor main body. Method: After removing the upper semi-spherical portion, fuel portion and control rod portion of a nuclear reactor, a rotary type girder is placed on the upper edge of a cylindrical portion remained after the removal of the upper semi-spherical portion. Then, the upper portion of a supporting rod provided with a swing arm having a plasma arc torch at the top end is situated at the center of the reactor main body. Then, the top end of the support rod is inserted to fix in the housing of control rod drives. Then, the swing arm is actuated to situate the plasma arc torch to a desired position to be cut, whereafter cutting is initiated while rotating the rotary type girder. Thus, plasma arc torch is moved horizontally along an arcuate trace, whereby pipeways, accessories or the likes disposed to the inside of the main body are at first cut and then the cylindrical portion constituting the main body is cut to dismantle the reactor. (Moriyama, K.)

  11. Nuclear Reactor RA Safety Report, Vol. 4, Reactor

    International Nuclear Information System (INIS)

    1986-11-01

    RA research reactor is thermal heavy water moderated and cooled reactor. Metal uranium 2% enriched fuel elements were used at the beginning of its operation. Since 1976, 80% enriched uranium oxide dispersed in aluminium fuel elements were gradually introduced into the core and are the only ones presently used. Reactor core is cylindrical, having diameter 40 cm and 123 cm high. Reaktor core is made up of 82 fuel elements in aluminium channels, lattice is square, lattice pitch 13 cm. Reactor vessel is cylindrical made of 8 mm thick aluminium, inside diameter 140 cm and 5.5 m high surrounded with neutron reflector and biological shield. There is no containment, the reactor building is playing the shielding role. Three pumps enable circulation of heavy water in the primary cooling circuit. Degradation of heavy water is prevented by helium cover gas. Control rods with cadmium regulate the reactor operation. There are eleven absorption rods, seven are used for long term reactivity compensation, two for automatic power regulation and two for safety shutdown. Total anti reactivity of the rods amounts to 24%. RA reactor is equipped with a number of experimental channels, 45 vertical (9 in the core), 34 in the graphite reflector and two in the water biological shield; and six horizontal channels regularly distributed in the core. This volume include detailed description of systems and components of the RA reactor, reactor core parameters, thermal hydraulics of the core, fuel elements, fuel elements handling equipment, fuel management, and experimental devices [sr

  12. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Ronen, Y.; Elias, E.

    1994-01-01

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  13. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  14. Photocatalytic reactors for treating water pollution with solar illumination. II: a simplified analysis for flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Very frequently outgoing streams of real wastewaters do not have a definite and constant composition. Additionally, when the degradation process makes use of solar irradiation, the photon flux is hardly constant. These two factors strongly militate against the use of very elaborate, exact models for analyzing the performance of the employed reactors. In these cases, approximate methods may be the most practical approach. One possible way is presented in this paper. The observed photonic efficiency concept developed in a previous contribution (sagawe et al., 2002a) is applied to continuous reactors for both steady state and transient operations of photocatalytic reactions applied to wastewaters decontamination processes. For this reactor the local observed photonic efficiency, defined at each reactor longitudinal position, is the convenient property to express the concentration spatial evolution. It is also shown that the description of the reactor performance employing a mass balance can be done in a rather simple way introducing a mass-moving coordinate transformation that remodel the mass inventory and permits working with simpler ordinary differential equations. (orig.)

  15. A fast-running fuel management program for a CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2000-01-01

    A fast-running fuel management program for a CANDU reactor has been developed. The basic principle of this program is to select refueling channels such that the reference reactor conditions are maintained by applying several constraints and criteria when selecting refueling channels. The constraints used in this program are the channel and bundle power and the fuel burnup. The final selection of the refueling channel is determined based on the priority of candidate channels, which enhances the reactor power distribution close to the time-average model. The refueling simulation was performed for a natural uranium CANDU reactor and the results were satisfactory

  16. Power distribution monitor in a nuclear reactor

    International Nuclear Information System (INIS)

