WorldWideScience

Sample records for sized objective functions

  1. A two-level parallel direct search implementation for arbitrarily sized objective functions

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, S.A.; Shadid, N.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1994-12-31

    In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p{sub 2}) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.

  2. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    Science.gov (United States)

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm.

  3. Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

    Directory of Open Access Journals (Sweden)

    Yuji Tsutsui

    2017-06-01

    Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.

  4. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  5. Event-related potentials during word mapping to object shape predict toddlers’ vocabulary size

    Directory of Open Access Journals (Sweden)

    Kristina eBorgström

    2015-02-01

    Full Text Available What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds’ (n = 38; n = 34; overlapping n = 24 ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  6. Higher albedos and size distribution of large transneptunian objects

    Science.gov (United States)

    Lykawka, Patryk Sofia; Mukai, Tadashi

    2005-11-01

    Transneptunian objects (TNOs) orbit beyond Neptune and do offer important clues about the formation of our solar system. Although observations have been increasing the number of discovered TNOs and improving their orbital elements, very little is known about elementary physical properties such as sizes, albedos and compositions. Due to TNOs large distances (>40 AU) and observational limitations, reliable physical information can be obtained only from brighter objects (supposedly larger bodies). According to size and albedo measurements available, it is evident the traditionally assumed albedo p=0.04 cannot hold for all TNOs, especially those with approximately absolute magnitudes H⩽5.5. That is, the largest TNOs possess higher albedos (generally >0.04) that strongly appear to increase as a function of size. Using a compilation of published data, we derived empirical relations which can provide estimations of diameters and albedos as a function of absolute magnitude. Calculations result in more accurate size/albedo estimations for TNOs with H⩽5.5 than just assuming p=0.04. Nevertheless, considering low statistics, the value p=0.04 sounds still convenient for H>5.5 non-binary TNOs as a group. We also discuss about physical processes (e.g., collisions, intrinsic activity and the presence of tenuous atmospheres) responsible for the increase of albedo among large bodies. Currently, all big TNOs (>700 km) would be capable to sustain thin atmospheres or icy frosts composed of CH 4, CO or N 2 even for body bulk densities as low as 0.5 g cm -3. A size-dependent albedo has important consequences for the TNOs size distribution, cumulative luminosity function and total mass estimations. According to our analysis, the latter can be reduced up to 50% if higher albedos are common among large bodies. Lastly, by analyzing orbital properties of classical TNOs ( 42AUbodies. For both populations, distinct absolute magnitude distributions are maximized for an inclination threshold

  7. Dissociating object-based from egocentric transformations in mental body rotation: effect of stimuli size.

    Science.gov (United States)

    Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne

    2018-01-01

    The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.

  8. Functional Object Analysis

    DEFF Research Database (Denmark)

    Raket, Lars Lau

    We propose a direction it the field of statistics which we will call functional object analysis. This subfields considers the analysis of functional objects defined on continuous domains. In this setting we will focus on model-based statistics, with a particularly emphasis on mixed......-effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high...

  9. The influence of object relative size on priming and explicit memory.

    Science.gov (United States)

    Uttl, Bob; Graf, Peter; Siegenthaler, Amy L

    2008-09-01

    We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views.

  10. The influence of object relative size on priming and explicit memory.

    Directory of Open Access Journals (Sweden)

    Bob Uttl

    Full Text Available We investigated the effects of object relative size on priming and explicit memory for color photos of common objects. Participants were presented with color photos of pairs of objects displayed in either appropriate or inappropriate relative sizes. Implicit memory was assessed by speed of object size ratings whereas explicit memory was assessed by an old/new recognition test. Study-to-test changes in relative size reduced both priming and explicit memory and had large effects for objects displayed in large vs. small size at test. Our findings of substantial size-specific influences on priming with common objects under some but not other conditions are consistent with instance views of object perception and priming but inconsistent with structural description views.

  11. Size Does Matter: Implied Object Size is Mentally Simulated During Language Comprehension

    NARCIS (Netherlands)

    de Koning, Bjorn B.; Wassenburg, Stephanie I.; Bos, Lisanne T.; Van der Schoot, Menno

    2017-01-01

    Embodied theories of language comprehension propose that readers construct a mental simulation of described objects that contains perceptual characteristics of their real-world referents. The present study is the first to investigate directly whether implied object size is mentally simulated during

  12. Reasoning about Function Objects

    Science.gov (United States)

    Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian

    Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.

  13. Decreased attention to object size information in scale errors performers.

    Science.gov (United States)

    Grzyb, Beata J; Cangelosi, Angelo; Cattani, Allegra; Floccia, Caroline

    2017-05-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children's decreased attention to object size information. This study investigated the attention to object size information in scale errors performers. Two groups of children aged 18-25 months (N=52) and 48-60 months (N=23) were tested in two consecutive tasks: an action task that replicated the original scale errors elicitation situation, and a looking task that involved watching on a computer screen actions performed with adequate to inadequate size object. Our key finding - that children performing scale errors in the action task subsequently pay less attention to size changes than non-scale errors performers in the looking task - suggests that the origins of scale errors in childhood operate already at the perceptual level, and not at the action level. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Decreased attention to object size information in scale errors performers

    NARCIS (Netherlands)

    Grzyb, B.J.; Cangelosi, A.; Cattani, A.; Floccia, C.

    2017-01-01

    Young children sometimes make serious attempts to perform impossible actions on miniature objects as if they were full-size objects. The existing explanations of these curious action errors assume (but never explicitly tested) children’s decreased attention to object size information. This study

  15. INITIAL PLANETESIMAL SIZES AND THE SIZE DISTRIBUTION OF SMALL KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Schlichting, Hilke E.; Fuentes, Cesar I.; Trilling, David E.

    2013-01-01

    The Kuiper Belt is a remnant from the early solar system and its size distribution contains many important constraints that can be used to test models of planet formation and collisional evolution. We show, by comparing observations with theoretical models, that the observed Kuiper Belt size distribution is well matched by coagulation models, which start with an initial planetesimal population with radii of about 1 km, and subsequent collisional evolution. We find that the observed size distribution above R ∼ 30 km is primordial, i.e., it has not been modified by collisional evolution over the age of the solar system, and that the size distribution below R ∼ 30 km has been modified by collisions and that its slope is well matched by collisional evolution models that use published strength laws. We investigate in detail the resulting size distribution of bodies ranging from 0.01 km to 30 km and find that its slope changes several times as a function of radius before approaching the expected value for an equilibrium collisional cascade of material strength dominated bodies for R ∼< 0.1 km. Compared to a single power-law size distribution that would span the whole range from 0.01 km to 30 km, we find in general a strong deficit of bodies around R ∼ 10 km and a strong excess of bodies around 2 km in radius. This deficit and excess of bodies are caused by the planetesimal size distribution left over from the runaway growth phase, which left most of the initial mass in small planetesimals while only a small fraction of the total mass is converted into large protoplanets. This excess mass in small planetesimals leaves a permanent signature in the size distribution of small bodies that is not erased after 4.5 Gyr of collisional evolution. Observations of the small Kuiper Belt Object (KBO) size distribution can therefore test if large KBOs grew as a result of runaway growth and constrained the initial planetesimal sizes. We find that results from recent KBO

  16. Effect of objective function on multi-objective inverse planning of radiation therapy

    International Nuclear Information System (INIS)

    Li Guoli; Wu Yican; Song Gang; Wang Shifang

    2006-01-01

    There are two kinds of objective functions in radiotherapy inverse planning: dose distribution-based and Dose-Volume Histogram (DVH)-based functions. The treatment planning in our days is still a trial and error process because the multi-objective problem is solved by transforming it into a single objective problem using a specific set of weights for each object. This work investigates the problem of objective function setting based on Pareto multi-optimization theory, and compares the effect on multi-objective inverse planning of those two kinds of objective functions including calculation time, converge speed, etc. The basis of objective function setting on inverse planning is discussed. (authors)

  17. Object size effects on initial lifting forces under microgravity conditions

    NARCIS (Netherlands)

    Kingma, I.; Savelsbergh, G.J.P.; Toussaint, H.M.

    1999-01-01

    Individuals usually report for two objects of equal mass but different volume that the larger object feels lighter. This so-called size-weight illusion has been investigated for more than a century. The illusion is accompanied by increased forces, used to lift the larger object, resulting in a

  18. IMRT optimization with pseudo-biologic objective function

    International Nuclear Information System (INIS)

    Yi, B. Y.; Ahn, S. D.; Kim, J. H.; Lee, S. W.; Choi, E. K.

    2002-01-01

    The pseudo-biologic objective function has been proposed for the IMRT optimization. It is similar to the biological objective function in mathematical shape, but uses physical parameters. The pseudo-biologic objective function concept is consisted of the target coverage index (TCI) and the organ score index (OSI), was introduced. The TCI was expressed as the sum of all of the weighted bins of target dose volume histogram (DVH). The weights were given as the normal distribution of which the average is 100 % and the standard deviation is ±. The OSI was expressed as similar way. The average of the normal distribution was 0% of the dose and that of standard deviation was selected as a function of limiting dose and its importance. The objective function could be calculated as the product of the TCI and OSI's. The RTP Tool Box (RTB) was used for this study. The constraints applied in the optimization was intuitively clinical experience based numbers, while the physical objective function asks just numbers which are not necessarily based on the clinic, and the parameters for the biologic objective functions are uncertain. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. We could show that the pseudo-biologic function can be used for an IMRT objective function on behalf of the biological objective function

  19. The Density of Mid-sized Kuiper Belt Objects from ALMA Thermal Observations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Michael E. [California Institute of Technology, 1200 E California Blvd., Pasadena CA 91125 (United States); Butler, Bryan J. [National Radio Astronomy Observatory, 1003 Lopezville Rd., Socorro NM 87801 (United States)

    2017-07-01

    The densities of mid-sized Kuiper Belt objects (KBOs) are a key constraint in understanding the assembly of objects in the outer solar system. These objects are critical for understanding the currently unexplained transition from the smallest KBOs with densities lower than that of water, to the largest objects with significant rock content. Mapping this transition is made difficult by the uncertainties in the diameters of these objects, which maps into an even larger uncertainty in volume and thus density. The substantial collecting area of the Atacama Large Millimeter Array allows significantly more precise measurements of thermal emission from outer solar system objects and could potentially greatly improve the density measurements. Here we use new thermal observations of four objects with satellites to explore the improvements possible with millimeter data. We find that effects due to effective emissivity at millimeter wavelengths make it difficult to use the millimeter data directly to find diameters and thus volumes for these bodies. In addition, we find that when including the effects of model uncertainty, the true uncertainties on the sizes of outer solar system objects measured with radiometry are likely larger than those previously published. Substantial improvement in object sizes will likely require precise occultation measurements.

  20. The impact of death awareness on sizes of self-representational objects.

    Science.gov (United States)

    McCabe, Simon; Vail, Kenneth E; Arndt, Jamie

    2018-01-01

    People seem to have a tendency to increase the relative size of self-representational objects. Prior research suggests that motivational factors may fuel that tendency, so the present research built from terror management theory to examine whether existential motivations - engendered by concerns about death - may have similar implications for self-relevant size biases. Specifically, across two studies (total N = 288), we hypothesized that reminders of death would lead participants to inflate the size of self-representational objects. Both studies suggested that relative to reminders of pain, mortality salience led participants to construct larger clay sculptures of themselves (vs. others; Study 1) and a larger ostensible video game avatar for the self (vs. others; Study 2). © 2017 The British Psychological Society.

  1. Mid-level perceptual features distinguish objects of different real-world sizes.

    Science.gov (United States)

    Long, Bria; Konkle, Talia; Cohen, Michael A; Alvarez, George A

    2016-01-01

    Understanding how perceptual and conceptual representations are connected is a fundamental goal of cognitive science. Here, we focus on a broad conceptual distinction that constrains how we interact with objects--real-world size. Although there appear to be clear perceptual correlates for basic-level categories (apples look like other apples, oranges look like other oranges), the perceptual correlates of broader categorical distinctions are largely unexplored, i.e., do small objects look like other small objects? Because there are many kinds of small objects (e.g., cups, keys), there may be no reliable perceptual features that distinguish them from big objects (e.g., cars, tables). Contrary to this intuition, we demonstrated that big and small objects have reliable perceptual differences that can be extracted by early stages of visual processing. In a series of visual search studies, participants found target objects faster when the distractor objects differed in real-world size. These results held when we broadly sampled big and small objects, when we controlled for low-level features and image statistics, and when we reduced objects to texforms--unrecognizable textures that loosely preserve an object's form. However, this effect was absent when we used more basic textures. These results demonstrate that big and small objects have reliably different mid-level perceptual features, and suggest that early perceptual information about broad-category membership may influence downstream object perception, recognition, and categorization processes. (c) 2015 APA, all rights reserved).

  2. Scaling of lifting forces in relation to object size in whole body lifting

    NARCIS (Netherlands)

    Kingma, I.; van Dieen, J.H.; Toussaint, H.M.

    2005-01-01

    Subjects prepare for a whole body lifting movement by adjusting their posture and scaling their lifting forces to the expected object weight. The expectancy is based on visual and haptic size cues. This study aimed to find out whether lifting force overshoots related to object size cues disappear or

  3. From Functions to Object-Orientation by Abstraction

    OpenAIRE

    Diertens, Bob

    2012-01-01

    In previous work we developed a framework of computational models for function and object execution. The models on an higher level of abstraction in this framework allow for concurrent execution of functions and objects. We show that the computational model for object execution complies with the fundamentals of object-orientation.

  4. Positron emission mammography (PEM): Effect of activity concentration, object size, and object contrast on phantom lesion detection

    International Nuclear Information System (INIS)

    MacDonald, Lawrence R.; Wang, Carolyn L.; Eissa, Marna; Haseley, David; Kelly, Mary M.; Liu, Franklin; Parikh, Jay R.; Beatty, J. David; Rogers, James V.

    2012-01-01

    Purpose: To characterize the relationship between lesion detection sensitivity and injected activity as a function of lesion size and contrast on the PEM (positron emission mammography) Flex Solo II scanner using phantom experiments. Methods: Phantom lesions (spheres 4, 8, 12, 16, and 20 mm diameter) were randomly located in uniform background. Sphere activity concentrations were 3 to 21 times the background activity concentration (BGc). BGc was a surrogate for injected activity; BGc ranged from 0.44–4.1 kBq/mL, corresponding to 46–400 MBq injections. Seven radiologists read 108 images containing zero, one, or two spheres. Readers used a 5-point confidence scale to score the presence of spheres. Results: Sensitivity was 100% for lesions ≥12 mm under all conditions except for one 12 mm sphere with the lowest contrast and lowest BGc (60% sensitivity). Sensitivity was 100% for 8 mm spheres when either contrast or BGc was high, and 100% for 4 mm spheres only when both contrast and BGc were highest. Sphere contrast recovery coefficients (CRC) were 49%, 34%, 26%, 14%, and 2.8% for the largest to smallest spheres. Cumulative specificity was 98%. Conclusions: Phantom lesion detection sensitivity depends more on sphere size and contrast than on BGc. Detection sensitivity remained ≥90% for injected activities as low as 100 MBq, for lesions ≥8 mm. Low CRC in 4 mm objects results in moderate detection sensitivity even for 400 MBq injected activity, making it impractical to optimize injected activity for such lesions. Low CRC indicates that when lesions <8 mm are observed on PEM images they are highly tracer avid with greater potential of clinical significance. High specificity (98%) suggests that image statistical noise does not lead to false positive findings. These results apply to the 85 mm thick object used to obtain them; lesion detectability should be better (worse) for thinner (thicker) objects based on the reduced (increased) influence of photon attenuation.

  5. MODELING PARTICLE SIZE DISTRIBUTION IN HETEROGENEOUS POLYMERIZATION SYSTEMS USING MULTIMODAL LOGNORMAL FUNCTION

    Directory of Open Access Journals (Sweden)

    J. C. Ferrari

    Full Text Available Abstract This work evaluates the usage of the multimodal lognormal function to describe Particle Size Distributions (PSD of emulsion and suspension polymerization processes, including continuous reactions with particle re-nucleation leading to complex multimodal PSDs. A global optimization algorithm, namely Particle Swarm Optimization (PSO, was used for parameter estimation of the proposed model, minimizing the objective function defined by the mean squared errors. Statistical evaluation of the results indicated that the multimodal lognormal function could describe distinctive features of different types of PSDs with accuracy and consistency.

  6. X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model.

    Science.gov (United States)

    Gasilov, Sergei V; Coan, Paola

    2012-09-01

    Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

  7. Introducing micrometer-sized artificial objects into live cells: a method for cell-giant unilamellar vesicle electrofusion.

    Directory of Open Access Journals (Sweden)

    Akira C Saito

    Full Text Available Here, we report a method for introducing large objects of up to a micrometer in diameter into cultured mammalian cells by electrofusion of giant unilamellar vesicles. We prepared GUVs containing various artificial objects using a water-in-oil (w/o emulsion centrifugation method. GUVs and dispersed HeLa cells were exposed to an alternating current (AC field to induce a linear cell-GUV alignment, and then a direct current (DC pulse was applied to facilitate transient electrofusion. With uniformly sized fluorescent beads as size indexes, we successfully and efficiently introduced beads of 1 µm in diameter into living cells along with a plasmid mammalian expression vector. Our electrofusion did not affect cell viability. After the electrofusion, cells proliferated normally until confluence was reached, and the introduced fluorescent beads were inherited during cell division. Analysis by both confocal microscopy and flow cytometry supported these findings. As an alternative approach, we also introduced a designed nanostructure (DNA origami into live cells. The results we report here represent a milestone for designing artificial symbiosis of functionally active objects (such as micro-machines in living cells. Moreover, our technique can be used for drug delivery, tissue engineering, and cell manipulation.

  8. Validity of single-cycle objective functions for multicycle reload design optimization

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; McElroy, J.; Turinsky, P.J.

    1993-01-01

    Beyond the equilibrium cycle scoping calculations used for determining numbers of feed assemblies and enrichment estimates, multicycle reload design currently consists of stagewise optimization of single-cycle core loading patterns, typically extending over a short-term planning horizon of perhaps three reload cycles. Particularly in transition cycles, however, optimizing a loading pattern over a single cycle for a stated objective, such as minimum core leakage, may have an adverse impact on subsequent cycles. The penalties paid may be in the form of reduced thermal margin or an increase in feed enrichment due to insufficient reactivity carryover from the open-quotes optimizedclose quotes cycle. In view of current practices, a study was performed that examined the behavior of the loading pattern as a function of the objective functions selected as implemented in the stagewise optimization of single-cycle core loading patterns from initial transition cycle through equilibrium using the FORMOSA-P code. The objective functions studied were region average discharge burnup maximization (with enrichment search) and feed enrichment minimization. It is noted at the beginning that the maximization of region average discharge has no meaning for the equilibrium cycle because region average discharge burnup is explicitly set by the feed size and cycle length independent of the loading pattern. In the nonequilibrium cycle, however, it was reasoned that this objective would provide the maximum reactivity carryover throughout the transition and thus have a direct effect on minimizing the multicycle levelized fuel cost

  9. Linear regression methods a ccording to objective functions

    OpenAIRE

    Yasemin Sisman; Sebahattin Bektas

    2012-01-01

    The aim of the study is to explain the parameter estimation methods and the regression analysis. The simple linear regressionmethods grouped according to the objective function are introduced. The numerical solution is achieved for the simple linear regressionmethods according to objective function of Least Squares and theLeast Absolute Value adjustment methods. The success of the appliedmethods is analyzed using their objective function values.

  10. Full Waveform Inversion Using an Energy-Based Objective Function with Efficient Calculation of the Gradient

    KAUST Repository

    Choi, Yun Seok

    2017-05-26

    Full waveform inversion (FWI) using an energy-based objective function has the potential to provide long wavelength model information even without low frequency in the data. However, without the back-propagation method (adjoint-state method), its implementation is impractical for the model size of general seismic survey. We derive the gradient of the energy-based objective function using the back-propagation method to make its FWI feasible. We also raise the energy signal to the power of a small positive number to properly handle the energy signal imbalance as a function of offset. Examples demonstrate that the proposed FWI algorithm provides a convergent long wavelength structure model even without low-frequency information, which can be used as a good starting model for the subsequent conventional FWI.

  11. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Science.gov (United States)

    Linkenauger, Sally A; Leyrer, Markus; Bülthoff, Heinrich H; Mohler, Betty J

    2013-01-01

    The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  12. Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

    Directory of Open Access Journals (Sweden)

    Sally A Linkenauger

    Full Text Available The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

  13. Impact of Base Functional Component Types on Software Functional Size based Effort Estimation

    OpenAIRE

    Gencel, Cigdem; Buglione, Luigi

    2008-01-01

    Software effort estimation is still a significant challenge for software management. Although Functional Size Measurement (FSM) methods have been standardized and have become widely used by the software organizations, the relationship between functional size and development effort still needs further investigation. Most of the studies focus on the project cost drivers and consider total software functional size as the primary input to estimation models. In this study, we investigate whether u...

  14. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.

    Science.gov (United States)

    Kurek, Wojciech; Ostfeld, Avi

    2013-01-30

    A multi-objective methodology utilizing the Strength Pareto Evolutionary Algorithm (SPEA2) linked to EPANET for trading-off pumping costs, water quality, and tanks sizing of water distribution systems is developed and demonstrated. The model integrates variable speed pumps for modeling the pumps operation, two water quality objectives (one based on chlorine disinfectant concentrations and one on water age), and tanks sizing cost which are assumed to vary with location and diameter. The water distribution system is subject to extended period simulations, variable energy tariffs, Kirchhoff's laws 1 and 2 for continuity of flow and pressure, tanks water level closure constraints, and storage-reliability requirements. EPANET Example 3 is employed for demonstrating the methodology on two multi-objective models, which differ in the imposed water quality objective (i.e., either with disinfectant or water age considerations). Three-fold Pareto optimal fronts are presented. Sensitivity analysis on the storage-reliability constraint, its influence on pumping cost, water quality, and tank sizing are explored. The contribution of this study is in tailoring design (tank sizing), pumps operational costs, water quality of two types, and reliability through residual storage requirements, in a single multi-objective framework. The model was found to be stable in generating multi-objective three-fold Pareto fronts, while producing explainable engineering outcomes. The model can be used as a decision tool for both pumps operation, water quality, required storage for reliability considerations, and tank sizing decision-making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method

    Directory of Open Access Journals (Sweden)

    Suzana Uran

    2017-06-01

    Full Text Available There have been recent developments in grippers that are based on capillary force and condensed water droplets. These are used for manipulating micro-sized objects. Recently, one-finger grippers have been produced that are able to reliably grip using the capillary force. To release objects, either the van der Waals, gravitational or inertial-forces method is used. This article presents methods for reliably gripping and releasing micro-objects using the capillary force. The moisture from the surrounding air is condensed into a thin layer of water on the contact surfaces of the objects. From the thin layer of water, a water meniscus between the micro-sized object, the gripper and the releasing surface is created. Consequently, the water meniscus between the object and the releasing surface produces a high enough capillary force to release the micro-sized object from the tip of the one-finger gripper. In this case, either polystyrene, glass beads with diameters between 5–60 µm, or irregularly shaped dust particles of similar sizes were used. 3D structures made up of micro-sized objects could be constructed using this method. This method is reliable for releasing during assembly and also for gripping, when the objects are removed from the top of the 3D structure—the so-called “disassembling gripping” process. The accuracy of the release was lower than 0.5 µm.

  16. Visual SLAM and Moving-object Detection for a Small-size Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Yin-Tien Wang

    2010-09-01

    Full Text Available In the paper, a novel moving object detection (MOD algorithm is developed and integrated with robot visual Simultaneous Localization and Mapping (vSLAM. The moving object is assumed to be a rigid body and its coordinate system in space is represented by a position vector and a rotation matrix. The MOD algorithm is composed of detection of image features, initialization of image features, and calculation of object coordinates. Experimentation is implemented on a small-size humanoid robot and the results show that the performance of the proposed algorithm is efficient for robot visual SLAM and moving object detection.

  17. Small Size and Low Cost UHF RFID Tag Antenna Mountable on Metallic Objects

    Directory of Open Access Journals (Sweden)

    Sergio López-Soriano

    2015-01-01

    Full Text Available Reducing tag size while maintaining good performance is one of the major challenges in radio-frequency identification applications (RFID, in particular when labeling metallic objects. In this contribution, a small size and low cost tag antenna for identifying metal objects in the European UHF band (865–868 MHz is presented. The antenna consists of a transmission line mounted on an inexpensive thin dielectric which is proximity-coupled to a short-ended patch mounted on FR4 substrate. The overall dimensions of the tag are 33.5 × 30 × 3.1 mm. Experimental results show that, for an EIRP of 3.2 W (European regulations, such a small and cheap tag attains read ranges of about 5 m when attached to a metallic object.

  18. Determination of size distribution function

    International Nuclear Information System (INIS)

    Teshome, A.; Spartakove, A.

    1987-05-01

    The theory of a method is outlined which gives the size distribution function (SDF) of a polydispersed system of non-interacting colloidal and microscopic spherical particles, having sizes in the range 0-10 -5 cm., from a gedanken experimental scheme. It is assumed that the SDF is differentiable and the result is obtained for rotational frequency in the order of 10 3 (sec) -1 . The method may be used independently, but is particularly useful in conjunction with an alternate method described in a preceding paper. (author). 8 refs, 2 figs

  19. Holding an object one is looking at : Kinesthetic information on the object's distance does not improve visual judgments of its size

    NARCIS (Netherlands)

    Brenner, Eli; Van Damme, Wim J.M.; Smeets, Jeroen B.J.

    1997-01-01

    Visual judgments of distance are often inaccurate. Nevertheless, information on distance must be procured if retinal image size is to be used to judge an object's dimensions. In the present study, we examined whether kinesthetic information about an object's distance - based on the posture of the

  20. The nanosizing of fluorescent objects by 458 nm spatially modulated illumination microscopy using a simplified size evaluation algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Andreas; Wagner, Christian; Cremer, Christoph [Kirchhoff-Institute for Physics of the University, Im Neuenheimer Feld 227, 69120 Heidelberg (Germany)

    2004-07-07

    In fluorescent light microscopy, structured illumination approaches have emerged as a novel tool to analyse subwavelength sized objects in thick transparent specimens. In this report, new size measurements ('nanosizing') of small subwavelength sized fluorescent objects applying spatially modulated illumination (SMI) microscopy with an excitation wavelength of {lambda}{sub ex} 458 nm are presented. These measurements were made using fluorescent particles with a given diameter. From the SMI data achieved, the size (diameter) was determined using special calibration curves derived from analytical considerations assuming a Gaussian dye distribution within the object. The results showed that with SMI microscopy combined with suitable calibration, size measurements of objects considerably smaller than the epifluorescent optical resolution at {lambda}{sub ex} = 458 nm are feasible.

  1. Quantitative optical trapping and optical manipulation of micro-sized objects

    Directory of Open Access Journals (Sweden)

    Rania Sayed

    2017-10-01

    Full Text Available An optical tweezers technique is used for ultraprecise micromanipulation to measure positions of micrometer scale objects with a precision down to the nanometer scale. It consists of a high performance research microscope with motorized scanning stage and sensitive position detection system. Up to 10 traps can be used quasi-simultaneously. Non photodamage optical trapping of Escherichia coli (E. coli bacteria cells of 2 µm in length, as an example of motile bacteria, has been shown in this paper. Also, efficient optical trapping and rotation of polystyrene latex particles of 3 µm in diameter have been studied, as an optical handle for the pick and place of other tiny objects. A fast galvoscanner is used to produce multiple optical traps for manipulation of micro-sized objects and optical forces of these trapped objects quantified and measured according to explanation of ray optics regime. The diameter of trapped particle is bigger than the wavelength of the trapping laser light. The force constant (k has been determined in real time from the positional time series recorded from the trapped object that is monitored by a CCD camera through a personal computer.

  2. Functional activation of the infant cortex during object processing.

    Science.gov (United States)

    Wilcox, Teresa; Stubbs, Jessica; Hirshkowitz, Amy; Boas, David A

    2012-09-01

    A great deal is known about the functional organization of the neural structures that mediate visual object processing in the adult observer. These findings have contributed significantly to our conceptual models of object recognition and identification and provided unique insight into the nature of object representations extracted from visual input. In contrast, little is known about the neural basis of object processing in the infant. The current research used near-infrared spectroscopy (NIRS) as a neuroimaging tool to investigate functional activation of the infant cortex during an object processing task that has been used extensively with infants. The neuroimaging data revealed that the infant cortex is functionally specialized for object processing (i.e., individuation-by-feature) early in the first year but that patterns of activation also change between 3 and 12 months. These changes may reflect functional reorganization of the immature cortex or age-related differences in the cognitive processes engaged during the task. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Conflict between object structural and functional affordances in peripersonal space.

    Science.gov (United States)

    Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann

    2016-10-01

    Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A POSSIBLE DIVOT IN THE SIZE DISTRIBUTION OF THE KUIPER BELT'S SCATTERING OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Shankman, C.; Gladman, B. J. [Department of Physics and Astronomy, University of British Columbia, 6224 Agriculture Road, Vancouver, BC V6T 1Z1 (Canada); Kaib, N. [Department of Physics and Astronomy, Queens University (Canada); Kavelaars, J. J. [National Research Council of Canada, Victoria, BC V9E 2E7 (Canada); Petit, J. M. [Institut UTINAM, CNRS-Universite de Franche-Comte, Besancon (France)

    2013-02-10

    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we explore the scattering-object (SO) size distribution. Although for D > 100 km the number of objects quickly rise as diameters decrease, we find a relative lack of smaller objects, ruling out a single power law at greater than 99% confidence. After studying traditional ''knees'' in the size distribution, we explore other formulations and find that, surprisingly, our analysis is consistent with a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, which then rises again as a power law. Motivated by other dynamically hot populations and the Centaurs, we argue for a divot size distribution where the number of smaller objects rises again as expected via collisional equilibrium. Extrapolation yields enough kilometer-scale SOs to supply the nearby Jupiter-family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now ''frozen in'' to portions of the Kuiper Belt sharing a ''hot'' orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's SO inclination distribution, the supply source that was scattered outward must have already been vertically heated to the of order 10 Degree-Sign .

  5. Modularity-like objective function in annotated networks

    Science.gov (United States)

    Xie, Jia-Rong; Wang, Bing-Hong

    2017-12-01

    We ascertain the modularity-like objective function whose optimization is equivalent to the maximum likelihood in annotated networks. We demonstrate that the modularity-like objective function is a linear combination of modularity and conditional entropy. In contrast with statistical inference methods, in our method, the influence of the metadata is adjustable; when its influence is strong enough, the metadata can be recovered. Conversely, when it is weak, the detection may correspond to another partition. Between the two, there is a transition. This paper provides a concept for expanding the scope of modularity methods.

  6. Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems

    International Nuclear Information System (INIS)

    Stipanović, Dušan M.; Tomlin, Claire J.; Leitmann, George

    2012-01-01

    In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.

  7. Monotone Approximations of Minimum and Maximum Functions and Multi-objective Problems

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Dusan M., E-mail: dusan@illinois.edu [University of Illinois at Urbana-Champaign, Coordinated Science Laboratory, Department of Industrial and Enterprise Systems Engineering (United States); Tomlin, Claire J., E-mail: tomlin@eecs.berkeley.edu [University of California at Berkeley, Department of Electrical Engineering and Computer Science (United States); Leitmann, George, E-mail: gleit@berkeley.edu [University of California at Berkeley, College of Engineering (United States)

    2012-12-15

    In this paper the problem of accomplishing multiple objectives by a number of agents represented as dynamic systems is considered. Each agent is assumed to have a goal which is to accomplish one or more objectives where each objective is mathematically formulated using an appropriate objective function. Sufficient conditions for accomplishing objectives are derived using particular convergent approximations of minimum and maximum functions depending on the formulation of the goals and objectives. These approximations are differentiable functions and they monotonically converge to the corresponding minimum or maximum function. Finally, an illustrative pursuit-evasion game example with two evaders and two pursuers is provided.

  8. Forging of metallic nano-objects for the fabrication of submicron-size components

    International Nuclear Information System (INIS)

    Roesler, J; Mukherji, D; Schock, K; Kleindiek, S

    2007-01-01

    In recent years, nanoscale fabrication has developed considerably, but the fabrication of free-standing nanosize components is still a great challenge. The fabrication of metallic nanocomponents utilizing three basic steps is demonstrated here. First, metallic alloys are used as factories to produce a metallic raw stock of nano-objects/nanoparticles in large numbers. These objects are then isolated from the powder containing thousands of such objects inside a scanning electron microscope using manipulators, and placed on a micro-anvil or a die. Finally, the shape of the individual nano-object is changed by nanoforging using a microhammer. In this way free-standing, high-strength, metallic nano-objects may be shaped into components with dimensions in the 100 nm range. By assembling such nanocomponents, high-performance microsystems can be fabricated, which are truly in the micrometre scale (the size ratio of a system to its component is typically 10:1)

  9. X-ray image processing software for computing object size and object location coordinates from acquired optical and x-ray images

    International Nuclear Information System (INIS)

    Tiwari, Akash; Tiwari, Shyam Sunder; Tiwari, Railesha; Panday, Lokesh; Panday, Jeet; Suri, Nitin

    2004-01-01

    X-ray and Visible image data processing software has been developed in Visual Basic for real time online and offline image information processing for NDT and Medical Applications. Software computes two dimension image size parameters from its sharp boundary lines by raster scanning the image contrast data. Code accepts bit map image data and hunts for multiple tumors of different sizes that may be present in the image definition and then computes size of each tumor and locates its approximate center for registering its location coordinates. Presence of foreign metal and glass balls industrial product such as chocolate and other food items imaged out using x-ray imaging technique are detected by the software and their size and position co-ordinates are computed by the software. Paper discusses ways and means to compute size and coordinated of air bubble like objects present in the x-ray and optical images and their multiple existences in image of interest. (author)

  10. What Grasps and Holds 8-Month-Old Infants' Looking Attention? The Effects of Object Size and Depth Cues

    OpenAIRE

    Guan, Yu; Corbetta, Daniela

    2012-01-01

    The current eye-tracking study explored the relative impact of object size and depth cues on 8-month-old infants' visual attention processes. A series of slides containing 3 objects of either different or same size were displayed on backgrounds with varying depth cues. The distribution of infants' first looks (a measure of initial attention switch) and infants' looking durations (a measure of sustained attention) at the objects were analyzed. Results revealed that the large objects captured i...

  11. Automated x-ray television complex for inspecting standard-size dynamic objects

    International Nuclear Information System (INIS)

    Gusev, E.A.; Luk'yanenko, E.A.; Chelnokov, V.B.; Kuleshov, V.K.; Alkhimov, Yu.V.

    1993-01-01

    An automated x-ray television complex based on a matrix gas-discharge converter having a large area (2.1 x 1.0 m) for inspecting standard-size freight and containers and for diagnosing industrial articles is presented. The pulsed operating mode of the complex with a 512K digital television storage makes it possible to inspect dynamic objects with a minimum dose load (20--100 μR). 6 refs., 5 figs

  12. The non-linear relationship between body size and function in parrotfishes

    Science.gov (United States)

    Lokrantz, J.; Nyström, M.; Thyresson, M.; Johansson, C.

    2008-12-01

    Parrotfishes are a group of herbivores that play an important functional role in structuring benthic communities on coral reefs. Increasingly, these fish are being targeted by fishermen, and resultant declines in biomass and abundance may have severe consequences for the dynamics and regeneration of coral reefs. However, the impact of overfishing extends beyond declining fish stocks. It can also lead to demographic changes within species populations where mean body size is reduced. The effect of reduced mean body size on population dynamics is well described in literature but virtually no information exists on how this may influence important ecological functions. The study investigated how one important function, scraping (i.e., the capacity to remove algae and open up bare substratum for coral larval settlement), by three common species of parrotfishes ( Scarus niger, Chlorurus sordidus, and Chlorurus strongylocephalus) on coral reefs at Zanzibar (Tanzania) was influenced by the size of individual fishes. There was a non-linear relationship between body size and scraping function for all species examined, and impact through scraping was also found to increase markedly when fish reached a size of 15 20 cm. Thus, coral reefs which have a high abundance and biomass of parrotfish may nonetheless be functionally impaired if dominated by small-sized individuals. Reductions in mean body size within parrotfish populations could, therefore, have functional impacts on coral reefs that previously have been overlooked.

  13. Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, O.; Moreno, F.; Guirado, D.; Escobar-Cerezo, J. [Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomía s/n, E-18008 Granada (Spain); Vargas-Martín, F. [Department of Electromagnetism and Electronics, University of Murcia, E-30100 Murcia (Spain); Min, M. [SRON Netherlands Institute for Space Research, Sobornnelaan 2, 3584 CA Utrecht (Netherlands); Hovenier, J. W. [Astronomical Institute “Anton Pannekoek,” University of Amsterdam, Science Park 904, 1098 XH, Amsterdam (Netherlands)

    2017-09-01

    We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

  14. From tomography to FWI with a single objective function

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Reflections in our seismic data induce serious nonlinear behavior in the objective function of full waveform inversion (FWI). Thus, without a good initial velocity model, that can produce the reflections within a cycle of the frequency used in the inversion, convergence to the solution becomes hard. Such velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, that are not guaranteed to adhere to the FWI requirements. As such, we promote an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase based attribute of the wavefield, along with its phase unwrapping features, provide a frequency dependent traveltime function. With strong damping of the of the synthetic, potentially low frequency, data, this attribute admits first arrival traveltime that could be compared with picked ones from the observed data, like in wave equation tomography. As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped in an FWI type inversion. It, thus, provides a single objective function and a natural transition from traveltime tomography to full waveform inversion. A Marmousi example demonstrates the effectiveness of the approach.

  15. Functional imaging of human crossmodal identification and object recognition

    NARCIS (Netherlands)

    Amedi, A; von Kriegstein, K; van Atteveldt, N M; Beauchamp, M S; Naumer, M J

    2005-01-01

    The perception of objects is a cognitive function of prime importance. In everyday life, object perception benefits from the coordinated interplay of vision, audition, and touch. The different sensory modalities provide both complementary and redundant information about objects, which may improve

  16. An Effect Size Measure for Raju's Differential Functioning for Items and Tests

    Science.gov (United States)

    Wright, Keith D.; Oshima, T. C.

    2015-01-01

    This study established an effect size measure for differential functioning for items and tests' noncompensatory differential item functioning (NCDIF). The Mantel-Haenszel parameter served as the benchmark for developing NCDIF's effect size measure for reporting moderate and large differential item functioning in test items. The effect size of…

  17. Density-functional errors in ionization potential with increasing system size

    Energy Technology Data Exchange (ETDEWEB)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  18. GRAIN-SIZE MEASUREMENTS OF FLUVIAL GRAVEL BARS USING OBJECT-BASED IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Pedro Castro

    2018-01-01

    Full Text Available Traditional techniques for classifying the average grain size in gravel bars require manual measurements of each grain diameter. Aiming productivity, more efficient methods have been developed by applying remote sensing techniques and digital image processing. This research proposes an Object-Based Image Analysis methodology to classify gravel bars in fluvial channels. First, the study evaluates the performance of multiresolution segmentation algorithm (available at the software eCognition Developer in performing shape recognition. The linear regression model was applied to assess the correlation between the gravels’ reference delineation and the gravels recognized by the segmentation algorithm. Furthermore, the supervised classification was validated by comparing the results with field data using the t-statistic test and the kappa index. Afterwards, the grain size distribution in gravel bars along the upper Bananeiras River, Brazil was mapped. The multiresolution segmentation results did not prove to be consistent with all the samples. Nonetheless, the P01 sample showed an R2 =0.82 for the diameter estimation and R2=0.45 the recognition of the eliptical ft. The t-statistic showed no significant difference in the efficiencies of the grain size classifications by the field survey data and the Object-based supervised classification (t = 2.133 for a significance level of 0.05. However, the kappa index was 0.54. The analysis of the both segmentation and classification results did not prove to be replicable.

  19. Effect of object functions on tomographic reconstruction a numerical study

    International Nuclear Information System (INIS)

    Babu Rao, C.; Baldev Raj; Ravichandran, V.S.; Munshi, P.

    1996-01-01

    Convolution back projection is the most widely used algorithm of computed tomography (CT). Theoretical studies show that under ideal conditions, the error in the reconstruction can be correlated with the second fourier space derivative of filter function and with the Laplacian of the object function. This paper looks into the second aspect of the error function. In this paper a systematic numerical study is presented on the effect to object functions on global and local errors. (author)

  20. Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems

    International Nuclear Information System (INIS)

    Lee, Se Jung; Park, Gyung Jin

    2014-01-01

    In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency

  1. A novel approach for optimum allocation of FACTS devices using multi-objective function

    International Nuclear Information System (INIS)

    Gitizadeh, M.; Kalantar, M.

    2009-01-01

    This paper presents a novel approach to find optimum type, location, and capacity of flexible alternating current transmission systems (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensator (TCSC) and static var compensator (SVC) are utilized to achieve these objectives: active power loss reduction, new introduced FACTS devices cost reduction, increase the robustness of the security margin against voltage collapse, and voltage deviation reduction. The operational and controlling constraints as well as load constraints are considered in the optimum allocation procedure. Here, a goal attainment method based on simulated annealing is used to approach the global optimum. In addition, the estimated annual load profile has been utilized to the optimum siting and sizing of FACTS devices to approach a practical solution. The standard IEEE 14-bus test system is used to validate the performance and effectiveness of the proposed method

  2. Handling of micro objects: investigation of mechanical gripper functional surfaces

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2007-01-01

    between the micro object and the gripper do not allow simple picking and releasing of the object. This effect can be overcome by modifying the functional surface of the gripper. The functional surface of the gripper was modified by different machining techniques. The results of this investigation...

  3. Mapping and Visiting in Functional and Object-oriented Programming

    DEFF Research Database (Denmark)

    Nørmark, Kurt; Thomsen, Bent; Thomsen, Lone Leth

    2008-01-01

    Mapping and visiting represent different programming styles for traversals of collections of data.  Mapping is rooted in the functional programming paradigm, and visiting is rooted in the object-oriented programming paradigm.  This paper explores the similarities and differences between mapping...... and visiting, seen across the traditions in the two different programming paradigms. The paper is concluded with recommendations for mapping and visiting in programming languages that support both the functional and the object-oriented paradigms....

  4. Platelet size and age determine platelet function independently

    International Nuclear Information System (INIS)

    Thompson, C.B.; Jakubowski, J.A.; Quinn, P.G.; Deykin, D.; Valeri, C.R.

    1984-01-01

    A study was undertaken to examine the interaction of platelet size and age in determining in vitro platelet function. Baboon megakaryocytes were labeled in vivo by the injection of 75Se-methionine. Blood was collected when the label was predominantly associated with younger platelets (day 2) and with older platelets (day 9). Size-dependent platelet subpopulations were prepared on both days by counterflow centrifugation. The reactivity of each platelet subpopulation was determined on both days by measuring thrombin-induced aggregation. Platelets were fixed after partial aggregation had occurred by the addition of EDTA/formalin. After removal of the aggregated platelets by differential centrifugation, the supernatant medium was assayed for remaining platelets and 75Se radioactivity. Comparing day 2 and day 9, no significant difference was seen in the rate of aggregation of a given subpopulation. However, aggregation was more rapid in the larger platelet fractions than in the smaller ones on both days. A greater percentage of the 75Se radioactivity appeared in the platelet aggregates on day 2 than on day 9. This effect was independent of platelet size, as it occurred to a similar extent in the unfractionated platelets and in each of the size-dependent platelet subpopulations. The data indicate that young platelets are more active than older platelets. This study demonstrates that size and age are both determinants of platelet function, but by independent mechanisms

  5. Resolving Microzooplankton Functional Groups In A Size-Structured Planktonic Model

    Science.gov (United States)

    Taniguchi, D.; Dutkiewicz, S.; Follows, M. J.; Jahn, O.; Menden-Deuer, S.

    2016-02-01

    Microzooplankton are important marine grazers, often consuming a large fraction of primary productivity. They consist of a great diversity of organisms with different behaviors, characteristics, and rates. This functional diversity, and its consequences, are not currently reflected in large-scale ocean ecological simulations. How should these organisms be represented, and what are the implications for their biogeography? We develop a size-structured, trait-based model to characterize a diversity of microzooplankton functional groups. We compile and examine size-based laboratory data on the traits, revealing some patterns with size and functional group that we interpret with mechanistic theory. Fitting the model to the data provides parameterizations of key rates and properties, which we employ in a numerical ocean model. The diversity of grazing preference, rates, and trophic strategies enables the coexistence of different functional groups of micro-grazers under various environmental conditions, and the model produces testable predictions of the biogeography.

  6. Visual search for arbitrary objects in real scenes.

    Science.gov (United States)

    Wolfe, Jeremy M; Alvarez, George A; Rosenholtz, Ruth; Kuzmova, Yoana I; Sherman, Ashley M

    2011-08-01

    How efficient is visual search in real scenes? In searches for targets among arrays of randomly placed distractors, efficiency is often indexed by the slope of the reaction time (RT) × Set Size function. However, it may be impossible to define set size for real scenes. As an approximation, we hand-labeled 100 indoor scenes and used the number of labeled regions as a surrogate for set size. In Experiment 1, observers searched for named objects (a chair, bowl, etc.). With set size defined as the number of labeled regions, search was very efficient (~5 ms/item). When we controlled for a possible guessing strategy in Experiment 2, slopes increased somewhat (~15 ms/item), but they were much shallower than search for a random object among other distinctive objects outside of a scene setting (Exp. 3: ~40 ms/item). In Experiments 4-6, observers searched repeatedly through the same scene for different objects. Increased familiarity with scenes had modest effects on RTs, while repetition of target items had large effects (>500 ms). We propose that visual search in scenes is efficient because scene-specific forms of attentional guidance can eliminate most regions from the "functional set size" of items that could possibly be the target.

  7. Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats

    Directory of Open Access Journals (Sweden)

    Nozawa E.

    2006-01-01

    Full Text Available Although echocardiography has been used in rats, few studies have determined its efficacy for estimating myocardial infarct size. Our objective was to estimate the myocardial infarct size, and to evaluate anatomic and functional variables of the left ventricle. Myocardial infarction was produced in 43 female Wistar rats by ligature of the left coronary artery. Echocardiography was performed 5 weeks later to measure left ventricular diameter and transverse area (mean of 3 transverse planes, infarct size (percentage of the arc with infarct on 3 transverse planes, systolic function by the change in fractional area, and diastolic function by mitral inflow parameters. The histologic measurement of myocardial infarction size was similar to the echocardiographic method. Myocardial infarct size ranged from 4.8 to 66.6% when determined by histology and from 5 to 69.8% when determined by echocardiography, with good correlation (r = 0.88; P < 0.05; Pearson correlation coefficient. Left ventricular diameter and mean diastolic transverse area correlated with myocardial infarct size by histology (r = 0.57 and r = 0.78; P < 0.0005. The fractional area change ranged from 28.5 ± 5.6 (large-size myocardial infarction to 53.1 ± 1.5% (control and correlated with myocardial infarct size by echocardiography (r = -0.87; P < 0.00001 and histology (r = -0.78; P < 00001. The E/A wave ratio of mitral inflow velocity for animals with large-size myocardial infarction (5.6 ± 2.7 was significantly higher than for all others (control: 1.9 ± 0.1; small-size myocardial infarction: 1.9 ± 0.4; moderate-size myocardial infarction: 2.8 ± 2.3. There was good agreement between echocardiographic and histologic estimates of myocardial infarct size in rats.

  8. Quantifying Functional Reuse from Object Oriented Requirements Specifications

    NARCIS (Netherlands)

    Condori-Fernandez, Nelly; Condori-Fernández, N.; Pastor, O; Daneva, Maia; Abran, A.; Castro, J.; Quer, C.; Carvallo, J. B.; Fernandes da Silva, L.

    2008-01-01

    Software reuse is essential in improving efficiency and productivity in the software development process. This paper analyses reuse within requirements engineering phase by taking and adapting a standard functional size measurement method, COSMIC FFP. Our proposal attempts to quantify reusability

  9. Selection of Objective Function For Imbalanced Classification: An Industrial Case Study

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Kulahci, Murat

    2017-01-01

    In this article we discuss the issue of selecting suitable objective function for Genetic Algorithm to solve an imbalanced classification problem. More precisely, first we discuss the need of specialized objective function to solve a real classification problem from our industrial partner and the...... and then we compare the results of our proposed objective function with commonly used candidates to serve this purpose. Our comparison is based on the analysis of real data collected during the quality control stages of the manufacturing process....