    Uematsu, Hitoshi

    1983-01-01

    Purpose: To enable accurate monitoring for the reactor power distribution within a short time in a case where abnormality occurs in in-core neutron monitors or in a case where the reactor core state changes after the calibration for the neutron monitors. Constitution: The power distribution monitor comprises a power distribution calculator adapted to be inputted counted values from a reactor core present state data instruments and calculate the neutron flux distribution in the reactor core and the power distribution based on previously incorporated physical models, an RCF calculator adapted to be inputted with the counted values from the in-core neutron monitors and the neutron flux distribution and the power distribution calculated in the power distribution calculator and compensate the counted errors included in the counted values form the in-core neutron monitors and the calculation errors included in the power distribution calculated in the power distribution calculator to thereby calculate the power distribution within the reactor core, and an input/output device for the input of the data required for said power distribution calculator and the display for the calculation result calculated in the RCF calculator. (Ikeda, J.)

  17. A user friendly database for use in ALARA job dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zodiates, A.M.; Willcock, A. [Cheshire, England (United Kingdom)

    1995-03-01

    The pressurized water reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant (SNUPPS). This design was developed to meet the United Kingdom requirements and these improvements are embodied in the Sizewell B plant which will start commercial operation in 1994. A user-friendly database was developed to assist the station in the dose and ALARP assessments of the work expected to be carried out during station operation and outage. The database stores the information in an easily accessible form and enables updating, editing, retrieval, and searches of the information. The database contains job-related information such as job locations, number of workers required, job times, and the expected plant doserates. It also contains the means to flag job requirements such as requirements for temporary shielding, flushing, scaffolding, etc. Typical uses of the database are envisaged to be in the prediction of occupational doses, the identification of high collective and individual dose jobs, use in ALARP assessments, setting of dose targets, monitoring of dose control performance, and others.

  18. RSMASS: A simple model for estimating reactor and shield masses

    International Nuclear Information System (INIS)

    Marshall, A.C.; Aragon, J.; Gallup, D.

    1987-01-01

    A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems. Approximations are used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronics limits, thermal/hydraulic limits, or fuel damage limits, whichever yields the largest mass. RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach should be applicable to a very broad range of reactor types. Reactor and shield masses calculated by RSMASS were found to be in good agreement with the masses obtained from detailed calculations

  19. A review of the UK fast reactor programme

    International Nuclear Information System (INIS)

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  20. A review of the UK fast reactor programme

    Energy Technology Data Exchange (ETDEWEB)

    Picker, C [AEA Technolgy plc, Risley, Warrington, Cheshire (United Kingdom); Ainsworth, K F [British Nuclear Fuels plc, Sellafield, Cumbria (United Kingdom)

    1996-07-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  1. A Design of Alarm System in a Research Reactor Facility

    International Nuclear Information System (INIS)

    Park, Jaekwan; Jang, Gwisook; Seo, Sangmun; Suh, Yongsuk

    2013-01-01

    The digital alarm system has become an indispensable design to process a large amount of alarms of power plants. Korean research reactor operated for decades maintains a hybrid alarm system with both an analog annunciator and a digital alarm display. In this design, several alarms are indicated on an analog panel and digital display, respectively, and it requires more attention and effort of the operators. As proven in power plants, a centralized alarm system design is necessary for a new research reactor. However, the number of alarms and operators in a research reactor is significantly lesser than power plants. Thus, simplification should be considered as an important factor for the operation efficiency. This paper introduces a simplified alarm system. As advances in information technology, fully digitalized alarm systems have been applied to power plants. In a new research reactor, it will be more useful than an analog or hybrid configuration installed in research reactors decades ago. However, the simplification feature should be considered as an important factor because the number of alarms and number of operators in a research reactor is significantly lesser than in power plants

  2. Neutronic parameters calculations of a CANDU reactor

    International Nuclear Information System (INIS)

    Zamonsky, G.

    1991-01-01

    Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author) [es

  3. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  4. Reactor protection systems for the Replacement Research Reactor, ANSTO

    International Nuclear Information System (INIS)

    Morris, C.R.