  10. Firm size diversity, functional richness, and resilience

    Science.gov (United States)

    Garmestani, A.S.; Allen, Craig R.; Mittelstaedt, J.D.; Stow, C.A.; Ward, W.A.

    2006-01-01

    This paper applies recent advances in ecology to our understanding of firm development, sustainability, and economic development. The ecological literature indicates that the greater the functional richness of species in a system, the greater its resilience - that is, its ability to persist in the face of substantial changes in the environment. This paper focuses on the effects of functional richness across firm size on the ability of industries to survive in the face of economic change. Our results indicate that industries with a richness of industrial functions are more resilient to employment volatility. ?? 2006 Cambridge University Press.

  11. Object width modulates object-based attentional selection.

    Science.gov (United States)

    Nah, Joseph C; Neppi-Modona, Marco; Strother, Lars; Behrmann, Marlene; Shomstein, Sarah

    2018-04-24

    Visual input typically includes a myriad of objects, some of which are selected for further processing. While these objects vary in shape and size, most evidence supporting object-based guidance of attention is drawn from paradigms employing two identical objects. Importantly, object size is a readily perceived stimulus dimension, and whether it modulates the distribution of attention remains an open question. Across four experiments, the size of the objects in the display was manipulated in a modified version of the two-rectangle paradigm. In Experiment 1, two identical parallel rectangles of two sizes (thin or thick) were presented. Experiments 2-4 employed identical trapezoids (each having a thin and thick end), inverted in orientation. In the experiments, one end of an object was cued and participants performed either a T/L discrimination or a simple target-detection task. Combined results show that, in addition to the standard object-based attentional advantage, there was a further attentional benefit for processing information contained in the thick versus thin end of objects. Additionally, eye-tracking measures demonstrated increased saccade precision towards thick object ends, suggesting that Fitts's Law may play a role in object-based attentional shifts. Taken together, these results suggest that object-based attentional selection is modulated by object width.

  12. Automatic processing of unattended object features by functional connectivity

    Directory of Open Access Journals (Sweden)

    Katja Martina Mayer

    2013-05-01

    Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.

  13. Object individuation is invariant to attentional diffusion: Changes in the size of the attended region do not interact with object-substitution masking.

    Science.gov (United States)

    Goodhew, Stephanie C; Edwards, Mark

    2016-12-01

    When the human brain is confronted with complex and dynamic visual scenes, two pivotal processes are at play: visual attention (the process of selecting certain aspects of the scene for privileged processing) and object individuation (determining what information belongs to a continuing object over time versus what represents two or more distinct objects). Here we examined whether these processes are independent or whether they interact. Object-substitution masking (OSM) has been used as a tool to examine such questions, however, there is controversy surrounding whether OSM reflects object individuation versus substitution processes. The object-individuation account is agnostic regarding the role of attention, whereas object-substitution theory stipulates a pivotal role for attention. There have been attempts to investigate the role of attention in OSM, but they have been subject to alternative explanations. Here, therefore, we manipulated the size of the attended region, a pure and uncontaminated attentional manipulation, and examined the impact on OSM. Across three experiments, there was no interaction. This refutes the object-substitution theory of OSM. This, in turn, tell us that object-individuation is invariant the distribution of attention. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    International Nuclear Information System (INIS)

    Kwon, Jin Gyu; Kim, Tae Ho; Park, Hyun Sun; Cha, Jae Eun; Kim, Moo Hwan

    2016-01-01

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO_2) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO_2 Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  15. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jin Gyu [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Kim, Tae Ho [Department of Mechanical Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Park, Hyun Sun, E-mail: hejsunny@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Cha, Jae Eun [Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2016-03-15

    Highlights: • Suggest the Nusselt number and Fanning friction factor correlation for airfoil-type PCHE. • Show that cost-based optimization is available to airfoil-type PCHE. • Suggest the recuperator design for SCIEL test loop at KAERI by cost-based objective function with correlations from numerical analysis. - Abstract: Supercritical carbon dioxide (SCO{sub 2}) Brayton cycle gives high efficiency of power cycle with small size. Printed circuit heat exchangers (PCHE) are proper selection for the Brayton cycle because their operability at high temperature and high pressure with small size. Airfoil fin PCHE was suggested by Kim et al. (2008b), it can provide high heat transfer-like zigzag channel PCHE with low pressure drop-like straight channel PCHE. Optimization of the airfoil fin PCHE was not performed like the zigzag channel PCHE. For optimization of the airfoil fin PCHE, the operating condition of the recuperator of SCO{sub 2} Integral Experiment Loop (SCIEL) Brayton cycle test loop at Korea Atomic Energy Research Institute (KAERI) was used. We performed CFD analysis for various airfoil fin configurations using ANSYS CFX 15.0, and made correlations for predicting the Nusselt number and the Fanning friction factor. The recuperator was designed by the simple energy balance code with our correlations. Using the cost-based objective function with production cost and operation cost from size and pressure drop of the recuperator, we evaluated airfoil fin configuration by using total cost and suggested the optimization configuration of the airfoil fin PCHE.

  16. Optimal unit sizing for small-scale integrated energy systems using multi-objective interval optimization and evidential reasoning approach

    International Nuclear Information System (INIS)

    Wei, F.; Wu, Q.H.; Jing, Z.X.; Chen, J.J.; Zhou, X.X.

    2016-01-01

    This paper proposes a comprehensive framework including a multi-objective interval optimization model and evidential reasoning (ER) approach to solve the unit sizing problem of small-scale integrated energy systems, with uncertain wind and solar energies integrated. In the multi-objective interval optimization model, interval variables are introduced to tackle the uncertainties of the optimization problem. Aiming at simultaneously considering the cost and risk of a business investment, the average and deviation of life cycle cost (LCC) of the integrated energy system are formulated. In order to solve the problem, a novel multi-objective optimization algorithm, MGSOACC (multi-objective group search optimizer with adaptive covariance matrix and chaotic search), is developed, employing adaptive covariance matrix to make the search strategy adaptive and applying chaotic search to maintain the diversity of group. Furthermore, ER approach is applied to deal with multiple interests of an investor at the business decision making stage and to determine the final unit sizing solution from the Pareto-optimal solutions. This paper reports on the simulation results obtained using a small-scale direct district heating system (DH) and a small-scale district heating and cooling system (DHC) optimized by the proposed framework. The results demonstrate the superiority of the multi-objective interval optimization model and ER approach in tackling the unit sizing problem of integrated energy systems considering the integration of uncertian wind and solar energies. - Highlights: • Cost and risk of investment in small-scale integrated energy systems are considered. • A multi-objective interval optimization model is presented. • A novel multi-objective optimization algorithm (MGSOACC) is proposed. • The evidential reasoning (ER) approach is used to obtain the final optimal solution. • The MGSOACC and ER can tackle the unit sizing problem efficiently.

  17. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    Science.gov (United States)

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  18. Studies on combined model based on functional objectives of large scale complex engineering

    Science.gov (United States)

    Yuting, Wang; Jingchun, Feng; Jiabao, Sun

    2018-03-01

    As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.

  19. Semantic and functional relationships among objects increase the capacity of visual working memory.

    Science.gov (United States)

    O'Donnell, Ryan E; Clement, Andrew; Brockmole, James R

    2018-04-12

    Visual working memory (VWM) has a limited capacity of approximately 3-4 visual objects. Current theories of VWM propose that a limited pool of resources can be flexibly allocated to objects, allowing them to be represented at varying levels of precision. Factors that influence the allocation of these resources, such as the complexity and perceptual grouping of objects, can thus affect the capacity of VWM. We sought to identify whether semantic and functional relationships between objects could influence the grouping of objects, thereby increasing the functional capacity of VWM. Observers viewed arrays of 8 to-be-remembered objects arranged into 4 pairs. We manipulated both the semantic association and functional interaction between the objects, then probed participants' memory for the arrays. When objects were semantically related, participants' memory for the arrays improved. Participants' memory further improved when semantically related objects were positioned to interact with each other. However, when we increased the spacing between the objects in each pair, the benefits of functional but not semantic relatedness were eliminated. These findings suggest that action-relevant properties of objects can increase the functional capacity of VWM, but only when objects are positioned to directly interact with each other. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Optimizing an objective function under a bivariate probability model

    NARCIS (Netherlands)

    X. Brusset; N.M. Temme (Nico)

    2007-01-01

    htmlabstractThe motivation of this paper is to obtain an analytical closed form of a quadratic objective function arising from a stochastic decision process with bivariate exponential probability distribution functions that may be dependent. This method is applicable when results need to be

  1. Communication target object recognition for D2D connection with feature size limit

    Science.gov (United States)

    Ok, Jiheon; Kim, Soochang; Kim, Young-hoon; Lee, Chulhee

    2015-03-01

    Recently, a new concept of device-to-device (D2D) communication, which is called "point-and-link communication" has attracted great attentions due to its intuitive and simple operation. This approach enables user to communicate with target devices without any pre-identification information such as SSIDs, MAC addresses by selecting the target image displayed on the user's own device. In this paper, we present an efficient object matching algorithm that can be applied to look(point)-and-link communications for mobile services. Due to the limited channel bandwidth and low computational power of mobile terminals, the matching algorithm should satisfy low-complexity, low-memory and realtime requirements. To meet these requirements, we propose fast and robust feature extraction by considering the descriptor size and processing time. The proposed algorithm utilizes a HSV color histogram, SIFT (Scale Invariant Feature Transform) features and object aspect ratios. To reduce the descriptor size under 300 bytes, a limited number of SIFT key points were chosen as feature points and histograms were binarized while maintaining required performance. Experimental results show the robustness and the efficiency of the proposed algorithm.

  2. A functional analysis of photo-object matching skills of severely retarded adolescents.

    OpenAIRE

    Dixon, L S

    1981-01-01

    Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photo...

  3. Visual search for arbitrary objects in real scenes

    Science.gov (United States)

    Alvarez, George A.; Rosenholtz, Ruth; Kuzmova, Yoana I.; Sherman, Ashley M.

    2011-01-01

    How efficient is visual search in real scenes? In searches for targets among arrays of randomly placed distractors, efficiency is often indexed by the slope of the reaction time (RT) × Set Size function. However, it may be impossible to define set size for real scenes. As an approximation, we hand-labeled 100 indoor scenes and used the number of labeled regions as a surrogate for set size. In Experiment 1, observers searched for named objects (a chair, bowl, etc.). With set size defined as the number of labeled regions, search was very efficient (~5 ms/item). When we controlled for a possible guessing strategy in Experiment 2, slopes increased somewhat (~15 ms/item), but they were much shallower than search for a random object among other distinctive objects outside of a scene setting (Exp. 3: ~40 ms/item). In Experiments 4–6, observers searched repeatedly through the same scene for different objects. Increased familiarity with scenes had modest effects on RTs, while repetition of target items had large effects (>500 ms). We propose that visual search in scenes is efficient because scene-specific forms of attentional guidance can eliminate most regions from the “functional set size” of items that could possibly be the target. PMID:21671156

  4. Functional Size Measurement applied to UML-based user requirements

    NARCIS (Netherlands)

    van den Berg, Klaas; Dekkers, Ton; Oudshoorn, Rogier; Dekkers, T.

    There is a growing interest in applying standardized methods for Functional Size Measurement (FSM) to Functional User Requirements (FUR) based on models in the Unified Modelling Language (UML). No consensus exists on this issue. We analyzed the demands that FSM places on FURs. We propose a

  5. Multi-objective analytical model for optimal sizing of stand-alone photovoltaic water pumping systems

    International Nuclear Information System (INIS)

    Olcan, Ceyda

    2015-01-01

    Highlights: • An analytical optimal sizing model is proposed for PV water pumping systems. • The objectives are chosen as deficiency of power supply and life-cycle costs. • The crop water requirements are estimated for a citrus tree yard in Antalya. • The optimal tilt angles are calculated for fixed, seasonal and monthly changes. • The sizing results showed the validity of the proposed analytical model. - Abstract: Stand-alone photovoltaic (PV) water pumping systems effectively use solar energy for irrigation purposes in remote areas. However the random variability and unpredictability of solar energy makes difficult the penetration of PV implementations and complicate the system design. An optimal sizing of these systems proves to be essential. This paper recommends a techno-economic optimization model to determine optimally the capacity of the components of PV water pumping system using a water storage tank. The proposed model is developed regarding the reliability and cost indicators, which are the deficiency of power supply probability and life-cycle costs, respectively. The novelty is that the proposed optimization model is analytically defined for two-objectives and it is able to find a compromise solution. The sizing of a stand-alone PV water pumping system comprises a detailed analysis of crop water requirements and optimal tilt angles. Besides the necessity of long solar radiation and temperature time series, the accurate forecasts of water supply needs have to be determined. The calculation of the optimal tilt angle for yearly, seasonally and monthly frequencies results in higher system efficiency. It is, therefore, suggested to change regularly the tilt angle in order to maximize solar energy output. The proposed optimal sizing model incorporates all these improvements and can accomplish a comprehensive optimization of PV water pumping systems. A case study is conducted considering the irrigation of citrus trees yard located in Antalya, Turkey

  6. A preclinical Talbot-Lau prototype for x-ray dark-field imaging of human-sized objects.

    Science.gov (United States)

    Hauke, C; Bartl, P; Leghissa, M; Ritschl, L; Sutter, S M; Weber, T; Zeidler, J; Freudenberger, J; Mertelmeier, T; Radicke, M; Michel, T; Anton, G; Meinel, F G; Baehr, A; Auweter, S; Bondesson, D; Gaass, T; Dinkel, J; Reiser, M; Hellbach, K

    2018-03-26

    Talbot-Lau x-ray interferometry provides information about the scattering and refractive properties of an object - in addition to the object's attenuation features. Until recently, this method was ineligible for imaging human-sized objects as it is challenging to adapt Talbot-Lau interferometers (TLIs) to the relevant x-ray energy ranges. In this work, we present a preclinical Talbot-Lau prototype capable of imaging human-sized objects with proper image quality at clinically acceptable dose levels. The TLI is designed to match a setup of clinical relevance as closely as possible. The system provides a scan range of 120 × 30 cm 2 by using a scanning beam geometry. Its ultimate load is 100 kg. High aspect ratios and fine grid periods of the gratings ensure a reasonable setup length and clinically relevant image quality. The system is installed in a university hospital and is, therefore, exposed to the external influences of a clinical environment. To demonstrate the system's capabilities, a full-body scan of a euthanized pig was performed. In addition, freshly excised porcine lungs with an extrinsically provoked pneumothorax were mounted into a human thorax phantom and examined with the prototype. Both examination sequences resulted in clinically relevant image quality - even in the case of a skin entrance air kerma of only 0.3 mGy which is in the range of human thoracic imaging. The presented case of a pneumothorax and a reader study showed that the prototype's dark-field images provide added value for pulmonary diagnosis. We demonstrated that a dedicated design of a Talbot-Lau interferometer can be applied to medical imaging by constructing a preclinical Talbot-Lau prototype. We experienced that the system is feasible for imaging human-sized objects and the phase-stepping approach is suitable for clinical practice. Hence, we conclude that Talbot-Lau x-ray imaging has potential for clinical use and enhances the diagnostic power of medical x-ray imaging.

  7. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles

    International Nuclear Information System (INIS)

    Hu, Zunyan; Li, Jianqiu; Xu, Liangfei; Song, Ziyou; Fang, Chuan; Ouyang, Minggao; Dou, Guowei; Kou, Gaihong

    2016-01-01

    Highlights: • Fuel economy, lithium battery size and powertrain system durability are incorporated in optimization. • A multi-objective power allocation strategy by taking battery size into consideration is proposed. • Influences of battery capacity and auxiliary power on strategy design are explored. • Battery capacity and fuel cell service life for the system life cycle cost are optimized. - Abstract: The powertrain system of a typical proton electrolyte membrane hybrid fuel cell vehicle contains a lithium battery package and a fuel cell stack. A multi-objective optimization for this powertrain system of a passenger car, taking account of fuel economy and system durability, is discussed in this paper. Based on an analysis of the optimum results obtained by dynamic programming, a soft-run strategy was proposed for real-time and multi-objective control algorithm design. The soft-run strategy was optimized by taking lithium battery size into consideration, and implemented using two real-time algorithms. When compared with the optimized dynamic programming results, the power demand-based control method proved more suitable for powertrain systems equipped with larger capacity batteries, while the state of charge based control method proved superior in other cases. On this basis, the life cycle cost was optimized by considering both lithium battery size and equivalent hydrogen consumption. The battery capacity selection proved more flexible, when powertrain systems are equipped with larger capacity batteries. Finally, the algorithm has been validated in a fuel cell city bus. It gets a good balance of fuel economy and system durability in a three months demonstration operation.

  8. Functional dissociation between action and perception of object shape in developmental visual object agnosia.

    Science.gov (United States)

    Freud, Erez; Ganel, Tzvi; Avidan, Galia; Gilaie-Dotan, Sharon

    2016-03-01

    According to the two visual systems model, the cortical visual system is segregated into a ventral pathway mediating object recognition, and a dorsal pathway mediating visuomotor control. In the present study we examined whether the visual control of action could develop normally even when visual perceptual abilities are compromised from early childhood onward. Using his fingers, LG, an individual with a rare developmental visual object agnosia, manually estimated (perceptual condition) the width of blocks that varied in width and length (but not in overall size), or simply picked them up across their width (grasping condition). LG's perceptual sensitivity to target width was profoundly impaired in the manual estimation task compared to matched controls. In contrast, the sensitivity to object shape during grasping, as measured by maximum grip aperture (MGA), the time to reach the MGA, the reaction time and the total movement time were all normal in LG. Further analysis, however, revealed that LG's sensitivity to object shape during grasping emerged at a later time stage during the movement compared to controls. Taken together, these results demonstrate a dissociation between action and perception of object shape, and also point to a distinction between different stages of the grasping movement, namely planning versus online control. Moreover, the present study implies that visuomotor abilities can develop normally even when perceptual abilities developed in a profoundly impaired fashion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Classical methods for interpreting objective function minimization as intelligent inference

    Energy Technology Data Exchange (ETDEWEB)

    Golden, R.M. [Univ. of Texas, Dallas, TX (United States)

    1996-12-31

    Most recognition algorithms and neural networks can be formally viewed as seeking a minimum value of an appropriate objective function during either classification or learning phases. The goal of this paper is to argue that in order to show a recognition algorithm is making intelligent inferences, it is not sufficient to show that the recognition algorithm is computing (or trying to compute) the global minimum of some objective function. One must explicitly define a {open_quotes}relational system{close_quotes} for the recognition algorithm or neural network which identifies the: (i) sample space, (ii) the relevant sigmafield of events generated by the sample space, and (iii) the {open_quotes}relation{close_quotes} for that relational system. Only when such a {open_quotes}relational system{close_quotes} is properly defined, is it possible to formally establish the sense in which computing the global minimum of an objective function is an intelligent, inference.

  10. The Slippery Road from Actions on Objects to Functions and Variables

    Science.gov (United States)

    Paz, Tamar; Leron, Uri

    2009-01-01

    Functions are all around us, disguised as actions on concrete objects. Composition of functions, too, is all around us, because these actions can be performed in succession, the output of one serving as the input for the next. In terms of Gray and Tall's (2001) "embodied objects" or Lakoff and Nunez's (2000) "mathematical idea…

  11. Objective Integrated Assessment of Functional Outcomes in Reduction Mammaplasty

    Science.gov (United States)

    Passaro, Ilaria; Malovini, Alberto; Faga, Angela; Toffola, Elena Dalla

    2013-01-01

    Background: The aim of our study was an objective integrated assessment of the functional outcomes of reduction mammaplasty. Methods: The study involved 17 women undergoing reduction mammaplasty from March 2009 to June 2011. Each patient was assessed before surgery and 2 months postoperatively with the original association of 4 subjective and objective assessment methods: a physiatric clinical examination, the Roland Morris Disability Questionnaire, the Berg Balance Scale, and a static force platform analysis. Results: All of the tests proved multiple statistically significant associated outcomes demonstrating a significant improvement in the functional status following reduction mammaplasty. Surgical correction of breast hypertrophy could achieve both spinal pain relief and recovery of performance status in everyday life tasks, owing to a muscular postural functional rearrangement with a consistent antigravity muscle activity sparing. Pain reduction in turn could reduce the antalgic stiffness and improved the spinal range of motion. In our sample, the improvement of the spinal range of motion in flexion matched a similar improvement in extension. Recovery of a more favorable postural pattern with reduction of the anterior imbalance was demonstrated by the static force stabilometry. Therefore, postoperatively, all of our patients narrowed the gap between the actual body barycenter and the ideal one. The static force platform assessment also consistently confirmed the effectiveness of an accurate clinical examination of functional impairment from breast hypertrophy. Conclusions: The static force platform assessment might help the clinician to support the diagnosis of functional impairment from a breast hypertrophy with objectively based data. PMID:25289256

  12. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  13. The relationship among customer demand, competitive strategy and manufacturing system functional objectives

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-09-01

    Full Text Available Purpose: To ascertain the relationship between the operation system function goal decision making and customer demand and competition strategy, can better discover and integrate all available resources (including important capital resources to achieve business opportunities, the establishment of sustainable competitive ability. Because, to achieve business development lead policymakers take great uncertainty, which led to the investment behavior required for the operational activities of resources also bear the enormous risks. Design/methodology/approach: Through principal component analysis on the data collected by questionnaires, the manuscript obtains dominant factors for customer demand, competitive strategy and manufacturing system functional objectives respectively. By these factors, it tests its three hypotheses with the data from northeast of China and draws some conclusions. Findings: The results show that customer demand have a significant positive effect on competitive strategy; competitive strategy have positive influence on manufacturing system functional objectives; customer demand affect the functional objectives, by competitive strategy. Research limitations/implications: In this research, competitive strategy and manufacturing system functional objectives are influenced by customer demand. The conclusion of the research can provide theoretical guidance for Chinese enterprises which carry out manufacturing system functional objectives. Originality/value: In this research, a new measure questionnaire of competition strategy, customer satisfaction and operating system function goal was used, analyzed the influence factors of time, quality, cost, efficiency, service and environment, on the operation of the system. The study shows that the effect of competition strategy and customer demand has a direct impact on the operating system functions, customer demand through competitive strategy of indirect effects operating system functions.

  14. Fast, multiple optimizations of quadratic dose objective functions in IMRT

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Keijzer, Marleen; Heijmen, Ben J M

    2006-01-01

    Inverse treatment planning for intensity-modulated radiotherapy may include time consuming, multiple minimizations of an objective function. In this paper, methods are presented to speed up the process of (repeated) minimization of the well-known quadratic dose objective function, extended with a smoothing term that ensures generation of clinically acceptable beam profiles. In between two subsequent optimizations, the voxel-dependent importance factors of the quadratic terms will generally be adjusted, based on an intermediate plan evaluation. The objective function has been written in matrix-vector format, facilitating the use of a recently published, fast quadratic minimization algorithm, instead of commonly applied gradient-based methods. This format also reduces the calculation time in between subsequent minimizations, related to adjustment of the voxel-dependent importance factors. Sparse matrices are used to limit the required amount of computer memory. For three patients, comparisons have been made with a gradient method. Mean speed improvements of up to a factor of 37 have been achieved

  15. Functional-dependent and size-dependent uptake of nanoparticles in PC12

    International Nuclear Information System (INIS)

    Sakai, N; Matsui, Y; Nakayama, A; Yoneda, M; Tsuda, A

    2011-01-01

    It is suggested that the uptake of nanoparticles is changed by the particle size or the surface modification. In this study, we quantified the uptake of nanoparticles in PC12 cells exposed Quantum Dots with different surface modification or fluorescent polystyrene particles with different particle size. The PC12 cells were exposed three types of the Quantum Dots (carboxyl base-functionalized, amino base-functionalized or non-base-functionalized) or three types of the fluorescent particles (22 nm, 100 nm or 1000 nm) for 3 hours. The uptake of the nanoparticles was quantified with a spectrofluorophotometer. The carboxyl base-functionalized Quantum Dots were considerably taken up by the cells than the non-base-functionalized Quantum Dots. Conversely, the amino base-functionalized Quantum Dots were taken up by the cells less frequently than the non-base-functionalized Quantum Dots. The particle number of the 22 nm-nanoparticles taken up by the cells was about 53 times higher than the 100 nm-particles. However, the particle weight of the 100 nm-particles taken up by the cells was higher than that of the 22 nm-nanoparticles. The 1000 nm-particles were adhered to the cell membrane, but they were little taken up by the cells. We concluded that nanoparticles can be taken up nerve cells in functional-dependent and size-dependent manners.

  16. Polydisperse-particle-size-distribution function determined from intensity profile of angularly scattered light

    International Nuclear Information System (INIS)

    Alger, T.W.

    1979-01-01

    A new method for determining the particle-size-distribution function of a polydispersion of spherical particles is presented. The inversion technique for the particle-size-distribution function is based upon matching the measured intensity profile of angularly scattered light with a summation of the intensity contributions of a series of appropriately spaced, narrowband, size-distribution functions. A numerical optimization technique is used to determine the strengths of the individual bands that yield the best agreement with the measured scattered-light-intensity profile. Because Mie theory is used, the method is applicable to spherical particles of all sizes. Several numerical examples demonstrate the application of this inversion method

  17. AFM topographies of densely packed nanoparticles: a quick way to determine the lateral size distribution by autocorrelation function analysis

    International Nuclear Information System (INIS)

    Fekete, L.; Kůsová, K.; Petrák, V.; Kratochvílová, I.

    2012-01-01

    The distribution of sizes is one of the basic characteristics of nanoparticles. Here, we propose a novel way to determine the lateral distribution of sizes from AFM topographies. Our algorithm is based on the autocorrelation function and can be applied both on topographies containing spatially separated and densely packed nanoparticles as well as on topographies of polycrystalline films. As no manual treatment is required, this algorithm can be easily automatable for batch processing. The algorithm works in principle with any kind of spatially mapped information (AFM current maps, optical microscope images, etc.), and as such has no size limitations. However, in the case of AFM topographies, the tip/sample convolution effects will be the factor limiting the smallest size to which the algorithm is applicable. Here, we demonstrate the usefulness of this algorithm on objects with sizes ranging between 20 nm and 1.5 μm.

  18. The development of object function and manipulation knowledge: evidence from a semantic priming study

    Directory of Open Access Journals (Sweden)

    Cynthia Collette

    2016-08-01

    Full Text Available Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g. the function of a key is to open or close a door while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g. a key is held between the thumb and the index, inserted into the door lock and then turned.To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ.To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g. knife-scissors for function; key-screwdriver for manipulation, unrelated but visually similar (e.g. glasses-scissors; baseball bat-screwdriver, and purely unrelated (e.g. die-scissors; tissue-screwdriver.Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects

  19. The variance of dispersion measure of high-redshift transient objects as a probe of ionized bubble size during reionization

    Science.gov (United States)

    Yoshiura, Shintaro; Takahashi, Keitaro

    2018-01-01

    The dispersion measure (DM) of high-redshift (z ≳ 6) transient objects such as fast radio bursts can be a powerful tool to probe the intergalactic medium during the Epoch of Reionization. In this paper, we study the variance of the DMs of objects with the same redshift as a potential probe of the size distribution of ionized bubbles. We calculate the DM variance with a simple model with randomly distributed spherical bubbles. It is found that the DM variance reflects the characteristics of the probability distribution of the bubble size. We find that the variance can be measured precisely enough to obtain the information on the typical size with a few hundred sources at a single redshift.

  20. Executive function in fibromyalgia: Comparing subjective and objective measures.

    Science.gov (United States)

    Gelonch, Olga; Garolera, Maite; Valls, Joan; Rosselló, Lluís; Pifarré, Josep

    2016-04-01

    There is evidence to suggest the existence of an executive dysfunction in people diagnosed with fibromyalgia, although there are certain inconsistencies between studies. Here, we aim to compare executive performance between patients with fibromyalgia and a control group by using subjective and objective cognitive tests, analyzing the influence of patient mood on the results obtained, and studying associations between the two measures. 82 patients diagnosed with fibromyalgia and 42 healthy controls, matched by age and years of education, were assessed using the Behavioral Rating Inventory of Executive Function - Adult Version (BRIEF-A) as a subjective measure of executive functioning. A selection of objective cognitive tests were also used to measure a series of executive functions and to identify symptoms of depression and anxiety. Patients with fibromyalgia perceived greater difficulties than the control group on all of the BRIEF-A scales. However, after adjustments were made for depression and anxiety the only differences that remained were those associated with the working memory scale and the Metacognition and Global Executive Composite index. In the case of the objective cognitive tests, a significantly worse overall performance was evidenced for the fibromyalgia patients. However, this also disappeared when adjustments were made for depression and anxiety. After this adjustment, fibromyalgia patients only performed significantly worse for the interference effect in the Stroop Test. Although there were no significant associations between most of the objective cognitive tests and the BRIEF-A scales, depression and anxiety exhibited strong associations with almost all of the BRIEF-A scales and with several of the objective cognitive tests. Patients with fibromyalgia showed executive dysfunction in subjective and objective measures, although most of this impairment was associated with mood disturbances. Exceptions to this general rule were observed in the

  1. Programming Scala Scalability = Functional Programming + Objects

    CERN Document Server

    Wampler, Dean

    2009-01-01

    Learn how to be more productive with Scala, a new multi-paradigm language for the Java Virtual Machine (JVM) that integrates features of both object-oriented and functional programming. With this book, you'll discover why Scala is ideal for highly scalable, component-based applications that support concurrency and distribution. Programming Scala clearly explains the advantages of Scala as a JVM language. You'll learn how to leverage the wealth of Java class libraries to meet the practical needs of enterprise and Internet projects more easily. Packed with code examples, this book provides us

  2. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization

    OpenAIRE

    Dewancker, Ian; McCourt, Michael; Ainsworth, Samuel

    2016-01-01

    Real-world engineering systems are typically compared and contrasted using multiple metrics. For practical machine learning systems, performance tuning is often more nuanced than minimizing a single expected loss objective, and it may be more realistically discussed as a multi-objective optimization problem. We propose a novel generative model for scalar-valued utility functions to capture human preferences in a multi-objective optimization setting. We also outline an interactive active learn...

  3. Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy

    International Nuclear Information System (INIS)

    Santillán, J M J; Videla, F A; Scaffardi, L B; Schinca, D C; Fernández van Raap, M B; Muraca, D

    2013-01-01

    The study of metal nanoparticles (NPs) is of great interest due to their ability to enhance optical fields on the nanometric scale, which makes them interesting for various applications in several fields of science and technology. In particular, their optical properties depend on the dielectric function of the metal, its size, shape and surrounding environment. This work analyses the contributions of free and bound electrons to the complex dielectric function of spherical silver NPs and their influence on the optical extinction spectra. The contribution of free electrons is usually corrected for particle size under 10 nm, introducing a modification of the damping constant to account for the extra collisions with the particle's boundary. For the contribution of bound electrons, we considered the interband transitions from the d-band to the conduction band including the size dependence of the electronic density states for radii below 2 nm. Bearing in mind these specific modifications, it was possible to determine optical and band energy parameters by fitting the bulk complex dielectric function. The results obtained from the optimum fit are: K bulk = 2 × 10 24 (coefficient for bound-electron contribution), E g = 1.91 eV (gap energy), E F = 4.12 eV (Fermi energy), and γ b = 1.5 × 10 14 Hz (damping constant for bound electrons). Based on this size-dependent dielectric function, extinction spectra of silver particles in the nanometric–subnanometric radius range can be calculated using Mie's theory, and its size behaviour analysed. These studies are applied to fit experimental extinction spectrum of very small spherical particles fabricated by fs laser ablation of a solid target in water. From the fitting, the structure and size distribution of core radius and shell thickness of the colloidal suspension could be determined. The spectroscopic results suggest that the colloidal suspension is composed by two types of structures: bare core and core–shell. The former

  4. Objective function for the environmental assessment of waste

    International Nuclear Information System (INIS)

    Toy, A.J.; Boegel, J.; Cohen, J.J.

    1976-01-01

    Various waste management systems were examined in order to determine what the environmental impacts might be and to rank the relative importance of those impacts. This examination determined that radiation dose to man was the most significant, and probably overriding, impact. This report describes methods of providing an objective function for dose to man. The search for an objective function began with a reading of Federal Regulations and the output of various standard setting councils and committees. Ample guidance was found on maximum allowable doses to individuals but no guidance on dose to large populations or criteria by which systems could be compared or optimized. Several other ways were postulated by which waste management systems could be evaluated besides maximum allowable dose to individuals. 0.1 man-rem per MW(e)-year was selected as the measure of system performance. This unit compares a rational estimate of population dose commitment with the concurrent benefit

  5. On the convex hull of the simple integer recourse objective function

    NARCIS (Netherlands)

    Klein Haneveld, Willem K.; Stougie, L.; van der Vlerk, Maarten H.

    1995-01-01

    We consider the objective function of a simple integer recourse problem with fixed technology matrix. Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program. We present an

  6. JAKEF, Gradient or Jacobian Function from Objective Function or Vector Function

    International Nuclear Information System (INIS)

    Hillstrom, K.E.

    1988-01-01

    1 - Description of program or function: JAKEF is a language processor that accepts as input a single- or double-precision ANSI standard 1977 FORTRAN subroutine defining an objective function f(x), or a vector function F(x), and produces as output a single- or double- precision ANSI standard 1977 FORTRAN subroutine defining the gradient of f(x), or the Jacobian of F(x). 2 - Method of solution: JAKEF is a four-pass compiler consisting of a lexical preprocessor, a parser, a tree-building and flow analysis pass, and a differentiator and output construction pass. The lexical preprocessor reworks the input FORTRAN program to give it a recognizable lexical structure. The parser transforms the pre-processed input into a string of tokens in a post-fix representation of the program tree. The tree-building and flow analysis pass constructs a tree out of the post-fix token string. The differentiator identifies relevant assignment statements; then, if necessary, it analyzes them into component statements governed by a single differentiation rule and augments each of these statements with a call to a member of the run-time support package which implements the differentiation rule. After completing the construction of the main body of the routine, JAKEF inserts calls to support package routines that complete the differentiation. This results in a modified program tree in a form compatible with FORTRAN rules. 3 - Restrictions on the complexity of the problem: Statement functions and Equivalence's that involve the independent variables are not handled correctly. Variables, constants, or functions of type COMPLEX are not recognized. Character sub-string expressions and alternate returns are not permitted

  7. Children's use of comparison and function in novel object categorization.

    Science.gov (United States)

    Kimura, Katherine; Hunley, Samuel B; Namy, Laura L

    2018-06-01

    Although young children often rely on salient perceptual cues, such as shape, when categorizing novel objects, children eventually shift towards deeper relational reasoning about category membership. This study investigates what information young children use to classify novel instances of familiar categories. Specifically, we investigated two sources of information that have the potential to facilitate the classification of novel exemplars: (1) comparison of familiar category instances, and (2) attention to function information that might direct children's attention to functionally relevant perceptual features. Across two experiments, we found that comparing two perceptually similar category members-particularly when function information was also highlighted-led children to discover non-obvious relational features that supported their categorization of novel category instances. Together, these findings demonstrate that comparison may aid in novel object categorization by heightening the salience of less obvious, yet functionally relevant, relational structures that support conceptual reasoning. Copyright © 2018. Published by Elsevier Inc.

  8. Objectives, Extent and Organization of Radiological and Environmental Protection in Relation to the Nature and Size of Nuclear Facilities

    International Nuclear Information System (INIS)

    Kathren, R.L.

    1979-01-01

    Radiological and environmental protection programs for nuclear facilities have similar goals and objectives, which are basically to protect people and the environment from adverse effects. To be effective, the programs must have organizational independence and a strong commitment from management. In return, the programs should ensure that the facility is operating in full compliance with law and good practice. The scope and elements of radiological environmental protection programs will vary according to facility type and size, with the larger and more complex facilities having a diversity of staff and functions. Examples of good and poor organization charts are given and discussed from the standpoint of program effectiveness along with a discussion of the role of the radiation protection committee. (author)

  9. Analysis and optimization with ecological objective function of irreversible single resonance energy selective electron heat engines

    International Nuclear Information System (INIS)

    Zhou, Junle; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2016-01-01

    Ecological performance of a single resonance ESE heat engine with heat leakage is conducted by applying finite time thermodynamics. By introducing Nielsen function and numerical calculations, expressions about power output, efficiency, entropy generation rate and ecological objective function are derived; relationships between ecological objective function and power output, between ecological objective function and efficiency as well as between power output and efficiency are demonstrated; influences of system parameters of heat leakage, boundary energy and resonance width on the optimal performances are investigated in detail; a specific range of boundary energy is given as a compromise to make ESE heat engine system work at optimal operation regions. Comparing performance characteristics with different optimization objective functions, the significance of selecting ecological objective function as the design objective is clarified specifically: when changing the design objective from maximum power output into maximum ecological objective function, the improvement of efficiency is 4.56%, while the power output drop is only 2.68%; when changing the design objective from maximum efficiency to maximum ecological objective function, the improvement of power output is 229.13%, and the efficiency drop is only 13.53%. - Highlights: • An irreversible single resonance energy selective electron heat engine is studied. • Heat leakage between two reservoirs is considered. • Power output, efficiency and ecological objective function are derived. • Optimal performance comparison for three objective functions is carried out.

  10. Early-stage evolution of particle size distribution with Johnson's SB function due to Brownian coagulation

    International Nuclear Information System (INIS)

    Tang Hong; Lin Jianzhong

    2013-01-01

    The moment method can be used to determine the time evolution of particle size distribution due to Brownian coagulation based on the general dynamic equation (GDE). But the function form of the initial particle size distribution must be determined beforehand for the moment method. If the assumed function type of the initial particle size distribution has an obvious deviation from the true particle population, the evolution of particle size distribution may be different from the real evolution tendency. Thus, a simple and general method is proposed based on the moment method. In this method, the Johnson's S B function is chosen as a general distribution function to fit the initial distributions including the log normal (L-N), Rosin–Rammler (R-R), normal (N-N) and gamma distribution functions, respectively. Meanwhile, using the modified beta function to fit the L-N, R-R, N-N and gamma functions is also conducted as a comparison in order to present the advantage of the Johnson's S B function as the general distribution function. And then, the time evolution of particle size distributions using the Johnson's S B function as the initial distribution can be obtained by several lower order moment equations of the Johnson's S B function in conjunction with the GDE during the Brownian coagulation process. Simulation experiments indicate that fairly reasonable results of the time evolution of particle size distribution can be obtained with this proposed method in the free molecule regime, transition regime and continuum plus near continuum regime, respectively, at the early time stage of evolution. The Johnson's S B function has the ability of describing the early time evolution of different initial particle size distributions. (paper)

  11. Pore size determination using normalized J-function for different hydraulic flow units

    Directory of Open Access Journals (Sweden)

    Ali Abedini

    2015-06-01

    Full Text Available Pore size determination of hydrocarbon reservoirs is one of the main challenging areas in reservoir studies. Precise estimation of this parameter leads to enhance the reservoir simulation, process evaluation, and further forecasting of reservoir behavior. Hence, it is of great importance to estimate the pore size of reservoir rocks with an appropriate accuracy. In the present study, a modified J-function was developed and applied to determine the pore radius in one of the hydrocarbon reservoir rocks located in the Middle East. The capillary pressure data vs. water saturation (Pc–Sw as well as routine reservoir core analysis include porosity (φ and permeability (k were used to develop the J-function. First, the normalized porosity (φz, the rock quality index (RQI, and the flow zone indicator (FZI concepts were used to categorize all data into discrete hydraulic flow units (HFU containing unique pore geometry and bedding characteristics. Thereafter, the modified J-function was used to normalize all capillary pressure curves corresponding to each of predetermined HFU. The results showed that the reservoir rock was classified into five separate rock types with the definite HFU and reservoir pore geometry. Eventually, the pore radius for each of these HFUs was determined using a developed equation obtained by normalized J-function corresponding to each HFU. The proposed equation is a function of reservoir rock characteristics including φz, FZI, lithology index (J*, and pore size distribution index (ɛ. This methodology used, the reservoir under study was classified into five discrete HFU with unique equations for permeability, normalized J-function and pore size. The proposed technique is able to apply on any reservoir to determine the pore size of the reservoir rock, specially the one with high range of heterogeneity in the reservoir rock properties.

  12. Object Oriented and Functional Programming for Symbolic Manipulation

    OpenAIRE

    Vlasov, Alexander Yu.

    1999-01-01

    The advantages of mixed approach with using different kinds of programming techniques for symbolic manipulation are discussed. The main purpose of approach offered is merge the methods of object oriented programming that convenient for presentation data and algorithms for user with advantages of functional languages for data manipulation, internal presentation, and portability of software.

  13. Kriging modeling and SPSA adjusting PID with KPWF compensator control of IPMC gripper for mm-sized objects

    Science.gov (United States)

    Chen, Yang; Hao, Lina; Yang, Hui; Gao, Jinhai

    2017-12-01

    Ionic polymer metal composite (IPMC) as a new smart material has been widely concerned in the micromanipulation field. In this paper, a novel two-finger gripper which contains an IPMC actuator and an ultrasensitive force sensor is proposed and fabricated. The IPMC as one finger of the gripper for mm-sized objects can achieve gripping and releasing motion, and the other finger works not only as a support finger but also as a force sensor. Because of the feedback signal of the force sensor, this integrated actuating and sensing gripper can complete gripping miniature objects in millimeter scale. The Kriging model is used to describe nonlinear characteristics of the IPMC for the first time, and then the control scheme called simultaneous perturbation stochastic approximation adjusting a proportion integration differentiation parameter controller with a Kriging predictor wavelet filter compensator is applied to track the gripping force of the gripper. The high precision force tracking in the foam ball manipulation process is obtained on a semi-physical experimental platform, which demonstrates that this gripper for mm-sized objects can work well in manipulation applications.

  14. From tomography to FWI with a single objective function

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2013-01-01

    Reflections in our seismic data induce serious nonlinear behavior in the objective function of full waveform inversion (FWI). Thus, without a good initial velocity model, that can produce the reflections within a cycle of the frequency used

  15. Automatic focusing of attention on object size and shape

    Directory of Open Access Journals (Sweden)

    Cesar Galera

    2005-01-01

    Full Text Available In two experiments we investigated the automatic adjusting of the attentional focus to simple geometric shapes. The participants performed a visual search task with four stimuli (the target and three distractors presented always around the fixation point, inside an outlined frame not related to the search task. A cue informed the subject only about the possible size and shape of the frame, not about the target. The results of the first experiment showed faster target detection in the valid cue trials, suggesting that attention was captured automatically by the cue shape. In the second experiment, we introduced a flanker stimulus (compatible or incompatible with the target in order to determine if attentional resources spread homogenously inside and outside the frame. The results showed that performance depended both on cue validity and frame orientation. The flanker effect was dependent on compatibility and flanker position (vertical or horizontal meridian. The results of both experiments suggest that the form of an irrelevant object can capture attention despite participants’ intention and the results of the second experiment suggest that the attentional resources are more concentrated along the horizontal meridian.

  16. Representing uncertainty in objective functions: extension to include the influence of serial correlation

    Science.gov (United States)

    Croke, B. F.

    2008-12-01

    The role of performance indicators is to give an accurate indication of the fit between a model and the system being modelled. As all measurements have an associated uncertainty (determining the significance that should be given to the measurement), performance indicators should take into account uncertainties in the observed quantities being modelled as well as in the model predictions (due to uncertainties in inputs, model parameters and model structure). In the presence of significant uncertainty in observed and modelled output of a system, failure to adequately account for variations in the uncertainties means that the objective function only gives a measure of how well the model fits the observations, not how well the model fits the system being modelled. Since in most cases, the interest lies in fitting the system response, it is vital that the objective function(s) be designed to account for these uncertainties. Most objective functions (e.g. those based on the sum of squared residuals) assume homoscedastic uncertainties. If model contribution to the variations in residuals can be ignored, then transformations (e.g. Box-Cox) can be used to remove (or at least significantly reduce) heteroscedasticity. An alternative which is more generally applicable is to explicitly represent the uncertainties in the observed and modelled values in the objective function. Previous work on this topic addressed the modifications to standard objective functions (Nash-Sutcliffe efficiency, RMSE, chi- squared, coefficient of determination) using the optimal weighted averaging approach. This paper extends this previous work; addressing the issue of serial correlation. A form for an objective function that includes serial correlation will be presented, and the impact on model fit discussed.

  17. Multi-objective optimization of distributed generation with voltage ...

    African Journals Online (AJOL)

    DR OKE

    1*Department of Electrical Engineering, Kamla Nehru Institute of Technology Sultanpurr, ... of DG in distribution systems for different voltage dependent load models and .... The evaluation of the objective function depends only on location, size ...

  18. A new hybrid genetic algorithm for optimizing the single and multivariate objective functions

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory

    2015-07-01

    In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.

  19. Comparative study of popular objective functions for damping power system oscillations in multimachine system.

    Science.gov (United States)

    Islam, Naz Niamul; Hannan, M A; Shareef, Hussain; Mohamed, Azah; Salam, M A

    2014-01-01

    Power oscillation damping controller is designed in linearized model with heuristic optimization techniques. Selection of the objective function is very crucial for damping controller design by optimization algorithms. In this research, comparative analysis has been carried out to evaluate the effectiveness of popular objective functions used in power system oscillation damping. Two-stage lead-lag damping controller by means of power system stabilizers is optimized using differential search algorithm for different objective functions. Linearized model simulations are performed to compare the dominant mode's performance and then the nonlinear model is continued to evaluate the damping performance over power system oscillations. All the simulations are conducted in two-area four-machine power system to bring a detailed analysis. Investigated results proved that multiobjective D-shaped function is an effective objective function in terms of moving unstable and lightly damped electromechanical modes into stable region. Thus, D-shape function ultimately improves overall system damping and concurrently enhances power system reliability.

  20. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  1. Automated quantification and sizing of unbranched filamentous cyanobacteria by model based object oriented image analysis

    OpenAIRE

    Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J

    2010-01-01

    Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...

  2. Modeling fractal structure of city-size distributions using correlation functions.

    Science.gov (United States)

    Chen, Yanguang

    2011-01-01

    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.

  3. Infants' Developing Sensitivity to Object Function: Attention to Features and Feature Correlations

    Science.gov (United States)

    Baumgartner, Heidi A.; Oakes, Lisa M.

    2011-01-01

    When learning object function, infants must detect relations among features--for example, that squeezing is associated with squeaking or that objects with wheels roll. Previously, Perone and Oakes (2006) found 10-month-old infants were sensitive to relations between object appearances and actions, but not to relations between appearances and…

  4. A functional analysis of photo-object matching skills of severely retarded adolescents.

    Science.gov (United States)

    Dixon, L S

    1981-01-01

    Matching-to-sample procedures were used to assess picture representation skills of severely retarded, nonverbal adolescents. Identity matching within the classes of objects and life-size, full-color photos of the objects was first used to assess visual discrimination, a necessary condition for picture representation. Picture representation was then assessed through photo-object matching tasks. Five students demonstrated visual discrimination (identity matching) within the two classes of photos and the objects. Only one student demonstrated photo-object matching. The results of the four students who failed to demonstrate photo-object matching suggested that physical properties of photos (flat, rectangular) and depth dimensions of objects may exert more control over matching than the similarities of the objects and images within the photos. An analysis of figure-ground variables was conducted to provide an empirical basis for program development in the use of pictures. In one series of tests, rectangular shape and background were removed by cutting out the figures in the photos. The edge shape of the photo and the edge shape of the image were then identical. The results suggest that photo-object matching may be facilitated by using cut-out figures rather than the complete rectangular photo.

  5. A probabilistic multi objective CLSC model with Genetic algorithm-ε_Constraint approach

    Directory of Open Access Journals (Sweden)

    Alireza TaheriMoghadam

    2014-05-01

    Full Text Available In this paper an uncertain multi objective closed-loop supply chain is developed. The first objective function is maximizing the total profit. The second objective function is minimizing the use of row materials. In the other word, the second objective function is maximizing the amount of remanufacturing and recycling. Genetic algorithm is used for optimization and for finding the pareto optimal line, Epsilon-constraint method is used. Finally a numerical example is solved with proposed approach and performance of the model is evaluated in different sizes. The results show that this approach is effective and useful for managerial decisions.