    2003-01-01

    The 20-MW Replacement Research Reactor Project which is currently under construction at ANSTO will have a combination of a state of the art triplicated computer based reactor protection system, and a fully independent, and diverse, triplicated analogue reactor protection system, that has been in use in the nuclear industry, for many decades. The First Reactor Protection System (FRPS) consists of a Triconex triplicated modular redundant system that has recently been approved by the USNRC for use in the USA?s power reactor program. The Second Reactor Protection System is a hardwired analogue system supplied by Foxboro, the Spec 200 system, which is also Class1E qualified. The FRPS is used to drop the control rods when its safety parameter setpoints have been reached. The SRPS is used to drain the reflector tank and since this operation would result in a reactor poison out due to the time it would take to refill the tank the FRPS trip setpoints are more limiting. The FRPS and SRPS have limited hardwired indications on the control panels in the main control room (MCR) and emergency control centre (ECC), however all FRPS and SRPS parameters are capable of being displayed on the reactor control and monitoring system (RCMS) video display units. The RCMS is a Foxboro Series I/A control system which is used for plant control and monitoring and as a protection system for the cold neutron source. This paper will provide technical information on both systems, their trip logics, their interconnections with each other, and their integration into the reactor control and monitoring system and control panels. (author)

  5. A Compact Quasi-axisymmetric Stellarator Reactor

    International Nuclear Information System (INIS)

    Ku, L.P.

    2003-01-01

    We report the progress made in assessing the potential of compact, quasi-axisymmetric stellarators as power-producing reactors. Using an aspect ratio A=4.5 configuration derived from NCSX and optimized with respect to the quasi-axisymmetry and MHD stability in the linear regime as an example, we show that a reactor of 1 GW(e) maybe realizable with a major radius *8 m. This is significantly smaller than the designs of stellarator reactors attempted before. We further show the design of modular coils and discuss the optimization of coil aspect ratios in order to accommodate the blanket for tritium breeding and radiation shielding for coil protection. In addition, we discuss the effects of coil aspect ratio on the peak magnetic field in the coils

  6. A personal computer based console monitor for a TRIGA reactor

    International Nuclear Information System (INIS)

    Rieke, Phillip E.; Hood, William E.; Razvi, Junaid

    1990-01-01

    Numerous improvements have been made to the Mark F facility to provide a minimum reactor down time, giving a high reactor availability. A program was undertaken to enhance the monitoring capabilities of the instrumentation and control system on this reactor. To that end, a personal computer based console monitoring system has been developed, installed in the control room and is operational to provide real-time monitoring and display of a variety of reactor operating parameters. This system is based on commercially available hardware and an applications software package developed internally at the GA facility. It has (a) assisted the operator in controlling reactor parameters to maintain the high degree of power stability required during extended runs with thermionic devices in-core, and (b) provided data trending and archiving capabilities on all monitored channels to allow a post-mortem analysis to be performed on any of the monitored parameters

  7. Reactor. Mind picture of the future Jules-Horowitz Reactor (RHJ)

    International Nuclear Information System (INIS)

    Eustache, S.

    1999-01-01

    This paper gives information about the future research reactor, named Reactor Jules-Horowitz (RJH). This irradiation reactor will be placed at industrialists disposal, for research concerning the competitiveness and the safety french electro-nuclear park. Principles and innovations are detailed. This reactor will respect the ALARA principle (as low as reasonably achievable). (A.L.B.)

  8. Design of a nuclear reactor cooperative controller

    International Nuclear Information System (INIS)

    Alang-Rashid, N.K.; Heger, A.S.

    1991-01-01

    This paper describes the development of a fuzzy logic controller software package and explores the feasibility of its use in nuclear reactor operation. The controller complements reactor operator actions, and the operators can override the controller decisions. Techniques of providing learning capability to the controller are also being investigated to improve the reasoning and control skill of the controller. The fuzzy logic controller is implemented in C language and its overall structure is shown. The heart of the systems consists of a fuzzifier, a rule interpreter, and a defuzzifier. The controller is designed as a stand-alone package that can be interfaced to a simulated model of a nuclear reactor. Since no model is an accurate representation of the actual process being modeled, some tuning must be performed to use the controller in an actual reactor. This is accomplished using the learning feature of the controller

  9. Mo-99 production on a LEU solution reactor

    International Nuclear Information System (INIS)

    Brown, R.W.; Thome, L.A.; Khvostionov, V.Y.