  6. From tomography to full-waveform inversion with a single objective function

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-02-17

    In full-waveform inversion (FWI), a gradient-based update of the velocity model requires an initial velocity that produces synthetic data that are within a half-cycle, everywhere, from the field data. Such initial velocity models are usually extracted from migration velocity analysis or traveltime tomography, among other means, and are not guaranteed to adhere to the FWI requirements for an initial velocity model. As such, we evaluated an objective function based on the misfit in the instantaneous traveltime between the observed and modeled data. This phase-based attribute of the wavefield, along with its phase unwrapping characteristics, provided a frequency-dependent traveltime function that was easy to use and quantify, especially compared to conventional phase representation. With a strong Laplace damping of the modeled, potentially low-frequency, data along the time axis, this attribute admitted a first-arrival traveltime that could be compared with picked ones from the observed data, such as in wave equation tomography (WET). As we relax the damping on the synthetic and observed data, the objective function measures the misfit in the phase, however unwrapped. It, thus, provided a single objective function for a natural transition from WET to FWI. A Marmousi example demonstrated the effectiveness of the approach.

  7. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley

    2017-02-21

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  8. Soot Particle Size Distribution Functions in a Turbulent Non-Premixed Ethylene-Nitrogen Flame

    KAUST Repository

    Boyette, Wesley; Chowdhury, Snehaunshu; Roberts, William L.

    2017-01-01

    A scanning mobility particle sizer with a nano differential mobility analyzer was used to measure nanoparticle size distribution functions in a turbulent non-premixed flame. The burner utilizes a premixed pilot flame which anchors a C2H4/N2 (35/65) central jet with ReD = 20,000. Nanoparticles in the flame were sampled through a N2-filled tube with a 500- μm orifice. Previous studies have shown that insufficient dilution of the nanoparticles can lead to coagulation in the sampling line and skewed particle size distribution functions. A system of mass flow controllers and valves were used to vary the dilution ratio. Single-stage and two-stage dilution systems were investigated. A parametric study on the effect of the dilution ratio on the observed particle size distribution function indicates that particle coagulation in the sampling line can be eliminated using a two-stage dilution process. Carbonaceous nanoparticle (soot) concentration particle size distribution functions along the flame centerline at multiple heights in the flame are presented. The resulting distributions reveal a pattern of increasing mean particle diameters as the distance from the nozzle along the centerline increases.

  9. The functional neuroanatomy of object agnosia: a case study.

    Science.gov (United States)

    Konen, Christina S; Behrmann, Marlene; Nishimura, Mayu; Kastner, Sabine

    2011-07-14

    Cortical reorganization of visual and object representations following neural injury was examined using fMRI and behavioral investigations. We probed the visual responsivity of the ventral visual cortex of an agnosic patient who was impaired at object recognition following a lesion to the right lateral fusiform gyrus. In both hemispheres, retinotopic mapping revealed typical topographic organization and visual activation of early visual cortex. However, visual responses, object-related, and -selective responses were reduced in regions immediately surrounding the lesion in the right hemisphere, and also, surprisingly, in corresponding locations in the structurally intact left hemisphere. In contrast, hV4 of the right hemisphere showed expanded response properties. These findings indicate that the right lateral fusiform gyrus is critically involved in object recognition and that an impairment to this region has widespread consequences for remote parts of cortex. Finally, functional neural plasticity is possible even when a cortical lesion is sustained in adulthood. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Resource control of object-oriented programs

    OpenAIRE

    Marion, Jean-Yves; Pechoux, Romain

    2007-01-01

    International audience; A sup-interpretation is a tool which provides an upper bound on the size of a value computed by some symbol of a program. Sup-interpretations have shown their interest to deal with the complexity of first order functional programs. For instance, they allow to characterize all the functions bitwise computable in \\texttt{Alogtime}. This paper is an attempt to adapt the framework of sup-interpretations to a fragment of oriented-object programs, including distinct encoding...

  11. Assessment of relative individual renal function based on DMSA uptake corrected for renal size

    International Nuclear Information System (INIS)

    Estorch, M.; Camacho, V.; Tembl, A.; Mena, I.; Hernandez, A.; Flotats, A.; Carrio, I.; Torres, G.; Prat, L.

    2002-01-01

    Decreased relative renal DMSA uptake can be a consequence of abnormal kidney size, associated with normal or impaired renal function. The quantification of relative renal function based on DMSA uptake in both kidneys is an established method for the assessment of individual renal function. Aim: To assess relative renal function by means of quantification of renal DMSA uptake corrected for kidney size. Results were compared with relative renal DMSA uptake without size correction, and were validated against the absolute renal DMSA uptake. Material and Methods: Four-hundred-forty-four consecutive patients (147 adults, mean age 14 years) underwent a DMSA study for several renal diseases. The relative renal function, based on the relative DMSA uptake uncorrected and corrected for renal size, and the absolute renal DMSA uptake were calculated. In order to relate the relative DMSA uptake uncorrected and corrected for renal size with the absolute DMSA uptake, subtraction of uncorrected (SU) and corrected (SC) relative uptake percentages of each pair of kidneys was obtained, and these values were correlated to the matched subtraction percentages of absolute uptake (SA). If the individual relative renal function is normal (45%-55%), the subtraction value is less or equal to 10%. Results: In 227 patients (51%) the relative renal DMSA uptake value was normal either uncorrected or corrected for renal size (A), and in 149 patients (34%) it was abnormal by both quantification methods (B). Seventy-seven patients (15%) had the relative renal DMSA uptake abnormal only by the uncorrected method (C). Subtraction value of absolute DMSA uptake percentages was not significantly different of subtraction value of relative DMSA uptake percentages corrected for renal size when relative uncorrected uptake was abnormal and corrected normal. where * p<0.0001, and p=NS. Conclusion: When uncorrected and corrected relative DMSA uptake are abnormal, the absolute uptake is also impaired, while when

  12. DERIVATIVE OF SET MEASURE FUNCTIONS AND ITS APPLICATION (THEORETICAL BASES OF INVESTMENT OBJECTIVES

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2014-04-01

    Full Text Available Purpose. It is necessary to develop the theoretical fundamentals for solving the investment objectives presented in the form of set function as vector optimization tasks or tasks of constrained extremum. Methodology. Set functions and their derivatives of measure are used as research of investment objectives. Necessary condition of set function minimum is proved. In the tasks for constrained extremum the method of Lagrange is used. It is shown that this method can also be used for the set function. It is used the measure for proof, which generalizes the Lebesgue measure, and the concept of set sequence limit is introduced. It is noted that the introduced limit over a measure coincides with the classical Borel limit and can be used in order to prove the existence of derivative from set function over a measure on convergent of sets sequence. Findings. An algorithm of solving the investment objective for constrained extremum in relation to investment objectives was offered. Originality. Scientific novelty lies in the fact that in multivariate objects for constrained extremum one can refuse from immediate enumeration. One can use the proposed algorithm of constructing (selection of options that allow building a convex linear envelope of Pareto solutions. This envelope will let the person who makes a decision (DM, select those options that are "better" from a position of DM, and consider some of the criteria, the formalization of which are difficult or can not be described in mathematical terms. Practical value. Results of the study provide the necessary theoretical substantiation of decision-making in investment objectives, when there is a significant number of an investment objects and immediate enumeration of options is very difficult on time costs even for modern computing techniques.

  13. Dissociable intrinsic functional networks support noun-object and verb-action processing.

    Science.gov (United States)

    Yang, Huichao; Lin, Qixiang; Han, Zaizhu; Li, Hongyu; Song, Luping; Chen, Lingjuan; He, Yong; Bi, Yanchao

    2017-12-01

    The processing mechanism of verbs-actions and nouns-objects is a central topic of language research, with robust evidence for behavioral dissociation. The neural basis for these two major word and/or conceptual classes, however, remains controversial. Two experiments were conducted to study this question from the network perspective. Experiment 1 found that nodes of the same class, obtained through task-evoked brain imaging meta-analyses, were more strongly connected with each other than nodes of different classes during resting-state, forming segregated network modules. Experiment 2 examined the behavioral relevance of these intrinsic networks using data from 88 brain-damaged patients, finding that across patients the relative strength of functional connectivity of the two networks significantly correlated with the noun-object vs. verb-action relative behavioral performances. In summary, we found that verbs-actions and nouns-objects are supported by separable intrinsic functional networks and that the integrity of such networks accounts for the relative noun-object- and verb-action-selective deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A study of objective functions for organs with parallel and serial architecture

    International Nuclear Information System (INIS)

    Stavrev, P.V.; Stavreva, N.A.; Round, W.H.

    1997-01-01

    An objective function analysis when target volumes are deliberately enlarged to account for tumour mobility and consecutive uncertainty in the tumour position in external beam radiotherapy has been carried out. The dose distribution inside the tumour is assumed to have logarithmic dependence on the tumour cell density which assures an iso-local tumour control probability. The normal tissue immediately surrounding the tumour is irradiated homogeneously at a dose level equal to the dose D(R)) delivered at the edge of the tumour The normal tissue in the high dose field is modelled as being organized in identical functional subunits (FSUs) composed of a relatively large number of cells. Two types of organs - having serial and parallel architecture are considered. Implicit averaging over intrapatient normal tissue radiosensitivity variations is done. A function describing the normal tissue survival probability S 0 is constructed. The objective function is given as a product of the total tumour control probability (TCP) and the normal tissue survival probability S 0 . The values of the dose D(R)) which result in a maximum of the objective function are obtained for different combinations of tumour and normal tissue parameters, such as tumour and normal tissue radiosensitivities, number of cells constituting a normal tissue functional unit, total number of normal cells under high dose (D(R)) exposure and functional reserve for organs having parallel architecture. The corresponding TCP and S 0 values are computed and discussed. (authors)

  15. Effect Size Measures for Differential Item Functioning in a Multidimensional IRT Model

    Science.gov (United States)

    Suh, Youngsuk

    2016-01-01

    This study adapted an effect size measure used for studying differential item functioning (DIF) in unidimensional tests and extended the measure to multidimensional tests. Two effect size measures were considered in a multidimensional item response theory model: signed weighted P-difference and unsigned weighted P-difference. The performance of…

  16. COAGULATION CALCULATIONS OF ICY PLANET FORMATION AT 15-150 AU: A CORRELATION BETWEEN THE MAXIMUM RADIUS AND THE SLOPE OF THE SIZE DISTRIBUTION FOR TRANS-NEPTUNIAN OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 201 JFB, Salt Lake City, UT 84112 (United States)

    2012-03-15

    We investigate whether coagulation models of planet formation can explain the observed size distributions of trans-Neptunian objects (TNOs). Analyzing published and new calculations, we demonstrate robust relations between the size of the largest object and the slope of the size distribution for sizes 0.1 km and larger. These relations yield clear, testable predictions for TNOs and other icy objects throughout the solar system. Applying our results to existing observations, we show that a broad range of initial disk masses, planetesimal sizes, and fragmentation parameters can explain the data. Adding dynamical constraints on the initial semimajor axis of 'hot' Kuiper Belt objects along with probable TNO formation times of 10-700 Myr restricts the viable models to those with a massive disk composed of relatively small (1-10 km) planetesimals.

  17. The Functionalization, Size Control and Properties of Metal-Organic Frameworks

    DEFF Research Database (Denmark)

    Xu, Hui; Iversen, Bo Brummerstedt

    Recent years, Metal-Organic Framework (MOF) materials have drawn great attentions due to their potential applications in gas sorption/separation and luminescent sensing. In this dissertation, the recent progress of MOF materials is reviewed, with specific focus on the functionalization, size....... A nanoscale MOF material with controllable size was realized whose morphology has been simulated base on the BFDH method, and the sensing of bacteria endospores was research in detail. We also report the synthesis and sensing of nitroaromatic explosives of a nanoscale MOF material....

  18. Finite-size effects on current correlation functions

    Science.gov (United States)

    Chen, Shunda; Zhang, Yong; Wang, Jiao; Zhao, Hong

    2014-02-01

    We study why the calculation of current correlation functions (CCFs) still suffers from finite-size effects even when the periodic boundary condition is taken. Two important one-dimensional, momentum-conserving systems are investigated as examples. Intriguingly, it is found that the state of a system recurs in the sense of microcanonical ensemble average, and such recurrence may result in oscillations in CCFs. Meanwhile, we find that the sound mode collisions induce an extra time decay in a current so that its correlation function decays faster (slower) in a smaller (larger) system. Based on these two unveiled mechanisms, a procedure for correctly evaluating the decay rate of a CCF is proposed, with which our analysis suggests that the global energy CCF decays as ˜t-2/3 in the diatomic hard-core gas model and in a manner close to ˜t-1/2 in the Fermi-Pasta-Ulam-β model.

  19. Objectively-measured outdoor time and physical and psychological function among older adults.

    Science.gov (United States)

    Harada, Kazuhiro; Lee, Sangyoon; Lee, Sungchul; Bae, Seongryu; Harada, Kenji; Suzuki, Takao; Shimada, Hiroyuki

    2017-10-01

    Objective measurements of outdoor time are essential to establishing evidence about the health benefits of going outdoors among older adults. To better understanding the health benefits of going outdoors, clarification of potential mediators to connect going outdoors with health benefits is necessary. The present study aimed to investigate associations of objectively-measured outdoor time with older adults' physical and psychological function, and examine the mediating role of physical activity on these associations. Baseline data from a randomized control trial of physical activity among older adults with global cognitive impairment was used. Data from 192 participants were analyzed. Measures included steps-per-day, objectively-measured outdoor time per day using global positioning systems, physical function (cardiorespiratory fitness, lower-extremity strength), psychological function (depression, well-being) and basic factors. Path analysis showed that outdoor time was significantly associated with steps-per-day (path coefficient = 0.23) and depression (path coefficient = -0.16). Outdoor time was not directly associated with cardiorespiratory fitness, lower-extremity strength and well-being. However, steps-per-day was associated with cardiorespiratory fitness (path coefficient = 0.18), lower-extremity strength (path coefficient = -0.22) and well-being (path coefficient = 0.14). We found that objectively-measured outdoor time was indirectly associated with physical function, and both directly and indirectly with psychological function through physical activity among older adults. This finding indicates that going outdoors influences older adults' health outcomes, and is mainly mediated by physical activity. Geriatr Gerontol Int 2017; 17: 1455-1462. © 2016 Japan Geriatrics Society.

  20. Assessment of subjective and objective cognitive function in bipolar disorder

    DEFF Research Database (Denmark)

    Demant, Kirsa M; Vinberg, Maj; Kessing, Lars V

    2015-01-01

    Cognitive dysfunction is prevalent in bipolar disorder (BD). However, the evidence regarding the association between subjective cognitive complaints, objective cognitive performance and psychosocial function is sparse and inconsistent. Seventy seven patients with bipolar disorder who presented...

  1. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    Science.gov (United States)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  2. dftools: Distribution function fitting

    Science.gov (United States)

    Obreschkow, Danail

    2018-05-01

    dftools, written in R, finds the most likely P parameters of a D-dimensional distribution function (DF) generating N objects, where each object is specified by D observables with measurement uncertainties. For instance, if the objects are galaxies, it can fit a mass function (D=1), a mass-size distribution (D=2) or the mass-spin-morphology distribution (D=3). Unlike most common fitting approaches, this method accurately accounts for measurement in uncertainties and complex selection functions.

  3. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    Science.gov (United States)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2017-03-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  4. Waveform inversion with exponential damping using a deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok

    2016-09-06

    The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can be used to admit long wavelength updates for waveform inversion. Another feature of exponential damping is that the energy of each trace also exponentially decreases with source-receiver offset, where the leastsquare misfit function does not work well. Thus, we propose a deconvolution-based objective function for waveform inversion with an exponential damping. Since the deconvolution filter includes a division process, it can properly address the unbalanced energy levels of the individual traces of the damped wavefield. Numerical examples demonstrate that our proposed FWI based on the deconvolution filter can generate a convergent long wavelength structure from the artificial low frequency components coming from an exponential damping.

  5. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Delaram Houshmand Kouchi

    2017-05-01

    Full Text Available The successful application of hydrological models relies on careful calibration and uncertainty analysis. However, there are many different calibration/uncertainty analysis algorithms, and each could be run with different objective functions. In this paper, we highlight the fact that each combination of optimization algorithm-objective functions may lead to a different set of optimum parameters, while having the same performance; this makes the interpretation of dominant hydrological processes in a watershed highly uncertain. We used three different optimization algorithms (SUFI-2, GLUE, and PSO, and eight different objective functions (R2, bR2, NSE, MNS, RSR, SSQR, KGE, and PBIAS in a SWAT model to calibrate the monthly discharges in two watersheds in Iran. The results show that all three algorithms, using the same objective function, produced acceptable calibration results; however, with significantly different parameter ranges. Similarly, an algorithm using different objective functions also produced acceptable calibration results, but with different parameter ranges. The different calibrated parameter ranges consequently resulted in significantly different water resource estimates. Hence, the parameters and the outputs that they produce in a calibrated model are “conditioned” on the choices of the optimization algorithm and objective function. This adds another level of non-negligible uncertainty to watershed models, calling for more attention and investigation in this area.

  6. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  7. The motivational function of an objective in physical activity and sport

    Directory of Open Access Journals (Sweden)

    Mariusz Lipowski

    2017-12-01

    Full Text Available Background As a conscious activity of an individual, physical activity (PA constitutes an element of the free-time dimension. The type of goal allows us to distinguish between sport and PA: sport performance vs. psychophysical health. Drawing on the theory of the motivational function of an objective, this study examined the motivational function of an objective in physical activity and sport. Participants and procedures The sample consisted of 2141 individuals: 1163 women aged 16-64 years (M = 23.90, SD = 8.30 and 978 men aged 16-66 years (M = 24.50, SD = 9.40 who completed the Inventory of Physical Activity Objectives (IPAO, which includes the following scales: 1 motivational value, 2 time management, 3 persistence in action, and 4 motivational conflict. There are also questions that allow one to control for variables such as the variety of forms, duration, and frequency of PA, and socio-demographic variables. Results Males presented different motives of physical activity than females. Motives related to shapely body and health were more important for females. The most important motives for males were physical fitness and shapely body. The gender of participants moderates the motivational value of the specific objectives of physical activity and persistence in action. Conclusions With knowledge about the purposefulness of actions, it is possible to support and shape additional motivation experienced by an individual, by setting new, realistic objectives.

  8. Appropriate Objective Functions for Quantifying Iris Mechanical Properties Using Inverse Finite Element Modeling.

    Science.gov (United States)

    Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh

    2018-07-01

    Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.

  9. Optimal capacitor placement and sizing using combined fuzzy ...

    African Journals Online (AJOL)

    user

    The studies have specified that as much as 13% of total power generated is consumed as ... sizing is designed with the objective function, which minimises the power loss. ..... System Engineering in 2007 (Anna University) Tamil Nadu, India.

  10. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  11. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  12. Mortality as a bivariate function of age and size in indeterminate growers

    DEFF Research Database (Denmark)

    Colchero, Fernando; Schaible, Ralf

    2014-01-01

    Mortality in organisms that grow indefinitely, known as indeterminate growers, is thought to be driven primarily by size. However, a number of ageing mechanisms also act as functions of age. Thus, to explain mortality in these species, both size and age need to be explicitly modelled. Here we...... contribution of age, as a proxy for chronological deterioration, is of typical senescence; while a seemingly senescent population can have underlying age-related negative senescence, which is, however, overcome by negative underlying size effects. We show how inference about these unobserved processes can...

  13. Structure Optimization of Stand-Alone Renewable Power Systems Based on Multi Object Function

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Cho

    2016-08-01

    Full Text Available This paper presents a methodology for the size optimization of a stand-alone hybrid PV/wind/diesel/battery system while considering the following factors: total annual cost (TAC, loss of power supply probability (LPSP, and the fuel cost of the diesel generator required by the user. A new optimization algorithm and an object function (including a penalty method are also proposed; these assist with designing the best structure for a hybrid system satisfying the constraints. In hybrid energy system sources such as photovoltaic (PV, wind, diesel, and energy storage devices are connected as an electrical load supply. Because the power produced by PV and wind turbine sources is dependent on the variation of the resources (sun and wind and the load demand fluctuates, such a hybrid system must be able to satisfy the load requirements at any time and store the excess energy for use in deficit conditions. Therefore, reliability and cost are the two main criteria when designing a stand-alone hybrid system. Moreover, the operation of a diesel generator is important to achieve greater reliability. In this paper, TAC, LPSP, and the fuel cost of the diesel generator are considered as the objective variables and a hybrid teaching–learning-based optimization algorithm is proposed and used to choose the best structure of a stand-alone hybrid PV/wind/diesel/battery system. Simulation results from MATLAB support the effectiveness of the proposed method and confirm that it is more efficient than conventional methods.

  14. Individual and species-specific traits explain niche size and functional role in spiders as generalist predators.

    Science.gov (United States)

    Sanders, Dirk; Vogel, Esther; Knop, Eva

    2015-01-01

    The function of a predator within a community is greatly based on its trophic niche, that is the number and the strength of feeding links. In generalist predators, which feed on a wide range of prey, the size and position of the trophic niche is likely determined by traits such as hunting mode, the stratum they occur in, their body size and age. We used stable isotope analyses ((13)C and (15)N) to measure the trophic niche size of nine spider species within a forest hedge community and tested for species traits and individual traits that influence stable isotope enrichment, niche size and resource use. The spiders Enoplognatha, Philodromus, Floronia, and Heliophanus had large isotopic niches, which correspond to a more generalistic feeding behaviour. In contrast, Araneus, Metellina and Agelena, as top predators in the system, had rather narrow niches. We found a negative correlation between trophic position and niche size. Differences in trophic position in spiders were explained by body size, hunting modes and stratum, while niche size was influenced by hunting mode. In Philodromus, the size of the trophic niche increased significantly with age. Fitting spiders to functional groups according to their mean body size, hunting mode and their habitat domain resulted in largely separated niches, which indicates that these traits are meaningful for separating functional entities in spiders. Functional groups based on habitat domain (stratum) caught the essential functional differences between the species with species higher up in the vegetation feeding on flying insects and herb and ground species also preying on forest floor decomposers. Interestingly, we found a gradient from large species using a higher habitat domain and having a smaller niche to smaller species foraging closer to the ground and having a larger niche. This shows that even within generalist predators, such as spiders, there is a gradient of specialism that can be predicted by functional traits.

  15. A Genetic Algorithm for Selection of Fixed-Size Subsets with Application to Design Problems

    Directory of Open Access Journals (Sweden)

    Mark A. Wolters

    2015-11-01

    Full Text Available The R function kofnGA conducts a genetic algorithm search for the best subset of k items from a set of n alternatives, given an objective function that measures the quality of a subset. The function fills a gap in the presently available subset selection software, which typically searches over a range of subset sizes, restricts the types of objective functions considered, or does not include freely available code. The new function is demonstrated on two types of problem where a fixed-size subset search is desirable: design of environmental monitoring networks, and D-optimal design of experiments. Additionally, the performance is evaluated on a class of constructed test problems with a novel design that is interesting in its own right.

  16. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    International Nuclear Information System (INIS)

    Lee, Taewoo; Hammad, Muhannad; Chan, Timothy C. Y.; Craig, Tim; Sharpe, Michael B.

    2013-01-01

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl 2 distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by the

  17. Altered luminosity functions for relativistically beamed objects. II - Distribution of Lorentz factors and parent populations with complex luminosity functions

    International Nuclear Information System (INIS)

    Urry, C.M.; Padovani, P.

    1991-01-01

    In a previous paper, Urry and Shafer (1984) showed that the observed luminosity function (LF) of objects that have part or all of their emission relativistically beamed was a double power law, flat at the faint end and steep at the bright end, so that the ratio of beamed sources to parents was a strong function of luminosity. These calculations are extended here for more realistic LFs required for actual tests of a unified theory of AGN. The observed LF of the beam-dominated objects is generally flatter than the parent LF, so that the number density ratio is a strong function of luminosity and can easily be greater than unity at high luminosities, even for gradual low-luminosity cutoffs in the parent LF. Several characteristic break points can be identified depending on the details of the parent LF. The calculations can be used to test unified theories by predicting the observed LF for aligned objects from the LF of the proposed parent population. 6 refs

  18. Gravitational lens effect and pregalactic halo objects

    International Nuclear Information System (INIS)

    Bontz, R.J.

    1979-01-01

    The changes in flux, position, and size of a distant extended (galaxy, etc.) source that result from the gravitational lens action of a massive opaque object are discussed. The flux increase is described by a single function of two parameters. One of these parameters characterizes the strength of the gravitational lens, the other describes the alignment of source and lens object. This function also describes the relative intensity of the images formed by lens. ( A similar formalism is discussed by Bourassa et al. for a point source). The formalism is applied to the problem of the galactic halo. It appears that a massive (10 1 2 M/sub sun/) spherical halo surrounding the visible part of the galaxy is consistent with the observable properties of extragalactic sources

  19. Radiobiology for eye plaque brachytherapy and evaluation of implant duration and radionuclide choice using an objective function

    International Nuclear Information System (INIS)

    Gagne, Nolan L.; Leonard, Kara L.; Rivard, Mark J.

    2012-01-01

    Purpose: Clinical optimization of Collaborative Ocular Melanoma Study (COMS) eye plaque brachytherapy is currently limited to tumor coverage, consensus prescription dosage, and dose calculations to ocular structures. The biologically effective dose (BED) of temporary brachytherapy treatments is a function of both chosen radionuclide R and implant duration T. This study endeavored to evaluate BED delivered to the tumor volume and surrounding ocular structures as a function of plaque position P, prescription dose, R, and T. Methods: Plaque-heterogeneity-corrected dose distributions were generated with MCNP5 for the range of currently available COMS plaques loaded with sources using three available low-energy radionuclides. These physical dose distributions were imported into the PINNACLE 3 treatment planning system using the TG-43 hybrid technique and used to generate dose volume histograms for a T = 7 day implant within a reference eye geometry including the ciliary body, cornea, eyelid, foveola, lacrimal gland, lens, optic disc, optic nerve, retina, and tumor at eight standard treatment positions. The equation of Dale and Jones was employed to create biologically effective dose volume histograms (BEDVHs), allowing for BED volumetric analysis of all ROIs. Isobiologically effective prescription doses were calculated for T = 5 days down to 0.01 days, with BEDVHs subsequently generated for all ROIs using correspondingly reduced prescription doses. Objective functions were created to evaluate the BEDVHs as a function of R and T. These objective functions are mathematically accessible and sufficiently general to be applied to temporary or permanent brachytherapy implants for a variety of disease sites. Results: Reducing T from 7 to 0.01 days for a 10 mm plaque produced an average BED benefit of 26%, 20%, and 17% for 103 Pd, 125 I, and 131 Cs, respectively, for all P; 16 and 22 mm plaque results were more position-dependent. 103 Pd produced a 16%–35% BED benefit over

  20. The Dynamical Imprint of Lost Protoplanets on the Trans-Neptunian Populations, and Limits on the Primordial Size Distribution of Trans-Neptunian Objects at Pluto and Larger Sizes.

    Science.gov (United States)

    Shannon, Andrew Brian; Dawson, Rebekah

    2018-04-01

    Planet formation remains a poorly understood process, in part because of our limited access to the intermediate phases of planetesimal and protoplanet growth. Today, the vast majority of the accessible remaining planetesimals and protoplanets reside within the Hot Trans-Neptunian Object population. This population has been depleted by 99% - 99.9% over the course of the Solar system's history, and as such the present day size-number distribution may be incomplete at the large size end. We show that such lost protoplanets would have left signatures in the dynamics of the present-day Trans-Neptunian Populations, and their primordial number can thus be statistically limited by considering the survival of ultra-wide binary TNOs, the Cold Classical Kuiper belt, and the resonant populations. We compare those limits to the predicted size-number distribution of various planetesimal and proto-planet growth models.

  1. Size-dependent error of the density functional theory ionization potential in vacuum and solution.

    Science.gov (United States)

    Sosa Vazquez, Xochitl A; Isborn, Christine M

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  2. Waveform inversion with exponential damping using a deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2016-01-01

    The lack of low frequency components in seismic data usually leads full waveform inversion into the local minima of its objective function. An exponential damping of the data, on the other hand, generates artificial low frequencies, which can

  3. Sample size determination for equivalence assessment with multiple endpoints.

    Science.gov (United States)

    Sun, Anna; Dong, Xiaoyu; Tsong, Yi

    2014-01-01

    Equivalence assessment between a reference and test treatment is often conducted by two one-sided tests (TOST). The corresponding power function and sample size determination can be derived from a joint distribution of the sample mean and sample variance. When an equivalence trial is designed with multiple endpoints, it often involves several sets of two one-sided tests. A naive approach for sample size determination in this case would select the largest sample size required for each endpoint. However, such a method ignores the correlation among endpoints. With the objective to reject all endpoints and when the endpoints are uncorrelated, the power function is the production of all power functions for individual endpoints. With correlated endpoints, the sample size and power should be adjusted for such a correlation. In this article, we propose the exact power function for the equivalence test with multiple endpoints adjusted for correlation under both crossover and parallel designs. We further discuss the differences in sample size for the naive method without and with correlation adjusted methods and illustrate with an in vivo bioequivalence crossover study with area under the curve (AUC) and maximum concentration (Cmax) as the two endpoints.

  4. Relationship between patient-reported and objective measurements of hand function in patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    S.M. Günay

    2016-12-01

    Full Text Available Rheumatoid arthritis (RA often results in impairments in upper extremities, especially in the small joints of hand. Involvement of hand brings limitations in activities of daily living. However, it is commonly observed that patient-reported functional status of hand does not always corresponds to their actual physical performance in the clinical setting. The aim of this pilot study is to investigate the relationship between patient self-reported and objectively measured hand functions in patients with RA. Twenty-six patients (51±13 years with RA diagnosis participated in the study. Hand grip and pinch (lateral, bipod, tripod strengths were measured and Jebsen Hand Function Test (JHFT was performed for objective functional performance. Duruöz Hand Index and Beck Depression Inventory - Turkish version were completed by patients. Grip and all three-pinch strength results significantly correlated with Duruöz Hand Index scores (p<0.05. JHFT results except the sentence writing also correlated with the Duruöz scores (p<0.05. Our results showed that self-reported outcome scales might be used for determining functional level of hand in patients with RA in rheumatology practice. Objective quantitative functional tests are the best methods in evaluating functional level of hand, but require valid and reliable equipment with accurate calibration. Therefore, in case of unavailability of objective assessment tools, patient-reported scales may also reflect the real status of hand functions.

  5. Objective function choice for control of a thermocapillary flow using an adjoint-based control strategy

    International Nuclear Information System (INIS)

    Muldoon, Frank H.; Kuhlmann, Hendrik C.

    2015-01-01

    Highlights: • Suppression of oscillations in a thermocapillary flow is addressed by optimization. • The gradient of the objective function is obtained by solving the adjoint equations. • The issue of choosing an objective function is investigated. - Abstract: The problem of suppressing flow oscillations in a thermocapillary flow is addressed using a gradient-based control strategy. The physical problem addressed is the “open boat” process of crystal growth, the flow in which is driven by thermocapillary and buoyancy effects. The problem is modeled by the two-dimensional unsteady incompressible Navier–Stokes and energy equations under the Boussinesq approximation. The goal of the control is to suppress flow oscillations which arise when the driving forces are such that the flow becomes unsteady. The control is a spatially and temporally varying temperature gradient boundary condition at the free surface. The control which minimizes the flow oscillations is found using a conjugate gradient method, where the gradient of the objective function with respect to the control variables is obtained from solving a set of adjoint equations. The issue of choosing an objective function that can be both optimized in a computationally efficient manner and optimization of which provides control that damps the flow oscillations is investigated. Almost complete suppression of the flow oscillations is obtained for certain choices of the objective function.

  6. Functional size of photosynthetic electron transport chain determined by radiation inactivation

    International Nuclear Information System (INIS)

    Pan, R.S.; Chen, L.F.; Wang, M.Y.; Tsal, M.Y.; Pan, R.L.; Hsu, B.D.

    1987-01-01

    Radiation inactivation technique was employed to determine the functional size of photosynthetic electron transport chain of spinach chloroplasts. The functional size for photosystem I+II(H 2 O to methylviologen) was 623 +/- 37 kilodaltons; for photosystem II (H 2 O to dimethylquinone/ferricyanide), 174 +/- 11 kilodaltons; and for photosystem I (reduced diaminodurene to methylviologen), 190 +/- 11 kilodaltons. The difference between 364 +/- 22 (the sum of 174 +/- 11 and 190 +/- 11) kilodaltons and 623 +/- 37 kilodaltons is partially explained to be due to the presence of two molecules of cytochrome b 6 /f complex of 280 kilodaltons. The molecular mass for other partial reactions of photosynthetic electron flow, also measured by radiation inactivation, is reported. The molecular mass obtained by this technique is compared with that determined by other conventional biochemical methods. A working hypothesis for the composition, stoichiometry, and organization of polypeptides for photosynthetic electron transport chain is proposed

  7. Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina)

    DEFF Research Database (Denmark)

    Wieskotten, S.; Mauck, B.; Miersch, L.

    2011-01-01

    Harbour seals can use their mystacial vibrissae to detect and track hydrodynamic wakes. We investigated the ability of a harbour seal to discriminate objects of different size or shape by their hydrodynamic signature and used particle image velocimetry to identify the hydrodynamic parameters...... that a seal may be using to do so. Hydrodynamic trails were generated by different sized or shaped paddles that were moved in the calm water of an experimental box to produce a characteristic signal. In a two-alternative forced-choice procedure the blindfolded subject was able to discriminate size differences...... of down to 3.6. cm (Weber fraction 0.6) when paddles were moved at the same speed. Furthermore the subject distinguished hydrodynamic signals generated by flat, cylindrical, triangular or undulated paddles of the same width. Particle image velocimetry measurements demonstrated that the seal could have...

  8. Objects but not concepts modulate the size of the attended region.

    Science.gov (United States)

    Goodhew, Stephanie C; Edwards, Mark

    2017-07-01

    Here we investigated the types of stimuli that modulate the size of the attentional spotlight. In particular, it has been previously shown that conceptual cues that either directly refer to or are semantically related to particular spatial locations can shift attention to that location (known as "conceptual cueing"). For example, reading the word sun or joy can shift attention upward whereas the word boot or hostile can shift attention downward. Here, therefore, we tested whether words could modulate the size of the attended area. Across five experiments, we found that words that either directly referred to, or were abstractly associated with, particular sizes (small versus large) did not change the size of the attentional spotlight, whereas the presence of differently sized stimuli did, as evidenced by faster responses to targets when the spotlight is small than when it is large. This suggests that physical but not conceptual inducers can modulate the size of the attentional spotlight. This highlights an important difference between the regulation of spotlight size and shifts of attention, supporting the notion that they are subserved by distinct mechanisms.

  9. Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach

    National Research Council Canada - National Science Library

    Liu, C

    2001-01-01

    The objectives in this report are to: determine the inherent critical initial crack size in a particulate composite material, determine the statistical distribution function of the inherent critical crack size, normal distribution, two...

  10. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  11. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav; Sinha, Mrinal; Schuster, Gerard T.

    2014-01-01

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  12. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study

    OpenAIRE

    Veale, David; Miles, Sarah; Read, Julie; Troglia, Andrea; Wylie, Kevan; Muir, Gordon

    2015-01-01

    Introduction: Little is known about the sexual functioning and behavior of men anxious about the size of their penis and the means that they might use to try to alter the size of their penis. Aim: To compare sexual functioning and behavior in men with body dysmorphic disorder (BDD) concerning penis size and in men with small penis anxiety (SPA without BDD) and in a control group of men who do not have any concerns. Methods: An opportunistic sample of 90 men from the community were recru...

  13. Drop size distribution measured by imaging: determination of the measurement volume by the calibration of the point spread function

    International Nuclear Information System (INIS)

    Fdida, Nicolas; Blaisot, Jean-Bernard

    2010-01-01

    Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support

  14. Objective Function and Learning Algorithm for the General Node Fault Situation.

    Science.gov (United States)

    Xiao, Yi; Feng, Rui-Bin; Leung, Chi-Sing; Sum, John

    2016-04-01

    Fault tolerance is one interesting property of artificial neural networks. However, the existing fault models are able to describe limited node fault situations only, such as stuck-at-zero and stuck-at-one. There is no general model that is able to describe a large class of node fault situations. This paper studies the performance of faulty radial basis function (RBF) networks for the general node fault situation. We first propose a general node fault model that is able to describe a large class of node fault situations, such as stuck-at-zero, stuck-at-one, and the stuck-at level being with arbitrary distribution. Afterward, we derive an expression to describe the performance of faulty RBF networks. An objective function is then identified from the formula. With the objective function, a training algorithm for the general node situation is developed. Finally, a mean prediction error (MPE) formula that is able to estimate the test set error of faulty networks is derived. The application of the MPE formula in the selection of basis width is elucidated. Simulation experiments are then performed to demonstrate the effectiveness of the proposed method.

  15. How big was it? Systematics of 41Ca production in meter-size extraterrestial objects

    International Nuclear Information System (INIS)

    Klein, J.; Dezfouly-Arjomandy, B.; Lawn, B.; Middleton, R.; Fink, D.; Albrecht, A.; Herzog, G.; Vogt, S.

    1992-01-01

    41 Ca, produced in the iron phase of meteorites by high-energy proton initiated nuclear spallation, has a saturation value of ∼24 dpm/kg-Fe and a concentration that varies only slowly with depth. In the stone phase, 41 Ca is produced by thermal neutron capture, 40 Ca(n,γ) 41 Ca, and the saturation value is expected to be ∼2,000 dpm/kg-Ca. Because neutrons are produced at high energy and must pass through about two meters of material to thermalize, 41 Ca concentrations in the stone phase depend critically on the size of the meteorite during irradiation, and vary as function of sample location. Using accelerator mass spectrometry, the authors have measured 41 Ca in the long core from the Moon collected during Apollo 15, in metallic and stone separates in Jilin, and in several mesosiderites. A framework for interpreting these results in terms of the pre-atmospheric sizes of meteorites is presented

  16. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  17. Migrate small, sound big: functional constraints on body size promote tracheal elongation in cranes.

    Science.gov (United States)

    Jones, M R; Witt, C C

    2014-06-01

    Organismal traits often represent the outcome of opposing selection pressures. Although social or sexual selection can cause the evolution of traits that constrain function or survival (e.g. ornamental feathers), it is unclear how the strength and direction of selection respond to ecological shifts that increase the severity of the constraint. For example, reduced body size might evolve by natural selection to enhance flight performance in migratory birds, but social or sexual selection favouring large body size may provide a countervailing force. Tracheal elongation is a potential outcome of these opposing pressures because it allows birds to convey an auditory signal of exaggerated body size. We predicted that the evolution of migration in cranes has coincided with a reduction in body size and a concomitant intensification of social or sexual selection for apparent large body size via tracheal elongation. We used a phylogenetic comparative approach to examine the relationships among migration distance, body mass and trachea length in cranes. As predicted, we found that migration distance correlated negatively with body size and positively with proportional trachea length. This result was consistent with our hypothesis that evolutionary reductions in body size led to intensified selection for trachea length. The most likely ultimate causes of intensified positive selection on trachea length are the direct benefits of conveying a large body size in intraspecific contests for mates and territories. We conclude that the strength of social or sexual selection on crane body size is linked to the degree of functional constraint. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Comparison of multiple linear regression and artificial neural network in developing the objective functions of the orthopaedic screws.

    Science.gov (United States)

    Hsu, Ching-Chi; Lin, Jinn; Chao, Ching-Kong

    2011-12-01

    Optimizing the orthopaedic screws can greatly improve their biomechanical performances. However, a methodical design optimization approach requires a long time to search the best design. Thus, the surrogate objective functions of the orthopaedic screws should be accurately developed. To our knowledge, there is no study to evaluate the strengths and limitations of the surrogate methods in developing the objective functions of the orthopaedic screws. Three-dimensional finite element models for both the tibial locking screws and the spinal pedicle screws were constructed and analyzed. Then, the learning data were prepared according to the arrangement of the Taguchi orthogonal array, and the verification data were selected with use of a randomized selection. Finally, the surrogate objective functions were developed by using either the multiple linear regression or the artificial neural network. The applicability and accuracy of those surrogate methods were evaluated and discussed. The multiple linear regression method could successfully construct the objective function of the tibial locking screws, but it failed to develop the objective function of the spinal pedicle screws. The artificial neural network method showed a greater capacity of prediction in developing the objective functions for the tibial locking screws and the spinal pedicle screws than the multiple linear regression method. The artificial neural network method may be a useful option for developing the objective functions of the orthopaedic screws with a greater structural complexity. The surrogate objective functions of the orthopaedic screws could effectively decrease the time and effort required for the design optimization process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Objective effect manifestation of pectus excavatum on load-stressed pulmonary function testing: a case report

    Directory of Open Access Journals (Sweden)

    Chan Jason

    2011-12-01

    Full Text Available Abstract Introduction Pectus excavatum is the most common congenital deformity of the anterior chest wall that, under certain conditions, may pose functional problems due to cardiopulmonary compromise and exercise intolerance. Case presentation We present the case of an otherwise physically-adept 21-year-old Chinese sportsman with idiopathic pectus excavatum, whose symptoms manifested only on bearing a loaded body vest and backpack during physical exercise. Corroborative objective evidence was obtained via load-stressed pulmonary function testing, which demonstrated restrictive lung function. Conclusion This report highlights the possible detrimental synergism of thoracic load stress and pectus excavatum on cardiopulmonary function. Thoracic load-stressed pulmonary function testing provides objective evidence in support of such a synergistic relationship.

  20. Functional size of vacuolar H+ pumps: Estimates from radiation inactivation studies

    International Nuclear Information System (INIS)

    Sarafian, V.; Poole, R.J.

    1991-01-01

    The PPase and the ATPase from red beet (Beta vulgaris) vacuolar membranes were subjected to radiation inactivation by a 60 Co source in both the native tonoplast and detergent-solubilized states, in order to determine their target molecular sizes. Analysis of the residual phosphohydrolytic and proton transport activities, after exposure to varying doses of radiation, yielded exponential relationships between the activities and radiation doses. The deduced target molecular sizes for PPase activity in native and solubilized membranes were 125kD and 259kD respectively and 327kD for H + -transport. This suggests that the minimum number of subunits of 67kD for PPi hydrolysis is two in the native state and four after Triton X-100 solubilization. At least four subunits would be required for H + -translocation. Analysis of the ATPase inactivation patterns revealed target sizes of 384kD and 495kD for ATP hydrolysis in native and solubilized tonoplast respectively and 430kD for H + -transport. These results suggest that the minimum size for hydrolytic or transport functions is relatively constant for the ATPase

  1. Are Children with Autism Spectrum Disorder Initially Attuned to Object Function Rather than Shape for Word Learning?

    Science.gov (United States)

    Field, Charlotte; Allen, Melissa L.; Lewis, Charlie

    2016-01-01

    We investigate the function bias--generalising words to objects with the same function--in typically developing (TD) children, children with autism spectrum disorder (ASD) and children with other developmental disorders. Across four trials, a novel object was named and its function was described and demonstrated. Children then selected the other…

  2. Models for predicting objective function weights in prostate cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, Justin J.; Lee, Taewoo; Craig, Tim; Sharpe, Michael B.; Chan, Timothy C. Y.

    2015-01-01

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  3. Models for predicting objective function weights in prostate cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  4. A proposal of multi-objective function for submarine rigid pipelines route optimization via evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, D.H.; Medeiros, A.R. [Subsea7, Niteroi, RJ (Brazil); Jacob, B.P.; Lima, B.S.L.P.; Albrecht, C.H. [Universidade Federaldo Rio de Janeiro (COPPE/UFRJ), RJ (Brazil). Coordenacao de Programas de Pos-graduacao em Engenharia

    2009-07-01

    This work presents studies regarding the determination of optimal pipeline routes for offshore applications. The assembly of an objective function is presented; this function can be later associated with Evolutionary Algorithm to implement a computational tool for the automatic determination of the most advantageous pipeline route for a given scenario. This tool may reduce computational overheads, avoid mistakes with route interpretation, and minimize costs with respect to submarine pipeline design and installation. The following aspects can be considered in the assembly of the objective function: Geophysical and geotechnical data obtained from the bathymetry and sonography; the influence of the installation method, total pipeline length and number of free spans to be mitigated along the routes as well as vessel time for both cases. Case studies are presented to illustrate the use of the proposed objective function, including a sensitivity analysis intended to identify the relative influence of selected parameters in the evaluation of different routes. (author)

  5. Analyzing the Implicit Computational Complexity of object-oriented programs

    OpenAIRE

    Marion , Jean-Yves; Péchoux , Romain

    2008-01-01

    International audience; A sup-interpretation is a tool which provides upper bounds on the size of the values computed by the function symbols of a program. Sup-interpretations have shown their interest to deal with the complexity of first order functional programs. This paper is an attempt to adapt the framework of sup-interpretations to a fragment of object-oriented programs, including loop and while constructs and methods with side effects. We give a criterion, called brotherly criterion, w...

  6. Optimal capacitor placement and sizing using combined fuzzy ...

    African Journals Online (AJOL)

    Then the sizing of the capacitors is modeled as an optimization problem and the objective function (loss minimization) is solved using Hybrid Particle Swarm Optimization (HPSO) technique. A case study with an IEEE 34 bus distribution feeder is presented to illustrate the applicability of the algorithm. A comparison is made ...

  7. Practical implementation of Channelized Hotelling Observers: Effect of ROI size.

    Science.gov (United States)

    Ferrero, Andrea; Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H

    2017-03-01

    Fundamental to the development and application of channelized Hotelling observer (CHO) models is the selection of the region of interest (ROI) to evaluate. For assessment of medical imaging systems, reducing the ROI size can be advantageous. Smaller ROIs enable a greater concentration of interrogable objects in a single phantom image, thereby providing more information from a set of images and reducing the overall image acquisition burden. Additionally, smaller ROIs may promote better assessment of clinical patient images as different patient anatomies present different ROI constraints. To this end, we investigated the minimum ROI size that does not compromise the performance of the CHO model. In this study, we evaluated both simulated images and phantom CT images to identify the minimum ROI size that resulted in an accurate figure of merit (FOM) of the CHO's performance. More specifically, the minimum ROI size was evaluated as a function of the following: number of channels, spatial frequency and number of rotations of the Gabor filters, size and contrast of the object, and magnitude of the image noise. Results demonstrate that a minimum ROI size exists below which the CHO's performance is grossly inaccurate. The minimum ROI size is shown to increase with number of channels and be dictated by truncation of lower frequency filters. We developed a model to estimate the minimum ROI size as a parameterized function of the number of orientations and spatial frequencies of the Gabor filters, providing a guide for investigators to appropriately select parameters for model observer studies.

  8. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study.

    Science.gov (United States)

    Veale, David; Miles, Sarah; Read, Julie; Troglia, Andrea; Wylie, Kevan; Muir, Gordon

    2015-09-01

    Little is known about the sexual functioning and behavior of men anxious about the size of their penis and the means that they might use to try to alter the size of their penis. To compare sexual functioning and behavior in men with body dysmorphic disorder (BDD) concerning penis size and in men with small penis anxiety (SPA without BDD) and in a control group of men who do not have any concerns. An opportunistic sample of 90 men from the community were recruited and divided into three groups: BDD (n = 26); SPA (n = 31) and controls (n = 33). The Index of Erectile Function (IEF), sexual identity and history; and interventions to alter the size of their penis. Men with BDD compared with controls had reduced erectile dysfunction, orgasmic function, intercourse satisfaction and overall satisfaction on the IEF. Men with SPA compared with controls had reduced intercourse satisfaction. There were no differences in sexual desire, the frequency of intercourse or masturbation across any of the three groups. Men with BDD and SPA were more likely than the controls to attempt to alter the shape or size of their penis (for example jelqing, vacuum pumps or stretching devices) with poor reported success. Men with BDD are more likely to have erectile dysfunction and less satisfaction with intercourse than controls but maintain their libido. Further research is required to develop and evaluate a psychological intervention for such men with adequate outcome measures.

  9. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  10. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Directory of Open Access Journals (Sweden)

    Beth L. Mindel

    2016-09-01

    Full Text Available Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  11. Size matters: large objects capture attention in visual search.

    Science.gov (United States)

    Proulx, Michael J

    2010-12-23

    Can objects or events ever capture one's attention in a purely stimulus-driven manner? A recent review of the literature set out the criteria required to find stimulus-driven attentional capture independent of goal-directed influences, and concluded that no published study has satisfied that criteria. Here visual search experiments assessed whether an irrelevantly large object can capture attention. Capture of attention by this static visual feature was found. The results suggest that a large object can indeed capture attention in a stimulus-driven manner and independent of displaywide features of the task that might encourage a goal-directed bias for large items. It is concluded that these results are either consistent with the stimulus-driven criteria published previously or alternatively consistent with a flexible, goal-directed mechanism of saliency detection.

  12. Constraints on the exploitation of the functional properties of objects in expert tool-using chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Povinelli, Daniel J; Frey, Scott H

    2016-09-01

    Many species exploit immediately apparent dimensions of objects during tool use and manufacture and operate over internal perceptual representations of objects (they move and reorient objects in space, have rules of operation to deform or modify objects, etc). Humans, however, actively test for functionally relevant object properties before such operations begin, even when no previous percepts of a particular object's qualities in the domain have been established. We hypothesize that such prospective diagnostic interventions are a human specialization of cognitive function that has been entirely overlooked in the neuropsychological literature. We presented chimpanzees with visually identical rakes: one was functional for retrieving a food reward; the other was non-functional (its base was spring-loaded). Initially, they learned that only the functional tool could retrieve a distant reward. In test 1, we explored if they would manually test for the rakes' rigidity during tool selection, but before using it. We found no evidence of such behavior. In test 2, we obliged the apes to deform the non-functional tool's base before using it, in order to evaluate whether this would cause them to switch rakes. It did not. Tests 3-6 attempted to focus the apes' attention on the functionally relevant property (rigidity). Although one ape eventually learned to abandon the non-functional rake before using it, she still did not attempt to test the rakes for rigidity prior to use. While these results underscore the ability of chimpanzees to use novel tools, at the same time they point toward a fundamental (and heretofore unexplored) difference in causal reasoning between humans and apes. We propose that this behavioral difference reflects a human specialization in how object properties are represented, which could have contributed significantly to the evolution of our technological culture. We discuss developing a new line of evolutionarily motivated neuropsychological research on

  13. Objective-function Hybridization in Adjoint Seismic Tomography

    Science.gov (United States)

    Yuan, Y. O.; Bozdag, E.; Simons, F.; Gao, F.

    2016-12-01

    In the realm of seismic tomography, we are at the threshold of a new era of huge seismic datasets. However, how to assimilate as much information as possible from every seismogram is still a challenge. Cross-correlation measurements are generally tailored to some window selection algorithms, such as FLEXWIN (Maggie et al. 2008), to balance amplitude differences between seismic phases. However, these measurements naturally favor maximum picks in selected windows. It is also difficult to select all usable portions of seismograms in an optimum way that lots of information is generally lost, particularly the scattered waves. Instantaneous phase type of misfits extract information from every wiggle without cutting seismograms into small pieces, however, dealing with cycle skips at short periods can be challenging. For this purpose, we introduce a flexible hybrid approach for adjoint seismic tomography, to combine various objective functions. We initially focus on phase measurements and propose using instantaneous phase to take into account relatively small-magnitude scattered waves at long periods while using cross-correlation measurements on FLEXWIN windows to select distinct body-wave arrivals without complicating measurements due to non-linearities at short periods. To better deal with cycle skips and reliably measure instantaneous phases we design a new misfit function that incorporates instantaneous phase information implicitly instead of measuring it explicitly, through using normalized analytic signals. We present in our synthetic experiments how instantaneous phase, cross-correlation and their hybridization affect tomographic results. The combination of two different phase measurements in a hybrid approach constitutes progress towards using "anything and everything" in a data set, addressing data quality and measurement challenges simultaneously. We further extend hybridisation of misfit functions for amplitude measurements such as cross-correlation amplitude

  14. Functional Dissociations within the Ventral Object Processing Pathway: Cognitive Modules or a Hierarchical Continuum?

    Science.gov (United States)

    Cowell, Rosemary A.; Bussey, Timothy J.; Saksida, Lisa M.

    2010-01-01

    We examined the organization and function of the ventral object processing pathway. The prevailing theoretical approach in this field holds that the ventral object processing stream has a modular organization, in which visual perception is carried out in posterior regions and visual memory is carried out, independently, in the anterior temporal…

  15. Associations of objective and subjective sleep disturbance with cognitive function in older men with comorbid depression and insomnia.

    Science.gov (United States)

    Biddle, Daniel J; Naismith, Sharon L; Griffiths, Kathleen M; Christensen, Helen; Hickie, Ian B; Glozier, Nicholas S

    2017-06-01

    To examine whether poor objective and subjective sleep quality are differentially associated with cognitive function. Cross-sectional. Participants were recruited from primary and secondary care, and directly from the community, in Sydney, Australia. The sample consisted of 74 men 50years and older (mean [SD], 58.4 [6.2] years), with comorbid depression and above-threshold insomnia symptoms, participating in a trial of online cognitive behavioral therapy for insomnia. Insomnia severity and depression severity were assessed via self-report. Objective sleep efficiency and duration were measured using actigraphy. Objective cognitive function was measured using 3 subtests of a computerized neuropsychological battery. Poor objective sleep efficiency was associated with slower reaction time (r=-0.249, P=.033) and poorer executive functioning (odds ratio, 4.14; 95% confidence interval, 1.35-12.69), but not memory. These associations remained after adjusting for age, education, depression severity, cardiovascular risk, and medication. Subjective sleep quality was not related to cognitive function. Among older men with depression and insomnia, objectively measured poor sleep efficiency may be associated with worse cognitive function, independent of depression severity. Objective poor sleep may be underpinned by neurobiological correlates distinct from those underlying subjective poor sleep and depression, and represent a potentially effective modifiable mechanism in interventions to improve cognitive functioning in this population. This supports the use of objective measures of sleep in diagnostic assessments and care. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  16. Embodiment in a Child-Like Talking Virtual Body Influences Object Size Perception, Self-Identification, and Subsequent Real Speaking.

    Science.gov (United States)

    Tajadura-Jiménez, Ana; Banakou, Domna; Bianchi-Berthouze, Nadia; Slater, Mel

    2017-08-29

    People's mental representations of their own body are malleable and continuously updated through sensory cues. Altering one's body-representation can lead to changes in object perception and implicit attitudes. Virtual reality has been used to embody adults in the body of a 4-year-old child or a scaled-down adult body. Child embodiment was found to cause an overestimation of object sizes, approximately double that during adult embodiment, and identification of the self with child-like attributes. Here we tested the contribution of auditory cues related to one's own voice to these visually-driven effects. In a 2 × 2 factorial design, visual and auditory feedback on one's own body were varied across conditions, which included embodiment in a child or scaled-down adult body, and real (undistorted) or child-like voice feedback. The results replicated, in an older population, previous findings regarding size estimations and implicit attitudes. Further, although auditory cues were not found to enhance these effects, we show that the strength of the embodiment illusion depends on the child-like voice feedback being congruent or incongruent with the age of the virtual body. Results also showed the positive emotional impact of the illusion of owning a child's body, opening up possibilities for health applications.

  17. How Tactile and Function Information Affect Young Children's Ability to Understand the Nature of Food-Appearing, Deceptive Objects

    Science.gov (United States)

    Krause, Christina Miles

    2008-01-01

    Preschool children's (N = 64) ability to use tactile information and function cues on less-realistic and more-realistic food-appearing, deceptive objects was examined before and after training on the function of deceptive objects. They also responded to appearance and reality questions about deceptive objects. Half of the children (F-S:…

  18. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study

    Science.gov (United States)

    Veale, David; Miles, Sarah; Read, Julie; Troglia, Andrea; Wylie, Kevan; Muir, Gordon

    2015-01-01

    Introduction Little is known about the sexual functioning and behavior of men anxious about the size of their penis and the means that they might use to try to alter the size of their penis. Aim To compare sexual functioning and behavior in men with body dysmorphic disorder (BDD) concerning penis size and in men with small penis anxiety (SPA without BDD) and in a control group of men who do not have any concerns. Methods An opportunistic sample of 90 men from the community were recruited and divided into three groups: BDD (n = 26); SPA (n = 31) and controls (n = 33). Main Outcome Measures The Index of Erectile Function (IEF), sexual identity and history; and interventions to alter the size of their penis. Results Men with BDD compared with controls had reduced erectile dysfunction, orgasmic function, intercourse satisfaction and overall satisfaction on the IEF. Men with SPA compared with controls had reduced intercourse satisfaction. There were no differences in sexual desire, the frequency of intercourse or masturbation across any of the three groups. Men with BDD and SPA were more likely than the controls to attempt to alter the shape or size of their penis (for example jelqing, vacuum pumps or stretching devices) with poor reported success. Conclusion Men with BDD are more likely to have erectile dysfunction and less satisfaction with intercourse than controls but maintain their libido. Further research is required to develop and evaluate a psychological intervention for such men with adequate outcome measures. PMID:26468378

  19. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. The penetration of fibrous media by aerosols as a function of particle size

    Energy Technology Data Exchange (ETDEWEB)

    Dyment, J.

    1963-11-15

    This paper is concerned with the accurate experimental determination of the penetration of fibrous filter media by aerosols as a function of particle size, a topic about which previous papers give partial and conflicting data. in the present work, a heterogeneous sodium chloride aerosol was sampled before and after passing through the glass fiber filter medium by means of an electrostatic precipitator and the samples were examined under the electron microscope; the relation between particle size and penetration was derives at different gas velocities by comparison of the size distribution of the filtered and unfiltered clouds. As an extension of this work, size analyses have been made of plutonium aerosols occurring in glove boxes and enclosures during typical working operations. This information is considered in relation to the penetration of plutonium and other high density aerosol materials through filters. (auth)

  1. Clinical history and biologic age predicted falls better than objective functional tests.

    Science.gov (United States)

    Gerdhem, Paul; Ringsberg, Karin A M; Akesson, Kristina; Obrant, Karl J

    2005-03-01

    Fall risk assessment is important because the consequences, such as a fracture, may be devastating. The objective of this study was to find the test or tests that best predicted falls in a population-based sample of elderly women. The fall-predictive ability of a questionnaire, a subjective estimate of biologic age and objective functional tests (gait, balance [Romberg and sway test], thigh muscle strength, and visual acuity) were compared in 984 randomly selected women, all 75 years of age. A recalled fall was the most important predictor for future falls. Only recalled falls and intake of psycho-active drugs independently predicted future falls. Women with at least five of the most important fall predictors (previous falls, conditions affecting the balance, tendency to fall, intake of psychoactive medication, inability to stand on one leg, high biologic age) had an odds ratio of 11.27 (95% confidence interval 4.61-27.60) for a fall (sensitivity 70%, specificity 79%). The more time-consuming objective functional tests were of limited importance for fall prediction. A simple clinical history, the inability to stand on one leg, and a subjective estimate of biologic age were more important as part of the fall risk assessment.

  2. Estimation of object motion parameters from noisy images.

    Science.gov (United States)

    Broida, T J; Chellappa, R

    1986-01-01

    An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.

  3. Determination of the object surface function by structured light: application to the study of spinal deformities

    International Nuclear Information System (INIS)

    Buendia, M.; Salvador, R.; Cibrian, R.; Sotoca, J.M.; Laguia, M.

    1999-01-01

    The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis. (author)

  4. Validation of the baseline severity stratification of objective functional impairment in lumbar degenerative disc disease.

    Science.gov (United States)

    Stienen, Martin N; Smoll, Nicolas R; Joswig, Holger; Corniola, Marco V; Schaller, Karl; Hildebrandt, Gerhard; Gautschi, Oliver P

    2017-05-01

    OBJECTIVE The Timed Up and Go (TUG) test is a simple, objective, and standardized method to measure objective functional impairment (OFI) in patients with lumbar degenerative disc disease (DDD). The objective of the current work was to validate the OFI baseline severity stratification (BSS; with levels of "none," "mild," "moderate," and "severe"). METHODS Data were collected in a prospective IRB-approved 2-center study. Patients were assessed with a comprehensive panel of scales for measuring pain (visual analog scale [VAS] for back and leg pain), functional impairment (Roland-Morris Disability Index [RMDI] and Oswestry Disability Index [ODI]), and health-related quality of life (HRQOL; EQ-5D and SF-12). OFI BSS was determined using age- and sex-adjusted cutoff values. RESULTS A total of 375 consecutive patients scheduled for lumbar spine surgery were included. Each 1-step increase on the OFI BSS corresponded to an increase of 0.53 in the back pain VAS score, 0.69 in the leg pain VAS score, 1.81 points in the RMDI, and 5.93 points in the ODI, as well as to a decrease in HRQOL of -0.073 in the EQ-5D, -1.99 in the SF-12 physical component summary (PCS), and -1.62 in the SF-12 mental component summary (MCS; all p measure of functional impairment for use in daily clinical practice. The presence of OFI indicates the presence of significant functional impairment on subjective outcome measures.

  5. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    Science.gov (United States)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because

  6. Geographic object-based delineation of neighborhoods of Accra, Ghana using QuickBird satellite imagery.

    Science.gov (United States)

    Stow, Douglas A; Lippitt, Christopher D; Weeks, John R

    2010-08-01

    The objective was to test GEographic Object-based Image Analysis (GEOBIA) techniques for delineating neighborhoods of Accra, Ghana using QuickBird multispectral imagery. Two approaches to aggregating census enumeration areas (EAs) based on image-derived measures of vegetation objects were tested: (1) merging adjacent EAs according to vegetation measures and (2) image segmentation. Both approaches exploit readily available functions within commercial GEOBIA software. Image-derived neighborhood maps were compared to a reference map derived by spatial clustering of slum index values (from census data), to provide a relative assessment of potential map utility. A size-constrained iterative segmentation approach to aggregation was more successful than standard image segmentation or feature merge techniques. The segmentation approaches account for size and shape characteristics, enabling more realistic neighborhood boundaries to be delineated. The percentage of vegetation patches within each EA yielded more realistic delineation of potential neighborhoods than mean vegetation patch size per EA.

  7. Object recognition memory in zebrafish.

    Science.gov (United States)

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exergoeconomic multi objective optimization and sensitivity analysis of a regenerative Brayton cycle

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2016-01-01

    Highlights: • Finite time exergoeconomic multi objective optimization of a Brayton cycle. • Comparing the exergoeconomic and the ecological function optimization results. • Inserting the cost of fluid streams concept into finite-time thermodynamics. • Exergoeconomic sensitivity analysis of a regenerative Brayton cycle. • Suggesting the cycle performance curve drawing and utilization. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power maximization and then exergoeconomic optimization using finite-time thermodynamic concept and finite-size components. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is used deploying time variations. The decision variables for the optimum state (of multi objective exergoeconomic optimization) are compared to the maximum power state. One can see that the multi objective exergoeconomic optimization results in a better performance than that obtained with the maximum power state. The results demonstrate that system performance at optimum point of multi objective optimization yields 71% of the maximum power, but only with exergy destruction as 24% of the amount that is produced at the maximum power state and 67% lower total cost rate than that of the maximum power state. In order to assess the impact of the variation of the decision variables on the objective functions, sensitivity analysis is conducted. Finally, the cycle performance curve drawing according to exergoeconomic multi objective optimization results and its utilization, are suggested.

  9. Is there an association between subjective and objective measures of cognitive function in patients with affective disorders?

    DEFF Research Database (Denmark)

    Svendsen, Anne M; Kessing, Lars V; Munkholm, Klaus

    2012-01-01

    .01) but there were no differences between patient groups (P > 0.1). We found no correlation between subjectively experienced and objectively measured cognitive dysfunction in BD (P = 0.7), and a non-significant trend towards a correlation in UD (P = 0.06), which disappeared when controlling for gender (P = 0......Background: Patients with affective disorders experience cognitive dysfunction in addition to their affective symptoms. The relationship between subjectively experienced and objectively measured cognitive function is controversial with several studies reporting no correlation between subjective...... and objective deficits. Aims: To investigate whether there is a correlation between subjectively reported and objectively measured cognitive function in patients with affective disorders, and whether subjective complaints predict objectively measured dysfunction. Methods: The study included 45 participants; 15...

  10. The associations of objectively measured physical activity and sedentary time with cognitive functions in school-aged children.

    Directory of Open Access Journals (Sweden)

    Heidi J Syväoja

    Full Text Available Low levels of physical activity among children have raised concerns over the effects of a physically inactive lifestyle, not only on physical health but also on cognitive prerequisites of learning. This study examined how objectively measured and self-reported physical activity and sedentary behavior are associated with cognitive functions in school-aged children. The study population consisted of 224 children from five schools in the Jyväskylä school district in Finland (mean age 12.2 years; 56% girls, who participated in the study in the spring of 2011. Physical activity and sedentary time were measured objectively for seven consecutive days using the ActiGraph GT1M/GT3X accelerometer. Self-reported moderate to vigorous physical activity (MVPA and screen time were evaluated with the questions used in the "WHO Health Behavior in School-aged Children" study. Cognitive functions including visual memory, executive functions and attention were evaluated with a computerized Cambridge Neuropsychological Test Automated Battery by using five different tests. Structural equation modeling was applied to examine how objectively measured and self-reported MVPA and sedentary behavior were associated with cognitive functions. High levels of objectively measured MVPA were associated with good performance in the reaction time test. High levels of objectively measured sedentary time were associated with good performance in the sustained attention test. Objectively measured MVPA and sedentary time were not associated with other measures of cognitive functions. High amount of self-reported computer/video game play was associated with weaker performance in working memory test, whereas high amount of computer use was associated with weaker performance in test measuring shifting and flexibility of attention. Self-reported physical activity and total screen time were not associated with any measures of cognitive functions. The results of the present study propose

  11. A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

    Science.gov (United States)

    Liu, Kaizhan; Ye, Yunming; Li, Xutao; Li, Yan

    2018-04-01

    In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

  12. Size variation and flow experience of physical game support objects

    NARCIS (Netherlands)

    Feijs, L.M.G.; Peters, P.J.F.; Eggen, J.H.

    2004-01-01

    This paper is about designing and evaluating an innovative type of computer game. Game support objects are used to enrich the gaming experience [7]. The added objects are active but are simpler than real robots. In the study reported here they are four helper ghosts connected to a traditional Pacman

  13. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    Science.gov (United States)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  14. Objective function analysis for electric soundings (VES), transient electromagnetic soundings (TEM) and joint inversion VES/TEM

    Science.gov (United States)

    Bortolozo, Cassiano Antonio; Bokhonok, Oleg; Porsani, Jorge Luís; Monteiro dos Santos, Fernando Acácio; Diogo, Liliana Alcazar; Slob, Evert

    2017-11-01

    Ambiguities in geophysical inversion results are always present. How these ambiguities appear in most cases open to interpretation. It is interesting to investigate ambiguities with regard to the parameters of the models under study. Residual Function Dispersion Map (RFDM) can be used to differentiate between global ambiguities and local minima in the objective function. We apply RFDM to Vertical Electrical Sounding (VES) and TEM Sounding inversion results. Through topographic analysis of the objective function we evaluate the advantages and limitations of electrical sounding data compared with TEM sounding data, and the benefits of joint inversion in comparison with the individual methods. The RFDM analysis proved to be a very interesting tool for understanding the joint inversion method of VES/TEM. Also the advantage of the applicability of the RFDM analyses in real data is explored in this paper to demonstrate not only how the objective function of real data behaves but the applicability of the RFDM approach in real cases. With the analysis of the results, it is possible to understand how the joint inversion can reduce the ambiguity of the methods.

  15. Wave drag as the objective function in transonic fighter wing optimization

    Science.gov (United States)

    Phillips, P. S.

    1984-01-01

    The original computational method for determining wave drag in a three dimensional transonic analysis method was replaced by a wave drag formula based on the loss in momentum across an isentropic shock. This formula was used as the objective function in a numerical optimization procedure to reduce the wave drag of a fighter wing at transonic maneuver conditions. The optimization procedure minimized wave drag through modifications to the wing section contours defined by a wing profile shape function. A significant reduction in wave drag was achieved while maintaining a high lift coefficient. Comparisons of the pressure distributions for the initial and optimized wing geometries showed significant reductions in the leading-edge peaks and shock strength across the span.

  16. Object-oriented Matlab adaptive optics toolbox

    Science.gov (United States)

    Conan, R.; Correia, C.

    2014-08-01

    Object-Oriented Matlab Adaptive Optics (OOMAO) is a Matlab toolbox dedicated to Adaptive Optics (AO) systems. OOMAO is based on a small set of classes representing the source, atmosphere, telescope, wavefront sensor, Deformable Mirror (DM) and an imager of an AO system. This simple set of classes allows simulating Natural Guide Star (NGS) and Laser Guide Star (LGS) Single Conjugate AO (SCAO) and tomography AO systems on telescopes up to the size of the Extremely Large Telescopes (ELT). The discrete phase screens that make the atmosphere model can be of infinite size, useful for modeling system performance on large time scales. OOMAO comes with its own parametric influence function model to emulate different types of DMs. The cone effect, altitude thickness and intensity profile of LGSs are also reproduced. Both modal and zonal modeling approach are implemented. OOMAO has also an extensive library of theoretical expressions to evaluate the statistical properties of turbulence wavefronts. The main design characteristics of the OOMAO toolbox are object-oriented modularity, vectorized code and transparent parallel computing. OOMAO has been used to simulate and to design the Multi-Object AO prototype Raven at the Subaru telescope and the Laser Tomography AO system of the Giant Magellan Telescope. In this paper, a Laser Tomography AO system on an ELT is simulated with OOMAO. In the first part, we set-up the class parameters and we link the instantiated objects to create the source optical path. Then we build the tomographic reconstructor and write the script for the pseudo-open-loop controller.

  17. Functional polythiophene nanoparticles: Size-controlled electropolymerization and ion selective response

    DEFF Research Database (Denmark)

    Si, P.C.; Chi, Qijin; Li, Z.S.

    2007-01-01

    polymerization to form polymer nanoparticles or clusters by which the size of the polymer nanoparticles can further be controlled electrochemically. The electropolymerization was monitored in situ by scanning tunneling microscopy to unravel the dynamics of the process and possible mechanisms. These are further......We have synthesized a thiophene derivative, (4-benzeno-15-crown-5 ether)-thiophene-3-methylene-amine (BTA), which was used as a monomer for electrochemical polymerization on metallic surfaces to prepare functional polymer films. Self-assembly of BTA monomers on Au(111) surfaces promotes ordered...

  18. Kidney function and size in normal subjects before and during growth hormone administration for one week

    DEFF Research Database (Denmark)

    Gammelgaard, Jens; Orskov, H; Andersen, A R

    1981-01-01

    Kidney function and size were studied in seven normal male subjects before and after administration of highly purified human growth hormone for 1 week. Glomerular filtration rate, renal plasma flow (steady-state infusion technique with urinary collections using 125I-iothalamate and 131I-hippuran)......Kidney function and size were studied in seven normal male subjects before and after administration of highly purified human growth hormone for 1 week. Glomerular filtration rate, renal plasma flow (steady-state infusion technique with urinary collections using 125I-iothalamate and 131I...

  19. Developing an objective function to characterize the tradeoffs in salting out and the foam and droplet fractionation processes

    Directory of Open Access Journals (Sweden)

    Cherry J.

    2000-01-01

    Full Text Available There are many methods for separating and purifying proteins from dilute solutions, such as salting out/precipitation, adsorption/chromatography, foam fractionation, and droplet fractionation. In order to determine the optimal condition for a selected separation and purification process, an objective function is developed. The objective function consists of three parameters, which are the protein mass recovery, the separation ratio, and the enzymatic activity ratio. In this paper the objective function is determined as a function of the pH of the bulk solution for egg albumin, cellulase, and sporamin (for foam fractionation and invertase ( for droplet fractionation. It is found that the optimal pH for all the systems except for cellulase is near their isoelectric point.

  20. Ultrasonographic evaluation of Hashimoto's thyroiditis: Comparison of size and echo change with thyroid function

    International Nuclear Information System (INIS)

    Lee, Kang Rae; Cho, Jae Hyun; Kim, Yun Jeong; Kim, Hyun Man; Park, Rae Woong; Suh, Jung Ho; Kang, Byung Chul

    1999-01-01

    To demonstrate sonographic features of Hashimoto's thyroiditis according to the thyroid function. We reviewed 54 thyroid ultrasonographic examinations of untreated Hashimoto's thyroiditis. We reviewed thyroid ultrasonographic examinations and focused on the presence of ill-defined low echoic lesions and glandular enlargement. We performed another thyroid ultrasonographic examination of 14 healthy volunteers, in order to obtain normal size of thyroid gland. Comparison was made between these morphologic characteristics and functional stage of the disease. The mean diameter of thyroid gland was 2.16 ± 0.43 cm in patients with Hashimoto's thyroiditis, and 1.41 ± 0.42 cm in normal control group of the thyroid gland. There was no statistically significant relationship between thyroid function and size. There was morphologic abnormalities in 46 patients (85%). Among them, 7 patients revealed diffuse low echogenicity in the entire thyroid gland, 32 patients showed peripherally located, ill-defined focal hypoechoic lesion, and 7 patients showed solitary or multiple. well-defined nodular lesions. Decreased echogenicity of the thyroid gland was related to hypothyroid status. Hashimoto's thyroiditis has specific morphologue characteristics in ultrasonographic features, which are well correlated with thyroid function.

  1. Hit size effectiveness in relation to the microdosimetric site size

    International Nuclear Information System (INIS)

    Varma, M.N.; Wuu, C.S.; Zaider, M.

    1994-01-01

    This paper examines the effect of site size (that is, the diameter of the microdosimetric volume) on the hit size effectiveness function (HSEF), q(y), for several endpoints relevant in radiation protection. A Bayesian and maximum entropy approach is used to solve the integral equations that determine, given microdosimetric spectra and measured initial slopes, the function q(y). All microdosimetric spectra have been calculated de novo. The somewhat surprising conclusion of this analysis is that site size plays only a minor role in selecting the hit size effectiveness function q(y). It thus appears that practical means (e.g. conventional proportional counters) are already at hand to actually implement the HSEF as a radiation protection tool. (Author)

  2. Equation of costs and function objective for the optimization of the design of nets of flow of liquids to pressure

    International Nuclear Information System (INIS)

    Narvaez R, Paulo Cesar; Galeano P, Haiver

    2002-01-01

    Optimal design problem of liquid distribution systems has been viewed as the selection of pipe sizes and pumps, which will minimize overall costs, accomplishing the flow and pressure constraints. There is a set of methods for least cost design of liquids distribution networks (6). In the last years, some of them have been studied broadly: linear programming (1, 4, 5, 7], non-linear programming [8, 9], and genetic algorithms (3, 10, 13). This paper describes the development of a cost equation and the objective function for liquid distribution networks that together to the mathematical model and the solution method of the flow problem developed by Narvaez (11), were used by in a computer model that involves the application of an genetic algorithm to the problem of least cost design of liquids distribution networks

  3. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  4. Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects

    Directory of Open Access Journals (Sweden)

    Diemer de Vries

    2007-01-01

    Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.

  5. The significance of the choice of radiobiological (NTCP) models in treatment plan objective functions

    International Nuclear Information System (INIS)

    Miller, J.; Fuller, M.; Vinod, S.; Holloway, L.

    2009-01-01

    Full text: A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at lOGy (V|0) and 20 G y (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.

  6. Asymmetric Functional Connectivity of the Contra- and Ipsilateral Secondary Somatosensory Cortex during Tactile Object Recognition

    Directory of Open Access Journals (Sweden)

    Yinghua Yu

    2018-01-01

    Full Text Available In the somatosensory system, it is well known that the bilateral secondary somatosensory cortex (SII receives projections from the unilateral primary somatosensory cortex (SI, and the SII, in turn, sends feedback projections to SI. Most neuroimaging studies have clearly shown bilateral SII activation using only unilateral stimulation for both anatomical and functional connectivity across SII subregions. However, no study has unveiled differences in the functional connectivity of the contra- and ipsilateral SII network that relates to frontoparietal areas during tactile object recognition. Therefore, we used event-related functional magnetic resonance imaging (fMRI and a delayed match-to-sample (DMS task to investigate the contributions of bilateral SII during tactile object recognition. In the fMRI experiment, 14 healthy subjects were presented with tactile angle stimuli on their right index finger and asked to encode three sample stimuli during the encoding phase and one test stimulus during the recognition phase. Then, the subjects indicated whether the angle of test stimulus was presented during the encoding phase. The results showed that contralateral (left SII activity was greater than ipsilateral (right SII activity during the encoding phase, but there was no difference during the recognition phase. A subsequent psycho-physiological interaction (PPI analysis revealed distinct connectivity from the contra- and ipsilateral SII to other regions. The left SII functionally connected to the left SI and right primary and premotor cortex, while the right SII functionally connected to the left posterior parietal cortex (PPC. Our findings suggest that in situations involving unilateral tactile object recognition, contra- and ipsilateral SII will induce an asymmetrical functional connectivity to other brain areas, which may occur by the hand contralateral effect of SII.

  7. Functional Activation in the Ventral Object Processing Pathway during the First Year

    Directory of Open Access Journals (Sweden)

    Teresa eWilcox

    2016-01-01

    Full Text Available Infants' capacity to represent objects in visual working memory changes substantially during the first year of life. There is a growing body of research focused on identifying neural mechanisms that support this emerging capacity, and the extent to which visual object processing elicits different patterns of cortical activation in the infant as compared to the adult. Recent studies have identified areas in temporal and occipital cortex that mediate infants' developing capacity to track objects on the basis of their featural properties. The current research (Experiments 1 and 2 assessed patterns of activation in posterior temporal cortex and occipital cortex using fNIRS in infants 3 to 13 months of age as they viewed occlusion events. In the occlusion events, either the same object or featurally distinct objects emerged to each side of a screen. The outcome of these studies, combined, revealed that in infants 3 to 6 months, posterior temporal cortex was activated to all events, regardless of the featural properties of the objects and whether the event involved one object or two (featurally distinct objects. Infants 7 to 8 infants months showed a waning posterior temporal response and by 10 to 13 months this response was negligible. Additional analysis showed that the age groups did not differ in their visual attention to the events and that changes in HbO were better explained by age in days than head circumference. In contrast to posterior temporal cortex, robust activation was obtained in occipital cortex across all ages tested. One interpretation of these results is that they reflect pruning of the visual object-processing network during the first year. The functional contribution of occipital and posterior temporal cortex, along with higher-level temporal areas, to infants' capacity to keep track of distinct entities in visual working memory is discussed.

  8. Solute-solvent cavity and bridge functions. I. Varying size of the solute

    International Nuclear Information System (INIS)

    Vyalov, I.; Chuev, G.; Georgi, N.

    2014-01-01

    In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersen theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function

  9. Brain regions implicated in inhibitory control and appetite regulation are activated in response to food portion size and energy density in children

    NARCIS (Netherlands)

    English, L.K.; Fearnbach, S.N.; Lasschuijt, M.; Schlegel, A.; Anderson, K.; Harris, S.; Fisher, J.O.; Savage, J.S.; Rolls, B.J.; Keller, K.L.

    2016-01-01

    Objective:Large portions of energy-dense foods drive energy intake but the brain mechanisms underlying this effect are not clear. Our main objective was to investigate brain function in response to food images varied by portion size (PS) and energy density (ED) in children using functional

  10. A comparison of functional and object-orientedprogramming paradigms in JavaScript

    OpenAIRE

    Svensson Sand, Kim; Eliasson, Tord

    2017-01-01

    There are multiple programming paradigms that have their own set rules forhow code should be written. Programming languages utilize one or multiple ofthese paradigms. In this thesis, we will compare object-oriented programming,that is the most used today with languages such as C++ and Java, and functionalprogramming. Functional programming was introduced in the 1950's butsuered from performance issues, and has not been used much except for in theacademic world. However, for its ability to han...

  11. A multi-objective location routing problem using imperialist competitive algorithm

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Golmohammadi

    2016-06-01

    Full Text Available Nowadays, most manufacturing units try to locate their requirements and the depot vehicle routing in order to transport the goods at optimum cost. Needless to mention that the locations of the required warehouses influence on the performance of vehicle routing. In this paper, a mathematical programming model to optimize the storage location and vehicle routing are presented. The first objective function of the model minimizes the total cost associated with the transportation and storage, and the second objective function minimizes the difference distance traveled by vehicles. The study uses Imperialist Competitive Algorithm (ICA to solve the resulted problems in different sizes. The preliminary results have indicated that the proposed study has performed better than NSGA-II and PAES methods in terms of Quality metric and Spacing metric.

  12. Density fractions versus size separates: does physical fractionation isolate functional soil compartments?

    Directory of Open Access Journals (Sweden)

    C. Moni

    2012-12-01

    Full Text Available Physical fractionation is a widely used methodology to study soil organic matter (SOM dynamics, but concerns have been raised that the available fractionation methods do not well describe functional SOM pools. In this study we explore whether physical fractionation techniques isolate soil compartments in a meaningful and functionally relevant way for the investigation of litter-derived nitrogen dynamics at the decadal timescale. We do so by performing aggregate density fractionation (ADF and particle size-density fractionation (PSDF on mineral soil samples from two European beech forests a decade after application of 15N labelled litter.

    Both density and size-based fractionation methods suggested that litter-derived nitrogen became increasingly associated with the mineral phase as decomposition progressed, within aggregates and onto mineral surfaces. However, scientists investigating specific aspects of litter-derived nitrogen dynamics are pointed towards ADF when adsorption and aggregation processes are of interest, whereas PSDF is the superior tool to research the fate of particulate organic matter (POM.

    Some methodological caveats were observed mainly for the PSDF procedure, the most important one being that fine fractions isolated after sonication can not be linked to any defined decomposition pathway or protective mechanism. This also implies that historical assumptions about the "adsorbed" state of carbon associated with fine fractions need to be re-evaluated. Finally, this work demonstrates that establishing a comprehensive picture of whole soil OM dynamics requires a combination of both methodologies and we offer a suggestion for an efficient combination of the density and size-based approaches.

  13. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  14. Typical Periods for Two-Stage Synthesis by Time-Series Aggregation with Bounded Error in Objective Function

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, Björn; Söhler, Theo; Hennen, Maike; Bardow, André, E-mail: andre.bardow@ltt.rwth-aachen.de [Institute of Technical Thermodynamics, RWTH Aachen University, Aachen (Germany)

    2018-01-08

    Two-stage synthesis problems simultaneously consider here-and-now decisions (e.g., optimal investment) and wait-and-see decisions (e.g., optimal operation). The optimal synthesis of energy systems reveals such a two-stage character. The synthesis of energy systems involves multiple large time series such as energy demands and energy prices. Since problem size increases with the size of the time series, synthesis of energy systems leads to complex optimization problems. To reduce the problem size without loosing solution quality, we propose a method for time-series aggregation to identify typical periods. Typical periods retain the chronology of time steps, which enables modeling of energy systems, e.g., with storage units or start-up cost. The aim of the proposed method is to obtain few typical periods with few time steps per period, while accurately representing the objective function of the full time series, e.g., cost. Thus, we determine the error of time-series aggregation as the cost difference between operating the optimal design for the aggregated time series and for the full time series. Thereby, we rigorously bound the maximum performance loss of the optimal energy system design. In an initial step, the proposed method identifies the best length of typical periods by autocorrelation analysis. Subsequently, an adaptive procedure determines aggregated typical periods employing the clustering algorithm k-medoids, which groups similar periods into clusters and selects one representative period per cluster. Moreover, the number of time steps per period is aggregated by a novel clustering algorithm maintaining chronology of the time steps in the periods. The method is iteratively repeated until the error falls below a threshold value. A case study based on a real-world synthesis problem of an energy system shows that time-series aggregation from 8,760 time steps to 2 typical periods with each 2 time steps results in an error smaller than the optimality gap of

  15. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    Science.gov (United States)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  16. The shape gradient of the least-squares objective functional in optimal shape design problems of radiative heat transfer

    International Nuclear Information System (INIS)

    Rukolaine, Sergey A.

    2010-01-01

    Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a 'two-dimensional' polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a 'two-dimensional' radiant enclosure.

  17. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  18. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: Comparison with thyroid function

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Takahashi, Satoru; Maeda, Tetsuo; Yoshikawa, Takeshi; Ohno, Yoshiharu; Fujii, Masahiko; Miyake, Hideaki; Fujisawa, Masato; Sugimura, Kazuro

    2012-01-01

    Objective: Hypothyroidism is a common complication in patients receiving tyrosine kinase inhibitors. We evaluated the relationship between thyroid size evident on CT and thyroid function in patients with advanced renal cell carcinoma (RCC) receiving tyrosine kinase inhibitors. Materials and methods: Forty-two patients with metastatic RCC receiving tyrosine kinase inhibitors (sorafenib n = 25; sunitinib n = 17) and, followed-up for ≥12 months were eligible. Patients who had ever shown an elevated thyroid-stimulating hormone (TSH) level of >10 mU/l were defined as having “hypothyroidism”. CT scans were performed before, and 3, 6, 9, and 12 months after the start of treatment. The area of the thyroid in the maximum section at each examination was measured and compared with that before treatment. Using repeated-measures ANOVA, differences in thyroid size were compared over time between patients with and without “hypothyroidism”, in relation to the type of drug employed. Results: Twenty-one patients (sorafenib 9, sunitinib 12) developed “hypothyroidism” 95 ± 88 days (range 12–315 days) after the start of treatment. In such patients, the thyroid was reduced in size to 89 ± 16% after 3 months, 81 ± 21% after 6 months, 71 ± 21% after 9 months and 68 ± 21% after 12 months, whereas the patients without “hypothyroidism” maintained a thyroid size of 90 ± 12% even after 12 months (p = 0.0030). Among the patients with “hypothyroidism”, those treated with sunitinib tended to show greater thyroid size reduction than those with sorafenib (59 ± 23% vs. 79 ± 13%, after 12 months). Conclusion: Tyrosine kinase inhibitors cause an apparent thyroid size reduction in patients with “hypothyroidism”

  19. Thyroid size change by CT monitoring after sorafenib or sunitinib treatment in patients with renal cell carcinoma: Comparison with thyroid function

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Kazuhiro, E-mail: kitajima@med.kobe-u.ac.jp [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Takahashi, Satoru; Maeda, Tetsuo; Yoshikawa, Takeshi; Ohno, Yoshiharu; Fujii, Masahiko [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Miyake, Hideaki; Fujisawa, Masato [Department of Urology, Kobe University Graduate School of Medicine, Kobe (Japan); Sugimura, Kazuro [Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan)

    2012-09-15

    Objective: Hypothyroidism is a common complication in patients receiving tyrosine kinase inhibitors. We evaluated the relationship between thyroid size evident on CT and thyroid function in patients with advanced renal cell carcinoma (RCC) receiving tyrosine kinase inhibitors. Materials and methods: Forty-two patients with metastatic RCC receiving tyrosine kinase inhibitors (sorafenib n = 25; sunitinib n = 17) and, followed-up for ≥12 months were eligible. Patients who had ever shown an elevated thyroid-stimulating hormone (TSH) level of >10 mU/l were defined as having “hypothyroidism”. CT scans were performed before, and 3, 6, 9, and 12 months after the start of treatment. The area of the thyroid in the maximum section at each examination was measured and compared with that before treatment. Using repeated-measures ANOVA, differences in thyroid size were compared over time between patients with and without “hypothyroidism”, in relation to the type of drug employed. Results: Twenty-one patients (sorafenib 9, sunitinib 12) developed “hypothyroidism” 95 ± 88 days (range 12–315 days) after the start of treatment. In such patients, the thyroid was reduced in size to 89 ± 16% after 3 months, 81 ± 21% after 6 months, 71 ± 21% after 9 months and 68 ± 21% after 12 months, whereas the patients without “hypothyroidism” maintained a thyroid size of 90 ± 12% even after 12 months (p = 0.0030). Among the patients with “hypothyroidism”, those treated with sunitinib tended to show greater thyroid size reduction than those with sorafenib (59 ± 23% vs. 79 ± 13%, after 12 months). Conclusion: Tyrosine kinase inhibitors cause an apparent thyroid size reduction in patients with “hypothyroidism”.

  20. Technique for determining training staff size

    International Nuclear Information System (INIS)

    Frye, S.R.

    1985-01-01

    Determining an adequate training staff size is a vital function of a training manager. Today's training requirements and standards have dictated a more stringent work load than ever before. A trainer's role is more than just providing classroom lectures. In most organizations the instructor must develop programs, lesson plans, exercise guides, objectives, test questions, etc. The tasks of a training organization are never ending and the appropriate resources must be determined and allotted to do the total job. A simple method exists for determining an adequate staff. Although not perfect, this method will provide a realistic approach for determining the needed training staff size. This method considers three major factors: instructional man-hours; non-instructional man-hours; and instructor availability. By determining and adding instructional man-hours and non-instructional man-hours a total man-hour distribution can be obtained. By dividing this by instructor availability a staff size can be determined

  1. Functional size analysis of bioactive materials by radiation inactivation

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    1994-01-01

    When the research on various proteins including enzymes is carried out, first molecular weight is measured. The physical chemical methods used for measuring molecular weight cannot measure it in the state of actually acting in living bodies. Radiation inactivation method is the unique method which can measure the molecular weight of the active substances in living bodies. Paying attention to this point, recently it is attempted to measure the activity unit of enzymes, receptors and others, and to apply to the elucidation of their functions. In this report, the concept of the method of measuring molecular size based on radiation inactivation, the detailed experimental method and the points to which attention must be paid are described. Also its application to the elucidation of living body functions according to the example of the studies by the author is reported. The concept of the measurement of molecular weight by radiation inactivation is based on target theory. The preparation of samples, the effect of oxygen, radiation sources, dosimetry, irradiation temperature, internal standard process and so on are reported. The trend of the research is shown. (K.I.)

  2. Sapwood area ofPinus contorta stands as a function of mean size and density.

    Science.gov (United States)

    Long, James N; Dean, Thomas J

    1986-09-01

    An indirect test of the relationship between leaf area and the combination of mean size and density is made in stands of lodgepole pine (Pinus contorta Dougl.). Total sapwood cross-sectional area of these stands is a function of the product of density and mean diameter raised to an exponent of about 1.6. Results from other studies, representing four species, suggest that this relationship between sapwood area and the combination of mean size and density may be general. The implications of the relationship are discussed in the context of evapotranspiration, competition and self-thinning.

  3. Farm size, land yields, and the agricultural production function: an analysis for fifteen developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, G A

    1985-04-01

    This paper analyzes the relationship between factor inputs, land yields, and labor productivity for farms of different size on the basis of FAO farm management data for 15 developing countries. For all but three countries a strong negative correlation is found between farm size on the one side, and factor inputs and yields per hectare on the other. The fitting of unconstrained production functions to the above data suggests that in only few cases can the decline in yields for increasing farm size be attributed to decreasing returns to scale. The higher yields observed in small farms are mainly to be ascribed to higher factor inputs and to a more intensive use of land. Therefore, where conspicuous labor surpluses exist, the superiority of small farming provides solid arguments in favor of land redistribution. Such an agrarian reform would determine higher output, higher labor absorption and a more equitable income distribution, thus contributing in a decisive manner to the alleviation of rural poverty. The paper also provides estimates of cross-sectional production functions for the 15 countries analyzed. Empirical relations are found between the output elasticities of land, labor, and intermediate inputs and physical indicators of their scarcity. The paper concludes by proposing a simple method for deriving a long-term production function for agriculture. 23 references, 3 figures, 6 tables.

  4. Multi-objective optimization problems concepts and self-adaptive parameters with mathematical and engineering applications

    CERN Document Server

    Lobato, Fran Sérgio

    2017-01-01

    This book is aimed at undergraduate and graduate students in applied mathematics or computer science, as a tool for solving real-world design problems. The present work covers fundamentals in multi-objective optimization and applications in mathematical and engineering system design using a new optimization strategy, namely the Self-Adaptive Multi-objective Optimization Differential Evolution (SA-MODE) algorithm. This strategy is proposed in order to reduce the number of evaluations of the objective function through dynamic update of canonical Differential Evolution parameters (population size, crossover probability and perturbation rate). The methodology is applied to solve mathematical functions considering test cases from the literature and various engineering systems design, such as cantilevered beam design, biochemical reactor, crystallization process, machine tool spindle design, rotary dryer design, among others.

  5. Case Study: On Objective Functions for the Peak Flow Calibration and for the Representative Parameter Estimation of the Basin

    Directory of Open Access Journals (Sweden)

    Jungwook Kim

    2018-05-01

    Full Text Available The objective function is usually used for verification of the optimization process between observed and simulated flows for the parameter estimation of rainfall–runoff model. However, it does not focus on peak flow and on representative parameter for various rain storm events of the basin, but it can estimate the optimal parameters by minimizing the overall error of observed and simulated flows. Therefore, the aim of this study is to suggest the objective functions that can fit peak flow in hydrograph and estimate the representative parameter of the basin for the events. The Streamflow Synthesis And Reservoir Regulation (SSARR model was employed to perform flood runoff simulation for the Mihocheon stream basin in Geum River, Korea. Optimization was conducted using three calibration methods: genetic algorithm, pattern search, and the Shuffled Complex Evolution method developed at the University of Arizona (SCE-UA. Two objective functions of the Sum of Squared of Residual (SSR and the Weighted Sum of Squared of Residual (WSSR suggested in this study for peak flow optimization were applied. Since the parameters estimated using a single rain storm event do not represent the parameters for various rain storms in the basin, we used the representative objective function that can minimize the sum of objective functions of the events. Six rain storm events were used for the parameter estimation. Four events were used for the calibration and the other two for validation; then, the results by SSR and WSSR were compared. Flow runoff simulation was carried out based on the proposed objective functions, and the objective function of WSSR was found to be more useful than that of SSR in the simulation of peak flow runoff. Representative parameters that minimize the objective function for each of the four rain storm events were estimated. The calibrated observed and simulated flow runoff hydrographs obtained from applying the estimated representative

  6. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1984-10-01

    Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

  7. The interaction between hippocampal GABA-B and cannabinoid receptors upon spatial change and object novelty discrimination memory function.

    Science.gov (United States)

    Nasehi, Mohammad; Alaghmandan-Motlagh, Niyousha; Ebrahimi-Ghiri, Mohaddeseh; Nami, Mohammad; Zarrindast, Mohammad-Reza

    2017-10-01

    Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.

  8. Tagging the didactic functionality of learning objects

    DEFF Research Database (Denmark)

    Hansen, Per Skafte; Brostroem, Stig

    2002-01-01

    From a components-in-a-network point of view, the most important issues are: a didactically based typing of the learning objects themselves; the entire design superstructure, into which the learning objects must be fitted; and the symmetry of the interfaces, as seen by each pair of the triad...

  9. Estimation by radiation inactivation of the size of functional units governing Sendai and influenza virus fusion

    International Nuclear Information System (INIS)

    Bundo-Morita, K.; Gibson, S.; Lenard, J.

    1987-01-01

    The target sizes associated with fusion and hemolysis carried out by Sendai virus envelope glycoproteins were determined by radiation inactivation analysis. The target size for influenza virus mediated fusion with erythrocyte ghosts at pH 5.0 was also determined for comparison. Sendai-mediated fusion with erythrocyte ghosts at pH 7.0 was likewise inactivated exponentially with increasing radiation dose, yielding a target size of 60 +/- 6 kDa, a value consistent with the molecular weight of a single F-protein molecule. The inactivation curve for Sendai-mediated fusion with cardiolipin liposomes at pH 7.0, however, was more complex. Assuming a multiple target-single hit model, the target consisted of 2-3 units of ca. 60 kDa each. A similar target was seen if the liposome contained 10% gangliosides or if the reaction was measured at pH 5.0, suggesting that fusion occurred by the same mechanism at high and low pH. A target size of 261 +/- 48 kDa was found for Sendai-induced hemolysis, in contrast with influenza, which had a more complex target size for this activity. Sendai virus fusion thus occurs by different mechanisms depending upon the nature of the target membrane, since it is mediated by different functional units. Hemolysis is mediated by a functional unit different from that associated with erythrocyte ghost fusion or with cardiolipin liposome fusion

  10. Pouw, Wassenburg, de Koning, Hostetter, & Paas (unpublished preprint; Version 2). Does Gesture Strengthen Sensorimotor Knowledge of Objects? The Case of the Size-Weight Illusion

    OpenAIRE

    Paas, Fred; De Koning, Bjorn; Pouw, Wim; Hostetter, Autumn; Wassenburg, Stephanie

    2018-01-01

    Co-speech gestures have been proposed to strengthen sensorimotor knowledge related to objects’ weight and manipulability. In this pre-registered study (N =159) designed to provide a robust, direct, and detailed test of this proposal, participants practiced a problem-solving task with small and large objects that were designed to induce a size-weight illusion (i.e., objects weigh the same but are experienced as different in weight). Participants then explained the task with or without co-speec...

  11. 23 CFR 657.7 - Objective.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Objective. 657.7 Section 657.7 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS CERTIFICATION OF SIZE AND WEIGHT ENFORCEMENT § 657.7 Objective. The objective of this regulation is the development and operation by each State...