    2005-01-01

    A pilot homogenous reactor utilizing LEU has been developed by the Kurchatov Institute in Moscow along with their commercial partner TCI Medical. This solution reactor operates at levels up to 50 kilowatts and has successfully produced high quality Mo-99 and Sr-89. Radiochemical extraction of medical radionuclides from the reactor solution is performed by passing the solution across a series of inorganic sorbents. This reactor has commercial potential for medical radionuclide production using LEU UO 2 SO 4 fuel. Additional development work is needed to optimize multiple 50 kilowatt cores while at the same time, optimizing production efficiency and capital expenditure. (author)

  10. Reactor System Design

    International Nuclear Information System (INIS)

    Chi, S. K.; Kim, G. K.; Yeo, J. W.

    2006-08-01

    SMART NPP(Nuclear Power Plant) has been developed for duel purpose, electricity generation and energy supply for seawater desalination. The objective of this project IS to design the reactor system of SMART pilot plant(SMART-P) which will be built and operated for the integrated technology verification of SMART. SMART-P is an integral reactor in which primary components of reactor coolant system are enclosed in single pressure vessel without connecting pipes. The major components installed within a vessel includes a core, twelve steam generator cassettes, a low-temperature self pressurizer, twelve control rod drives, and two main coolant pumps. SMART-P reactor system design was categorized to the reactor coe design, fluid system design, reactor mechanical design, major component design and MMIS design. Reactor safety -analysis and performance analysis were performed for developed SMART=P reactor system. Also, the preparation of safety analysis report, and the technical support for licensing acquisition are performed

  11. Tank type reactor

    International Nuclear Information System (INIS)

    Otsuka, Fumio.

    1989-01-01

    The present invention concerns a tank type reactor capable of securing reactor core integrity by preventing incorporation of gases to an intermediate heat exchanger, thgereby improving the reliability. In a conventional tank type reactor, since vortex flows are easily caused near the inlet of an intermediate heat exchanger, there is a fear that cover gases are involved into the coolant main streams to induce fetal accidents. In the present invention, a reactor core is suspended by way of a suspending body to the inside of a reactor vessel and an intermediate heat exchanger and a pump are disposed between the suspending body and the reactor vessel, in which a vortex current preventive plate is attached at the outside near the coolant inlet on the primary circuit of the intermediate heat exchanger. In this way vortex or turbulence near the inlet of the intermediate heata exchanger or near the surface of coolants can be prevented. Accordingly, the cover gases are no more involved, to insure the reactor core integrity and obtain a tank type nuclear reactor of high reliability. (I.S.)

  12. Fixed-bed Reactor Dynamics and Control - A Review

    DEFF Research Database (Denmark)

    Jørgensen, S. B.

    1986-01-01

    The industrial diversity of fixed bed reactors offers a challenging and relevant set of control problems. These intricate problems arise due to the rather complex dynamics of fixed bed reactors and to the complexity of actual reactor configurations. Many of these control problems are nonlinear...... and multi-variable. During the last decade fixed bed reactor control strategies have been proposed and investigated experimentally. This paper reviews research on these complex control problems with an emphasis upon solutions which have been demon-strated to work in the laboratory and hold promise...

  13. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  14. Reactor container

    International Nuclear Information System (INIS)

    Fukazawa, Masanori.

    1991-01-01

    A system for controlling combustible gases, it has been constituted at present such that the combustible gases are controlled by exhausting them to the wet well of a reactor container. In this system, however, there has been a problem, in a reactor container having plenums in addition to the wet well and the dry well, that the combustible gases in such plenums can not be controlled. In view of the above, in the present invention, suction ports or exhaust ports of the combustible gas control system are disposed to the wet well, the dry well and the plenums to control the combustible gases in the reactor container. Since this can control the combustible gases in the entire reactor container, the integrity of the reactor container can be ensured. (T.M.)

  15. Process and apparatus for adjusting a new upper reactor internals in a reactor vessel of a PWR

    International Nuclear Information System (INIS)

    Frizot, A.; Cadaureille, G.; Lalere, C.; Machuron, J.Y.

    1987-01-01

    On the new upper reactor internals is mounted devices for alignment and clearances, before introducing in the reactor vessel. After introducing alignment and clearances are measured. Adjustment pieces are provided for optimum clearances and alignment and fixed after removal from vessel. Decontamination is made by using water jets prior to fitting recess parts [fr

  16. Measurements of low reactivities using a reactor oscillator

    International Nuclear Information System (INIS)

    Obradovic, D.; Petrovic, M.

    1965-12-01

    Most of the methods of measuring reactivity are limited to the region from several hundreds to several thousands of pcm. The present work develops a method of measuring low reactivities from several pcm to about 600 pcm using the ROB-1 reactor oscillator on the RB reactor of the Boris Kidric Institute of Nuclear Sciences at Vinca. The accuracy of measurement is better than 1%. Several methods are used to measure low reactivities. The most often used is the method based on measuring the stable reactor period. The bottom limit of this method is about 30 porn /1,2/. For control rod calibration the method of rod oscillation is used /3,4/. This method is confronted with considerable influence of space effects /5/. Reference /6/ reports on a method for measuring the reactivity coefficient at a critical level in liquid-moderated reactors. The method is based on measuring reactor response to the oscillation of the moderator about the critical level. The present work reports on a method of determining the reactivity by measuring the phase shift between the perturbation of the effective multiplication factor and reactor response. With the use of the ROB-1 reactor oscillator, the method allows measurement of the reactivity from several pcm to about 600 pcm with an accuracy of 1% (author)

  17. Measurements of low reactivities using a reactor oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Obradovic, D; Petrovic, M [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-12-15

    Most of the methods of measuring reactivity are limited to the region from several hundreds to several thousands of pcm. The present work develops a method of measuring low reactivities from several pcm to about 600 pcm using the ROB-1 reactor oscillator on the RB reactor of the Boris Kidric Institute of Nuclear Sciences at Vinca. The accuracy of measurement is better than 1%. Several methods are used to measure low reactivities. The most often used is the method based on measuring the stable reactor period. The bottom limit of this method is about 30 porn /1,2/. For control rod calibration the method of rod oscillation is used /3,4/. This method is confronted with considerable influence of space effects /5/. Reference /6/ reports on a method for measuring the reactivity coefficient at a critical level in liquid-moderated reactors. The method is based on measuring reactor response to the oscillation of the moderator about the critical level. The present work reports on a method of determining the reactivity by measuring the phase shift between the perturbation of the effective multiplication factor and reactor response. With the use of the ROB-1 reactor oscillator, the method allows measurement of the reactivity from several pcm to about 600 pcm with an accuracy of 1% (author)

  18. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  19. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  20. An investigation of decreasing reactor coolant inventory as a mechanism to reduce power during a boiling water reactor anticipated transient without scram

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Gose, G.C.; Hentzen, R.D.; Layman, W.H.

    1985-01-01

    Under certain anticipated transient without scram (ATWS) sequences for a boiling water reactor, it would be desirable to reduce system power, particularly where the primary system has been isolated by closure of all main steam isolation valves and is discharging steam through its safety/relief valve system to the suppression pool. Reducing reactor power increases the time available to shut down the reactor by minimizing the heat dumped to the suppression pool and by helping to keep the suppression pool temperature within limits. Under proposed emergency procedure guidelines for the ATWS event, the reactor water level would be lowered to reduce reactor power. The analyses provide an assessment of the power level that would be attained, assuming the reactor operators were to reduce the the downcomer level down to the top of the active fuel

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  3. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  4. Heterogeneous reactors

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author) [pt

  5. The Jules Horowitz reactor project, a driver for revival of the research reactor community

    Energy Technology Data Exchange (ETDEWEB)

    Pere, P.; Cavailler, C.; Pascal, C. [AREVA TA, CEA Cadarache - Etablissement d' AREVA TA - Chantier RJH - MOE - BV2 - BP no. 9 - 13115 Saint Paul lez Durance (France); CS 50497 - 1100, rue JR Gauthier de la Lauziere, 13593 Aix en Provence cedex 3 (France)