  12. Controlled short-linkage assembly of functional nano-objects

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Shilpi; Kamra, Tripta [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); ENI AB, Malmö (Sweden); Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Uddin, Khan Mohammad Ahsan [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Snezhkova, Olesia [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Jayawardena, H. Surangi N. [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Yan, Mingdi [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Department of Chemistry, KTH – Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm (Sweden); Montelius, Lars [ENI AB, Malmö (Sweden); Schnadt, Joachim, E-mail: joachim.schnadt@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Ye, Lei, E-mail: lei.ye@tbiokem.lth.se [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)

    2014-05-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer.

  13. Controlled short-linkage assembly of functional nano-objects

    International Nuclear Information System (INIS)

    Chaudhary, Shilpi; Kamra, Tripta; Uddin, Khan Mohammad Ahsan; Snezhkova, Olesia; Jayawardena, H. Surangi N.; Yan, Mingdi; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2014-01-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer

  14. An Echocardiographic Study of Left Ventricular Size and Cardiac Function in Adolescent Females with Anorexia Nervosa.

    Science.gov (United States)

    Escudero, Carolina A; Potts, James E; Lam, Pei-Yoong; De Souza, Astrid M; Mugford, Gerald J; Sandor, George G S

    2016-01-01

    This retrospective case-control study investigated cardiac dimensions and ventricular function in female adolescents with anorexia nervosa (AN) compared with controls. Echocardiographic measurements of left ventricular (LV) dimensions, LV mass index, left atrial size and cardiac index were made. Detailed measures of systolic and diastolic ventricular function were made including tissue Doppler imaging. Patients were stratified by body mass index ≤10th percentile (AN ≤ 10th) and >10th percentile (AN > 10th). Ninety-five AN patients and 58 controls were included. AN and AN ≤ 10th groups had reduced LV dimensions, LV mass index, left atrial size and cardiac index compared with controls. There were no differences between groups in measures of systolic function. Measures of diastolic tissue Doppler imaging were decreased in AN and AN ≤ 10th. No differences in echocardiographic measurements existed between controls and AN > 10th. Female adolescents with AN have preserved systolic function and abnormalities of diastolic ventricular function. AN ≤ 10th may be a higher risk group. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  15. Executive Functions in Older Adults With Autism Spectrum Disorder : Objective Performance and Subjective Complaints

    NARCIS (Netherlands)

    Davids, Roeliena C. D.; Groen, Yvonne; Berg, Ina J.; Tucha, Oliver M.; van Balkom, Ingrid D. C.

    Although deficits in Executive Functioning (EF) are reported frequently in young individuals with Autism Spectrum Disorders (ASD), they remain relatively unexplored later in life (> 50 years). We studied objective performance on EF measures (Tower of London, Zoo map, phonetic/semantic fluency) as

  16. Quantum size correction to the work function and centroid of excess charge in positively ionized simple metal clusters

    International Nuclear Information System (INIS)

    Payami, M.

    2004-01-01

    In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different r s values (2≤ r s ≥ 7). For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes 2≤ N ≥100 in the framework of local spin-density approximation and stabilized jellium model as well as simple jellium model with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere

  17. The effects of size, clutter, and complexity on vanishing-point distances in visual imagery.

    Science.gov (United States)

    Hubbard, T L; Baird, J C

    1993-01-01

    The portrayal of vanishing-point distances in visual imagery was examined in six experiments. In all experiments, subjects formed visual images of squares, and the squares were to be oriented orthogonally to subjects' line of sight. The squares differed in their level of surface complexity, and were either undivided, divided into 4 equally sized smaller squares, or divided into 16 equally sized smaller squares. Squares also differed in stated referent size, and ranged from 3 in. to 128 ft along each side. After subjects had formed an image of a specified square, they transformed their image so that the square was portrayed to move away from them. Eventually, the imaged square was portrayed to be so far away that if it were any further away, it could not be identified. Subjects estimated the distance to the square that was portrayed in their image at that time, the vanishing-point distance, and the relationship between stated referent size and imaged vanishing-point distance was best described by a power function with an exponent less than 1. In general, there were trends for exponents (slopes on log axes) to increase slightly and for multiplicative constants (y intercepts on log axes) to decrease as surface complexity increased. No differences in exponents or in multiplicative constants were found when the vanishing-point was approached from either subthreshold or suprathreshold directions. When clutter in the form of additional imaged objects located to either side of the primary imaged object was added to the image, the exponent of the vanishing-point function increased slightly and the multiplicative constant decreased. The success of a power function (and the failure of the size-distance invariance hypothesis) in describing the vanishing-point distance function calls into question the notions (a) that a constant grain size exists in the imaginal visual field at a given location and (b) that grain size specifies a lower limit in the storage of information in

  18. Asymptotic size determines species abundance in the marine size spectrum

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2006-01-01

    The majority of higher organisms in the marine environment display indeterminate growth; that is, they continue to grow throughout their life, limited by an asymptotic size. We derive the abundance of species as a function of their asymptotic size. The derivation is based on size-spectrum theory......, where population structure is derived from physiology and simple arguments regarding the predator-prey interaction. Using a hypothesis of constant satiation, which states that the average degree of satiation is independent of the size of an organism, the number of individuals with a given size is found...... to be proportional to the weight raised to the power -2.05, independent of the predator/prey size ratio. This is the first time the spectrum exponent has been derived solely on the basis of processes at the individual level. The theory furthermore predicts that the parameters in the von Bertalanffy growth function...

  19. An objective measure of physical function of elderly outpatients. The Physical Performance Test.

    Science.gov (United States)

    Reuben, D B; Siu, A L

    1990-10-01

    Direct observation of physical function has the advantage of providing an objective, quantifiable measure of functional capabilities. We have developed the Physical Performance Test (PPT), which assesses multiple domains of physical function using observed performance of tasks that simulate activities of daily living of various degrees of difficulty. Two versions are presented: a nine-item scale that includes writing a sentence, simulated eating, turning 360 degrees, putting on and removing a jacket, lifting a book and putting it on a shelf, picking up a penny from the floor, a 50-foot walk test, and climbing stairs (scored as two items); and a seven-item scale that does not include stairs. The PPT can be completed in less than 10 minutes and requires only a few simple props. We then tested the validity of PPT using 183 subjects (mean age, 79 years) in six settings including four clinical practices (one of Parkinson's disease patients), a board-and-care home, and a senior citizens' apartment. The PPT was reliable (Cronbach's alpha = 0.87 and 0.79, interrater reliability = 0.99 and 0.93 for the nine-item and seven-item tests, respectively) and demonstrated concurrent validity with self-reported measures of physical function. Scores on the PPT for both scales were highly correlated (.50 to .80) with modified Rosow-Breslau, Instrumental and Basic Activities of Daily Living scales, and Tinetti gait score. Scores on the PPT were more moderately correlated with self-reported health status, cognitive status, and mental health (.24 to .47), and negatively with age (-.24 and -.18). Thus, the PPT also demonstrated construct validity. The PPT is a promising objective measurement of physical function, but its clinical and research value for screening, monitoring, and prediction will have to be determined.

  20. The research of Digital Holographic Object Wave Field Reconstruction in Image and Object Space

    Institute of Scientific and Technical Information of China (English)

    LI Jun-Chang; PENG Zu-Jie; FU Yun-Chang

    2011-01-01

    @@ For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object field reconstruction involves the diffraction calculation of the optic wave passing through the optical system.We propose two methods to reconstruct the object field.The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship.The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper.The reconstruction formulae which easily use classic diffraction integral are derived.Finally, experimental verifications are also accomplished.%For conveniently detecting objects of different sizes using digital holography, usual measurements employ the object wave transformed by an optical system with different magnifications to fit charge coupled devices (CCDs), then the object Reid reconstruction involves the diffraction calculation of the optic wave passing through the optical system. We propose two methods to reconstruct the object field. The one is that, when the object is imaging in an image space in which we reconstruct the image of the object field, the object field can be expressed according to the object-image relationship. The other is that, when the object field reaching CCD is imaged in an object space in which we reconstruct the object field, the optical system is described by introducing matrix optics in this paper. The reconstruction formulae which easily use classic diffraction integral are derived. Finally, experimental verifications are also accomplished.

  1. Size matters: bigger is faster.

    Science.gov (United States)

    Sereno, Sara C; O'Donnell, Patrick J; Sereno, Margaret E

    2009-06-01

    A largely unexplored aspect of lexical access in visual word recognition is "semantic size"--namely, the real-world size of an object to which a word refers. A total of 42 participants performed a lexical decision task on concrete nouns denoting either big or small objects (e.g., bookcase or teaspoon). Items were matched pairwise on relevant lexical dimensions. Participants' reaction times were reliably faster to semantically "big" versus "small" words. The results are discussed in terms of possible mechanisms, including more active representations for "big" words, due to the ecological importance attributed to large objects in the environment and the relative speed of neural responses to large objects.

  2. Joint evolution of predator body size and prey-size preference.

    NARCIS (Netherlands)

    Troost, T.A.; Kooi, B.W.; Dieckmann, U.

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators' demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for

  3. Joint evolution of predator body size and prey-size preference

    NARCIS (Netherlands)

    Troost, Tineke; Kooi, Bob; Dieckmann, Ulf

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators’ demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account

  4. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP (Argentina)

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  5. Perception in the service of goal pursuit : Motivation to attain goals enhances the perceived size of goal instrumental objects.

    NARCIS (Netherlands)

    Veltkamp, M.; Aarts, H.; Custers, R.

    2008-01-01

    Two experiments tested the functional perception hypothesis (Bruner, 1957) according to which objects that are instrumental in attaining ones' goals are perceived to be bigger if one is motivated to attain these goals. Study 1 demonstrated that participants perceived a glass of water to be bigger

  6. A long-term controlled follow-up study of objective treatment need on young adults treated with functional appliances.

    Science.gov (United States)

    Faxén Sepanian, Varoojan; Paulsson-Björnsson, Liselotte; Kjellberg, Heidrun

    2014-01-01

    The aims of this study were to 1) evaluate the objective success rate of Class II malocclusion treatment with functional appliances five years after completion of treatment and 2) to compare the remaining objective treatment need with an untreated control group. Records of all listed patients between 18-20 years (n=1054) treated in a general practice were reviewed for the purpose of finding treatments with removable functional appliances. Among all subjects (n=61) who previously had been treated, 58 accepted to participate in the study.The test group was matched with an orthodontically untreated group with no history of objective treatment need. Clinical examination was performed and study casts and photos were taken from both groups.The objective treatment need was evaluated through clinical examination and study cast analysis with weighted Peer Assessment Rating index (wPAR). Twenty patients, (34.5%) (mean wPAR 13.8), succeeded with the functional appliance treatment.The wPAR score (mean 15.0) of the entire test group was significantly higher than the one of the control group (mean 7.3).The group that was treated exclusively with functional appliances had a mean wPAR score of 17.4. Eighteen patients (31.0%) who received retreatment with fixed appliances had a slightly higher mean wPAR (8.6) than the control group. Treatments with functional appliances in a general practice showed a high failure rate and a remaining treatment need. It is the treating dentist's responsibility to motivate the patient to cooperate to the treatment, because as it previously has been shown the treatment with functional appliances is a well-functioning treatment alternative with the cooperation of the patient being sufficient. It is also of importance, already before starting treatment, to estimate the child's cooperation ability and to avoid treatment with removable appliances if the child or parents are reluctant about such a treatment.

  7. Femoral hip prosthesis design for Thais using multi-objective shape optimization

    International Nuclear Information System (INIS)

    Virulsri, Chanyaphan; Tangpornprasert, Pairat; Romtrairat, Parineak

    2015-01-01

    Highlights: • A multi-objective shape optimization was proposed to design hip prosthesis for Thais. • The prosthesis design was optimized in terms of safety of both cement and prosthesis. • The objective functions used the Soderberg fatigue strength formulations. • Safety factors of the cement and prosthesis are 1.200 and 1.109 respectively. • The newly designed prosthesis also fits well with chosen small-sized Thai femurs. - Abstract: The long-term success of Total Hip Arthroplasty (THA) depends largely on how well the prosthetic components fit the bones. The majority of cemented femoral hip prosthesis failures are due to aseptic loosening, which is possibly caused by cracking of the cement mantle. The strength of cement components is a function of cement mantles having adequate thickness. Since the size and shape of cemented femoral hip prostheses used in Thailand are based on designs for a Caucasian population, they do not properly conform to most Thai patients’ physical requirements. For these reasons, prostheses designed specifically for Thai patients must consider the longevity and functionality of both cement and prosthesis. The objective of this study was to discover a new design for femoral hip prostheses which is not only optimal and safe in terms of both cement and prosthesis, but also fits the selected Thai femur. This study used a small-sized Thai femoral model as a reference model for a new design. Biocompatible stainless steel 316L (SS316L) and polymethylmethacrylate (PMMA) were selected as raw materials for the prosthesis and bone cement respectively. A multi-objective shape optimization program, which is an interface between optimization C program named NSGA-II and a finite element program named ANSYS, was used to optimize longevity of femoral hip prostheses by varying shape parameters at assigned cross-sections of the selected geometry. Maximum walking loads of sixty-kilograms were applied to a finite element model for stress and

  8. [Changes in functional state during occupational activities in workers at objects for chemical weapons destruction].

    Science.gov (United States)

    2010-01-01

    The authors studied functional state before and after the working shift in workers at objects for chemical weapons destruction, analyzed changes in central and peripheral hemodynamics parameters, vegetative regulation of heart rhythm, stabilographic and psychophysiologic values.

  9. Quantum size correction to the work function and the centroid of excess charge in positively ionized simple metal clusters

    Directory of Open Access Journals (Sweden)

    M. Payami

    2003-12-01

    Full Text Available  In this work, we have shown the important role of the finite-size correction to the work function in predicting the correct position of the centroid of excess charge in positively charged simple metal clusters with different values . For this purpose, firstly we have calculated the self-consistent Kohn-Sham energies of neutral and singly-ionized clusters with sizes in the framework of local spin-density approximation and stabilized jellium model (SJM as well as simple jellium model (JM with rigid jellium. Secondly, we have fitted our results to the asymptotic ionization formulas both with and without the size correction to the work function. The results of fittings show that the formula containing the size correction predict a correct position of the centroid inside the jellium while the other predicts a false position, outside the jellium sphere.

  10. Left atrial size and function as predictors of new-onset of atrial fibrillation in patients with asymptomatic aortic stenosis

    DEFF Research Database (Denmark)

    Bang, Casper Niels Furbo; Dalsgaard, Morten; Greve, Anders

    2013-01-01

    Left atrial (LA) size and function change with chronically increased left ventricular (LV) filling pressures. It remains unclear whether these variations in LA parameters can predict new-onset atrial fibrillation (AF) in asymptomatic patients with aortic stenosis (AS).......Left atrial (LA) size and function change with chronically increased left ventricular (LV) filling pressures. It remains unclear whether these variations in LA parameters can predict new-onset atrial fibrillation (AF) in asymptomatic patients with aortic stenosis (AS)....

  11. Impact of shoe size in a sample of elderly individuals

    Directory of Open Access Journals (Sweden)

    Daniel López-López

    Full Text Available Summary Introduction: The use of an improper shoe size is common in older people and is believed to have a detrimental effect on the quality of life related to foot health. The objective is to describe and compare, in a sample of participants, the impact of shoes that fit properly or improperly, as well as analyze the scores related to foot health and health overall. Method: A sample of 64 participants, with a mean age of 75.3±7.9 years, attended an outpatient center where self-report data was recorded, the measurements of the size of the feet and footwear were determined and the scores compared between the group that wears the correct size of shoes and another group of individuals who do not wear the correct size of shoes, using the Spanish version of the Foot Health Status Questionnaire. Results: The group wearing an improper shoe size showed poorer quality of life regarding overall health and specifically foot health. Differences between groups were evaluated using a t-test for independent samples resulting statistically significant (p<0.05 for the dimension of pain, function, footwear, overall foot health, and social function. Conclusion: Inadequate shoe size has a significant negative impact on quality of life related to foot health. The degree of negative impact seems to be associated with age, sex, and body mass index (BMI.

  12. Statistical analysis of the phytocoenose homogeneity. IV. Species number and mean biomass value as functions of the area size

    Directory of Open Access Journals (Sweden)

    Anna J. Kwiatkowska

    2014-01-01

    Full Text Available Homogeneity of the Leocobryo-Pineturn phytocoenose was assessed on the grounds of the effect of area size on the species number and mean biomass value. It was confirmed that: I species number was a logarithmic function of the area size; 2 relation of individual species biomass to the area size was, as a rule, other than rectilinear, 3 the size of phytocoenose floristicly representative area differed from that determined with respect to the standing biomass and 4 phytocoenose homogeneity is related to the scale defined by the size of representative area.

  13. Improvements in the sensibility of MSA-GA tool using COFFEE objective function

    International Nuclear Information System (INIS)

    Amorim, A R; Zafalon, G F D; Neves, L A; Valêncio, C R; Machado, J M; Pinto, A R

    2015-01-01

    The sequence alignment is one of the most important tasks in Bioinformatics, playing an important role in the sequences analysis. There are many strategies to perform sequence alignment, since those use deterministic algorithms, as dynamic programming, until those ones, which use heuristic algorithms, as Progressive, Ant Colony (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), among others. In this work, we have implemented the objective function COFFEE in the MSA-GA tool, in substitution of Weighted Sum-of-Pairs (WSP), to improve the final results. In the tests, we were able to verify the approach using COFFEE function achieved better results in 81% of the lower similarity alignments when compared with WSP approach. Moreover, even in the tests with more similar sets, the approach using COFFEE was better in 43% of the times

  14. Ultrasonographic evaluation of Hashimoto's thyroiditis: Comparison of size and echo change with thyroid function

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Rae; Cho, Jae Hyun; Kim, Yun Jeong; Kim, Hyun Man; Park, Rae Woong; Suh, Jung Ho [Aju University School of Medicine, Suwon (Korea, Republic of); Kang, Byung Chul [Ewha Womans University College of Medicine, Seoul (Korea, Republic of)

    1999-12-15

    To demonstrate sonographic features of Hashimoto's thyroiditis according to the thyroid function. We reviewed 54 thyroid ultrasonographic examinations of untreated Hashimoto's thyroiditis. We reviewed thyroid ultrasonographic examinations and focused on the presence of ill-defined low echoic lesions and glandular enlargement. We performed another thyroid ultrasonographic examination of 14 healthy volunteers, in order to obtain normal size of thyroid gland. Comparison was made between these morphologic characteristics and functional stage of the disease. The mean diameter of thyroid gland was 2.16 {+-} 0.43 cm in patients with Hashimoto's thyroiditis, and 1.41 {+-} 0.42 cm in normal control group of the thyroid gland. There was no statistically significant relationship between thyroid function and size. There was morphologic abnormalities in 46 patients (85%). Among them, 7 patients revealed diffuse low echogenicity in the entire thyroid gland, 32 patients showed peripherally located, ill-defined focal hypoechoic lesion, and 7 patients showed solitary or multiple. well-defined nodular lesions. Decreased echogenicity of the thyroid gland was related to hypothyroid status. Hashimoto's thyroiditis has specific morphologue characteristics in ultrasonographic features, which are well correlated with thyroid function.

  15. Being Barbie: The Size of One’s Own Body Determines the Perceived Size of the World

    Science.gov (United States)

    van der Hoort, Björn; Guterstam, Arvid; Ehrsson, H. Henrik

    2011-01-01

    A classical question in philosophy and psychology is if the sense of one's body influences how one visually perceives the world. Several theoreticians have suggested that our own body serves as a fundamental reference in visual perception of sizes and distances, although compelling experimental evidence for this hypothesis is lacking. In contrast, modern textbooks typically explain the perception of object size and distance by the combination of information from different visual cues. Here, we describe full body illusions in which subjects experience the ownership of a doll's body (80 cm or 30 cm) and a giant's body (400 cm) and use these as tools to demonstrate that the size of one's sensed own body directly influences the perception of object size and distance. These effects were quantified in ten separate experiments with complementary verbal, questionnaire, manual, walking, and physiological measures. When participants experienced the tiny body as their own, they perceived objects to be larger and farther away, and when they experienced the large-body illusion, they perceived objects to be smaller and nearer. Importantly, despite identical retinal input, this “body size effect” was greater when the participants experienced a sense of ownership of the artificial bodies compared to a control condition in which ownership was disrupted. These findings are fundamentally important as they suggest a causal relationship between the representations of body space and external space. Thus, our own body size affects how we perceive the world. PMID:21633503

  16. Objective Versus Subjective Measures of Executive Functions: Predictors of Participation and Quality of Life in Parkinson Disease?

    Science.gov (United States)

    Vlagsma, Thialda T; Koerts, Janneke; Tucha, Oliver; Dijkstra, Hilde T; Duits, Annelien A; van Laar, Teus; Spikman, Jacoba M

    2017-11-01

    To determine whether objective (neuropsychological tests) and subjective measures (questionnaires) of executive functions (EFs) are associated in patients with Parkinson disease (PD), and to determine to what extent level of participation and quality of life (QoL) of patients with PD can be predicted by these measures of EFs. Correlational research design (case-control and prediction design). Departments of neuropsychology of 3 medical centers. A sample (N=136) of patients with PD (n=42) and their relatives, and controls without PD (n=94). Not applicable. A test battery measuring EFs. In addition, patients, their relatives, and controls completed the Dysexecutive Questionnaire, Brock Adaptive Functioning Questionnaire, and Barkley Deficits in Executive Functioning Scale - time management questionnaires measuring complaints about EFs. Participation and QoL were measured with the Impact on Participation and Autonomy scale and the Parkinson's Disease Questionnaire-39, respectively. Patients with PD showed impairments in EFs on objective tests and reported significantly more complaints about EFs than did controls without PD. No associations were found between patients' performances on objective and subjective measures of EFs. However, both objective and subjective measures predicted patients' level of participation. In addition, subjective measures of EFs predicted QoL in patients with PD. These findings show that objective and subjective measures of EFs are not interchangeable and that both approaches predict level of participation and QoL in patients with PD. However, within this context, sex needs to be taken into account. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Path Planning for Mobile Objects in Four-Dimension Based on Particle Swarm Optimization Method with Penalty Function

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2013-01-01

    Full Text Available We present one algorithm based on particle swarm optimization (PSO with penalty function to determine the conflict-free path for mobile objects in four-dimension (three spatial and one-time dimensions with obstacles. The shortest path of the mobile object is set as goal function, which is constrained by conflict-free criterion, path smoothness, and velocity and acceleration requirements. This problem is formulated as a calculus of variation problem (CVP. With parametrization method, the CVP is converted to a time-varying nonlinear programming problem (TNLPP. Constraints of TNLPP are transformed to general TNLPP without any constraints through penalty functions. Then, by using a little calculations and applying the algorithm PSO, the solution of the CVP is consequently obtained. Approach efficiency is confirmed by numerical examples.

  18. Portion Size Labeling and Intended Soft Drink Consumption: The Impact of Labeling Format and Size Portfolio

    Science.gov (United States)

    Vermeer, Willemijn M.; Steenhuis, Ingrid H. M.; Leeuwis, Franca H.; Bos, Arjan E. R.; de Boer, Michiel; Seidell, Jacob C.

    2010-01-01

    Objective: To assess what portion size labeling "format" is most promising in helping consumers selecting appropriate soft drink sizes, and whether labeling impact depends on the size portfolio. Methods: An experimental study was conducted in fast-food restaurants in which 2 labeling formats (ie, reference portion size and small/medium/large…

  19. Prognostic value of left atrial size and function in adults with tetralogy of Fallot.

    Science.gov (United States)

    Baggen, Vivan J M; Schut, Anne-Rose W; Cuypers, Judith A A E; Witsenburg, Maarten; Boersma, Eric; van den Bosch, Annemien E; Roos-Hesselink, Jolien W

    2017-06-01

    Left atrial (LA) size predicts cardiovascular outcome in chronic heart failure. Its prognostic value in adults with repaired tetralogy of Fallot (ToF) is unknown. This study therefore investigated the association of LA size and function with cardiovascular events in adults with ToF. Clinically stable adults with ToF who visited the outpatient clinic between 2011 and 2013 underwent echocardiography and were prospectively followed for the occurrence of death, heart failure, hospitalizations, arrhythmia, thromboembolic events, and re-interventions. LA maximal, minimal and pre-A wave volume, area and length were measured on the apical four-chamber view. Total, passive and active emptying fractions were calculated. In total, 134 patients were included (median age 35 [IQR 29-45] years, 65% male, 91% NYHA I). Median follow-up was 40 [IQR 32-47] months. Patients with a dilated LA (≥34mL/m 2 , 43%) were at higher risk of cardiovascular events (n=33, adjusted HR 2.48 [1.09-5.62], P=0.030). Analysis of LA volumes as continuous variables yielded similar conclusions. In addition, LA length (adjusted HR 2.49 [1.51-4.09], P<0.001), total emptying fraction (adjusted HR 0.96 [0.93-0.99], P=0.008), and active emptying fraction (adjusted HR 0.92 [0.87-0.96], P=0.001) were significantly associated with cardiovascular events. Standardized HRs indicated that LA length was the strongest prognostic marker. In addition, none of the patients with a normally sized LA died or developed heart failure. LA size and function can provide relevant prognostic information in clinically stable adults with repaired ToF. Especially LA length may be a valuable additional tool in the risk stratification of these patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simplified analysis of passive residual heat removal systems for small size PWR's

    International Nuclear Information System (INIS)

    Botelho, D.A.

    1992-02-01

    The function and general objectives of a passive residual heat removal system for small size PWR's are defined. The characteristic configuration, the components and the operation modes of this system are concisely described. A preliminary conceptual specification of this system, for a small size PWR of 400 MW thermal, is made analogous to the decay heat removal system of the AP-600 reactor. It is shown by analytic models that such passive systems can dissipate 2% of nominal power within the thermal limits allowed to the reactor fuel elements. (author)

  1. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: implications for modelling trajectories for robot-assisted ADL tasks.

    Science.gov (United States)

    Wisneski, Kimberly J; Johnson, Michelle J

    2007-03-23

    Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the sagittal plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object

  2. Quantifying kinematics of purposeful movements to real, imagined, or absent functional objects: Implications for modelling trajectories for robot-assisted ADL tasks**

    Directory of Open Access Journals (Sweden)

    Wisneski Kimberly J

    2007-03-01

    Full Text Available Abstract Background Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL training (motivation and functional task practice with real objects, with the benefits of robot mediated therapy (repeatability and reliability. In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Methods Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY and the saggital plane of torso (XZ were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. Results We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup

  3. Manually locating physical and virtual reality objects.

    Science.gov (United States)

    Chen, Karen B; Kimmel, Ryan A; Bartholomew, Aaron; Ponto, Kevin; Gleicher, Michael L; Radwin, Robert G

    2014-09-01

    In this study, we compared how users locate physical and equivalent three-dimensional images of virtual objects in a cave automatic virtual environment (CAVE) using the hand to examine how human performance (accuracy, time, and approach) is affected by object size, location, and distance. Virtual reality (VR) offers the promise to flexibly simulate arbitrary environments for studying human performance. Previously, VR researchers primarily considered differences between virtual and physical distance estimation rather than reaching for close-up objects. Fourteen participants completed manual targeting tasks that involved reaching for corners on equivalent physical and virtual boxes of three different sizes. Predicted errors were calculated from a geometric model based on user interpupillary distance, eye location, distance from the eyes to the projector screen, and object. Users were 1.64 times less accurate (p virtual versus physical box corners using the hands. Predicted virtual targeting errors were on average 1.53 times (p virtual targets but not significantly different for close-up virtual targets. Target size, location, and distance, in addition to binocular disparity, affected virtual object targeting inaccuracy. Observed virtual box inaccuracy was less than predicted for farther locations, suggesting possible influence of cues other than binocular vision. Human physical interaction with objects in VR for simulation, training, and prototyping involving reaching and manually handling virtual objects in a CAVE are more accurate than predicted when locating farther objects.

  4. Association diastolic function by echo and infarct size by magnetic resonance imaging after STEMI

    DEFF Research Database (Denmark)

    Søholm, Helle; Lønborg, Jacob; Andersen, Mads J

    2016-01-01

    OBJECTIVES: Left ventricular (LV) diastolic dysfunction is a predictor of increased morbidity and mortality; however, little is known about diastolic function and the degree of myocardial damage after myocardial infarction (MI). The aim was to assess the association between diastolic dysfunction ...

  5. Sexual Functioning and Behavior of Men with Body Dysmorphic Disorder Concerning Penis Size Compared with Men Anxious about Penis Size and with Controls: A Cohort Study

    Directory of Open Access Journals (Sweden)

    David Veale, MD, FRCPsych

    2015-09-01

    Conclusion: Men with BDD are more likely to have erectile dysfunction and less satisfaction with intercourse than controls but maintain their libido. Further research is required to develop and evaluate a psychological intervention for such men with adequate outcome measures. Veale D, Miles S, Read J, Troglia A, Wylie K, and Muir G. Sexual functioning and behavior of men with body dysmorphic disorder concerning penis size compared with men anxious about penis size and with controls: A cohort study. Sex Med 2015;3:147–155.

  6. Survival of alpha particle irradiated cells as a function of the shape and size of the sensitive volume (nucleus)

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Roeske, J.C.

    1995-01-01

    Microdosimetry is the study of the stochastic variation of energy deposited within sub-cellular targets. As such, the size and shape of the critical target (i.e. cell nucleus) are essential when considering microdosimetric quantities. In this work, a microdosimetric analysis examines the expected cell survival as a function of the size and shape of the cell nucleus under conditions of irradiation emitting alpha particles. The results indicate that, in general, cell survival is relatively insensitive to changes in the shape of the cell nucleus when the volume is held constant. However, cell survival is a strong function of the variation in the size of the target. These results are useful when analysing the results of cell survival experiments for alpha particle emitters. (Author)

  7. Inverse optimization of objective function weights for treatment planning using clinical dose-volume histograms

    Science.gov (United States)

    Babier, Aaron; Boutilier, Justin J.; Sharpe, Michael B.; McNiven, Andrea L.; Chan, Timothy C. Y.

    2018-05-01

    We developed and evaluated a novel inverse optimization (IO) model to estimate objective function weights from clinical dose-volume histograms (DVHs). These weights were used to solve a treatment planning problem to generate ‘inverse plans’ that had similar DVHs to the original clinical DVHs. Our methodology was applied to 217 clinical head and neck cancer treatment plans that were previously delivered at Princess Margaret Cancer Centre in Canada. Inverse plan DVHs were compared to the clinical DVHs using objective function values, dose-volume differences, and frequency of clinical planning criteria satisfaction. Median differences between the clinical and inverse DVHs were within 1.1 Gy. For most structures, the difference in clinical planning criteria satisfaction between the clinical and inverse plans was at most 1.4%. For structures where the two plans differed by more than 1.4% in planning criteria satisfaction, the difference in average criterion violation was less than 0.5 Gy. Overall, the inverse plans were very similar to the clinical plans. Compared with a previous inverse optimization method from the literature, our new inverse plans typically satisfied the same or more clinical criteria, and had consistently lower fluence heterogeneity. Overall, this paper demonstrates that DVHs, which are essentially summary statistics, provide sufficient information to estimate objective function weights that result in high quality treatment plans. However, as with any summary statistic that compresses three-dimensional dose information, care must be taken to avoid generating plans with undesirable features such as hotspots; our computational results suggest that such undesirable spatial features were uncommon. Our IO-based approach can be integrated into the current clinical planning paradigm to better initialize the planning process and improve planning efficiency. It could also be embedded in a knowledge-based planning or adaptive radiation therapy framework to

  8. A Research Note on the Relationship between the Control Environment and the Size of the Internal Audit Function in Belguim

    OpenAIRE

    G. SARENS

    2007-01-01

    This study attempts to contribute to the literature by developing three control environment variables, reflecting the contemporary context in which internal auditing is operating, and testing how these variables are related with the size of the internal audit function. Data were collected through a questionnaire sent to Chief Audit Executives. The new control environment variables turned out to be relevant when studying the size of the internal audit function. The results show that the degree...

  9. Effect of ventricular size and function on exercise performance and the electrocardiogram in repaired tetralogy of Fallot with pure pulmonary regurgitation

    International Nuclear Information System (INIS)

    Menon, Shaji C; Kaza, Aditya K; Puchalski, Michael D

    2012-01-01

    In repaired tetralogy of Fallot (TOF), exercise test parameters like peak oxygen uptake and ventilatory efficiency predict mortality. Studies have also suggested cardiac magnetic resonance (CMR)-derived right ventricular (RV) size threshold values for pulmonary valve replacement in repaired TOF. However, effects of proposed RV size on exercise capacity and morbidity are not known. The relationship between CMR-derived ventricular size, function, and pulmonary regurgitation (PR) and NYHA class, exercise performance, and electrocardiogram (ECG) was studied in patients of repaired TOF with pure PR in a retrospective review of records. 46 patients (22 females), mean age 14 years (8–30.8), were studied. There was no relationship between CMR-derived ventricular size, function, or PR and exercise test parameters, or NYHA class. RV end systolic and end diastolic volume correlated positively with the degree of PR. QRS duration on ECG correlated positively with RV end-diastolic volume (P < 0.01, r 2 = 0.34) and PR (P < 0.01, r 2 = 0.52). In repaired TOF and pure PR, there is no correlation between ventricular size or function and exercise performance. RV size increases with increasing PR. Timing of pulmonary valve replacement in TOF with pure PR needs further prospective evaluation for its effect on morbidity and mortality

  10. Time-domain full waveform inversion of exponentially damped wavefield using the deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok

    2017-11-15

    Full waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We apply an exponential damping to the data to generate artificial low frequencies, which helps FWI avoid cycle skipping. In this case, the least-square misfit function does not properly deal with the exponentially damped wavefield in FWI, because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data, thus it can address the unbalanced amplitude of a damped wavefield. We, specifically, normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples show that our FWI algorithm generates a convergent long wavelength structure without low frequency information in the recorded data.

  11. Time-domain full waveform inversion of exponentially damped wavefield using the deconvolution-based objective function

    KAUST Repository

    Choi, Yun Seok; Alkhalifah, Tariq Ali

    2017-01-01

    Full waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We apply an exponential damping to the data to generate artificial low frequencies, which helps FWI avoid cycle skipping. In this case, the least-square misfit function does not properly deal with the exponentially damped wavefield in FWI, because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data, thus it can address the unbalanced amplitude of a damped wavefield. We, specifically, normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples show that our FWI algorithm generates a convergent long wavelength structure without low frequency information in the recorded data.

  12. Effect of microfluidization on casein micelle size of bovine milk

    Science.gov (United States)

    Sinaga, H.; Deeth, H.; Bhandari, B.

    2018-02-01

    The properties of milk are likely to be dependent on the casein micelle size, and various processing technologies produce particular change in the average size of casein micelles. The main objective of this study was to manipulate casein micelle size by subjecting milk to microfluidizer. The experiment was performed as a complete block randomised design with three replications. The sample was passed through the microfluidizer at the set pressure of 83, 97, 112 and 126 MPa for one, two, three, four, five and six cycles, except for the 112 MPa. The results showed that microfluidized milk has smaller size by 3% with pressure up to 126 MPa. However, at each pressure, no further reduction was observed after increasing the passed up to 6 cycles. Although the average casein micelle size was similar, elevating pressure resulted in narrower size distribution. In contrast, increasing the number of cycles had little effect on casein micelle distribution. The finding from this study can be applied for future work to characterize the fundamental and functional properties of the treated milk.

  13. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  14. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali; Choi, Yun Seok

    2012-01-01

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  15. Abstract Objects of Verbs

    DEFF Research Database (Denmark)

    2014-01-01

    Verbs do often take arguments of quite different types. In an orthodox type-theoretic framework this results in an extreme polysemy of many verbs. In this article, it is shown that this unwanted consequence can be avoided when a theory of "abstract objects" is adopted according to which...... these objects represent non-objectual entities in contexts from which they are excluded by type restrictions. Thus these objects are "abstract'' in a functional rather than in an ontological sense: they function as representatives of other entities but they are otherwise quite normal objects. Three examples...

  16. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  17. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time

    Science.gov (United States)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which—as shown on the contact process—provides a significant improvement of the large deviation function estimators compared to the standard one.

  18. Real-time Pipeline for Object Modeling and Grasping Pose Selection via Superquadric Functions

    Directory of Open Access Journals (Sweden)

    Giulia Vezzani

    2017-11-01

    Full Text Available This work provides a novel real-time pipeline for modeling and grasping of unknown objects with a humanoid robot. Such a problem is of great interest for the robotic community, since conventional approaches fail when the shape, dimension, or pose of the objects are missing. Our approach reconstructs in real-time a model for the object under consideration and represents the robot hand both with proper and mathematically usable models, i.e., superquadric functions. The volume graspable by the hand is represented by an ellipsoid and is defined a priori, because the shape of the hand is known in advance. The superquadric representing the object is obtained in real-time from partial vision information instead, e.g., one stereo view of the object under consideration, and provides an approximated 3D full model. The optimization problem we formulate for the grasping pose computation is solved online by using the Ipopt software package and, thus, does not require off-line computation or learning. Even though our approach is for a generic humanoid robot, we developed a complete software architecture for executing this approach on the iCub humanoid robot. Together with that, we also provide a tutorial on how to use this framework. We believe that our work, together with the available code, is of a strong utility for the iCub community for three main reasons: object modeling and grasping are relevant problems for the robotic community, our code can be easily applied on every iCub, and the modular structure of our framework easily allows extensions and communications with external code.

  19. How learning might strengthen existing visual object representations in human object-selective cortex.

    Science.gov (United States)

    Brants, Marijke; Bulthé, Jessica; Daniels, Nicky; Wagemans, Johan; Op de Beeck, Hans P

    2016-02-15

    Visual object perception is an important function in primates which can be fine-tuned by experience, even in adults. Which factors determine the regions and the neurons that are modified by learning is still unclear. Recently, it was proposed that the exact cortical focus and distribution of learning effects might depend upon the pre-learning mapping of relevant functional properties and how this mapping determines the informativeness of neural units for the stimuli and the task to be learned. From this hypothesis we would expect that visual experience would strengthen the pre-learning distributed functional map of the relevant distinctive object properties. Here we present a first test of this prediction in twelve human subjects who were trained in object categorization and differentiation, preceded and followed by a functional magnetic resonance imaging session. Specifically, training increased the distributed multi-voxel pattern information for trained object distinctions in object-selective cortex, resulting in a generalization from pre-training multi-voxel activity patterns to after-training activity patterns. Simulations show that the increased selectivity combined with the inter-session generalization is consistent with a training-induced strengthening of a pre-existing selectivity map. No training-related neural changes were detected in other regions. In sum, training to categorize or individuate objects strengthened pre-existing representations in human object-selective cortex, providing a first indication that the neuroanatomical distribution of learning effects depends upon the pre-learning mapping of visual object properties. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genetic differentiation for size at first reproduction through male versus female functions in the widespread Mediterranean tree Pinus pinaster.

    Science.gov (United States)

    Santos-del-Blanco, L; Climent, J; González-Martínez, S C; Pannell, J R

    2012-11-01

    The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered. Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers. Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size. The study represents the first report of genetic

  1. Predictive model for functional consequences of oral cavity tumour resections

    NARCIS (Netherlands)

    van Alphen, M.J.A.; Hageman, T.A.G.; Hageman, Tijmen Antoon Geert; Smeele, L.E.; Balm, Alfonsus Jacobus Maria; Balm, A.J.M.; van der Heijden, Ferdinand; Lemke, H.U.

    2013-01-01

    The prediction of functional consequences after treatment of large oral cavity tumours is mainly based on the size and location of the tumour. However, patient specific factors play an important role in the functional outcome, making the current predictions unreliable and subjective. An objective

  2. Size-dependent vibrations of post-buckled functionally graded Mindlin rectangular microplates

    Directory of Open Access Journals (Sweden)

    R. Ansari

    Full Text Available In this paper, the free vibration behavior of post-buckled functionally graded (FG Mindlin rectangular microplates are described based on the modified couple stress theory (MCST. This theory enables the consideration of the size-effect through introducing material length scale parameters. The FG microplates made of a mixture of metal and ceramic are considered whose volume fraction of components is expressed by a power law function. By means of Hamilton's principle, the nonlinear governing equations and associated boundary conditions are derived for FG micro-plates in the postbuckling domain. The governing equations and boundary conditions are then discretized by using the generalized differential quadrature (GDQ method before solving numerically by the pseudo-arclength continuation technique. In the solution procedure, the postbuckling problem of microplates is investigated first. Afterwards, the free vibration of microplates around the buckled configuration is discussed. The effects of dimensionless length scale parameter, material gradient index and aspect ratio on the on the postbuckling path and frequency of FG microplates subject to arbitrary edge supports are thoroughly discussed.

  3. Face Memory and Object Recognition in Children with High-Functioning Autism or Asperger Syndrome and in Their Parents

    Science.gov (United States)

    Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma

    2011-01-01

    Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…

  4. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    Science.gov (United States)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  5. A BASIC program for an IBM PC compatible computer for drawing the weak phase object contrast transfer function

    International Nuclear Information System (INIS)

    Olsen, A.; Skjerpe, P.

    1989-01-01

    This report describes a computer program which is useful in high resolution microscopy. The program is written in EBASIC and calculates the weak phase object contrast transfer function as function of instrumental and imaging parameters. The function is plotted on the PC graphics screen, and by a Print Screen command the function can be copied to the printer. The program runs on both the Hercules graphic card and the IBM CGA card. 2 figs

  6. Sample Size Calculations for Population Size Estimation Studies Using Multiplier Methods With Respondent-Driven Sampling Surveys.

    Science.gov (United States)

    Fearon, Elizabeth; Chabata, Sungai T; Thompson, Jennifer A; Cowan, Frances M; Hargreaves, James R

    2017-09-14

    While guidance exists for obtaining population size estimates using multiplier methods with respondent-driven sampling surveys, we lack specific guidance for making sample size decisions. To guide the design of multiplier method population size estimation studies using respondent-driven sampling surveys to reduce the random error around the estimate obtained. The population size estimate is obtained by dividing the number of individuals receiving a service or the number of unique objects distributed (M) by the proportion of individuals in a representative survey who report receipt of the service or object (P). We have developed an approach to sample size calculation, interpreting methods to estimate the variance around estimates obtained using multiplier methods in conjunction with research into design effects and respondent-driven sampling. We describe an application to estimate the number of female sex workers in Harare, Zimbabwe. There is high variance in estimates. Random error around the size estimate reflects uncertainty from M and P, particularly when the estimate of P in the respondent-driven sampling survey is low. As expected, sample size requirements are higher when the design effect of the survey is assumed to be greater. We suggest a method for investigating the effects of sample size on the precision of a population size estimate obtained using multipler methods and respondent-driven sampling. Uncertainty in the size estimate is high, particularly when P is small, so balancing against other potential sources of bias, we advise researchers to consider longer service attendance reference periods and to distribute more unique objects, which is likely to result in a higher estimate of P in the respondent-driven sampling survey. ©Elizabeth Fearon, Sungai T Chabata, Jennifer A Thompson, Frances M Cowan, James R Hargreaves. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 14.09.2017.

  7. Towards Finding the Global Minimum of the D-Wave Objective Function for Improved Neural Network Regressions

    Science.gov (United States)

    Dorband, J. E.

    2017-12-01

    The D-Wave 2X has successfully been used for regression analysis to derive carbon flux data from OCO-2 CO2 concentration using neural networks. The samples returned from the D-Wave should represent the minimum of an objective function presented to it. An accurate as possible minimum function value is needed for this analysis. Samples from the D-Wave are near minimum, but seldom are the global minimum of the function due to quantum noise. Two methods for improving the accuracy of minimized values represented by the samples returned from the D-Wave are presented. The first method finds a new sample with a minimum value near each returned D-Wave sample. The second method uses all the returned samples to find a more global minimum sample. We present three use-cases performed using the former method. In the first use case, it is demonstrated that an objective function with random qubits and coupler coefficients had an improved minimum. In the second use case, the samples corrected by the first method can improve the training of a Boltzmann machine neural network. The third use case demonstrated that using the first method can improve virtual qubit accuracy.The later method was also performed on the first use case.

  8. Blood drop size in passive dripping from weapons.

    Science.gov (United States)

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E

    2013-05-10

    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Objective and subjective psychosocial functioning in bipolar disorder: an investigation of the relative importance of neurocognition, social cognition and emotion regulation.

    Science.gov (United States)

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2014-06-01

    People with bipolar disorder (BD) experience significant psychosocial impairment. Understandings of the nature and causes of such impairment is limited by the lack of research exploring the extent to which subjectively reported functioning should be valued as an indicator of objective dysfunction, or examining the relative influence of neurocognition, social cognition and emotion regulation on these important, but different aspects of psychosocial functioning in the context of mania and depression symptoms. This study aimed to address this paucity of research by conducting a comprehensive investigation of psychosocial functioning in a well characterised group of BD patients. Fifty-one BD patients were compared to 52 healthy controls on objectively and subjectively assessed psychosocial outcomes. Relationships between current mood symptoms, psychosocial function and neurocognitive, social cognitive and emotion regulation measures were also examined in the patient group. Patients had significantly worse scores on the global objective and subjective functioning measures relative to controls. In the patient group, although these scores were correlated, regression analyses showed that variance in each of the measures was explained by different predictors. Depressive symptomatology was the most important predictor of global subjective functioning, and neurocognition had a concurrent and important influence with depressive symptoms on objective psychosocial function. Emotion regulation also had an indirect effect on psychosocial functioning via its influence on depressive symptomatology. As this study was cross-sectional in nature, we are unable to draw precise conclusions regarding contributing pathways involved in psychosocial functioning in BD. These results suggest that patients' own evaluations of their subjective functioning represent important indicators of the extent to which their observable function is impaired. They also highlight the importance of

  10. Differential responses of nitrate reducer community size, structure, and activity to tillage systems.

    Science.gov (United States)

    Chèneby, D; Brauman, A; Rabary, B; Philippot, L

    2009-05-01

    The main objective of this study was to determine how the size, structure, and activity of the nitrate reducer community were affected by adoption of a conservative tillage system as an alternative to conventional tillage. The experimental field, established in Madagascar in 1991, consists of plots subjected to conventional tillage or direct-seeding mulch-based cropping systems (DM), both amended with three different fertilization regimes. Comparisons of size, structure, and activity of the nitrate reducer community in samples collected from the top layer in 2005 and 2006 revealed that all characteristics of this functional community were affected by the tillage system, with increased nitrate reduction activity and numbers of nitrate reducers under DM. Nitrate reduction activity was also stimulated by combined organic and mineral fertilization but not by organic fertilization alone. In contrast, both negative and positive effects of combined organic and mineral fertilization on the size of the nitrate reducer community were observed. The size of the nitrate reducer community was a significant predictor of the nitrate reduction rates except in one treatment, which highlighted the inherent complexities in understanding the relationships the between size, diversity, and structure of functional microbial communities along environmental gradients.

  11. Acoustic features of objects matched by an echolocating bottlenose dolphin.

    Science.gov (United States)

    Delong, Caroline M; Au, Whitlow W L; Lemonds, David W; Harley, Heidi E; Roitblat, Herbert L

    2006-03-01

    The focus of this study was to investigate how dolphins use acoustic features in returning echolocation signals to discriminate among objects. An echolocating dolphin performed a match-to-sample task with objects that varied in size, shape, material, and texture. After the task was completed, the features of the object echoes were measured (e.g., target strength, peak frequency). The dolphin's error patterns were examined in conjunction with the between-object variation in acoustic features to identify the acoustic features that the dolphin used to discriminate among the objects. The present study explored two hypotheses regarding the way dolphins use acoustic information in echoes: (1) use of a single feature, or (2) use of a linear combination of multiple features. The results suggested that dolphins do not use a single feature across all object sets or a linear combination of six echo features. Five features appeared to be important to the dolphin on four or more sets: the echo spectrum shape, the pattern of changes in target strength and number of highlights as a function of object orientation, and peak and center frequency. These data suggest that dolphins use multiple features and integrate information across echoes from a range of object orientations.

  12. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  13. Subjective Cognitive Complaints and Objective Cognitive Function in Aging: A Systematic Review and Meta-Analysis of Recent Cross-Sectional Findings.

    Science.gov (United States)

    Burmester, Bridget; Leathem, Janet; Merrick, Paul

    2016-12-01

    Research investigating how subjective cognitive complaints (SCCs) might reliably indicate impairments in objective cognitive functioning has produced highly varied findings, and despite attempts to synthesise this literature (e.g., Jonker et al. International Journal of Geriatric Psychiatry, 15, 983-991, 2000; Reid and MacLullich Dementia and Geriatric Cognitive Disorders, 22(5-6), 471-485, 2006; Crumley et al. Psychology and Aging, 29(2), 250-263, 2014), recent work continues to offer little resolution. This review provides both quantitative and qualitative synthesis of research conducted since the last comprehensive review in 2006, with the aim of identifying reasons for these discrepancies that might provide fruitful avenues for future exploration. Meta-analysis found a small but significant association between SCCs and objective cognitive function, although it was limited by large heterogeneity between studies and evidence of potential publication bias. Often, assessments of SCCs and objective cognitive function were brief or not formally validated. However, studies that employed more comprehensive SCC measures tended to find that SCCs were associated independently with both objective cognitive function and depressive symptoms. Further explicit investigation of how assessment measures relate to reports of SCCs, and the validity of the proposed 'compensation theory' of SCC aetiology, is recommended.

  14. Characteristic of Water Pervaporation Using Hydrophilic Composite Membrane Containing Functional Nano Sized NaA zeolites

    International Nuclear Information System (INIS)

    Oh, Duckkyu; Lee, Yongtaek

    2013-01-01

    The NaA zeolite particles were dispersed in a poly(vinyl alcohol) (PVA) matrix to prepare a composite membrane. The nano sized zeolite particles of NaA were synthesized in the laboratory and the mean size was approximately 60 nm. Pervaporation characteristics such as a permeation flux and a separation factor were investigated using the membrane as a function of the feed concentration from 0.01 to 0.05 mole fraction and the weight % of NaA particles between 0 wt% and 5 wt% in the membrane. Also, the micro sized particles of 5 mm were dispersed in the membrane for a comparison purpose. When the ethanol concentration in the feed solution was 0.01 mole fraction, the flux of water significantly increased from 600 g/m 2 /hr to 2000 g/m 2 /hr as the content of the nano NaA particles in the membrane increased from 0 wt% to 5 wt%, while the NaA particles improved the separation factor from 1.5 to 7.9. When the flux of water through the membrane containing nano sized particles was roughly 15% increased compared to the micro sized particles, whereas the separation factor of water was found to be approximately 5% increased. It can be said that the role of the nano sized NaA particles is quite important since both the flux and the separation factor are strongly affected

  15. The release of mineral matter and associated phosphorus as a function of the particle size coal

    Energy Technology Data Exchange (ETDEWEB)

    Claassens, V. [Sasol Technology Research & Development, Sasolburg (South Africa). Syngas & Coal Technologies

    2009-05-15

    The presence of phosphorus in carbon reductants is a major concern in the metallurgical industry. The behaviour of the phosphorus and mineral matter content (reported as ash) as a function of particle size was investigated. The primary aim of this study was to determine the reduction in phosphorus and mineral matter that occurred as the particle size decreased. A secondary aim was to determine how the phosphorus was distributed in the feed coal and to where it reported during floc-flotation. Results showed that the ash content decreased more rapidly than the phosphorus content as the mean particle size was reduced. It remains unclear why P-rejection is only half as effective as mineral matter rejection. Detailed liberation analysis of P-containing minerals is required to possibly explain this phenomenon.

  16. CRITICAL FACTORS IN OUTSOURCING OF ACCOUNTING FUNCTIONS IN MALAYSIAN SMALL MEDIUM-SIZED ENTERPRISES (SMEs

    Directory of Open Access Journals (Sweden)

    Magiswary Dorasamy

    2010-01-01

    Full Text Available The challenges that business face in sustaining competitive advantage in the corporate world have become a major concern. Businesses are adopting cutting-edge technologies and best practices to cope with rapid, global changes. Various business functions are being reengineered for this purpose. Accounting functions play an important role in helping businesses to maintain competitive advantage. However, some small and medium-sized enterprises (SMEs face problems handling fundamental accounting functions. This is predominantly because of their lack of expertise; accounting functions require not only knowledge of generally accepted accounting rules or tax regulations but also the expertise needed to apply the rules in a given business environment (Everaert, Sarens and Rommel, 2006. This paper offers some insight on the outsourcing of accounting functions as there is paucity of data in this area in the context of Malaysia. Essentially, it presents empirical evidence regarding Malaysian SMEs' accounting outsourcing practices. A survey of SMEs was conducted to identify the overall outsourcing landscape as it relates to accounting and third-party organisations. The factors that contribute to the decision to outsource accounting functions are analysed. The study reveals a significant relationship between outsourcing accounting functions and two contributing factors, risks and operation management.

  17. Object-based warping: an illusory distortion of space within objects.

    Science.gov (United States)

    Vickery, Timothy J; Chun, Marvin M

    2010-12-01

    Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.

  18. Functional and physical molecular size of the chicken hepatic lectin determined by radiation inactivation and sedimentation equilibrium analysis

    International Nuclear Information System (INIS)

    Steer, C.J.; Osborne, J.C. Jr.; Kempner, E.S.

    1990-01-01

    Radiation inactivation and sedimentation equilibrium analysis were used to determine the functional and physical size of the chicken hepatic membrane receptor that binds N-acetylglucosamine-terminated glycoproteins. Purified plasma membranes from chicken liver were irradiated with high energy electrons and assayed for 125I-agalactoorosomucoid binding. Increasing the dose of ionizing radiation resulted in a monoexponential decay in binding activity due to a progressive loss of binding sites. The molecular mass of the chicken lectin, determined in situ by target analysis, was 69,000 +/- 9,000 Da. When the same irradiated membranes were solubilized in Brij 58 and assayed, the binding protein exhibited a target size of 62,000 +/- 4,000 Da; in Triton X-100, the functional size of the receptor was 85,000 +/- 10,000 Da. Sedimentation equilibrium measurements of the purified binding protein yielded a lower limit molecular weight of 79,000 +/- 7,000. However, the solubilized lectin was detected as a heterogeneous population of oligomers with molecular weights as high as 450,000. Addition of calcium or calcium plus N-acetylglucosamine decreased the higher molecular weight species, but the lower limit molecular weights remained invariant. Similar results were determined when the chicken lectin was solubilized in Brij 58, C12E9, or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS). Results from the present study suggest that in the plasma membrane, the functional species of the chicken hepatic lectin exists as a trimer. However, in detergent solution, the purified receptor forms a heterogeneous population of irreversible oligomers that exhibit binding activity proportional to size

  19. Optimal placement and sizing of multiple distributed generating units in distribution

    Directory of Open Access Journals (Sweden)

    D. Rama Prabha

    2016-06-01

    Full Text Available Distributed generation (DG is becoming more important due to the increase in the demands for electrical energy. DG plays a vital role in reducing real power losses, operating cost and enhancing the voltage stability which is the objective function in this problem. This paper proposes a multi-objective technique for optimally determining the location and sizing of multiple distributed generation (DG units in the distribution network with different load models. The loss sensitivity factor (LSF determines the optimal placement of DGs. Invasive weed optimization (IWO is a population based meta-heuristic algorithm based on the behavior of weeds. This algorithm is used to find optimal sizing of the DGs. The proposed method has been tested for different load models on IEEE-33 bus and 69 bus radial distribution systems. This method has been compared with other nature inspired optimization methods. The simulated results illustrate the good applicability and performance of the proposed method.

  20. The influence of the dorsolateral prefrontal cortex on attentional behavior and decision making. A t-DCS study on emotionally vs. functionally designed objects.

    Science.gov (United States)

    Colombo, Barbara; Balzarotti, Stefania; Mazzucchelli, Nicla

    2016-04-01

    Prior research has shown that right dorsolateral prefrontal cortex may be crucial in cognitive control of affective impulses during decision making. The present study examines whether modulation of r-DLPFC with transcranial direct current stimulation influences attentional behavior and decision-making in a purchase task requiring participants to choose either emotional/attractive or functional/useful objects. 30 participants were shown sixteen pairs of emotionally or functionally designed products while their eye-movements were recorded. Participants were asked to judge aesthetics and usefulness of each object, and to decide which object of each pair they would buy. Results revealed that participants decided to buy the functionally designed objects more often regardless of condition; however, participants receiving anodal stimulation were faster in decision making. Although stimulation of r-DLPFC did not affect the actual purchasing choice and had little effect on visual exploration during decision making, it influenced perceived usefulness and attractiveness, with temporary inhibition of r-DLPFC leading to evaluate functional objects as less attractive. Finally, anodal stimulation led to judge the objects as more useful. The implications of these results are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. GPR Detection of Buried Symmetrically Shaped Mine-like Objects using Selective Independent Component Analysis

    DEFF Research Database (Denmark)

    Karlsen, Brian; Sørensen, Helge Bjarup Dissing; Larsen, Jan

    2003-01-01

    from small-scale anti-personal (AP) mines to large-scale anti-tank (AT) mines were designed. Large-scale SF-GPR measurements on this series of mine-like objects buried in soil were performed. The SF-GPR data was acquired using a wideband monostatic bow-tie antenna operating in the frequency range 750......This paper addresses the detection of mine-like objects in stepped-frequency ground penetrating radar (SF-GPR) data as a function of object size, object content, and burial depth. The detection approach is based on a Selective Independent Component Analysis (SICA). SICA provides an automatic...... ranking of components, which enables the suppression of clutter, hence extraction of components carrying mine information. The goal of the investigation is to evaluate various time and frequency domain ICA approaches based on SICA. Performance comparison is based on a series of mine-like objects ranging...

  2. Objects of consciousness

    Directory of Open Access Journals (Sweden)

    Donald David Hoffman

    2014-06-01

    Full Text Available Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexist-ing physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have defi-nite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are com-pendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a conscious agent. We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale.

  3. Drawing skill is related to the efficiency of encoding object structure.

    Science.gov (United States)

    Perdreau, Florian; Cavanagh, Patrick

    2014-01-01

    Accurate drawing calls on many skills beyond simple motor coordination. A good internal representation of the target object's structure is necessary to capture its proportion and shape in the drawing. Here, we assess two aspects of the perception of object structure and relate them to participants' drawing accuracy. First, we assessed drawing accuracy by computing the geometrical dissimilarity of their drawing to the target object. We then used two tasks to evaluate the efficiency of encoding object structure. First, to examine the rate of temporal encoding, we varied presentation duration of a possible versus impossible test object in the fovea using two different test sizes (8° and 28°). More skilled participants were faster at encoding an object's structure, but this difference was not affected by image size. A control experiment showed that participants skilled in drawing did not have a general advantage that might have explained their faster processing for object structure. Second, to measure the critical image size for accurate classification in the periphery, we varied image size with possible versus impossible object tests centered at two different eccentricities (3° and 8°). More skilled participants were able to categorise object structure at smaller sizes, and this advantage did not change with eccentricity. A control experiment showed that the result could not be attributed to differences in visual acuity, leaving attentional resolution as a possible explanation. Overall, we conclude that drawing accuracy is related to faster encoding of object structure and better access to crowded details.

  4. Influence of template/functional monomer/cross‐linking monomer ratio on particle size and binding properties of molecularly imprinted nanoparticles

    DEFF Research Database (Denmark)

    Yoshimatsu, Keiichi; Yamazaki, Tomohiko; Chronakis, Ioannis S.

    2012-01-01

    A series of molecularly imprinted polymer nanoparticles have been synthesized employing various template/functional monomer/crosslinking monomer ratio and characterized in detail to elucidate the correlation between the synthetic conditions used and the properties (e.g., particle size and templat...... tuning of particle size and binding properties are required to fit practical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012...

  5. Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Nguyen, Tuong-Van; Larsen, Ulrik

    2013-01-01

    This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: thermal efficiency, total volume of the system and net present value. The optimization...... for acetone. Other promising working fluids are cyclohexane, hexane and isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise between performance, compactness and economic revenue is required. © 2013 Elsevier Ltd. All rights reserved....

  6. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  7. An objective evaluation framework for segmentation techniques of functional positron emission tomography studies

    CERN Document Server

    Kim, J; Eberl, S; Feng, D

    2004-01-01

    Segmentation of multi-dimensional functional positron emission tomography (PET) studies into regions of interest (ROI) exhibiting similar temporal behavior is useful in diagnosis and evaluation of neurological images. Quantitative evaluation plays a crucial role in measuring the segmentation algorithm's performance. Due to the lack of "ground truth" available for evaluating segmentation of clinical images, automated segmentation results are usually compared with manual delineation of structures which is, however, subjective, and is difficult to perform. Alternatively, segmentation of co-registered anatomical images such as magnetic resonance imaging (MRI) can be used as the ground truth to the PET segmentation. However, this is limited to PET studies which have corresponding MRI. In this study, we introduce a framework for the objective and quantitative evaluation of functional PET study segmentation without the need for manual delineation or registration to anatomical images of the patient. The segmentation ...

  8. Effect Size Analyses of Souvenaid in Patients with Alzheimer?s Disease

    OpenAIRE

    Cummings, Jeffrey; Scheltens, Philip; McKeith, Ian; Blesa, Rafael; Harrison, John E.; Bertolucci, Paulo H.F.; Rockwood, Kenneth; Wilkinson, David; Wijker, Wouter; Bennett, David A.; Shah, Raj C.

    2016-01-01

    Background: Souvenaid? (uridine monophosphate, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium), was developed to support the formation and function of neuronal membranes. Objective: To determine effect sizes observed in clinical trials of Souvenaid and to calculate the number needed to treat to show benefit or harm. Methods: Data from all three reported randomized controlled trials of Souvenaid in Alzheimer?s disease (...

  9. An Introduction to Object-Oriented Programming with a Didactic Microworld: "objectKarel"

    Science.gov (United States)

    Xinogalos, Stelios; Satratzemi, Maya; Dagdilelis, Vassilios

    2006-01-01

    The objects-first strategy to teaching programming has prevailed over the imperative-first and functional-first strategies during the last decade. However, the objects-first strategy has created added difficulties to both the teaching and learning of programming. In an attempt to confront these difficulties and support the objects-first strategy…

  10. Shrinking an arbitrary object as one desires using metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun; Yang, Xin Mi; Ma, Hui Feng; Cheng, Qiang

    2011-05-01

    Based on transformation optics, we present a shrinking device, which can transform an arbitrary object virtually into a small-size object with different material parameters as one desires. Such an illusion device will confuse the detectors or the viewers, and hence the real size and material parameters of the enclosed object cannot be perceived. We fabricated and measured a shrinking device by using metamaterials, which works at the nonresonant frequency and has low loss. The device has been validated by both numerical simulations and experiments on circular and square objects. Good shrinking performance has been demonstrated.

  11. Vertical Object Layout and Compression for Fixed Heaps

    Science.gov (United States)

    Titzer, Ben L.; Palsberg, Jens

    Research into embedded sensor networks has placed increased focus on the problem of developing reliable and flexible software for microcontroller-class devices. Languages such as nesC [10] and Virgil [20] have brought higher-level programming idioms to this lowest layer of software, thereby adding expressiveness. Both languages are marked by the absence of dynamic memory allocation, which removes the need for a runtime system to manage memory. While nesC offers code modules with statically allocated fields, arrays and structs, Virgil allows the application to allocate and initialize arbitrary objects during compilation, producing a fixed object heap for runtime. This paper explores techniques for compressing fixed object heaps with the goal of reducing the RAM footprint of a program. We explore table-based compression and introduce a novel form of object layout called vertical object layout. We provide experimental results that measure the impact on RAM size, code size, and execution time for a set of Virgil programs. Our results show that compressed vertical layout has better execution time and code size than table-based compression while achieving more than 20% heap reduction on 6 of 12 benchmark programs and 2-17% heap reduction on the remaining 6. We also present a formalization of vertical object layout and prove tight relationships between three styles of object layout.

  12. The Influence of Auditory Information on Visual Size Adaptation.

    Science.gov (United States)

    Tonelli, Alessia; Cuturi, Luigi F; Gori, Monica

    2017-01-01

    Size perception can be influenced by several visual cues, such as spatial (e.g., depth or vergence) and temporal contextual cues (e.g., adaptation to steady visual stimulation). Nevertheless, perception is generally multisensory and other sensory modalities, such as auditory, can contribute to the functional estimation of the size of objects. In this study, we investigate whether auditory stimuli at different sound pitches can influence visual size perception after visual adaptation. To this aim, we used an adaptation paradigm (Pooresmaeili et al., 2013) in three experimental conditions: visual-only, visual-sound at 100 Hz and visual-sound at 9,000 Hz. We asked participants to judge the size of a test stimulus in a size discrimination task. First, we obtained a baseline for all conditions. In the visual-sound conditions, the auditory stimulus was concurrent to the test stimulus. Secondly, we repeated the task by presenting an adapter (twice as big as the reference stimulus) before the test stimulus. We replicated the size aftereffect in the visual-only condition: the test stimulus was perceived smaller than its physical size. The new finding is that we found the auditory stimuli have an effect on the perceived size of the test stimulus after visual adaptation: low frequency sound decreased the effect of visual adaptation, making the stimulus perceived bigger compared to the visual-only condition, and contrarily, the high frequency sound had the opposite effect, making the test size perceived even smaller.

  13. An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-10-01

    Full Text Available The application of a stationary ultra-capacitor energy storage system (ESS in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation and installation cost, respectively. Then, proper mathematical models of the DC (direct current traction power supply system are established to simulate the electrical load-flow of the traction supply network, and the optimization objections are evaluated in the example of a Chinese metro line. Ultimately, a methodology for optimal ultra-capacitor energy storage system locating and sizing is put forward based on the improved genetic algorithm. The optimized result shows that certain preferable and compromised schemes of ESSs’ location and size can be obtained, acting as a compromise between satisfying better energy savings, voltage profile and lower installation cost.

  14. VIE-FG-FFT for Analyzing EM Scattering from Inhomogeneous Nonmagnetic Dielectric Objects

    Directory of Open Access Journals (Sweden)

    Shu-Wen Chen

    2014-01-01

    Full Text Available A new realization of the volume integral equation (VIE in combination with the fast Fourier transform (FFT is established by fitting Green’s function (FG onto the nodes of a uniform Cartesian grid for analyzing EM scattering from inhomogeneous nonmagnetic dielectric objects. The accuracy of the proposed method is the same as that of the P-FFT and higher than that of the AIM and the IE-FFT especially when increasing the grid spacing size. Besides, the preprocessing time of the proposed method is obviously less than that of the P-FFT for inhomogeneous nonmagnetic dielectric objects. Numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.

  15. Species and size diversity in protective services offered by coral guard-crabs

    Directory of Open Access Journals (Sweden)

    C. Seabird McKeon

    2014-09-01

    Full Text Available Coral guard-crabs in the genus Trapezia are well-documented defenders of their pocilloporid coral hosts against coral predators such as the Crown-of-Thorns seastar (Acanthaster planci complex. The objectives of this study were to examine the protective services of six species of Trapezia against corallivory, and the extent of functional diversity among these Trapezia species.Studies conducted in Mo’orea, French Polynesia showed the Trapezia—coral mutualism protected the host corals from multiple predators through functional diversity in the assemblage of crab symbionts. Species differed in their defensive efficacy, but species within similar size classes shared similar abilities. Smaller-size Trapezia species, which were previously thought to be ineffective guards, play important defensive roles against small corallivores.We also measured the benefits of this mutualism to corals in the midst of an Acanthaster outbreak that reduced the live coral cover on the fore reef to less than 4%. The mutualism may positively affect the reef coral demography and potential for recovery during adverse predation events through shelter of multiple species of small corals near the host coral. Our results show that while functional diversity is supported within the genus, some Trapezia species may be functionally equivalent within the same size class, decreasing the threat of gaps in coral protection caused by absence or replacement of any single Trapezia species.

  16. Real-world objects are more memorable than photographs of objects

    Directory of Open Access Journals (Sweden)

    Jacqueline C Snow

    2014-10-01

    Full Text Available Research studies in psychology typically use two-dimensional (2D images of objects as proxies for real-world three-dimensional (3D stimuli. There are, however, a number of important differences between real objects and images that could influence cognition and behavior. Although human memory has been studied extensively, only a handful of studies have used real objects in the context of memory and virtually none have directly compared memory for real objects versus their 2D counterparts. Here we examined whether or not episodic memory is influenced by the format in which objects are displayed. We conducted two experiments asking participants to freely recall, and to recognize, a set of 44 common household objects. Critically, the exemplars were displayed to observers in one of three viewing conditions: real-world objects, colored photographs, or black and white line drawings. Stimuli were closely matched across conditions for size, orientation, and illumination. Surprisingly, recall and recognition performance was significantly better for real objects compared to colored photographs or line drawings (for which memory performance was equivalent. We replicated this pattern in a second experiment comparing memory for real objects versus color photos, when the stimuli were matched for viewing angle across conditions. Again, recall and recognition performance was significantly better for the real objects than matched color photos of the same items. Taken together, our data suggest that real objects are more memorable than pictorial stimuli. Our results highlight the importance of studying real-world object cognition and raise the potential for applied use in developing effective strategies for education, marketing, and further research on object-related cognition.

  17. Non-convex multi-objective optimization

    CERN Document Server

    Pardalos, Panos M; Žilinskas, Julius

    2017-01-01

    Recent results on non-convex multi-objective optimization problems and methods are presented in this book, with particular attention to expensive black-box objective functions. Multi-objective optimization methods facilitate designers, engineers, and researchers to make decisions on appropriate trade-offs between various conflicting goals. A variety of deterministic and stochastic multi-objective optimization methods are developed in this book. Beginning with basic concepts and a review of non-convex single-objective optimization problems; this book moves on to cover multi-objective branch and bound algorithms, worst-case optimal algorithms (for Lipschitz functions and bi-objective problems), statistical models based algorithms, and probabilistic branch and bound approach. Detailed descriptions of new algorithms for non-convex multi-objective optimization, their theoretical substantiation, and examples for practical applications to the cell formation problem in manufacturing engineering, the process design in...

  18. Region-Based Image Retrieval Using an Object Ontology and Relevance Feedback

    Directory of Open Access Journals (Sweden)

    Kompatsiaris Ioannis

    2004-01-01

    Full Text Available An image retrieval methodology suited for search in large collections of heterogeneous images is presented. The proposed approach employs a fully unsupervised segmentation algorithm to divide images into regions and endow the indexing and retrieval system with content-based functionalities. Low-level descriptors for the color, position, size, and shape of each region are subsequently extracted. These arithmetic descriptors are automatically associated with appropriate qualitative intermediate-level descriptors, which form a simple vocabulary termed object ontology. The object ontology is used to allow the qualitative definition of the high-level concepts the user queries for (semantic objects, each represented by a keyword and their relations in a human-centered fashion. When querying for a specific semantic object (or objects, the intermediate-level descriptor values associated with both the semantic object and all image regions in the collection are initially compared, resulting in the rejection of most image regions as irrelevant. Following that, a relevance feedback mechanism, based on support vector machines and using the low-level descriptors, is invoked to rank the remaining potentially relevant image regions and produce the final query results. Experimental results and comparisons demonstrate, in practice, the effectiveness of our approach.

  19. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes

    DEFF Research Database (Denmark)

    Drew, E.A.; Murray, R.S.; Smith, S.E.

    2003-01-01

    Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected....... intraradices obtained a greater proportion of P at a distance from the host roots. Differences in P acquisition were not correlated with production of external hyphae in the four media zones and changes in sand pore size did not affect the ability of the fungi studied to acquire P at a distance from the host...... roots. Production of external hyphae in HC2 was influenced by fungal species and media treatment. Both fungi produced maximum amounts of external hyphae in the soil medium. Sand pore size affected growth of G. intraradices (but not G. mosseae) and hyphal diameter distributions of both fungi. The results...

  20. Functional health literacy and healthy eating: Understanding the brazilian food guide recommendations

    Directory of Open Access Journals (Sweden)

    Maria Auristela Magalhães Coelho

    2014-12-01

    Full Text Available Objective: To assess the relationship between the functional health literacy of Unified Heath System users and the understanding of food servings in the pocket version of the Brazilian Food Guide. Methods: Functional health literacy was assessed by the Brief Test of functional health literacy. Two dialogue rounds were conducted with patients with adequate functional health literacy (Group 1 and inadequate functional health literacy (Group 2. The dialogues were recorded and analyzed according to the discourse of the collective subject. Results: Most (58.0% users had inadequate functional health literacy. Five core areas were identified: understands serving sizes; does not understand serving sizes; serving sizes are confusing; unfamiliar/uncommon foods; small letters. Group 2 had more trouble understanding. Conclusion: Difficulty understanding hinders health promotion. Individuals need to have access to educational materials that are easier to understand and developed taking their functional health literacy into account.

  1. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    Science.gov (United States)

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Influences of Economic Theories on Accounting Theory: the case of the Objective Function of the Firm

    Directory of Open Access Journals (Sweden)

    Lineker Costa Passos

    2016-10-01

    Full Text Available This essay aims to establish the relationship between the theoretical precepts that guide the accounting disclosure procedures for its stakeholders, both internal and external, and the two main theoretical trends that address the firm’s objective function: the Shareholder theory and the Stakeholder theory. In the perspective of the Shareholder theory, the firm has to define a single objective, which is to maximize shareholder wealth. In the context of Stakeholders theory, the firm must establish a multiple objective, which is to meet the interests of all those involved with its activities. We discuss to what extent theories, standards and accounting practices emanate from the concepts of the two models, especially regarding the users’ demand for useful and relevant information. There is a predominance of Shareholder theory in influencing accounting principles that guide the disclosure of information, although different accounting reports are already discussed and presented, oriented to the Stakeholders of the firm, without establishing a set of concepts that explain and justify them within the scope of Accounting theory. Additionally, it is argued that, all things taken into consideration, both currents of the Economic theory point in the same direction: to seek the wellbeing of the firm’s stakeholders. The research contributes to the accounting literature, in the sense of clarifying the impacts arising from the two economic models that deal with the objective function of the firm in the evolution of Accounting theory, not yet captured directly in the discussion of the fundamentals of accounting theory.

  3. Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus.

    Science.gov (United States)

    Alnæs, Dag; Sneve, Markus Handal; Espeseth, Thomas; Endestad, Tor; van de Pavert, Steven Harry Pieter; Laeng, Bruno

    2014-04-01

    Attentional effort relates to the allocation of limited-capacity attentional resources to meet current task demands and involves the activation of top-down attentional systems in the brain. Pupillometry is a sensitive measure of this intensity aspect of top-down attentional control. Studies relate pupillary changes in response to cognitive processing to activity in the locus coeruleus (LC), which is the main hub of the brain's noradrenergic system and it is thought to modulate the operations of the brain's attentional systems. In the present study, participants performed a visual divided attention task known as multiple object tracking (MOT) while their pupil sizes were recorded by use of an infrared eye tracker and then were tested again with the same paradigm while brain activity was recorded using fMRI. We hypothesized that the individual pupil dilations, as an index of individual differences in mental effort, as originally proposed by Kahneman (1973), would be a better predictor of LC activity than the number of tracked objects during MOT. The current results support our hypothesis, since we observed pupil-related activity in the LC. Moreover, the changes in the pupil correlated with activity in the superior colliculus and the right thalamus, as well as cortical activity in the dorsal attention network, which previous studies have shown to be strongly activated during visual tracking of multiple targets. Follow-up pupillometric analyses of the MOT task in the same individuals also revealed that individual differences to cognitive load can be remarkably stable over a lag of several years. To our knowledge this is the first study using pupil dilations as an index of attentional effort in the MOT task and also relating these to functional changes in the brain that directly implicate the LC-NE system in the allocation of processing resources.

  4. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  5. Exhibiting Epistemic Objects

    DEFF Research Database (Denmark)

    Tybjerg, Karin

    2017-01-01

    of exhibiting epistemic objects that utilize their knowledge-generating potential and allow them to continue to stimulate curiosity and generate knowledge in the exhibition. The epistemic potential of the objects can then be made to work together with the function of the exhibition as a knowledge-generating set...

  6. A model for size- and rotation-invariant pattern processing in the visual system.

    Science.gov (United States)

    Reitboeck, H J; Altmann, J

    1984-01-01

    The mapping of retinal space onto the striate cortex of some mammals can be approximated by a log-polar function. It has been proposed that this mapping is of functional importance for scale- and rotation-invariant pattern recognition in the visual system. An exact log-polar transform converts centered scaling and rotation into translations. A subsequent translation-invariant transform, such as the absolute value of the Fourier transform, thus generates overall size- and rotation-invariance. In our model, the translation-invariance is realized via the R-transform. This transform can be executed by simple neural networks, and it does not require the complex computations of the Fourier transform, used in Mellin-transform size-invariance models. The logarithmic space distortion and differentiation in the first processing stage of the model is realized via "Mexican hat" filters whose diameter increases linearly with eccentricity, similar to the characteristics of the receptive fields of retinal ganglion cells. Except for some special cases, the model can explain object recognition independent of size, orientation and position. Some general problems of Mellin-type size-invariance models-that also apply to our model-are discussed.

  7. Exploring the relationship between object realism and object-based attention effects.

    Science.gov (United States)

    Roque, Nelson; Boot, Walter R

    2015-09-01

    Visual attention prioritizes processing of locations in space, and evidence also suggests that the benefits of attention can be shaped by the presence of objects (object-based attention). However, the prevalence of object-based attention effects has been called into question recently by evidence from a large-sampled study employing classic attention paradigms (Pilz et al., 2012). We conducted two experiments to explore factors that might determine when and if object-based attention effects are observed, focusing on the degree to which the concreteness and realism of objects might contribute to these effects. We adapted the classic attention paradigm first reported by Egly, Driver, and Rafal (1994) by replacing abstract bar stimuli in some conditions with objects that were more concrete and familiar to participants: items of silverware. Furthermore, we varied the realism of these items of silverware, presenting either cartoon versions or photo-realistic versions. Contrary to predictions, increased realism did not increase the size of object-based effects. In fact, no clear object-based effects were observed in either experiment, consistent with previous failures to replicate these effects in similar paradigms. While object-based attention may exist, and may have important influences on how we parse the visual world, these and other findings suggest that the two-object paradigm typically relied upon to study object-based effects may not be the best paradigm to investigate these issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Science.gov (United States)

    Poláček, Miroslav; Griggio, Matteo; Bartíková, Michaela; Hoi, Herbert

    2013-01-01

    Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i) motivation and its underlying function and, ii) which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus) population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  9. Nest sanitation as the evolutionary background for egg ejection behaviour and the role of motivation for object removal.

    Directory of Open Access Journals (Sweden)

    Miroslav Poláček

    Full Text Available Higher interclutch colour variation can evolve under the pressure of brood parasitism to increase the detection of parasitic eggs. Nest sanitation could be a prerequisite for the evolution of anti-parasite defence in terms of egg ejection. In this respect, we used nest sanitation behaviour as a tool to identify: i motivation and its underlying function and, ii which features provoke ejection behaviour. Therefore, we experimentally tested whether size, colour or shape may influence ejection behaviour using artificial flat objects. We found a high interclutch variation in egg colouration and egg size in our tree sparrow (Passer montanus population. Using colour and size we were in fact able to predict clutch affiliation for each egg. Our experiments further revealed the existence of direct anti-parasite behaviours and birds are able to recognise conspecific eggs, since only experimentally-deposited eggs have been removed. Moreover, experiments with different objects revealed that the motivation of tree sparrows to remove experimental objects from their nests was highest during egg laying for objects of varying size, most likely because of parasitism risk at this breeding stage. In contrary, motivation to remove white objects and objects with edges was higher during incubation stage as behavioural patterns connected to hatching started to emerge. The fact that rejection rate of our flat objects was higher than real egg ejection, suggests that egg ejection in tree sparrows and probably more general in small passerines, to be limited by elevated costs to eject eggs with their beaks. The presence of anti-parasite behaviour supports our suggestion that brood parasitism causes variation in egg features, as we have found that tree sparrows can recognise and reject conspecific eggs in their clutch. In conclusion, in tree sparrows it seems that nest sanitation plays a key role in the evolution of the removal of parasitic eggs.

  10. Sizing up countability

    OpenAIRE

    De Belder, Marijke

    2008-01-01

    SIZING UP COUNTABILITY: TOWARDS A MORE FINE-GRAINED MASS-COUNT DISTINCTION MARIJKE DE BELDER CRISSP/CATHOLIC UNIVERSITY OF BRUSSELS/FACULTÉS UNIVERSITAIRES SAINT-LOUIS 1. Summary Borer (2005) argues that the presence of the functional projection DivP, which divides stuff into units, yields count readings in the NP and that its absence yields mass readings. I claim, however, that countability requires not only DivP (which creates units) but also SizeP (which assigns size). The head ...

  11. Effects of WC Particle Size and Co Content on the Graded Structure in Functionally Gradient WC-Co Composites

    Directory of Open Access Journals (Sweden)

    Yuan Yigao

    2016-01-01

    Full Text Available Functionally gradient WC-Co composites having a Co depleted surface zone and not comprising the h phase can be manufactured via carburizing process. During carburizing, besides carburizing process parameters, the microstructural parameters of WC-Co materials, such as WC grain size and Co content, also have significant influences on the formation of Co gradient structure. In this study, the effects of WC particle size and Co content on the gradient structure within gradient hardmetals have been studied, based on a series of carburizing experiments of WC-Co materials with different WC particle sizes and cobalt contents. The results show that both the thickness and the amplitude of the gradients within gradient WC-Co materials increase with increasing initial WC particle size and Co content of WC-Co alloys. The reason for this finding is discussed.

  12. The Functional Architecture of Visual Object Recognition

    Science.gov (United States)

    1991-07-01

    different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying

  13. Abstract Objects of Verbs

    DEFF Research Database (Denmark)

    Robering, Klaus

    2014-01-01

    Verbs do often take arguments of quite different types. In an orthodox type-theoretic framework this results in an extreme polysemy of many verbs. In this article, it is shown that this unwanted consequence can be avoided when a theory of "abstract objects" is adopted according to which these obj......Verbs do often take arguments of quite different types. In an orthodox type-theoretic framework this results in an extreme polysemy of many verbs. In this article, it is shown that this unwanted consequence can be avoided when a theory of "abstract objects" is adopted according to which...... these objects represent non-objectual entities in contexts from which they are excluded by type restrictions. Thus these objects are "abstract'' in a functional rather than in an ontological sense: they function as representatives of other entities but they are otherwise quite normal objects. Three examples...

  14. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  15. SIZE AND FIELD OF ACTIVITY INFLUENCE ON WEB SITES FUNCTIONALITY FOR ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Tarca Ioan

    2008-05-01

    Full Text Available The internet became an important part of the company’s informational system. In order to take advantage on the Internet’s interactive nature, a lot of companies have created their own websites. Companies use the website for numerous applications: to promote themselves, online shopping, and communication with targeted clients. This study reveals the fact that the company’s size and field of activity have influence on website’s functionality and interactivity. Small companies use the website to successfully compete corporations which do not have yet necessary stimulants to fully exploit the internet capacities.

  16. Size variability of the unit building block of peripheral light-harvesting antennas as a strategy for effective functioning of antennas of variable size that is controlled in vivo by light intensity.

    Science.gov (United States)

    Taisova, A S; Yakovlev, A G; Fetisova, Z G

    2014-03-01

    This work continuous a series of studies devoted to discovering principles of organization of natural antennas in photosynthetic microorganisms that generate in vivo large and highly effective light-harvesting structures. The largest antenna is observed in green photosynthesizing bacteria, which are able to grow over a wide range of light intensities and adapt to low intensities by increasing of size of peripheral BChl c/d/e antenna. However, increasing antenna size must inevitably cause structural changes needed to maintain high efficiency of its functioning. Our model calculations have demonstrated that aggregation of the light-harvesting antenna pigments represents one of the universal structural factors that optimize functioning of any antenna and manage antenna efficiency. If the degree of aggregation of antenna pigments is a variable parameter, then efficiency of the antenna increases with increasing size of a single aggregate of the antenna. This means that change in degree of pigment aggregation controlled by light-harvesting antenna size is biologically expedient. We showed in our previous work on the oligomeric chlorosomal BChl c superantenna of green bacteria of the Chloroflexaceae family that this principle of optimization of variable antenna structure, whose size is controlled by light intensity during growth of bacteria, is actually realized in vivo. Studies of this phenomenon are continued in the present work, expanding the number of studied biological materials and investigating optical linear and nonlinear spectra of chlorosomes having different structures. We show for oligomeric chlorosomal superantennas of green bacteria (from two different families, Chloroflexaceae and Oscillochloridaceae) that a single BChl c aggregate is of small size, and the degree of BChl c aggregation is a variable parameter, which is controlled by the size of the entire BChl c superantenna, and the latter, in turn, is controlled by light intensity in the course of cell

  17. Escape windows to improve the size selectivity in the Baltic cod trawl fishery

    DEFF Research Database (Denmark)

    Madsen, Niels; Holst, René; Foldager, L.

    2002-01-01

    A rapid decrease of the stock of Baltic cod (Gadus morhua) has provided the incentive to improve the size selectivity in the trawl fishery. Use of escape windows is permitted in the legislation to give means of improving the size selectivity of cod as an alternative to a traditional standard codend....... The history of the use of escape windows in the Baltic Sea cod fishery is reviewed. The present escape windows do not function optimally. The objective of this new experiment was to compare an improved design of escape window, which is placed in the upper panel, with that of standard codend. Three standard...... of the codend selectivity was formulated to analyse the results and determine the effects of codend type, mesh size and other recorded variables. L50 and SR increased significantly with the mesh size. L50 was significantly increased and SR significantly reduced for a window codend with the same window mesh size...

  18. Solving a bi-objective vehicle routing problem under uncertainty by a revised multi-choice goal programming approach

    Directory of Open Access Journals (Sweden)

    Hossein Yousefi

    2017-06-01

    Full Text Available A vehicle routing problem with time windows (VRPTW is an important problem with many real applications in a transportation problem. The optimum set of routes with the minimum distance and vehicles used is determined to deliver goods from a central depot, using a vehicle with capacity constraint. In the real cases, there are other objective functions that should be considered. This paper considers not only the minimum distance and the number of vehicles used as the objective function, the customer’s satisfaction with the priority of customers is also considered. Additionally, it presents a new model for a bi-objective VRPTW solved by a revised multi-choice goal programming approach, in which the decision maker determines optimistic aspiration levels for each objective function. Two meta-heuristic methods, namely simulated annealing (SA and genetic algorithm (GA, are proposed to solve large-sized problems. Moreover, the experimental design is used to tune the parameters of the proposed algorithms. The presented model is verified by a real-world case study and a number of test problems. The computational results verify the efficiency of the proposed SA and GA.

  19. Particle diffusional layer thickness in a USP dissolution apparatus II: a combined function of particle size and paddle speed.

    Science.gov (United States)

    Sheng, Jennifer J; Sirois, Paul J; Dressman, Jennifer B; Amidon, Gordon L

    2008-11-01

    This work was to investigate the effects of particle size and paddle speed on the particle diffusional layer thickness h(app) in a USP dissolution apparatus II. After the determination of the powder dissolution rates of five size fractions of fenofibrate, including <20, 20-32, 32-45, 63-75, and 90-106 microm, the present work shows that the dependence of h(app) on particle size follows different functions in accordance with the paddle speed. At 50 rpm, the function of h(app) is best described by a linear plot of h{app} = 9.91sqrt d-23.31 (R(2) = 0.98) throughout the particle diameter, d, from 6.8 to 106 microm. In contrast, at 100 rpm a transitional particle radius, r, of 23.7 microm exists, under which linear relationship h(app) = 1.59r (R(2) = 0.98) occurs, but above which h(app) becomes a constant of 43.5 microm. Thus, h(app) changes not only with particle size, but also with the hydrodynamics under standard USP configurations, which has been overlooked in the past. Further, the effects of particle size and paddle speed on h(app) were combined using dimensionless analysis. Within certain fluid velocity/particle regime, linear correlation of h(app)/d with the square-root of Reynolds number (d\\varpi/upsilon){1/2}, that is, h{app}/d = 1.5207 - 9.25 x 10{- 4} (d\\varpi/n){1/2} (R(2) = 0.9875), was observed.

  20. The economics of urban size.

    Science.gov (United States)

    Alonso, W

    1971-01-01

    An aggregative economic approach to the theory of city size is presented along with some empirical findings which suggest that even the largest cities have not yet reached excessive sizes from the point of view of growth and productivity. Urban magnitude is no simple 1 dimensional phenomenon. Modern urban centers are surrounded by very large, diffuse zonal boundaries, within which there are marked variations in the proportion of firms and people associated with that center, and in the intensity of the association. In sum, population does not constitute a conventional, countable set. In general, population will be considered as the basic magnitude and as a conventionally definable number. Most approaches to city size have emphasized the presumed diseconomy of urban scale and have sought to establish that population at which costs per capita are least, regarding this as optimal. It is argued here that both the logic and the factual basis of this approach are faulty. The argument of minimum costs is insufficient in its own terms. Such an objective is reasonable only if output per capita is constant, but it appears that output per capita is an increasing function of urban size. In that case, a more sensible objective of public policy would deal with the relation of outputs and inputs, rather than only with inputs. In every country for which evidence was found, local product per capita (or some index for it, such as income or wages) rises with urban size, and where comparable figures on cost are available, these rise far more slowly if at all. Although all of the data desirable are not available for any single country, the overall pattern is clear. Possibly the most surprising element in the data is the marked decline with increasing density in Social Overhead Captial Stocks (SOCS) per capita. This runs counter to common belief that the bigger the city the more infrastructure per capita is needed and may be the result of such effects as the greater linear quantities of

  1. Perception-action dissociation generalizes to the size-inertia illusion.

    Science.gov (United States)

    Platkiewicz, Jonathan; Hayward, Vincent

    2014-04-01

    Two objects of similar visual aspects and of equal mass, but of different sizes, generally do not elicit the same percept of heaviness in humans. The larger object is consistently felt to be lighter than the smaller, an effect known as the "size-weight illusion." When asked to repeatedly lift the two objects, the grip forces were observed to adapt rapidly to the true object weight while the size-weight illusion persisted, a phenomenon interpreted as a dissociation between perception and action. We investigated whether the same phenomenon can be observed if the mass of an object is available to participants through inertial rather than gravitational cues and if the number and statistics of the stimuli is such that participants cannot remember each individual stimulus. We compared the responses of 10 participants in 2 experimental conditions, where they manipulated 33 objects having uncorrelated masses and sizes, supported by a frictionless, air-bearing slide that could be oriented vertically or horizontally. We also analyzed the participants' anticipatory motor behavior by measuring the grip force before motion onset. We found that the perceptual illusory effect was quantitatively the same in the two conditions and observed that both visual size and haptic mass had a negligible effect on the anticipatory gripping control of the participants in the gravitational and inertial conditions, despite the enormous differences in the mechanics of the two conditions and the large set of uncorrelated stimuli.

  2. Linear and ultrafast nonlinear plasmonics of single nano-objects

    Science.gov (United States)

    Crut, Aurélien; Maioli, Paolo; Vallée, Fabrice; Del Fatti, Natalia

    2017-03-01

    Single-particle optical investigations have greatly improved our understanding of the fundamental properties of nano-objects, avoiding the spurious inhomogeneous effects that affect ensemble experiments. Correlation with high-resolution imaging techniques providing morphological information (e.g. electron microscopy) allows a quantitative interpretation of the optical measurements by means of analytical models and numerical simulations. In this topical review, we first briefly recall the principles underlying some of the most commonly used single-particle optical techniques: near-field, dark-field, spatial modulation and photothermal microscopies/spectroscopies. We then focus on the quantitative investigation of the surface plasmon resonance (SPR) of metallic nano-objects using linear and ultrafast optical techniques. While measured SPR positions and spectral areas are found in good agreement with predictions based on Maxwell’s equations, SPR widths are strongly influenced by quantum confinement (or, from a classical standpoint, surface-induced electron scattering) and, for small nano-objects, cannot be reproduced using the dielectric functions of bulk materials. Linear measurements on single nano-objects (silver nanospheres and gold nanorods) allow a quantification of the size and geometry dependences of these effects in confined metals. Addressing the ultrafast response of an individual nano-object is also a powerful tool to elucidate the physical mechanisms at the origin of their optical nonlinearities, and their electronic, vibrational and thermal relaxation processes. Experimental investigations of the dynamical response of gold nanorods are shown to be quantitatively modeled in terms of modifications of the metal dielectric function enhanced by plasmonic effects. Ultrafast spectroscopy can also be exploited to unveil hidden physical properties of more complex nanosystems. In this context, two-color femtosecond pump-probe experiments performed on individual

  3. Is the lack of association between cognitive complaints and objective cognitive functioning in patients with bipolar disorder moderated by depressive symptoms?

    NARCIS (Netherlands)

    van der Werf-Eldering, Marieke J.; Burger, Huibert; Jabben, Nienke; Holthausen, Esther A. E.; Aleman, Andre; Nolen, Willem A.

    Objectives: To investigate the association between cognitive complaints and objective cognitive functioning in bipolar patients, with a focus on the moderating role of depressive symptoms. Methods: The association between cognitive complaints (measured by the total score and four subscales of the

  4. Size structure of marine soft-bottom macrobenthic communities across natural habitat gradients: implications for productivity and ecosystem function.

    Directory of Open Access Journals (Sweden)

    Tara A Macdonald

    Full Text Available Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6J to 2(16J in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality. These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1 communities with a high proportion of biomass in small organisms, typical of shallow areas (3 g C/m(2/yr/δ(15N from the Fraser River; and (3 communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2/yr/δ(15N. The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.

  5. Bayesian object classification of gold nanoparticles

    KAUST Repository

    Konomi, Bledar A.

    2013-06-01

    The properties of materials synthesized with nanoparticles (NPs) are highly correlated to the sizes and shapes of the nanoparticles. The transmission electron microscopy (TEM) imaging technique can be used to measure the morphological characteristics of NPs, which can be simple circles or more complex irregular polygons with varying degrees of scales and sizes. A major difficulty in analyzing the TEM images is the overlapping of objects, having different morphological properties with no specific information about the number of objects present. Furthermore, the objects lying along the boundary render automated image analysis much more difficult. To overcome these challenges, we propose a Bayesian method based on the marked-point process representation of the objects. We derive models, both for the marks which parameterize the morphological aspects and the points which determine the location of the objects. The proposed model is an automatic image segmentation and classification procedure, which simultaneously detects the boundaries and classifies the NPs into one of the predetermined shape families. We execute the inference by sampling the posterior distribution using Markov chainMonte Carlo (MCMC) since the posterior is doubly intractable. We apply our novel method to several TEM imaging samples of gold NPs, producing the needed statistical characterization of their morphology. © Institute of Mathematical Statistics, 2013.

  6. Bayesian object classification of gold nanoparticles

    KAUST Repository

    Konomi, Bledar A.; Dhavala, Soma S.; Huang, Jianhua Z.; Kundu, Subrata; Huitink, David; Liang, Hong; Ding, Yu; Mallick, Bani K.

    2013-01-01

    The properties of materials synthesized with nanoparticles (NPs) are highly correlated to the sizes and shapes of the nanoparticles. The transmission electron microscopy (TEM) imaging technique can be used to measure the morphological characteristics of NPs, which can be simple circles or more complex irregular polygons with varying degrees of scales and sizes. A major difficulty in analyzing the TEM images is the overlapping of objects, having different morphological properties with no specific information about the number of objects present. Furthermore, the objects lying along the boundary render automated image analysis much more difficult. To overcome these challenges, we propose a Bayesian method based on the marked-point process representation of the objects. We derive models, both for the marks which parameterize the morphological aspects and the points which determine the location of the objects. The proposed model is an automatic image segmentation and classification procedure, which simultaneously detects the boundaries and classifies the NPs into one of the predetermined shape families. We execute the inference by sampling the posterior distribution using Markov chainMonte Carlo (MCMC) since the posterior is doubly intractable. We apply our novel method to several TEM imaging samples of gold NPs, producing the needed statistical characterization of their morphology. © Institute of Mathematical Statistics, 2013.

  7. First-principle study of quantum confinement effect on small sized silicon quantum dots using density-functional theory

    International Nuclear Information System (INIS)

    Anas, M. M.; Othman, A. P.; Gopir, G.

    2014-01-01

    Density functional theory (DFT), as a first-principle approach has successfully been implemented to study nanoscale material. Here, DFT by numerical basis-set was used to study the quantum confinement effect as well as electronic properties of silicon quantum dots (Si-QDs) in ground state condition. Selection of quantum dot models were studied intensively before choosing the right structure for simulation. Next, the computational result were used to examine and deduce the electronic properties and its density of state (DOS) for 14 spherical Si-QDs ranging in size up to ∼ 2 nm in diameter. The energy gap was also deduced from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating its crystal unit cell of face-centered cubic (FCC) structure, and reconstructed until the spherical shape obtained. The core structure shows tetrahedral (T d ) symmetry structure. It was found that the model need to be passivated, and hence it was noticed that the confinement effect was more pronounced. The model was optimized using Quasi-Newton method for each size of Si-QDs to get relaxed structure before it was simulated. In this model the exchange-correlation potential (V xc ) of the electrons was treated by Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional

  8. ZLIB++: Object-oriented numerical library for differential algebra

    International Nuclear Information System (INIS)

    Malitsky, N.; Reshetov, A.; Yan, Y.