    2010-07-01

    The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x10{sup 14} n.cm{sup -2}/sec{sup -1} E> 1 MeV in core and 3,6x10{sup 14} n.cm{sup -2}/sec{sup -1} E<0.625 eV in the reflector) and the JHR's considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960's, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. This will be followed by a description of the project organization set up by the CEA as owner and future operator and AREVA TA as prime contractor and supplier of critical systems, and a discussion of project challenges, especially those dealing with the following items: - accommodation of a broad experimental domain, - involvement by international partners making in-kind contributions to the project, - development of components critical to safety and performance, - the revival of engineering of research reactors and experimental devices involving France's historical players in the field of research reactors, and

  6. Feedwater processing method in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Izumitani, M; Tanno, K

    1976-09-06

    The purpose of the invention is to decrease a quantity of corrosion products moving from the feedwater system to the core. Water formed into vapor after heated in a reactor is fed to the turbine through a main steam line to drive a generator to return it to liquid-state water in a condenser. The water is then again cycled into the reactor via the condensate pump, desalting unit, low pressure feedwater heater, medium pressure feedwater heater, and high pressure feedwater heater. The reactor water is recycled by a recycling pump. At this time, the reactor water recycled by the recycling pump is partially poured into a middle point between the desalting unit and the low pressure feedwater heater through a reducing valve or the like. With the structure described above, the quantity of the corrosion products from the feedwater system may be decreased by the function of a large quantity of active oxygen contained in the reactor water.

  7. Reactor decommissioning strategy: a new start for BNFL

    International Nuclear Information System (INIS)

    Woollam, P.; Nurden, P.

    2001-01-01

    The key points of BNFL Magnox Electric's revised waste management and reactor decommissioning strategy for the reactor sites are enlisted. Reactors will be defuelled as soon as practicable after shutdown. Predominantly Caesium contaminated plant will be dismantled when it is no longer needed. Cobalt contaminated plant such as boilers will remain in position until the reactors are dismantled, but appropriate decontamination technology will be regularly reviewed. All buildings except the reactor buildings will be dismantled as soon as practicable after they are no longer needed. Operational ILW, except some activated components, will be retrieved and packaged during the Care and Maintenance preparation period. All wastes will be stored on site, and handled in the long term in accordance with Government policy. Reactor buildings and their residual contents will be placed in a passive safe storage Care and Maintenance condition in a manner appropriate for the site. Contaminated land will be managed to maintain public safety. The reactors will be finally dismantled in a sequenced programme with a start date and duration to be decided at the appropriate time in the light of circumstances prevalent at that time. Currently, the Company is considering a sequenced programme across all sites, notionally beginning around 100 years from station shutdown, leading to a range of deferral periods. For provisioning purposes, the Company has costed a strategy involving reactor dismantling deferrals ranging from 85 to about 105 years in order to demonstrate prudent provisioning to meet its liabilities. A risk provision to reflect the potential for shorter deferral periods is included in the cost estimates. The end point for reactor decommissioning is site clearance and delicensing, based on the assumption that a reasonably practicable interpretation of the 'no danger' clause in the Nuclear Installations Act 1965 (as amended) can be developed. In line with Government policy, and taking

  8. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  9. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  10. A series of lectures on operational physics of power reactors

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.; Rastogi, B.P.

    1982-01-01

    This report discusses certain aspects of operational physics of power reactors. These form a lecture series at the Winter College on Nuclear Physics and Reactors, Jan. - March 1980, conducted at the International Centre for Theoretical Physics, Trieste, Italy. The topics covered are (a) the reactor physics aspects of fuel burnup (b) theoretical methods applied for burnup prediction in power reactors (c) interpretation of neutron detector readings in terms of adjacent fuel assembly powers (d) refuelling schemes used in power reactors. The reactor types chosen for the discussion are BWR, PWR and PHWR. (author)

  11. Thai research reactor

    International Nuclear Information System (INIS)

    Aramrattana, M.

    1987-01-01

    The Office of Atomic Energy for Peace (OAEP) was established in 1962, as a reactor center, by the virtue of the Atomic Energy for Peace Act, under operational policy and authority of the Thai Atomic Energy for Peace Commission (TAEPC); and under administration of Ministry of Science, Technology and Energy. It owns and operates the only Thai Research Reactor (TRR-1/M1). The TRR-1/M1 is a mixed reactor system constituting of the old MTR type swimming pool, irradiation facilities and cooling system; and TRIGA Mark III core and control instrumentation. The general performance of TRR-1/M1 is summarized in Table I. The safe operation of TRR-1/M1 is regulated by Reactor Safety Committee (RSC), established under TAEPC, and Health Physics Group of OAEP. The RCS has responsibility and duty to review of and make recommendations on Reactor Standing Orders, Reactor Operation Procedures, Reactor Core Loading and Requests for Reactor Experiments. In addition,there also exist of Emergency Procedures which is administered by OAEP. The Reactor Operation Procedures constitute of reactor operating procedures, system operating procedures and reactor maintenance procedures. At the level of reactor routine operating procedures, there is a set of Specifications on Safety and Operation Limits and Code of Practice from which reactor shift supervisor and operators must follow in order to assure the safe operation of TRR-1/M1. Table II is the summary of such specifications. The OAEP is now upgrading certain major components of the TRR-1/M1 such as the cooling system, the ventilation system and monitoring equipment to ensure their adequately safe and reliable performance under normal and emergency conditions. Furthermore, the International Atomic Energy Agency has been providing assistance in areas of operation and maintenance and safety analysis. (author)

  12. Research reactors: a tool for science and medicine

    International Nuclear Information System (INIS)

    Ordonez, Juan

    2001-01-01

    The types and uses of research reactors are reviewed. After an analysis of the world situation, the demand of new research reactors of about 20 MW is foreseen. The experience and competitiveness of INVAP S.E. as designer and constructor of research reactors is outlined and the general specifications of the reactors designed by INVAP for Egypt and Australia are given

  13. Materials and fabrication requirements for APWR systems

    International Nuclear Information System (INIS)

    Boothby, R.M.; Hippsley, C.A.; Gorton, O.K.; Garwood, S.J.

    1995-01-01

    Materials specifications for advanced pressurized water-cooled reactor (APWR) systems are generally based on existing designs, with improved materials and fabrication procedures being developed to counter known degradation effects. In this paper, materials ageing and degradation mechanisms in PWR primary circuit pressure boundary components (i.e. the reactor pressure vessel (RPV), control rod drive mechanisms (CRDMs), coolant piping, coolant pump casing, pressurizer, and steam generators) are reviewed. Important degradation mechanisms include irradiation embrittlement of the RPV, thermal ageing embrittlement of ferritic (e.g. the pressurizer) and cast austenitic (e.g. coolant pump casing and pipe elbows) steel components and environmentally assisted cracking of steam generator tubing and CRDM penetrations. Improved materials specifications and component design and fabrication issues affecting the integrity of the pressure boundary are discussed in the light of these materials problems. Improved fabrication procedures adopted for Sizewell B, such as the utilization of ring forgings to eliminate axial welds in the RPV and steam generator shells and the use of one-piece castings for coolant pump casings, provide a benchmark against which other APWR designs may be judged. (author)

  14. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  15. Aging Management Plan for a Typical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Mahsa; Nazififard, Mohammad; Suh, Kune Y. [Seoul National University, Seoul (Korea, Republic of)

    2012-05-15

    Development of an aging management plan (AMP) is a crucial contributor to maintaining the reactor safety and controlling the risk of degradation of the concrete reactor building of a nuclear power plant. The design, operation and utilization of a research reactor (RR) fundamentally differ from those of power reactors. The AMP should nonetheless be present on account of radioactive materials and radiation risks involved. This is mainly because the RR is deemed to be used as an experiment itself or to conduct separate experiments during its operation. The AMP aims to determine the requisites for specific structural concrete components of the reactor building that entail regular inspections and maintenance to ensure safe and reliable operation of the plant. The safety of a RR necessitates the provision which is made in its design to facilitate aging management. Aging management of RR's structures is one of the vital factors to safety, to ensure continued adequacy of the safety level, reliable operation of the reactor, and compliance with the operational limits and conditions.Moreover, engineering systems should be qualified to meet the functional requirements for which they were designed with aging and environmental conditions for all situations and at all times taken into account. This study aims to present an integrated methodology for the application of an AMP for the concrete of the reactor building of a typical RR. For the purpose of safety analysis, geometry and ambient conditions were taken from a 5 MW pool-type, light-water moderated, heterogeneous, solid fuel RR in which the water is also used for cooling and shielding (Fig. 1). The reactor core is immersed in either section of a two-section concrete pool filled with water. This paper makes available background information regarding the document and the strategy developed to manage potential degradation of the reactor building concrete as well as specific programs and preventive and corrective