    1994-01-01

    New software engineering tools and object-oriented design have a great impact on the software development process. But in high energy physics all major packages were implemented in FORTRAN and porting of these codes to another language is rather complicated, primarily because of their huge size and heavy use of FORTRAN mathematical libraries. But some intrinsic accelerator concepts, such as nested structure of modern accelerators, look very pretty when implemented with the object-oriented approach. In this paper we present the object-oriented version of ZLIB, numerical library for differential algebra and show how the modern approaches can simplify the development and support of accelerator codes, decrease code size, and allow description of complex mathematical transformations by simple language

  9. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  10. Influence of secular trends and sample size on reference equations for lung function tests.

    Science.gov (United States)

    Quanjer, P H; Stocks, J; Cole, T J; Hall, G L; Stanojevic, S

    2011-03-01

    The aim of our study was to determine the contribution of secular trends and sample size to lung function reference equations, and establish the number of local subjects required to validate published reference values. 30 spirometry datasets collected between 1978 and 2009 provided data on healthy, white subjects: 19,291 males and 23,741 females aged 2.5-95 yrs. The best fit for forced expiratory volume in 1 s (FEV(1)), forced vital capacity (FVC) and FEV(1)/FVC as functions of age, height and sex were derived from the entire dataset using GAMLSS. Mean z-scores were calculated for individual datasets to determine inter-centre differences. This was repeated by subdividing one large dataset (3,683 males and 4,759 females) into 36 smaller subsets (comprising 18-227 individuals) to preclude differences due to population/technique. No secular trends were observed and differences between datasets comprising >1,000 subjects were small (maximum difference in FEV(1) and FVC from overall mean: 0.30- -0.22 z-scores). Subdividing one large dataset into smaller subsets reproduced the above sample size-related differences and revealed that at least 150 males and 150 females would be necessary to validate reference values to avoid spurious differences due to sampling error. Use of local controls to validate reference equations will rarely be practical due to the numbers required. Reference equations derived from large or collated datasets are recommended.

  11. A Linear Programming Model to Optimize Various Objective Functions of a Foundation Type State Support Program.

    Science.gov (United States)

    Matzke, Orville R.

    The purpose of this study was to formulate a linear programming model to simulate a foundation type support program and to apply this model to a state support program for the public elementary and secondary school districts in the State of Iowa. The model was successful in producing optimal solutions to five objective functions proposed for…

  12. Modeling and optimization of wet sizing process

    International Nuclear Information System (INIS)

    Thai Ba Cau; Vu Thanh Quang and Nguyen Ba Tien

    2004-01-01

    Mathematical simulation on basis of Stock law has been done for wet sizing process on cylinder equipment of laboratory and semi-industrial scale. The model consists of mathematical equations describing relations between variables, such as: - Resident time distribution function of emulsion particles in the separating zone of the equipment depending on flow-rate, height, diameter and structure of the equipment. - Size-distribution function in the fine and coarse parts depending on resident time distribution function of emulsion particles, characteristics of the material being processed, such as specific density, shapes, and characteristics of the environment of classification, such as specific density, viscosity. - Experimental model was developed on data collected from an experimental cylindrical equipment with diameter x height of sedimentation chamber equal to 50 x 40 cm for an emulsion of zirconium silicate in water. - Using this experimental model allows to determine optimal flow-rate in order to obtain product with desired grain size in term of average size or size distribution function. (author)

  13. Pure Amorphagnosia without Tactile Object Agnosia.

    Science.gov (United States)

    Kubota, Shinichirou; Yamada, Mai; Satoh, Hideyo; Satoh, Akira; Tsujihata, Mitsuhiro

    2017-01-01

    A 54-year-old female showed amorphagnosia without ahylognosia and tactile agnosia 40 days after the onset of right cerebral infarction. Her basic somatosensory functions were normal. The appreciation of substance qualities (hylognosia) was preserved, but the patient's inability to recognize the size and shape (morphagnosia) was confined to 2- and 3-dimensional shapes (amorphagnosia) in the left hand. However, the patient's ability to recognize real daily objects was well preserved. Brain MRI after admission showed ischemic lesions confined to the right pre- and postcentral gyri and the medial frontal cortex on DWI and FLAIR images. An analysis of SPECT images revealed that the most decreased areas were localized to the pre- and postcentral gyri, superior and inferior parietal lobules, supramarginal gyrus, and angular gyrus. Considering the previous reported cases, the responsible lesion for the impaired perception of hylognosia and morphagnosia may not necessarily be confined to the right hemisphere. To date, 5 reports (6 cases) of tactile agnosia have been published; 4 cases presented with both ahylognosia and amorphagnosia, while 1 presented with only amorphagnosia, and another showed amorphagnosia and mild ahylognosia. Our case is the first to present with only amorphagnosia without tactile agnosia. The mechanism for the well-preserved recognition of real objects may depend on the preserved hylognosia. Of note, there have been no reports showing only ahylognosia without amorphagnosia. Further studies are necessary to clarify whether or not patients with preserved hylognosia or morphagnosia retain the ability to perceive real objects.

  14. Influence of particle size in silo discharge

    Directory of Open Access Journals (Sweden)

    Gella Diego

    2017-01-01

    Full Text Available Recently Janda et al. [Phys. Rev. Lett. 108, 248001 (2012] reported an experimental study where it was measured the velocity and volume fraction fields of 1 mm diameter stainless steel beads in the exit of a two-dimensional silo. In that work, they proposed a new expression to predict the flow of granular media in silos which does not explicitly include the particle size as a parameter. Here, we study if effectively, there is not such influence of the particle size in the flux equations as well as investigate any possible effect in the velocity and volume fraction fields. To this end, we have performed high speed motion measurements of these magnitudes in a two-dimensional silo filled with 4 mm diameter beads of stainless steel, the same material than the previous works. A developed tracking program has been implemented to obtain at the same time both, the velocity and volume fraction. The final objective of this work has been to extend and generalize the theoretical framework of Janda et al. for all sizes of particles. We have found that the obtained functionalities are the same than in the 1 mm case, but the exponents and other fitting parameters are different.

  15. Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions

    Science.gov (United States)

    Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    2018-03-01

    The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy’s population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee’s functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee’s effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee’s limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee’s dynamics. Moreover, the “foliated” structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.

  16. Nest Digging by Leaf-Cutting Ants: Effect of Group Size and Functional Structures

    Directory of Open Access Journals (Sweden)

    Roberto da Silva Camargo

    2012-01-01

    Full Text Available Leaf-cutting ant workers dig underground chambers, for housing their symbiotic fungus, interconnected by a vast quantity of tunnels whose function is to permit the entrance of food (leaves, gaseous exchanges, and movement of workers, offspring, and the queen. Digging is a task executed by a group of workers, but little is known about the group effect and group-constructed functional structures. Thus, we analyzed the structures formed by worker groups (5, 10, 20, and 40 individuals of the leaf-cutting ant, Atta sexdens rubropilosa, for 2 days of excavation. The digging arena was the same for the 4 groups, with each group corresponding to a different density. Our results verified a pattern of tunneling by the workers, but no chamber was constructed. The group effect is well known, since the 40-worker group dug significantly more than the groups of 5, 10, and 20. These groups did not differ statistically from each other. Analysis of load/worker verified that workers of the smallest group carried the greatest load. Our paper demonstrates the group effect on the digging of nests, namely, that excavation is proportional to group size, but without emergence of a functional structure such as a chamber.

  17. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

    Energy Technology Data Exchange (ETDEWEB)

    Masadeh, A S; Bozin, E S; Farrow, C L; Paglia, G; Juhas, P; Billinge, S J. L.; Karkamkar, A; Kanatzidis, M G [Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116 (United States); Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1116 (United States)

    2007-09-15

    The size-dependent structure of CdSe nanoparticles, with diameters ranging from 2 to 4 nm, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is {approx}50%. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd-Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the 2 nm diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

  18. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  19. Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION in birds.

    Directory of Open Access Journals (Sweden)

    Cristián Gutiérrez-Ibáñez

    Full Text Available In birds, there is a retinofugal projection from the brain to the retina originating from the isthmo optic nucleus (ION in the midbrain. Despite a large number of anatomical, physiological and histochemical studies, the function of this retinofugal system remains unclear. Several functions have been proposed including: gaze stabilization, pecking behavior, dark adaptation, shifting attention, and detection of aerial predators. This nucleus varies in size and organization among some species, but the relative size and morphology of the ION has not been systematically studied. Here, we present a comparison of the relative size and morphology of the ION in 81 species of birds, representing 17 different orders. Our results show that several orders of birds, besides those previously reported, have a large, well-organized ION, including: hummingbirds, woodpeckers, coots and allies, and kingfishers. At the other end of the spectrum, parrots, herons, waterfowl, owls and diurnal raptors have relatively small ION volumes. ION also appears to be absent or unrecognizable is several taxa, including one of the basal avian groups, the tinamous, which suggests that the ION may have evolved only in the more modern group of birds, Neognathae. Finally, we demonstrate that evolutionary changes in the relative size and the cytoarchitectonic organization of ION have occurred largely independent of phylogeny. The large relative size of the ION in orders with very different lifestyles and feeding behaviors suggest there is no clear association with pecking behavior or predator detection. Instead, our results suggest that the ION is more complex and enlarged in birds that have eyes that are emmetropic in some parts of the visual field and myopic in others. We therefore posit that the ION is involved in switching attention between two parts of the retina i.e. from an emmetropic to a myopic part of the retina.

  20. A strategic analysis of Business Objects' portal application

    OpenAIRE

    Kristinsson, Olafur Oskar

    2007-01-01

    Business Objects is the leading software firm producing business intelligence software. Business intelligence is a growing market. Small to medium businesses are increasingly looking at business intelligence. Business Objects' flagship product in the enterprise market is Business Objects XI and for medium-size companies it has Crystal Decisions. Portals are the front end for the two products. InfoView, Business Objects portal application, lacks a long-term strategy. This analysis evaluates...

  1. An Improved Genetic Algorithm for Optimal Stationary Energy Storage System Locating and Sizing

    OpenAIRE

    Bin Wang; Zhongping Yang; Fei Lin; Wei Zhao

    2014-01-01

    The application of a stationary ultra-capacitor energy storage system (ESS) in urban rail transit allows for the recuperation of vehicle braking energy for increasing energy savings as well as for a better vehicle voltage profile. This paper aims to obtain the best energy savings and voltage profile by optimizing the location and size of ultra-capacitors. This paper firstly raises the optimization objective functions from the perspectives of energy savings, regenerative braking cancellation a...

  2. Near-Earth Objects. Chapter 27

    Science.gov (United States)

    Harris, Alan W.; Drube, Line; McFadden, Lucy A.; Binzel, Richard P.

    2014-01-01

    A near-Earth object (NEO) is an asteroid or comet orbiting the Sun with a perihelion distance of less than 1.3 Astronomical Units (AU) (1 AU, an astronomical unit, is the mean distance between the Earth and the Sun, around 150 million kilometers). If the orbit of an NEO can bring it to within 0.05 AU of the Earth's orbit, and it is larger than about 120 meters, it is termed a potentially hazardous object (PHO); an object of this size is likely to survive passage through the atmosphere and cause extensive damage on impact. (The acronyms NEA and PHO are used when referring specifically to asteroids.)

  3. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Science.gov (United States)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex

  4. ZLIB++: Object Oriented Numerical Library for Differential Algebra

    International Nuclear Information System (INIS)

    Yan, Yiton T

    2003-01-01

    New software engineering tools and object-oriented design have a great impact on the software development process. but in high energy physics all major packages were implemented in FORTRAN and porting of these codes to another language is rather complicated, primarily because of their huge size and heavy use of FORTRAN mathematical libraries. But some intrinsic accelerator concepts, such as nested structure of modern accelerators, look very pretty when implemented with the object-oriented approach. In this paper the authors present the object-oriented version of ZLIB, numerical library for differential algebra, and show how the modern approaches can simplify the development and support of accelerator codes, decrease code size, and allow description of complex mathematical transformations by simple language

  5. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor

    DEFF Research Database (Denmark)

    Cohen, A; Shainberg, Asher; Hochhauser, E

    2011-01-01

    Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5......'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups...... used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group...

  6. Determination of the optimal sample size for a clinical trial accounting for the population size.

    Science.gov (United States)

    Stallard, Nigel; Miller, Frank; Day, Simon; Hee, Siew Wan; Madan, Jason; Zohar, Sarah; Posch, Martin

    2017-07-01

    The problem of choosing a sample size for a clinical trial is a very common one. In some settings, such as rare diseases or other small populations, the large sample sizes usually associated with the standard frequentist approach may be infeasible, suggesting that the sample size chosen should reflect the size of the population under consideration. Incorporation of the population size is possible in a decision-theoretic approach either explicitly by assuming that the population size is fixed and known, or implicitly through geometric discounting of the gain from future patients reflecting the expected population size. This paper develops such approaches. Building on previous work, an asymptotic expression is derived for the sample size for single and two-arm clinical trials in the general case of a clinical trial with a primary endpoint with a distribution of one parameter exponential family form that optimizes a utility function that quantifies the cost and gain per patient as a continuous function of this parameter. It is shown that as the size of the population, N, or expected size, N∗ in the case of geometric discounting, becomes large, the optimal trial size is O(N1/2) or O(N∗1/2). The sample size obtained from the asymptotic expression is also compared with the exact optimal sample size in examples with responses with Bernoulli and Poisson distributions, showing that the asymptotic approximations can also be reasonable in relatively small sample sizes. © 2016 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Radiation inactivation analysis of assimilatory NADH:nitrate reductase. Apparent functional sizes of partial activities associated with intact and proteolytically modified enzyme

    International Nuclear Information System (INIS)

    Solomonson, L.P.; McCreery, M.J.; Kay, C.J.; Barber, M.J.

    1987-01-01

    Recently we demonstrated that target sizes for the partial activities of nitrate reductase were considerably smaller than the 100-kDa subunit which corresponded to the target size of the full (physiologic) activity NADH:nitrate reductase. These results suggested that the partial activities resided on functionally independent domains and that radiation inactivation may be due to localized rather than extensive damage to protein structure. The present study extends these observations and addresses several associated questions. Monophasic plots were observed over a wide range of radiation doses, suggesting a single activity component in each case. No apparent differences were observed over a 10-fold range of concentration for each substrate, suggesting that the observed slopes were not due to marked changes in Km values. Apparent target sizes estimated for partial activities associated with native enzyme and with limited proteolysis products of native enzyme suggested that the functional size obtained by radiation inactivation analysis is independent of the size of the polypeptide chain. The presence of free radical scavengers during irradiation reduced the apparent target size of both the physiologic and partial activities by an amount ranging from 24 to 43%, suggesting that a free radical mechanism is at least partially responsible for the inactivation. Immunoblot analysis of nitrate reductase irradiated in the presence of free radical scavengers revealed formation of distinct bands at 90, 75, and 40 kDa with increasing doses of irradiation rather than complete destruction of the polypeptide chain

  8. Dynamic multi-objective optimization using PSO

    CSIR Research Space (South Africa)

    Helbig, M

    2012-01-01

    Full Text Available by replacing objective functions with new ones at specific times. DMOOPs based on the static MOO two- objective ZDT functions [9] and the scalable DTLZ functions [10] was presented by Farina et al. [5]. Some adaptions to these test functions were proposed.... if space in archive 9. add new solutions to archive 10. else 11. remove solutions from archive 12. add new solutions to archive 13. select sentry particles The default configuration of DVEPSO algorithm that is used for this research is as follows...

  9. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  10. Dose-dependent acute effects of recombinant human TSH (rhTSH) on thyroid size and function. Comparison of 0.1, 0.3 and 0.9 mg of rhTSH

    DEFF Research Database (Denmark)

    Fast, Søren; Nielsen, Viveque Egsgaard; Bonnema, Steen Joop

    2009-01-01

    Context: Recombinant human TSH (rhTSH) is used to augment the effect of radioiodine therapy for nontoxic multinodular goitre. Reports of acute thyroid swelling and hyperthyroidism warrant safety studies evaluating whether these side-effects are dose-dependent. Objective: To determine the effects...... on thyroid size and function of various doses of rhTSH. Design: In nine healthy male volunteers the effect of placebo, 0.1, 0.3 and 0.9 mg of rhTSH was examined in a paired design including four consecutive study rounds. Main outcome measures: Were evaluated at baseline, 24h, 48h, 96h, 7 days and 28 days...... after rhTSH and included: Thyroid volume (TV) estimation by planimetric ultrasound, and thyroid function by serum TSH, freeT3, freeT4 and Tg levels. Results: Following placebo or 0.1 mg rhTSH the TV did not change significantly from baseline at any time. At 24 and 48 hours after administration of 0.3 mg...

  11. Lifetime suicide attempt history, quality of life, and objective functioning among HIV/AIDS patients with alcohol and illicit substance use disorders.

    Science.gov (United States)

    Walter, Kimberly N; Petry, Nancy M

    2016-05-01

    This cross-sectional study evaluated lifetime prevalence of suicide attempts in 170 HIV/AIDS patients with substance use disorders and the impact of suicide attempt history on subjective indices of quality of life and objective indices of cognitive and physical functioning. All patients met the diagnostic criteria for past-year cocaine or opioid use disorders and 27% of patients also had co-occurring alcohol use disorders. Compared to their counterparts without a history of a suicide attempt, patients with a history of a suicide attempt (n = 60, 35.3%) had significantly poorer emotional and cognitive quality of life scores (ps quality-of-life scores. Lifetime suicide attempt status was unrelated to objective indices of cognitive functioning, but there was a non-significant trend (p = .07) toward lower viral loads in those with a lifetime suicide attempt relative to those without. The findings indicate that suicide attempt histories are prevalent among HIV/AIDS patients with substance use disorders and relate to poorer perceived emotional and cognitive quality of life, but not objective functioning. HIV/AIDS patients with substance use disorders should be screened for lifetime histories of suicide attempts and offered assistance to improve perceived emotional and cognitive functioning. © The Author(s) 2016.

  12. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  13. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    Science.gov (United States)

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  14. Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Myeong Jin Ko

    2015-04-01

    Full Text Available To secure a stable energy supply and bring renewable energy to buildings within a reasonable cost range, a hybrid energy system (HES that integrates both fossil fuel energy systems (FFESs and new and renewable energy systems (NRESs needs to be designed and applied. This paper presents a methodology to optimize a HES consisting of three types of NRESs and six types of FFESs while simultaneously minimizing life cycle cost (LCC, maximizing penetration of renewable energy and minimizing annual greenhouse gas (GHG emissions. An elitist non-dominated sorting genetic algorithm is utilized for multi-objective optimization. As an example, we have designed the optimal configuration and sizing for a HES in an elementary school. The evolution of Pareto-optimal solutions according to the variation in the economic, technical and environmental objective functions through generations is discussed. The pair wise trade-offs among the three objectives are also examined.

  15. Towards an Artificial Space Object Taxonomy

    Science.gov (United States)

    2013-09-01

    earth Highly Eccentric Orbit (HEO) • Periapsis and apoapsis exist in two different orbit regimes • Because these objects are crossing through various...orbit regimes, they can be confused at any given instant with objects that never leave that particular regime • The orbit eccentricity is a primary...size, placement, and orientation of solar panels • Type of attitude control (CMGs, torque rods, reaction wheels , etc) • Type of orbit control

  16. Longleaf Pine Root System Development and Seedling Quality in Response to Copper Root Pruning and Cavity Size

    Science.gov (United States)

    Mary Anne Sword Sayer; Shi-Jean Susana Sung; James D. Haywood

    2011-01-01

    Cultural practices that modify root system structure in the plug of container-grown seedlings have the potential to improve root system function after planting. Our objective was to assess how copper root pruning affects the quality and root system development of longleaf pine seedlings grown in three cavity sizes in a greenhouse. Copper root pruning increased seedling...

  17. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.

  18. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kang, Bongsuk; Yang, Huichang; Suh, Namduk

    2014-01-01

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement

  19. BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention.

    Science.gov (United States)

    Eger, E; Henson, R N A; Driver, J; Dolan, R J

    2004-08-01

    Functional imaging studies of priming-related repetition phenomena have become widely used to study neural object representation. Although blood oxygenation level-dependent (BOLD) repetition decreases can sometimes be observed without awareness of repetition, any role for spatial attention in BOLD repetition effects remains largely unknown. We used fMRI in 13 healthy subjects to test whether BOLD repetition decreases for repeated objects in ventral visual cortices depend on allocation of spatial attention to the prime. Subjects performed a size-judgment task on a probe object that had been attended or ignored in a preceding prime display of 2 lateralized objects. Reaction times showed faster responses when the probe was the same object as the attended prime, independent of the view tested (identical vs. mirror image). No behavioral effect was evident from unattended primes. BOLD repetition decreases for attended primes were found in lateral occipital and fusiform regions bilaterally, which generalized across identical and mirror-image repeats. No repetition decreases were observed for ignored primes. Our results suggest a critical role for attention in achieving visual representations of objects that lead to both BOLD signal decreases and behavioral priming on repeated presentation.

  20. Physical functioning in patients with ankylosing spondylitis: comparing approaches of experienced ability with self-reported and objectively measured physical activity.

    Science.gov (United States)

    van Genderen, Simon; van den Borne, Carlie; Geusens, Piet; van der Linden, Sjef; Boonen, Annelies; Plasqui, Guy

    2014-04-01

    Physical functioning can be assessed by different approaches that are characterized by increasing levels of individual appraisal. There is insufficient insight into which approach is the most informative in patients with ankylosing spondylitis (AS) compared with control subjects. The objective of this study was to compare patients with AS and control subjects regarding 3 approaches of functioning: experienced ability to perform activities (Bath Ankylosing Spondylitis Functional Index [BASFI]), self-reported amount of physical activity (PA) (Baecke questionnaire), and the objectively measured amount of PA (triaxial accelerometer). This case-control study included 24 AS patients and 24 control subjects (matched for age, gender, and body mass index). Subjects completed the BASFI and Baecke questionnaire and wore a triaxial accelerometer. Subjects also completed other self-reported measures on disease activity (Bath AS Disease Activity Index), fatigue (Multidimensional Fatigue Inventory), and overall health (EuroQol visual analog scale). Both groups included 14 men (58%), and the mean age was 48 years. Patients scored significantly worse on the BASFI (3.9 vs 0.2) than their healthy peers, whereas PA assessed by Baecke and the accelerometer did not differ between groups. Correlations between approaches of physical functioning were low to moderate. Bath Ankylosing Spondylitis Functional Index was associated with disease activity (r = 0.49) and physical fatigue (0.73) and Baecke with physical and activity related fatigue (r = 0.54 and r = 0.54), but total PA assessed by accelerometer was not associated with any of these experience-based health outcomes. Different approaches of the concept physical functioning in patients with AS provide different information. Compared with matched control subjects, patients with AS report more difficulties but report and objectively perform the same amount of PA.

  1. Methods for obtaining true particle size distributions from cross section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lord, Kristina Alyse [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  2. Rough Music and Skimmington in Navarre during the Old Regime: Functions and Objectives

    Directory of Open Access Journals (Sweden)

    Javier Ruiz Astiz

    2013-12-01

    Full Text Available During the Old Regime rough musics ones acted in the majority of the occasions like control mechanisms and repression of the collective behaviors. In them their causes were worth of a series of instruments to heighten their activities, being tried this way to legitimize their actions. The present article has as an aim to study these events rendering a special attention to its functions and objectives. Nevertheless, the main task will consist of deepening in the cases seen in the kingdom of Navarre, organizing them in two groups: 1. weedings; 2. immoral behaviors; 3. government actions. All this with the intention to understand of a satisfactory way these practices of communitarian justice.

  3. The Size Distribution of Very Small Near Earth Objects As Measured by Warm Spitzer

    NARCIS (Netherlands)

    Trilling, David E.; Hora, J.; Burt, B.; Delbo, M.; Emery, J.; Fazio, G.; Fuentes, C.; Harris, A.; Mueller, M.; Mommert, M.; Smith, H.

    2013-01-01

    We have carried out a pilot search for Near Earth Objects (NEOs) with 84 hours of Warm Spitzer time in April, 2013. Results are obtained through a multi-step process: implanting synthetic objects in the Spitzer data stream; processing the Spitzer data; linking non-sidereal sources to form plausible

  4. Operational parameters analysis of the radiographic technique through the modulation transfer function

    International Nuclear Information System (INIS)

    Motta, Mauricio Saldanha; Guimaraes, Ari Sauer

    1995-01-01

    The influence of the focal size and image magnification variations on the radiographic final image is studied. The analysis used the modulation transfer function for evaluating the ratio of the radiographic image amplitude and that of the inspected object. it was concluded that the increase of the focal size and of the magnifications are not good for the image quality. 3 refs., 4 figs., 1 tab

  5. Methodology based in the fuzzy logic for constructing the objective functions in optimization problems of nuclear fuel: application to the cells radial design

    International Nuclear Information System (INIS)

    Barragan M, A.M.; Martin del Campo M, C.; Palomera P, M.A.

    2005-01-01

    A methodology based on Fuzzy Logic for the construction of the objective function of the optimization problems of nuclear fuel is described. It was created an inference system that responds, in certain form, as a human expert when it has the task of qualifying different radial designs of fuel cells. Specifically it is detailed how an inference system based based on Fuzzy Logic that has five enter variables and one exit variable was built, which corresponds to the objective function for the radial design of a fuel cell for a BWR. The use of Fuzzy with Mat lab offered the visualization capacity of the exit variable in function of one or two enter variables at the same time. This allowed to build, in appropriate way, the combination of the inference rules and the membership functions of those diffuse sets used for each one of the enter variables. The obtained objective function was used in an optimization process based on Taboo search. The new methodology was proven for the design of a cell used in a fuel assemble of the Laguna Verde reactor obtaining excellent results. (Author)

  6. The Sizing and Optimization Language (SOL): A computer language to improve the user/optimizer interface

    Science.gov (United States)

    Lucas, S. H.; Scotti, S. J.

    1989-01-01

    The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented.

  7. Linking Tropical Forest Function to Hydraulic Traits in a Size-Structured and Trait-Based Model

    Science.gov (United States)

    Christoffersen, B. O.; Gloor, M.; Fauset, S.; Fyllas, N.; Galbraith, D.; Baker, T. R.; Rowland, L.; Fisher, R.; Binks, O.; Sevanto, S.; Xu, C.; Jansen, S.; Choat, B.; Mencuccini, M.; McDowell, N. G.; Meir, P.

    2015-12-01

    A major weakness of forest ecosystem models is their inability to capture the diversity of responses to changes in water availability, severely hampering efforts to predict the fate of tropical forests under climate change. Such models often prescribe moisture sensitivity using heuristic response functions that are uniform across all individuals and lack important knowledge about trade-offs in hydraulic traits. We address this weakness by implementing a process representation of plant hydraulics into an individual- and trait-based model (Trait Forest Simulator; TFS) intended for application at discrete sites where community-level distributions of stem and leaf trait spectra (wood density, leaf mass per area, leaf nitrogen and phosphorus content) are known. The model represents a trade-off in the safety and efficiency of water conduction in xylem tissue through hydraulic traits, while accounting for the counteracting effects of increasing hydraulic path length and xylem conduit taper on whole-plant hydraulic resistance with increasing tree size. Using existing trait databases and additional meta-analyses from the rich literature on tropical tree ecophysiology, we obtained all necessary hydraulic parameters associated with xylem conductivity, vulnerability curves, pressure-volume curves, and hydraulic architecture (e.g., leaf-to-sapwood area ratios) as a function of the aforementioned traits and tree size. Incorporating these relationships in the model greatly improved the diversity of tree response to seasonal changes in water availability as well as in response to drought, as determined by comparison with field observations and experiments. Importantly, this individual- and trait-based framework provides a testbed for identifying both critical processes and functional traits needed for inclusion in coarse-scale Dynamic Global Vegetation Models, which will lead to reduced uncertainty in the future state of tropical forests.

  8. Activity and function recognition for moving and static objects in urban environments from wide-area persistent surveillance inputs

    Science.gov (United States)

    Levchuk, Georgiy; Bobick, Aaron; Jones, Eric

    2010-04-01

    In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.

  9. Embedding objects during 3D printing to add new functionalities.

    Science.gov (United States)

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  10. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties.

    Science.gov (United States)

    Jiang, Feng; Chen, Daiqin; Li, Ruimin; Wang, Yucheng; Zhang, Guoqiang; Li, Shumu; Zheng, Junpeng; Huang, Naiyan; Gu, Ying; Wang, Chunru; Shu, Chunying

    2013-02-07

    Size-controllable amine-functionalized graphene quantum dots (GQDs) are prepared by an eco-friendly method with graphene oxide sheets, ammonia and hydrogen peroxide as starting materials. Using a Sephadex G-25 gel column for fine separation, for the first time we obtain GQDs with either single or double layers. By atomic force microscopy characterization, we confirm that hydrogen peroxide and ammonia play a synergistic role on graphene oxide (GO), in which the former cuts the GO into small pieces and the latter passivates the active surface to give amine-modified GQDs. Due to the low cytotoxicity and excellent biocompatibility of the obtained amine-functionalized GQDs, besides the multiwavelength imaging properties of GQDs, for the first time we find that this kind of GQD exhibits good antimycoplasma properties. Given the superior antimycoplasma effect of the GQDs and their eco-friendly mass production with low cost, these new GQDs may offer opportunities for the development of new antimycoplasma agents, thus extending their widespread application in biomedicine.

  11. Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations

    International Nuclear Information System (INIS)

    Naserian, Mohammad Mahdi; Farahat, Said; Sarhaddi, Faramarz

    2015-01-01

    Highlights: • Defining a dimensionless parameter includes the finite-time and size concepts. • Inserting the concept of exergy of fluid streams into finite-time thermodynamics. • Defining, drawing and modifying of maximum ecological function curve. • Suggesting the appropriate performance zone, according to maximum ecological curve. - Abstract: In this study, the optimal performance of a regenerative Brayton cycle is sought through power and then ecological function maximization using finite-time thermodynamic concept and finite-size components. Multi-objective optimization is used for maximizing the ecological function. Optimizations are performed using genetic algorithm. In order to take into account the finite-time and finite-size concepts in current problem, a dimensionless mass-flow parameter is introduced deploying time variations. The variations of output power, total exergy destruction of the system, and decision variables for the optimum state (maximum ecological function state) are compared to the maximum power state using the dimensionless parameter. The modified ecological function in optimum state is obtained and plotted relating to the dimensionless mass-flow parameter. One can see that the modified ecological function study results in a better performance than that obtained with the maximum power state. Finally, the appropriate performance zone of the heat engine will be obtained

  12. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    NARCIS (Netherlands)

    Christoffersen, Bradley O.; Gloor, Manuel; Fauset, Sophie; Fyllas, Nikolaos M.; Galbraith, David R.; Baker, Timothy R.; Kruijt, Bart; Rowland, Lucy; Fisher, Rosie A.; Binks, Oliver J.; Sevanto, Sanna; Xu, Chonggang; Jansen, Steven; Choat, Brendan; Mencuccini, Maurizio; McDowell, Nate G.; Meir, Patrick

    2016-01-01

    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media

  13. Towards a Guideline for Design of a Corporate Entrepreneurship Function for Business Development in Medium-Sized Technology-Based Companies

    NARCIS (Netherlands)

    Uittenbogaard, Boaz; Broens, Lute; Groen, Arend J.

    2005-01-01

    The speed with which global high-technology markets evolve makes companies recognize that an effective innovation process is the best way to guarantee competitiveness. However, when (medium-sized) companies then wish to set up a corporate entrepreneurship function to enhance business development

  14. A Balanced Comparison of Object Invariances in Monkey IT Neurons.

    Science.gov (United States)

    Ratan Murty, N Apurva; Arun, Sripati P

    2017-01-01

    Our ability to recognize objects across variations in size, position, or rotation is based on invariant object representations in higher visual cortex. However, we know little about how these invariances are related. Are some invariances harder than others? Do some invariances arise faster than others? These comparisons can be made only upon equating image changes across transformations. Here, we targeted invariant neural representations in the monkey inferotemporal (IT) cortex using object images with balanced changes in size, position, and rotation. Across the recorded population, IT neurons generalized across size and position both stronger and faster than to rotations in the image plane as well as in depth. We obtained a similar ordering of invariances in deep neural networks but not in low-level visual representations. Thus, invariant neural representations dynamically evolve in a temporal order reflective of their underlying computational complexity.

  15. Ensemble coding remains accurate under object and spatial visual working memory load.

    Science.gov (United States)

    Epstein, Michael L; Emmanouil, Tatiana A

    2017-10-01

    A number of studies have provided evidence that the visual system statistically summarizes large amounts of information that would exceed the limitations of attention and working memory (ensemble coding). However the necessity of working memory resources for ensemble coding has not yet been tested directly. In the current study, we used a dual task design to test the effect of object and spatial visual working memory load on size averaging accuracy. In Experiment 1, we tested participants' accuracy in comparing the mean size of two sets under various levels of object visual working memory load. Although the accuracy of average size judgments depended on the difference in mean size between the two sets, we found no effect of working memory load. In Experiment 2, we tested the same average size judgment while participants were under spatial visual working memory load, again finding no effect of load on averaging accuracy. Overall our results reveal that ensemble coding can proceed unimpeded and highly accurately under both object and spatial visual working memory load, providing further evidence that ensemble coding reflects a basic perceptual process distinct from that of individual object processing.

  16. The apparent size of three-dimensional objects and their silhouettes: a solid-superiority effect.

    Science.gov (United States)

    Walker, J T; Walker, M J

    1988-01-01

    A solid object looks larger than its outline or silhouette under many viewing conditions. This solid-superiority effect may result from the assimilation or confusion of visual contours within the projection of a three-dimensional object on the picture plane. An aspect of the Müller-Lyer illusion may also play a role.

  17. Effects of climate on size structure and functioning of aquatic food webs

    NARCIS (Netherlands)

    Lacerot, G.

    2010-01-01

    In aquatic food webs, the role of body size is notoriously strong. It is also well known that temperature has an effect on body size. For instance, Bergmann’s rule states that body size increases from warm to cold climates. This thesis addresses the question how climate shapes the size structure of

  18. The foundations of object permanence: does perceived cohesion determine infants' appreciation of the continuous existence of material objects?

    Science.gov (United States)

    Cacchione, Trix

    2013-09-01

    One of the most fundamental achievements in infants' cognitive development is their appreciation that material objects exist permanently in space and time. Recent findings suggest that infants fail to identify fragmented material objects as continuously existing items. Four experiments assessed 8-12-month-old infants' ability to further represent an object that was fragmented into two or more parts. Results suggest that infants successfully trace the spatiotemporal displacement of fragmented objects, but that their processing of size/quantity-related property information may be affected. This suggests that, contrary to recent claims, 8- to 12-month-old infants can and do appreciate the continuity of fragmented objects. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies.

    Science.gov (United States)

    Zimmermann, Kathrin; Eschen, Anne

    2017-04-01

    Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.

  20. Component sizing optimization of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

  1. Pure Amorphagnosia without Tactile Object Agnosia

    Directory of Open Access Journals (Sweden)

    Shinichirou Kubota

    2017-04-01

    Full Text Available A 54-year-old female showed amorphagnosia without ahylognosia and tactile agnosia 40 days after the onset of right cerebral infarction. Her basic somatosensory functions were normal. The appreciation of substance qualities (hylognosia was preserved, but the patient’s inability to recognize the size and shape (morphagnosia was confined to 2- and 3-dimensional shapes (amorphagnosia in the left hand. However, the patient’s ability to recognize real daily objects was well preserved. Brain MRI after admission showed ischemic lesions confined to the right pre- and postcentral gyri and the medial frontal cortex on DWI and FLAIR images. An analysis of SPECT images revealed that the most decreased areas were localized to the pre- and postcentral gyri, superior and inferior parietal lobules, supramarginal gyrus, and angular gyrus. Considering the previous reported cases, the responsible lesion for the impaired perception of hylognosia and morphagnosia may not necessarily be confined to the right hemisphere. To date, 5 reports (6 cases of tactile agnosia have been published; 4 cases presented with both ahylognosia and amorphagnosia, while 1 presented with only amorphagnosia, and another showed amorphagnosia and mild ahylognosia. Our case is the first to present with only amorphagnosia without tactile agnosia. The mechanism for the well-preserved recognition of real objects may depend on the preserved hylognosia. Of note, there have been no reports showing only ahylognosia without amorphagnosia. Further studies are necessary to clarify whether or not patients with preserved hylognosia or morphagnosia retain the ability to perceive real objects.

  2. MULTIPLE OBJECTS

    Directory of Open Access Journals (Sweden)

    A. A. Bosov

    2015-04-01

    Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets

  3. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    The artificial sense of touch is a research area that can be considered still in demand, compared with the human dexterity of grasping a wide variety of shapes and sizes, perform complex tasks, and switch between grasps in response to changing task requirements. For handling unknown objects...... in unstructured environments, tactile sensing can provide more than valuable to complementary vision information about mechanical properties such as recognition and characterization, force, pressure, torque, compliance, friction, and mass as well as object shape, texture, position and pose. In this paper, we...

  4. Development of a Wrapper Object for MARS TH Systems Code and Its Applications in Object Oriented Programs

    International Nuclear Information System (INIS)

    Park, Sun Byung; Lee, Young Jin; Kim, Hyong Chol; Han, Sam Hee; Kim, Hyun Jik

    2013-01-01

    TMARS is written for the object pascal program language, and 'wraps' the Dynamic Link Library (DLL) manifestation of the MARS-KS code written in Fortran 90. TMARS behaves as a true object and it can be instantiated, inherited, and its methods overloaded. The functionality of TMARS was verified and demonstrated using two programs built under object oriented program environment. One is a text based program for reviewing the data interface of TMARS, and the other is a graphic intensive prototype NPA program for testing the overall performance of TMARS. The prototype NPA was also used to assess the real-time capability of TMARS. The demonstration programs show that application of TMARS is straight forward and that its functions facilitate easy application developments. TMARS, a wrapper object class encapsulating the calculation functions of MARS-KS code, was successfully developed and verification of its functionality was carried out using custom made programs. The verification results show that TMARS is capable of providing reliable TH calculation results and sufficient performance to realize real time calculations

  5. Dual-band infrared capabilities for imaging buried object sites

    Energy Technology Data Exchange (ETDEWEB)

    Del Grande, N.K.; Durbin, P.F.; Gorvad, M.R.; Perkins, D.E.; Clark, G.A.; Hernandez, J.E.; Sherwood, R.J.

    1993-04-02

    We discuss dual-band infrared (DBIR) capabilities for imaging buried object sizes. We identify physical features affecting thermal contrast needed to distinguish buried object sites from undisturbed sites or surface clutter. Apart from atmospheric transmission and system performance, these features include: object size, shape, and burial depth; ambient soil, disturbed soil and object site thermal diffusivity differences; surface temperature, emissivity, plant-cover, slope, albedo and roughness variations; weather conditions and measurement times. We use good instrumentation to measure the time-varying temperature differences between buried object sites and undisturbed soil sites. We compare near surface soil temperature differences with radiometric infrared (IR) surface temperature differences recorded at 4.7 {plus_minus} 0.4 {mu}m and at 10.6 {plus_minus} 1.0 {mu}m. By producing selective DBIR image ratio maps, we distinguish temperature-difference patterns from surface emissivity effects. We discuss temperature differences between buried object sites, filled hole site (without buried objects), cleared (undisturbed) soil sites, and grass-covered sites (with and without different types of surface clutter). We compare temperature, emissivity-ratio, visible and near-IR reflectance signatures of surface objects, leafy plants and sod. We discuss the physical aspects of environmental, surface and buried target features affecting interpretation of buried targets, surface objects and natural backgrounds.

  6. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Directory of Open Access Journals (Sweden)

    M. C. Demirel

    2018-02-01

    Full Text Available Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the

  7. Objectives and functions of ionizing radiation metrology

    International Nuclear Information System (INIS)

    Rothe, H.

    1981-01-01

    Proceeding from the fundamental objectives of ionizing radiation metrology, the main tasks of metrological research and assurances of accurate measurements in dosimetry and activity determination are summarized. With a view to the technical performance of these tasks the state-of-the-art and the trends in reproduction and dissemination of dosimetric and activity units are outlined. Problems are derived that should be solved within the framework of the CMEA Standing Commissions on Standardization and on the Peaceful Uses of Atomic Energy. (author)

  8. Digital fabrication of multi-material biomedical objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, H H; Choi, S H, E-mail: shchoi@hku.h [Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-12-15

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  9. Digital fabrication of multi-material biomedical objects

    International Nuclear Information System (INIS)

    Cheung, H H; Choi, S H

    2009-01-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  10. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization.

    Science.gov (United States)

    Zhu, Hao; Hou, Chen; Li, Yijing; Zhao, Guanghui; Liu, Xiao; Hou, Ke; Li, Yanfeng

    2013-07-01

    A facile one-pot synthesis of highly water-dispersible size-tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end-functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4-dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment-friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology-related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Radiation technique in conservation of antique objects - achievement in Poland

    International Nuclear Information System (INIS)

    Perkowski, J.

    2002-01-01

    In this work the progress of the radiation technique in conservation of antique objects in Poland was presented. From two, quite different problems: radiation's disinfection or consolidation, only the first one was applied in our country. The technique of radiation disinfection and desinsection was applied only in the nine cases, in spite of numerous propaganda's information's and advertisement's actions. It were both wooden antiques (altars, sculptures, furniture), sandstone sculpture and prison footwear. In the first case it was connected with destruction of the wood's pest, in the second with bacteria which were destroying of the object inside and in the third with the elimination of the moulds, fungus and bacteria. Differ dose of gamma radiation was applied, depending on the kind and size of initial infection. The time of the operation depended on the quality of the dose rate which was connected first of all with the size and shape of the object. Decisive significance for obtained values of irregular distribution absorbed radiation dose had the type of the material in which the object was done and it's size. (author)

  12. Semantic memory in object use.

    Science.gov (United States)

    Silveri, Maria Caterina; Ciccarelli, Nicoletta

    2009-10-01

    We studied five patients with semantic memory disorders, four with semantic dementia and one with herpes simplex virus encephalitis, to investigate the involvement of semantic conceptual knowledge in object use. Comparisons between patients who had semantic deficits of different severity, as well as the follow-up, showed that the ability to use objects was largely preserved when the deficit was mild but progressively decayed as the deficit became more severe. Naming was generally more impaired than object use. Production tasks (pantomime execution and actual object use) and comprehension tasks (pantomime recognition and action recognition) as well as functional knowledge about objects were impaired when the semantic deficit was severe. Semantic and unrelated errors were produced during object use, but actions were always fluent and patients performed normally on a novel tools task in which the semantic demand was minimal. Patients with severe semantic deficits scored borderline on ideational apraxia tasks. Our data indicate that functional semantic knowledge is crucial for using objects in a conventional way and suggest that non-semantic factors, mainly non-declarative components of memory, might compensate to some extent for semantic disorders and guarantee some residual ability to use very common objects independently of semantic knowledge.

  13. Human health no-effect levels of TiO_2 nanoparticles as a function of their primary size

    International Nuclear Information System (INIS)

    Laurent, Alexis; Harkema, Jack R.; Andersen, Elisabeth W.; Owsianiak, Mikołaj; Vea, Eldbjørg B.; Jolliet, Olivier

    2017-01-01

    As engineered nanomaterials are increasingly introduced on the market into a broad range of commodities or nanoproducts, there is a need for operational, reliable tool, enabling to consistently assess the risks and impacts associated with the releases of nanoparticles. The lack of a developed metric that accurately represents their toxic effects while capturing the influence of the most relevant physicochemical properties is one of the major impediments. Here, we investigate the relationships between the toxic responses of nano-sized and micro-sized particles in in vivo toxicological studies and their physicochemical properties. Our results for TiO_2 particles indicate statistically significant associations between the primary particle size and their toxicity responses for combined inhalation and ingestion exposure routes, although the numerical values should be considered with care due to the inability to encompass influences from other relevant physicochemical properties like surface coatings. These findings allow for expressing mass-based adverse effect levels as a continuous function of the primary size of particles. This meaningful, exploratory metric can thus be used for screening purposes and pave the way for reaching adaptive, robust risk assessments of nanomaterials, e.g. for setting up consistent threshold levels, as well as consistent life cycle assessments of nanoproducts. We provide examples of such applications.

  14. Genital size: a common adolescent male concern.

    Science.gov (United States)

    Lee, Peter A; Reiter, Edward O

    2002-02-01

    Long before adolescence, males hear insinuations about adequacy of penis size. This concern may heighten during teen years and persist to varying degrees into adulthood. Men tend to underestimate their own penis size. This chapter provides objective information about anatomy and growth of the penis, including data about normal sizes. Published data indicate that, although full growth may be reached at different ages during adolescence, size is similar for most adult males. Hopefully, this information will provide the basis for teenaged males to develop a healthy perspective and to avoid intimidation by unfounded claims about sexual enhancement or size enlargement techniques.

  15. THE INDIRECT OBJECT (IO) – ALBANIAN AND ENGLISH

    OpenAIRE

    Shkelqim Millaku; Xhevahire Topanica

    2016-01-01

    The aim of this study is too corporate the function of the indirect object between Albanian and English language. The function and the Albanian typical case for indirect object are dative and ablative. This grammatical phenomena is the full contrast between two languages because in English language doesn’t exist dative and ablative us in Albanian. In Albanian and English language, the indirect object is more heterogenic than the direct object. The indirect (direct) object in both of languages...

  16. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  17. Analysis of point source size on measurement accuracy of lateral point-spread function of confocal Raman microscopy

    Science.gov (United States)

    Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang

    2018-01-01

    Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.

  18. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  19. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing

    Science.gov (United States)

    Pozegic, T. R.; Anguita, J. V.; Hamerton, I.; Jayawardena, K. D. G. I.; Chen, J.-S.; Stolojan, V.; Ballocchi, P.; Walsh, R.; Silva, S. R. P.

    2016-11-01

    Carbon fibre reinforced polymers (CFRP) were introduced to the aerospace, automobile and civil engineering industries for their high strength and low weight. A key feature of CFRP is the polymer sizing - a coating applied to the surface of the carbon fibres to assist handling, improve the interfacial adhesion between fibre and polymer matrix and allow this matrix to wet-out the carbon fibres. In this paper, we introduce an alternative material to the polymer sizing, namely carbon nanotubes (CNTs) on the carbon fibres, which in addition imparts electrical and thermal functionality. High quality CNTs are grown at a high density as a result of a 35 nm aluminium interlayer which has previously been shown to minimise diffusion of the catalyst in the carbon fibre substrate. A CNT modified-CFRP show 300%, 450% and 230% improvements in the electrical conductivity on the ‘surface’, ‘through-thickness’ and ‘volume’ directions, respectively. Furthermore, through-thickness thermal conductivity calculations reveal a 107% increase. These improvements suggest the potential of a direct replacement for lightning strike solutions and to enhance the efficiency of current de-icing solutions employed in the aerospace industry.

  20. Does apparent size capture attention in visual search? Evidence from the Muller-Lyer illusion.

    Science.gov (United States)

    Proulx, Michael J; Green, Monique

    2011-11-23

    Is perceived size a crucial factor for the bottom-up guidance of attention? Here, a visual search experiment was used to examine whether an irrelevantly longer object can capture attention when participants were to detect a vertical target item. The longer object was created by an apparent size manipulation, the Müller-Lyer illusion; however, all objects contained the same number of pixels. The vertical target was detected more efficiently when it was also perceived as the longer item that was defined by apparent size. Further analysis revealed that the longer Müller-Lyer object received a greater degree of attentional priority than published results for other features such as retinal size, luminance contrast, and the abrupt onset of a new object. The present experiment has demonstrated for the first time that apparent size can capture attention and, thus, provide bottom-up guidance on the basis of perceived salience.

  1. X-ray tube focal spot sizes: comprehensive studies of their measurement and effect of measured size in angiography

    International Nuclear Information System (INIS)

    Doi, K.; Loo, L.N.; Chan, H.P.

    1982-01-01

    Thirty-two focal spot sizes of four x-ray tubes were measured by the pinhole, star pattern, slit, and root-mean-square (RMS) methods under various exposure conditions. The modulation transfer functions (MTFs) and line spread functions (LSFs) were also determined. The star pattern focal spot sizes agreed with the effective sizes calculated from the frequencies at the first minimum of the MTF within 0.04 mm for large focal spots and within 0.01 mm for small focal spots. The focal spot size determined by the slit method was approximately equal to the width of the LSF at the cutoff level of 0.15 +/- 0.06 of the peak value. The RMS method provided the best correlation between the measured focal spot sizes and the corresponding image distributions of blood vessels. The pinhole and slit methods tended to overestimate the focal spot size, but the star pattern method tended to underestimate it. For approximately 90% of the focal spots, the average of the star and slit (or pinhole) focal spot sizes agreed with the RMS focal spot size within +/- 0.1 mm

  2. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  3. Objects, materiality and meaning

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Lindegaard, Hanne

    2008-01-01

    The present research work investigates the relation between physical objects, their materiality, understood as the physical substances they are made from, and the communication from the objects. In product design of physical objects the communicative aspects are just as important as the function...... of the object, and the designers aim is therefore to tune both in order to achieve a desired goal. To do so the designer basically has 2 options: Alteration of the physical shape of the object and the selection of materials. Through the manipulation of shape and materials can symbolic and sensory information...... be written into the object. The materials are therefore carriers of communication, even though this is dependent of the cultural context and the environment which the object will be part of. However the designer has only minor influence on those....

  4. Balancing exploration, uncertainty and computational demands in many objective reservoir optimization

    Science.gov (United States)

    Zatarain Salazar, Jazmin; Reed, Patrick M.; Quinn, Julianne D.; Giuliani, Matteo; Castelletti, Andrea

    2017-11-01

    Reservoir operations are central to our ability to manage river basin systems serving conflicting multi-sectoral demands under increasingly uncertain futures. These challenges motivate the need for new solution strategies capable of effectively and efficiently discovering the multi-sectoral tradeoffs that are inherent to alternative reservoir operation policies. Evolutionary many-objective direct policy search (EMODPS) is gaining importance in this context due to its capability of addressing multiple objectives and its flexibility in incorporating multiple sources of uncertainties. This simulation-optimization framework has high potential for addressing the complexities of water resources management, and it can benefit from current advances in parallel computing and meta-heuristics. This study contributes a diagnostic assessment of state-of-the-art parallel strategies for the auto-adaptive Borg Multi Objective Evolutionary Algorithm (MOEA) to support EMODPS. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple sectoral demands from hydropower production, urban water supply, recreation and environmental flows need to be balanced. Using EMODPS with different parallel configurations of the Borg MOEA, we optimize operating policies over different size ensembles of synthetic streamflows and evaporation rates. As we increase the ensemble size, we increase the statistical fidelity of our objective function evaluations at the cost of higher computational demands. This study demonstrates how to overcome the mathematical and computational barriers associated with capturing uncertainties in stochastic multiobjective reservoir control optimization, where parallel algorithmic search serves to reduce the wall-clock time in discovering high quality representations of key operational tradeoffs. Our results show that emerging self-adaptive parallelization schemes exploiting cooperative search populations are crucial. Such strategies provide a

  5. Learning Ontology from Object-Relational Database

    Directory of Open Access Journals (Sweden)

    Kaulins Andrejs

    2015-12-01

    Full Text Available This article describes a method of transformation of object-relational model into ontology. The offered method uses learning rules for such complex data types as object tables and collections – arrays of a variable size, as well as nested tables. Object types and their transformation into ontologies are insufficiently considered in scientific literature. This fact served as motivation for the authors to investigate this issue and to write the article on this matter. In the beginning, we acquaint the reader with complex data types and object-oriented databases. Then we describe an algorithm of transformation of complex data types into ontologies. At the end of the article, some examples of ontologies described in the OWL language are given.

  6. Low-complexity object detection with deep convolutional neural network for embedded systems

    Science.gov (United States)

    Tripathi, Subarna; Kang, Byeongkeun; Dane, Gokce; Nguyen, Truong

    2017-09-01

    We investigate low-complexity convolutional neural networks (CNNs) for object detection for embedded vision applications. It is well-known that consolidation of an embedded system for CNN-based object detection is more challenging due to computation and memory requirement comparing with problems like image classification. To achieve these requirements, we design and develop an end-to-end TensorFlow (TF)-based fully-convolutional deep neural network for generic object detection task inspired by one of the fastest framework, YOLO.1 The proposed network predicts the localization of every object by regressing the coordinates of the corresponding bounding box as in YOLO. Hence, the network is able to detect any objects without any limitations in the size of the objects. However, unlike YOLO, all the layers in the proposed network is fully-convolutional. Thus, it is able to take input images of any size. We pick face detection as an use case. We evaluate the proposed model for face detection on FDDB dataset and Widerface dataset. As another use case of generic object detection, we evaluate its performance on PASCAL VOC dataset. The experimental results demonstrate that the proposed network can predict object instances of different sizes and poses in a single frame. Moreover, the results show that the proposed method achieves comparative accuracy comparing with the state-of-the-art CNN-based object detection methods while reducing the model size by 3× and memory-BW by 3 - 4× comparing with one of the best real-time CNN-based object detectors, YOLO. Our 8-bit fixed-point TF-model provides additional 4× memory reduction while keeping the accuracy nearly as good as the floating-point model. Moreover, the fixed- point model is capable of achieving 20× faster inference speed comparing with the floating-point model. Thus, the proposed method is promising for embedded implementations.

  7. Crossmodal object recognition in rats with and without multimodal object pre-exposure: no effect of hippocampal lesions.

    Science.gov (United States)

    Reid, James M; Jacklin, Derek L; Winters, Boyer D

    2012-10-01

    The neural mechanisms and brain circuitry involved in the formation, storage, and utilization of multisensory object representations are poorly understood. We have recently introduced a crossmodal object recognition (CMOR) task that enables the study of such questions in rats. Our previous research has indicated that the perirhinal and posterior parietal cortices functionally interact to mediate spontaneous (tactile-to-visual) CMOR performance in rats; however, it remains to be seen whether other brain regions, particularly those receiving polymodal sensory inputs, contribute to this cognitive function. In the current study, we assessed the potential contribution of one such polymodal region, the hippocampus (HPC), to crossmodal object recognition memory. Rats with bilateral excitotoxic HPC lesions were tested in two versions of crossmodal object recognition: (1) the original CMOR task, which requires rats to compare between a stored tactile object representation and visually-presented objects to discriminate the novel and familiar stimuli; and (2) a novel 'multimodal pre-exposure' version of the CMOR task (PE/CMOR), in which simultaneous exploration of the tactile and visual sensory features of an object 24 h prior to the sample phase enhances CMOR performance across longer retention delays. Hippocampus-lesioned rats performed normally on both crossmodal object recognition tasks, but were impaired on a radial arm maze test of spatial memory, demonstrating the functional effectiveness of the lesions. These results strongly suggest that the HPC, despite its polymodal anatomical connections, is not critically involved in tactile-to-visual crossmodal object recognition memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Object recognition and concept learning with Confucius

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B; Sammut, C

    1982-01-01

    A learning program produces, as its output, a Boolean function which describes a concept. The function returns true if and only if the argument is an object which satisfies the logical expression in the body of the function. The learning program's input is a set of objects which are instances of the concept to be learnt. The paper describes an algorithm devised to learn concept descriptions in this form. 15 references.

  9. Set Size and Mask Duration Do Not Interact in Object-Substitution Masking

    Science.gov (United States)

    Argyropoulos, Ioannis; Gellatly, Angus; Pilling, Michael; Carter, Wakefield

    2013-01-01

    Object-substitution masking (OSM) occurs when a mask, such as four dots that surround a brief target item, onsets simultaneously with the target and offsets a short time after the target, rather than simultaneously with it. OSM is a reduction in accuracy of reporting the target with the temporally trailing mask, compared with the simultaneously…

  10. Size-based emphysema cluster analysis on low attenuation area in 3D volumetric CT: comparison with pulmonary functional test

    Science.gov (United States)

    Lee, Minho; Kim, Namkug; Lee, Sang Min; Seo, Joon Beom; Oh, Sang Young

    2015-03-01

    To quantify low attenuation area (LAA) of emphysematous regions according to cluster size in 3D volumetric CT data of chronic obstructive pulmonary disease (COPD) patients and to compare these indices with their pulmonary functional test (PFT). Sixty patients with COPD were scanned by a more than 16-multi detector row CT scanner (Siemens Sensation 16 and 64) within 0.75mm collimation. Based on these LAA masks, a length scale analysis to estimate each emphysema LAA's size was performed as follows. At first, Gaussian low pass filter from 30mm to 1mm kernel size with 1mm interval on the mask was performed from large to small size, iteratively. Centroid voxels resistant to the each filter were selected and dilated by the size of the kernel, which was regarded as the specific size emphysema mask. The slopes of area and number of size based LAA (slope of semi-log plot) were analyzed and compared with PFT. PFT parameters including DLco, FEV1, and FEV1/FVC were significantly (all p-value< 0.002) correlated with the slopes (r-values; -0.73, 0.54, 0.69, respectively) and EI (r-values; -0.84, -0.60, -0.68, respectively). In addition, the D independently contributed regression for FEV1 and FEV1/FVC (adjust R sq. of regression study: EI only, 0.70, 0.45; EI and D, 0.71, 0.51, respectively). By the size based LAA segmentation and analysis, we evaluated the Ds of area, number, and distribution of size based LAA, which would be independent factors for predictor of PFT parameters.

  11. Practical solutions for multi-objective optimization: An application to system reliability design problems

    International Nuclear Information System (INIS)

    Taboada, Heidi A.; Baheranwala, Fatema; Coit, David W.; Wattanapongsakorn, Naruemon

    2007-01-01

    For multiple-objective optimization problems, a common solution methodology is to determine a Pareto optimal set. Unfortunately, these sets are often large and can become difficult to comprehend and consider. Two methods are presented as practical approaches to reduce the size of the Pareto optimal set for multiple-objective system reliability design problems. The first method is a pseudo-ranking scheme that helps the decision maker select solutions that reflect his/her objective function priorities. In the second approach, we used data mining clustering techniques to group the data by using the k-means algorithm to find clusters of similar solutions. This provides the decision maker with just k general solutions to choose from. With this second method, from the clustered Pareto optimal set, we attempted to find solutions which are likely to be more relevant to the decision maker. These are solutions where a small improvement in one objective would lead to a large deterioration in at least one other objective. To demonstrate how these methods work, the well-known redundancy allocation problem was solved as a multiple objective problem by using the NSGA genetic algorithm to initially find the Pareto optimal solutions, and then, the two proposed methods are applied to prune the Pareto set

  12. Size makes a difference

    DEFF Research Database (Denmark)

    Matthiessen, Jeppe; Fagt, Sisse; Biltoft-Jensen, Anja Pia

    2003-01-01

    Objective: To elucidate status and trends in portion size of foods rich in fat and/or added sugars during the past decades, and to bring portion size into perspective in its role in obesity and dietary guidelines in Denmark. Data sources: Information about portion sizes of low-fat and full-fat food...... nation-wide dietary surveys and official sales statistics (Study 3). Results: Study 1: Subjects ate and drank significantly more when they chose low-fat food and meal items (milk used as a drink, sauce and sliced cold meat), compared with their counterparts who chose food and meal items with a higher fat...... content. As a result, almost the same amounts of energy and fat were consumed both ways, with the exception of sliced cold meat (energy and fat) and milk (fat). Study 2: Portion sizes of commercial energy-dense foods and beverages, and fast food meals rich in fat and/or added sugars, seem to have...

  13. Manifold-Based Visual Object Counting.

    Science.gov (United States)

    Wang, Yi; Zou, Yuexian; Wang, Wenwu

    2018-07-01

    Visual object counting (VOC) is an emerging area in computer vision which aims to estimate the number of objects of interest in a given image or video. Recently, object density based estimation method is shown to be promising for object counting as well as rough instance localization. However, the performance of this method tends to degrade when dealing with new objects and scenes. To address this limitation, we propose a manifold-based method for visual object counting (M-VOC), based on the manifold assumption that similar image patches share similar object densities. Firstly, the local geometry of a given image patch is represented linearly by its neighbors using a predefined patch training set, and the object density of this given image patch is reconstructed by preserving the local geometry using locally linear embedding. To improve the characterization of local geometry, additional constraints such as sparsity and non-negativity are also considered via regularization, nonlinear mapping, and kernel trick. Compared with the state-of-the-art VOC methods, our proposed M-VOC methods achieve competitive performance on seven benchmark datasets. Experiments verify that the proposed M-VOC methods have several favorable properties, such as robustness to the variation in the size of training dataset and image resolution, as often encountered in real-world VOC applications.

  14. Functional size of human visual area V1: a neural correlate of top-down attention.

    Science.gov (United States)

    Verghese, Ashika; Kolbe, Scott C; Anderson, Andrew J; Egan, Gary F; Vidyasagar, Trichur R

    2014-06-01

    Heavy demands are placed on the brain's attentional capacity when selecting a target item in a cluttered visual scene, or when reading. It is widely accepted that such attentional selection is mediated by top-down signals from higher cortical areas to early visual areas such as the primary visual cortex (V1). Further, it has also been reported that there is considerable variation in the surface area of V1. This variation may impact on either the number or specificity of attentional feedback signals and, thereby, the efficiency of attentional mechanisms. In this study, we investigated whether individual differences between humans performing attention-demanding tasks can be related to the functional area of V1. We found that those with a larger representation in V1 of the central 12° of the visual field as measured using BOLD signals from fMRI were able to perform a serial search task at a faster rate. In line with recent suggestions of the vital role of visuo-spatial attention in reading, the speed of reading showed a strong positive correlation with the speed of visual search, although it showed little correlation with the size of V1. The results support the idea that the functional size of the primary visual cortex is an important determinant of the efficiency of selective spatial attention for simple tasks, and that the attentional processing required for complex tasks like reading are to a large extent determined by other brain areas and inter-areal connections. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Assessing the performance of a differential evolution algorithm in structural damage detection by varying the objective function

    OpenAIRE

    Villalba-Morales, Jesús Daniel; Laier, José Elias

    2014-01-01

    Structural damage detection has become an important research topic in certain segments of the engineering community. These methodologies occasionally formulate an optimization problem by defining an objective function based on dynamic parameters, with metaheuristics used to find the solution. In this study, damage localization and quantification is performed by an Adaptive Differential Evolution algorithm, which solves the associated optimization problem. Furthermore, this paper looks at the ...

  16. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  17. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    International Nuclear Information System (INIS)

    Boutilier, J; Chan, T; Lee, T; Craig, T; Sharpe, M

    2014-01-01

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time

  18. SU-F-BRD-01: A Logistic Regression Model to Predict Objective Function Weights in Prostate Cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, J; Chan, T; Lee, T [University of Toronto, Toronto, Ontario (Canada); Craig, T; Sharpe, M [University of Toronto, Toronto, Ontario (Canada); The Princess Margaret Cancer Centre - UHN, Toronto, ON (Canada)

    2014-06-15

    Purpose: To develop a statistical model that predicts optimization objective function weights from patient geometry for intensity-modulation radiotherapy (IMRT) of prostate cancer. Methods: A previously developed inverse optimization method (IOM) is applied retrospectively to determine optimal weights for 51 treated patients. We use an overlap volume ratio (OVR) of bladder and rectum for different PTV expansions in order to quantify patient geometry in explanatory variables. Using the optimal weights as ground truth, we develop and train a logistic regression (LR) model to predict the rectum weight and thus the bladder weight. Post hoc, we fix the weights of the left femoral head, right femoral head, and an artificial structure that encourages conformity to the population average while normalizing the bladder and rectum weights accordingly. The population average of objective function weights is used for comparison. Results: The OVR at 0.7cm was found to be the most predictive of the rectum weights. The LR model performance is statistically significant when compared to the population average over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and mean voxel dose to the bladder, rectum, CTV, and PTV. On average, the LR model predicted bladder and rectum weights that are both 63% closer to the optimal weights compared to the population average. The treatment plans resulting from the LR weights have, on average, a rectum V70Gy that is 35% closer to the clinical plan and a bladder V70Gy that is 43% closer. Similar results are seen for bladder V54Gy and rectum V54Gy. Conclusion: Statistical modelling from patient anatomy can be used to determine objective function weights in IMRT for prostate cancer. Our method allows the treatment planners to begin the personalization process from an informed starting point, which may lead to more consistent clinical plans and reduce overall planning time.

  19. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    Science.gov (United States)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination

  20. Linking actions and objects: Context-specific learning of novel weight priors.

    Science.gov (United States)

    Trewartha, Kevin M; Flanagan, J Randall

    2017-06-01

    Distinct explicit and implicit memory processes support weight predictions used when lifting objects and making perceptual judgments about weight, respectively. The first time that an object is encountered weight is predicted on the basis of learned associations, or priors, linking size and material to weight. A fundamental question is whether the brain maintains a single, global representation of priors, or multiple representations that can be updated in a context specific way. A second key question is whether the updating of priors, or the ability to scale lifting forces when repeatedly lifting unusually weighted objects requires focused attention. To investigate these questions we compared the adaptability of weight predictions used when lifting objects and judging their weights in different groups of participants who experienced size-weight inverted objects passively (with the objects placed on the hands) or actively (where participants lift the objects) under full or divided attention. To assess weight judgments we measured the size-weight illusion after every 20 trials of experience with the inverted objects both passively and actively. The attenuation of the illusion that arises when lifting inverted object was found to be context-specific such that the attenuation was larger when the mode of interaction with the inverted objects matched the method of assessment of the illusion. Dividing attention during interaction with the inverted objects had no effect on attenuation of the illusion, but did slow the rate at which lifting forces were scaled to the weight inverted objects. These findings suggest that the brain stores multiple representations of priors that are context specific, and that focused attention is important for scaling lifting forces, but not for updating weight predictions used when judging object weight. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. See food diet? Cultural differences in estimating fullness and intake as a function of plate size.

    Science.gov (United States)

    Peng, Mei; Adam, Sarah; Hautus, Michael J; Shin, Myoungju; Duizer, Lisa M; Yan, Huiquan

    2017-10-01

    Previous research has suggested that manipulations of plate size can have a direct impact on perception of food intake, measured by estimated fullness and intake. The present study, involving 570 individuals across Canada, China, Korea, and New Zealand, is the first empirical study to investigate cultural influences on perception of food portion as a function of plate size. The respondents viewed photographs of ten culturally diverse dishes presented on large (27 cm) and small (23 cm) plates, and then rated their estimated usual intake and expected fullness after consuming the dish, using 100-point visual analog scales. The data were analysed with a mixed-model ANCOVA controlling for individual BMI, liking and familiarity of the presented food. The results showed clear cultural differences: (1) manipulations of the plate size had no effect on the expected fullness or the estimated intake of the Chinese and Korean respondents, as opposed to significant effects in Canadians and New Zealanders (p Asian respondents. Overall, these findings, from a cultural perspective, support the notion that estimation of fullness and intake are learned through dining experiences, and highlight the importance of considering eating environments and contexts when assessing individual behaviours relating to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. ''FUR'' - one size suits all

    International Nuclear Information System (INIS)

    Rutland, M.; Que, L.; Hassan, I.M.

    2000-01-01

    This work used amalgamated data from previous projects in order to test the concept that when organ function is expressed in terms of tracer kinetics, the results are independent of patient size or gender. Dynamic gamma camera studies were analysed by measuring the rate of movement of tracers from the blood into various organs. These rates were expressed as a ''fractional uptake rate'' (FUR), which is the fraction of tracer in the blood taken up by the organ per unit time. As these values were small, it was convenient to express the FUR per million seconds. The FUR was calculated using the expression FUR = SLOPE (of Rutland-Patlak plot), multiplied by B(0) (the blood curve value back-extrapolated to time zero), and divided by the TOTAL amount of tracer injected. Data were used from adult patients between the ages of 20 and 49 years who had normal organ function. Organ/tracer groups studied were the skeletal uptake of 99m Tc-MDP, the renal uptake of 99m Tc-MAG3, the renal uptake of 99m Tc-MDP, the renal uptake of 99m Tc-DTPA, the hepatic uptake of 99m Tc-colloid, the splenic uptake of 99m Tc-colloid, and the hepatic uptake of 99m Tc-DISIDA. Each organ/tracer group was divided into three subgroups according to patient size (smallest, middle and largest), and also into subgroups according to gender. Comparison of these subgroups did not show any significant size- or gender-related differences in FUR values. It is concluded that for patients with normally functioning organs the FUR is independent of patient size or gender. Thus, the FUR is a valuable way of expressing organ function, particularly in patients with unusual or rapidly changing body size, such as children. (orig.)

  3. Study on the Accuracy Improvement of the Second-Kind Fredholm Integral Equations by Using the Buffa-Christiansen Functions with MLFMA

    Directory of Open Access Journals (Sweden)

    Yue-Qian Wu

    2016-01-01

    Full Text Available Former works show that the accuracy of the second-kind integral equations can be improved dramatically by using the rotated Buffa-Christiansen (BC functions as the testing functions, and sometimes their accuracy can be even better than the first-kind integral equations. When the rotated BC functions are used as the testing functions, the discretization error of the identity operators involved in the second-kind integral equations can be suppressed significantly. However, the sizes of spherical objects which were analyzed are relatively small. Numerical capability of the method of moments (MoM for solving integral equations with the rotated BC functions is severely limited. Hence, the performance of BC functions for accuracy improvement of electrically large objects is not studied. In this paper, the multilevel fast multipole algorithm (MLFMA is employed to accelerate iterative solution of the magnetic-field integral equation (MFIE. Then a series of numerical experiments are performed to study accuracy improvement of MFIE in perfect electric conductor (PEC cases with the rotated BC as testing functions. Numerical results show that the effect of accuracy improvement by using the rotated BC as the testing functions is greatly different with curvilinear or plane triangular elements but falls off when the size of the object is large.

  4. Optimization of multi-objective integrated process planning and scheduling problem using a priority based optimization algorithm

    Science.gov (United States)

    Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu

    2015-12-01

    For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.

  5. Component sizing optimization of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-03-15

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance. (author)

  6. Optimal Harvesting in a Periodic Food Chain Model with Size Structures in Predators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng-Qin, E-mail: zhafq@263.net [Yuncheng University, Department of Applied Mathematics (China); Liu, Rong [Lvliang University, Department of Mathematics (China); Chen, Yuming, E-mail: ychen@wlu.ca [Yuncheng University, Department of Applied Mathematics (China)

    2017-04-15

    In this paper, we investigate a periodic food chain model with harvesting, where the predators have size structures and are described by first-order partial differential equations. First, we establish the existence of a unique non-negative solution by using the Banach fixed point theorem. Then, we provide optimality conditions by means of normal cone and adjoint system. Finally, we derive the existence of an optimal strategy by means of Ekeland’s variational principle. Here the objective functional represents the net economic benefit yielded from harvesting.

  7. Objectives of Financial Statements. Report of the Study Group on the Objectives of Financial Statements.

    Science.gov (United States)

    American Inst. of Certified Public Accountants, New York, NY.

    This report discusses the objectives of financial statements. Emphasis is placed on the function of objectives; users, their goals, and their information needs; the primary enterprise goal and earning power; accountability and financial statements; financial statements--reporting on the goal attainment of business enterprises; financial…

  8. 29 CFR 1960.87 - Objectives.

    Science.gov (United States)

    2010-07-01

    ... relationship with local community leaders by informing them of the existing functions and objectives of the... 29 Labor 9 2010-07-01 2010-07-01 false Objectives. 1960.87 Section 1960.87 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED...

  9. SODA: Smart Objects, Dumb Archives

    Science.gov (United States)

    Nelson, Michael L.; Maly, Kurt; Zubair, Mohammad; Shen, Stewart N. T.

    2004-01-01

    We present the Smart Object, Dumb Archive (SODA) model for digital libraries (DLs). The SODA model transfers functionality traditionally associated with archives to the archived objects themselves. We are exploiting this shift of responsibility to facilitate other DL goals, such as interoperability, object intelligence and mobility, and heterogeneity. Objects in a SODA DL negotiate presentation of content and handle their own terms and conditions. In this paper we present implementations of our smart objects, buckets, and our dumb archive (DA). We discuss the status of buckets and DA and how they are used in a variety of DL projects.

  10. Managing the BABAR Object Oriented Database

    International Nuclear Information System (INIS)

    Hasan, Adil

    2002-01-01

    The BaBar experiment stores its data in an Object Oriented federated database supplied by Objectivity/DB(tm). This database is currently 350TB in size and is expected to increase considerably as the experiment matures. Management of this database requires careful planning and specialized tools in order to make the data available to physicists in an efficient and timely manner. We discuss the operational issues and management tools that were developed during the previous run to deal with this vast quantity of data at SLAC

  11. Effects of loading sequences and size of repeated stress block of loads on fatigue life calculated using fatigue functions

    International Nuclear Information System (INIS)

    Schott, G.

    1989-01-01

    It is well-known that collective form, stress intensity and loading sequence of individual stresses as well as size of repeated stress blocks can influence fatigue life, significantly. The basic variant of the consecutive Woehler curve concept will permit these effects to be involved into fatigue life computation. The paper presented will demonstrate that fatigue life computations using fatigue functions reflect the loading sequence effect with multilevel loading precisely and provide reliable fatigue life data. Effects of size of repeated stress block and loading sequence on fatigue life as observed with block program tests can be reproduced using the new computation method. (orig.) [de

  12. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1-6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations.

    Science.gov (United States)

    Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc

    2017-04-11

    All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.

  13. Objective-guided image annotation.

    Science.gov (United States)

    Mao, Qi; Tsang, Ivor Wai-Hung; Gao, Shenghua

    2013-04-01

    Automatic image annotation, which is usually formulated as a multi-label classification problem, is one of the major tools used to enhance the semantic understanding of web images. Many multimedia applications (e.g., tag-based image retrieval) can greatly benefit from image annotation. However, the insufficient performance of image annotation methods prevents these applications from being practical. On the other hand, specific measures are usually designed to evaluate how well one annotation method performs for a specific objective or application, but most image annotation methods do not consider optimization of these measures, so that they are inevitably trapped into suboptimal performance of these objective-specific measures. To address this issue, we first summarize a variety of objective-guided performance measures under a unified representation. Our analysis reveals that macro-averaging measures are very sensitive to infrequent keywords, and hamming measure is easily affected by skewed distributions. We then propose a unified multi-label learning framework, which directly optimizes a variety of objective-specific measures of multi-label learning tasks. Specifically, we first present a multilayer hierarchical structure of learning hypotheses for multi-label problems based on which a variety of loss functions with respect to objective-guided measures are defined. And then, we formulate these loss functions as relaxed surrogate functions and optimize them by structural SVMs. According to the analysis of various measures and the high time complexity of optimizing micro-averaging measures, in this paper, we focus on example-based measures that are tailor-made for image annotation tasks but are seldom explored in the literature. Experiments show consistency with the formal analysis on two widely used multi-label datasets, and demonstrate the superior performance of our proposed method over state-of-the-art baseline methods in terms of example-based measures on four

  14. Grain size segregation in debris discs

    Science.gov (United States)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED

  15. Implantation and 30-Day Follow-Up on All 4 Valve Sizes Within the Portico Transcatheter Aortic Bioprosthetic Family

    DEFF Research Database (Denmark)

    Möllmann, Helge; Linke, Axel; Holzhey, David M

    2017-01-01

    OBJECTIVES: The aim of this study was to evaluate the short-term safety and performance of the full range of valve sizes offered within the Portico transcatheter aortic valve replacement system. BACKGROUND: The Portico transcatheter aortic heart valve is a fully resheathable, repositionable.......8% of patients improved by ≥1 New York Heart Association functional class at 30 days. The rate of moderate paravalvular leak was 5.7%, with no severe paravalvular leak reported. No differences in paravalvular leak incidence and severity were observed among valve sizes (p = 0.24). CONCLUSIONS: Across all valve...... sizes, use of the repositionable Portico transcatheter aortic valve replacement system resulted in safe and effective treatment of aortic stenosis in high-risk patients....

  16. Human health no-effect levels of TiO{sub 2} nanoparticles as a function of their primary size

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, Alexis, E-mail: alau@dtu.dk [Technical University of Denmark, Division for Quantitative Sustainability Assessment, Department of Management Engineering (Denmark); Harkema, Jack R. [Michigan State University, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine (United States); Andersen, Elisabeth W. [Technical University of Denmark, Statistics and Data Analysis Section, Department of Applied Mathematics and Computer Science (Denmark); Owsianiak, Mikołaj; Vea, Eldbjørg B. [Technical University of Denmark, Division for Quantitative Sustainability Assessment, Department of Management Engineering (Denmark); Jolliet, Olivier [University of Michigan, Department of Environmental Health Sciences, School of Public Health (United States)

    2017-04-15

    As engineered nanomaterials are increasingly introduced on the market into a broad range of commodities or nanoproducts, there is a need for operational, reliable tool, enabling to consistently assess the risks and impacts associated with the releases of nanoparticles. The lack of a developed metric that accurately represents their toxic effects while capturing the influence of the most relevant physicochemical properties is one of the major impediments. Here, we investigate the relationships between the toxic responses of nano-sized and micro-sized particles in in vivo toxicological studies and their physicochemical properties. Our results for TiO{sub 2} particles indicate statistically significant associations between the primary particle size and their toxicity responses for combined inhalation and ingestion exposure routes, although the numerical values should be considered with care due to the inability to encompass influences from other relevant physicochemical properties like surface coatings. These findings allow for expressing mass-based adverse effect levels as a continuous function of the primary size of particles. This meaningful, exploratory metric can thus be used for screening purposes and pave the way for reaching adaptive, robust risk assessments of nanomaterials, e.g. for setting up consistent threshold levels, as well as consistent life cycle assessments of nanoproducts. We provide examples of such applications.

  17. Intuitive modeling of vaporish objects

    International Nuclear Information System (INIS)

    Sokolov, Dmitry; Gentil, Christian

    2015-01-01

    Attempts to model gases in computer graphics started in the late 1970s. Since that time, there have been many approaches developed. In this paper we present a non-physical method allowing to create vaporish objects like clouds or smoky characters. The idea is to create a few sketches describing the rough shape of the final vaporish object. These sketches will be used as condensation sets of Iterated Function Systems, providing intuitive control over the object. The advantages of the new method are: simplicity, good control of resulting shapes and ease of eventual object animation.

  18. A practical multi-objective PSO algorithm for optimal operation management of distribution network with regard to fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Mojarrad, Hasan Doagou [Department of Electrical and Electronics Engineering, Shiraz University of Technology, Shiraz, P.O. 71555-313 (Iran, Islamic Republic of)

    2011-05-15

    In this paper a novel Multi-objective fuzzy self adaptive hybrid particle swarm optimization (MFSAHPSO) evolutionary algorithm to solve the Multi-objective optimal operation management (MOOM) is presented. The purposes of the MOOM problem are to decrease the total electrical energy losses, the total electrical energy cost and the total pollutant emission produced by fuel cells and substation bus. Conventional algorithms used to solve the multi-objective optimization problems convert the multiple objectives into a single objective, using a vector of the user-predefined weights. In this conversion several deficiencies can be detected. For instance, the optimal solution of the algorithms depends greatly on the values of the weights and also some of the information may be lost in the conversion process and so this strategy is not expected to provide a robust solution. This paper presents a new MFSAHPSO algorithm for the MOOM problem. The proposed algorithm maintains a finite-sized repository of non-dominated solutions which gets iteratively updated in the presence of new solutions. Since the objective functions are not the same, a fuzzy clustering technique is used to control the size of the repository, within the limits. The proposed algorithm is tested on a distribution test feeder and the results demonstrate the capabilities of the proposed approach, to generate true and well-distributed Pareto-optimal non-dominated solutions of the MOOM problem. (author)

  19. Plant Size and Competitive Dynamics along Nutrient Gradients.

    Science.gov (United States)

    Goldberg, Deborah E; Martina, Jason P; Elgersma, Kenneth J; Currie, William S

    2017-08-01

    Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients.

  20. Stimulus familiarity modulates functional connectivity of the perirhinal cortex and anterior hippocampus during visual discrimination of faces and objects

    Science.gov (United States)

    McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.

    2014-01-01

    Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075

  1. The emerging causal understanding of institutional objects.

    Science.gov (United States)

    Noyes, Alexander; Keil, Frank C; Dunham, Yarrow

    2018-01-01

    Institutional objects, such as money, drivers' licenses, and borders, have functions because of their social roles rather than their immediate physical properties. These objects are causally different than standard artifacts (e.g. hammers, chairs, and cars), sharing more commonality with other social roles. Thus, they inform psychological theories of human-made objects as well as children's emerging understanding of social reality. We examined whether children (N=180, ages 4-9) differentiate institutional objects from standard artifacts. Specifically, we examine whether children understand that mutual intentions (i.e., the intentions of a social collective) underlie the functional affordances of institutional objects in ways that they do not for standard artifacts. We find that young children assimilate institutional objects into their intuitive theories of standard artifacts; children begin to differentiate between the domains in the elementary school years. Published by Elsevier B.V.

  2. Mobile Game Development: Object-Orientation or Not

    DEFF Research Database (Denmark)

    Zhang, Weishan; Han, Dong; Kunz, Thomas

    2007-01-01

    technology is the prevalent programming paradigm, most of the current mobile games are developed with object-orientation (OO) technologies. Intuitively OO is not a perfect paradigm for embedded software. Questions remain such as how OO and to what degree OO will affect the performance, executable file size......Mobile games are one of the primary entertainment applications at present. Limited by scarce resources, such as memory, CPU, input and output, etc, mobile game development is more difficult than desktop application development, with performance as one of the top critical requirements. As object-oriented...... for the development of mobile device applications (but normal for usual desktop applications). We then apply some optimization strategies along the way of structural programming. The experiment shows that the total jar file size of these five optimized games decreases 71%, the lines of codes decreases 59...

  3. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    Science.gov (United States)

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pperformance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  4. Interaction between carbon fibers and polymer sizing: Influence of fiber surface chemistry and sizing reactivity

    Science.gov (United States)

    Moosburger-Will, Judith; Bauer, Matthias; Laukmanis, Eva; Horny, Robert; Wetjen, Denise; Manske, Tamara; Schmidt-Stein, Felix; Töpker, Jochen; Horn, Siegfried

    2018-05-01

    Different aspects of the interaction of carbon fibers and epoxy-based polymer sizings are investigated, e.g. the wetting behavior, the strength of adhesion between fiber and sizing, and the thermal stability of the sizing layer. The influence of carbon fiber surface chemistry and sizing reactivity is investigated using fibers of different degree of anodic oxidation and sizings with different number of reactive epoxy groups per molecule. Wetting of the carbon fibers by the sizing dispersion is found to be specified by both, the degree of fiber activation and the sizing reactivity. In contrast, adhesion strength between fibers and sizing is dominated by the surface chemistry of the carbon fibers. Here, the number of surface oxygen groups seems to be the limiting factor. We also find that the sizing and the additional functionalities induced by anodic oxidation are removed by thermal treatment at 600 °C, leaving the carbon fiber in its original state after carbonization.

  5. ON A POSSIBLE SIZE/COLOR RELATIONSHIP IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Pike, R. E.; Kavelaars, J. J.

    2013-01-01

    Color measurements and albedo distributions introduce non-intuitive observational biases in size-color relationships among Kuiper Belt Objects (KBOs) that cannot be disentangled without a well characterized sample population with systematic photometry. Peixinho et al. report that the form of the KBO color distribution varies with absolute magnitude, H. However, Tegler et al. find that KBO color distributions are a property of object classification. We construct synthetic models of observed KBO colors based on two B–R color distribution scenarios: color distribution dependent on H magnitude (H-Model) and color distribution based on object classification (Class-Model). These synthetic B–R color distributions were modified to account for observational flux biases. We compare our synthetic B–R distributions to the observed ''Hot'' and ''Cold'' detected objects from the Canada-France Ecliptic Plane Survey and the Meudon Multicolor Survey. For both surveys, the Hot population color distribution rejects the H-Model, but is well described by the Class-Model. The Cold objects reject the H-Model, but the Class-Model (while not statistically rejected) also does not provide a compelling match for data. Although we formally reject models where the structure of the color distribution is a strong function of H magnitude, we also do not find that a simple dependence of color distribution on orbit classification is sufficient to describe the color distribution of classical KBOs

  6. Size Evolution and Stochastic Models: Explaining Ostracod Size through Probabilistic Distributions

    Science.gov (United States)

    Krawczyk, M.; Decker, S.; Heim, N. A.; Payne, J.

    2014-12-01

    The biovolume of animals has functioned as an important benchmark for measuring evolution throughout geologic time. In our project, we examined the observed average body size of ostracods over time in order to understand the mechanism of size evolution in these marine organisms. The body size of ostracods has varied since the beginning of the Ordovician, where the first true ostracods appeared. We created a stochastic branching model to create possible evolutionary trees of ostracod size. Using stratigraphic ranges for ostracods compiled from over 750 genera in the Treatise on Invertebrate Paleontology, we calculated overall speciation and extinction rates for our model. At each timestep in our model, new lineages can evolve or existing lineages can become extinct. Newly evolved lineages are assigned sizes based on their parent genera. We parameterized our model to generate neutral and directional changes in ostracod size to compare with the observed data. New sizes were chosen via a normal distribution, and the neutral model selected new sizes differentials centered on zero, allowing for an equal chance of larger or smaller ostracods at each speciation. Conversely, the directional model centered the distribution on a negative value, giving a larger chance of smaller ostracods. Our data strongly suggests that the overall direction of ostracod evolution has been following a model that directionally pushes mean ostracod size down, shying away from a neutral model. Our model was able to match the magnitude of size decrease. Our models had a constant linear decrease while the actual data had a much more rapid initial rate followed by a constant size. The nuance of the observed trends ultimately suggests a more complex method of size evolution. In conclusion, probabilistic methods can provide valuable insight into possible evolutionary mechanisms determining size evolution in ostracods.

  7. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement.

    Science.gov (United States)

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2016-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

  8. Probabilistic Characterization of Partial Volume Effects in Imaging of Rectangular Objects

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    In imaging, a partial volume effect refers to the problem that arises when the system resolution is low relative to the size of the object being imaged [1, 2]. In this setting, it is likely that most voxels occupied by the object are only partially covered, and that the fraction covered in each voxel is low. This makes the problem of object detection and image segmentation very difficult because the algorithms designed for these purposes rely on pixel summary statistics. If the area covered by the object is very low in relatively many of the total number of the voxels the object occupies, these summary statistics may not reach the thresholds required to detect this object. It is thus important to understand the extent of partial volume effect for a given object size and resolution. This technical report focuses on rectangular objects and derives the probability distributions for three quantities for such objects: 1) the number of fully covered voxels, 2) the number of partially covered voxels, and 3) the fractions of the total volume covered in the partially covered voxels. The derivations are first shown for 2-D settings and are then extended to 3-D settings.

  9. MICRON-SIZED POLYMER PARTICLES FROM TANZANIAN ...

    African Journals Online (AJOL)

    Micron sized polymeric particles were prepared from cashew nut shell liquid and subsequently functionalized to produce micron-sized carboxylated cation exchange resin (MCCER). By titrimetry and analytical procedures employing atomic absorption spectrometry, an assessment of the cation exchange capability of the ...

  10. Influence of body size on coexistence of bird species

    NARCIS (Netherlands)

    Leyequien Abarca, E.; Boer, de W.F.; Cleef, A.M.

    2007-01-01

    Theory suggests that body size is an important factor in determining interspecific competition and, ultimately, in structuring ecological communities. However, there is a lack of pragmatic studies linking body size and interspecific competition to patterns in ecological communities. The objective of

  11. Variability in perceived satisfaction of reservoir management objectives

    Science.gov (United States)

    Owen, W.J.; Gates, T.K.; Flug, M.

    1997-01-01

    Fuzzy set theory provides a useful model to address imprecision in interpreting linguistically described objectives for reservoir management. Fuzzy membership functions can be used to represent degrees of objective satisfaction for different values of management variables. However, lack of background information, differing experiences and qualifications, and complex interactions of influencing factors can contribute to significant variability among membership functions derived from surveys of multiple experts. In the present study, probabilistic membership functions are used to model variability in experts' perceptions of satisfaction of objectives for hydropower generation, fish habitat, kayaking, rafting, and scenery preservation on the Green River through operations of Flaming Gorge Dam. Degree of variability in experts' perceptions differed among objectives but resulted in substantial uncertainty in estimation of optimal reservoir releases.

  12. Effect Size Analyses of Souvenaid in Patients with Alzheimer’s Disease

    Science.gov (United States)

    Cummings, Jeffrey; Scheltens, Philip; McKeith, Ian; Blesa, Rafael; Harrison, John E.; Bertolucci, Paulo H.F.; Rockwood, Kenneth; Wilkinson, David; Wijker, Wouter; Bennett, David A.; Shah, Raj C.

    2016-01-01

    Background: Souvenaid® (uridine monophosphate, docosahexaenoic acid, eicosapentaenoic acid, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium), was developed to support the formation and function of neuronal membranes. Objective: To determine effect sizes observed in clinical trials of Souvenaid and to calculate the number needed to treat to show benefit or harm. Methods: Data from all three reported randomized controlled trials of Souvenaid in Alzheimer’s disease (AD) dementia (Souvenir I, Souvenir II, and S-Connect) and an open-label extension study were included in analyses of effect size for cognitive, functional, and behavioral outcomes. Effect size was determined by calculating Cohen’s d statistic (or Cramér’s V method for nominal data), number needed to treat and number needed to harm. Statistical calculations were performed for the intent-to-treat populations. Results: In patients with mild AD, effect sizes were 0.21 (95% confidence intervals: –0.06, 0.49) for the primary outcome in Souvenir II (neuropsychological test battery memory z-score) and 0.20 (0.10, 0.34) for the co-primary outcome of Souvenir I (Wechsler memory scale delayed recall). No effect was shown on cognition in patients with mild-to-moderate AD (S-Connect). The number needed to treat (6 and 21 for Souvenir I and II, respectively) and high number needed to harm values indicate a favorable harm:benefit ratio for Souvenaid versus control in patients with mild AD. Conclusions: The favorable safety profile and impact on outcome measures converge to corroborate the putative mode of action and demonstrate that Souvenaid can achieve clinically detectable effects in patients with early AD. PMID:27767993

  13. A review of the findings and theories on surface size effects on visual attention.

    Science.gov (United States)

    Peschel, Anne O; Orquin, Jacob L

    2013-12-09

    That surface size has an impact on attention has been well-known in advertising research for almost a century; however, theoretical accounts of this effect have been sparse. To address this issue, we review studies on surface size effects on eye movements in this paper. While most studies find that large objects are more likely to be fixated, receive more fixations, and are fixated faster than small objects, a comprehensive explanation of this effect is still lacking. To bridge the theoretical gap, we relate the findings from this review to three theories of surface size effects suggested in the literature: a linear model based on the assumption of random fixations (Lohse, 1997), a theory of surface size as visual saliency (Pieters etal., 2007), and a theory based on competition for attention (CA; Janiszewski, 1998). We furthermore suggest a fourth model - demand for attention - which we derive from the theory of CA by revising the underlying model assumptions. In order to test the models against each other, we reanalyze data from an eye tracking study investigating surface size and saliency effects on attention. The reanalysis revealed little support for the first three theories while the demand for attention model showed a much better alignment with the data. We conclude that surface size effects may best be explained as an increase in object signal strength which depends on object size, number of objects in the visual scene, and object distance to the center of the scene. Our findings suggest that advertisers should take into account how objects in the visual scene interact in order to optimize attention to, for instance, brands and logos.

  14. Implementing size-optimal discrete neural networks require analog circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-01

    This paper starts by overviewing results dealing with the approximation capabilities of neural networks, as well as bounds on the size of threshold gate circuits. Based on a constructive solution for Kolmogorov`s superpositions the authors show that implementing Boolean functions can be done using neurons having an identity transfer function. Because in this case the size of the network is minimized, it follows that size-optimal solutions for implementing Boolean functions can be obtained using analog circuitry. Conclusions and several comments on the required precision are ending the paper.

  15. Creating Objects and Object Categories for Studying Perception and Perceptual Learning

    Science.gov (United States)

    Hauffen, Karin; Bart, Eugene; Brady, Mark; Kersten, Daniel; Hegdé, Jay

    2012-01-01

    by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis. PMID:23149420

  16. Do horses generalise between objects during habituation?

    DEFF Research Database (Denmark)

    Christensen, Janne Winther; Zharkikh, Tatjana; Ladevig, Jan

    2008-01-01

    Habituation to frightening stimuli plays an important role in horse training. To investigate the extent to which horses generalise between different visual objects, 2-year-old stallions were habituated to feeding from a container placed inside a test arena and assigned as TEST (n = 12) or REFERENCE...... horses (n = 12). In Experiment 1, TEST horses were habituated to six objects (ball, barrel, board, box, cone, cylinder) presented in sequence in a balanced order. The objects were of similar size but different colour. Each object was placed 0.5 m in front of the feed container, forcing the horses to pass...... the object to get to the food. TEST horses received as many 2 min exposures to each object as required to meet a habituation criterion. We recorded behavioural reactions to the object, latency to feed, total eating time, and heart rate (HR) during all exposures. There was no significant decrease in initial...

  17. Mother-Offspring Relations: Prey Quality and Maternal Size Affect Egg Size of an Acariphagous Lady Beetle in Culture

    Directory of Open Access Journals (Sweden)

    Eric W. Riddick

    2012-01-01

    Full Text Available We investigated mother-offspring relations in a lady beetle Stethorus punctillum Weise that utilizes spider mites as prey. Our objectives were to determine if (1 prey quality affects egg size, (2 maternal size correlates with egg size, and (3 egg size affects hatching success. We fed predators spider mites Tetranychus urticae Koch from lima bean Phaseolus lunatus L. foliage in the laboratory. Mothers of unknown body size offered high rather than low quality spider mites since birth produced larger eggs. Mothers of known body size offered only high quality spider mites, produced eggs of variable size, but mean egg size correlated positively with hind femur length. Mothers laid their eggs singly, rather than in batches, and eggs were large relative to femur size. Egg size did not affect hatch success; mean hatch rate exceeded 95% regardless of egg size. In conclusion, the quality of prey consumed by S. punctillum mothers while in the larval stage can affect their size as adults and, consequently, the size of their eggs. The behavior of laying eggs singly, the positive relationship between maternal size and mean egg size, and the high rate of egg hatch suggest that S. punctillum mothers invest heavily in offspring.

  18. Determining root correspondence between previously and newly detected objects

    Science.gov (United States)

    Paglieroni, David W.; Beer, N Reginald

    2014-06-17

    A system that applies attribute and topology based change detection to networks of objects that were detected on previous scans of a structure, roadway, or area of interest. The attributes capture properties or characteristics of the previously detected objects, such as location, time of detection, size, elongation, orientation, etc. The topology of the network of previously detected objects is maintained in a constellation database that stores attributes of previously detected objects and implicitly captures the geometrical structure of the network. A change detection system detects change by comparing the attributes and topology of new objects detected on the latest scan to the constellation database of previously detected objects.

  19. A mass-density model can account for the size-weight illusion.

    Science.gov (United States)

    Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.

  20. Effect of meal size and body size on specific dynamic action and gastric processing in decapod crustaceans.

    Science.gov (United States)

    McGaw, Iain J; Curtis, Daniel L

    2013-11-01

    Meal size and animal size are important factors affecting the characteristics of the specific dynamic action (SDA) response across a variety of taxa. The effects of these two variables on the SDA of decapod crustaceans are based on just a couple of articles, and are not wholly consistent with the responses reported for other aquatic ectotherms. Therefore, the effects of meal size and animal size on the characteristics of SDA response were investigated in a variety of decapod crustaceans from different families. A 6 fold increase in meal size (0.5%-3% body mass) resulted a pronounced increase in the duration of increased oxygen consumption, resulting in an increase in the SDA of Callinectes sapidus, Cancer gracilis, Hemigrapsus nudus, Homarus americanus, Pugettia producta and Procambarus clarkii. Unlike many other aquatic ectotherms a substantial increase between meal sizes was required, with meal size close to their upper feeding limit (3% body mass), before changes were evident. In many organisms increases in both duration and scope contribute to the overall SDA, here changes in scope as a function of meal size were weak, suggesting that a similar amount of energy is required to upregulate gastric processes, regardless of meal size. The SDA characteristics were less likely to be influenced by the size of the animal, and there was no difference in the SDA (kJ) as a function of size in H. americanus or Cancer irroratus when analysed as mass specific values. In several fish species characteristics of the SDA response are more closely related to the transit times of food, rather than the size of a meal. To determine if a similar trend occurred in crustaceans, the transit rates of different sized meals were followed through the digestive system using a fluoroscope. Although there was a trend towards larger meals taking longer to pass through the gut, this was only statistically significant for P. clarkii. There were some changes in transit times as a function of animal