  16. Reactor container

    International Nuclear Information System (INIS)

    Shibata, Satoru; Kawashima, Hiroaki

    1984-01-01

    Purpose: To optimize the temperature distribution of the reactor container so as to moderate the thermal stress distribution on the reactor wall of LMFBR type reactor. Constitution: A good heat conductor (made of Al or Cu) is appended on the outer side of the reactor container wall from below the liquid level to the lower face of a deck plate. Further, heat insulators are disposed to the outside of the good heat conductor. Furthermore, a gas-cooling duct is circumferentially disposed at the contact portion between the good heat conductor and the deck plate around the reactor container. This enables to flow the cold heat from the liquid metal rapidly through the good heat conductor to the cooling duct and allows to maintain the temperature distribution on the reactor wall substantially linear even with the abrupt temperature change in the liquid metal. Further, by appending the good heat conductor covered with inactive metals not only on the outer side but also on the inside of the reactor wall to introduce the heat near the liquid level to the upper portion and escape the same to the cooling layer below the roof slab, the effect can be improved further. (Ikeda, J.)

  17. Reactor antineutrino monitoring with a plastic scintillator array as a new safeguards method

    OpenAIRE

    Oguri, S.; Kuroda, Y.; Kato, Y.; Nakata, R.; Inoue, Y.; Ito, C.; Minowa, M.

    2014-01-01

    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive.

  18. A friendly Maple module for one and two group reactor model

    International Nuclear Information System (INIS)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O.

    2015-01-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  19. A friendly Maple module for one and two group reactor model

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Camila O.; Pavan, Guilherme A.; Braga, Kelmo L.; Silva, Marcelo V.; Pereira, P.G.S.; Werner, Rodrigo; Antunes, Valdir; Vellozo, Sergio O., E-mail: camila.oliv.baptista@gmail.com, E-mail: pavanguilherme@gmail.com, E-mail: kelmo.lins@gmail.com, E-mail: marcelovilelasilva@gmail.com, E-mail: rodrigowerner@hotmail.com, E-mail: neutron201566@yahoo.com, E-mail: vellozo@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The well known two energy groups core reactor design model is revisited. A simple and friendly Maple module was built to cover the steps calculations of a plate reactor in five situations: 1. one group bare reactor, 2. two groups bare reactor, 3. one group reflected reactor, 4. 1-1/2 groups reflected reactor and 5. two groups reflected reactor. The results show the convergent path of critical size, as it should be. (author)

  20. Scram and nonlinear reactor system seismic analysis for a liquid metal fast reactor

    International Nuclear Information System (INIS)

    Morrone, A.; Brussalis, W.G.

    1975-01-01

    The paper presents the analysis and results for a LMFBR system which was analyzed for both scram times and seismic responses such as bending moments, accelerations and forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node (translational and rotational). The model was developed to incorporate as many reactor components as possible without exceeding computer limitations. It consists of 12 reactor components with a total of 71 nodes, 69 beam and pin-jointed elements and 27 gap elements. The gap elements were defined by their clearances, impact spring constants and impact damping constants based on a 50% coefficient of restitution. The horizontal excitation input to the model was the response of the containment building at the location of the reactor vessel supports. It consists of a ten seconds Safe Shutdown Earthquake acceleration-time history at 0.005 seconds intervals and with a maximum acceleration of 0.408 g. The analysis was performed with two Westinghouse special purpose computer programs. The first program calculated the reactor system seismic responses and stored the impact forces on tape. The impact forces on the control rod driveline were converted into vertical frictional forces by multiplying them by a coefficient of friction, and then used by the second program for the scram time determination. The results give time history plots of various seismic responses, and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about 4 times longer than that calculated without the earthquake. The bending moment and shear force responses were used as input for the structural analysis (stresses, deflections, fatigue) of the various components, in combination with the other applicable loading conditions. (orig./HP) [de